
DEVELOPER GUIDE | PUBLIC
Document Version: 1.75 – 2020-02-27

SAPUI5: UI Development Toolkit for HTML5

©
 2

02
0

SA
P

SE
 o

r a
n

SA
P
affi

lia
te

 c
om

pa
ny

. A
ll r

ig
ht

s
re

se
rv

ed
.

THE BEST RUN

Content

SAPUI5: UI Development Toolkit for HTML5. 6
What's New in SAPUI5. 6

What's New in SAPUI5 1.75. 7
What's New in SAPUI5 1.74. 11

Read Me First. 17
Compatibility Rules. .17
Browser and Platform Support. 20
Supported Library Combinations. 26
Supported Combinations of Themes and Libraries. 27
Versioning of SAPUI5. 29
Upgrading. 31
Deprecated Themes and Libraries. 34
SAPUI5 vs. OpenUI5. .37

Get Started: Setup, Tutorials, and Demo Apps. 38
Development Environment. 41
Quick Start. 57
Walkthrough. 69
Troubleshooting. 194
Data Binding. 219
OData V4. .261
Navigation and Routing. .291
Testing. 368
Mock Server. 432
Worklist App. 447
SAP Fiori 2.0 App. .488
Rule Builder Control. 536
Smart Controls . 557
3D Viewer. 607
Ice Cream Machine. 640
Demo Apps. 671
Best Practices for App Developers. .680

Essentials. .691
Bootstrapping: Loading and Initializing . 692
Structuring: Components and Descriptor. 720
Model View Controller (MVC). 784
Data Binding. 815

2 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

Content

Reusing UI Parts: Fragments. 1004
XML Templating. 1018
Working with Controls. 1041
Declarative Support. 1057
Error, Warning, and Info Messages. 1063
Routing and Navigation. 1072
Modules and Dependencies. 1094
Optimizing Applications. .1127
Adapting to Operating Systems And Devices. 1137
SAPUI5 Flexibility: Adapting UIs Made Easy. 1152
Testing. .1158
Theming. 1254
Localization. 1269
Accessibility. 1276
Drag and Drop. 1282
Spreadsheet Export. 1286
Troubleshooting. 1314

Developing Apps. 1396
Continuous Integration: Ensure Code Quality . 1398
App Templates: Kick Start Your App Development. 1399
App Overview: The Basic Files of Your App. 1425
App Initialization: What Happens When an App Is Started?. 1427
Folder Structure: Where to Put Your Files. 1428
Device Adaptation: Using Device Models for Your App. 1433
Performance: Speed Up Your App. 1434
Stable IDs: All You Need to Know. 1442
Reacting on User Input Events. 1449
SAPUI5 Flexibility: Enable Your App for UI Adaptation. .1450
Coding Issues to Avoid. 1458
Securing Apps. 1469
Right-to-Left Support. 1483
Accessibility. .1485
The SAPUI5 ABAP Repository and the ABAP Back-End Infrastructure. 1507

Developing Apps with SAP Fiori Elements. 1535
SAP Fiori Elements Feature Map . 1537
How To Use SAP Fiori Elements. 1550
List Report and Object Page. 1622
Worklist. .1866
Analytical List Page. 1868
Overview Pages. 1930

Developing Apps with Analysis Path Framework (APF). 2040

SAPUI5: UI Development Toolkit for HTML5
Content P U B L I C 3

Analytical Applications Based on APF. 2043
Setting Up APF and the APF Configuration Modeler. 2045
Authorization Concept. 2049
Enhancing an APF-Based Application. 2050
Creating Your Own Application. 2052
APF Configuration Modeler. .2054
Launching APF-Based Applications. 2094
Data Protection and Privacy. 2099
APF Modules. 2101
Concepts. .2108
Configuration Files and Their Structure. 2121
API Reference. 2143

Extending Apps. 2143
Using SAPUI5 Flexibility. 2144
Using Component Configuration. 2145
Localized Texts for Extended Apps. 2154
Limitations. 2155
Caveats Regarding Stability Across Application Upgrades. .2155
Supportability. 2157

Developing Controls. 2158
Development Conventions and Guidelines. 2159
The library.js File. 2185
Creating Control and Class Modules. 2187
Defining the Control Metadata. 2188
Adding Method Implementations. 2194
Device-specific Behavior of Controls. 2206
Examples for Creating and Extending Controls. 2207
Writing a Control Renderer. .2211
Implementing Animation Modes. 2214
Implementing Focus Handling. 2215
Item Navigation - Supporting Keyboard Handling in List-like Controls.2217
Right-to-Left Support in Controls. 2218
Defining Groups for Fast Navigation (F6). .2222

Composite Controls. 2226
Accessibility Aspects. 2237
Writing a Control: FAQ. 2251

More About Controls. 2252
Busy Indicators. 2253
Cards. 2254
Date and Time Related Controls: Data Binding. 2259
Grid Controls. 2261

4 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

Content

Hyphenation for Text Controls. 2274
Semantic Pages. 2278
Tables: Which One Should I Choose?. 2286
sap.f. 2288
sap.m. 2297
sap.suite.ui.commons. .2372
sap.suite.ui.microchart. 2391
sap.tnt. 2398
sap.ui.codeeditor. 2399
sap.ui.comp. 2401
sap.ui.core. 2461
sap.ui.richtexteditor. 2464
sap.ui.table. 2467
sap.ui.vk. 2468
sap.uxap. 2481

Glossary. .2510

SAPUI5: UI Development Toolkit for HTML5
Content P U B L I C 5

SAPUI5: UI Development Toolkit for HTML5

Create apps with rich user interfaces for modern web business applications, responsive across browsers and
devices, based on HTML5. (Documentation patch 1.75.0)

SAPUI5 offers powerful development concepts:

● One consistent user experience for your apps
● Responsive across browsers and devices -

smartphones, tablets, desktops
● Built-in extensibility concepts at code and application

level
● Data binding types and Model-View-Controller (MVC)
● Feature-rich UI controls for handling complex UI

patterns and predefined layouts for typical use cases.
UI controls automatically adapt themselves to the
capabilities of each device.

● Full translation support
● Keyboard interaction support and accessibility features

And many more....

Check the SAPUI5 playlist in the SAP Technology
YouTube channel for the latest highlights videos!

SAP Fiori apps are built with SAPUI5 and follow the SAP Fiori design guidelines to ensure consistent design and
a high level of design quality. See SAP Fiori Design Guidelines .

For more information about SAP Fiori, see http://www.sap.com/fiori

 Tip
Looking for the Demo Kit for a specific SAPUI5 version?

Check at https://ui5.sap.com/versionoverview.html which versions are available. You can view the version-
specific Demo Kit by adding the version number to the URL, e.g. https://ui5.sap.com/1.38.8/

For more information, see Versioning of SAPUI5 [page 29].

Need a PDF version of the SAPUI5 documentation? Go to https://help.sap.com/viewer/p/SAPUI5.

What's New in SAPUI5

Find out what's new in the latest versions of SAPUI5.

Check the latest videos in the SAPUI5 playlist in the SAP Technology YouTube channel and the OpenUI5
 YouTube channel.

6 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/disclaimer?site=https%3A%2F%2Fwww.youtube.com%2Fplaylist%3Flist%3DPLWV533hWWvDmxJM4itQ9o--7rolKgy-1r
http://help.sap.com/disclaimer?site=https%3A%2F%2Fwww.youtube.com%2Fchannel%2FUC8cXSTGDhiZK5229zi-KTXA
http://help.sap.com/disclaimer?site=https%3A%2F%2Fwww.youtube.com%2Fchannel%2FUC8cXSTGDhiZK5229zi-KTXA
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2F
http://www.sap.com/fiori
https://ui5.sap.com/versionoverview.html
https://help.sap.com/viewer/p/SAPUI5
http://help.sap.com/disclaimer?site=https%3A%2F%2Fwww.youtube.com%2Fplaylist%3Flist%3DPLWV533hWWvDmxJM4itQ9o--7rolKgy-1r
http://help.sap.com/disclaimer?site=https%3A%2F%2Fwww.youtube.com%2Fchannel%2FUC8cXSTGDhiZK5229zi-KTXA
http://help.sap.com/disclaimer?site=https%3A%2F%2Fwww.youtube.com%2Fuser%2Fopenui5videos
http://help.sap.com/disclaimer?site=https%3A%2F%2Fwww.youtube.com%2Fuser%2Fopenui5videos

What's New in SAPUI5 1.75

With this release SAPUI5 is upgraded from version 1.74 to 1.75.

New Features

UI Adaptation: Embedding External Content

If you have enabled an app for UI adaptation (see SAPUI5 Flexibility: Enable Your App for UI Adaptation [page 1450]), users
of this app can now embed external content, such as maps or videos, as iFrames. This feature is available for key users at
runtime in UI adaptation mode as well as for developers within the SAPUI5 Visual Editor in SAP Web IDE.

Improved Features

Card Explorer

We have introduced a schema validation feature in our samples in the Card Explorer. With this option, developers can see a
more detailed report for mistakes inside the card manifest. Things like wrong names of properties, bad property types or
bad structures are easily spotted. For more information, explore the samples in Card Explorer.

Currency Codes

When displaying ISO currency codes using sap.ui.core.format.NumberFormat,
sap.ui.model.type.Currency or sap.ui.model.odata.type.Currency, the currency code is now dis
played by default after the amount, ignoring locale, in order to be consistent with SAP design guidelines. The core configu-
ration parameter trailingCurrencyCode can be used to switch the behavior globally.

If currency symbols are enabled (formatting option currencyCode: false), they continue to follow locale-specific
placement.

SAPUI5 OData V2 Messages

With the new version of the SAPUI5 OData V2 model, the target of server messages is shortened by removing associated
pairs of navigation properties. For example, a /SalesOrderSet('1')/
ToLineItems(SalesOrderID='1',ItemPosition='10')/ToHeader/GrossAmount message target gets
reduced to /SalesOrderSet('1')/GrossAmount if the ToLineItems and ToHeader navigation properties
have the same relationship in the service metadata. If the second navigation property references a collection, the message
target path is reduced only if the referenced entity is the same as without the navigation.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 7

https://sapui5.hana.ondemand.com/test-resources/sap/ui/integration/demokit/cardExplorer/webapp/index.html#/exploreOverview/types

SAPUI5 OData V4 Model

The new version of the SAPUI5 OData V4 model introduces the following features:

● When displaying aggregated data with a list binding using either the $$aggregation binding parameter or
sap.ui.model.odata.v4.ODataListBinding#setAggregation, you can filter by properties that are
part of the original entity set but not of the result set. Note that these filters need to be provided as
sap.ui.model.Filter objects.

● sap.ui.model.odata.v4.Context#requestSideEffects now supports updating in parent bindings by
specifying navigation properties to the parent entities in the path expressions. The respective navigation properties
from the parent binding to the binding of the context and back to the parent need to be marked as partners in the
metadata.

