

SAP Analytics Cloud, analytics designer

Developer Handbook

Document Version: 4.2 – 2020-02-06

Table of Contents 1

Table of Contents

Table of Contents .. 1

Figures... 6

Preface... 8

1 About Analytics Designer ... 9

1.1 What Is an Analytic Application? .. 9

1.2 What Is Analytics Designer? .. 9

1.3 What Can You Do with Analytic Applications That You Can’t Do with Stories? 9

1.4 How Are Stories and Analytic Applications Related to Each Other? 9

1.5 Why Do We Need Both Stories and Analytic Applications? .. 10

1.6 What Is the Typical Workflow in Creating an Analytic Application? 10

1.7 What Are Typical Analytic Applications? .. 11

1.8 How Does Scripting Work in Analytic Applications? ... 11

1.9 What’s the Scripting Language for Analytic Applications? .. 12

2 Getting Started .. 13

2.1 Prerequisites ... 13

2.1.1 Required Access ... 13

2.1.2 Required Roles ... 13

2.1.3 Required Licenses... 13

2.1.4 Modes ... 14

2.2 Designing Elements .. 14

2.2.1 Canvas.. 14

2.2.2 Widgets and Filters.. 14

2.2.3 Data Sources and Models ... 14

2.3 Managing Your Analytic Application ... 15

2.3.1 Transporting an Analytic Application .. 15

2.3.2 Sharing an Analytic Application ... 15

2.3.3 Bookmarking Your Analytic Application .. 15

2.3.4 Translating Your Analytic Application ... 16

2.3.5 Exporting Your Analytic Application to PDF.. 17

2.3.6 Commenting in Your Analytic Application... 19

2.4 Navigating from Analytic Application to Another Document or URL 20

2.4.1 Create a Story from a Widget .. 20

2.4.2 Navigation APIs... 21

3 Designing an Analytic Application ... 22

3.1 Creating .. 22

3.2 Browsing ... 22

3.3 Opening Analytic Applications in a Specific Mode .. 23

3.3.1 Opening an Analytic Application from File Repository with CRUD Permissions 23

3.3.2 Opening an Analytic Application from File Repository with Read Permissions 23

3.3.3 Opening a Mode with the URL ... 23

Table of Contents 2

3.3.4 Switching Between Present and View Mode .. 24

3.4 Toolbar Functionalities .. 24

3.4.1 Toolbar in Edit Mode ... 24

3.4.2 Toolbar in View Mode .. 25

3.5 Edit Mode Functionalities... 25

3.5.1 Outline and Side Panels .. 25

3.5.2 Scripting Section ... 26

3.5.3 Layout Section .. 26

4 Scripting in Analytics Designer .. 30

4.1 Why Scripting? .. 30

4.2 Scripting Language Overview .. 30

4.2.1 Type System ... 30

4.2.2 Tooling – Code Completion and Value Help... 30

4.2.3 Events ... 30

4.2.3.1 Application Events .. 30

4.2.3.2 Individual Widget Events .. 31

4.2.4 Global Script Objects ... 31

4.2.5 Accessing Objects ... 31

4.2.6 Script Variable ... 31

4.2.7 Timer .. 32

4.2.7.1 Script APIs ... 33

4.2.7.2 Sample 1 – Create Animation ... 33

4.2.7.3 Sample 2 – Automatically Play the Application .. 34

4.3 Script Editor .. 34

4.3.1 Creating and Editing Event-Based Scripts ... 35

4.3.2 Creating and Editing Functions in Global Script Objects... 36

4.3.3 Script Editor Layout ... 37

4.3.4 Keyboard Shortcuts ... 38

4.3.5 Info Panel: Errors and Reference List .. 38

4.3.6 Renaming Widgets, Script Variables, and Script Functions .. 38

4.4 Scripting Language Features ... 38

4.4.1 Typing ... 38

4.4.2 No Automatic Type Casting ... 39

4.4.3 Accessing Objects ... 39

4.4.4 Finding Widgets with Fuzzy Matching .. 39

4.4.5 External Libraries .. 40

4.4.6 Debugging with console.log()... 40

4.4.7 Loops .. 40

4.4.7.1 for .. 40

4.4.7.2 while .. 41

4.4.7.3 for in... 41

4.4.8 Double and Triple Equals Operators .. 41

4.4.9 if and else Statements ... 42

4.4.10 this 42

4.4.11 switch Statements ... 42

4.4.12 break Statement .. 43

4.4.13 Debugging Analytics Designer Scripts in the Browser .. 43

Table of Contents 3

4.5 Working with Data ... 46

4.6 Method Chaining ... 46

4.7 Script Runtime... 47

4.8 The R Widget and JavaScript .. 47

4.9 Differences Between Analytics Cloud and Lumira .. 48

5 Widget Concepts, APIs, and Usages .. 49

5.1 Basic Widget Concepts ... 49

5.1.1 Supported Widgets .. 49

5.1.2 Custom Widgets .. 49

5.2 The Builder Panel .. 50

5.3 The Styling Panel .. 50

5.4 Action Menu .. 51

5.5 Script Editor View .. 51

5.6 Table ... 52

5.6.1 Table APIs .. 52

5.6.2 Table Events ... 54

5.7 Chart ... 54

5.7.1 Chart APIs... 54

5.7.2 Chart Events ... 56

5.8 Result Set APIs ... 56

5.9 Prompt API.. 57

5.9.1 Using openPrompt() .. 57

5.9.2 Using getVariables() .. 57

5.9.3 Using setVariableValue() ... 58

5.9.3.1 Single Variable Values ... 58

5.9.3.2 Multiple Variable Values ... 59

5.9.3.3 Comparisons .. 59

5.9.3.4 Ranges .. 59

5.9.4 Using removeVariabeValue() ... 59

5.9.5 Using copyVariableValueFrom() .. 60

5.10 Popup and Dialog .. 60

5.10.1 Main Popup and Dialog APIs ... 61

5.10.2 Button-Related Popup and Dialog APIs ... 61

5.10.3 Popup and Dialog Events .. 61

5.10.4 Known Limitations with Popup and Dialog ... 62

5.11 Text Widget ... 62

5.11.1 Changing Text ... 62

5.11.2 Adding Dynamic Text .. 62

5.12 RSS Feed ... 63

5.13 R Visualization .. 63

5.14 Geo Map ... 64

5.15 Layout APIs... 64

6 Typical Patterns and Best Practices .. 68

6.1 Switching Between Chart and Table .. 68

Table of Contents 4

6.2 Selecting Measures via Dropdown or Radio Button to Filter Table and Chart to
Display (Single Selection) .. 72

6.3 Selecting Measures via Dropdown to Filter Table and Chart to Display (Multi-
Selection) .. 79

6.4 Using Filter Line for Filtering Table, Chart, and R Visualization 89

6.5 Cascaded Filtering .. 95

6.6 Add and Remove Dimension in Rows and Columns for Table 102

6.7 Creating a Settings Panel Using a Popup Window ... 123

6.8 Selection Handling in a Table or Chart and Open a Details Popup 142

6.9 Using R Widget Word Cloud for Visualization .. 164

6.10 Set User Input for Planning Data ... 184

7 Planning ... 186

7.1 What to Expect from Analytics Designer Regarding Planning? 186

7.2 Basic Planning Concepts in Analytics Designer ... 186

7.3 Refreshing Your Data .. 188

7.4 Set User Input ... 188

7.5 Planning Versions ... 189

7.5.1 Private Versions .. 189

7.5.2 Public Versions ... 189

7.6 How to Manage Versions... 190

7.6.1 Publishing and Reverting Data Changes.. 190

7.6.2 Copy ... 192

7.7 Data Locking ... 192

7.7.1 Using getDataLocking() ... 193

7.7.2 Using getState() .. 193

7.7.3 Using setState() .. 194

8 Predictive ... 196

8.1 Time Series Forecast .. 196

8.1.1 Switch On and Off Forecast ... 196

8.1.2 Configure Forecast .. 196

8.2 Smart Insights ... 197

8.2.1 Discover per Selected Data Point .. 197

8.3 Smart Grouping ... 198

8.3.1 Switch On and Off Smart Grouping .. 198

8.3.2 Configure Smart Grouping ... 199

8.4 Smart Discovery .. 199

8.5 Search To Insight .. 200

9 OData ... 202

9.1 What You Should Know About OData.. 202

9.2 How You Can Connect to OData ... 202

9.2.1 What You Need to Do.. 202

9.2.2 Known Restrictions.. 202

9.2.3 What Is an Action .. 203

Table of Contents 5

9.2.4 What Are Action Imports .. 203

9.2.5 What Is a Bound Action ... 203

9.3 How You Can Call OData Actions.. 204

9.4 How You Can Read Data from OData Services ... 210

10 Post Message API ... 212

10.1 Scenario 1: How You Can Embed an Analytic Application in a Host HTML Page via
iFrame... 212

10.1.1 postMessage ... 212

10.1.2 onPostMessageReceived .. 213

10.1.3 Example .. 213

10.2 Scenario 2: How You Embed a Web Application in an Analytic Application Through
the Web Page Widget.. 214

10.2.1 Web Page Widget Related postMessage and onPostMessageReceived 214

10.2.2 Case 1 – Posting Messages from the Host Analytic Application to the Embedded
Application .. 214

10.2.3 Case 2 – Posting Messages from the Embedded Application to the Host Analytic
Application .. 215

11 The End and the Future... 216

12 Important Links ... 217

Figures 6

Figures

Figure 1: Bookmark Component in Outline .. 15

Figure 2: Side Panel of Bookmark Component .. 15

Figure 3: Turn on Translation .. 16

Figure 4: Export to PDF Component in Outline .. 17

Figure 5: Side Panel of Export to PDF Component .. 17

Figure 6: Side Panel of Export to PDF Component to Configure the Settings 18

Figure 7: Create a Story from a Widget ... 20

Figure 8: Create Application .. 22

Figure 9: Edit Sharing Settings .. 22

Figure 10: Open in View Mode .. 23

Figure 11: Run Analytic Application ... 24

Figure 12: Fullscreen .. 24

Figure 13: Outline ... 25

Figure 14: Context Menu for Scripting Objects in Outline ... 26

Figure 15: Context Menu for Canvas Objects in Outline ... 26

Figure 16: Widget Name ... 27

Figure 17: Analytics Designer Properties ... 27

Figure 18: Dropdown Menu Style .. 28

Figure 19: Filter Menu Style .. 28

Figure 20: Visual Feedback of Mouse Click & Hover.. 28

Figure 21: Settings of Icon... 28

Figure 22: Type of Button .. 28

Figure 23: Actions Menu ... 29

Figure 24: Quick Menu Options in Styling Panel .. 29

Figure 25: Create Calculation .. 32

Figure 26: Reference Script Variable ... 32

Figure 27: Edit Scripts ... 35

Figure 28: Multiple Events ... 35

Figure 29: Script for Dropdown .. 35

Figure 30: Script for Chart ... 35

Figure 31: Hover Menu.. 36

Figure 32: Add Script Object ... 36

Figure 33: Add Script Function .. 36

Figure 34: Script Object Function .. 36

Figure 35: Script of Script Object Function... 37

Figure 36: Script Editor.. 37

Figure 37: 3 Areas of Script Editor ... 37

Figure 38: Accessing Objects .. 39

Figure 39: Prompt Dialog: Variable Values Are Applied to the Widget Only 58

Figure 40: Variable Values Are Applied to the Model of the Application or the Widget 58

Figure 41: Layout Section in the Styling Panel ... 66

Figure 42: Example Application Switch Chart Table ... 68

Figure 43: Switch Chart Table ... 68

Figure 44: Example Application Dropdown .. 72

Figure 45: Dropdown Selection ... 73

Figure 46: Example Application Multi Selection ... 80

Figure 47: Choose Input Data for Filtering R Visualization ... 90

Figures 7

Figure 48: Example Application Filter Line ... 90

Figure 49: Select Filter Line... 91

Figure 50: Example Application Cascading Filtering .. 95

Figure 51: Add and Remove Dimensions... 103

Figure 52: Example Application Settings Panel .. 124

Figure 53: Popup Settings Panel ... 124

Figure 54: Example Application Details Popup .. 142

Figure 55: Details Popup ... 143

Figure 56: Example Application Word Cloud .. 164

Figure 57: Toolbar Planning Features.. 186

Figure 58: Planning Enabled ... 187

Figure 59: Unbooked Data .. 187

Figure 60: SetUserInput .. 188

Figure 61: Publish Version .. 190

Figure 62: Publish Data ... 190

Figure 63: Success Message .. 190

Figure 64: Message .. 191

Figure 65: Dirty Version... 191

Figure 66: Planning Table in Popup ... 192

Figure 67: Enabling Data Locking in the Model Preferences .. 193

Figure 68: Automatic Forecast... 196

Figure 69: Linear Regression .. 197

Figure 70: Time Series Chart: Select the Interested Data Point.. 197

Figure 71: Side Panel of Smart Insights ... 198

Figure 72: Smart Grouping .. 198

Figure 73: Configure Smart Grouping in Builder Panel of Chart ... 199

Figure 74: Configure Smart Grouping in Chart Details ... 199

Figure 75: Smart Discovery Setting Panel ... 200

Figure 76: New Document Created by Smart Discovery .. 200

Figure 79: Create a SearchToInsight Component .. 201

Figure 80: Launch Search To Insight ... 201

Figure 81: OData Service in Outline .. 204

Figure 82: OData Service .. 204

Figure 83: Actions for OData Service in Outline ... 204

Figure 84: OData Service Side Panel .. 205

Figure 85: Define OData Service Properties .. 206

Figure 86: Styling Options ... 206

Figure 87: Widget Context Menu ... 207

Figure 88: Create Script .. 207

Figure 89: Create Script .. 207

Figure 90: Value Help ... 208

Figure 91: Value Help for Flight/Book .. 208

Figure 92: Value Help for Flight ... 208

Figure 93: Define Message ... 209

Figure 94: Post Message Scenarios .. 212

Figure 95: Embed an Analytic Application into a Host Page ... 213

Preface 8

Preface

Why shall you read this book? Because we offer you the following:

We give you a kickstart in how to use the SAP Analytics Cloud, analytics designer. We offer you

coding examples and we want to get you enthusiastic about the enormous flexibility you have for

building advanced analytic applications. We want you to become a fan of our product seeking for

the unlimited possibilities in the cloud.

Thanks to all people around the globe who helped writing this first version of the developer

handbook for SAP Analytics Cloud, analytics designer!

Thanks to all developers, as well as colleagues from quality team, user experience, user

assistance and product management (and any other contributor) who made this awesome product

possible!

About Analytics Designer 9

1 About Analytics Designer

This handbook presents the basics about SAP Analytics Cloud, analytics designer to help you

understand what it's all about and how it works. Let’s start with some fundamental concepts.

1.1 What Is an Analytic Application?

An analytic application presents data in various forms, and lets you navigate it, and enables

planning. Analytic applications can range from simple static dashboards, showing static numbers,

to highly customized applications. These customized applications can contain many options for

browsing and navigating data, changing visualizations, and navigating across multiple pages or

areas. They can have a highly customized look-and-feel, in alignment with customer branding.

1.2 What Is Analytics Designer?

Analytics designer is the functionality in SAP Analytics Cloud that allows you to create analytic

applications. There is a dedicated design environment in SAP Analytics Cloud to create such

applications. The term design doesn't refer specifically to the UX or UI design aspect of the

application.

 It is the entire process of creating an analytic application, which includes:

• Defining the data model

• Laying out the screen

• Configuring widgets

• Wiring it all up with the help of custom scripts

Therefore, analytics designer is another way to create analytical content in SAP Analytics Cloud.

1.3 What Can You Do with Analytic Applications That You

Can’t Do with Stories?

A story is created in a self-service workflow and can be made up of various widgets and a lot of

configured functionality. However, the amount of customization is limited to the foreseen

possibilities offered in the story design-time environment.

An analytic application typically contains some custom logic, expressed with the help of scripts.

With analytic applications there is much more flexibility to implement custom behavior. It requires

a higher skill level to create those.

1.4 How Are Stories and Analytic Applications Related to Each

Other?

In general, stories and applications share widgets and functionality to a large extent, but some

widgets can only be used in applications, because they need to be scripted (dropdown boxes or

buttons, for example). Analytic applications can also have custom logic, which cannot be

implemented in stories since there is no scripting.

About Analytics Designer 10

From a consumption point of view, there shouldn't be any difference between stories and analytic

applications. The consumer shouldn't be aware of whether the analytical content is a story or an

analytic application. The exposed widgets, the available functionality, and the look, feel, and

behavior should be the same.

1.5 Why Do We Need Both Stories and Analytic Applications?

Stories and analytic applications share functionality and widgets and may even have very similar

design environments. Why are two different artifact types necessary? The answer is that story

designers and analytics designers have completely different expectations. This is related to the

differences between stories and applications:

• In the story design environment, it's practically impossible for you to create a story that

doesn't work. The expectation of self-service design time for stories is that business users

are guided (to some extent limited) in what they do and can do. The story design time is

supposed to consist of multiple configuration steps that prevent business users from

creating something which breaks. With story design time, we ensure some level of

consistency.

• It's completely different with applications, especially with the added scripts. As soon as

analytics designers add custom logic with scripting, they have complete freedom to

change the default behavior of the entire analytic application. The design environment

provides everything to create correct applications, but it doesn't guarantee that the

application is correct or won't break.

In addition, an analytic application has a dedicated life-cycle. You start it and there are certain

steps which are performed, like the startup event, for example. The story doesn't have that. You

can switch the story between edit and view mode as often as you like.

These are major differences. That is why we offer two artifacts and two corresponding design-

time environments to create stories and analytic applications.

1.6 What Is the Typical Workflow in Creating an Analytic

Application?

An analytic application is always data-driven. The foundation of an analytic application is one or

more underlying SAP Analytics Cloud models or a direct data access to an OData Service.

As a first step, you need to decide whether you want to visualize your data in a table or a chart

and add a table or a chart to your analytic application. This triggers another step for picking a

model. A model is a representation of the business data of an organization, organized into

dimensions and measures. In addition to widgets showing data, you add to the layout other

widgets that control data, such as filters, arrange and configure them, and wire them up.

Almost all widgets expose events. To add custom logic to the analytic application, you can

implement event handlers with the help of the scripting language.

About Analytics Designer 11

1.7 What Are Typical Analytic Applications?

The variety of analytic applications is huge. analytic applications can range from very static

visualizations of a few data points to very advanced, highly customized and interactive

applications which offer rich navigation and generic built-in exploration capabilities. However,

there are some patterns of analytic applications:

• Table-centric data visualization

The application is comprised of a table, which consumes a large extent of the available

screen real estate. Around the table, typically above it, are many user interface controls

(buttons, checkboxes, dropdown boxes, and so on) to change the data display, such as

to filter the data, change the data view, or show different dimensions. The nature of this

application is that there is only one table, but many and potentially complex ways to show

data differently.

• Dashboard

The application is a dashboard visualizing a few data points with the help of tiles. There is

no interactivity, but it gives users an overview of highly aggregated data. A typical option

of some dashboards is to use the tiles for further drilling into details: clicking on a tile

takes you to a more detailed page or an entirely new application showing more details for

the aggregated number on the tile.

• Generic application

Many applications are created for a specific model. That means that the user interface,

the widgets, and the logic are done with knowledge of the model and its available

dimensions, members, and so on. Another category is generic applications. These are

applications which need to be provided with a model whenever the application is

executed. These applications are more complex to create as their logic needs to work

with whatever model the end user selects at runtime. The advantage is that customers

don't need to create applications for each model they have maintained in their system.

1.8 How Does Scripting Work in Analytic Applications?

Almost all widgets, whether smart, data-related widgets or simple widgets such as buttons and

dropdown boxes, expose events. Even the analytic application itself exposes events such as a

startup event or similar. To add custom logic to the application, you can implement event handlers

with the help of the scripting language.

Example:

Let's say a dropdown box is populated with the available years in the data model - 2015 to 2019.

The dropdown box exposes the event OnSelect, which is triggered whenever a value is selected

from the dropdown box. The implementation of that event handler could read the selected value

and set a filter for the selected year in the model. The numbers shown reflects the selected year.

Because you can add many event handlers using the scripting APIs of all widgets and other

service APIs offered, the application can be geared towards the specific needs of a customer.

About Analytics Designer 12

1.9 What’s the Scripting Language for Analytic Applications?

The scripting language is JavaScript. Scripts are executed by the web browser JavaScript engine,

which is available out of the box. To offer good tool support for application designers, we add a

type system on top. This is used for the tooling and for validating scripts.

Example:

Let's say that there is an API method available for filtering members: setFilter("YEAR", "2014").

A member is an element of a dimension. The plain JavaScript method expects two strings, and

this is what is executed at runtime by the web browser. However, our definition of the API method

uses dedicated predefined types for our business domain, that is setFilter(Dimension, Member).

With that definition, the system checks and validates that the passed strings are a valid dimension

and a valid member.

The script editor uses the type information. It doesn't just statically check the types but uses the

knowledge about the underlying model and provides value help to offer dimensions and members

existing in the model.

Getting Started 13

2 Getting Started

Analytics designer provides a software development environment that enables application

designers or developers to reuse SAP Analytics Cloud widgets and other functionalities to build

different kinds of applications. Interactions between different widgets, pages, and applications are

implemented with script functionalities (including planning, machine learning, and so on) -

at design time. End users will then be consuming these applications - at runtime.

Analytics Designer is built around core story components to keep them synchronized as you go

forward. Analytics designer and Story have different entry points but share much in common:

• Analytics designer is deeply integrated into SAP Analytics Cloud.

• Analytics designer and story share data connectivity and User Interface artifacts.

• It ensures a consistent user experience for application and story consumers.

• It inherits infrastructure and life cycle management of SAP Analytics Cloud.

2.1 Prerequisites

2.1.1 Required Access

Read access: the user of an analytic application needs a read access to open the application at

runtime.

Full access: the application author who creates or edits the application needs a Create, Read,

Update and Delete access (CRUD). The CRUD permissions are part the standard role

Application Creator or can be assigned to any other role.

The folder where the application is stored passes on its access settings. For example, when an

application is saved in a public folder, all users get Read access by default.

2.1.2 Required Roles

All standard Business Intelligence roles have a read access to consume analytic applications.

The ability to create, update, and delete is part of an extra standard role Application Creator.

2.1.3 Required Licenses

All SAP Analytics Cloud licenses include the creation and consumption of analytic applications.

For planning applications, please note the following:

• If you only need read access to existing planning models and create private versions

only, you can use the SAP Analytics Cloud for business intelligence license.

• If you need to create public versions and use all planning features, the SAP Analytics

Cloud for planning, standard edition is required.

• If you need to create or update a planning model for your planning application, the SAP

Analytics Cloud for planning, professional edition license is required.

Getting Started 14

2.1.4 Modes

There are three modes in analytic applications:

• Edit mode

This is a design time mode. It allows you to edit applications. CRUD access is necessary.

The application opens in edit mode by default if you have CRUD access.

• Present mode

This is a runtime mode. It allows you to execute applications. Read access is necessary.

The application opens in present mode by default if you run an it from edit mode.

• View mode

This is a runtime mode. It allows you to execute applications. Read access is necessary.

The application opens in view mode by default if you have read access.

2.2 Designing Elements

For analytic applications there is a strict differentiation between design time and runtime. A few

trained users create applications by using the design time elements, while many end users

accessing and navigating the final application only at runtime. The following are the available

designing elements.

2.2.1 Canvas

The Canvas is a flexible space where you can explore and present your data. Applications have

only one canvas. Scripting allows you to build numerous navigation options in your app.

2.2.2 Widgets and Filters

In Analytics Designer, a Widget is a user interface element that can be inserted and is visible on

the canvas.

Note: Applications don’t have pages. The story concepts of cascading story, page, widget filters,

and input controls are thus unavailable in applications. You should add a Filter line widget

instead. The Filter line widget mimics the story filter and can be placed on the application canvas.

Assign a data bound source widget, such as a table or a chart, as source widget. Target widgets

can be assigned via scripting to apply the selected filters to several widgets.

To learn more about widgets, see the related chapter.

2.2.3 Data Sources and Models

In SAP Analytics Cloud, the widgets table, chart and R widget are data bound. They have their

own data source, even if the same SAP Analytics Cloud model is connected. There is no shared

data source concept. For example, you need to apply filters to each widget when you script in

analytics designer for this reason.

Getting Started 15

2.3 Managing Your Analytic Application

2.3.1 Transporting an Analytic Application

You can import and export analytic applications from and to other SAP Analytics Cloud tenants.

You can choose to export with data and other options.

Note: Custom widgets that are used in an analytic application are also exported with the analytic

application.

Note: The software release Wave versions of SAP Analytics Cloud installed on the source and

target tenants need to be either the same Wave version or just one Wave version different.

2.3.2 Sharing an Analytic Application

Analytics designer has its own access. As the owner of an analytic application, you can share

individual analytic applications with others and grant access to these applications.

2.3.3 Bookmarking Your Analytic Application

Bookmark lets an application user capture the current state of an analytic application after certain

operations such as filtering or changing hierarchy level.

Create Bookmark Component

To capture a bookmark of an analytic application, one needs to add a bookmark component at

design time. A bookmark version and widgets to be bookmarked can be defined in the side panel

of this component.

Figure 1: Bookmark Component in Outline

Figure 2: Side Panel of Bookmark Component

Getting Started 16

Save Bookmark

Write analytic designer scripts to save a bookmark. At runtime, the analytic application user can

capture the latest application state via API.

BookmarkSet_1.save("application bookmark", true, true);

Get Bookmark Information

Certain information concerning a bookmark can be retrieved via APIs as well.

BookmarkSet_1.getAll(); //get all valid bookmarks

BookmarkSet_1.getVersion(); //get the version of current bookmark

//get current applied bookmark

var bookmarkInfo = BookmarkSet_1.getAppliedBookmark();

//check if bookmark is changed

BookmarkSet_1.isSameAsApplicationState(bookmarkInfo);

Delete Bookmark

Remove a specific bookmark via API.

var bookmarkInfo = BookmarkSet_1.getAppliedBookmark();

BookmarkSet_1.deleteBookmark(bookmarkInfo); //delete bookmark

2.3.4 Translating Your Analytic Application

Translation is useful for multilingual use cases. An analytic application be displayed in different

languages in:

• The text of a widget

• The widget tooltip if applicable

• The description of the analytic application

• And so on

To turn on translation of an analytic application for the first time, the application developer must

open the Analytic Application Details dialog and switch on Mark for translation.

Figure 3: Turn on Translation

Getting Started 17

The current language will become the source language of this document. If users switch to

another language, the document will be shown only in view mode.

2.3.5 Exporting Your Analytic Application to PDF

Analytic Applications allow users to export an application as a PDF file when running the

application.

Create an Export to PDF Component

To export an application as a PDF, an Export to PDF component should be added when designing

an application.

Figure 4: Export to PDF Component in Outline

Figure 5: Side Panel of Export to PDF Component

Export PDF

Write analytic designer scripts to trigger the export. Then during application runtime, analytic

application users can export an application as a PDF file via the API:

ExportToPDF_1.exportView();

Configure Export to PDF Settings

There are several PDF exporting settings that can be configured, such as:

• File name

• Orientation

• Paper size

• Page number location

• Date location

• Page header

• Page footer

• Insert Appendix or not

• Export comment or not

• Export in the background or not

Getting Started 18

The settings can be configured both at design time and run time. Application designers can update

the values via the side panel of Export to PDF at design time. While at run time, all settings can

be exposed to application users via related APIs and enable the users to configure these settings

as well.

Figure 6: Side Panel of Export to PDF Component to Configure the Settings

APIs to configure the settings of export PDF include:

setFileName(“ApplicationPDF”)

getFileName();

setAppendixVisible(true);

isAppendixVisible();

setCommentsVisible(true);

isCommentsVisible();

setPageSize(PageSize.A4);

getPageSize();

setHeaderText(“Page Header”);

getHeaderText();

Getting Started 19

setHeaderVisible(true);

isHeaderVisible();

setFooterText(“Page Footer”);

getFooterText();

setFooterVisible(true);

isFooterVisible();

setPageOrientation(PageOrientation.Portrait);

getPageOrientation();

setDateLocation(PageDateLocation.Header);

getDateLocation();

setPageNumberLocation(PageNumberLocation.Header);

getPageNumberLocation();

setMetadataLocation(PageMetadataLocation.Header);

getMetadataLocation();

setExportInBackgroundEnabled(true);

isExportInBackgroundEnabled();

2.3.6 Commenting in Your Analytic Application

Besides directly creating or removing comments in an analytic application as in a story, as an

application designer, you can add, view, delete comments, and so on, via scripting (available for

commenting by data point in planning models only).

Manage Comment

Data cell-based comments can be managed via APIs by specifying data context or comment ID.

// Add comment to table cell

Table_1.getDataSource().getComments().addComment({@MeasureDimension:
"[sap.epm:M010_10_Accounts].[parentId].&[A134000]",
sap.epm:M010_10_Operating_Income_Version: "public.Actual"}, "comment1");

// Remove comment by thread ID or comment ID

// If a comment ID is specified, this comment is removed.