● When using autoExpandSelect, paths with navigation properties can now be added to $select. The binding will
evaluate this and automatically derive $select and $expand.

● For sap.ui.model.odata.v4.ODataPropertyBinding, a $$noPatch binding parameter is provided, so
that values can be changed in the model without updating them in the back end.

● The resume method of the v4.ODataContextBinding and v4.ODataListBinding classes now works syn
chronously.

 Restriction
Due to the limited feature scope of this version of the SAPUI5 OData V4 model, check that all required features are in
place before developing applications. Double-check the detailed documentation of the features, as certain parts of a
feature may be missing. While we aim to be compatible with existing controls, some controls might not work due to
small incompatibilities compared to sap.ui.model.odata.(v2.)ODataModel, or due to missing features in
the model (such as tree binding). This also applies to smart controls (sap.ui.comp library) that do not support the
SAPUI5 OData V4 model, as well as controls such as TreeTable and AnalyticalTable, which are not supported
in combination with the SAPUI5 OData V4 model. The interface for applications has been changed for easier and more
efficient use of the model. For a summary of these changes, see Changes Compared to OData V2 Model [page 971].

For more information, see OData V4 Model [page 918], the API Reference, and the Samples in the Demo Kit.

Title Support in Nested Components

The title property can now also be defined on routing targets of type Component. When set with a binding syntax, it is
resolved in the context of the root view of the component loaded by this target.

The router of a nested component may also have a title property defined on its own target(s) and eventually fire its own
titleChanged event once such a target is displayed. A new configuration propagateTitle allows the
titleChanged event to propagate from an individual Component target to the router of its parent component. In the
routing configuration, this can also be enabled for all Component targets, so that it is not necessary to define the
propagateTitle property on each Component target.

For more information, see Using the title Property in Targets [page 1083] and Enabling Routing in Nested Components [page
1086]. In addition, the Sample application introduced in the previous release to feature routing of nested components has
been enhanced. It now shows how the new title definition and title propagation could be used in an application built with
nested (or reuse) components.

8 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4
https://sapui5.hana.ondemand.com/#/entity/sap.ui.model.odata.v4.ODataModel
https://sapui5.hana.ondemand.com/#/entity/sap.ui.core.routing.Router/sample/sap.ui.core.sample.RoutingNestedComponent

Improved Controls

sap.m.InitialPagePattern

We have introduced the initial page floorplan as a Demo Kit sample. The floorplan allows users to navigate to a single object
to view or edit it. The interaction point on the screen is a single input field and it relies on assisted input to direct the user to
the object in as few steps as possible (using features such as value help and live search). For more information, see the SAP
Fiori Design Guidelines and the Sample.

sap.m.Link

The text property can now be changed using UI adaptation at runtime. This enables key users to provide meaningful link
text according to the application context.

For more information, see the Samples.

sap.m.MessageBox

We have introduced a new emphasizedAction property. This allows developers to specify which button in the dialog
will receive the type Emphasized. If emphasizedAction is empty with no actions provided, the default value applies.
For more information, see the API Reference and the Samples.

sap.m.ObjectStatus

We have enhanced the sap.ui.core.IndicationColor palette. Three new colors were added to the palette as
numbers 6, 7, and 8. These colors enable developers to represent statuses that don't require a meaning in the sense of
good-bad, but should be visually distinguishable. For example, statuses such as Updated, New, or Active. For more informa
tion, see the API Reference and the Sample.

sap.ui.comp.smartfilterbar.SmartFilterBar

● The export and import functionality of the SelectionVariant is now enhanced and includes the related texts that
are used in the filters when fields are set. The feature is available without further configuration. For more information,
see the Sample.

● We have introduced the option to define different columns in the table of the ValueHelpDialog and the suggestion
list of the SmartFilterBar. In the ValueList annotation, each parameter can be statically annotated as impor
tant using the Importance annotation with EnumMember set to High. For more information, see the API Refer
ence.

● We have enabled the useDateRangeType property so that it can be modified from the UI adaptation at runtime.

sap.ui.integration.widgets.Card

We have enhanced the capabilities of the Adaptive Card (Experimental).

● You can now load the Adaptive Card manifest/descriptor from а URL.
● The Adaptive Card supports templating, which enables the separation of data from the layout.

For more information, see the Adaptive Card in the Card Explorer.

sap.ui.table.AnalyticalTable, sap.ui.table.Table, sap.ui.table.TreeTable

A more comprehensive message text is now shown if no data is available because all table columns are hidden. For more
information, see the Sample.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 9

https://experience.sap.com/fiori-design-web/initial-page-floorplan/
https://experience.sap.com/fiori-design-web/initial-page-floorplan/
https://sapui5.hana.ondemand.com/#/entity/sap.m.InitialPagePattern/sample/sap.m.sample.InitialPagePattern
https://sapui5.hana.ondemand.com/#/entity/sap.m.Link
https://sapui5.hana.ondemand.com/#/api/sap.m.MessageBox
https://sapui5.hana.ondemand.com/#/entity/sap.m.MessageBox
https://sapui5.hana.ondemand.com/#/api/sap.m.ObjectStatus
https://sapui5.hana.ondemand.com/#/entity/sap.m.ObjectStatus/sample/sap.m.sample.ObjectStatus
https://sapui5.hana.ondemand.com/#/entity/sap.ui.comp.smartfilterbar.SmartFilterBar/sample/sap.ui.comp.sample.smartfilterbar.example1
https://sapui5.hana.ondemand.com/#/api/sap.ui.comp.smartfilterbar.SmartFilterBar%23annotations/ValueList
https://sapui5.hana.ondemand.com/#/api/sap.ui.comp.smartfilterbar.SmartFilterBar%23annotations/ValueList
https://sapui5.hana.ondemand.com/test-resources/sap/ui/integration/demokit/cardExplorer/webapp/index.html#/learn/types/adaptive
https://sapui5.hana.ondemand.com/#/entity/sap.ui.comp.smarttable.SmartTable/sample/sap.ui.comp.sample.smarttable.smartTableWithCriticality

SAP Fiori Elements

● Option to Show an Error Message on an Empty Table in the Object Page
You can now show an error message strip if a table is empty or if any of the table rows contain an error in a section or
subsection of an Object Page.

● List Report Page Loaded with Data on Launch
By default, the list report page is loaded with data when an application is launched. For more information, see List Re
port Elements [page 1623].

● Option to Set Vertical Alignment for Responsive Tables in List Report and Object Pages
You can now set the vertical alignment property for the whole responsive table via a manifest property
tableColumnVerticalAlignment under the settings of sap.ui.generic.app. You can set the value of
this string to Top, Middle, and Bottom.

● Option to Define the Table Type for Each Tab of a List Report
You can now define the table type for tabs with different entity sets in a List Report page. For more information, see
Multiple Views on List Report Tables [page 1645] and Defining Multiple Views on a List Report with Different Entity Sets
and Table Settings [page 1656].

Demo Kit Improvements

Search Highlighting in the Documentation and Samples sections

The search highlighting functionality is now also available in the Documentation tree filter and the Samples list.

10 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

What's New in SAPUI5 1.74

With this release SAPUI5 is upgraded from version 1.73 to 1.74.

New Features

Rule Builder Control

You can model a text rule to perform an append operation on data objects or attributes in expression language 2.0. For
more information, see Operations in Features [page 548].

Test Recorder

The Test Recorder tool is now part of the SAPUI5 framework and is available in all browsers. Use it in any SAPUI5 app to
inspect the rendered user interface, view the control properties, and get hints about writing tests. The tool is aligned with
the two official SAPUI5 testing tools – OPA5 and UIVeri5.

For more information, see Test Recorder [page 1251].

Improved Features

Card Explorer

We have enhanced the functionality to download samples from the Card Explorer, and now there are 3 optional file formats
available: JSON, ZIP, and CARD. For more information, see Card Explorer.

Navigation in Nested Components

In recent releases, the capabilities to Navigate with Nested Components [page 1090] were enhanced significantly. In addition
to the available documentation, a Sample has been added to showcase some fundamental possibilities of using compo
nents to structure applications and how to interconnect them via routing.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 11

https://sapui5.hana.ondemand.com/test-resources/sap/ui/integration/demokit/cardExplorer/index.html
https://sapui5.hana.ondemand.com/#/entity/sap.ui.core.routing.Router/sample/sap.ui.core.sample.RoutingNestedComponent

Negative Predefined CSS Margin Classes

We’ve introduced the following negative CSS margin classes to help you align controls that have their own default margins:

● sapUiTinyNegativeMarginBeginEnd
● sapUiSmallNegativeMarginBeginEnd
● sapUiMediumNegativeMarginBeginEnd
● sapUiLargeNegativeMarginBeginEnd

For more information, see Using Predefined CSS Margin Classes [page 1046] and the Sample.

Responsive Padding Enablement

We've introduced responsive paddings to the sap.m.IconTabBar, sap.m.ObjectHeader, and
sap.m.TabContainer controls. For more information, see Enabling Responsive Paddings [page 1052].

SAPUI5 OData V4 Model

The new version of the SAPUI5 OData V4 model introduces the following features:

● The autoExpandSelect:true model setting has been enhanced for property bindings that are added later.

● We have added the sap.ui.model.v4.ODataListBinding.getDownloadUrl method.
● sap.ui.model.v4.AnnotationHelper.format can now be used for operation parameters.
● For messages returned in error responses of operation calls, targets pointing to operation parameters are now parsed

correctly.
● The sap.ui.model.v4.Context.setProperty method can be used to set properties locally on the client by

specifying null as the groupId. The set value is then not included in PATCH and POST requests to create the new
entity.

● Annotation targets for (overloaded) bound operations in 4.01 Format are also supported in value list metadata.

 Restriction
Due to the limited feature scope of this version of the SAPUI5 OData V4 model, check that all required features are in
place before developing applications. Double-check the detailed documentation of the features, as certain parts of a
feature may be missing. While we aim to be compatible with existing controls, some controls might not work due to
small incompatibilities compared to sap.ui.model.odata.(v2.)ODataModel, or due to missing features in
the model (such as tree binding). This also applies to smart controls (sap.ui.comp library) that do not support the
SAPUI5 OData V4 model, as well as controls such as TreeTable and AnalyticalTable, which are not supported
in combination with the SAPUI5 OData V4 model. The interface for applications has been changed for easier and more
efficient use of the model. For a summary of these changes, see Changes Compared to OData V2 Model [page 971].

For more information, see OData V4 Model [page 918], the API Reference, and the Samples in the Demo Kit.

Improved Controls

sap.m.Avatar

We've added remove and reveal actions in the Avatar design-time metadata. Now, the control can be removed and re
vealed when using UI adaptation at runtime. For more information, see the Samples.