Table_1.getDataSource().getComments().removeComment("28760729-2540-4227-b016-
428450515042");

// Remove comment by context. One data cell has only one comment

// thread. In this case, all comments belong to this thread will

// be removed.

Table_1.getDataSource().getComments().removeComments({@MeasureDimension:
"[sap.epm:M010_10_Accounts].[parentId].&[A134000]",
sap.epm:M010_10_Operating_Income_Version: "public.Actual"});

Getting Started 20

Get Comment

Besides posting or removing comments, the application designer can read the comment

information by data context or comment ID. The comment information includes content, author,

creation date and so on.

// If comment ID is specified, the related comment is returned

var oCommentInfo2 = Table_1.getDataSource().getComments().getComment("28760729-
2540-4227-b016-428450515042");

// Get comment thread by context

var aCommentInfos =
Table_1.getDataSource().getComments().getAllComments({@MeasureDimension:
"[sap.epm:M010_10_Accounts].[parentId].&[A134000]",
sap.epm:M010_10_Operating_Income_Version: "public.Actual"});

Turn On and Off Comment Display at Runtime

Be able to turn on and off comment display via APIs. Once the comment mode is disabled, the

comments and related UI will be invisible at runtime.

Application.isCommentModeEnabled();

Application.setCommentModeEnabled(true);

Like a Comment

Whether to like a comment or not can be configured via API as well. Once a comment id is

specified, the number of like of the related comment will be updated.

setCommentLiked(("28760729-2540-4227-b016-428450515042", true);

2.4 Navigating from Analytic Application to Another Document

or URL

2.4.1 Create a Story from a Widget

For each data-bound widget at runtime, such as Table or Chart, the analytic application user can

create a new story from the widget and start exploration based on it afterwards.

Figure 7: Create a Story from a Widget

Getting Started 21

The new story will be created in a new browser page, and the settings and data state (that is,

filter, and so on) will be carried over as well.

2.4.2 Navigation APIs

Navigation APIs let users navigate from an opened analytic application to another page of a story.

Basically, the APIs can be used in two ways: open the analytic application or a page of a story

directly or open an URL.

Navigate to Analytic Application or Story

The APIs take the uuid of an analytic application or a page in a story and open the expected

application or page in a new tab if parameter “newTab” is set to true.

NavigationUtils.openStory("story_uuid", "page_uuid",
[UrlParameter.create("p_script_var_1", "123"),
UrlParameter.create("p_script_var_2", "Value with Spaces")]);

NavigationUtils.openApplication("application_uuid", true);

Open URL

The user can also choose to open an URL, which is a story or analytic application URL, or even

a general external URL. The URL can be opened in a new tab or in a browser page that is already

open.

var storyURL = createStoryUrl("story_uuid", "page_uuid",
UrlParameter.create("p_script_var_1", "123"));

var appURL = createApplicationUrl("application_uuid");

openUrl(storyURL, true);

openUrl(appURL, true);

Open Data Analyzer

The user can also choose to open a data analyzer to analyze data of a data source. The user can

pass the name of the connection, the name of the data source, and URL parameters, if necessary.

The data analyzer opens in a new tab or in a browser page that is already open.

NavigationUtils.openDataAnalyzer("myconnection", "mydataSourceName",
UrlParameter.create("P_script_var_1", "123"), true);

Designing an Analytic Application 22

3 Designing an Analytic Application

3.1 Creating

To create an analytic application, you need the Application Creator role (or a custom role with the

CRUD permissions) to be able to see the menu entry in the Home menu under Create.

1. Click the menu icon,

2. click Create,

3. and click Analytic Application.

Figure 8: Create Application

3.2 Browsing

Select Browse under the menu to access the file repository where are:

• Filters

• All existing public analytic applications

• Private applications

• Applications shared with you.

The default access set for an application saved in a public folder is read only for others. You need

to explicitly share your application with other users and give CRUD access to allow them to edit

the application.

Figure 9: Edit Sharing Settings

Designing an Analytic Application 23

3.3 Opening Analytic Applications in a Specific Mode

For analytic applications we talk about the edit mode, where applications can be edited and the

view mode, where applications are executed.

At design time, the CRUD permissions are necessary, at runtime only read access. When users

have only read access and open an application from file repository, the application will open

automatically in runtime mode. If a user has CRUD permissions, the application will open per

default in design time mode. If you as application author with CRUD permissions want to open

the application from file repository directly in view mode, you can select this option from context

menu when hovering over the application name in the list. If you are not the owner of the

application and it was not shared with full access, the application will open in view mode and you

don’t have the option in the context menu. Only for your own applications you have this option.

3.3.1 Opening an Analytic Application from File Repository with CRUD

Permissions

If you are the owner of the application, or if you have CRUD access for this analytic application,

the application opens automatically in edit mode. The option to open the application in view mode

is available in the context menu.

To open an application from a file repository in view mode:

• Hover over the application name in the list.

• Open the context menu under the icon.

• Select Open in view mode.

Figure 10: Open in View Mode

3.3.2 Opening an Analytic Application from File Repository with Read

Permissions

If you are not the owner of the application, or if you have only read access, the application opens

automatically in view mode and does not have a context menu entry.

3.3.3 Opening a Mode with the URL

A typical application URL looks as follows and contains a mode, for example:

https://xxxx/sap/fpa/ui/tenants/abc123/app.html#,mode=present;view_id=appBuilding;app

ID=xyz78

In edit mode, the URL contains mode=edit. In present mode, the URL contains mode=present. In

view mode, the URL contains mode=view. The analytic application opens in present mode by

default when running the application from the design time.

https://xxxx/sap/fpa/ui/tenants/abc123/app.html#,mode=present;view_id=appBuilding;appID=xyz78
https://xxxx/sap/fpa/ui/tenants/abc123/app.html#,mode=present;view_id=appBuilding;appID=xyz78

Designing an Analytic Application 24

Figure 11: Run Analytic Application

To change the mode:

• Modify the URL directly or using the navigation options in the user interface.

• Click the Fullscreen button in the toolbar. This action changes the URL from

mode=present to mode=view.

3.3.4 Switching Between Present and View Mode

You can switch between present and view mode by clicking the Display Fullscreen button in the

toolbar. You will notice that the URL will change. Instead of mode=present, the URL contains now

mode=view.

Figure 12: Fullscreen

3.4 Toolbar Functionalities

3.4.1 Toolbar in Edit Mode

As in Stories there is a toolbar on top of the application which contains the features. Some options

are only active once you have saved the application, otherwise they are greyed out.

• File contains the options like Application Details, Save and Save As, Copy, Duplicate,

Paste and Share.

• For Analytics Designer you have 2 views which are exclusively for applications and ON

by default: The Outline and the Info Panel, which contains the error list and the reference

list.

• Insert allows you to insert chart, table and all other available widgets.

• With Tools you can do chart scaling and create conditional formatting.

Designing an Analytic Application 25

• Data contains refresh data and edit prompts.

• Designer opens the builder and styling panel.

• Run Analytics Application opens the application in another browser tab in present mode.

Present mode means, that the toolbar is visible only at hover. But it can be toggled to

View mode with a static toolbar by clicking on Fullscreen button in the toolbar.

3.4.2 Toolbar in View Mode

In view mode as well as in present mode the toolbar contains a limited set of features.

• Data allows you to refresh data and edit prompts.

• Plan contains publish data, version management, version history, value lock

management, predictive forecast and allocate values.

• Display Fullscreen will change the mode to present mode by showing the toolbar only at

hover.

3.5 Edit Mode Functionalities

3.5.1 Outline and Side Panels

The outline is a crucial element of the edit mode. It contains:

• All visible widgets in the Layout area, either directly on the main Canvas or in a Popup

• The non-visible elements of an application in the Scripting area

Click on + to create Script Variables, Script Objects, OData Services, and Predictive Models. You

can maintain them here and use them in every script of the application.

The outline has a search bar that filters the complete tree to match your search. Click the symbol

> to expand or collapse an item.

Figure 13: Outline

Designing an Analytic Application 26

3.5.2 Scripting Section

Every Scripting object has a context menu that contains Rename, Find Reference, and Delete.

When you select one of these objects, a side panel appears. It allows you to edit properties. The

panel opens if you click these objects and closes when you click Done in the panel.

For more information, see the chapter on Scripting.

Figure 14: Context Menu for Scripting Objects in Outline

3.5.3 Layout Section

If the Designer button on the top right of the application is selected, a Designer panel is available

for the visible widgets on the canvas. Access the Builder and Styling panels

from there.

The widgets in the outline, on the canvas, and the side panel are always synchronized and based

on your selection. Widgets in the outline have a context menu containing Rename, Find

Reference, Delete, and Hide. Hide conceals the widget on the canvas in edit mode. It has no

influence on the different view modes when executing the application.

Figure 15: Context Menu for Canvas Objects in Outline

Designing an Analytic Application 27

Widgets have their own analytic application Properties section in the Styling panel. This is where

the widget name used for scripting can be changed; it is updated in the outline, and vice versa.

The specific properties of the analytics designer depend on the widget type.

Figure 16: Widget Name

Figure 17: Analytics Designer Properties

Dropdown Widget

Users can now configure dropdown style with greater granularity. In addition to the default style,

users can now configure different styles of dropdown menu when item are selected, or mouse

hover, or mouse down.

Designing an Analytic Application 28

Figure 18: Dropdown Menu Style

Filter Line Widget

In addition to the default style, users can now configure different styles of filter menu during mouse

hover or mouse down.

Figure 19: Filter Menu Style

Button Widget

Several new settings of Button widget have been added in the Styling Panel:

Figure 20: Visual Feedback of Mouse Click & Hover

Figure 21: Settings of Icon

Figure 22: Type of Button

The possible types of button are: standard, lite, emphasized, positive (accept), and negative

(reject).

Under Actions, you can flag the option to hide the widget in application view time.

Designing an Analytic Application 29

Figure 23: Actions Menu

At runtime for each widget, there are quick menus for either a widget or relevant data points (that

is, Table or Chart). An application developer can configure the visibility of these quick menu items

via the settings in the Styling Panel of a widget. More styling options are available.

By checking or unchecking the checkbox before each item, the application developer can control

the availability of the related quick menu item at runtime.

Please be advised that the configurable items in quick menus vary by widget.

Figure 24: Quick Menu Options in Styling Panel

Scripting in Analytics Designer 30

4 Scripting in Analytics Designer

4.1 Why Scripting?

You might be wondering why you would want to script and what advantage it could possibly be.

Most modern analytics tools avoid scripting to simplify the designer’s tasks. Users may find it

easier to use at first, but they quickly find themselves limited to the scenarios built into the tool.

Scripting allows you to go beyond present narratives, to respond to user interaction in a custom

way, to change data result sets, and to dynamically alter layout. Scripting frees your creativity.

4.2 Scripting Language Overview

The scripting language in Analytics Designer is a limited subset of JavaScript. It is extended with

a logical type system at design time enforcing type safety. Being a true JavaScript subset allows

executing it in browser natively. All scripts are run and validated against strict mode. Some more

advanced JavaScript features are hidden. Scripts are either tied to events or global script objects.

4.2.1 Type System

The logical type system runs on top of plain JavaScript. It enforces strict types to enable more

powerful tooling. The behavior at runtime doesn’t change as it is still plain JavaScript.

4.2.2 Tooling – Code Completion and Value Help

The Analytics Designer scripting framework exposes analytics data and metadata during script

creation and editing. This enables

• Code completion in the traditional sense like completing local or global Identifiers

• Semantic code completion by suggesting member functions or similar

• Value help in the form of context-aware value proposals like measures of a data source

for function parameters

For example, when calling an API method on a Business Warehouse DataSource, the code

completion can propose measures as code completion options or values to specify a filter.

4.2.3 Events

Scripts always run in response to something happening in the application. Application events are

your hook. There are several types of events in analytic applications. Some occur in the

application itself and some occur on individual widgets.

4.2.3.1 Application Events

The application has two events: one that fires when the app starts, and another that is triggered

in certain embedded scenarios.

Scripting in Analytics Designer 31

• onInitialization: This event runs once when the application is instantiated by a user. It

is where you script anything that you want to be done during startup. Like most events, it

has no input parameters.

• onPostMessageRecieved: If your application is embedded in an iFrame, your SAP Analytics

Cloud analytic application can communicate bidirectionally with the host web app using

JavaScript PostMessage (see also: https://developer.mozilla.org/ en-

US/docs/Web/API/Window/postMessage) calls. It allows the host application to pass

information into the analytic application. This event is called whenever the host

application makes a post message call into the analytic application.

Designers have access to this information and to the event’s two input parameters:

• origin: it is the domain of the host application. The contents of an iFrame don’t need to

be in the same origin as the host app, even when same origin policies are in effect. It can

be convenient but be careful about clickjacking attacks and malicious iFrame hosts. For

the sake of security, we recommend that you check this parameter to ensure that the

iFrame host is what you expect.

• message: it is the standard message parameter of the JavaScript PostMessage passed into

SAP Analytics Cloud. It does not follow any format and could be almost anything. It is

encoded using the structured clone algorithm and there are a few documented limitations

in what can and can’t be encoded.

4.2.3.2 Individual Widget Events

Most widgets have an event that is fired when the widget is clicked by a user. However, some

widgets have no events, such as text labels. Data bound widgets generally have an event that is

fired when the result set of the data source changes.

Most events have no input parameters, like onSelect and onResultChanged.

4.2.4 Global Script Objects

Global script objects act as containers. They allow you to maintain and organize script functions

that are not tied to any event and are invoked directly. You can maintain libraries of re-usable

functions. These library scripts are called functions.

4.2.5 Accessing Objects

You can access every object in the Outline pane such as widgets, script variables, or script objects

by its name when you are working on a script.

4.2.6 Script Variable

By referencing Script Variable in Calculated Measure, users can easily build a what-if simulation

with query results.

For example, an analytic application developer can bind a calculated measure which references

one script variable (ScriptVariable_Rate) to a chart.

https://developer.mozilla.org/%20en-US/docs/Web/API/Window/postMessage
https://developer.mozilla.org/%20en-US/docs/Web/API/Window/postMessage

Scripting in Analytics Designer 32

Figure 25: Create Calculation

Figure 26: Reference Script Variable

4.2.7 Timer

The Timer object enables you to start a timer to trigger timing events. By leveraging the feature

of a timer, you can realize different scenarios such as:

• Create animations

• Send notifications to end users regularly

• Refresh your analytic application in a certain interval of time

To further delve into its usage, I will share two samples for your reference.

Scripting in Analytics Designer 33

4.2.7.1 Script APIs

Timer_1.start(delayInSeconds: number): void

Timer_1.stop(): void

Timer_1.isRunning(): boolean

Timer_1.onTimeout // event

4.2.7.2 Sample 1 – Create Animation

In this sample, we add animation to the header above, making the tiles (widgets) shift from right

to left repeatedly.

We use Timer and the Layout API.

// Start a timer

Timer_1.start(ANIMATION_INTERVAL);

// To make the Widget moving, the Layout API is used to dynamically

// change the position of the widget.

// These are the 4 panels we want to apply animation to

PANELS = [Panel_10, Panel_11, Panel_12, Panel_13];

var numOfPanels = PANELS.length;

var moveStep = 0.1;

var firstPanel = PANELS[0];

var leftMarginOfFirstPanel = firstPanel.getLayout().getLeft().value;

var panelWidth = firstPanel.getLayout().getWidth().value;

var padding = 0;

if (leftMarginOfFirstPanel >= moveStep) {

 for (var i = 0; i < numOfPanels; i++) {

 var layout = PANELS[i].getLayout();

 layout.setLeft(LayoutValue.create(layout.getLeft().value - moveStep,
LayoutUnit.Percent));

 }

} else {

 // Move the first panel to end

 firstPanel.getLayout().setLeft(LayoutValue.create((panelWidth + padding)*
numOfPanels, LayoutUnit.Percent));

 for (i = 0; i < numOfPanels - 1; i++) {

 PANELS[i] = PANELS[i+1];

 }

 PANELS[i] = firstPanel;

 Util_Animation.doAnimation();

}

Scripting in Analytics Designer 34

4.2.7.3 Sample 2 – Automatically Play the Application

This is an interesting requirement coming from customer. This customer wants an application that

is displayed in a big screen with its pages automatically played in turn similar as a page book and

can be manually stopped at will.

We can do it with Timer and TabStrip.

In order to make a TabStrip widget look like a page book, a small tip is to hide the header of the

Tabstrip, for example, using a shape, then use API TabStrip_1.setSelectedKey(TabID) to

dynamically “slide” the tab.

Then start a timer to repeat this action.

// Here’s the code sample to switch and slide the tabs.

var key = TabStrip_1.getSelectedKey();

if (key === "Tab_1") {

 TabStrip_1.setSelectedKey("Tab_2");

} else if (key === "Tab_2") {

 TabStrip_1.setSelectedKey("Tab_3");

} else if (key === "Tab_3") {

 TabStrip_1.setSelectedKey("Tab_1");

}

4.3 Script Editor

The script editor is a tool within analytics designer to specify the actions taking place when an

event is triggered by an application user. By adding a script to a widget, you can influence the

behavior of this widget and thus enable user interaction, also referred to as events, at runtime. A

script typically consists of several statements. A statement is a programmatic instruction within a

script. The execution of a statement is typically triggered by user interaction with the widget.

Scripting in Analytics Designer 35

4.3.1 Creating and Editing Event-Based Scripts

Scripts are presented in the outline pane, at the left-hand side of the analytics designer editor

environment.

Find them by hovering over the widget name in the outline, or as a menu entry in the quick action

menu of each widget. The icon indicates the event. By clicking on it, the script editor opens the

selected function.

Figure 27: Edit Scripts

If a widget has multiple available events, you are presented with a choice in the hover menu.

Figure 28: Multiple Events

If there is an event with an attached script, you can see the icon in the outline pane. If there

are no attached script, there is no visible icon. In the following figure, the onSelect event of

Dropdown_1 has a script, but there are no scripts attached to Chart_1.

Figure 29: Script for Dropdown

If a widget has multiple events and at least one has a script attached, then the icon will be

displayed.

Figure 30: Script for Chart

The hover menu will show which of the events have attached scripts.

Scripting in Analytics Designer 36

Figure 31: Hover Menu

4.3.2 Creating and Editing Functions in Global Script Objects

Functions are found under the global script objects portion of the outline pane. Before you can

add functions, you will need to add your first script object. Do this by clicking the plus sign, next

to the Script Objects header.

Figure 32: Add Script Object

Within a script object, you can add several functions, by invoking Add Script Function in the

context menu. Keep in mind that the script object container is an organizational aid for you.

Figure 33: Add Script Function

Individual functions are nested within global script objects. For example, in the figure below Error! R

eference source not found. you see the function1 nested within a script object called

ScriptObject_1.

Figure 34: Script Object Function

Scripting in Analytics Designer 37

Like canvas widgets, the scripts attached to a function are created by clicking the icon in the

hover menu of that function. Functions that have and don’t have scripts are visible in the outline,

just as with widgets.

Figure 35: Script of Script Object Function

Once you have a script attached to a function, you can call it whenever you please, from any

other script. The script objects are accessible by name and individual functions are accessible

within the objects. If you wanted to invoke the function1 script within ScriptObject_1, you would

call is like this:

ScriptObject_1.function1();

4.3.3 Script Editor Layout

Once an open script is in the editor, it shows up as a tab along the top of the canvas. You can

open several script editor tabs at the same time.

Figure 36: Script Editor

The script editor has three areas:

1. the widget and event

2. the documentation

3. the main body of the script itself

Figure 37: 3 Areas of Script Editor

Write script in the main body using the inbuild help features like code completion and value help.

Scripting in Analytics Designer 38

4.3.4 Keyboard Shortcuts

The script editor provides several keyboard shortcuts, which let you, for example, undo or redo

your editing operations.

Find a list of keyboard shortcuts in the help page “Using Keyboard Shortcuts in the Script Editor”:

https://help.sap.com/doc/00f68c2e08b941f081002fd3691d86a7/release/en-

US/68dfa2fd057c4d13ad2772825e83b491.html.

4.3.5 Info Panel: Errors and Reference List

All errors are listed in the Errors tab of the Info panel. Search for errors and filter out only warnings

or errors. Double-click an error to open the script in a new tab and jump directly to the error

location in the script.

Find all places where a widget or a scripting object is used with the Find References feature. You

can find it in the context menu per object in the outline. The result is displayed in the Reference

list tab of the Info Panel.

Info panel: errors and reference list

4.3.6 Renaming Widgets, Script Variables, and Script Functions

While creating an analytic application in analytics designer you can change the name of an

analytics designer widget, gadget (a technical component), script variable, script object, script

object function, and script object function arguments. Analytics designer then applies the new

name to all relevant places, for example in analytics designer scripts.

You can change the name of a widget, gadget, script variable, script object, or script object

function by selecting it in the Outline, clicking the More button, selecting Rename, and entering a

new name.

You can change the name of a widget or gadget by selecting it in the Outline, then entering in the

Styling Panel a new name in the Name input field.

You can change the name of a script variable, script object, or script object function by selecting

it in the Outline, entering in the Styling Panel a new name in the Name input field, then clicking

button Done.

You can change the name of a script object function argument by selecting the script object

function in the Outline, clicking the Edit button of the function argument in the Styling Panel,

entering a new name in the Name input field, then clicking button Done.

4.4 Scripting Language Features

4.4.1 Typing

Normal JavaScript is weakly typed and dynamically typed. Weak typing means that the script

writer can implicitly coerce variables to act like different types. For example, you could have an

integer value and treat it as if it were a string. Dynamic typing means that the runtime will try to

guess the type from the context at that moment and the user can even change the type after the

https://help.sap.com/doc/00f68c2e08b941f081002fd3691d86a7/release/en-US/68dfa2fd057c4d13ad2772825e83b491.html
https://help.sap.com/doc/00f68c2e08b941f081002fd3691d86a7/release/en-US/68dfa2fd057c4d13ad2772825e83b491.html

Scripting in Analytics Designer 39

variable is already in use. For example, you could change the value of the beforementioned

integer to another type of object at will; “Dear integer, you are now a duck”.

SAP Analytics Cloud, analytics designer forbids both. Once you have a duck, it remains a duck

and you can’t recycle variable names as new types. If you want something else, you’ll need

another variable. It is also strongly typed, meaning that if you want to use an integer as a string,

you’ll have to explicitly cast it. Both are a consequence of enabling the rich code completion

capabilities in the editing environment.

The analytics designer scripting language is still JavaScript. You can write perfectly valid

JavaScript while treating the language as if it was strongly and statically typed.

4.4.2 No Automatic Type Casting

A consequence of strong typing is that you can’t expect automatic conversions. The following is

valid JavaScript:

var nth = 1;

console.log("Hello World, " + nth);

In analytics designer, you will see an error in the script editor, informing you that auto-type

conversion is not possible, and the script will be disabled at runtime, until fixed. Instead, you

should explicitly cast nth to a string.

var nth = 1;

console.log("Hello World, " + nth.toString());

4.4.3 Accessing Objects

Every object (widget or global script object) is a global object with the same name as in the outline.

Suppose you have a chart in your application, named Chart_1 and want to check and see if it is

visible. You can access Chart_1 as a global variable and then access its functions, in this case to

see if it is currently visible.

var isVis = Chart_1.isVisible();

Figure 38: Accessing Objects

4.4.4 Finding Widgets with Fuzzy Matching

The application author can type in the complete name of a widget or just some first letters. By

typing CTRL+Space, the system either

Scripting in Analytics Designer 40

• Completes the code automatically if there is only one valid option

• Displays a value help list from which you can select an option

Fuzzy matching helps you finding the result even if you have made a typo or the written letters

are in the middle of the function. Fuzzy matching is applied automatically for the standard code

completion (for example, "cose" → "console").

The script validation runs automatically in the background and shows errors and warnings

indicated with red and orange underlying and a red or orange marker before the line number.

4.4.5 External Libraries

There is no provision in SAP Analytics Cloud, analytics designer for importing external JavaScript

libraries. You can use the standard JavaScript built-in objects such as:

• Math

• Date

• Number

• Array

• Functions on String

All standard functions listed in the SAP Analytics Cloud, analytics designer API Reference are

supported even if some browsers don’t support them natively.

For example, String#startsWith is not available in Microsoft Internet Explorer, but can be used

in SAP Analytics Cloud with all browsers.

4.4.6 Debugging with console.log()

Scripts are stored as minified variables and are not directly debuggable in the browser console.

Write messages directly to the browser’s JavaScript console to aid in troubleshooting. A global

variable called console and has a log() function that accepts a string.

var nth = 1;

console.log("Hello World, " + nth.toString());

This would print “Hello World, 1” to the JavaScript console of the browser. Complex objects can

be printed.

4.4.7 Loops

Two types of JavaScript loops are possible in SAP Analytics Cloud, analytics designer, for and

while loops. Other types, such as foreach iterators, are not supported.

4.4.7.1 for

for loops are standard JavaScript for loops, with one caveat. You must explicitly declare the for

iterator. This is valid JavaScript, but it isn’t accepted in the script editor:

for (i = 0; i < 3; i++) {

 console.log("Hello for, " + nth.toString());

}

Instead, explicitly declare i. The example below is valid:

Scripting in Analytics Designer 41

for (var i = 0; i < 3; i++) {

 console.log("Hello for, " + nth.toString());

}

4.4.7.2 while

We fully support while loops in SAP Analytics Cloud Analytics Designer:

var nth = 1;

while (nth < 3) {

 console.log("Hello while, " + nth.toString());

 nth++;

}

4.4.7.3 for in

An additional type of look is the for in iterator. Suppose you had a JavaScript object: you can

iterate over the properties with the for in loop. Data selections are JavaScript objects and can

be iterated over:

var selection = {

 "Color": "red",

 "Location": "GER"

};

for (var propKey in selection) {

 var propValue = selection[propKey];

 ...

};

4.4.8 Double and Triple Equals Operators

Plain JavaScript has two kinds of “equals” comparison operators, == (double equals) and ===

(triple equals). The main difference between these is that double equals has automatic type

casting while triple equals doesn’t. With triple equals, both the value and type must be the same

for the result to be true. The triple equals is known as the strict equality comparison operator (see

https://developer.mozilla.org/en-US/docs/Web/JavaScript/

Equality_comparisons_and_sameness).

SAP Analytics Cloud, analytics designer has no automatic type casting. It supports

• Triple equals

• Double equals only if both sides have the same static type

The examples below show the difference between double and triple equals operators. In both

cases, there is a variable aNumber, with an integer value and we are comparing it to the string "1".

In the double equals case, aNumber is cast to string and compared. The result is true, and the if

block is entered. In the triple equals case, aNumber is not cast to string and the comparison is

false, because the values are of a different type.

This is true, and you can see the if statement is entered:

var aNumber = 1;

if (aNumber == "1") {

 ...

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Equality_comparisons_and_sameness
https://developer.mozilla.org/en-US/docs/Web/JavaScript/%20Equality_comparisons_and_sameness
https://developer.mozilla.org/en-US/docs/Web/JavaScript/%20Equality_comparisons_and_sameness

Scripting in Analytics Designer 42

}

This is false, and you can see the if statement is skipped:

var aNumber = 1;

if (aNumber === "1") {

 ...

}

4.4.9 if and else Statements

The statements if and else are supported. Remember that there is no automatic type casting

and double equals are valid only if both sides have the same static type:

if (nth === 1) {

 console.log("if...");

} else if (nth < 3) {

 console.log("else if...");

} else {

 console.log("else...");

}

4.4.10 this

The this keyword allows you to ignore the name of the object. It is simply the object that this

script is attached to, regardless of what it is called. It doesn’t matter and is merely a stylistic

choice. With this, refer to

• The instance itself within widget scripts or script object functions

• The parent instance explicitly by its variable name, such as Chart_1

• The parent instance as this

When performing the above console print on one of the events of Chart_1 itself, use the following

variation of the code:

var theDataSource = this.getDataSource();

console.log(theDataSource.getVariables());

4.4.11 switch Statements

You can use normal JavaScript switch statements:

switch (i) {

 case 0:

 day = "Zero";

 break;

 case 1:

 day = "One";

 break;

 case 2:

 day = "Two";

 break;

}

Scripting in Analytics Designer 43

4.4.12 break Statement

You can use break to break out of loops and switch statements, as seen in the example above.

4.4.13 Debugging Analytics Designer Scripts in the Browser

Analytics designer supports debugging analytics designer scripts with the browser’s development

tools.

Note: Analytics designer supports debugging analytics designer scripts in the Chrome browser

only.

Note: Analytics designer transforms the analytics designer scripts before they are run in the

browser. Thus, they will not look exactly like the script you wrote in the script editor of analytics

designer.

Note: To find the analytics designer script in the browser’s development tools, the script needs to

be run at least once during the current session.