12 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/entity/sap.ui.core.StandardMargins/sample/sap.m.sample.StandardNegativeMarginsTwoSided
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4
https://sapui5.hana.ondemand.com/#/entity/sap.ui.model.odata.v4.ODataModel
https://sapui5.hana.ondemand.com/#/entity/sap.m.Avatar/sample/sap.m.sample.Avatar

sap.m.ColorPalette

We have introducted a Recent Colors section, showing the last 5 recently used colors. This feature is enabled by default,
making it is easier to find and select the exact colors. For more information, see the API Reference and the Sample.

sap.m.DateRangeSelection

We have introduced the ability to select month and year ranges. This improves the user experience when only a month or a
year range has to be selected, and is defined by the displayFormat property. For more information, see the API Refer
ence and the Sample.

sap.m.List, sap.m.Table, sap.m.Tree

The busy indicator is now displayed in the center of the visible area of the UIs of these controls and is no longer vertically
centered and therefore not always visible. For more information, see the Sample.

sap.m.NavContainer

In version 1.69, the default value for the defaultTransitionName property was visually updated to behave as a slide
& fade animation and the classic slide animation was no longer an option. Now, we've added the previous slide behavior as
a new type of transition. To use it, set the defaultTransitionName property to baseSlide. For more information,
see the API Reference and the Sample.

sap.m.NotificationListItem

The avatar background color can now be managed by the application developer using the new authorAvatarColor
property. Now, if any of the authorPicture or authorInitials properties are not set, the default icon will not be
displayed. For more information, see the API Reference and the Sample.

sap.m.plugins.DataStateIndicator

This plugin for the table controls (sap.m.List, sap.m.Table, sap.ui.table.Table) allows you to imple
ment binding-related messages and show them on the UI using a message strip. For more information, see the API Refer
ence and the Sample.

sap.m.Select

With the new required property, you can now indicate whether user input is required. This property is helpful for accessi
bility purposes when a single relationship between the field and a label can't be established, for example, when one label
exists for multiple fields. For more information, see the API Reference.

sap.m.StandardListItem

The new infoStateInverted property changes the rendering behavior of the information state and information text. If
it is set to true, the color defined by the infoState property is then shown as the background color of the information
text. For more information, see the API Reference and the Sample.

sap.m.Table

A more comprehensive message text is now shown if no data is available because all table columns are hidden. For more
information, see the Sample.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 13

https://sapui5.hana.ondemand.com/#/api/sap.m.ColorPalette
https://sapui5.hana.ondemand.com/#/entity/sap.m.ColorPalette/sample/sap.m.sample.ColorPalettePopover
https://sapui5.hana.ondemand.com/#/api/sap.m.DateRangeSelection
https://sapui5.hana.ondemand.com/#/api/sap.m.DateRangeSelection
https://sapui5.hana.ondemand.com/#/entity/sap.m.DateRangeSelection/sample/sap.m.sample.DateRangeSelection
https://sapui5.hana.ondemand.com/#/entity/sap.m.List/sample/sap.m.sample.ListDeletion
https://sapui5.hana.ondemand.com/#/api/sap.m.NavContainer
https://sapui5.hana.ondemand.com/#/entity/sap.m.NavContainer/sample/sap.m.sample.NavContainer
https://sapui5.hana.ondemand.com/#/api/sap.m.NotificationListItem
https://sapui5.hana.ondemand.com/#/entity/sap.m.NotificationListItem/sample/sap.m.sample.NotificationListItem
https://sapui5.hana.ondemand.com/#/api/sap.m.plugins.DataStateIndicator
https://sapui5.hana.ondemand.com/#/api/sap.m.plugins.DataStateIndicator
https://sapui5.hana.ondemand.com/#/entity/sap.ui.comp.smarttable.SmartTable/sample/sap.ui.comp.sample.smarttable.mtableDataState
https://sapui5.hana.ondemand.com/#/api/sap.m.Select
https://sapui5.hana.ondemand.com/#/api/sap.m.StandardListItem
https://sapui5.hana.ondemand.com/#/entity/sap.m.StandardListItem/sample/sap.m.sample.StandardListItemInfoStateInverted
https://sapui5.hana.ondemand.com/#/entity/sap.m.Table/sample/sap.m.sample.TablePerso

sap.m.ViewSettingsDialog

We have introduced a new button to display only the selected items in the filter tab, and to hide items that are not selected.
This button works in combination with the Search field, so the displayed items are both filtered by title and selection. For
more information, see the API Reference and the Sample.

sap.m.Wizard

We have enhanced the sap.m.Wizard control for better integration in the sap.f.DynamicPage. In order to make
use of it, you need to make certain configurations. For more information, see the API Reference.

sap.tnt.InfoLabel

We have introduced the option to add an icon to the sap.tnt.InfoLabel content. It is defined by the new icon prop
erty. For more information, see the API Reference and the Sample.

sap.ui.comp.smartfield.SmartField, sap.ui.comp.smartfilterbar.SmartFilterBar

We've introduced support for fiscal dates. The service metadata property must be of type Edm.String annotated with
one of the fiscal annotations (IsFiscalYear, IsFiscalPeriod, IsFiscalYearPeriod, IsFiscalQuarter,
IsFiscalYearQuarter, IsFiscalWeek, IsFiscalYearWeek, IsDayOfFiscalYear). For more information,
see the API Reference for SmartField, the API Reference for SmartFilterBar and the Sample for
SmartFilterBar.

sap.ui.comp.smartfilterbar.SmartFilterBar, sap.ui.comp.smarttable.SmartTable

We've updated the available exclude operators to match the include operators for each field type. The change affects the
Define Conditions tab of the ValueHelpDialog in SmartFilterBar and the Filter tab of TablePersoDialog in
SmartTable. For more information, see the Sample for SmartFilterBar and the Sample for SmartTable.

sap.ui.comp.valuehelpdialog.ValueHelpDialog

We've improved the behavior of the ValueHelpDialog basic search for SmartFilterBar and SmartField. Now,
only the entered (or modified) value is taken over into the basic search. The search is triggered automatically when the dia
log opens and takes over the value into the basic search (if it’s not empty). Only the entered characters are taken, regard
less if the suggestion list is displaying a typeahead. For more information, see the Sample for SmartField and the Sam
ple for SmartFilterBar.

sap.ui.export.Spreadsheet

This class has been further improved to facilitate the export functions. The class now supports
sap.ui.model.Binding as a dataSource parameter. For more information, see the API Reference.

14 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.m.ViewSettingsDialog
https://sapui5.hana.ondemand.com/#/entity/sap.m.ViewSettingsDialog/sample/sap.m.sample.ViewSettingsDialog
https://sapui5.hana.ondemand.com/#/api/sap.m.Wizard
https://sapui5.hana.ondemand.com/#/api/sap.tnt.InfoLabel
https://sapui5.hana.ondemand.com/#/entity/sap.tnt.InfoLabel/sample/sap.tnt.sample.InfoLabel
https://sapui5.hana.ondemand.com/#/api/sap.ui.comp.smartfield.SmartField
https://sapui5.hana.ondemand.com/#/api/sap.ui.comp.smartfield.SmartFilterBar
https://sapui5.hana.ondemand.com/#/entity/sap.ui.comp.smartfilterbar.SmartFilterBar/sample/sap.ui.comp.sample.smartfilterbar.FiscalDates
https://sapui5.hana.ondemand.com/#/entity/sap.ui.comp.smartfilterbar.SmartFilterBar/sample/sap.ui.comp.sample.smartfilterbar.example1
https://sapui5.hana.ondemand.com/#/entity/sap.ui.comp.smarttable.SmartTable/sample/sap.ui.comp.sample.smarttable
https://sapui5.hana.ondemand.com/#/entity/sap.ui.comp.smartfield.SmartField/sample/sap.ui.comp.sample.smartfield.SmartFieldWithValueHelp
https://sapui5.hana.ondemand.com/#/entity/sap.ui.comp.smartfilterbar.SmartFilterBar/sample/sap.ui.comp.sample.smartfilterbar.example1
https://sapui5.hana.ondemand.com/#/entity/sap.ui.comp.smartfilterbar.SmartFilterBar/sample/sap.ui.comp.sample.smartfilterbar.example1
https://sapui5.hana.ondemand.com/#/api/sap.ui.export.Spreadsheet

sap.ui.integration.widgets.Card
● A new experimental Calendar Card type is now available . Its purpose is to give an overview of a single entity (a person,

for example). It consists of an interactive calendar, legend, and a schedule. For more information, see Calendar Card in
the Card Explorer.

● We have enabled Data Sources to be used in the descriptor for sap.ui.integration.widgets.Card. Data
Sources are named and reusable manifest entities that hold configuration settings for services. Referenced using spe
cial double-bracketed syntax, they are used to construct data request URLs. Data Sources are defined in the
sap.app part of the manifest. For more information, see Data Sources in the Card Explorer.

● We have introduced new number formatters to represent the data on the UI in human-readable format. Now we have
predefined number formatters for:
○ Currency
○ Date and Time
○ Floating-point numbers
○ Integers
○ Percent
○ Units of measurement

For more information, see Card Formatters in the Card Explorer.
● We now also support objects as values for manifest parameters. Until now only string values were supported. For more

information, see Manifest Parameters section in the Card Explorer.
● We have introduced a new experimental type of card - Adaptive Card. With this type of card, you can visualize and re

use cards created using the Microsoft Adaptive Cards specification and manifest, while achieving fully adapted SAP
Fiori 3 user experience, out of the box. For more information, see Adaptive Card in the Card Explorer.

sap.uxap.ObjectPageLayout

You can now move the corresponding section numbers that are displayed in the AnchorBar when using UI adaptation at
runtime. For more information, see the Samples.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 15

https://sapui5.hana.ondemand.com/test-resources/sap/ui/integration/demokit/cardExplorer/webapp/index.html#/learn/types/calendar
https://sapui5.hana.ondemand.com/test-resources/sap/ui/integration/demokit/cardExplorer/webapp/index.html#/learn/features/dataSources
https://sapui5.hana.ondemand.com/test-resources/sap/ui/integration/demokit/cardExplorer/webapp/index.html#/learn/formatters
https://sapui5.hana.ondemand.com/test-resources/sap/ui/integration/demokit/cardExplorer/webapp/index.html#/learn/features/manifestParameters
https://sapui5.hana.ondemand.com/test-resources/sap/ui/integration/demokit/cardExplorer/webapp/index.html#/learn/types/adaptive
https://sapui5.hana.ondemand.com/#/entity/sap.uxap.ObjectPageLayout

SAP Fiori Elements

● Smart Multi-Input Control in Smart Tables
It is now possible to include a smart multi-input field in a smart table on an object page. For more information, see
Using the Smart MultiInput Control on the Object Page [page 1720].

● Flexible Column Layout: Displayed Item on Object Page Highlighted in Master List
The navigation row in the table is highlighted in blue to correlate with the object being displayed in applications with
flexible column layout.

● Object Page Saves and Restores State of Control Variants
This means that the selected table variants are stored in the same way as the control variants for the list report page.

● Configuration of Relevant Links
SAP Fiori Elements now gives you the option of configuring relevant links in Related Apps. For more information, see
Enabling the Related Apps Button [page 1697].

● Option to Set Initial Expansion Level in List Report and Analytical List Page Tables
You can now set initialExpansionLevel using the PresentationVariant annotation to set the number of
expanded levels for tables and trees. For more information, see Initial Expansion Level for Tables in List Reports & Ana
lytical List Pages [page 1620].

● Themes
SAP Quartz Light is now available by default for applications that are generated by the SAP Web IDE wizard and plugin.

Documentation

Performance Checklist

Ensuring that your SAPUI5 apps run fast is an important topic in application development. To support you in this task, we
have improved the existing performance-related documentation as well as added some new information. Please use the
comprehensive Performance Checklist [page 690] as a starting point for best practices to help you to review and speed up
your SAPUI5 apps.

16 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Read Me First

Before you start using SAPUI5 productively, please read the important information in the section. Here you
read everything you need to know about supported library combinations, the supported browsers and
platforms, and so on.

● Compatibility Rules [page 17]
● Browser and Platform Support [page 20]
● Supported Library Combinations [page 26]
● Supported Combinations of Themes and Libraries [page 27]
● SAPUI5 vs. OpenUI5 [page 37]
● Deprecated Themes and Libraries [page 34]
● Upgrading [page 31]
● Versioning of SAPUI5 [page 29]

Compatibility Rules

The following sections describe what SAP can change in major, minor, and patch releases. Always consider
these rules when developing apps, features, or controls with or for SAPUI5.

 Caution
As an app developer, never do the following:

● Never manipulate HTML/CSS via JavaScript (domRef.className = "someCSSClass";) or directly
via CSS, for example. Always follow our recommendations under CSS Styling Issues [page 1464].

● Never use or override "private" functions that are not part of the API Reference. Private functions are
typically (but not always) prefixed with a preceding "_". Always double-check the API Reference, private
functions are not listed there.

API Evolution

Unless otherwise mentioned, the word "API" in this section refers to "public API", meaning functions, classes,
namespaces, controls along with their declared properties, aggregations, and so on. The sole definition of the

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 17

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.html

public API is the API Reference, which is included in the SAPUI5 Demo Kit. Features that are not mentioned
there are not part of the API.

The following rules apply for introducing new APIs or making incompatible changes to existing APIs:

Major release (x.yy.zz): A new major version can introduce new APIs or make incompatible changes to existing
APIs.

Minor release (x.yy.zz): A new minor version can introduce new APIs but must not contain incompatible
changes to any APIs.

Patch release (x.yy.zz): A new patch version only contains fixes to the existing implementation, but does not
usually contain new features or incompatible API changes.

 Note
Exceptions to these rules are possible, but only in very urgent cases such as security issues. Such
exceptions are documented in the Change Log.

Compatible Changes

The following changes to existing APIs are compatible and can be done anytime:

● Adding new libraries, controls, classes, properties, functions, or namespaces
● Generalizing properties, that is moving properties up in the inheritance hierarchy
● Adding new values to enumeration types; this means that when dealing with enum properties, always be

prepared to accept new values, for example, by implementing a "default" or "otherwise" path when
reacting on enum values.

Incompatible Changes

The following is not part of the public API and may change in patch and minor releases:

● Open source libraries (see Third-Party Open Source Libraries [page 20])
● Log messages

The following changes to existing APIs are incompatible, but can be done in a new major release:

● Renaming an API (library, namespace, function, property, control, events, and so on)
● Removing support for parameters
● Removing support for configuration entries
● Reducing the visibility of an API; this does not break JavaScript applications, but changes the contract
● Removing or reordering parameters in an API signature
● Reducing the accepted value range, for example, parameter of a function
● Broadening the value range of a return value (or property). Exception: enumerations
● Moving JavaScript artifacts (namespaces, functions, classes) between modules
● Replacing asserts with precondition checks
● Moving properties (and so on) down in the inheritance hierarchy

18 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.html
https://sapui5.hana.ondemand.com/#releasenotes.html

● Changing the name of enum values
● Changing defaults (properties, function parameters)
● Renaming or removing files

Inheritance

Inheriting from SAPUI5 objects (e.g. by calling sap.ui.extend on an existing control to add custom
functionality) may endanger the updatability of your code.

When overriding an SAPUI5 lifecycle method (such as init, exit, onBeforeRendering, and
onAfterRendering), you must make sure that the super class implementation is called, for example like this:

MyClass.prototype.onAfterRendering = function() { SuperClass.prototype.onAfterRendering.apply(this);
 // do your additional stuff AFTER calling super class }

SAP might add, remove, or change the internal implementation of the parent class at any time. Especially, you
should not rely on the following functionality:

● Internal structures and methods that are not part of the public API
● Any internal logic and behavior of the object that is not reflected in the public API
● The parent hierarchy of objects especially for composites where the API parent differs from the real parent

(e.g. parent object > internal object > child object). For more information, see API Reference:
sap.ui.base.ManagedObject.

● All rendering functionality of a control, including the HTML structure and CSS classes
● Naming collisions with SAPUI5 structures and methods. SAPUI5 might introduce new API or internal

structures at a later point in time that collide with your implementation. To avoid collisions, a custom prefix
may be applied. Don't use namespaces starting with sap.m.* or sap.ui.* in your app.

We recommend that you test inherited classes very carefully after updating SAPUI5 to make sure that the
extended functionality is still working as expected.

Deprecation

If possible and appropriate, we mark old artifacts as deprecated and create new artifacts, instead of making
incompatible changes. A deprecation comment in the corresponding API documentation, and perhaps also a
log entry in the implementation, explain why and when an artifact has been deprecated and include tips on how
to achieve the same results without using deprecated functionality.

Experimental API

Some features or controls delivered with the current SAPUI5 version are flagged as "experimental". These
experimental features and controls are not part of the released scope of the delivered SAPUI5 version. Do not

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 19

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.base.ManagedObject.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.base.ManagedObject.html

use experimental features or controls in a productive environment, or with data that has not been sufficiently
backed up.

Experimental features and controls can be changed or deleted at any time without notice, and without a formal
deprecation process. They may also be incompatible to changes provided in an upgrade.

Third-Party Open Source Libraries

SAPUI5 contains and uses several third-party open source libraries, such as jQuery. These libraries can also
be used by applications and/or custom control libraries, but the SAPUI5 compatibility rules described in this
document do not apply to these third-party libraries.

If you want to use the third-party open source libraries included in SAPUI5, note the following restrictions:

● SAP decides which versions and modules of the used libraries are provided.
● SAP can upgrade to a higher version of the used libraries even within a patch release.

If we change to a new default version of a library, we document our findings that might have an effect on
SAPUI5 apps (see Upgrading [page 31]). Make sure that you adapt your code if necessary!

● For important reasons such as security, SAPUI5 can stop providing a library at any time.
● The third-party libraries are provided "as is". Extensions, adaptations, and support are not performed or

provided by SAP.

 Note
Do not use different versions of these libraries as this might lead to unforeseen side effects..

For a list of the third-party open source software used in SAPUI5, see the Included Third-Party Software link in
the About dialog in the Demo Kit.

Related Information

Versioning of SAPUI5 [page 29]
API Reference

Browser and Platform Support

Browser and platform support for the SAPUI5 libraries on iOS, Android, macOS, and Windows platforms.

 Note
The single source of truth about supported browsers and platforms is the Product Availability Matrix (PAM)
that you can find at https://support.sap.com/pam . SAPUI5 is not a product of its own, so please check
the PAM for the product you're using SAPUI5 with. For more information, see SAP Note 1716423 .

The following sections only contain additional information on restrictions and platform support information
for specific SAPUI5 libraries in a summarized form.

20 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.html
http://help.sap.com/disclaimer?site=https%3A%2F%2Fsupport.sap.com%2Fpam
http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/1716423

As SAPUI5 is based on CSS3, HTML5, and the ECMAScript 5 (ES5) JavaScript API, only browsers with HTML5
capabilities are supported. In general, only major versions that are also supported by the respective platform
can be supported by the SAPUI5 framework.

 Restriction
We currently do not guarantee that newer ECMAScript standards, such as ES6/ES2015, work with SAPUI5.

Depending on the platform your SAPUI5 apps run on, different browsers in different versions are supported. If
you know which platform and which browsers are used by your users, you can decide on which libraries to use
for your app.

Overview of Supported Browsers, Platforms, and Reference Devices

The following tables give a general overview of the browsers, platforms, and reference devices supported by the
main SAPUI5 libraries.

Browser and Platform Support Matrix

 Note
SAPUI5 plans to end the support for Microsoft Internet Explorer 11 as future direction (end of 2021 or later).
Legacy web applications, which use active browser plugins that require Microsoft Internet Explorer 11,
cannot run embedded inside an SAP Fiori launchpad that depends on a SAPUI5 version released after
support ended.

Integration of SAPUI5 applications in SAP GUI for Windows through the SAP HTML Control also use the
Microsoft Internet Explorer Control. Alternatives for this Microsoft Internet Explorer Control are presently
under investigation.

Platform Device
Category

Platform
Version Safari Web

View
Internet
Explorer

Micro
soft
Edge

(Chro
mium)

Micro
soft
Edge
(EdgeHT
ML)1

Google
Chrome

Mozilla
Firefox

SAP Fiori
Client

Windows Desktop Windows
8.1

- - Version
113

- Latest
version

Latest
version
and Ex
tended
Support
Release
(ESR)2, 6

-

Windows
10

- Latest
version

Latest 2 versions -

Touch4, 5 Windows
10

- Latest
version

Version
113

Latest 2 versions6 Latest
version6

Latest
version
and Ex
tended
Support
Release
(ESR)6

Latest
version

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 21

Platform Device
Category

Platform
Version Safari Web

View
Internet
Explorer

Micro
soft
Edge

(Chro
mium)

Micro
soft
Edge
(EdgeHT
ML)1

Google
Chrome

Mozilla
Firefox

SAP Fiori
Client

macOS Desktop Latest 2
versions

Latest 2
versions

- - - Latest
version4

- -

iOS Phone
and Tab
let4, 5

Latest 2
versions

Latest 2
versions

Latest
version6

- - - - Latest
version7

Android Phone
and Tab
let4, 5, 7

As of ver
sion 5

- - - - Latest
version

- Latest
version

1) The next stable SAPUI5 release that comes after SAPUI5 1.71 will be the last SAPUI5 release to support
Microsoft Edge (EdgeHTML).
2) In regards to handling touch events, there are some issues with Windows 8. For more information, see
Windows 8 Support - Known Issues [page 2202].
3) Internet Explorer 11 requires add-ons XML DOM Document and XML DOM Document 3.0 to be activated for
XML parsing support.
4) Not supported for sap.ui.commons and sap.ui.ux3.
5) Not supported for sap.gantt. Note that gantt charts consuming sap.gantt can be displayed on tablet
devices.
6) Not supported for sap.ui.vbm.
7) Not supported for sap.ui.vk.