Analytics Designer Script Names

Analytics designer script names follow a specific naming convention: All scripts of an application

are grouped in a folder <APPLICATION_NAME>. Each script is named

<WIDGET_NAME>.<FUNCTION_NAME>.js.

For example: If an application My Demo Application contains a button Button_1 with an onClick

handler, then the name of the script is Button_1.onClick.js, which is in folder

My_Demo_Application.

Note: Special characters, for example space characters in the application name are replaced by

an underscore (_), except minus (-) and dot (.) characters, which remain unchanged.

Find an Analytics Designer Script by Name

You can quickly find a script by its name with the following steps:

• Press F12 to open the browser’s development tools.

• Press CTRL+P, then start typing a part of the script’s name.

Scripting in Analytics Designer 44

Find an Analytics Designer Script by Browsing the File Tree

You can also find a script in the file tree on the left side of the development tools using the

following steps:

• Press F12 to open the browser’s development tools.

• Select the tab Sources.

• Open the node whose name starts with sandbox.worker.main.

• Open the node named AnalyticApplication.

• Find the folder with your application’s name. The scripts that have already been executed

for the current analytic application appear in this folder.

Setting and Removing Breakpoints in Analytic Designer Scripts

To pause a script while it is being executed, you can set breakpoints at certain locations in the

analytic designer script.

Scripting in Analytics Designer 45

To set a breakpoint, open the script you want to pause during its execution and click on the line

number on the left side of the opened script in the developer tools.

A blue marker appears, highlighting the clicked line number. It indicates where the script will be

paused when it is being executed the next time. You can add several breakpoints in one script to

pause its execution at different points in time.

To remove a breakpoint, click on the blue marker. The blue maker disappears, and the script's

execution won't stop at this point when the script is run the next time.

More Debugging Features

Analytic designer supports more debugging features by running an analytic application in debug

mode.

You enable the debug mode for an analytic application by appending the string ;debug=true to

the URL of the analytic application in the browser.

Note: The analytic designer script names in the browser change when the analytic application is

run in debug mode. In debug mode, the suffix -dbg is added to the script name, for example,

Button_1.onClick-dbg.js.

You enable the debug mode for an analytic application by appending the string ;debug=true to

the URL of the analytic application in the browser.

Note: The analytic designer script names in the browser change when the analytic application is

run in debug mode. In debug mode, the suffix -dbg is added to the script name, for example,

Button_1.onClick-dbg.js.

Enabling the debugger; Statement

When the debug mode is enabled, you can pause an analytics designer script at a specific

location while it is being executed by placing a debugger; statement at this location of the script.

The difference to a regular breakpoint is that you can define the location where the script is paused

already while writing the script itself, that is, before running it.

Scripting in Analytics Designer 46

Preserving Comments in an Analytical Designer Script

When the debug mode is enabled, then comments in a script are preserved in the transformed

script that is executed in the browser. This makes it easier to recognize specifically commented

locations in a script when its execution in the browser is paused.

4.5 Working with Data

You can perform many simple operations on data. Keep in mind there are no standalone data

sources, and there is a getVariables() function on data sources.

Example:

Let’s say you want to print the variables on Chart_1 to the console.

Get the data source on a widget with its getDataSource() function. This returns the data source

attached to that widget and allows you to perform further operations.

The snippet below prints the data source variables of Chart_1 to the console:

var theDataSource = Chart_1.getDataSource();

var theVariables = theDataSource.getVariables();

console.log(theVariables);

4.6 Method Chaining

In the example above, one line of code executes one operation. It is useful when the individual

variables might get re-used in a script, and it increases readability. But some scripts need to be

made compact, and this can be done with method chaining. Certain JavaScript libraries support

method chaining where the result of a previous operation can immediately be used in the same

statement. SAP Analytics Cloud, analytics designer supports method chaining.

Scripting in Analytics Designer 47

Suppose you were only logging the variables in the above example as a debug aid. You were not

re-using them, and the multiple lines were visual clutter. Then you might want to use method

chaining. The code below uses method chaining for compactness and does the same thing:

console.log(Chart_1.getDataSource().getVariables());

4.7 Script Runtime

Analytics designer validates the script before execution because running arbitrary JavaScript in

the browser is a risk. It ensures that only allowed JavaScript subset can be used. Critical features

like sending requests can be prevented or forced to use alternative secured APIs if needed. In

addition, the execution is isolated to prevent

• Accessing the DOM

• Accessing global variables

• Modifying globals or prototypes

• Sending requests

• Importing scripts

• Including ActiveX, and so on

• Launching other Web Workers

• Accessing cookies

• Enforcing different domains

Validation

Validation at runtime follows the same logic as for the script editor. Not all validations have to be

performed, for example, validating analytic data like filter values.

4.8 The R Widget and JavaScript

You might know the R widget from stories already. It becomes much more powerful in

applications. The R widget has two separate runtime environments:

The R environment is on the server, in the R engine.

The JavaScript environment runs in the normal browser space along with the rest of the widget

scripts.

Execution Order

On Startup, the R script runs and the JavaScript onResultSetChanged doesn’t run because the

widget is in its initial view state.

On data change, the R script runs first, the JavaScript onResultChanged event runs.

Accessing the R Environment from JavaScript

The R environment can be accessed from the JavaScript environment. It can be read from and

manipulated. However, the JavaScript environment can’t be accessed from the R environment.

Scripting in Analytics Designer 48

Reading

Suppose you had an R widget that had a very simple script. It just gets the correlation coefficient

between two measures on a model and puts that into a number named gmCorrelation:

grossMargin <- BestRun_Advanced$`Gross Margin`

grossMarginPlan <- BestRun_Advanced$`Gross Margin Plan`

gmCorrelation <- cor(grossMargin, grossMarginPlan)

Use the getEnvironmentValues on the R widget to access its environment and getNumber to read

a number from the R environment. The following JavaScript code takes the correlation coefficient

from the R environment and logs it to the JavaScript console. Note the this. This code was taken

from the onResultChanged event of a widget with the above R snippet. It means that R widgets

can be used as global data science scripts:

var nCcor = this.getEnvironmentValues().getNumber("gmCorrelation");

var sCor = nCcor.toString();

console.log("Margin Correlation: " + sCor);

Writing

You can also manipulate the R environment from JavaScript. The magic methods are

getInputParameters and setNumber. The following line of JavaScript sets an R environment

variable named userSelection to 0.

RVisualization_1.getInputParameters().setNumber("userSelection", 0);

4.9 Differences Between Analytics Cloud and Lumira

Design Studio/Lumira Designer and SAP Analytics Cloud, analytics designer have broadly similar

scripting environments. Both are JavaScript based, perform similar missions and SAP Analytics

Cloud, analytics designer’s scripting framework was informed by experience with Design Studio.

However, there are some differences that you should keep in mind.

Lumira scripts execute on the server. SAP Analytics Cloud, analytics designer scripts execute in

the browser JavaScript engine. Lumira scripts execute close to the data. SAP Analytics Cloud,

analytics designer scripts execute close to the user.

SAP Analytics Cloud, analytics designer is not copy-and-paste compatible with Lumira. This is

partially a consequence of the close-to-data vs close-to-user philosophical difference.

Data sources are currently hidden within data bound widgets and you must access them using

getDataSource(). When standalone data sources become available, you will be able to access

them as global variables, as in Lumira.

SAC Analytics Designer not supporting automatic type conversion makes scripts more explicit

and avoids common mistakes. This includes requiring a strict equality comparison operator,

whereas Lumira allowed the use of the double equals comparison operator for expressions of

different types.

Widget Concepts, APIs, and Usages 49

5 Widget Concepts, APIs, and Usages

In analytics designer, widgets are UI elements and can be inserted onto the canvas. There is a

wide variety of widgets available. They range from basic widgets like button, text, shape, image,

dropdown, checkbox group, radio button group, to data-bound ones like Table, Chart, Geo Map,

and further to custom widgets built by partners and customers.

Once you have added a widget to the canvas, you can then use its Builder Panel, Styling Panel,

and Action Menu to configure its styling and runtime behavior, and even write script to configure

how it interacts with other widgets.

If you need more information about any script API in analytics designer, you can read through the

API Reference document which you can open from the help portal:

https://help.sap.com/doc/958d4c11261f42e992e8d01a4c0dde25/latest/en-US/index.html

5.1 Basic Widget Concepts

5.1.1 Supported Widgets

All widgets available in stories are available in analytics designer:

• Table

• Chart

• Filter Line

• Image

• Text

• Clock

• Shape

• Geo Map

• Web Page

Other widgets are available, such as:

• Dropdown

• Radio button group

• Checkbox group

• Button

Widgets can also be

• Custom-made by partners and customers

or belong to other varieties like a web page or a clock

5.1.2 Custom Widgets

You can create your own widgets with the Custom Widget SDK, which lets you extend the

predefined set of widgets provided by analytics designer.

https://help.sap.com/doc/958d4c11261f42e992e8d01a4c0dde25/latest/en-US/index.html

Widget Concepts, APIs, and Usages 50

This is very useful, for example, if you need a specific user interface element, a particular

visualization of data, or a certain functionality in your analytic application that is not provided by

the predefined set of widgets.

Custom widgets seamlessly integrate into SAP Analytics Cloud, analytics designer.

Find the Custom Widget SDK documentation at

https://help.sap.com/viewer/0ac8c6754ff84605a4372468d002f2bf/latest/en-US.

5.2 The Builder Panel

If you select a widget on the canvas, the Builder Panel opens on the right-hand side.

With the Builder Panel you configure your widget’s data-related settings. The following example

shows, how to select at least a chart type, measures, and dimension to build a chart. You can

add other characteristics of this chart as well: for instance, a Reference Line. Different widgets

have different configurations.

5.3 The Styling Panel

You can configure the format of a widget with the help of the Styling Panel. Multiple

properties are provided with the Styling Panel, for example background color, font and data

formats.

https://help.sap.com/viewer/0ac8c6754ff84605a4372468d002f2bf/latest/en-US

Widget Concepts, APIs, and Usages 51

5.4 Action Menu

The action menu is a dynamic menu and is only visible if the widget is selected. Different

widgets have different options available, and some of the options are not available in view mode.

5.5 Script Editor View

Scripting provides you a powerful way to define a widget’s runtime behavior and how it can interact

with other widgets and other available functionality.

To edit a script function,

• Click the button in the Action Menu

• Or click the same button next to the widget name in the Outline.

Widget Concepts, APIs, and Usages 52

It opens the Script Editor view.

5.6 Table

5.6.1 Table APIs

The Table widget displays data in rows and columns. In contrast to a chart (which is the graphical

representation of data to help understand the relationship between a large quantity of data and

its parts), a table is used to keep track of information such as quantities, price, text description,

Widget Concepts, APIs, and Usages 53

and other details. However, both are important means to present data and to enable end users

to directly interact with data.

Analytics designer provides table APIs and Data Source APIs to help analytics designers use

script custom specific logic into their analytic applications.

Besides the common widget APIs like getVisible() and setVisible(), the main Table APIs are

listed below:

addDimensionToColumns

addDimensionToColumns(dimension: string|Dimension, position?: integer): void

Adds the dimension to the column axis at the specified position. If no position is specified, the

dimension is added as the last dimension of the column axis.

Example:

Table_1.addDimensionToColumns("Location_4nm2e04531");

addDimensionToRows

addDimensionToRows(dimension: string|Dimension, position?: integer): void

Adds the dimension to the row axis at the specified position. If no position is specified, the

dimension is added as the last dimension of the row axis.

Example:

Table_1.addDimensionToRows("Location_4nm2e04531");

getDataSource

getDataSource(): DataSource

Returns the data source of the table. If the table has no data source, undefined is returned. Refer

to the section on data-related APIs.

getDimensionsOnColumns

getDimensionsOnColumns(): Dimension[]

Returns the dimensions on the column axis.

getDimensionOnRows

getDimensionsOnRows(): Dimension[]

Returns the dimensions on the row axis.

getPlanning

getPlanning(): Planning

Returns the planning object of the table. If the table data source is not of type planning, undefined

is returned.

Refer to the section on Planning.

getSelections

getSelections(): Selection[]

https://help.sap.com/doc/958d4c11261f42e992e8d01a4c0dde25/2019.6/en-US/doc/Dimension.html
https://help.sap.com/doc/958d4c11261f42e992e8d01a4c0dde25/2019.6/en-US/doc/Dimension.html
https://help.sap.com/doc/958d4c11261f42e992e8d01a4c0dde25/2019.6/en-US/doc/DataSource.html
https://help.sap.com/doc/958d4c11261f42e992e8d01a4c0dde25/2019.6/en-US/doc/Dimension.html
https://help.sap.com/doc/958d4c11261f42e992e8d01a4c0dde25/2019.6/en-US/doc/Dimension.html
https://help.sap.com/doc/958d4c11261f42e992e8d01a4c0dde25/2019.6/en-US/doc/Planning.html
https://help.sap.com/doc/958d4c11261f42e992e8d01a4c0dde25/2019.8/en-US/doc/Selection.html

Widget Concepts, APIs, and Usages 54

Returns the selections of the chart. You can use the elements of the returned array with the

function DataSource.getData() to get the value of a cell. See also the documentation of Selection

(https://help.sap.com/doc/958d4c11261f42e992e8d01a4c0dde25/2019.8/en-

US/doc/Selection.html).

getSelections(): Selection[]

Returns the selections of the chart. You can use the elements of the returned array with the

function DataSource.getData() to get the value of a cell. See also the documentation of Selection

(https://help.sap.com/doc/958d4c11261f42e992e8d01a4c0dde25/2019.8/en-

US/doc/Selection.html).

removeDimension

removeDimension(dimension: string|Dimension): void

Removes the dimension from whichever axis it is present on. If the dimension is neither on the

Rows nor Columns axis, the operation is ignored.

Example:

Table_1.removeDimension("Location_4nm2e04531");

5.6.2 Table Events

onResultChanged

onResultChanged()

Called when the result set displayed by the table changes.

onSelect()

onSelect()

Called when the user selects within the table.

5.7 Chart

5.7.1 Chart APIs

A chart is a graphical representation of data in symbols such as bars, lines, or slices. Analytics

designer provides chart APIs and data source APIs to help analytics designers use script custom

specific logic into their analytic applications.

Besides the common widget APIs like getVisible() and setVisible(), the main Chart APIs are

as below:

addDimension

addDimension(dimension: string|Dimension, feed: Feed, position?: integer): void

Adds a dimension to the feed at the specified position. If no position is specified, the dimension

is added at the end of the feed.

Example:

Chart_1.addDimension("Location_4nm2e04531", Feed.CategoryAxis);

https://help.sap.com/doc/958d4c11261f42e992e8d01a4c0dde25/2019.8/en-US/doc/Selection.html
https://help.sap.com/doc/958d4c11261f42e992e8d01a4c0dde25/2019.8/en-US/doc/Selection.html
https://help.sap.com/doc/958d4c11261f42e992e8d01a4c0dde25/2019.8/en-US/doc/Selection.html
https://help.sap.com/doc/958d4c11261f42e992e8d01a4c0dde25/2019.8/en-US/doc/Selection.html
https://help.sap.com/doc/958d4c11261f42e992e8d01a4c0dde25/2019.8/en-US/doc/Selection.html
https://help.sap.com/doc/958d4c11261f42e992e8d01a4c0dde25/2019.6/en-US/doc/Dimension.html
https://help.sap.com/doc/958d4c11261f42e992e8d01a4c0dde25/2019.6/en-US/doc/Dimension.html
https://help.sap.com/doc/958d4c11261f42e992e8d01a4c0dde25/2019.6/en-US/doc/Feed.html

Widget Concepts, APIs, and Usages 55

addMeasure

addMeasure(measure: string|Measure, feed: Feed, position?: integer): void

Adds the measure to the feed, at the specified position. If no position is specified, the measure is

added at the end of the feed.

Example:

Chart_1.addMeasure("[Account_BestRunJ_sold].[parentId].&[Gross_MarginPlan]",Feed.Va
lueAxis);

getDataSource

getDataSource(): DataSource

Returns the data source of the chart. If the chart has no data source, undefined is returned.

Refer to the section on data-related APIs

getForecast

getForecast(): Forecast

Returns the forecast of the chart.

Refer to the section on Forecast.

getMeasure

getMeasures(feed: Feed): Measure[]

Returns the measures of the feed.

Example:

var measures = Chart_1.getMeasures(Feed.ValueAxis);

getSelections

getSelections(): Selection[]

Returns the selections of the chart. You can use elements of the returned array with the function

DataSource.getData() to get the value of a cell. See also the documentation of Selection

(https://help.sap.com/doc/958d4c11261f42e992e8d01a4c0dde25/2019.8/en-

US/doc/Selection.html).

getSmartGrouping

getSmartGrouping(): SmartGrouping

Returns the Smart Grouping of the chart.

Refer to the section on Smart Grouping.

removeDimension

removeDimension(dimension: string|Dimension, feed: Feed): void

Removes the dimension from the feed.

Example:

Chart_1.removeDimension("Location_4nm2e04531", Feed.CategoryAxis);

https://help.sap.com/doc/958d4c11261f42e992e8d01a4c0dde25/2019.6/en-US/doc/Forecast.html
https://help.sap.com/doc/958d4c11261f42e992e8d01a4c0dde25/2019.6/en-US/doc/Feed.html
https://help.sap.com/doc/958d4c11261f42e992e8d01a4c0dde25/2019.6/en-US/doc/Measure.html
https://help.sap.com/doc/958d4c11261f42e992e8d01a4c0dde25/2019.8/en-US/doc/Selection.html
https://help.sap.com/doc/958d4c11261f42e992e8d01a4c0dde25/2019.8/en-US/doc/Selection.html

Widget Concepts, APIs, and Usages 56

removeMeasure

removeMeasure(measure: string|Measure, feed: Feed): void

Removes the measure from the feed.

Example:

Chart_1.removeMeasure("[Account_BestRunJ_sold].[parentId].&[Gross_MarginPlan]",Feed
.ValueAxis);

5.7.2 Chart Events

onResultChanged

onResultChanged()

Called when the result set displayed by the chart changes.

onSelect

onSelect()

Called when the user selects within the chart.

5.8 Result Set APIs

With the help of result set APIs, an application developer can get a result set based on an input

data selection. So that he can traverse and get each data cell in the result set. Currently the APIs

are available in chart and table widgets.

Return the Result Set According to the Selections

There are several use cases when trying to retrieve result set, such as with or without input

selection. And as an application designer, you can also define the offset of dataset and the

number of limits that you want to get.

// No input parameter, all data points of Chart_1 will be in result

// set

// Both dimension and measure context are returned, including parent

// information if it has hierarchy structure

Chart_1.getDataSource().getResultset();

// Specify input parameter (Location is CT1)

Chart_1.getDataSource().getResultset({"@MeasureDimension":
"[Account_BestRunJ_sold].[parentId].&[Gross_Margin]", "Location":
"[Location].[State].&[CT1]"});

// Specify offset and limit. Two data cells from the beginning are

// returned.

Table_1.getDataSource().getResultset(null, 0, 2);

Get Member Metadata

The dimension member information you are interested in can be retrieved according to selection

as well. The information includes ID, description, and parent ID.

// Get the dimension member of "California"

Widget Concepts, APIs, and Usages 57

Chart_1.getDataSource().getResultMember("Location", {"Location": "California",
"Product": "Alcohol"});

// Get distinct product member of table widget according to input

// selection

var selections = Table_1.getDataSource().getDataSelections();

var memberIds = ArrayUtils.create(Types.string);

for (var i = 0; i < selections.length; i++) {

 var member = Table_1.getDataSource().getResultMember("Product_4nm2e04531",
selections[i]);

 if (member && member.id && memberIds.indexOf(member.id) < 0) {

 memberIds.push(member.id); // ["P1", "P2"]

 }

}

Get the Number of Visible Table Column or Row

For table widget, the application designer can get the number of visible columns or rows in a table

via APIs.

Table_1.getRowCount();

Table_1.getColumnCount();

5.9 Prompt API

You can use the Prompt API on a data source to perform variable-related operations in in a script.

5.9.1 Using openPrompt()

You can open the Prompt dialog on a data source with the method openPromptDialog().

Example:

In the following example, the Prompt dialog of a table’s data source is opened:

Table_1.getDataSource().openPromptDialog();

5.9.2 Using getVariables()

You can get the variables of a data source with the method getVariables(). This method returns

an array of all variables as VariableInfo objects.

Example:

In the following example, the names of all variables of a data source are printed to the browser

console:

var aVariables = Table_1.getDataSource().getVariables();

for (var i = 0; i < aVariables.length; i++) {

 console.log(aVariables[i].id);

}

Widget Concepts, APIs, and Usages 58

5.9.3 Using setVariableValue()

To set variable values, use the script method setVariableValue() in the following form on a data

source:

dataSource.setVariableValue(variable_name, variable_value);

Tip: In the script editor, there is context assist available for selecting variable names and variable

values.

Note: By default, this function will apply variable values of a variable to the model used by the

data source of the application. The widget can be configured such that variables are applied to

the model of the widget only (see Figure 39). You can find out, for example, in the title area of the

table whether the variables are applied on the model of the data source of the application (grey

braces) or on the model of the widget only (blue braces) (see Figure 40).

Figure 39: Prompt Dialog: Variable Values Are Applied to the Widget Only

Figure 40: Variable Values Are Applied to the Model of the Application or the Widget

Note: This method is not validating the specified variable values neither at runtime nor at design

time. All values and value combinations which are accepted in the Prompt dialog will be

supported. All other combinations might lead to errors or inconsistent state.

Known limitation: Setting variable values of hierarchy node variables is not supported yet.

5.9.3.1 Single Variable Values

If the variable supports single variable values, you can set a variable value as follows:

Widget Concepts, APIs, and Usages 59

Example:

Table_1.getDataSource().setVariableValue("VAR_NAME", {value: "5"});

or, alternatively,

Table_1.getDataSource().setVariableValue("VAR_NAME", "5");

If the variable supports excluding a single variable value, you can set the variable value as follows:

Example:

Table_1.getDataSource().setVariableValue("VAR_NAME", {exclude: true, value: "5"});

5.9.3.2 Multiple Variable Values

If the variable supports multiple values, you can set the variable values as follows:

Example:

Table_1.getDataSource().setVariableValue("VAR_NAME", {values: ["5", "7"]});

If the variable supports excluding multiple values, you can set the variable value as follows:

Example:

Table_1.getDataSource().setVariableValue("VAR_NAME", {exclude: true, values: ["5",
"7"]});

5.9.3.3 Comparisons

If the variable supports comparison operations <, <=, >, and >= you can set the variable value as

follows:

Example:

Table_1.getDataSource().setVariableValue("VAR_NAME", {less: "5"});

Table_1.getDataSource().setVariableValue("VAR_NAME", {lessOrEqual: "5"});

Table_1.getDataSource().setVariableValue("VAR_NAME", {greater: "5"});

Table_1.getDataSource().setVariableValue("VAR_NAME", {greaterOrEqual: "5"});

5.9.3.4 Ranges

If the variable supports a range of variable values, you can set the variable value as follows:

Example:

Table_1.getDataSource().setVariableValue("VAR_NAME", {from: "5", to: "7"});

If the variable supports excluding a range of variable values, you can set the variable value as

follows:

Example:

Table_1.getDataSource().setVariableValue("VAR_NAME", {exclude: true, from: "5", to:
"7"});

5.9.4 Using removeVariabeValue()

You can remove the variable value of a variable of a data source with the method

removeVariableValue().

Note: If you remove a variable value from a mandatory variable, then this operation is ignored.

Widget Concepts, APIs, and Usages 60

Example:

In the following example, the variable value of variable V_Supervisor is removed:

Table_1.getDataSource().removeVariableValue("V_Supervisor");

5.9.5 Using copyVariableValueFrom()

You can copy the variable value from one, several, or all variables of a data source to another

variable with the method copyVariableValueFrom().

Note: If you copy an empty variable value to a mandatory variable then copying this variable value

is ignored.

Note: If you copy a variable value to a data source of a widget that overrides variables and the

variable is of type text, then copying this variable value is ignored.

Example:

In the following example, the variable value of variable V_Country is copied from data source 1 to

data source 2:

var DS_1 = Table_1.getDataSource();

Table_2.getDataSource().copyVariableValueFrom(DS_1, "V_Country");

Example:

In the following example, the variable values of variables V_Country and V_Supervisor are copied

from data source 1 to data source 2:

var DS_1 = Table_1.getDataSource();

Table_2.getDataSource().copyVariableValueFrom(DS_1, ["V_Country", "V_Supervisor"]);

Example:

In the following example, the variable values of all variables are copied from data source 1 to data

source 2:

var DS_1 = Table_1.getDataSource();

Table_2.getDataSource().copyVariableValueFrom(DS_1);

5.10 Popup and Dialog

A Popup or Dialog is usually a small window on top of the main page of the application. It

communicates information to the user or prompts them for inputs.

For instance, a Popup can show a description of the application, and another Popup can ask the

user to perform configurations. Because the popup acts as a container widget, you can put any

other widget into the popup, such as a table, button, or checkbox.

You can choose to design a popup starting from scratch. Start with an empty canvas and have

the flexibility to add whatever widget you want. You can enable the header and footer setting to

turn the popup directly into a popup dialog that has a consistent look and feel compared to other

dialogs in SAP Analytics Cloud stories.

Widget Concepts, APIs, and Usages 61

5.10.1 Main Popup and Dialog APIs

close

close(): void

getTitle

Hides the popup.

getTitle(): string

open

Returns the title of the popup.

open(): void

setTitle

Shows the popup.

setTitle(title: string): void

Sets the title of the popup.

5.10.2 Button-Related Popup and Dialog APIs

isButtonEnabled

isButtonEnabled(buttonId: string): Boolean

Returns whether the specified button in the footer of the popup is enabled.

isButtonVisible

isButtonVisible(buttonId: string): Boolean

Returns whether the specified button in the footer of the popup is visible.

setButtonEnabled

setButtonEnabled(buttonId: string, enabled: boolean): void

Enables or disables the specified button in the footer of the popup.

setButtonVisible

setButtonVisible(buttonId: string, visible: boolean): void

Shows or hides the specified button in the footer of the popup.

onButtonClick

onButtonClick(buttonId: string)

Called when the user clicks one of the buttons in the footer of the popup.

5.10.3 Popup and Dialog Events

onButtonClick

onButtonClick(buttonId: string)

Called when the user clicks one of the buttons in the footer of the popup.

Widget Concepts, APIs, and Usages 62

5.10.4 Known Limitations with Popup and Dialog

Need to add at least two widgets to a popup to run the popup as designed

We recommend you add at least two widgets to a popup as widgets are the visualization of the

popup. If no widgets are added, you won't see the popup displayed when you trigger it while

running the analytic application. If only one widget is added, the height and width you set for the

popup won't take effect.

When a table or chart in the canvas act as the source widget of a filter line widget in a

popup, source widget can’t find the filter line as its reference after reloading the analytic

application

In the case when a table or chart in the canvas act as the source widget of a filter line widget in a

popup and you reopen or refresh the analytic application, you will find the filter line isn ’t listed in

the reference list of the table or chart widget after you choose Find Reference. This is because

currently we don't initiate the filter line widget in the popup when you first entering an analytic

application.

To solve this, for now we recommend you activate the popups by clicking on each of them. Then

the reference list will display all relevant results.

5.11 Text Widget

Use the Text widget to add user-defined text to your application. The style of the text can be

configured as usual. You could refer to sample Show R Visualization result in Text. The most

frequently used usages, getting and setting texts, and adding dynamic text are demonstrated and

explained.

5.11.1 Changing Text

In Show R Visualization result in Text, the total value of gross margin is dynamically updated in

Text_GrossMargin when switching among locations. Via API, applyText(), you can customize the

display text of a Text at runtime:

if (totalSum) {

 Text_GrossMargin.applyText(totalSum.toString());

} else {

 Text_GrossMargin.applyText("loading...");

}

The Text shows “loading…” until totalSum is valid.

The text style can be configured by each segment. In-place edit the text by double-clicking the

Text input field of Text_Title in Canvas and config the style of description.

5.11.2 Adding Dynamic Text

Add a script variable as the source of dynamic text to a Text widget to automatically update the

text based on the values. For example, in Show R Visualization result in Text,

ScriptVariable_Currency is defined and used in Text_Title.

Widget Concepts, APIs, and Usages 63

The script variable can be exposed as URL parameter if you switch on the option. For example,

if you input p_ScriptVariable_Currency=CNY in the URL link, you’ll get the following:

5.12 RSS Feed

Use the RSS feed widget to present relevant articles from an RSS feed alongside data and

visualizations. Leverage the open APIs to dynamically update the list of RSS feeds according to

your actions. For example, show blogs relevant to your area of interest. The sample Present

relevant RSS articles can be referred for the most frequently used APIs.

Configure Feeds

The RSS feeds in the widget can be updated dynamically at runtime via APIs when you select in

Chart_RSSCategory in Present relevant RSS articles.