Supported Reference Devices

For mobile operating systems, support is restricted to specific reference devices.

When creating support incidents, make sure that the device you refer to belongs to the listed ones:

 Note
Touch-enabled devices are not supported by the sap.ui.commons, sap.ui.ux3 and sap.gantt
libraries.

Platform Device End of Support Date

iOS

SAP always supports the 2 latest re
leases of the iOS operating system, not
exceeding 3 years from vendor release
date. SAPUI5 supports Apple iPhone
and iPad series until 3 years from the
vendor device release date, except de
fined otherwise.

Apple iPhone 8 September 2020

Apple iPhone X November 2020

Apple iPhone XS September 2021

Apple iPhone XR October 2021

Apple iPhone 11 September 2022

Apple iPad (5th) March 2020

Apple iPad Pro (2nd) June 2020

Apple iPad (6th) March 2021

22 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Platform Device End of Support Date

Apple iPad Pro (3rd) October 2021

Apple iPad Air (3rd) March 2022

Apple iPad Mini (5th) March 2022

Apple iPad (7th) September 2022

Android

Android OS based devices are very frag
mented in matters of operating system
variants and hardware diversity.
SAPUI5 supports Samsung Galaxy S
and Galaxy Tab S series until 3 years
from vendor device release date, except
defined otherwise.

Samsung Galaxy S8 April 2020

Samsung Galaxy S9 March 2021

Samsung Galaxy S10 March 2022

Samsung Galaxy Tab S3 March 2020

Samsung Galaxy Tab S4 August 2021

Samsung Galaxy Tab S5e April 2022

Samsung Galaxy Tab S6 August 2022

Windows

SAPUI5 supports Microsoft Surface Pro
reference devices until 3 years from
vendor device release date, except de
fined otherwise.

Microsoft Surface Pro (2017) June 2020

Microsoft Surface Pro 6 October 2021

Microsoft Surface Pro 7 October 2022

Microsoft Surface Pro X November 2022

Additional Information

● General
○ Internet Explorer 11 (IE11) provides specific document and enterprise modes for compatibility reasons.

SAPUI5 supports only the IE11 document mode. For backward compatibility, IE11 allows to enable a
special enterprise mode that can simulate either an IE8 or IE7 within an IE11, which is NOT supported
for SAPUI5 apps. This functionality should be used only for critical apps that require an older browser
version to run. For more information, see "Fix web compatibility issues using document modes and the
Enterprise Mode site list " in the Microsoft Windows IT Center.

○ The PhantomJS browser is not supported. If you are using it for testing purposes, make sure that you
use version 2.x or higher. Otherwise you may get an error message, such as "TypeError:
'undefined' is not a function (evaluating 'f.bind(null,undefined)')(line
146)".

○ sap.ui.core, sap.ui.layout, sap.ui.unified are basic libraries, supporting all platforms or
browsers that are supported by any of the other libraries.

● sap.m
○ For the maxLines property of the sap.m.Text control, multiline ellipsis handling is not supported for

all browsers and devices and is not supported at all for right-to-left text direction. For more
information, see Visual Degradations [page 24].

● sap.ui.vk - the supported browsers are all WebGL-compatible.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 23

http://help.sap.com/disclaimer?site=https%3A%2F%2Ftechnet.microsoft.com%2Fitpro%2Finternet-explorer%2Fie11-deploy-guide%2Ffix-compat-issues-with-doc-modes-and-enterprise-mode-site-list
http://help.sap.com/disclaimer?site=https%3A%2F%2Ftechnet.microsoft.com%2Fitpro%2Finternet-explorer%2Fie11-deploy-guide%2Ffix-compat-issues-with-doc-modes-and-enterprise-mode-site-list

Visual Degradations

Depending on the combination of device and browser, visual degradations may occur in the sap.m library.

The following sections give an overview of the known degradations.

sap.m.Text - maxLines (property), sap.m.Text - text (property),
sap.m.ObjectListItem - title (property), sap.m.ObjectHeader - title (property)

The visual aid for indicating multiline overflow is an ellipsis at the end of a line. This ellipsis is displayed if the
text string exceeds the maximum number of lines displayed on screen. Depending on the line-clamping
support offered by your browser, this visual aid may not be displayed at all, meaning the text is simply
truncated without any visual indication that it is incomplete. The table below outlines which browsers fail to
support the multiline ellipsis handling of the maxLines property, and also shows examples the visual
degradation along with what the display should look like when it is supported:

Table 1: maxLines Visual Degradations

What it Should Look Like Visual Degradation

Google Chrome Internet Explorer 11

24 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

placeholder Property in sap.m.Input and sap.m.TextArea

As there is no W3C specification for how to use the placeholder property, browser handling for this property
varies greatly. Some browsers use a native placeholder property, but for browsers that do not support this, SAP
implements its own placeholder version.

The following overview outlines which browsers use which version, and which limitations or degradations apply
in each case for the sap.m.Input control and sap.m.TextArea control.

Table 2: placeholder Property in sap.m.Input

Browser Situation

Google Chrome Google Chrome supports the native placeholder property
and displays the ellipsis correctly, indicating that the place
holder text stretches beyond the field that is currently visible

Internet Explorer Version 11 This version supports the native placeholder property but
does not display the ellipsis, instead it simply truncates the
placeholder text string

 Note
If you focus in the field, the placeholder disappears from
view. If you leave the focus without typing anything, the
placeholder is then displayed again.

Mozilla Firefox Mozilla Firefox currently supports the native placeholder
property and displays the ellipsis correctly, indicating that
the placeholder text stretches beyond the field that is cur
rently visible

Whereas sap.m.Input contains just a single line placeholder, sap.m.TextArea is a multiline control,
meaning it brings with it different issues to the ones listed above. These issues are different depending on the
browser and are listed below.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 25

Table 3: placeholder Property in sap.m.TextArea

Browser Situation

Google Chrome Google Chrome supports the native placeholder property
and displays multiple lines along with a scrollbar

Internet Explorer Version 11 Internet Explorer 11 supports the native placeholder prop
erty and displays multiple lines along with a scrollbar.

 Note
Clicking the scrollbar sets focus from a technical per
spective, meaning the placeholder text disappears and
makes scrolling impossible. Scrolling with the mouse
wheel does not set focus, and enables you to read the
entire placeholder text.

Mozilla Firefox Mozilla Firefox supports the native placeholder property but
does not display a scrollbar or an ellipsis, instead it simply
truncates the placeholder text string

Supported Library Combinations

SAPUI5 provides a set of JavaScript and CSS libraries, which can be combined in an application using the
combinations that are supported.

There are two sets of possible library combinations, which are best described using the diagram below. Any of
the libraries listed on the lefthand side can be used with those listed in the middle, and any of the libraries listed
on the righthand side can be used with the ones listed in the middle. The libraries listed on the lefthand side
cannot be used in combination with the libraries listed on the right, and vice versa:

 Note
Libraries that are not mentioned explicitly, belong to the lefthand side.

26 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

*Combinations between sap.m and sap.ui.richtexteditor are allowed only for desktop apps when using
version 4 of TinyMCE.

Related Information

Deprecated Themes and Libraries [page 34]

Supported Combinations of Themes and Libraries

This chapter gives an overview of the possible combinations of themes and libraries for the SAPUI5 versions
that are still in maintenance.

Active Libraries

The following table shows which themes are available for the active SAPUI5 libraries. Even though the
sap_bluecrystal and the sap_hcb themes are now deprecated, they currently are still available, but will not
be maintained. We recommend that you migrate your existing apps to the supported themes.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 27

Table 4: Themes for Supported Libraries

1.38 1.44 1.46 1.65 1.69 1.74

sap_fiori_
3_dark

n/a n/a n/a n/a n/a

sap_fiori_
3

n/a n/a n/a

sap_fiori_
3_hcb

sap_fiori_
3_hcw

n/a n/a n/a n/a

sap_belize

sap_belize
_plus

n/a

sap_belize
_hcb

sap_belize
_hcw

n/a n/a

sap_bluecr
ystal

sap_hcb

 = Supported, = Not Supported

Deprecated Libraries

Should you decide to ignore the deprecation of libaries and continue, for example, using sap.ui.commons and
sap.ui.ux3, we recommend you use the sap_bluecrystal or sap_belize theme.

The sap_bluecrystal theme is also no longer supported, but offers full coverage of the sap.ui.commons
and the sap.ui.ux3 library. It is currently still shipped, but will be removed in one of the next versions.

The sap_belize theme offers an initial implementation for the sap.ui.commons and the sap.ui.ux3
library to allow for a smoother transition, but it is not supported for this library and will not be maintained. We
recommend that you consider migrating your existing apps to actively developed libraries, such as sap.m, and
use sap_belize as the default theme going forward.

28 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Table 5: Themes for the Deprecated Libraries sap.ui.commons and sap.ui.ux3

1.38 1.44 1.46 1.48 1.65

sap_fiori_3 n/a n/a n/a n/a

sap_belize

sap_belize_p
lus

n/a

sap_belize_h
cb

sap_belize_h
cw

n/a n/a

sap_bluecrys
tal

sap_hcb

sap_goldrefl
ection

sap_platinum

sap_ux

 = Supported, = Not Supported, = Deprecated, = Removed

Related Information

Deprecated Themes and Libraries [page 34]

Versioning of SAPUI5

Versioning and maintenance strategy for SAPUI5.

SAPUI5 uses a 3-digit version identifier, for example 1.60.2. The digits have the following meaning:

● The first digit (1) specifies the release number (major version).
● The second digit (60) specifies the version number (minor version).
● The third digit (2) specifies the patch number.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 29

To view the documentation for a specific version, check at https://ui5.sap.com/versionoverview.html which
versions are available. You can view the version-specific Demo Kit by adding the version number to the URL, for
example, https://ui5.sap.com/1.60.2/.

To get an overview of the new features of each version, see What's New in SAPUI5 [page 6], to see the fixes
contained in each patch check the Change Log.

Maintenance Strategy

Every month, SAPUI5 releases a new version for productive usage:

● On SAP Cloud Platform, all SAPUI5 versions are shipped.
● On AS ABAP, only two SAPUI5 versions per year are shipped as part of the SAP_UI component.

The release strategy follows the principle of “one innovation code line”: subsequent versions ensure
continuous innovation with an evolving code line.

Once a year, a version with long-term support is released and available on both SAP platforms. This SAPUI5
version is included in a release of the SAP_UI component, usually as part of SP02 of the respective SAP_UI
release. All other versions do not have a maintenance period and no patches are provided. Required fixes are
available with the next minor versions together with the new features. However, in exceptional cases, also the
most recent version may be patched with correction code.

For the decision to consume a new version, we recommend the following guideline:

● For SAP Cloud Platform, we recommend to upgrade to the latest available SAPUI5 version.
● For AS ABAP/SAP Fiori Frontend Server, or in case regular version updates are not feasible, we recommend

to update to the respective long-term maintenance versions as outlined in the Minimal Installation
Requirements and SAP Fiori Frontend Server notes.

For example, the following versions have a long-term maintenance:

● 1.38 which is included in SAP_UI 7.50 and UI add-on 2.0
● 1.44 which is included in SAP_UI 7.51
● 1.52 which is included in SAP_UI 7.52
● 1.60 which is included in SAP_UI 7.53

In the version overview at https://ui5.sap.com/versionoverview.html, you can see which of the SAPUI5 versions
have an extended maintenance.

For more information on the SAPUI5 maintenance strategy for SAP NetWeaver AS for ABAP, see SAP Note
2217489 .

Availability of Multiple Versions on the Akamai Content Delivery Network

All SAPUI5 resources are available on the content delivery network Akamai. There, you can also find multiple
SAPUI5 versions, and you can use them in your code as described in Variant for Bootstrapping from Content
Delivery Network [page 696].

Check the available versions with respective maintenance status at https://ui5.sap.com/versionoverview.html.

30 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://ui5.sap.com/versionoverview.html
https://sapui5.hana.ondemand.com/#releasenotes.html
https://ui5.sap.com/versionoverview.html
http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/2217489
https://ui5.sap.com/versionoverview.html

SAPUI5 Version vs. OpenUI5 Version (Core Version)

You can find which patch versions you use in you app in the technical information dialog (Ctrl + Left Alt +
Shift + P).

The patch version number of the SAPUI5 version and the OpenUI5 version that is included, may be different.

OpenUI5 includes the core runtime libraries and some additional libraries.

To access the SAPUI5 version at runtime, you can use the following code:

sap.ui.require(["sap/ui/VersionInfo",
 "sap/base/util/Version"
], function(VersionInfo, VersionUtil) {
 VersionInfo.load().then(function(oCurrentVersionInfo) {
 var oVersionUtil = new VersionUtil(oCurrentVersionInfo.version);
 // ...
 }); });

To access the OpenUI5 version (core version) at runtime, you use the following code:

var oConfig = sap.ui.getCore().getConfiguration(); var oVersion = oConfig.getVersion();

For more information, see SAPUI5 vs. OpenUI5 [page 37].

Upgrading

The following sections describe what you have to consider when upgrading to a new version of SAPUI5.

Upgrading from a Version Below 1.40

Older jQuery Versions Removed

As of this version, SAPUI5 only contains one version of jQuery (the current version is 2.2.3). This standard
version is always used when no other jQuery version is included in the bootstrap of an app. If you need a
specific jQuery version for your app, add and load it explicitly as described in noJQuery Variant for
Bootstrapping [page 698]. Check the console for the related warning message if you are unsure which version
you are using.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 31

Upgrading from a Version Below 1.38

When upgrading to the current SAPUI5 version from a version below 1.38 (released in June 2016), check
whether the changes listed below influence your apps.

With this SAPUI5 version, jQuery has been upgraded to version 2.2.3.

This upgrade may impact your SAPUI5 apps. The following sections give an overview of our findings and how to
deal with them.

 Note
If you use additional open-source libraries that depend on jQuery, check whether they need to be upgraded
as well.

jQuery.Event

Problem
jQuery removed some robustness checks in its event handling code. Without these checks, the
jQuery.trigger function must only be called with events that either have no originalEvent property or
where the originalEvent has all methods that window.Event implements (especially preventDefault,
stopPropagation and stopImmediatePropagation).

When a jQuery.Event is constructed with an object literal (properties) or when originalEvent is set to
some object after construction, this constraint is not fulfilled. Unfortunately, many SAPUI5 unit tests used this
approach to simulate mouse or key events.

Solution
For each code that creates events, you have to apply the following fix:

The module QUnitUtils now rewrites the jQuery.Event constructor so that any given object literal is
enriched with the missing methods. Most SAPUI5 unit tests include the QUnitUtils module early, which then
fixes the issue.

Application code that needs to simulate an event, either should omit the originalEvent or use
Event.create to create a native event and only then create a jQuery.Event.

jQuery.fn.position

Problem
jQuery.fn.position now takes the scroll positions of the parent element into account. This change was
recoginzed as incompatible by the jQuery team and reverted with version 2.2.1.

Solution
Nothing, this is automatically fixed.

32 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

jQuery.now

Problem
jQuery.now is now set to Date.now for all browsers. But as the jQuery property represents a separate
reference to that function, it is not touched by code that modifies Date.now, especially not by Sinon fake
timers. Therefore Sinon fake timers don't work with jQuery 2.2 if Sinon is started after jQuery.

Solution
As a workaround, QUnitUtils redefines jQuery.now so that it delegates to the current Date.now. This will
then use any installed fake timer.

:visible selector

Problem
Somewhere between jQuery 1.11.1 and 2.2.0, the behavior of the :visible selector has changed. For empty
inline elements (for example, a span with no text), the selector now reports :visible = true whereas
jQuery 1.1.1 reported it as hidden. There was only one functionality in the sap.ui.dt library where this
change in behavior caused problems.

Solution
Instead of using :visible, that functionality now uses its own implementation similar to jQuery 1.11.1.

Sizzle attribute selector ([name=value])

Problem
In Microsoft Internet Explorer, the attribute selector no longer works when the attribute value is unquoted and
starts with a hash (#). This is the case when hash-name-references are searched for, like with the usemap
attribute of the IMG element.

Solution
Use quotes ("") for attribute values in those cases.

jQuery.isPlainObject

Problem
jQuery 2.2.0 simplified the implementation of jQuery.isPlainObject. As a side-effect, objects with a
constructor property with a non-function value (like a string value) caused a runtime error when
jQuery.isPlainObject was applied.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 33

Solution

This issue is fixed with jQuery 2.2.2.

Descriptor for Applications, Components, and Libraries

If you want to add new attributes of a descriptor version higher than V2 (SAPUI5 1.30) to your existing
manifest.json file, see Migration Information for Upgrading the Descriptor File [page 775].

Deprecated Themes and Libraries

As SAPUI5 evolves over time, some of the UI controls are replaced by others, or their concepts abandoned
entirely. This chapter gives an overview on theme and library level of the most important deprecations.
Individual control deprecations and more information about the controls replacing them can be found in the
API reference within the Demo Kit.

Themes that are no longer supported

sap_hcb

The sap_hcb theme is deprecated as of version 1.48. It has been replaced by the sap_belize_hcb theme.

sap_hcb is the High Contrast Black theme used for the already deprecated sap_goldreflection and
sap_bluecrystal themes. For sap_belize and sap_belize_plus there are two high contrast themes
available: sap_belize_hcb (High Contrast Black) and sap_belize_hcw (High Contrast White).

sap_bluecrystal

The sap_bluecrystal theme is no longer supported as of version 1.40. It has been replaced by sap_belize
as the default theme for SAPUI5 applications.

Custom themes based on sap_bluecrystal are no longer supported with 1.40 or higher.

sap_ux

The sap_ux theme is no longer supported as of version 1.40. This was one of the very first SAPUI5 themes and
is only implemented by a small subset of the sap.ui.commons and sap.ui.ux3 controls, which are also
deprecated.This theme has been removed with SAPUI5 version 1.48.

sap_platinum

The sap_platinum theme is no longer supported as of version 1.40. This was one of the very first SAPUI5
themes and is only implemented by a small subset of the sap.ui.commons and sap.ui.ux3 controls, which
are also deprecated. This theme has been removed with SAPUI5 version 1.48.

34 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

sap_goldreflection

The sap_goldreflection theme is no longer supported as of version 1.40. This was one of the first SAPUI5
themes and is only implemented by the sap.ui.commons and sap.ui.ux3 controls, which are also
deprecated. This theme has been removed with SAPUI5 version 1.48.

Deprecated Libraries

sap.ui.commons

The sap.ui.commons library is deprecated as of version 1.38.

sap.ui.commons was available from the very beginning of SAPUI5. It contains a large number of basic UI
controls like buttons, input fields and dropdowns. With version 1.16, the sap.m library was introduced. It
contains semantically identical controls (button, input and select) that, at that time, were only supported on
mobile platforms. In later versions, sap.m was extended to support desktop platforms as well. For more
information about this, see Browser and Platform Support [page 20]. The sap.m controls were bigger in size to
support mobile displays that require a larger touch area. The “Compact Content Density” feature explained
under Content Densities [page 1142] was then added to SAPUI5, allowing you to display a control in a more
compact screen size. Today, applications should be built one single time using sap.m (and other libraries) and
their content density switched at runtime depending on the environment. As such, the redundant library
sap.ui.commons should no longer be used.

Some of the controls in sap.ui.commons.layout have been replaced by the new dedicated layout library
called sap.ui.layout, which runs on the same platforms as sap.m.

Some of the old controls have been made available again through the non-deprecated sap.ui.unified
library (e.g. FileUploader, Menu), which runs on the same platforms as sap.m.

Some concepts such as Accordion and Row Repeater have been abandoned completely.

sap.ui.ux3

The sap.ui.ux3 library is deprecated as of version 1.38.

This library contains more complex UI controls that were based on sap.ui.commons along the UX3 design
approach. The sap.m library - successor to sap.ui.commons - implements SAP’s new SAP Fiori design
[http://experience.sap.com/fiori-design/], which supersedes UX3. As such, the sap.ui.ux3 library is also
deprecated. Some of the UX3 concepts are reflected in SAP Fiori, some are abandoned, as outlined in the
following table:

Concept What's Happened?

Feeds Replaced by sap.m (sap.m.Feed*).

Notification Bar Replaced by sap.m (sap.m.MessagePopover and
sap.m.semantic*).

Thing Inspector Indirectly replaced by a different design for displaying object
data.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 35

Concept What's Happened?

Shell Partially replaced by sap.ui.unified.Shell.

Data Set Not part of SAP Fiori.

Exact Not directly part of SAP Fiori. Use
sap.ui.comp.FilterBar or sap.m.IconTabBar
for filtering.

Quick Views Concept abandoned as the concept of “hovering with the
mouse pointer over a control” does not exist on mobile devi
ces.

For more information about the SAP Fiori design, see the SAP Fiori design guidelines.

sap.ca
The sap.ca library is deprecated as of version 1.22.

This library contains a mixture of controls for various use cases. Some were replaced by sap.m (e.g.
DatePicker, Message) and some were discontinued without being replaced (such as Hierarchy or
OverflowContainer).

sap.me
The sap.me library is deprecated as of version 1.34.

The main feature within the sap.me library are the calendar controls. You find replacement controls in the
sap.ui.unified library covering most but not all features of the sap.me calendars.

sap.makit
The sap.makit library is deprecated as of version 1.38.

The sap.makit library contains a few chart controls that only support mobile platforms and do not support
accessibility measures. This library is replaced by sap.viz.