Example:

If you select Business in the chart, BBC Business is added in the list of feeds and selected by

default after running the scripts below:

RssReader_Content.removeAllFeeds();

RssReader_Content.addFeed("BBCBusiness","http://feeds.bbci.co.uk/news/business/rss.
xml");

RssReader_Content.setSelectedFeed("http://feeds.bbci.co.uk/news/business/rss.xml")

5.13 R Visualization

Use the R Visualization widget to leverage R scripts. It allows you to build your own visualizations,

do calculation, and more. Refer to sample Show R Visualization result in Text for the most

frequently used APIs.

In the script of R Visualization, you can define parameters to get input values or return results

calculated in the script.

Example:

Configure the title of visualization R Visualization in Show R Visualization result in Text per

location by input parameter:

RVisualization.getInputParameters().setString("titleParam", "Gross Margin of
Oregon");

Example:

Calculate the total of gross margin in RVisualization script, and return the result:

RVisualization.getEnvironmentValues().getNumber("totalSum");

Configure the data source of the R Visualization via APIs. For example, in Show R Visualization

result in Text, the dimension filter is set to Oregon when you change location via

Dropdown_Location by this

RVisualization.getDataFrame("BestRunJuice_SampleModel").getDataSource().setDimensio
nFilter("Location_4nm2e04531", ["CT13", "CT14", "CT15", "CT16", "CT17", "CT18"]);

Widget Concepts, APIs, and Usages 64

5.14 Geo Map

The Geo Map widget is now supported in analytic applications. It lets application users overlay

multiple layers of business data on a base map and explore the information behind the data from

a geographical point of view.

The Geo Map widget in an analytic applications has the same capabilities as in a Story, and also

provides APIs to make changes by scripting.

Configure Layer Visibility

Since a Geo Map widget can have multiple visualization layers on the top, there are APIs to

control their visibility so users can decide which layers they need to see.

GeoMap_1.getLayer(0).setVisible(true);

GeoMap_1.getLayer(0).isVisible();

5.15 Layout APIs

As an application designer, you can directly set a widget's size and position in a parent container

in the Styling panel. In addition to that, by leveraging the layout related APIs, you can allow

application users to dynamically set a widget's size and position according to the application logic

and window size.

LayoutUnit.Pixel // sets the unit of the layout as Pixel

LayoutUnit.Auto // sets the unit of the layout as Auto

LayoutUnit.Percent // sets the unit of the layout as Percent

LayoutValue.create(value: number, LayoutUnit: Unit) // sets the layout value by
creating a value with a certain unit

getLayout(): Layout // gets the layout of a widget

Layout.getLeft(): Unit; // Returns the left margin between the widget that you
define layout for and the widget's parent container.

Layout.setLeft(value: Unit); // Sets the left margin between the widget that you
define layout for and the widget's parent container.

Layout.getRight(): Unit; // Returns the right margin between the widget that you
define layout for and the widget's parent container.

Layout.setRight(value: Unit); // Sets the right margin between the widget that you
define layout for and the widget's parent container.

Widget Concepts, APIs, and Usages 65

Layout.getTop(): Unit; // Returns the top margin between the widget that you define
layout for and the widget's parent container.

Layout.setTop(value: Unit); // Sets the top margin between the widget that you
define layout for and the widget's parent container.

Layout.getBottom(): Unit; // Returns the bottom margin between the widget that you
define layout for and the widget's parent container.

Layout.setBottom(value: Unit); // Sets the bottom margin between the widget that
you define layout for and the widget's parent container.

Layout.getWidth(): Unit; // Returns the width of the widget that you define layout
for.

Layout.setWidth(value: Unit); // Sets the width of the widget that you define
layout for.

Layout.getHeight(): Unit; // Returns the height of the widget that you define
layout for.

Layout.setHeight(value: Unit); // Sets the height of the widget that you define
layout for.

// Application Canvas Resize Event, the event is cached to be

// dispatched every 500ms when the application window resizes.

Application.onResize() = function() {

};

Application.getInnerHeight() // If canvas' size is fixed, it returns the height of
the canvas; if dynamic, returns the height of the viewport, the visible area of the
window.

Application.getInnerWidth() // If canvas' size is fixed, it returns the width of
the canvas; if dynamic, returns the width of the viewport, the visible area of the
window.

We don’t have the mechanism yet to automatically flow the widgets when the screen size changes,

which will be introduced in future. But we can cover some of the responsive scenarios by

combining dynamic layout and the scripting APIs. In an analytic application, more than just flow

UI, you have the flexibility to add a widget on top of a background shape, overlapping but not flow

them, and they can shrink or grow in the same proportion when the window size changes.

You need two steps to make it happen:

Step 1: Set Size and Position in Styling Panel

You can set each widget's Left, Width, Right and Top, Height, Bottom values in Pixel, Percentage

and Auto (relative to its parent container, root canvas if not in a container) values on the Styling

panel's Layout Section.

Widget Concepts, APIs, and Usages 66

Figure 41: Layout Section in the Styling Panel

In order to adapt to the screen real-estate at runtime on different machines or browser window,

you need to set the unit to percentage (%) or auto.

Step 2: Dynamically Set the Size and Position in Application.onResize Event

Application canvas onResize event, the event is cached to be dispatch every 500 ms when the

application window resizes.

Inside the onResize event, you can use the Layout API to dynamically set the size and position.

Below code sample shows how to adjust the layout to fit a small screen size like phone.

// small screen size

if (screenWidth < 500 || screenHeight < 500) {

 Panel_3.setVisible(false);

 Panel_2.getLayout().setWidth(LayoutValue.create(98,

 LayoutUnit.Percent));

 Panel_2.getLayout().setBottom(LayoutValue.Auto);

 Panel_2.getLayout().setHeight(LayoutValue.create(376,

 LayoutUnit.Pixel));

 Panel_3.getLayout().setBottom(LayoutValue.Auto);

 Panel_3.getLayout().setLeft(LayoutValue.create(1,

 LayoutUnit.Percent));

Widget Concepts, APIs, and Usages 67

 Panel_3.getLayout().setTop(LayoutValue.create(476,

 LayoutUnit.Pixel));

 if (screenWidth < 500) {

 //one column

 Panel_3.getLayout().setHeight(LayoutValue.create(

 (baseChartHeight + padding) * 4 + padding * 3 +

 Table_1.getLayout().getHeight().value, LayoutUnit.Pixel));

 } else {

 //two columns

 Panel_3.getLayout().setHeight(LayoutValue.create(840,

 LayoutUnit.Pixel));

 }

 Panel_3.setVisible(true);

}

With the Layout APIs, you have all the flexibility to adjust the application based on the screen size,

to create a responsive application in an analytic application.

Typical Patterns and Best Practices 68

6 Typical Patterns and Best Practices

6.1 Switching Between Chart and Table

In this example, we will explore how to switch between a Chart and a Table using a toggle feature

in an analytic application.

To achieve this, we will add an icon that represents a Chart and another that represents a Table.

Then, we will write scripts for each of the images/icon we added to make it so that when we click

on the Chart icon, the chart will appear, and the Table will be invisible, and vice versa.

Our default setting, shown when the application is first run, will be to make the Table visible (and

the Chart invisible).

The result will look like this when we first run the application:

Figure 42: Example Application Switch Chart Table

And if we click on the image, we will get the Chart and the image will change its look to a

Table icon and if we select it we come back to the view of the previous screenshot:

Figure 43: Switch Chart Table

Typical Patterns and Best Practices 69

Prerequisites for this use case is having already added a Table and a Chart to your canvas.

Please select, for example, the model BestRun_Advanced as data source.

Select the Table in your canvas
and click on Designer. Go to the
Styling Panel and under Actions,
select “Show this item at view
time”.

Afterwards, change the name of
the widget to Table.

Select the Chart afterwards and
make sure that the action “Show
this item at view time” is
deselected.

Afterwards, we will do the same as
in the Table and change the name
of this widget to “Chart”

Typical Patterns and Best Practices 70

Choose the images you want the
user to click on to change from
Table to Chart and back.

Here, and were
used. You can insert them on top
of each other so that when one is
clicked on, the other one will
appear in the same place.
To insert an image, go to the
Insert Panel and under the “+”
Icon, select Image.

To enable the switch between
table and chart, we will edit the
name and then the scripts of both
images.

First, we will edit the Chart
Image’s script.
Select the image of the Chart you

added and click on the
button.

Typical Patterns and Best Practices 71

This will open the onClick script of
the image.
Here, we will write a script that
makes it possible to switch from
the Table to the Chart.
We have set the name of the

 icon to
Switch_to_Table_display and the

name of the icon to
Switch_to_Chart_display.
This can be done through the
Canvas in the Layout or Styling
Panel.

This script makes the Chart visible
and the Table invisible as well as
set the visibility of the Table icon
to true and the visibility of the
Chart icon to false. This way when
the Chart is visible, the icon of the
Table will also be visible to
indicate our ability to now switch
back to the Table.

Chart.setVisible(true);
Table.setVisible(false);

Switch_to_Table_display.setVisible(true);
Switch_to_Chart_display.setVisible(false);

We will now do the same for the
icon of the Table. Select the image
of the Table you chose and click

on the button.

Here, we will set the Chart as well
as the Switch_to_Table_display to
false and the Table as well as the
Switch_to_Chart_display to true.

Chart.setVisible(false);
Table.setVisible(true);

Switch_to_Table_display.setVisible(false);
Switch_to_Chart_display.setVisible(true);

Typical Patterns and Best Practices 72

Save the application and click on
Run Analytic Application in the
upper right side of the page and
the result should look something
like this:

The Table is displayed as we have
set it to the default.

Now click on the Chart icon above
it and the Table will change into a
Chart.
If we want to look at the Table
again, we only have to click on the
icon of the Table and we would
have the previous icon view again.

6.2 Selecting Measures via Dropdown or Radio Button to

Filter Table and Chart to Display (Single Selection)

In this example, we will explore how to filter a Table or a Chart using a single measure selected

from a Dropdown widget or a Radio Button.

In the Dropdown widget, we will load all the measures from our data set and set the default filtering

measure of the table to “Gross Margin Plan”.

When another measure is selected, the filter is applied to the Table as well as the Chart (You can

go from the Table to the Chart and vice versa using the and the icons, respectively.)

The result will look like this when we run the application:

Figure 44: Example Application Dropdown

And if we click on the Dropdown box, we will get all the measures with which we can filter the

results of the Table or the Chart:

Typical Patterns and Best Practices 73

Figure 45: Dropdown Selection

Prerequisites for this use case is having already added a table and a chart to your canvas. To

have all the functionalities in this use case, please first go through the Switching between Table

and Chart exercise.

To add a Dropdown widget, go to
the Insert Panel and click on the
+ sign and then choose
Dropdown.

We will name the dropdown
Dropdown_Measures.

To rename the objects, hover
over them one by one in the

Layout and when the icon
appears click on it and choose
Rename.

This use case assumes that you
have a Table and a Chart already
set in the Canvas. If you don’t,
please go through the Switching
between Table and Chart
exercise and keep the names as
they are in that exercise so that it
works here as well.

Typical Patterns and Best Practices 74

We will also add a Dropdown
label so that we can indicate to
the user that they can select
measures through the Dropdown
table.
To insert Text, please click again
on the + icon in the Insert Panel
and choose Text.

Place the Text widget on the left
side of the Dropdown widget and
we can then choose what to write
in the Text box we inserted. We
can, for example, write “Selected
Measure”.

Now we want to be able to
access the value that the user
chooses from the Dropdown
widget. That is why we will add a
Script Variable that acts as a
global variable that can be
accessed from anywhere in our
application.

To add a script variable, click on
the “+” next to SCRIPT
VARIABLES that is under
Scripting.

Typical Patterns and Best Practices 75

A window for the newly added
script variable should now open.
In the Structure part, type in
CurrentMeasureFilterSelection as
the Name
and set the Default Value to
[Account_BestRunJ
_sold].[parentId].&[Gross_Margin
Actual]. This will make Gross
Margin appear as our Default
Value in the Dropdown widget
when we run our application.

Click on Done button to close
variable definition dialog.

[Account_BestRunJ_sold].[parentId].&[Gross_MarginActual]

Typical Patterns and Best Practices 76

To define what should happen
when a filter is selected, we need
to create a Script Object. In this
object, we will write a function
that sets the measure filter
according to what the user has
chosen from the Dropdown
options.

To create a Script Object, select
the “+” icon next to SCRIPT
OBJECTS under the Layout.
Afterwards, rename both the
folder that was created as well as
the function.
We will name the folder Utils and
the function setMeasureFilter.

To rename the objects, hover
over them one by one and when

the icon appears click on it
and choose Rename.

Click on the function
setMeasureFilter and when the
Properties window opens, click
on the “+” icon next to
Arguments.

We will add an argument with the
name selectedId and the Type
string. Click on Done.

Typical Patterns and Best Practices 77

Now we can write the script for
the function.
Please hover over the
setMeasureFunction and click on

the icon that appears next to
it.
Here, we will define what
happens to the Table and the
Chart when a user selects a
measure from the Dropdown list.

We will remove any already set
dimensions of the Table or
measures of the Chart and then
we will add the captured value as
the new dimension and measure
of the Table as well as the Chart.

Table.getDataSource().removeDimensionFilter("Account_BestRunJ
_sold");
if (CurrentMeasureFilterSelection !== "") {
 Chart.removeMeasure(CurrentMeasureFilterSelection,
Feed.ValueAxis);
}

Table.getDataSource().setDimensionFilter("Account_BestRunJ_so
ld",selectedId);
Chart.addMeasure(selectedId, Feed.ValueAxis);

Now that we have defined how
the Table and Chart would
change, we will define how to
pass the captured value to the
setMeasureFilter function.
This will be done through
onSelect function of the
Dropdown widget.

To open the onSelect function,

click on the icon next to the
Dropdown object in the layout.

This script will get the selected
value of the Dropdown list and
pass it to the setMeasureFilter as
a parameter.

Utils.setMeasureFilter(Dropdown_Measures.getSelectedKey());

The last step is setting what
happens when the application is
first run.
This is done through the
onInitialization function of the
Canvas itself.

To get to this script, please hover
over the CANVAS in the Layout

and click on the icon when it
appears and select
onInitialization.

Typical Patterns and Best Practices 78

In this use case, we want to
make sure that on initialization,
we load all the available
measures of the Table into our
Dropdown List.
After doing that, we set the
selected key to the first measure
in that list and then we set our
measure filter to that first
measure in our list.

var measures = Table.getDataSource().getMeasures();

var selectedKey = "";

if (measures.length > 0) {
 for (var i = 0; i < measures.length; i++){
 // Measure
 Dropdown_Measures.addItem(measures[i].id,
measures[i].description);
 if (selectedKey === "" && i === 0) {
 selectedKey = measures[i].id;
 Dropdown_Measures.setSelectedKey(selectedKey);
 console.log(["selectedKey ", selectedKey]);
 }
 console.log(["CurrentMeasure ", measures]);
 }
}

Utils.setMeasureFilter(selectedKey);

Typical Patterns and Best Practices 79

Now let’s see how it looks like.

Save the application and click on
Run Analytic Application in the
upper right side of the page and
the result should look something
like this:

If you select a measure from the
Dropdown list, the values in the
Table as well as the Chart
(accessed by clicking on the

 icon – See “Switching
between Table and Chart”
exercise) should change
accordingly.

Application when it’s first run:

Chart with “Gross Margin Plan” as the selected measure:

Chart with “Discount” as the selected measure:

6.3 Selecting Measures via Dropdown to Filter Table and Chart

to Display (Multi-Selection)

In this example, we will explore how to filter a Table or a Chart using multiple measures selected

from a Checkbox Group widget.

Unlike a Dropdown box, the Checkbox Group allows using multiple measures as filters. In this

use case, we will add a Checkbox Group widget where we will list all the measures in our data

set. On top of that, there will be three buttons;

• “Set selected” to filter the Table and Chart using the checked measures in the Checkbox

• “Remove all” to remove all the selected filters

• “Set all” to display all the available measures in our Table/Chart

The result will look like this when we run the application:

Typical Patterns and Best Practices 80

Figure 46: Example Application Multi Selection

Prerequisites for this use case is having already added a table and a chart to your canvas. To

have all the functionalities in this use case, please first go through the Switching between Table

and Chart exercise.

To add a Checkbox Group widget to your
Canvas, go to the Insert Panel and click on
the “+” sign and then choose Checkbox
Group. Please place the newly added
widget on the left side of your Table in the
canvas.

We will name the checkbox group
CheckboxGroup_Measures.

To rename the objects, hover over them

one by one and when the icon
appears click on it and choose Rename.

Please remove the initial values “Value 1”
and “Value 2” from the Checkbox group

Value list. Select and click and
then click Apply.

This use case assumes that you have a
Table and a Chart already set in the
Canvas. If you don’t, please go through the
Switching between Table and Chart
exercise and keep the names as they are
in that exercise so that it works here as
well.

Typical Patterns and Best Practices 81

We will also add a label so that we can
indicate to the user that the Checkbox
Group is displaying the measures of our
data set.
To insert Text, please click again on the “+”
icon in the Insert Panel and choose Text.

Place the Text widget on the left side of the
Dropdown widget and
we can then choose what to write in the
Text box we inserted. We can, for example,
simple write “Measures”.

Typical Patterns and Best Practices 82

Now we want to be able to quickly use the
Checkbox Group which is why we will add
some buttons that will help us do that.

The first button will be a “set selected”
button; this will enable us to filter the data
according to the selected checkboxes in
our Checkbox Group.

The second button will be a “Remove all”
button; this will be a shortcut button that
simplifies removing all the selected
measures rather than deselecting them
one by one.

And the third, and final, button will be a “set
all” button which when selected, selects all
the measures in the Checkbox Group.

To add the buttons, go to the “+” icon in the
Insert Panel and select Button and add
three of them.

After adding the three buttons, we will edit
some of their properties.

Select the first button and open the
Designer (found on upper right part of the
Page) and go to the Styling Panel.

There, change the name of the button to
“Button_setMeasureFilter” and the Text to
“set selected”.

Select the second button and open the
Designer again and go to the Styling Panel.

There, change the name of the button to
“Button_removeAllMeasures” and the Text
to “Remove all”.

Typical Patterns and Best Practices 83

Select the third button and in the Styling
Panel,
change the name of the button to
“Button_setAllMeasures” and the Text to
“set all”.

To be able to access the values that have
been selected in the Checkbox Group, we
need to create variables that can be
accessed anywhere in the application.
Which is why, we will create 2 Script
Variables.
The first one will be called “AllMeasures”
and we will set it as an array. This variable
will hold all the measures that could be
selected in the Checkbox Group.

To insert this variable, go to SCRIPT
VARIABLES under SCRIPTING in the
Layout which you can find on the left part
of the Page.
Click on the “+” icon next to the
SCRIPTING VARIABLES which should
open a new window where you can change
the structure of your variable.

There, type in “AllMeasures” in the Name
box, select “string” as Type, and set the
Set As Array button to “YES”.
Click on Done to close the properties’
window.

Typical Patterns and Best Practices 84

Add a second Scripting Variable the same
way as in Step 8.
This variable will hold the measures that
the user has selected from the Checkbox
Group.

When the Structure window opens, type in
“CurrentMeasureFilterSelection” in the
Name box, set “string” as Type, and toggle
the Set As Array button to “YES”.

To define what should happen when a filter
is selected, we need to create a Script
Object.

In this object, we will create a function that
sets the measure filter according to what
the user has chosen from the Checkbox
Group.

To create a Script Object, select the “+”
icon next to SCRIPT OBJECTS under the
Layout.
Afterwards, rename both the folder that
was created as well as the function.

We will name the folder Utils and the
function setMeasureFilter.

To rename the objects, hover over them

one by one and when the icon
appears click on it and choose Rename.

Typical Patterns and Best Practices 85

Click on the function setMeasureFilter and
when the Editing window opens, click on
the “+” icon next to Arguments.

Here, we will add an argument with the
name “selectedIds” and the Type string[]
(array of strings).

Typical Patterns and Best Practices 86

To define what the setMeasureFilter
function, that we added in Step 11, does,
please go to the function in the Layout,

hover over its name, and click on the
icon next to it.

The script of this function does the
following:
Firstly, it removes any dimensions from the
Table or measures from the Chart that
were added to filter them before.

Secondly, it looks to see which measures
the user has chosen from the Checkbox
Group and adds them as dimensions to the
Table/measures for the Chart.

Lastly, it takes the selected measures of
the user and saves them in the variable we
created in Step 9
(CurrentMeasureFilterSelection).

// remove Measures
Table.getDataSource().removeDimensionFilter("Account
_BestRunJ_sold");
if (CurrentMeasureFilterSelection !== [""]) {
 for (var i = 0; i <
CurrentMeasureFilterSelection.length; i++) {

Chart.removeMeasure(CurrentMeasureFilterSelection[i]
, Feed.ValueAxis);
 }
}

// add Measures
Table.getDataSource().setDimensionFilter("Account_Be
stRunJ_sold",selectedIds);
for (i = 0; i < selectedIds.length; i++) {
 Chart.addMeasure(selectedIds[i], Feed.ValueAxis);
}
// save the current selection into global variable
CurrentMeasureFilterSelection = selectedIds;

Now, we need to define what happens
when the buttons we created are clicked.
The first button, “set selected” should filter
the data according to the selected
checkboxes in our Checkbox Group.

To edit the onClick function script of the
button, you can either hover over it in the

Layout and click on the icon or you
can click on the button in the canvas and

similarly select .

In the script of the onClick function, we will
call the Utils.setMeasureFilter function and
pass to it the selected measures of the
Checkbox Group.

Utils.setMeasureFilter(CheckboxGroup_Measures.getSel
ectedKeys());

Typical Patterns and Best Practices 87

The second button, “Remove all”, removes
all the selected measures from the
Checkbox Group.

Open the script of the button like in step 13
and here, we will remove all the selected
measures from the Checkbox Group itself
and also pass an empty array to the
Utils.setMeasureFilter so that our Table
and Chart as well as our global variable
CurrentMeasureFilterSelection will be
updated.

CheckboxGroup_Measures.setSelectedKeys([""]);
Utils.setMeasureFilter([""]);

The third button, “set all”, selects all the
measures in the Checkbox Group.

In the script of this button, we will set the
selected keys of the Checkbox Group to
the AllMeasures script variable we had
defined before and we will pass the same
variable to the Utils.setMeasureFilter
function.

CheckboxGroup_Measures.setSelectedKeys(AllMeasures);
Utils.setMeasureFilter(AllMeasures);

The last step is setting what happens when
the application is first run.
This is done through the onInitialization
function of the Canvas itself.

To get to this script, please hover over the
CANVAS in the Layout and click on the

icon when it appears and select
onInitialization.

Typical Patterns and Best Practices 88

In this use case, we want to make sure that
on initialization, we get all the available
measures of the Table’s data source.
Then, we define a selected keys array of
type string and using a loop, we add the
measures to our Checkbox Group and the
selected keys array. We also call on the
setSelectedKeys function of the Checkbox
Group and set its selected keys to our
array.
Finally, we set the script variable
AllMeasures and the measure filter to the
selected keys.

// get all measures from the table data source
var measures = Table.getDataSource().getMeasures();

// define array or the selected Keys
var selectedKeys = ArrayUtils.create(Type.string);

if (measures.length > 0) {
 for (var i = 0; i < measures.length; i++) {
 // add the Measure to checkbox group

CheckboxGroup_Measures.addItem(measures[i].id,measur
es[i].description);
 //add the measure to the selecedKeys
 selectedKeys.push(measures[i].id);

CheckboxGroup_Measures.setSelectedKeys(selectedKeys)
;
 console.log(["CurrentMeasure ", measures]);
 }
}

console.log(["selectedKey ", selectedKeys]);
AllMeasures = selectedKeys;
Utils.setMeasureFilter(selectedKeys);

Typical Patterns and Best Practices 89

Now let’s see how it looks like.
Click on Run Analytic Application in the
upper right side of the page and the result
should look something like this:

If we click on the “Remove all” button, all
measures are deselected and there is no
Table (or Chart -> accessed through the

 icon) to look at.

If we click on “set all”, all measures are
selected again and the Table (or Chart)
looks like when we first ran the application.

Let us only select a few measures and see
how the Table will change.
In the screenshot on the right, 4 measures
are chosen (Gross Margin Plan, Quantity
Sold, Original Sales Price abs Dev, and
Discount).
After selecting the measures, please click
on “set selected” to update the Table/Chart
with your chosen measures.

Application when it’s first run:

Table after clicking on “Remove all”:

Table after clicking on “set all”:

Table after selecting specific measures:

6.4 Using Filter Line for Filtering Table, Chart, and R

Visualization

In this example, we will explore how to filter a Table, a Chart or an R Visualization using a Filter

Line widget.

Instead of loading all the dimensions in our data set into a Checkbox group or a Dropdown widget,

in this use case, we will select specific dimensions to load into a Filter Line.

Typical Patterns and Best Practices 90

Unlike other data bound widgets (such as Table or Chart), R Visualization can add multiple input

data models. To support R Visualization in Filter Line, one Dropdown list is added to select the

connected input data.

Figure 47: Choose Input Data for Filtering R Visualization

After the user selects an input data model of the R Visualization widget, the Filter Line can support

R Visualization just like other widgets.

After loading the desired dimensions into our Filter Line, we will connect it to our Table/Chart/R

Visualization so that the data is filtered using the selected filter.

To use the Filter Line after running the application, simply click on the Filter Line icon and select

the dimension you want to use to filter your data.

The result will look like this when we run the application:

Figure 48: Example Application Filter Line

And this is how it will look like when we click on our Filter Line widget:

Typical Patterns and Best Practices 91

Figure 49: Select Filter Line

Prerequisites for this use case is having already added a Table and a Chart to your canvas. To

have all the functionalities in this use case, please first go through the Switching between Table

and Chart exercise.

To add a Filter Line widget to
your Canvas, go to the Insert
Panel and click on the “+” sign
and then choose Filter Line.
Please place the newly added
widget above the Table.

We will name the filter line
FilterLine.

To rename the objects, hover
over them one by one and when

the icon appears click on it
and choose Rename.

This use case assumes that you
have a Table and a Chart already
set in the Canvas. If you don’t,
please go through the Switching
between Table and Chart
exercise and keep the names as
they are in that exercise so that it
works here as well.

After adding the Filter Line, we
need to set its properties.
We can do that by selecting the
Filter Line we added to our
canvas and afterwards, clicking
on the Designer button.
You can find this button on the
upper right side of the screen.

There, navigate over to the
Builder Panel.

Typical Patterns and Best Practices 92

In the Builder Panel, we will set
the structure of the Filter Line.
We will set the source widget as
the Table.
This is done by going to Source
Widget and choosing “Table”
from the Dropdown List.

Now we will add the filters we
want: In this use case we want
the user to be able to filter on 4
dimensions: Location, Product,
Sales Manager, and Store.

We can add these by going to the
Dimension Selection part and
clicking Add Dimension and
selecting all 4 when the Checklist
comes up.

Typical Patterns and Best Practices 93

In step 3 we needed to select a
source widget for our Filter Line
and we chose the Table,
however, in our application we
give the user the option to toggle
between Table and Chart using

the and
respectively (please refer to the
“Switching between Table and
Chart” Exercise).

This means that we have to find a
way to get the filter that’s been
applied to the Table so that we
can apply that on our Chart too.

To do that, click on the next
to the Table in the Layout and
choose onResultChanged.

In the script of the
onResultChanged function, we
will copy the dimension filters
from the Table. We do the
copying 4 times for each of the
measures we had added in the
Dimension Selection part (in step
4).

console.log('OnResultChanged');

Chart.getDataSource().copyDimensionFilterFrom(Table.getDataSou
rce(), "Location_4nm2e04531");
Chart.getDataSource().copyDimensionFilterFrom(Table.getDataSou
rce(), "Product_3e315003an");
Chart.getDataSource().copyDimensionFilterFrom(Table.getDataSou
rce(), "Sales_Manager__5w3m5d06b5");
Chart.getDataSource().copyDimensionFilterFrom(Table.getDataSou
rce(), "Store_3z2g5g06m4.Store_GEOID");

Typical Patterns and Best Practices 94

Now let’s see how it looks like.

Click on Run Analytic Application
in the upper right side of the page
and the result should look
something like this:

When you click on the Filter Line,
the 4 measures we added pop
up.

When one of the measures in the
Filter Line is clicked, a pop-up
window comes up and we get to
choose which cities (locations),
products, sales managers, and
stores do we want to include in
our Table or Chart.

If we were to choose San
Francisco, Las Vegas, and
Portland as our members, the
table would update according to
that filter.

And the Chart will be updated as

well (Click the icon to get
the view of the Chart.

Location is selected

Typical Patterns and Best Practices 95

6.5 Cascaded Filtering

In this example, we will explore how to do cascaded filtering; meaning filtering on dimensions and

then filtering according to hierarchies (such as Flat Presentation, ABC, …) to choose how to

display the data.

We will add two Dropdown lists, one for filtering dimensions and the other for filtering hierarchies

and depending on what dimension we choose to filter on, the Dropdown List for the hierarchy

filters will change.