Related Information

Index of Deprecated APIs
Supported Library Combinations [page 26]
Supported Combinations of Themes and Libraries [page 27]

36 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://experience.sap.com/fiori-design/
https://sapui5.hana.ondemand.com/#docs/api/deprecation.html

SAPUI5 vs. OpenUI5

With SAPUI5 and OpenUI5 we provide two deliveries of our UI development toolkit. Both are very closely
related, but have their differences.

Licenses

The main difference is the license.

OpenUI5 is Open Source, free to use, released under the Apache 2.0 license. Since we also use many Open
Source libraries, we try to return the favor and also benefit from the experience and knowledge of developers all
over the world.

SAPUI5 is not a separate SAP product with a separate license. It's integrated, for example, in the following
products:

● SAP HANA
● SAP Cloud Platform
● SAP NetWeaver 7.4 or higher (included in the UI technologies (SAP_UI) component)
● User interface add-on for SAP NetWeaver Application Server 7.3x

Content

The easiest way to get an overview of which libraries are delivered is to have a look at the API Reference of the
each Demo Kit. You'll see that the list of libraries in SAPUI5 is much longer... which in no way means that
OpenUI5 provides just a very limited scope!

Most importantly, the core containing all central functionality and the most commonly used control libraries is
identical in both deliveries. (For example, sap.m, sap.ui.layout, sap.ui.unified.)

So OpenUI5 also gives you all the important features needed to build feature-rich Web applications.

The additional libraries in SAPUI5 include more controls on top, like charts, and SAPUI5 also lets you use 'smart
controls', for example, which are controls that are automatically configured by OData annotations from the
back end. The exact feature range of SAPUI5 also depends on the platform you're using. For example, you can
only use the ABAP repository with SAP NetWeaver and not on SAP Cloud Platform.

Contributing to OpenUI5

OpenUI5 is Open Source, and is available on GitHub .

If you find a bug or have an idea for a new feature - just go ahead and propose a GitHub issue or a change. But
before you do so, please just read our guidelines first: Contributing to OpenUI5 .

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 37

http://help.sap.com/disclaimer?site=https%3A%2F%2Fgithub.com%2FSAP%2Fopenui5%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fgithub.com%2FSAP%2Fopenui5%2Fblob%2Fmaster%2FCONTRIBUTING.md

Resources

For the OpenUI5 version, visit http://openui5.org/ where you can download the runtime and the Demo Kit
(SDK) at http://openui5.org/download.html.

For the SAPUI5 resources, check your platform installation.

Both resources are also available online via the content delivery network provider Akamai at https://
openui5.hana.ondemand.com/ and https://sapui5.hana.ondemand.com/.

Compatibility of OpenUI5 and SAPUI5

Technically, you can switch between OpenUI5 and SAPUI5 (providing you have the respective license), e.g. if
you want to use the SAPUI5-specific features.

Just check first which SAPUI5 version you need, because the version numbers of OpenUI5 and SAPUI5 might
differ on patch level (last number). You can find this information in the technical information dialog (Ctrl +
Alt + Shift + P).

If you're using the content delivery network, you can simply replace the bootstrapping reference to https://
openui5.hana.ondemand.com/<1.xx.yy>/ with a reference to https://sapui5.hana.ondemand.com/
<1.xx.zz>/. For more information, see Variant for Bootstrapping from Content Delivery Network [page 696].

For all other cases, replace the runtime. Since the technical names (of controls, libraries, etc.) and APIs are the
same in both OpenUI5 and SAPUI5, the code will still work and you can start enhancing it directly.

Get Started: Setup, Tutorials, and Demo Apps

Set up your development environment and go through our tutorials. They introduce you to all major
development paradigms of SAPUI5 using practical examples in an interactive format. The demo apps show
SAPUI5 in action.

Prerequisites and Setup

● You should be familiar with JavaScript.
● Set up your development environment: Get SAPUI5 and place it in a location, which can be accessed in the

resources folder (not necessary for SAP Web IDE). For more information, see Development Environment
[page 41].

● Set up a folder where you would place the application content. We will refer to this folder as the “app
folder”.

38 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://openui5.org/
http://openui5.org/download.html

Learning Path

● Quick Start [page 57]
● Walkthrough [page 69]
● Troubleshooting [page 194]
● Data Binding [page 219]
● OData V4 [page 261]
● Navigation and Routing [page 291]
● Testing [page 368]
● Mock Server [page 432]
● Worklist App [page 447]
● SAP Fiori 2.0 App [page 488]
● 3D Viewer [page 607]
● Rule Builder Control [page 536]
● Ice Cream Machine [page 640]

 Tip
Learn with openSAP:

The openSAP course Developing Web Apps with SAPUI5 introduces you to the main concepts of
SAPUI5.

The JavaScript exercises for each unit will give you the technical background needed to develop your own
responsive Web apps. We’ll start from scratch with the very basics and lots of hands-on coding. As we go
through the weeks of this course, you’ll learn more about the powerful development concepts and truly
master SAPUI5.

The openSAP course Evolved Web Apps with SAPUI5 for more experienced SAPUI5 developers and
ambitious beginners introduces more advanced scenarios and concepts.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 39

http://help.sap.com/disclaimer?site=https%3A%2F%2Fopen.sap.com%2Fcourses%2Fui51
http://help.sap.com/disclaimer?site=https%3A%2F%2Fopen.sap.com%2Fcourses%2Fui52

Downloading Code for a Tutorial Step

To download the code from the Demo Kit, follow these steps:

1. Choose the link in the Coding section of the tutorial step you want to work on or find the code in the
Samples section of the Demo Kit (filter by "Tutorial" to get a list of the tutorials that are available).

2. Choose the icon with the Show source code for this sample tooltip in the right-hand part of the header bar
to display all files included in this sample.

3. Choose the Download button. A zip file is downloaded to your local machine.
4. Extract or upload the zip file to your development environment.
5. Adjust the project configuration files to match your development environment as described below.
6. Test the project by calling one of the HTML pages in your development environment and make sure that

the app is displaying the features exactly as shown in the preview of the step.

Adapting Code to Your Development Environment

You might have to adapt parts of the coding to your local development environment to make the app work.
Please check the following settings carefully:

● Project Path and Deployment
All tutorials assume that the app is deployed and can be accessed under a certain path on a web server.
You will not be able to run the app without a Web server as the browser does not allow you to load the
required resources locally due to security restrictions.

● SAPUI5 Resources
You can either download and deploy the runtime to your (local) Web server or reference the CDN version
located at https://sapui5.hana.ondemand.com/resources/sap-ui-core.js. Some development
environments such as the SAP Web IDE also provide a local runtime for testing purposes. If you download
the code from the samples in the Demo Kit, you will have to adapt the resource path in the bootstrap
section of all HTML pages included in the project. In the tutorial code, we assume that SAPUI5 can be
accessed from the /resources path of the server.

● Accessing Remote Services
Browsers typically prevent accessing remote resources due to the Cross-Origin Resource Sharing (CORS)
policy. If you would like to call a real service or remote resources, you will have to either configure the
development environment or the remote server to accept these requests. This strongly depends on the
development environment and is described in more detail below.

Troubleshooting

If you get stuck, check the Troubleshooting [page 1314] section under Essentials, or refer to the Troubleshooting
tutorial [page 194].

If you can't fix the problem, try downloading the solution of the previews or current step. This should get your
project fixed again, just don’t forget to check the resource path and the project configuration files again.

40 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

See SAPUI5 in Action - Our Demo Apps

If you want to see some practical examples for SAPUI5 apps, check out our Demo Appsour Demo Apps section
in the Demo Kit. These are fully-functional apps that showcase certain floorplans, control libraries, or other
SAPUI5 features. You can also download the source code of each demo app to find out how everything works
together. Feel free to explore!

Related Information

App Templates: Kick Start Your App Development [page 1399]
Demo Apps [page 671]

Development Environment

This part of the documentation gives you guidance on the most common and recommended use cases of the
installation, configuration, and setup of the SAPUI5 development environment.

 Note
You can use SAPUI5 on different platforms. The license and maintenance conditions of the respective
platforms also apply for SAPUI5. If you use SAPUI5 tools on SAP Cloud Platform, for example, the license
and maintenance conditions of the SAP Cloud Platform apply.

Depending on your use case, you can choose one of the following development environments.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 41

https://sapui5.hana.ondemand.com/#/demoapps

● App Development Using SAP Web IDE [page 44]
● App Development Using OpenUI5 [page 42]
● Developing OpenUI5 [page 51]

 Note
The SAPUI5 Tools for Eclipse as a development environment are no longer supported with SAPUI5 versions
after 1.71. For more information, see SAPUI5 Tools for Eclipse – Now is the Time to Look for Alternatives .
If you are using the SAPUI5 Tools for Eclipse with SAPUI5 version 1.71 or earlier, please consult the
documentation for your specific SAPUI5 version.

App Development Using OpenUI5

Develop apps using OpenUI5 and the development environment (editor and Web server) of your choice. You
can either download all of the sources or refer to the online version of OpenUI5.

Download OpenUI5

The default way of downloading and installing OpenUI5 is to get the runtime from the OpenUI5 website at
http://openui5.org and deploy it on a Web server.

1. Go to https://openui5.org/releases/ and choose Download Stable Release to download a ZIP file
containing the current stable release of the OpenUI5 sources.

42 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/disclaimer?site=https%3A%2F%2Fblogs.sap.com%2F2019%2F11%2F26%2Fsapui5-tools-for-eclipse-now-is-the-time-to-look-for-alternatives%2F
http://help.sap.com/disclaimer?site=http%3A%2F%2Fopenui5.org
http://help.sap.com/disclaimer?site=https%3A%2F%2Fopenui5.org%2Freleases%2F

2. Unzip this file and put the entire content on the Web server where your application is running (or you can
even package it within your application to deploy it along with the app).

3. In your app’s main HTML file, load OpenUI5 by referring to the resources/sap-ui-core.js file that was
contained in the ZIP file. (See Standard Variant for Bootstrapping [page 694].)

Using OpenUI5 Sources from a Content Delivery Network

If you don't want to download the files and don't want to include them in your deployment, you can use the
online version of OpenUI5. For more information, see Variant for Bootstrapping from Content Delivery Network
[page 696].

 Note
You can find a list of all available OpenUI5 versions here: https://openui5.hana.ondemand.com/
versionoverview.html.

Only use the Stable version for productive apps. Nevertheless, if you also want to test the Nightly version,
you are very welcome to send us your feedback!

Consume OpenUI5 Using the Node Package Manager

You can also use the node package manager (npm) to develop your applications. For this, you need to add the
OpenUI5 dependencies to your package.json file:

{ ...
 "dependencies": {
 "@openui5/sap.m": "^1.60.0",
 "@openui5/sap.ui.core": "^1.60.0",
 "@openui5/sap.ui.layout": "^1.60.0",
 "@openui5/themelib_sap_belize": "^1.60.0"
 },
 ... }

To install single dependencies for your application via npm, simply run the npm install command from your
terminal:

npm install @openui5/sap.ui.core @openui5/themelib_sap_belize [...]