There is always one consistent filter for hierarchies which is Flat Presentation and according to

our chosen dimension, we might either only have that one or have more options.

For example, if we are filtering on Location, we have two choices for hierarchies: Flat Presentation

and according to States, however, if we are filtering on Product, we have Flat Presentation,

Category, or ABC (this one categorizes the dimension as “worst-selling”, “medium-selling”, or

“best-selling”), and if we are filtering on Store or Sales Manager, our only option is Flat

Presentation.

The different filters can be chosen by simply selecting them from the Dropdown lists we added.

The result will look like this when we run the application:

Figure 50: Example Application Cascading Filtering

Prerequisites for this use case is having already added a Table and a Chart to your canvas. To

have all the functionalities in this use case, please first go through the Switching between Table

and Chart exercise.

Typical Patterns and Best Practices 96

To add a Dropdown widget for the
List of Dimensions and one for the
Hierarchies, we need to go to the
Insert Panel, click on the “+” icon, and
choose Dropdown.
Please insert two widgets into your
Canvas and position them on the
same level above the Table.

We will name the dropdown
Dropdown_Dimensions.

To rename the objects, hover over

them one by one and when the
icon appears click on it and choose
Rename.

Add the second Dropdown widget for
the Hierarchies we will name
Dropdown_Hierarchies.

This use case assumes that you have
a Table and a Chart already set in the
Canvas. If you don’t, please go
through the Switching between Table
and Chart exercise and keep the
names as they are in that exercise so
that it works here as well.

Go into the Builder properties of the
Dimensions Dropdown widget
(through the Designer button on the
upper right side of the screen).

Here, we will add the values that the
user can choose from the widget.

Add values by clicking on the “+” icon.
We will set Location to our default
value.

After entering all the values, click on
“Apply” to save the changes.

Location_4nm2e04531 Location

Product_3e315003an Product

Store_3z2g5g06m4 Store

Sales_Manager__5w3m5d06b5 Sales Manager

Typical Patterns and Best Practices 97

To be able to distinguish the
Dropdown List of the Dimensions and
the one of the Hierarchies, we need
to have labels for both.

To add a Label, please click again on
the “+” icon, insert two Text widgets,
and place them on the left side of
each of the Dropdown Lists we added
in the previous step.

Now, we will set the properties of the
labels we added.
Double click on the first label and type
“Dimension”
And then go into the Designer Styling
Panel of the label. There, we will set
the name of the Label that we will use
if we need to reference this widget in
a script.
Please, insert the name
“Dropdown_Dimensions_Label”.

We will do the same for our second
label.
Double click on the first label and type
“Hierarchies”
And then go into the Designer Styling
Panel of the label and
Insert “Dropdown_Hierarchies_Label”
as its Name.

Typical Patterns and Best Practices 98

To be able to filter according to the
Dimension chosen from the
Dimension Dropdown list, we need to
be able to store the choice in a
variable that can be accessed from
anywhere in the application; that
means that we need a Script
Variable.

To add a script variable, click on the
“+” next to SCRIPT VARIABLES that
is found under Scripting.

A window for the newly added script
variable should now open.
In the Structure part, type in
“CurrentDimension” as the Name,
and then set “string” as the Type and
“Location_4nm2e04531” as the
Default Value.
This will make Location appear as our
Default Value in the Dropdown widget
when we run our application.

To trigger the action of filtering when
a choice is selected from the
Dropdown Lists, we need to write an
onSelect script for the them.

We’ll start with the Hierarchies
Dropdown widget:
To open the onSelect function, hover
on the Dropdown object in the Layout

and click on the icon that
appears next to it.

This script will get the selected value
of the Dropdown list and accordingly
set the hierarchy of the Table and the
Chart while referencing our script
variable, CurrentDimension, so that
the hierarchy displays only correctly
filtered data.

var sel = Dropdown_Hierarchies.getSelectedKey();

// set hierarchy for Table
Table.getDataSource().setHierarchy(CurrentDimension, sel);

// set hierarchy for Chart
Chart.getDataSource().setHierarchy(CurrentDimension, sel);

Typical Patterns and Best Practices 99

In this step, we will edit the onSelect
script of the Dimensions Dropdown
widget:
To open the onSelect function, hover
on the Dropdown object in the Layout

and click on the icon that
appears next to it.

This script will get the selected choice
from the Dimensions Dropdown List
and save it in a variable called sel.
The next step is to remove all the
dimensions from the Table and Chart
and set the selected dimension as the
new dimension.

Then, from our data, we will get all
the hierarchies that are available for
that selected dimension, remove the
hierarchies that are written now in the
Hierarchies Dropdown List and loop
over the available hierarchies for this
selected dimension.

Lastly, we set Flat Presentation as
the default hierarchy and filter our
Table and Chart with the selected
Dimension.

var sel = Dropdown_Dimensions.getSelectedKey();

// Table
Table.removeDimension(CurrentDimension);
Table.addDimensionToRows(sel);

//Chart
Chart.removeDimension(CurrentDimension, Feed.CategoryAxis);
Chart.addDimension(sel, Feed.CategoryAxis);

// write filter information into the browser console
console.log(['CurrentDimension: ', CurrentDimension]);
console.log(['Selection: ', sel]);

// save the current selection (dimension) into a global
variable
CurrentDimension = sel;

// get hierarchies from the current dimension
var hierarchies =
Table.getDataSource().getHierarchies(CurrentDimension);
var flag = true;

// remove all current items form the Dropdown_Hierarchies
Dropdown_Hierarchies.removeAllItems();

// loop
for (var i = 0; i < hierarchies.length; i++) {
 if (hierarchies[i].id === '__FLAT__') {
 Dropdown_Hierarchies.addItem(hierarchies[i].id, 'Flat
Presentation');
 }
 else {

Typical Patterns and Best Practices 100

 Dropdown_Hierarchies.addItem(hierarchies[i].id,
hierarchies[i].description);
 if (flag === true) {
 var hierarchy = hierarchies[i].id;
 flag = false;
 }
 }
}
// write hierarchy information to browser console
console.log(['Hierarchy: ', hierarchy]);
console.log(['Current Dimension: ', CurrentDimension]);

// set Flat Hierarchie als Default
Dropdown_Hierarchies.setSelectedKey('__FLAT__');

// Table
Table.getDataSource().setHierarchy(CurrentDimension,
'__FLAT__');

// Chart
Chart.getDataSource().setHierarchy(CurrentDimension,
'__FLAT__');

The last step is setting what happens
when the application is first run.
This is done through the
onInitialization function of the Canvas
itself.

To get to this script, please hover
over the CANVAS in the Layout and

click on the icon when it
appears and select onInitialization.

Typical Patterns and Best Practices 101

In this use case, we want to make
sure that on initialization, we load all
the available hierarchies of the
dimensions and set Flat Presentation
as the default of the Hierarchies
Dropdown List.
The script for this part is the same as
some of what happens when a
dimension is chosen.

// get hierarchies from the current dimension
var hierarchies =
Table.getDataSource().getHierarchies(CurrentDimension);
var flag = true;

// loop
for (var i = 0; i < hierarchies.length; i++) {
 if (hierarchies[i].id === '__FLAT__') {
 Dropdown_Hierarchies.addItem(hierarchies[i].id, 'Flat
Presentation');
 }
 else {
 Dropdown_Hierarchies.addItem(hierarchies[i].id,
hierarchies[i].description);
 if (flag === true) {
 var hierarchy = hierarchies[i].id;
 flag = false;
 }
 }
}
// write hierarchy information to browser console
console.log(['Hierarchy: ', hierarchy]);
console.log(['Current Dimension: ', CurrentDimension]);

// set Flat Hierarchie als Default
Dropdown_Hierarchies.setSelectedKey('__FLAT__');

//Table
Table.getDataSource().setHierarchy(CurrentDimension,
'__FLAT__');

//Chart
Chart.getDataSource().setHierarchy(CurrentDimension,
'__FLAT__');

Typical Patterns and Best Practices 102

Now let’s see how it looks like.

Click on Run Analytic Application in
the upper right side of the page and
the result should look something like
this:

If we keep the dimension on
“Location” but change the hierarchy to
“States”, the Table would change to
display the location according to the
states we have.

Now, if we change the dimension to
“Product” and set the hierarchy to
“Category”, we will see the different
categories of products displayed.

6.6 Add and Remove Dimension in Rows and Columns for

Table

In this example, we will, through Checkbox Groups, control which measures as well as which

dimensions are displayed in the Table.

The user can select which measures they would like displayed in the Table through the Measures

Checkbox and then through another Checkbox, they could decide which dimensions they want

displayed on the columns or the rows of the Table.

The application also makes it easier for the user to select all or remove all measures by adding

buttons specifically for that purpose.

They can also remove the dimensions that they added to the columns and rows and are able to

choose to add them again afterwards.

The result will look like this when we run the application:

Typical Patterns and Best Practices 103

Figure 51: Add and Remove Dimensions

This application assumes that there already is a Table in your canvas. To match the scripts in the

application it is recommended to rename the widget to Table.

Typical Patterns and Best Practices 104

We will start by adding 5 Checkbox
Groups.
The first one will display all the
available measures and the user
can choose which ones they want to
see in the Table, the second one
will display the dimensions we want
our Columns to be filtered on, while
the third does the same but for our
Rows.
The fourth Checkbox Group will
display the dimensions that we
could add to the second and third
Checkbox.

Place the first four Checkbox
Groups under each other on the left
side of the Table. (as shown in the
screenshot).

The fifth Checkbox Group will get
the selected dimensions of the
fourth Checkbox and order the
Checkboxes according to the
selections while also taking care
that there aren’t any repetitions in
any of the other Checkbox Groups.

To start off, please click on the “+”
icon in the Insert Panel and choose
Checkbox Group and place on the
left side of the Table.

Go to the Designer of the first
Checkbox (by clicking on Designer
on the upper right side of the
screen) and switch to the Styling

Panel by clicking on the

button.

There, please enter
“CheckboxGroup_Measures” as the
Name and choose “Vertical Layout”
as the Display Option.

Typical Patterns and Best Practices 105

Switch over to the Builder Panel of
the same widget and delete the
values in the Table.
Simply select the value and click on

the icon to delete it.

Afterwards, click on Apply to save
the changes.

Typical Patterns and Best Practices 106

We will do the same for the other
Checkbox Groups. Please add four
new Checkbox Groups; for the first
enter “CheckboxGroup_Columns”,
for the second enter
“CheckboxGroup_Rows”, for the
third enter “CheckboxGroup_Free”,
and for the last enter
“CheckboxGroup_AllDimensions” as
the Name.
Choose “Vertical Layout” as the
Display Option for all of them.

Place the three Checkbox Groups
under each other on the left side of
the Table, under the Measure
Checkbox, in the order in which we
inserted them (as described before).

Please place the last checkbox as
indicated in the screenshot on the
right or somewhere in the canvas
(the place is not important because
the checkbox will be hidden).

After editing these values, go to the
Builder Panel of each of the
Checkbox Groups and delete the
values that are there like we did in
the first Checkbox Group.

Typical Patterns and Best Practices 107

To be able to distinguish the
Checkbox Groups from each other,
we need to have labels for four of
them. (We don’t need a label for the
All Dimensions Checkbox because
it won’t be visible at view time)

To add a Label, please click again
on the “+” icon, insert four Text
widgets, and place each one of
them above each of the Checkbox
Groups we added.

Now, we will set the properties of
the labels we added.
Double click on the first label and
type “Measures”
And then go into the Designer
Styling Panel of the label. There, we
will set the name of the Label that
we will use if we need to reference
this widget in a script.
Please, insert the name
“CheckboxGroup_Measures_Label”.

We will do the same for our second
label.
Double click on the first label and
type “Columns”
And then go into the Designer
Styling Panel of the label and
insert
“CheckboxGroup_Columns_Label”
in its Name field.

Typical Patterns and Best Practices 108

Navigate towards the third label and
there:
Double click on the first label and
type “Rows”
And then go into the Designer
Styling Panel of the label and
Insert the Name
“CheckboxGroup_Rows_Label”.

Finally, we will edit our fourth label.
Double click on the first label and
type “Free”
And then go into the Designer
Styling Panel of the label and
insert the name
“CheckboxGroup_Free_Label” as its
Name.

Now, we need to set the
AllDimensions Checkbox to invisible
at view time because we only need
it to sort our dimensions as you’ll
see later in the exercise.
Go into the Styling Panel in the
Designer of the
CheckboxGroup_AllDimensions and
uncheck Show this item at view time

Typical Patterns and Best Practices 109

Now, we will add all the buttons, we
need, to control our choices from
the Checkbox Groups.
To add our first button, please click
on the “+” icon and insert a Button
and place it between the Measures
Label and its Checkbox Group.

To edit the button, click on it and go
to the Styling Panel in the Designer.
For the Name, enter
“Button_setMeasureFilter” and for
the Text enter “set selected”. This
button will set the measures we
choose from the Measures
Checkbox as measures for our
Table.

Now, we will do the same for all the
buttons we need.
Add a new button and place it next
to the first one.
For this button, enter
“Button_removeAllMeasures” for the
Name and “Remove all” for the
Text. This button will be used to
uncheck all the measures from the
Measures Checkbox Group and set
the measure filters for the Table to
empty.

Add a third button and place it next
to the second one.
For this button, enter
“Button_setAllMeasures” for the
Name and “set all” for the Text. This
button will be used to set all the
available measures as measures for
our Table.

Typical Patterns and Best Practices 110

Add a new button and place it next
to the “Columns” Label. This
button’s Name will be set to
“Button_ColRemove” and its Text
will read “Remove” and it will be
used to remove the dimensions that
the user selects in the Columns
Checkbox from the Checkbox as
well as from the columns of our
Table.

Next to the Rows Label, insert a
new button and enter the Name
“Button_RowRemove” and the Text
“Remove” in its properties’ settings.
This button will be used to remove
the dimensions that the user selects
in the Rows Checkbox from the
Checkbox as well as the rows of our
Table.

Next to the Free Label we will add
two buttons; for the first, insert a
new button and enter the Name
“Button_AddToCol” and the Text
“add to Column” in its properties’
settings.
When this button is clicked, the
selected dimensions from the Free
Checkbox Group will be added as
dimensions of the Table’s Columns.

Next to the previous button, please
add another button and enter
“Button_AddToRow” for the Name
and “add to Row” for the Text.
When this button is clicked, the
selected dimensions from the Free
Checkbox Group will be added as
dimensions to the Rows in the
Table.

Typical Patterns and Best Practices 111

Please compare your Canvas to the
screenshot on the right and make
sure they look alike.

We will not add a label for the last
Checkbox Group (All Dimensions)
since it is there to simply help us set
the dimensions in the Columns,
Rows, and Free Checkboxes so that
there are no repetitions.

To be able to filter according to the
measures and dimensions chosen
from the Checkbox Groups, we
need to be able to store the choices
in variables that can be accessed
from anywhere in the application;
that means that we need Script
Variables.
To add a script variable, click on the
“+” next to SCRIPT VARIABLES
that is under Scripting.

Typical Patterns and Best Practices 112

A window for the newly added script
variable should now open. In the
Structure part, type in
“AllDimensions” as the Name, and
then set “string” as the Type and
toggle the Set As Array button to
Yes.
This variable will hold all the
dimensions in our data set.

Now, we will add a second script
variable that will hold all the
measures of our data set.
Add a new variable like we did in
the previous 2 steps.
In the name field insert
“AllMeasures”, set the Type to
“string”, and toggle the Set As Array
button to Yes.

To be able to implement the
selected dimensions in our Columns
and Rows, we need to save these in
a script variable.
Firstly, we will insert a script
variable to hold the selected
dimensions that we have chosen to
add to our Columns.
Add a new script variable and enter
“CurrentDimensionColumn” in the
Name field, set string as Type, and
toggle the Set As Array button to
Yes.

Typical Patterns and Best Practices 113

To hold the selected dimensions,
we have chosen to add to our
Rows, we will insert a new script
variable.
Type “CurrentDimensionRows” in
the Name field, set the Type to
string, and toggle the Set As Array
button to Yes.

Our final script variable will hold the
measure(s) we have selected from
the Measures Checkbox Group.
Insert a new script variable and set
the Name to
“CurrentMeasureFilterSelection”,
the Type to string, and the Set As
Array to Yes.

Typical Patterns and Best Practices 114

To define what should happen when
a dimension or a measure is
chosen, we need to create a Script
Object. In this object, we will create
a function that sets the measure
filter according to what the user has
chosen from the Measures
Checkbox Group and another
function that sets the dimensions
according to what the user has
chosen from the Free Checkbox
Group.
To create a Script Object, select the
“+” icon next to SCRIPT OBJECTS
under the Layout.

This will add only one script function
to the script object.
To add a second one, hover over

the folder created, click on the
icon when it appears and click on “+
Add Script Function”.

Rename all the added elements as
the following:
We will name the folder Utils, the
first function
setDimensionCheckboxes and the
second function setMeasureFilter.

To rename the objects, hover over
them one by one and when the

 icon appears click on it and
choose Rename.

Click on the function
setDimensionCheckboxes and set
the Return Type to void.

Typical Patterns and Best Practices 115

Click on the function
setMeasureFilter and when the
Properties window opens, set the
Return Type to void and click on the
“+” icon next to Arguments.
There, add an argument with the
name “selectedIds” and the type
string[] (string array).

Typical Patterns and Best Practices 116

Now, we can write the script for the
functions.

Please click on the icon next to
the setDimensionCheckboxes
function.
Here, we will define what happens
when a user selects dimensions
from the Free Checkbox Group to
be added to the Columns or the
Rows.

Firstly, we will remove all items from
the Column, Rows, and Free
Checkboxes.

Then, we will call on the create
function of the script variables and
create two new string arrays and
save one in our
CurrentDimensionColumn script
variable and the other in the
CurrentDimensionRows script
variable.

Afterwards, we get the dimensions
that are now on the Table’s columns
and push each on into the string
array of CurrentDimensionColumn.
We then do the same for the Rows,
this time pushing the row
dimensions into the string array of
CurrentDimensionRows.

We then get all the dimensions and
we will see which dimensions were
chosen from the
AllDimensionsCheckbox.

Next, we will add these dimensions
to our Free Checkbox but remove
the ones that are in the Rows or
Columns Checkboxes so that we
don’t have any repetitions between
the three Checkboxes.

CheckboxGroup_Columns.removeAllItems();
CheckboxGroup_Rows.removeAllItems();
CheckboxGroup_Free.removeAllItems();

CurrentDimensionColumn = ArrayUtils.create(Type.string);
CurrentDimensionRows = ArrayUtils.create(Type.string);
console.log(["CurrentDimensionColumn should empty",
CurrentDimensionColumn.slice()]);
console.log(["CurrentDimensionRows should empty",
CurrentDimensionRows.slice()]);

// Dimension in Columns
var dimCol = Table.getDimensionsOnColumns();
if (dimCol.length > 0) {
 for (var i = 0; i < dimCol.length; i++) {
 CurrentDimensionColumn.push(dimCol[i].id);
 console.log(["CurrentDimensionColumn ",
dimCol[i].id]);
 }
}

Typical Patterns and Best Practices 117

// Dimension in Rows
var dimRows = Table.getDimensionsOnRows();
if (dimRows.length > 0) {
 for (i = 0; i < dimRows.length; i++) {
 CurrentDimensionRows.push(dimRows[i].id);
 console.log(["CurrentDimensionRows ",
dimRows[i].id]);
 }
}

// get all Dimensions
if (AllDimensions.length > 0) {
 for (i = 0; i < AllDimensions.length; i++) {
 if (AllDimensions[i] !== "") {

CheckboxGroup_AllDimensions.setSelectedKeys([AllDimension
s[i]]);
 var dimdesc =
CheckboxGroup_AllDimensions.getSelectedTexts();
 CheckboxGroup_Free.addItem(AllDimensions[i],
dimdesc[0]);
console.log(["AllDimensions",AllDimensions[i],
dimdesc[0]]);
 }
 }
}

console.log(["CurrentDimensionColumn",
CurrentDimensionColumn]);
console.log(["CurrentDimensionRows",
CurrentDimensionRows]);

// remove the dimensions from the free list, which are in
rows / columns
if (CurrentDimensionRows.length > 0) {
 for (i = 0; i < CurrentDimensionRows.length; i++) {
 if (CurrentDimensionRows[i] !== "") {

CheckboxGroup_Free.setSelectedKeys([CurrentDimensionRows[
i]]);
 dimdesc = CheckboxGroup_Free.getSelectedTexts();
 CheckboxGroup_Rows.addItem(CurrentDimensionRows[i],
dimdesc[0]);

CheckboxGroup_Free.removeItem(CurrentDimensionRows[i]);
 }
 }
}

if (CurrentDimensionColumn.length > 0) {
 for (i = 0; i < CurrentDimensionColumn.length; i++) {
 if (CurrentDimensionColumn[i] !== "") {

CheckboxGroup_Free.setSelectedKeys([CurrentDimensionColum
n[i]]);
 dimdesc = CheckboxGroup_Free.getSelectedTexts();

CheckboxGroup_Columns.addItem(CurrentDimensionColumn[i],
dimdesc[0]);

CheckboxGroup_Free.removeItem(CurrentDimensionColumn[i]);
 }
 }
}

Typical Patterns and Best Practices 118

Now, we will do the same for the
setMeasureFilter function. Click on

the icon next to the
setMeasureFilter function and there,
we will define what happens to the
Table when a user selects a
measure from the Dropdown list.

We will remove any already set
dimension filter of the Table and
then we will add the selectedIds as
the new dimension(s) of the Table.

Finally, we will save the selected
measures in our
CurrentMeasureFilterSelection
script variable.

// remove Measures
Table.getDataSource().removeDimensionFilter("Account_Best
RunJ_sold");

// add Measures
Table.getDataSource().setDimensionFilter("Account_BestRun
J_sold", selectedIds);

// save the current selection into global variable
CurrentMeasureFilterSelection = selectedIds;

To trigger an action when our
buttons are clicked, we need to
write onClick scripts for the them.

Let’s start with the first button,
setMeasureFilter (Text: set
selected).
Click on the button in your Canvas

and select the icon.

In the script of this button, we will
get the selected keys of the
Measures Checkbox and using the
function Utils.setMeasureFilter, we
will set them as the measure filters
for our table.

Utils.setMeasureFilter(CheckboxGroup_Measures.getSelected
Keys());

Next, we will edit the onClick script
of the second button,
removeAllMeasures (Text: Remove
All).
Click on the button in your Canvas

and select the icon.
Here, we will set the selected keys
and the measure filter to empty
arrays.

CheckboxGroup_Measures.setSelectedKeys([""]);
Utils.setMeasureFilter([""]);

Typical Patterns and Best Practices 119

The script of the third button,
Button_setAllMeasures (Text: set
all), will set the selected keys of the
Checkbox Group to the script
variable AllMeasures and use the
Utils.setMeasureFilter function to
set the measure filter to all
measures.

CheckboxGroup_Measures.setSelectedKeys(AllMeasures);
Utils.setMeasureFilter(AllMeasures);

The fourth button’s script,
Button_ColRemove (Text: Remove),
when triggered, gets the selected
keys of the Columns Checkbox
Group and then removes these
dimensions from the Table and then
calls the setDimensionCheckboxes
function to set the Checkboxes
according to the new selections.

var selKeys = CheckboxGroup_Columns.getSelectedKeys();

for (var i = 0; i < selKeys.length; i++) {
 // remove dimension
 Table.removeDimension(selKeys[i]);
}

Utils.setDimensionCheckboxes();

Now, we will edit the script of the
button Button_RowRemove (Text:
Remove). Here, we will do the same
as in step 32 with the ColRemove
button. We will get the selected
keys of the Rows Checkbox Group
and then remove these dimensions
from the Table and call the
setDimensionCheckboxes function
to reset the checkboxes again
according to the new selections.

var selKeys = CheckboxGroup_Rows.getSelectedKeys();

for (var i = 0; i < selKeys.length; i++) {
 // remove dimension
 Table.removeDimension(selKeys[i]);
}

Utils.setDimensionCheckboxes();

Typical Patterns and Best Practices 120

The fifth button, Button_AddToCol
(Text: add to Column) will, when
clicked on, get the selected keys of
the Free Checkbox and add the
dimensions to the column of the
Table.
The script will then call the
setDimensionCheckboxes function
to set the Checkboxes to the new
selection.

var selKeys = CheckboxGroup_Free.getSelectedKeys();

for (var i = 0; i < selKeys.length; i++) {
 // add dimension to Column in table
 Table.addDimensionToColumns(selKeys[i]);
}
Utils.setDimensionCheckboxes();

The script of the last button,
Button_AddtRow (Text: add to
Row), will get the selected keys of
the Free Checkbox and add the
dimensions to the Rows of the
Table, and then, same as the
previous script, it will call the
setDimensionCheckboxes function
to set the Checkboxes to the new
selection.

var selKeys = CheckboxGroup_Free.getSelectedKeys();

for (var i = 0; i < selKeys.length; i++) {
 // remove dimension
 Table.addDimensionToRows(selKeys[i]);
}

Utils.setDimensionCheckboxes();

The last step is deciding what
happens when the application is first
run.
This is done through the
onInitialization function of the
Canvas itself.

To get to this script, please hover
over the CANVAS in the Layout and

click on the icon when it

appears.

Typical Patterns and Best Practices 121

In this use case, we want to make
sure that on initialization, we get all
the measures from the data source
of the Table.

We will then define an array of type
string and call it selectedKeys.
Afterwards, we will add all the
measures to the Measures
Checkbox Group as well as the
selectedKeys array.

We will then set the selected keys of
the Checkbox Group to the
selectedKeys variable and set our
script variable AllMeasures to
selectedKeys since it still holds all
the measures of our data set.

Afterwards, we define another string
array and put all the dimensions of
the data source in it as well as add
these dimensions as items of the
Checkbox Group of all dimensions
(CheckboxGroup_AllDimensions).

Next, we will set the script variable
AllDimensions to the string array
(selectedDims) that we have
created to store the dimensions in.

The last step is to call the functions
of setMeasureFilter to set the
selected keys to the array we had
defined at the beginning
(selectedKeys) and to call the
setDimensionCheckboxes function
to set the dimension checkboxes to
its initial state.

// Measures
// get all measures from the table data source
var measures = Table.getDataSource().getMeasures();

// define array or the selected Keys
var selectedKeys = ArrayUtils.create(Type.string);

if (measures.length > 0) {
 for (var i = 0; i < measures.length; i++) {
 // add the Measure to checkbox group
 CheckboxGroup_Measures.addItem(measures[i].id,
measures[i].description);
 //add the measure to the selected Keys
 selectedKeys.push(measures[i].id);
 }
}
CheckboxGroup_Measures.setSelectedKeys(selectedKeys);
console.log(["selectedKey ", selectedKeys]);
AllMeasures = selectedKeys;

// define array or the selected Keys
var selectedDims = ArrayUtils.create(Type.string);
var dims = Table.getDataSource().getDimensions();
if (dims.length > 0) {
 for (i = 0; i < dims.length; i++) {
 CheckboxGroup_AllDimensions.addItem(dims[i].id,
dims[i].description);
 selectedDims.push(dims[i].id);
 }
}

console.log(["selectedDims ", selectedDims]);
AllDimensions = selectedDims;

Utils.setMeasureFilter(selectedKeys);

Utils.setDimensionCheckboxes();

Typical Patterns and Best Practices 122

Now let’s see how it looks like.

Click on Run Analytic Application in
the upper right side of the page and
the result should look something like
this:

If we add the Time to the Columns
Checkbox (select it in the Free
Checkbox and click on add to
Column), we will see that the
dimension has been added and we
can now see in more details what
happened in which year regarding
every measure.

Now, if we also add the dimension
Location to the Rows, we will see
the columns being filtered on the
Time and the rows on the Location.

Finally, we can try to remove
dimensions from the Rows and
leave the Columns as we had them
in the previous screenshot.

(Note: We cannot remove all the
dimensions from the Columns
because we must filter on at least
one dimension)

Typical Patterns and Best Practices 123

6.7 Creating a Settings Panel Using a Popup Window

In this example, we will see how to use a popup window widget to create a setting panel where

the user could control the contents of the Table and Chart in the canvas.

In this use case, we want to be able to filter our table and chart according to certain measure

groups of our data set. Here, Gross Margin, Discount, Quantity Sold, and Original Sales Price are

the options.

These measure groups are going to be selected from a Dropdown list in our canvas.

Afterwards, we will use the popup widget to switch between Table and Chart using a Radio Button

Group and give the user the ability to control the measures (Actual, Plan, Absolute, and % of

Deviation) of the measure groups using a Checkbox Group widget.

The result will look like this when we run the application:

Typical Patterns and Best Practices 124

Figure 52: Example Application Settings Panel

And when the Settings button is clicked, the application will display the popup with the

settings that the user can change:

Figure 53: Popup Settings Panel

Prerequisites for this use case is having already added a table and a chart to your canvas. To

have all the functionalities in this use case, please first go through the Switching between Table

and Chart exercise.

Typical Patterns and Best Practices 125

The first thing we will do is add a
Dropdown list that houses the measure
groups with which we can filter our
Table and Chart.
To do this, please click on the “+” icon
in the Insert panel and select Dropdown
and place the widget above the Table in
the Canvas.

 Go to the Designer (by clicking on
Designer on the upper right side of the
screen) and switch to the Styling Panel

by clicking on the button.

There, enter
“Dropdown_MeasureGroup” as the
Name.

Typical Patterns and Best Practices 126

Now, we will select which measures we
want the user to be able to filter on.
In this use case, we will choose 4
measures; Gross Margin, Discount,
Quantity Sold, and Original Sales Price.

To enter these values in our dropdown
list, switch over to the Builder Panel in

the Designer by clicking on the
button.

There, press the “+” icon near the
Dropdown value to enter our desired
values.

The first value is Gross_Margin and its
displayed text should read Gross
Margin.
The second value is Discount and the
displayed text is the same.

The third value is Quantity_sold and its
displayed text is Quantity Sold.
And add a fourth Dropdown list element
with the value Original_Sales_Price and
its text should read Original Sales Price.

And finally, set Gross_Margin as the
default value of the Dropdown list and
click on Apply to save the changes.

Value Text (Optional)

Gross_Margin Gross Margin

Discount Discount

Quantity_sold Quantity Sold

Original_Sales_Price Original Sales Price

To make it clear what the contents of
our Dropdown widget are, we will insert
a Label.
To do that, click on the “+” icon in the
Insert panel and select Text.

Typical Patterns and Best Practices 127

Place the inserted Text widget to the left
side of the Dropdown widget and select
it to edit its properties.
Go to the Styling Panel in the Designer
and enter “Dropdown_Measures_Label”
as the Name.

To edit what the label shows, double
click on the Text widget in the Canvas
and enter “Measure Group”.

The next step is adding the popup that
lets us edit some settings of our Table
and Chart.
However, we first need to add an icon
that, when the user clicks on, will make
the popup appear.
To do this, click on the “+” icon in the
Insert panel and choose image.

Now add any image that you want to
use as an icon for the settings.

In our application, we used as
our image.

To edit the name of the image, go to the
Styling Panel in the Designer and enter
Settings_Logo as the name.

Typical Patterns and Best Practices 128

Now we will add our popup window.
To do this, look for Popups in the
Layout and click on the “+” icon to add
one.

Double click on the newly added popup
in the Layout to rename it and enter the
name “Popup_Settings”.

 And then select the popup in the
Layout and a new window should open.
There, we will add the elements that we
want to appear in our Popup window.

To have a header and a footer, click on
the popup and go to the Builder Panel in
the Designer.
There, toggle the “Enable header &
footer” button to YES.

Enter “Settings” as the Title of the
Popup.

We will have two buttons, an Ok and a
Cancel button.
To add them, click on the “+” icon next
to Buttons.
Set the ID of the first button to
“Ok_button” and the text to “OK”.
Finally, select all the options displayed
afterwards (Emphasized, Enabled, and
Visible).

 Set the ID of the second button to
“Cancel_button” and the text to
“Cancel”.
Please select the options Enabled and
Visible but leave the Emphasized
checkbox disabled.
Click on Apply to save the changes.

Typical Patterns and Best Practices 129

In this settings popup, we would like to
give the user the option of switching
between the Table and Chart.
To achieve this, please add a Radio
Button Group widget from the Insert
Panel and place it in the middle of the
Popup window.

To edit the properties of the Radio
Button Group, select the widget and go
to the Builder Panel in the Designer.
There, we will add the two options that
users can choose from.
The first will be “Show Table” and we’ll
set this to the default while the second
will read “Show Chart”.

After entering the values, please click
on Apply to save the changes.

To edit the properties of the Radio
Button Group, switch over to the Styling
Panel.

There, enter “RadioButtonGroup_View”
as the Name and select “Vertical
Layout” as the Display Option.

Typical Patterns and Best Practices 130

We will also give the user the option of
choosing which measures of the chosen
measure group they want displayed.

To do this, we will add a Checkbox
Group from the Insert panel and place it
underneath the Radio Button Group
widget.

We will firstly edit the Styling properties
of the widget. To do that, select it in the
Canvas or the Layout and go to the
Styling panel in the Designer.

There, please enter
“CheckboxGroup_Measure_Selection”
as the Name and select “Vertical
Layout” as the Display Option.

We also want a label text, so we will
toggle the Label text option to enable it
and write “Measures” to display it as our
Checkbox Group label.

Typical Patterns and Best Practices 131

The next step is to edit the values that
appear in the Checkbox.
To do this, go to the Builder panel in the
Designer.
We will add the values Actual, Plan,
Absolute, and % Deviation as the
measures with which the measure
groups can be filtered.
To do that, click on the “+” button and
add the values.

We will set all 4 values as Default.

Click on Apply to save the changes.

Value Text (Optional)

Actual Actual

Plan Plan

_Abs Absolute

_Percent % Deviation

We also need to write a script for the
settings icon we added so that when the
user clicks on it, the settings popup we
added, is opened.

To do that, select the icon in the Layout

and click on the icon next to it.

There, we will simply make the click
event open our settings popup.

Popup_Settings.open();

To be able to access all the selections
that the user made from any widget in
our app, we need to add global
variables.
To add these script variables, go to
Scripting and click the “+” next to Script
Variables.

Typical Patterns and Best Practices 132

The first script variable we will add, is
one that will hold the concatenated filter
of the Dropdown List in the Canvas and
the Checkbox Group in the Popup
window.

Add a script variable and its properties
enter
“CurrentMeasureFilterSelectionPopup”
in the Name field, set the Type to
“string”, and toggle the Set As Array
button to “YES”.

The second script variable we will add is
one that will hold the current measure
filter from the Dropdown list.
Add a script variable and in its
properties enter
“CurrentMeasureGroup” in the Name
field, set the Type to “string”, and the
Default Value to “Gross_Margin”.

The third and final script variable we
need is one that will hold the measures
selected from the Checkbox Group in
the Popup window.
Add a script variable and its properties
enter “CurrentMeasureSelection” in the
Name field, set the Type to “string”, and
toggle the Set As Array button to “YES”.

Typical Patterns and Best Practices 133

To define what should happen when a
filter is selected, we need to create a
Script Object.

In this object, we will create a function
that sets the measure filter according to
what the user has chosen from the
Checkbox Group.

To create a Script Object, select the “+”
icon next to SCRIPT OBJECTS under
the Layout.
Afterwards, rename both the folder that
was created as well as the function.

We will name the folder Utils and the
function setMeasureFilter.

To rename the objects, hover over them

one by one and when the icon
appears click on it and choose Rename.

Typical Patterns and Best Practices 134

Click on the function setMeasureFilter
and when the Editing window opens,
click on the “+” icon next to Arguments.

Here, we will add an argument with the
name “selectedId” and the Type string.

Typical Patterns and Best Practices 135

To define what the setMeasureFilter
function does, please go to the function
in the Layout, hover over its name, and

click on the icon next to it.

In this use case, when the
setMeasureFilter function is called, the
set measure filters are removed from
the Table and the Chart and the
selected measure sent to the function is
inserted instead.

Table.getDataSource().removeDimensionFilter("Account_
BestRunJ_sold");
if (CurrentMeasureGroup !== "") {
 Chart.removeMeasure(CurrentMeasureGroup,
Feed.ValueAxis);
}

Table.getDataSource().setDimensionFilter("Account_Bes
tRunJ_sold", selectedId);
Chart.addMeasure(selectedId, Feed.ValueAxis);

Typical Patterns and Best Practices 136

Now, we will define what happens when
a user selects a measure group from
the Dropdown list in the canvas.
To do that, select the Dropdown widget
in the Canvas or Layout and click on the

icon that appears next to it.

In this script, we will first see which
value was selected and will remove the
measures of these measure groups
from our Chart.

Then, we will save the current selection
in our script variable,
CurrentMeasureGroup.

Afterwards, we will see which measures
were selected in the Checkbox in the
Popup so that we filter on all the inputs
the user gave us.

After getting these values, we will
remove any old filters used and apply
the new ones.
To get a valid filter, we will concatenate
the selected measures to a filter
statement.

Finally, we will save the concatenated
filter statement in our
CurrentMeasureFilterSelectionPopup
script variable and the selected keys of
the Checkbox Group in the
CurrentMeasureSelection script
variable.

var sel = Dropdown_MeasureGroup.getSelectedKey();

if (CurrentMeasureGroup === 'Gross_Margin') {

Chart.removeMeasure("[Account_BestRunJ_sold].[parentI
d].&[Gross_MarginActual]", Feed.ValueAxis);

Chart.removeMeasure("[Account_BestRunJ_sold].[parentI
d].&[Gross_MarginPlan]", Feed.ValueAxis);

Chart.removeMeasure("[Account_BestRunJ_sold].[parentI
d].&[Gross_Margin_Abs]", Feed.ValueAxis);

Chart.removeMeasure("[Account_BestRunJ_sold].[parentI
d].&[Gross_Margin_Percent]", Feed.ValueAxis);
}
else if (CurrentMeasureGroup === 'Discount') {

Chart.removeMeasure("[Account_BestRunJ_sold].[parentI
d].&[DiscountActual]", Feed.ValueAxis);

Chart.removeMeasure("[Account_BestRunJ_sold].[parentI
d].&[DiscountPlan]", Feed.ValueAxis);

Chart.removeMeasure("[Account_BestRunJ_sold].[parentI
d].&[Discount_Abs]", Feed.ValueAxis);

Chart.removeMeasure("[Account_BestRunJ_sold].[parentI
d].&[Discount_Percent]", Feed.ValueAxis);
}
else if (CurrentMeasureGroup === 'Quantity_Sold') {

Typical Patterns and Best Practices 137

Chart.removeMeasure("[Account_BestRunJ_sold].[parentI
d].&[Quantity_soldActual]", Feed.ValueAxis);

Chart.removeMeasure("[Account_BestRunJ_sold].[parentI
d].&[Quantity_soldPlan]", Feed.ValueAxis);

Chart.removeMeasure("[Account_BestRunJ_sold].[parentI
d].&[Quantity_sold_Abs]", Feed.ValueAxis);

Chart.removeMeasure("[Account_BestRunJ_sold].[parentI
d].&[Quantity_sold_Percent]", Feed.ValueAxis);
}
else if (CurrentMeasureGroup ===
'Original_Sales_Price') {

Chart.removeMeasure("[Account_BestRunJ_sold].[parentI
d].&[Original_Sales_PriceActual]", Feed.ValueAxis);

Chart.removeMeasure("[Account_BestRunJ_sold].[parentI
d].&[Original_Sales_PricePlan]", Feed.ValueAxis);

Chart.removeMeasure("[Account_BestRunJ_sold].[parentI
d].&[Original_Sales_Price_Abs]", Feed.ValueAxis);

Chart.removeMeasure("[Account_BestRunJ_sold].[parentI
d].&[Original_Sales_Price_Percent]", Feed.ValueAxis);
}

// save the current selection (measure filter) into a
global variable
CurrentMeasureGroup = sel;

// get Measures Selection
var Selected_Measures =
CheckboxGroup_Measure_Selection.getSelectedKeys();

// remove the current measures from Chart
for (var i = 0; i <
CurrentMeasureFilterSelectionPopup.length; i++) {

Chart.removeMeasure(CurrentMeasureFilterSelectionPopu
p[i], Feed.ValueAxis);
}

// help variables
var Filter_Pattern_1 =
"[Account_BestRunJ_sold].[parentId].&[";
var Filter_Pattern_2 = "]";
var Filter_Area = ArrayUtils.create(Type.string);

// loop over the selected measures
for (i = 0; i < Selected_Measures.length; i++) {
 //concate all selection information together to a
valid filter statemant
 var Filter = Filter_Pattern_1 + CurrentMeasureGroup
+ Selected_Measures[i] + Filter_Pattern_2;
 Filter_Area.push(Filter);

 // add Measure to Chart
 Chart.addMeasure(Filter, Feed.ValueAxis);
}

// remove the "old" filter and set the new filter
selection
Table.getDataSource().removeDimensionFilter("Account_
BestRunJ_sold");
Table.getDataSource().setDimensionFilter("Account_Bes
tRunJ_sold", Filter_Area);

// save the current measure filter selection into a
global variable
// Note --> this global variable need to be set with
the default values on the onInitialization event from
the Main Canvas
CurrentMeasureFilterSelectionPopup = Filter_Area;

Typical Patterns and Best Practices 138

CurrentMeasureSelection = Selected_Measures;

// write the current measure filter selection to the
browser console
console.log(["Measure Selection: ",
CurrentMeasureSelection]);
console.log(["Measure Filter Selection: ",
CurrentMeasureFilterSelectionPopup]);

The final script we need to write is the
script of buttons OK and Cancel that we
have in our popup window.
Select the popup in the Layout and click

on the icon that appears next to it.

Typical Patterns and Best Practices 139

We have two buttons, OK and Cancel,
so, we will start off with an if statement
that differentiates the buttons according
to their Ids.

In this script, we will get the selections
from the Checkbox Group in the popup
window and then we will remove the
measures currently being used as filters
for the Chart.

To get a valid filter, we will concatenate
the selected measures to a filter
statement.

We will save the concatenated filter
statement in our
CurrentMeasureFilterSelectionPopup
script variable and the selected keys of
the Checkbox Group in the
CurrentMeasureSelection script
variable.

Afterwards, we will get the selected key
of the Radio Button Group in the Popup
window. If “Show Table” is selected,
then we will set the Table to visible and
the Chart to invisible and vice versa if
“Show Chart” is selected.

Finally, we will close the Popup whether
the user clicked on OK or Cancel.

if (buttonId === "Ok_button") {
 // get Measures Selection
 var Selected_Measures =
CheckboxGroup_Measure_Selection.getSelectedKeys();

 if (CurrentMeasureSelection !== Selected_Measures)
{

 // remove the current measures from Chart
 for (var i = 0; i < CurrentMeasureGroup.length;
i++) {

Chart.removeMeasure(CurrentMeasureFilterSelectionPopu
p[i], Feed.ValueAxis);
 }

 // help variables
 var Filter_Pattern_1 =
"[Account_BestRunJ_sold].[parentId].&[";
 var Filter_Pattern_2 = "]";
 var Filter_Area = ArrayUtils.create(Type.string);

 // loop over the seleced measures
 for (i = 0; i < Selected_Measures.length; i++) {
 // concate all selection information together
to a valid filter statemant
 var Filter = Filter_Pattern_1 +
CurrentMeasureGroup + Selected_Measures[i] +
Filter_Pattern_2;
 Filter_Area.push(Filter);
 // add Measure to Chart
 Chart.addMeasure(Filter, Feed.ValueAxis);
 }

Typical Patterns and Best Practices 140

 // remove the "old" filter and set the new filter
selection

Table.getDataSource().removeDimensionFilter("Account_
BestRunJ_sold");

Table.getDataSource().setDimensionFilter("Account_Bes
tRunJ_sold", Filter_Area);

 // save the current measure filter selection into
a global variable
 // Note --> this global variable need to be set
with the default values on the onInitialization event
from the Main Canvas
 CurrentMeasureFilterSelectionPopup = Filter_Area;
 CurrentMeasureSelection = Selected_Measures;

 // write the current measure filter selection to
the browser console
 console.log(["Measure Selection: ",
CurrentMeasureSelection]);
 console.log(["Measure Filter Selection: ",
CurrentMeasureFilterSelectionPopup]);
 }

 // set the visibiltiy of Chart and Table --> Script
from the RadioButtonGroup_View onSelect event
 var sel = RadioButtonGroup_View.getSelectedKey();

 if (sel === 'Show Table') {
 Table.setVisible(true);
 Chart.setVisible(false);
 }
 else {
 Table.setVisible(false);
 Chart.setVisible(true);
 }
}
Popup_Settings.close();

Typical Patterns and Best Practices 141

Now let’s see how it looks like.

Click on Run Analytic Application in the
upper right side of the page and the
result should look something like this:

If we click on the Settings icon, the
Popup will appear.

Now, let’s select “Show Chart” from the
popup window and leave all the
measures selected. The result should
be that the settings are left as they
were, and the only change is that the
Chart is now displayed.

Open the popup window again but this
time select only two items from the
Checkbox Group.
Here, we have selected Actual and
Plan.

Now, change the Measure Group from
the “Gross Margin” to “Discount” and
the two measures, Actual and Plan are
displayed here for the measure group
Discount.

Finally, let’s switch back to the Table
from the popup window while leaving all
the settings unchanged from the
previous example.
The result is that the Discount measure
group is presented and only Actual and
Plan are displayed.

Typical Patterns and Best Practices 142

6.8 Selection Handling in a Table or Chart and Open a Details

Popup

In this example, we will let the user select certain elements in the Table and the Chart that when

clicked on, open a popup window with extra information in a chart format about the selected

element.

In a Table, a user will be able to select a measure cell, a dimension cell, or a data cell. Each will

open a popup window that displays information about the selected element in a trend chart.

In the Chart, a user will be able to select a dimension cell and a measure/dimension chart bar (for

example, Gross Margin Plan for Lemonade).

There are also two Dropdown lists, one for dimensions and the other for hierarchies. The list of

dimensions let the user choose which dimension filter they want to use on the Table/Chart. In this

use case, we have chosen 4 dimensions; Location, Product, Store, and Sales Manager.

The second Dropdown list displays the available hierarchies that can be used to change how the

data is displayed.

Note: In this example, only single selection is supported for the Table and Chart.

The result will look like this when we run the application:

Figure 54: Example Application Details Popup

And when a cell is chosen, a popup window like the one in the screenshot will appear (In this

screenshot, the dimension cell of Los Angeles was clicked on in the Table):

Typical Patterns and Best Practices 143

Figure 55: Details Popup

Prerequisites for this use case is having already added a functioning Table and a Chart to your

canvas. To have all the functionalities in this use case, please first go through the Switching

between Table and Chart exercise.

It is recommended to use the same names as that exercise for the Table and Chart so that the

scripts in this use case don’t have to be altered.

The first thing we will do is add a
Dropdown list that houses the
dimensions in our data set.
To do this, please click on the “+” icon
in the Insert panel and select Dropdown
and place the widget above the Table in
the Canvas.

Typical Patterns and Best Practices 144

Go to the Designer (by clicking on
Designer on the upper right side of the
screen) and switch to the Styling Panel

by clicking on the button.

There, enter “Dropdown_Dimensions”
as the Name.

Now, we will select which dimensions
we want the user to be able to filter on.
In this use case, we will choose 4;
Location, Product, Store, and Sales
Manager.

To enter these values in our dropdown
list, switch over to the Builder Panel in

the Designer by clicking on the
button.

There, press the “+” icon near the
Dropdown value to enter the desired
values.

The first value is Location_4nm2e04531
and its displayed text should read
Location.
The second value is
Product_3e315003an and the displayed
text is Product.

The third value is Store_3z2g5g06m4
and its displayed text is Store.
And we’ll add a fourth Dropdown list
element with the value
Sales_Manager__5w3m5d06b5 and its
text should read Sales Manager.

And finally, set Location as the default
value of the Dropdown list.

Click on Apply to save the changes.

Value Text (Optional)

Location_4nm2e04531 Location

Product_3e315003an Product

Store_3z2g5g06m4 Store

Sales_Manager__5w3m5

d06b5
Sales Manager

Typical Patterns and Best Practices 145

We will now add a second list where the
user can choose the hierarchy in which
they want to display their data.
To do this, please click on the “+” icon
in the Insert panel and select Dropdown
and place the widget next to the first
Dropdown list in the Canvas.

Go to the Designer (by clicking on
Designer on the upper right side of the
screen) and switch to the Styling Panel

by clicking on the button.

There, enter “Dropdown_Hierarchies”
as the Name.
We will load the hierarchies into this
Dropdown list later from a script.

To make it clear what the contents of
our Dropdown widgets are, we will
insert a Label for each of the Dropdown
widgets.
To do that, click on the “+” icon in the
Insert panel and select Text.

Typical Patterns and Best Practices 146

Place the inserted Text widget to the left
side of each Dropdown widget and
select the first one to edit its properties.
Go to the Styling Panel in the Designer
and enter
“Dropdown_Dimensions_Label” as the
Name.

To edit what the label shows, double
click on the Text widget in the Canvas
and enter “Dimension”.

Select the second label and go to the
Styling Panel in the Designer and enter
“Dropdown_Dimensions_Label” as the
Name.

To edit what the label shows, double
click on the Text widget in the Canvas
and enter “Hierarchies”.

We will now add the popup window that
will display extra information about the
selected measure, dimension, or data
cell.

To add a popup window, go to Popups
in the Layout and click on the “+” icon
next to it.

Typical Patterns and Best Practices 147

Click on the newly added popup and go
to the Styling Panel in the Designer.
There, enter “Popup_Details” in the
Name input form and set the Popup
Size to the width of 800 px and height of
400 px.

Now, switch over to the Builder Panel

by clicking on the button.
Insert “Details” as the Title.
Here, we will also enable the header
and footer by toggling the button to Yes.

We also want to add a button through
which the user can exit the popup.
Firstly, delete the buttons that can be
found there by selecting each of them

and clicking on the icon.
To add this new button, click on the “+”
icon next to Buttons.

Insert the ID “BTN_Cancel”, the text
“Cancel”, and check the options
“Emphasized”, “Enabled”, and “Visible”.
Click on Apply to save the changes.

Typical Patterns and Best Practices 148

To be able to display the extra
information that we want in the popup,
we need to add a chart.
To do that, please select the Chart icon
from the Insert Panel.

Click on the Chart and go to the
Designer to set its properties.
First, go to the Styling Panel and enter
“Details_Chart” as the Name.

Then, switch over to the Builder Panel.
There, select the data source
BestRun_Advanced.

Select Trend (Time Series) as the Chart
Structure.

Add Gross Margin, Gross Margin %
Dev, Gross Margin abs Dev, and Gross
Margin Plan as the Measures.

Under Time, add Time as the dimension

To be able to access all the selections
that the user made from any widget in
our app, we need to add global
variables.
To add these script variables, go to
Scripting and click the “+” next to Script
Variables.

Typical Patterns and Best Practices 149

The first script variable we will add is
one that will hold the current selection
from the Dimensions Dropdown list.
Add a script variable and in its
properties enter “CurrentDimension” in
the Name field, set the Type to “string”,
and the Default Value to
“Location_4nm2e04531”.

The second script variable we will add,
is one that will hold the current measure
selection(s) (Actual, Plan, Absolute,
Percent).

Add a script variable and its properties
enter “CurrentMeasures” in the Name
field, set the Type to “string”, and toggle
the Set As Array button to “YES”.

Typical Patterns and Best Practices 150

The third, and last, script variable we
will add will hold the data about the
selections made that will be used to
display the data in the popup window.
Set “CurrentDetailsMeasures” as the
Name, the Type to string, and toggle the
Set As Array button to YES.

Now, we will decide what will happen
when a Dropdown list element in the
Canvas is selected.
Firstly, we will write the script for the
first widget, the Dimensions Dropdown
list.
To do this, select the Dimensions
Dropdown list in the Canvas and click

on the icon that appears next to
it.

Typical Patterns and Best Practices 151

This will open the onSelect script of the
Dropdown widget.
Here, we will first get the selected
element of the list.

We will then remove any already set
dimensions in the Table and the Chart
and add the newly selected dimension
to them.
We will also add that dimension to our
Details Chart (the one that we added to
the Popup window).

Afterwards, we will write the filter
information in the browser’s console
and save the selection in our script
variable, CurrentDimension.

Then, to set the available hierarchies for
the selected dimension, we loop
through the available hierarchies of our
data source in relation to the current
dimension and then we push all the
available hierarchies in the Dropdown
list of the Hierarchies.

At the end, we set the default hierarchy
of the Table, Chart, and Details Chart to
Flat Presentation.

var sel = Dropdown_Dimensions.getSelectedKey();
// Table
Table.removeDimension(CurrentDimension);
Table.addDimensionToRows(sel);
//Chart
Chart.removeDimension(CurrentDimension,
Feed.CategoryAxis);
Chart.addDimension(sel, Feed.CategoryAxis);
//Details_Chart remove dimension filter
Details_Chart.getDataSource().removeDimensionFilter(C
urrentDimension);

// write filter information into the browser console
console.log(['CurrentDimension: ',
CurrentDimension]);
console.log(['Selection: ', sel]);
// save the current selection (dimension) into a
global variable
CurrentDimension = sel;
// get hierarchies from the current dimension
var hierarchies =
Table.getDataSource().getHierarchies(CurrentDimension
);
var flag = true;
// remove all current items form the
Dropdown_Hierarchies
Dropdown_Hierarchies.removeAllItems();

Typical Patterns and Best Practices 152

// loop
for (var i = 0; i < hierarchies.length; i++) {
 if (hierarchies[i].id === '__FLAT__') {
 Dropdown_Hierarchies.addItem(hierarchies[i].id,
'Flat Presentation');
 }
 else {
 Dropdown_Hierarchies.addItem(hierarchies[i].id,
hierarchies[i].description);
 if (flag === true) {
 var hierarchy = hierarchies[i].id;
 flag = false;
 }
 }
}
// write hierarchy information to browser console
console.log(['Hierarchy: ', hierarchy]);
console.log(['Current Dimension: ',
CurrentDimension]);

// set Flat Hierarchy as Default
Dropdown_Hierarchies.setSelectedKey('__FLAT__');
// Table
Table.getDataSource().setHierarchy(CurrentDimension,
'__FLAT__');
// Chart
Chart.getDataSource().setHierarchy(CurrentDimension,
'__FLAT__');
// Details_Chart
Details_Chart.getDataSource().setHierarchy(CurrentDim
ension, '__FLAT__');

Now to edit the onSelect function of the
second Dropdown list, Hierarchies,
select it in the Canvas and click on the

icon next to it.

In the script of the onSelect function of
this widget, we will simply set the
hierarchy of the Table, Chart, and
Display Chart (the one in the popup
window) to the selected element of the
Dropdown list.

var sel = Dropdown_Hierarchies.getSelectedKey();
// set hierarchy for Table
Table.getDataSource().setHierarchy(CurrentDimension,
sel);
// set hierarchy for Chart
Chart.getDataSource().setHierarchy(CurrentDimension,
sel);
// set hierarchy for Details Chart
Details_Chart.getDataSource().setHierarchy(CurrentDim
ension, sel);

Typical Patterns and Best Practices 153

This use case enables the user to get
more information about three things. A
selected dimension, a selected
measure, and a selected dimension,
and a selected data cell.
These selections can be made in the
Table as well as the Chart.

We will start off by writing the script of
the Table.
Open the onSelect script of the Table by
either selecting it in the Layout or the

Canvas and clicking on the icon
that appears next to it.

or

Typical Patterns and Best Practices 154

In the onSelect script of the Table we
want to capture the selection made on
the Table. We will write it into our
console so that we can track the
selections made.

We will set the visibility of the popup to
false until we determine what the
selected element was.

Afterwards, we will loop over the
captured selected object of the Table
and get whether it was a measure, a
dimension, or a data cell (crossover
between measure and dimension).

After capturing this information, we will
push it unto the Chart in the popup
window

We will then save the selected
measures in the script variable
CurrentDetailsMeasures.

Finally, we set the visibility of the popup
to true which is then used to open it.

var sel = Table.getSelections();
console.log(['Table Selection: ', sel]);
Details_Chart.getDataSource().removeDimensionFilter(C
urrentDimension);
var Popup_show = false;
if (sel.length > 0) {
 var selection = sel[0];

 for (var dimensionId in selection) {
 var memberId = selection[dimensionId];

 if (dimensionId === '@MeasureDimension') {
 // Measure
 console.log(['Selection Measure: ',
dimensionId]);
 console.log(['Selection Member: ', memberId]);
 // remove current measure
 console.log(['CurrentMeasures: ',
CurrentMeasures]);

 for (var i = 0; i < CurrentMeasures.length;
i++) {

Details_Chart.removeMeasure(CurrentMeasures[i],
Feed.ValueAxis);
 Details_Chart.addMeasure(memberId,
Feed.ValueAxis);
 }

 //Details_Chart.addMeasure(memberId,
Feed.ValueAxis);
 CurrentDetailsMeasures.push(memberId);

Typical Patterns and Best Practices 155

 Popup_show = true;

 }
 // Dimension
 else {
 console.log(['Selection Dimension: ',
dimensionId]);
 console.log(['Selection Member: ', memberId]);

Details_Chart.getDataSource().setDimensionFilter(dime
nsionId, memberId);
 Popup_show = true;
 }
 }
}
if (Popup_show === true) {
 Popup_Details.open();
}

Now, we need to do the same for the
Chart.
Opposed to the Table, in the Chart, the
user can only click on a dimension and
can click on the chart bars which are
crossovers of a measure and a
dimension.

To write the script of the Chart, select
the widget in the Layout and click on the

 icon next to it.

Typical Patterns and Best Practices 156

In the onSelect function of the Chart, we
will get the selected element of the
Chart and save it in a local variable, sel.
We will set the popup window’s visibility
to false and remove the current
measures from the Details_Chart in the
popup.

And then, if it’s a measure, we will add it
as a measure to the Details_Chart and
if it’s a dimension, we will set it as a
dimension filter of the Details_Chart.

We will then push the selected
measures, if any, unto the script
variable CurrentDetailsMeasures.

At the end, the popup window’s visibility
is set to true and is opened.

var sel = Chart.getSelections();
console.log(['Chart Selection: ', sel,
CurrentMeasures]);
var Popup_show = false;

if (sel.length > 0) {

Details_Chart.getDataSource().removeDimensionFilter(C
urrentDimension);

 // remove the current measures
 for (var i = 0; i < CurrentMeasures.length; i++) {
 Details_Chart.removeMeasure(CurrentMeasures[i],
Feed.ValueAxis);
 }

 for (i = 0; i < sel.length; i++) {
 var selection = sel[i];

 for (var dimensionId in selection) {
 var memberId = selection[dimensionId];

 if (dimensionId === '@MeasureDimension') {
 // Measure
 console.log(['Add Selection Measure: ',
dimensionId]);
 console.log(['Add Selection Member: ',
memberId]);

 Details_Chart.addMeasure(memberId,
Feed.ValueAxis);
 CurrentDetailsMeasures.push(memberId);
 Popup_show = true;
 }

Typical Patterns and Best Practices 157

 // Dimension
 else {
 console.log(['Selection Dimension: ',
dimensionId]);
 console.log(['Selection Member: ',
memberId]);

Details_Chart.getDataSource().setDimensionFilter(dime
nsionId, memberId);
 Popup_show = true;
 }
 }
 }
}

if (Popup_show === true) {
 Popup_Details.open();
}

In previous steps, we had created the
popup window and added a Cancel
button. To make the button do anything,
we need to write a script for it.

To do that, select Popup_Details in the

Layout and click on the next to it.

This will open the onButtonClick script
of the Popup widget.
Here, we will set what happens when
the user clicks on the Cancel button.

Firstly, we will remove the content, if
there is any, of the
CurrentDetailsMeasures from the
Details_Chart and set the default
measures, from the CurrentMeasures
script variable, as the measures of the
Details_Chart.

At the end, we will trigger the closing of
the popup.

// remove the current measure selection and set all
default measures for the details chart

for (var i = 0; i < CurrentDetailsMeasures.length;
i++) {

Details_Chart.removeMeasure(CurrentDetailsMeasures[i]
, Feed.ValueAxis);
}

CurrentDetailsMeasures =
ArrayUtils.create(Type.string);

for (i = 0; i < CurrentMeasures.length; i++) {
 Details_Chart.addMeasure(CurrentMeasures[i],
Feed.ValueAxis);
}

// close the popup
Popup_Details.close();

Typical Patterns and Best Practices 158

The last script we will write is the one
for the Canvas. This script gets
executed on the initialization of the
Canvas.

Please, select the Canvas element in

the Layout and click on the icon
next to it.
Select the onInitialization function there.

Typical Patterns and Best Practices 159

In this script, we will load the hierarchies
into the Hierarchies Dropdown list and
set the default hierarchy to Flat
Presentation.
At the end, we will also fill the script
variable CurrentMeasures with the
available measures of Gross margin
(Actual, Plan, Absolute, and Percent)

// get hierarchies from the current dimension
var hierarchies =
Table.getDataSource().getHierarchies(CurrentDimension
);
var flag = true;

// loop
for (var i = 0; i < hierarchies.length; i++) {
 if (hierarchies[i].id === '__FLAT__') {
 Dropdown_Hierarchies.addItem(hierarchies[i].id,
'Flat Presentation');
 }
 else {
 Dropdown_Hierarchies.addItem(hierarchies[i].id,
hierarchies[i].description);
 if (flag === true) {
 var hierarchy = hierarchies[i].id;
 flag = false;
 }
 }
}
// write hierarchy information to browser console
console.log(['Hierarchy: ', hierarchy]);
console.log(['Current Dimension: ',
CurrentDimension]);

// set Flat Hierarchy as Default
Dropdown_Hierarchies.setSelectedKey('__FLAT__');

//Table
Table.getDataSource().setHierarchy(CurrentDimension,
'__FLAT__');

//Chart
Chart.getDataSource().setHierarchy(CurrentDimension,
'__FLAT__');

Typical Patterns and Best Practices 160

//Details_Chart
Details_Chart.getDataSource().setHierarchy(CurrentDim
ension, '__FLAT__');

//fill global Variable CurrentMeasures
CurrentMeasures.push('[Account_BestRunJ_sold].[parent
Id].&[Gross_MarginActual]');
CurrentMeasures.push('[Account_BestRunJ_sold].[parent
Id].&[Gross_MarginPlan]');
CurrentMeasures.push('[Account_BestRunJ_sold].[parent
Id].&[Gross_Margin_Abs]');
CurrentMeasures.push('[Account_BestRunJ_sold].[parent
Id].&[Gross_Margin_Percent]');

Typical Patterns and Best Practices 161

Now let’s see how it looks like.

Click on Run Analytic Application in the
upper right side of the page and the
result should look something like this:

If we click on one of the dimension data
cells, in this example the dimension is
set to Location and we clicked on Los
Angeles, the popup window will appear.
It gives us an overview of all the
measures (Gross Margin Actual, Plan,
Absolute, Percent) in relation to the
selected Location (Los Angeles) over
the Time factor.

When opening the browser’s console,
we can also see that the selection was
printed there.

If we click on one of the measures, in
this screenshot we chose Gross Margin
Actual, the measure is shown in the
popup window in relation to the Time
factor.

The selection is also printed out in the
console:

The third option to select in the Table is
an individual data cell.
In this example, we changed the
Dimension to store and selected the
data cell at the crossover of Gross
Margin Plan and Country Fair Foods.
This triggers the opening of a popup
window that shows Gross Margin Plan
in relation with Time and with a Store
Filter of Country Fair Foods.

The selection triggers the following
console message:

If we change the dimension back to
Location and change the hierarchy of
the Table to States, the following Table
will be displayed:

We can then choose a state and we
would also get a popup window that
displays the measures in regard to a
state (here, Nevada was selected).

This state selection prints the following
message to the browser console:

Now, we will look at how the Chart
behaves.
To switch to the Chart, click on the

icon in the Canvas.

There, we will firstly click on a
dimension. Here, the dimension filter
was set to Product and Lemonade was
clicked on.

Typical Patterns and Best Practices 162

All the measures are shown in regard to
Time and with a product filter of
Lemonade.

This selection prints the following
message into the console:
The measures are added according to
the chosen product

The second thing we can click on in the
Chart is a specific measure in regard to
a specific dimension.
For example, Gross Margin Abs Dev in
relation to Orange with pulp (the chart
bar marked in the screenshot).

This causes a popup window to appear
that displays the measure chosen
(Gross Margin abs Dev) per Time and
with a dimension filter (here: Product –
Orange with pulp)

This triggers the printing of the following
messages in the browser’s console:

Note: The user can always check what
filter is being utilized by clicking on
Filter.

This opens a list of filters used – here
only one product (Orange with pulp) has
been used as a filter.

Typical Patterns and Best Practices 163

Typical Patterns and Best Practices 164

6.9 Using R Widget Word Cloud for Visualization

This application features an overview for the customer complaints a company got from its

customers over the years 2018 and 2019.

In the canvas, we will add a Table with our top 10 customers as well as a Chart with the complaints

of the customers. Other than that, we will have two R Visualization widgets through which we will

create word clouds that change the size of the words displayed according to the frequency with

which they appear in the data set.

Further functionalities in this application include how to filter widgets according to a selected

element of a Table and how we can change the color of the word clouds through external input

(in this use case, it is achieved through a Radio Button Group that has a script that passes the

value to the R widgets.)

And lastly, the filtering of all the widgets in the canvas using Radio Button Groups will be explored

(here, we will filter according to Regions and according to the selected Region, several countries

from that Region will be displayed in another Radio Button Group (Country) for further filtering of

the widgets).

The result will look like this when we run the application:

Figure 56: Example Application Word Cloud

Typical Patterns and Best Practices 165

There are no prerequisites for this use case. You can start with a new application.

It is recommended to use the same names as that exercise for the used widgets so that the scripts

in this use case don’t have to be altered.

The first thing we will do, is add a Radio
Button Group to our Canvas where we
will enable the user to choose between
regions
.

Select the newly added widget in the
Canvas and go to the Designer (by
clicking on Designer on the upper right
side of the screen) and switch to the

Styling Panel by clicking on the
button.

There, enter
“RadioButtonGroup_Region” as the
Name, choose Vertical Layout as the
Display Option, and toggle the Label
Text button to enable it and write
“Region” as the Label Text.

Typical Patterns and Best Practices 166

Now, we will insert the options we want
available in our Radio Button Group
widget.
To do that, switch to the Building Panel

by clicking on the button.
Once there, start adding values using
the “+” button.
We will add an option that has all the
regions (1), and the others will be for
Latin America (2), Europe, the Middle
East and Africa (3), North America (4),
and the Asia-Pacific region (5).
We will set All as our default value; this
means that the widgets in our canvas
will be by default filtered according to
that option and the user can change it
afterwards.

Please click on Apply to save the
changes to your application.

Value Text (Optional)

ALL ALL

REGION01 LATAM

REGION02 EMEA

REGION03 NA

REGION04 APJ

To enable further filtering, we will insert
another Radio Button Group that
houses the countries.
The values of this widget will change
depending on the region selected.
Please place the widget underneath the
Region Radio Button Group.

Typical Patterns and Best Practices 167

Select the widget in the Canvas and go
to the Styling panel in the Designer.

There, enter
“RadioButtonGroup_Country” as the
Name, choose Vertical Layout as the
Display Option, and toggle the Label
Text button to enable it and write
“Country” as the Label Text.

Now, we will insert the options we want
available in our Radio Button Group
widget.
To do that, switch to the Building Panel

by clicking on the button.
For this widget, we will only add one
option which is “All”.
To do that, click on the “+” button and
add the values like in the screenshot to
the right.
Lastly, click on Apply to save the
changes.
(The other countries will be added
through a script later in this tutorial.)

Value Text (Optional)

ALL All

.

Now, we will move on to add our Table,
Chart, and R Widgets.
We will start off with the Table.
Through the Insert Panel, add a new
Table and place it to the right side of the
two radio button groups.
Select
BestRunBike_Customer_Complaint as
the data source.

In the Styling Panel of the Table insert
the Name “Table_Customer”.

Typical Patterns and Best Practices 168

Afterwards, switch over to the Building
Panel and there, enter the values as in
the screenshot to the right.
Check Responsive / flexible columns
width
Check Arrange totals / parent nodes
below
Add Customer to Rows
Add Account to Columns
And set the Filters to
Account – Count
Category – Actual
Date – Jan (Q1/2018) – Nov (Q4/2019)

This Table will hold the customers of
our data set.

Typical Patterns and Best Practices 169

To have a better visual over our
Customers and their complaints, we will
only show the Top 10 Customers in our
Table.

To do that, select the Table in the

Canvas and click on the icon in
its menu.

This opens a “Create Top N” window.
Enter “Top” as the Type, 10 as the
Value, and Count in the Related
Dimension’s Account field.

Typical Patterns and Best Practices 170

We also want to be able to view the
complaints that we got from our
customers, which is why we will add a
chart to display them.
First, we need to add the Chart. We will
do that, again, through the Insert Panel.

To edit the properties of our Chart, go to
the Designer.
We’ll change the Styling properties first.

In the Styling panel enter
“Chart_Complaints” as the Name.

Typical Patterns and Best Practices 171

To display the complaints of our
customers, we will edit the Builder
components of the Chart.
Switch over to the Chart’s Builder panel
and enter the values as seen in the
screenshot:

Chart Structure: Comparison
(Bar/Column)
Chart Orientation: Horizontal
Measures: Count
Dimensions: Complaint Category
Filters:
Category: Actual
Date: Jan (Q1/2018) – Nov (Q4/2019)

Typical Patterns and Best Practices 172

To know what the Table and Chart
represent, we will add text labels on top
of each of them.

Add two labels and place one above the
Table and the other above the Chart.

Click on the first text widget and open
the Styling Panel.
There, enter “Title_Customer” as the
Name.

The previous step just edits the name
through which the widget is mentioned if
it’s called in a script in the application.
To edit what appears in the text box,
double click on it in the Canvas and
enter “Top 10 Customers” in the text
widget above the Table.

Click on the second text widget and
open the Styling Panel.
There, enter “Title_Complaints” as the
Name.

Typical Patterns and Best Practices 173

To edit what appears in the box, double
click on it in the Canvas and enter
“Complaints” in the text widget above
the Table.

Now, we will add the R Visualization
widgets. To do that, select the widget
from the Insert panel and insert 2 into
the Canvas and place them vertically
next to the Chart.

Select the first R Visualization widget in
the Canvas and open the Designer to
edit its properties.
We will start in the Styling Panel. There,
enter
“RVisualization_WordCloud_2018” as
the Name.

To edit its content, let’s switch over to
the Builder panel.
Here, enter the data set as the input
data and check the “Refresh On Resize”
option.

Typical Patterns and Best Practices 174

After inserting the data source (here:
BestRunBike_Customer_Complaint),
click on it (still in the Builder panel) so
that we can edit the properties that we
want the data set to have.
Here, we will add Complaint Category to
the Rows and Account to the Columns.

Click on Add Filters and select Date –
Range and choose Year 2018 to 2018.

The filters should now be Category set
to Actual and Date set to 2018-2018.

Click on OK and back in the Builder
panel of the widget, click on Edit Script.

Typical Patterns and Best Practices 175

In the R script of this widget, we will get
the words from the complaints and also
how frequent they come up and
according to these values, the word
cloud is generated and the words with
the higher frequency are also drawn
bigger in the word cloud.

Insert the script written on the right side,
into the editor of the R widget and click
on Apply to save the changes.

load package
library(wordcloud)

get words
words <- BestRunBike_Customer_Complaint$`Complaint
Category`
get frequency
frequency <- BestRunBike_Customer_Complaint$Count
if (exists("colorValue")) {
 myColor <- colorValue
} else {
 myColor <- "Oranges"
}
generate word cloud
wordcloud(words, frequency, scale = c(4, 1),
rot.per=0.2, colors=brewer.pal(8, myColor))

Now, let’s do the same for the second R
Visualization widget.
Select it in the Canvas and open the
Styling panel.
There, enter
“RVisualization_WordCloud_2019” as
the Name.

To edit its content, let’s switch over to
the Builder panel.
Here, enter the data set as the input
data and check the “Refresh On Resize”
option.

Typical Patterns and Best Practices 176

After inserting the data source, click on
it (still in the Builder panel) so that we
can edit the properties that we want the
data set to have.
(We will have the same settings that we
had for the last widget but change the
date to 2019.)

Here, we will add Complaint Category to
the Row and in the Columns, we will
add Account.

Click on Add Filters and select Date –
Range and choose Year 2019 to 2019.

The filters will be Category set to Actual
and Date set to 2019-2019.

Click on OK and back in the Builder
panel of the widget, click on Edit Script.

Typical Patterns and Best Practices 177

In the R script of this widget, we will do
the same as in the first widget; we will
get the words from the complaints and
how frequent they come up and
according to these values, the word
cloud is generated and the words with
the higher frequency are also drawn
bigger in the word cloud.

Please insert the script written on the
right side, into the editor of the R
widget.

Click on Apply to save the changes.

load package
library(wordcloud)

get words
words <- BestRunBike_Customer_Complaint$`Complaint
Category`
get frequency
frequency <- BestRunBike_Customer_Complaint$Count
if (exists("colValue")) {
 myColor <- colValue
} else {
 myColor <- "Oranges"
}
generate word cloud
wordcloud(words, frequency, scale = c(4, 1),
rot.per=0.2, colors=brewer.pal(8, myColor))

To give the users more choice in the
look of the R Visualization widgets, we
want them to be able to choose the
color of the generated word cloud. To
do this, we need to have a Radio Button
Group where we will give them the
choice between 2 colors.
Add a Radio Button Group widget and
place it above the R Visualization
widgets.

Select the widget in the Canvas and
open the Styling panel.
Here, we will edit its Name and set it to
“RadioButtonGroup_Color” and set the
Display Option to Horizontal Layout.

Typical Patterns and Best Practices 178

To edit the content of the Radio Button
Group widget, switch over to the Builder
Panel.
There, we will add 2 values “Oranges”
and “Greys”, while setting Oranges to
our default.

To save the changes, please click on
Apply.

The last widget we will need for this
application is a Dropdown list. To add a
Dropdown list, go to the Insert Panel
and select a Dropdown widget.

Firstly, we need to change the name of
the widget to make it more
comprehensible if we want to call it in a
script.
To do that, select the widget in the
Canvas and go to the Styling Panel in
the Designer.
There, enter
“Hidden_DropDown_Customer” in the
Name field.

Typical Patterns and Best Practices 179

Through the getSelection function of the
Table, we get back a dimension ID and
a member ID when a user selects an
element in the Table. This ID is very
useful and allows us to manipulate
widgets, however, if we want to be able
to display the name of the selected
member (here: the name of the selected
customer), we have to get the text of the
name using the member ID we get from
the Table’s function.
That’s why we need this Dropdown list
here, we will simply load all the
customers in our data set into it and set
its selected key to the captured
memberId. This way we can get the text
of the element and use it to make our
Canvas more dynamic.
Thus, we do not need this widget to be
visible since we just need it for behind-
the-scenes work.

To set the widget to invisible, hover over

it in the Layout and click on the
icon.

Once there, click on Hide to make the
widget invisible in the Canvas.

To enable the user to filter the Chart
and the R Visualization widgets
according to a specific customer, we will
write a script for the Table so that when
a user select a specific customer from
our Top 10 Customers list, all our other
widgets are filtered to that specific
customer.

To access the script of the Table, hover
over the widget in the Layout and click

on the icon next to it and select
the onSelect function.

Typical Patterns and Best Practices 180

In this onSelect script, we will capture
the selected element and get its
dimension (here: it’s already known that
it’s Customer) and the selected member
id (the specific customer selected).
We will then use these values to add
filters to the Chart, and the two R
Visualization widgets.

At the end of the script, we will use our
Hidden Dropdown list to get the Text
related to the memberId we get back
from the getSelection function and edit
the text of the Complaint Chart’s label to
include the name of the selected
customer.

var sel = Table_Customer.getSelections();

console.log(["Sel ", sel]);

if (sel.length > 0) {
 var selection = sel[0];
 console.log(['Selection [0] : ', selection]);

 for (var dimensionId in selection) {
 var memberId = selection[dimensionId];
 console.log(['Selection Dimension: ',
dimensionId]);
 console.log(['Selection Member: ', memberId]);

Chart_Complaints.getDataSource().setDimensionFilter(dim
ensionId, memberId);

RVisualization_WordCloud_2018.getDataFrame("BestRunBike
_Customer_Complaint").getDataSource().setDimensionFilte
r(dimensionId, memberId);

RVisualization_WordCloud_2019.getDataFrame("BestRunBike
_Customer_Complaint").getDataSource().setDimensionFilte
r(dimensionId, memberId);
 Hidden_DropDown_Customer.setSelectedKey(memberId);
 var text =
Hidden_DropDown_Customer.getSelectedText();
 Title_Complaints.applyText("Complaints for Customer
" + text);
 }
}

The next script we will write is for the
Region Radio Button Group.
To access the script, hover over the
widget in the Layout and click on the

 icon next to it.

Typical Patterns and Best Practices 181

In this script, we will add countries to
the Radio Button Group of Country
according to what region is selected.
For example, if Region 2 (EMEA) is
selected, then Dubai, Germany, and
Great Britain are displayed as options in
the Countries widget, however, if the
region changes to another, for example,
Region 4 is chosen (APJ), then the
countries that the user can choose from
in the other Radio Button Group are
India, China, and Australia.

Furthermore, we will set the dimension
filter of the widgets in our Canvas
according to the selected region.

var sel = RadioButtonGroup_Region.getSelectedKey();

RadioButtonGroup_Country.removeAllItems();
RadioButtonGroup_Country.addItem("ALL", "All");
RadioButtonGroup_Country.setSelectedKey("ALL");

if (sel === "REGION01") {

RadioButtonGroup_Country.addItem("[Country].[Region].&[
COUNTRY011]", "Mexico");
} else if (sel === "REGION02") {

RadioButtonGroup_Country.addItem("[Country].[Region].&[
COUNTRY021]", "Dubai");

RadioButtonGroup_Country.addItem("[Country].[Region].&[
COUNTRY022]", "Germany");

RadioButtonGroup_Country.addItem("[Country].[Region].&[
COUNTRY023]", "Great Britian");
} else if (sel === "REGION03") {

RadioButtonGroup_Country.addItem("[Country].[Region].&[
COUNTRY031]", "USA East");

RadioButtonGroup_Country.addItem("[Country].[Region].&[
COUNTRY032]", "USA West");

RadioButtonGroup_Country.addItem("[Country].[Region].&[
COUNTRY033]", "Canada");
} else if (sel === "REGION04") {

RadioButtonGroup_Country.addItem("[Country].[Region].&[
COUNTRY041]", "India");

RadioButtonGroup_Country.addItem("[Country].[Region].&[
COUNTRY042]", "China");

RadioButtonGroup_Country.addItem("[Country].[Region].&[
COUNTRY043]", "Australia");
}

Table_Customer.getDataSource().setDimensionFilter("Regi
on",sel);
Chart_Complaints.getDataSource().setDimensionFilter("Re
gion",sel);
RVisualization_WordCloud_2018.getDataFrame("BestRunBike
_Customer_Complaint").getDataSource().setDimensionFilte
r("Region",sel);
RVisualization_WordCloud_2019.getDataFrame("BestRunBike
_Customer_Complaint").getDataSource().setDimensionFilte
r("Region",sel);

Table_Customer.getDataSource().removeDimensionFilter("C
ountry");

Typical Patterns and Best Practices 182

Chart_Complaints.getDataSource().removeDimensionFilter(
"Country");
RVisualization_WordCloud_2018.getDataFrame("BestRunBike
_Customer_Complaint").getDataSource().removeDimensionFi
lter("Country");
RVisualization_WordCloud_2019.getDataFrame("BestRunBike
_Customer_Complaint").getDataSource().removeDimensionFi
lter("Country");

Now, we will edit what happens when
one of the options in the Radio Button
Group Country is selected.
To do that, hover over the widget in the

Layout and click on the icon that

appears next to it.

In this script, we will simply set the
selected option as the dimension filter of
our Table, Chart, and R Visualization
widgets.
However, because the R Visualization
widget needs a different kind of input
than the Table and the Chart, we need
to edit the key we get and cut some of it
so that we can forward it to the R
widgets.

var sel = RadioButtonGroup_Country.getSelectedKey();
var cloud_sel = sel.replace("[Country].[Region].&[",
"");
cloud_sel = cloud_sel.replace("]", "");
console.log(cloud_sel);
if (sel === "ALL") {

Table_Customer.getDataSource().removeDimensionFilter("C
ountry");

Chart_Complaints.getDataSource().removeDimensionFilter(
"Country");

RVisualization_WordCloud_2018.getDataFrame("BestRunBike
_Customer_Complaint").getDataSource().removeDimensionFi
lter("Country");

RVisualization_WordCloud_2019.getDataFrame("BestRunBike
_Customer_Complaint").getDataSource().removeDimensionFi
lter("Country");
} else {

Table_Customer.getDataSource().setDimensionFilter("Coun
try", sel);

Chart_Complaints.getDataSource().setDimensionFilter("Co
untry", sel);

RVisualization_WordCloud_2018.getDataFrame("BestRunBike
_Customer_Complaint").getDataSource().setDimensionFilte
r("Country", cloud_sel);

RVisualization_WordCloud_2019.getDataFrame("BestRunBike
_Customer_Complaint").getDataSource().setDimensionFilte
r("Country", cloud_sel);
}

Typical Patterns and Best Practices 183

There is now another widget that we
have to write the function for; the Color
Radio Button Group that controls
whether the word cloud will be
displayed in Orange or in Gray.
To edit the script of this widget, hover
over it in the Layout and click on the

 icon that appears next to it.

In the script of this widget, we will
simply get the selected option, save it in
a variable and pass it as input
parameters to the R Visualization
widgets’ scripts.

var sel = RadioButtonGroup_Color.getSelectedKey();

RVisualization_WordCloud_2018.getInputParameters().setS
tring("colorValue", sel);
RVisualization_WordCloud_2019.getInputParameters().setS
tring("colValue", sel);

The last script for this application is the
one that gets executed when the
application is initialized. To access this
script, hover over the “Canvas” in the

Layout, click on the icon that
appears next to it, and select
onInitialization.

In this script, we will load a maximum of
1000 customers into the Hidden
Dropdown of Customers. This number
was chosen because the number of
customers in our data set is under 1000,
however, this number can be changed if
needed.

var list =
Table_Customer.getDataSource().getMembers("Customer_",
1000);

if (list.length !== 0) {
 for (var i = 0; i < list.length; i++) {
 console.log(['List Dimension: ', i ,
list[i].displayId]);
 console.log(['List Description: ', i ,
list[i].description]);
 console.log(['List Member: ', i , list[i].id]);
 Hidden_DropDown_Customer.addItem(list[i].id,
list[i].description);
 }
}

Typical Patterns and Best Practices 184

Now let’s save the application and see
how it looks like.

Click on Run Analytic Application in the
upper right side of the page and the
result should look something like this:

If we click on one of the elements in the
Table (one of the Customers), the Chart
and the R Visualization widgets will be
filtered according to the data related to
this particular customer (here: Northside
Bikes was selected).

Now, if we select Greys instead of
Oranges in the Color Radio Button
Group, the R Visualization widgets are
displayed in gray.

To filter according to a certain region,
we can select one of the Regions from
the Region Radio Button Group (here:
EMEA was selected), and consequently
the Country Radio Button Group’s
options changed from (All and Mexico)
to EMEA countries (All, Dubai,
Germany, and Great Britain).
The screenshot on the right displays the
widgets filtered on EMEA and Germany;
the customer is Greenhigh Bikes.

6.10 Set User Input for Planning Data

The user can set values to cells of a planning-enabled tabled using an analytics designer script.

After setting one or more specific cell values the user can refresh the Table by submitting the

values, for example:

Table_1.getPlanning().setUserInput({"sap.epm:Account":
"[sap.epm:Account].[parentId].&[TAXES]", "sap.epm:ProfitAndLoss_Version02":
"public.Actual"}, "123456789");

Table_1.getPlanning().submitData();

The passed value is always an unscaled value (raw value). For example, if the table applies a

scaling factor of one million when displaying its cell values, then the value set above is displayed

as 123.46 (formatted value). Note the rounding of the last displayed digit of the formatted value.

If the passed value is prefixed with an asterisk (*), then the value is applied as a factor to the

present cell value. For example, applying the following script after the script above

Table_1.getPlanning().setUserInput({"sap.epm:Account":
"[sap.epm:Account].[parentId].&[TAXES]", "sap.epm:ProfitAndLoss_Version02":
"public.Actual"}, "*0.5");

Table_1.getPlanning().submitData();

results in a cell value (raw value) of 61728394.5, which is displayed as 61.73 (formatted value).

Another example shows a combination of a table with an input field. The value of the input field is

applied as the new cell value to the first selected cell of the table:

var selectedCell = Table_1.getSelections()[0];

Typical Patterns and Best Practices 185

var planning = Table_1.getPlanning();

planning.setUserInput(selectedCell, InputField_1.getValue());

planning.submitData();

Currently, the passed value (raw value) can have up to 17 characters if it is a new value and up

to 6 characters if it is a factor.

Planning 186

7 Planning

7.1 What to Expect from Analytics Designer Regarding

Planning?

Analytics designer reuses the Planning features of Analytics Cloud and leverage the capabilities

by offering flexible scripting that supports customizations of applications according to user

requirements. Planning Data Models, Allocations, Data Action Triggers, and all Planning features

can be integrated to applications.

And what can you not expect? In analytics designer you cannot use Input Tasks and Planning

scripting is not possible for models based on BPC Write-Back.

7.2 Basic Planning Concepts in Analytics Designer

Planning specific features can be triggered through the toolbar icons in the Plan area.

Figure 57: Toolbar Planning Features

These icons are greyed out if no table cell with a planning model is selected.

Most of these features can also be triggered through scripting.

To get the Planning Table object, use the script below. If the table has no planning model

assigned, it will return undefined.

Table.getPlanning(): Planning | undefined

Scripting will perform the same planning actions that could be done via UI. The benefits of

scripting are augmented in cases which you want to minimize the number of clicks from your user,

personalize your UI or when a special customer requirement can’t be fulfilled with standard

planning behavior.

Data can’t be changed during design time, and you can enable the usage of planning features

during runtime in two different ways:

• In the table designer UI: You can find in the Builder panel, section Properties, a box

called Planning enabled.

Planning 187

Figure 58: Planning Enabled

• Through the script below:

setEnabled(boolean): void

This option can be useful when you shall disable planning due to specific requirements. For

example, budget might not be changed in last quarter of the year.

One other valuable script allows checking whether the data model is planning enabled:

isEnabled(): boolean

In the Table Builder panel, there are some configurations that you can do in each dimension, and

Unbooked Data might be a good choice when, for example, your Planning Data Model has no

booked data and your end users need to see which dimension members are available for

planning.

Figure 59: Unbooked Data

Planning 188

7.3 Refreshing Your Data

This feature is not exclusive to Planning and affects all data models and widgets of your

application. It can be reached in two different ways:

• By clicking on the first icon of the toolbar.

• Through the script below:

Application.refreshData(): void

Scripting is useful when, for example, you use data models with Live Connectivity and the end

user wishes to refresh data because a background process that updates master data has finished

after the application was opened.

7.4 Set User Input

Instead of having to guide a business user by showing which table cell should be planned, the

app designer could create a separate input field. This input field has a pre-informed value from a

table selection. The changed value is then updated on a planning model.

The picture below represents the scenario mentioned above to explain this feature:

Figure 60: SetUserInput

In this example, the following scripting would be included on the Save Data button.

To update a cell of a table with the given value:

setUserInput(selectedData: Selection, value: String): boolean

Few considerations for this script:

• Value can be maximum 17 characters.

• If value is scaled, then it shall be less than 7 digits.

• It can be performed from a widget or from a table event.

Regarding data formatting – it takes as parameter either a raw value in the user formatting setting

(“1234.567” with “.” grouping separator) or a scale in the user formatting setting (for example,

“*0.5” to divide the value by half or “*2” to double the value) – both of type string.

Example: (scaling in million)

Planning 189

• If you plan “12345678” the formattedValue will be “12.35”.

• If you plan “123456789” the formattedValue will be “123.46”.

• If you plan “*0.5” of rawValue “123456789” the rawValue will be “61728394.5” and

formattedValue will be “61.73.

Regarding data validation:

• If an invalid value is planned, error/warning message is returned, and the API also returns

false.

• If the same value is planned twice, the value is set, and API returns true.

• If the cell is locked, the API returns false and a warning message is shown to the user.

To submit the updated cell data with all the beforehand modified data and to trigger refresh of

data:

submitData(): boolean

7.5 Planning Versions

There are two types of planning versions, private and public.

7.5.1 Private Versions

This data is not visible to other users and other solutions of Analytics Cloud.

getPrivateVersions(): [Array of Planning Private Versions] | empty array

getPrivateVersion(versionId: String): Planning Private Version | undefined

The script below returns the user ID of the user who created this private version.

getOwnerID(): String

7.5.2 Public Versions

This data is visible to all users and all solutions of Analytics Cloud.

getPublicVersions(): [Array of Planning Public Versions] | empty array

getPublicVersion(versionId: String): Planning Public Version | undefined

Both planning version types have IDs.

getId(): String

You can use it, for example, when calling getData().

getDisplayId(): String

You can use it, for example, to display the version in dropdowns or texts.

All versions but ‘Actual’ can be deleted.

deleteVersion(): boolean

Planning 190

7.6 How to Manage Versions

7.6.1 Publishing and Reverting Data Changes

Any change in data in any type of version is automatically saved. This means that even without

any active saving action, if the browser is closed by mistake, for example, data will still be there

when application is reopened by the same user who changed the data.

But to make this data visible to other users, you can publish the public versions through the

following toolbar icon:

Figure 61: Publish Version

After clicking this icon, the dialog below is opened and an action can be taken per model. You

can also revert, and all data changes will be discarded.

Figure 62: Publish Data

The actions performed within this dialog can also be done via the below scripting on public

versions:

revert(): boolean

publish(): boolean

After the execution of these scripts, a message informs whether the script ended successfully or

not. These are the expected messages:

Figure 63: Success Message

Planning 191

If the version was not modified before these actions are triggered, the message below should be

expected:

Figure 64: Message

This message could be avoided if the dirty check is done in advance.

isDirty(): boolean

Dirty versions can be identified by an asterisk (*) just after the version name.

Figure 65: Dirty Version

It is also possible to publish private versions via the two scripting options below:

publish(): boolean

publishAs(newVersionName: String, versionCategory: PlanningCategory): boolean

In the second option, a version name is given, and a new public version is created under the

informed version category.

These scripts can be very useful if your planning model is placed in a popup, for example. As the

toolbar is kept in the background canvas, users don’t need to close the popup to then publish the

data. With scripting, you can do it directly in the popup!

Planning 192

Figure 66: Planning Table in Popup

Find in the next section more information about version category and how to create private

versions.

7.6.2 Copy

Data models with planning enabled capability have one dimension in common, the version. And

each version is classified in one of the following planning categories:

• Actual

• Planning

• Budget

• Forecast

• Rolling Forecast

Version category 'Actuals' is created automatically and cannot be deleted.

PlanningCopyOptions offers you the possibility to either create a new empty version or to copy all

data from the source version. In case you want to create a private copy of any version, use the

script below:

copy(newVersionName: string, planningCopyOption: PlanningCopyOption,
versionCategory?: PlanningCategory): boolean

7.7 Data Locking

You can use the Data Locking API to find out if a model is data locking enabled and to set or get

the data locking state, even if the table is not planning enabled.

Planning 193

The Data Locking API consists of the following methods:

• Table.getPlanning().getDataLocking()

• Table.getPlanning().getDataLocking.getState()

• Table.getPlanning().getDataLocking.setState()

7.7.1 Using getDataLocking()

You can use getDataLocking() to check if a model is data locking enabled.

This check is necessary because a user can’t perform certain operations on a table, like

setState() and getState(), if the model is not data locking enabled.

In the following example, the data locking object is retrieved and printed to the console. A data

locking object is returned if data locking is enabled on the model.

var planning = Table_1.getPlanning();

console.log(planning.getDataLocking());

Note that you can also check if a model is data locking enabled in SAP Analytic Cloud by checking

the model preferences (see Figure 67).

Figure 67: Enabling Data Locking in the Model Preferences

7.7.2 Using getState()

You can use getState() to get the data locking state of a cell belonging to a driving dimension.

This method works only for SAP Analytics Cloud planning models that are data locking enabled.

In following example, the data locking state for a selected cell of a table is retrieved:

var selection = Table_1.getSelections()[0];

Planning 194

var selectionLockState =
Table_1.getPlanning().getDataLocking().getState(selection);

In order to create a selection on the table, you can either select the cell in the table manually or

you can create the selection string yourself in the script editor.

This method returns one of the following values:

• DataLockingState.Open

• DataLockingState.Restricted

• DataLockingState.Locked

• DataLockingState.Mixed

If the state of the selection can't be determined, then the method returns undefined. This occurs

if one of the following situations applies:

• The selection is invalid.

• The cell referenced by the selection is not found.

• The cell is in an unknown state.

• The cell has been created using "Add Calculation" at runtime.

If you have activated the Show Locks option for the table, then the “lock” icons will be updated

after the method has finished running.

7.7.3 Using setState()

You can use setState() to set the data locking state of a cell belonging to a driving dimension.

This method works only for SAP Analytics Cloud planning models that are data locking enabled.

The method returns true if the set operation was successful and false otherwise.

You can't set the data locking state on a private version. In this case, the following message is

displayed:

“You can only set data locks on public versions. Please use a public version and try again.”

You can set one of the following data locking states:

• DataLockingState.Open

• DataLockingState.Restricted

• DataLockingState.Locked

If you attempt to set the data locking state DataLockingState.Mixed, then the following message

is displayed:

“You can't set the state with the value 'mixed'. Please specify either 'open', 'restricted' or 'locked'

as value.”

The same message is displayed at runtime if you attempt to execute the script and the script fails.

If you select multiple cells and attempt to set the data locking state, the data locking state will be

applied to the first selection only.

In the following example, the data locking state is set for a selected table cell:

var selection = Table_1.getSelections()[0];

Planning 195

var isSetStateSuccessful =
Table_1.getPlanning().getDataLocking().setState(selection,
DataLockingState.Locked);

Note that if data locking is disabled for a model, all locks will be deleted. If it is turned on again

later, all members are reset to their default locking state. The same happens if the default locking

state or driving dimensions are changed.

Predictive 196

8 Predictive

In analytics designer, there are several predictive features that can help you to explore the data

and gain more insights.

8.1 Time Series Forecast

In order to predict future values of a specific measure for a period of time, you can run Time Series

Forecast on historical data in a Time Series Chart. Time Series Forecast can be configured to

turn on/off and switch among different algorithms. You could refer to sample Gain insights into

the data for the usages in detail.

8.1.1 Switch On and Off Forecast

In Gain insights into the data, a Time Series Chart, Chart_Forecast, is added to show Gross

Margin over time. You can turn on Forecast to predict the future trend based on existing historical

data.

Basically, Time Series Forecast can be switched on and off via two ways: the entry in context

menu at both design time and runtime,

Figure 68: Automatic Forecast

and the API to set the forecast type:

Chart_Forecast.getForecast().setType(ForecastType.Auto);

8.1.2 Configure Forecast

You can also configure the number of periods to predict Chart_Forecast for a longer time if

needed.

The number of periods to predict can be configured via two ways: the entry in Chart Details at

both design time and runtime,

Predictive 197

Figure 69: Linear Regression

and the API to set the value:

Chart_Forecast.getForecast().setNumberofPeriods(7);

8.2 Smart Insights

Smart Insights automatically discovers key insights based on existing data. The insights vary

among links, correlations, clusters, predictions, and so on. As an analytic application developer

or end user, you can straightly look into the result without any manual exploration. Sample Gain

insights into the data can be referred to get familiar with the usage.

8.2.1 Discover per Selected Data Point

In Gain insights into the data, a Time Series Chart, Chart_Forecast, is added to show Gross

Margin over time. You will notice that the gross margin of May 2015 is low. To get more insights,

you can trigger Smart Insights to explore further.

Figure 70: Time Series Chart: Select the Interested Data Point

Predictive 198

Figure 71: Side Panel of Smart Insights

8.3 Smart Grouping

Smart Grouping can be used to automatically analyze the data points in correlation chart, Bubble

or Scatterplot, and group them based on similar properties. As an analytic application developer,

you can configure the visibility of Smart Grouping and the related settings. Sample Gain insights

into the data demonstrates the typical usages.

8.3.1 Switch On and Off Smart Grouping

In Gain insights into the data, a Scatterplot, Chart_Group, is added to show Discount and Gross

Margin per Store. You can turn on Smart Grouping in this chart to analyze based on similar

properties.

Basically, Smart Grouping can be switched on and off via two ways: the setting in Builder Panel

at design time,

Figure 72: Smart Grouping

Predictive 199

and the API to set the visibility.

Chart_Group.getSmartGrouping().setVisible(true);

8.3.2 Configure Smart Grouping

There are several Smart Grouping settings that you can configure in Chart_Group. And you can

configure them in two ways: the entry in Builder Panel or Chart Details at both design time and

runtime,

Figure 73: Configure Smart Grouping in Builder Panel of Chart

Figure 74: Configure Smart Grouping in Chart Details

and the APIs to set the values.

Chart_Group.getSmartGrouping().setNumberOfGroups(3);

Chart_Group.getSmartGrouping().setGroupLabel("Group");

Chart_Group.getSmartGrouping().includeTooltipMeasure(true);

8.4 Smart Discovery

As an analytic application developer, you can enable Smart Discovery in your application to

discover additional information (for example, key influencers) between columns within a data set.

Sample Gain insights into the data demonstrates how to trigger Smart Discovery via APIs.

var ds = Chart_Forecast.getDataSource();

var members = ds.getMembers("Product_3e315003an");

var SDsetting = SmartDiscoveryDimensionSettings.create(ds, "Product_3e315003an",
[members[1]]);

SDsetting.setIncludedDimensions(["Location_4nm2e04531", "Store_3z2g5g06m4"]);

Predictive 200

SDsetting.setIncludedMeasures(["[Account_BestRunJ_sold].[parentId].&[Gross_Margin]"
, "[Account_BestRunJ_sold].[parentId].&[Discount]"]);

SmartDiscovery.buildStory(SDsetting);

In this example, Smart Discovery is invoked via clicking “More Insights…” to discover Product

with Dark Beer as the target group. In addition, two more measures (Gross Margin and Discount)

and two more dimensions (Location and Store) are included in the analysis.

Figure 75: Smart Discovery Setting Panel

Figure 76: New Document Created by Smart Discovery

8.5 Search To Insight

Search To Insight is a natural language query function that helps users get smart insights on their

data.

Predictive 201

Create a SearchToInsight Component

To launch a Search To Insight, a SearchToInsight component should be added at design time.

The analytic application developer can configure the data models to search in the side panel of

this component.

Figure 77: Create a SearchToInsight Component

Launch Search To Insight

Write Analytic Design scripts to launch Search To Insight. At runtime, the analytic application user

can open the Search To Insight dialog to get deep and flexible insights of their data.

var mode = SearchToInsightDialogMode.Simple;

SearchToInsight_1.openDialog("Gross Margin by Location", mode, true, true);

Figure 78: Launch Search To Insight

OData 202

9 OData

9.1 What You Should Know About OData

The Open Data Protocol (OData) is an open protocol which allows the creation and consumption

of queryable and interoperable RESTful APIs in a simple and standard way, initiated by Microsoft

in 2007.

Versions 1.0, 2.0, and 3.0 are released under the Microsoft Open Specification Promise.

Version 4.0 was standardized at OASIS, with a release in March 2014. In April 2015 OASIS

submitted OData v4 and OData JSON Format v4 to ISO/IEC JTC 1 for approval as an

international standard.

“The protocol enables the creation and consumption of REST APIs, which allow Web clients to

publish and edit resources, identified using URLs and defined in a data model, using simple HTTP

messages. OData shares some similarities with JDBC and with ODBC; like ODBC, OData is not

limited to relational databases.”

Source: https://en.wikipedia.org/wiki/Open_Data_Protocol

9.2 How You Can Connect to OData

In Analytics Designer in SAP Analytics Cloud, you can define OData Services based on an

existing live connection in your system which was created using CORS (Cross-origin resource

sharing) connectivity also referred to as direct connection.

OData Services are supported for the following system types:

• SAP S/4HANA On-Premise

• SAP BW (available with wave 2020.4)

• SAP HANA (available with wave 2020.4)

• SAP Business Planning and Consolidation (BPC) (available with wave 2020.4)

For OData, CORS should be configured on backend analogous to InA connection plus: Support

for “if-match” as allowed header.

9.2.1 What You Need to Do

• Define the CORS configuration to your system according to the help page.

• Additionally: Configure support for “if-match” as allowed header in your system.

• Define a direct connection to this system.

• Open an application and add an OData service (more details in the following chapters).

9.2.2 Known Restrictions

In the initial iteration:

• Only parameters of simple types will be supported.

• Actions with mandatory parameters of unsupported types will not be available.

OData 203

• For actions with optional parameters of unsupported types, the parameters will not be

available but the action itself will.

• In case of bound actions, only binding on entity types (passable by key) will be supported.

• Only the JSON format will be supported.

• Only the following system types are supported:

o SAP S/4HANA On-Premise

o SAP BW (available with wave 2020.4)

o SAP HANA (available with wave 2020.4)

o SAP Business and Consolidation (BPC) (available with wave 2020.4)

• Only Direct (CORS) connections will be supported. No Path (Proxy), as this feature is

being deprecated.

Script execution will block waiting on the response of a triggered action. For now, the assumption

is that actions triggering long-running processes return quickly (although the process may not yet

be complete). So, while of course the XHR invoking the action is asynchronous, script execution

will block waiting for the response, to allow the script writer to react to the return value of the

action.

The following types are not supported:

• Edm.Stream

• Edm.Untyped

• All Edm.Geography types

• All Edm.Geometry types

• All types defined in different namespaces.

9.2.3 What Is an Action

Actions are operations exposed by an OData service that may have side effects when invoked.

Actions may return data but must not be further composed with additional path segments.

9.2.4 What Are Action Imports

Action Imports or unbound actions are not associated with any OData EntitySet or Entity. They

generally expose simple parameters. All parameters are set via POST body.

9.2.5 What Is a Bound Action

Bound Actions are actions which may be invoked on a specific Entity. They always contain a first

parameter which is set via URL (to resolve the binding to the Entity within the relevant EntitySet),

and all other parameters are set via POST body.

In general, actions can be bound on every type, but we support only binding on single entities.

In Analytics Designer OData actions can be called from and executed in the backend system via

scripting inside an analytic application. Also, programmatic read access to OData services is

provided.

OData 204

9.3 How You Can Call OData Actions

With this feature you as an application developer can execute OData (V4) Actions exposed by a

connected system within an analytic application.

In your analytic application in the Layout Outline in the Scripting Section you can create a new

OData Service by clicking on plus.

Figure 79: OData Service in Outline

Once you have clicked a new entry with the default name ODataService_1 will appear below the

node. You will see a context menu indicated with three points when hovering over the name,

where you do the following actions: Rename, Find References, or Delete.

Figure 80: OData Service

Figure 81: Actions for OData Service in Outline

At the same time the side panel opens on the right side. It opens every time you click on the

OData Service in the Outline. In the side panel you can change the name, select the System from

the list of available systems whose connections are already created in SAC under Connections,

and specify the End-Point URL of the OData Service manually.

OData 205

Note: You need to know the URL. So far there is no browse catalog implemented.

To see the metadata of the OData Service you must click the refresh button next to Metadata.

Click on Done to close the panel.

Figure 82: OData Service Side Panel

In the example you see System FUB, the End-Point URL for this OData Service and as Metadata

you got the information that this Service is based on OData Version V.4 and it has 2 Actions called

Flight/Book and CancelMyFlights.

OData 206

Figure 83: Define OData Service Properties

Now you can insert a Button Widget and change the text of the Button in the Analytics Designer

Properties of Styling Panel to Cancel Flight.

Figure 84: Styling Options

OData 207

Start the script editor by clicking the icon in the quick action menu of the widget to create a

script which triggers the execution of the action in the source system.

Figure 85: Widget Context Menu

The script editor opens. You can open it as well by hovering over the widget in the outline and

clicking the icon.

Figure 86: Create Script

Figure 87: Create Script

Type in the name of the OData Service you have specified. The script editor assists you with code

completion and value help wherever possible when you click CTRL+Space.

The complete expression will look like this:

OData 208

ODataService_1.executeAction("CancelMyFlights", {DateFrom: "2019-01-01", DateTo:
"2019-12-31"});

You have now created the first script to execute an OData action. This Action had a very simple

syntax with only 2 parameters.

Figure 88: Value Help

Now you can insert another button, rename the text to Book Flight in the Styling Panel and open

the script editor. The BookFlight Action is a bound action which is much more complex than the

first one.

The result shall look like this:

ODataService_1.executeAction("Flight/Book", {Flight: {Airline: "UA",
Flightconnection: "0941", Flightdate: "2019-01-05"}, NumberOfSeats: 1});

Figure 89: Value Help for Flight/Book

Figure 90: Value Help for Flight

Congratulations. You finished the second more complex OData action and now you can run your

application and book and cancel a flight for the selected values.

You can enhance your application and start using other script methods to fill the parameter values

dynamically with local or global variables.

Also, you can make the response from the backend system visible in the app by writing the

response as message in a text field.

Insert six Text widgets on the canvas and rename the last one to MessageBox.

OData 209

Figure 91: Define Message

Now rewrite your scripts from Book Flight as follows:

var ret = ODataService_1.executeAction("Flight/Book",
 {Flight: {Airline: "UA", Flightconnection: "0941", Flightdate:
 "2019-01-05"}, NumberOfSeats: 1});

var succ = "";

if (ret.ok === true) {

 succ = "SUCCESS";

} else {

 succ = "ERROR";

}

MessageBox.applyText(succ);

Text_2.applyText(succ + " message :" + ret.error.message);

Text_3.applyText(succ + " code :" + ret.error.code);

Text_4.applyText("target :" + ret.error.target);

Text_5.applyText("");

And rewrite your script from Cancel Flight as follows:

var ret = ODataService_1.executeAction("CancelMyFlights", {DateFrom: "2019-01-01",
DateTo: "2019-12-31"});

console.log(ret);

var succ = "";

if (ret.ok === true) {

 succ = "SUCCESS";

} else {

 succ = "ERROR";

}

MessageBox.applyText(succ);

Text_2.applyText(succ + " message :" + ret.error.message);

Text_3.applyText(succ + " code :" + ret.error.code);

Text_4.applyText("target :" + ret.error.target);

var info = "";

if (ret.ok === true) {

 var numberofoccupiedseats =
 ConvertUtils.integerToString(ret.value[0].Numberofoccupiedseats);

 var flightprice = ConvertUtils.numberToString(ret.value[0].Flightprice);

OData 210

 var totalnumberofseats =
 ConvertUtils.integerToString(ret.value[0].Totalnumberofseats);

 var currency = ret.value[0].Currency;

 info = "Your flight price was " + flightprice + " " + currency +
 ". " + "There are " + numberofoccupiedseats +
 " occupied from " + totalnumberofseats + " seats in total.";

}

Text_5.applyText("" + info);

Run the application and book a flight and cancel a flight to see the error messages.

To create a meaningful application in the sense of an intelligent application, the best would be to

display the backend data via a live connection to a BEx Query. Like this you would be able to see

the changes (the booked and canceled seats) in the data directly after clicking the buttons and

executing the actions.

9.4 How You Can Read Data from OData Services

Besides OData Actions, there are also many use cases why it makes sense to access EntitySets

exposed via OData services.

Therefore, in Analytics Designer you have programmatic access to these data, which can be used

for any purposes other than visualization in table or chart. For example, you can read and display

one member in a text widget.

You can focus on the following capabilities regarding access to OData entity sets:

• Retrieving a single OData Entity from an EntitySet, by specifying the key to the entity.

(analogous to selecting a single row from a SQL table via SELECT * FROM T1 WHERE ID =

<id>).

• Retrieving all (throttled to a maximum number) Entities from an OData EntitySet.

(analogous to SELECT TOP <N> * FROM T1).

As of today, the following features are not supported:

• Chaining from one EntitySet to another

• Filter

• Orderby

• Select

• Count

• Expand (analogous to joining)

• Skip

• EntitySets with parameters and EntitySets with mandatory filters

// Get all entities (up to a throttled limit of 1000) from

// a given EntitySet

getEntitiesFromEntitySet(entitySetName: string):
ODataResult<EntityTypeSpecificPayload[]>;

// ODataResult is the same result structure returned when

// executing actions, and contains generic information about whether

// the raw request on HTTP level was successful, and additionally

OData 211

// the response payload in success cases.

ODataResult<T>: {

 ok: boolean;

 value: T; //depends on payload of action or entity type

 error: ODataError;

}

ODataError: {

 code: string;

 message: string;

 target: string;

 details: ODataError[];

}

Post Message API 212

10 Post Message API

When you embed an analytic application in a host HTML page or embed a web page in analytic

application through the web page widget, you can follow this guide to enable message

communication between host and embedded web pages.

Using the posting message API, you as the application developer can realize either of the

following scenarios:

Figure 92: Post Message Scenarios

10.1 Scenario 1: How You Can Embed an Analytic Application

in a Host HTML Page via iFrame

Before embedding an analytic application via an iFrame in the host HTML page, you need to first

make sure the host HTML page is added as a trust origin in the System Administration App

Integration Trusted Origin.

Then you can trigger bi-directional communication between the host HTML page and analytic

application using the provided functions.

10.1.1 postMessage

This is to post messages from the analytic application to the host HTML page.

When an end user triggers a callback function on the side of the analytic application, the callback

function sends out data to notify the parent receiver page which hosts the iFrame, or, when there

are multiple levels of web pages embedded in one another, to the top-level HTML page of a

specific target origin.

You define whether to send data to a parent or the top HTML page by means of the parameter of

the PostMessageReceiver.

Post Message API 213

The syntax of the postMessage event is:

postMessage(receiver: PostMessageReceiver, message: string, targetOrigin:
string): void

10.1.2 onPostMessageReceived

This is to handle messages sent from the host parent or top HTML page in the analytic application.

In scenario 2 depicted below, the event can also handle messages sent from an HTML page

embedded via the web page widget in an analytic application.

Note: We advise you always to check the origin when receiving an event-triggered message,

because a malicious site can change the location of the window and therefore intercept the data

you sent using the postMessage event without your knowledge.

In the current scenario, the parent window which hosts the iFrame can post messages to the

analytic application's iFrame window of specific target origin. The messages posted are then

retrieved by the analytic application and trigger changes accordingly, such as updating some input

data.

The syntax of the onPostMessageReceived event is:

onPostMessageReceived(message: string, origin: string)

10.1.3 Example

You can embed an analytic application in a host HTML page. The URL of the host HTML page is

http://localhost:8080.

Figure 93: Embed an Analytic Application into a Host Page

http://localhost:8080/

Post Message API 214

First, you want to allow end users to post the company selection in the analytic application to the

host HTML page. Write the script below for the sending button:

var message = RadioButtonGroup_Company.getSelectedText();

Application.postMessage(PostMessageReceiver.Parent, message,
"http://localhost:8080");

Then you want to allow end users to display the message received from the Host HTML page in

a text box of the embedded analytic application.

if (origin == "http://localhost:8080") {

 Text_ReceivedMessage.applyText(message);

}

10.2 Scenario 2: How You Embed a Web Application in an

Analytic Application Through the Web Page Widget

You can trigger bi-direction communication between the embedded web application and the host

analytic application.

10.2.1 Web Page Widget Related postMessage and

onPostMessageReceived

When the host analytic application's web page widget embeds a web application, you can post

messages from the embedded application to the host analytic application or the other way around.

The syntax of the postMessage event is:

postMessage(message: string, targetOrigin: string): void

Note: The target origin is optional. If it is left empty, the URL defined in the web page widget will

be taken as the target origin by default.

The syntax of the onPostMessageReceived event is:

onPostMessageReceived(message: string, origin: string)

10.2.2 Case 1 – Posting Messages from the Host Analytic Application to

the Embedded Application

The event for posting messages is:

postMessage()

The event for handling messages sent from the host analytic application depends on the type of

the embedded application:

• If the embedded application is an SAP Analytics Cloud application, once the message is

received, the embedded application can use the event onPostMessageReceived() to

handle the message.

• If the embedded application is another web application, once the message is received,

the embedded application can use the event window.on (“message”) to handle the

message.

Post Message API 215

10.2.3 Case 2 – Posting Messages from the Embedded Application to the

Host Analytic Application

The event for posting messages depends on the type of the embedded application:

• If the embedded application is an SAP Analytics Cloud application, use the event

Application.postMessage() to post messages.

• If the embedded application is another web application, use the event

window.parent.postMessage to post messages.

The event for handling messages sent from embedded application is: Once the messages is

received, the host application can use the event onPostMessageReceived() to handle the

messages.

The End and the Future 216

11 The End and the Future

Dear Reader, we hope you have enjoyed the book. We will enhance the content in the future with

the newest features. Now please go ahead and have fun building awesome analytic applications!

Important Links 217

12 Important Links

Please open the SAP Help page to find many more information about SAP Analytics Cloud,

analytics designer:

https://help.sap.com/viewer/product/SAP_ANALYTICS_CLOUD/release/en-US

• The official documentation

• The API reference guide

• The SAP Analytics Cloud community

• The SAP Analytics Cloud wiki

• Many more links

© 2019 SAP SE or an SAP affiliate company. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of SAP SE or an SAP affiliate company.

 The information contained herein may be changed without prior notice. Some software products marketed by SAP SE and its distr ibutors contain proprietary

software components of other software vendors. National product specifications may vary.

These materials are provided by SAP SE or an SAP affiliate company for informational purposes only, without representation or warranty of any kind, and SAP or

its affiliated companies shall not be liable for errors or omissions with respect to the materials. The only warranties for SAP or SAP affiliate company products and

services are those that are set forth in the express warranty statements accompanying such products and services, if any. Nothing herein should be construed as

constituting an additional warranty.

 In particular, SAP SE or its affiliated companies have no obligation to pursue any course of business outlined in this document or any related presentation, or to

develop or release any functionality mentioned therein. This document, or any related presentation, and SAP SE’s or its affiliated companies’ strategy and possible

future developments, products, and/or platform directions and functionality are all subject to change and may be changed by SAP SE or its affiliated companies

at any time for any reason without notice. The information in this document is not a commitment, promise, or legal obligation to deliver any material, code, or

functionality. All forward-looking statements are subject to various risks and uncertainties that could cause actual results to differ materially from expectations.

Readers are cautioned not to place undue reliance on these forward-looking statements, and they should not be relied upon in making purchasing decisions.

 SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of SAP SE (or an SAP

affiliate company) in Germany and other countries. All other product and service names mentioned are the trademarks of thei r respective companies. See

www.sap.com/copyright for additional trademark information and notices.

https://help.sap.com/viewer/product/SAP_ANALYTICS_CLOUD/release/en-US
https://www.sap.com/copyright