You can find a sample application, which uses this mechanism and describes its usage, on GitHub at https://
github.com/SAP/openui5-sample-app .

For more information on how to use npm and how to serve your application based on these packages, see the
UI5 tooling documentation on GitHub at https://sap.github.io/ui5-tooling/ .

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 43

https://openui5.hana.ondemand.com/versionoverview.html
https://openui5.hana.ondemand.com/versionoverview.html
https://openui5nightly.hana.ondemand.com
http://help.sap.com/disclaimer?site=https%3A%2F%2Fgithub.com%2FSAP%2Fopenui5-sample-app
http://help.sap.com/disclaimer?site=https%3A%2F%2Fgithub.com%2FSAP%2Fopenui5-sample-app
http://help.sap.com/disclaimer?site=https%3A%2F%2Fsap.github.io%2Fui5-tooling%2F

App Development Using SAP Web IDE

SAP Web IDE is a web-based development environment that is optimized for developing SAPUI5 complex apps
using the latest innovations, developing and extending SAP Fiori apps, developing mobile hybrid apps, and
extending SAP Web IDE with plug-ins and templates.

Key use cases:

● Develop new SAP Fiori apps and SAPUI5 apps
● Extend SAP Fiori apps
● Develop SAPUI5 mobile hybrid apps (HAT plug-in)
● Extend SAP Web IDE with new plug-ins and templates

A trial version of SAP Web IDE can be accessed through the SAP Cloud Platform.

For more information about SAP Web IDE, see the documentation for SAP Web IDE on the SAP Help Portal at
https://help.sap.com/viewer/p/SAP_Web_IDE.

Get a Trial Account and Access SAP Web IDE

Steps for creating an SAP Cloud Platform trial account

If you do not have access to SAP Web IDE, you can create a free account. To create an account, simply register
an SAP Cloud Platform trial account at https://account.hanatrial.ondemand.com/, and log on afterwards.

After you have logged on, choose Services in the navigation bar of the SAP Cloud Platform cockpit, and open
the detailed information on your SAP Web IDE by choosing the SAP Web IDE Full-Stack tile.

44 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://help.sap.com/viewer/p/SAP_Web_IDE
https://account.hanatrial.ondemand.com/

 Note
Do not choose the simple SAP Web IDE tile (without "Full-Stack" in the title), because this service is not
longer available for our purposes.

Selecting Go to Service leads you to your personal SAP Web IDE.

 Tip
You can bookmark this link to access SAP Web IDE later.

Start SAP Web IDE

Initial Steps in SAP Web IDE

1. Open SAP Web IDE and wait until the initialization has finished.
When you start it for the first time, you will see a home screen containing more information about SAP Web
IDE.

2. Change to the Development perspective by clicking the icon with the code symbol on the left sidebar.
You now see a folder list with an entry Workspace on the left side and an empty code editor on the right
side.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 45

3. Create your project within the Workspace folder by choosing File New Folder from the menu or
Ctrl + Alt + Shift + N . Enter, for example, myProject as the folder name.

Create a neo-app.json Project Configuration File

The neo-app.json file contains all project settings for SAP Web IDE and is created in the root folder of your
project. It is a JSON format file consisting of multiple configuration keys. The most important setting for you to
configure is the path where the SAPUI5 runtime is located when starting the app.

You do this using the “routes” key and defining an array of resource objects. For running an SAPUI5 tutorial,
you only need two entries - one that configures SAPUI5 to be available with the path /resources, and another
one that configures the test resources needed for the SAP Fiori launchpad integration with the path /test-
resources.

Create two configuration objects that contain a path, a target, and a description attribute with more
configuration settings. The path and the entryPath values will point to the location on the server where the
SAPUI5 resources will be stored.

SAP Web IDE reads these settings automatically when running the app. You can see the whole configuration file
in the code block below. Optionally, you can add the key welcomeFile to configure the entry point to your app.
In web applications, this is typically the index.html file.

 Note
Depending on which SAP Web IDE version you are using, you might have to configure the project to run
against the "snapshot" version of SAPUI5, otherwise the application will be launched with the SAPUI5
release that is delivered with SAP Web IDE. This is usually the latest version that is released publicly to
customers.

You can check which version of SAPUI5 is loaded by opening the SAPUI5 debugging tools with CTRL +
SHIFT + ALT + P . If the version is too old for certain features of the tutorial, you have to add the
version attribute to the target configuration entry and set the value to snapshot.

46 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Procedure

1. Select the New File icon and enter neo-app.json as the file name.
2. Open the newly created file from the tree structure on the left side of the screen.
3. Paste the following code in the neo-app.json and select Save:

{ "welcomeFile": "index.html",
 "routes": [
 {
 "path": "/resources",
 "target": {
 "type": "service",
 "name": "sapui5",
 "version": "snapshot",
 "entryPath": "/resources"
 },
 "description": "SAPUI5 Resources"
 },
 {
 "path": "/test-resources",
 "target": {
 "type": "service",
 "name": "sapui5",
 "entryPath": "/test-resources"
 },
 "description": "SAPUI5 Test Resources"
 }
] }

Create an index.html File

A minimalistic index.html file is needed to test the project configuration. This file contains the SAPUI5
bootstrap and an sap.m.Text control that displays the text "SAPUI5 is loaded successfully!".

1. Choose the New Folder icon in the header toolbar and enter src as the folder name.
2. Select the newly created folder and create a new index.html file inside it by choosing the New File icon.
3. Paste the following code in the newly created index.html file and select Save:

index.html

<!DOCTYPE html> <html>
 <head>
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta charset="utf-8">
 <title>SAPUI5 Walkthrough</title>
 <script
 id="sap-ui-bootstrap"
 src="/resources/sap-ui-core.js"
 data-sap-ui-theme="sap_belize"
 data-sap-ui-libs="sap.m"
 data-sap-ui-compatVersion="edge"
 data-sap-ui-async="true"
 data-sap-ui-onInit="module:my/app/main"
 data-sap-ui-resourceRoots='{"my.app": "./"}'
 ></script>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 47

 </head>
 <body class="sapUiBody" id="content">
 </body> </html>

4. Create new file main.js and paste the following code into it:
main.js

sap.ui.define(['sap/m/Text'], function(Text) { new Text({
 text: "OpenUI5 is loaded successfully!"
 }).placeAt("content"); });

 Caution
Adapt the path where the resources are located (src="/resources/sap-ui-core.js") according to
your installation. For OpenUI5 you can use src="https://openui5.hana.ondemand.com/
resources/sap-ui-core.js". For accessing SAPUI5 on the SAP Cloud Platform, for example, use
src="https://sapui5.hana.ondemand.com/resources/sap-ui-core.js".

You can use this reference to the latest stable version of SAPUI5 for the tutorial or for testing purposes, but
never use this for productive use. In an actual app, you always have to specify an SAPUI5 version explicitly.

For more information, see Variant for Bootstrapping from Content Delivery Network [page 696].

Run the App

SAP Web IDE comes with integrated testing features that let you run the app on a central server without having
to set up any additional infrastructure. You can run the app by selecting the src/index.html file and clicking
the run button in the header toolbar.

This launches the app on a central server and a testing tool that allows you to configure the screen size and
orientation of the device. This feature can be used to test apps that are specifically targeted for mobile, tablet,
and desktop devices. You can change the resolution and the orientation in the header bar very easily.

If you don't want to run the app in the testing tool, you can adjust the Run Configurations for the project:

1. Right-click any file in the project and select Run Run Configurations .
2. Choose + and select Web Application to add a new run configuration.
3. To save the configuration and run your project, choose Save and Run.

For more information on how to run projects, search for Configuring How to Run Projects in the SAP Web IDE
Developer Guide for the SAP Cloud Platform on the SAP Help Portal at https://help.sap.com/viewer/p/CP.

48 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://help.sap.com/viewer/p/CP

Create a Northwind Destination

Configure a destination in the SAP Cloud Platform Cockpit in order to bypass the same-origin policy of the
browser.

To be able to test your app, you can use a remote OData service that provides product data from the Northwind
demo service of the OData group.

In the navigation bar of the SAP Cloud Platform Cockpit, choose Destinations and then choose New Destination
in the toolbar.

Enter the following values into the corresponding fields:

Field Value

Name northwind

Type HTTP

Description Northwind OData Service

URL https://services.odata.org

Proxy Type Internet

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 49

Field Value

Authentication NoAuthentication

Also, enter the following properties in the section Additional Properties:

Property Value

WebIDEEnabled true

WebIDESystem Northwind

WebIDEUsage odata_gen

Use default JDK truststore Set the checkmark.

neo-app.json

With this configuration you can use the destination for any app inside SAP Web IDE. Whenever an app calls a
(local) service beginning with /destinations/northwind/*, the created destination becomes active as a
simple proxy. This helps to prevent any possible issues related to the same-origin policy of browsers. For this,
you need to add another route to the neo-app.json:

{ "welcomeFile": "index.html",
 "routes": [
 {

 "path": "/resources",
 "target": {
 "type": "service",
 "name": "sapui5",
 "version": "snapshot",
 "entryPath": "/resources"
 },
 "description": "SAPUI5 Resources"
 },
 {
 "path": "/test-resources",
 "target": {
 "type": "service",
 "name": "sapui5",
 "entryPath": "/test-resources"
 },
 "description": "SAPUI5 Test Resources" },
 {
 "path": "/destinations/northwind",
 "target": {
 "type": "destination",
 "name": "northwind"
 },
 "description": "Northwind OData Service"
 }]

50 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

}

webapp/manifest.json

In the app descriptor, the service URL is then defined relative to the destination path specified above:

... "sap.app": {
 "dataSources": {
 "": { "uri": "/destinations/northwind/V2/Northwind/Northwind.svc/", "type": "OData",
 "settings": {
 "odataVersion": "2.0"
 }
 }
 }
} ...

Developing OpenUI5

This section provides information for the initial setup, development workflow, and how tests are executed.

Setting Up the OpenUI5 Development Environment

OpenUI5 content is developed in an environment based on Node.js. UI5 Tooling is used as development server
and build tool.

Basic Setup

The basic setup allows you to start a server for the OpenUI5 project in an easy way:

1. Install Node.js. This also includes npm, the node package manager.
2. Clone the OpenUI5 Git repository. You can download and install Git from http://git-scm.com/download :

git clone https://github.com/SAP/openui5.git

3. Install all npm dependencies. Optionally, you can also use Yarn for this. This is described in the Advanced
Setup section.

cd openui5 npm install

4. Start the server and open the TestSuite:

npm run testsuite

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 51

http://help.sap.com/disclaimer?site=http%3A%2F%2Fgit-scm.com%2Fdownload

To just start the server, enter:

npm start

5. Your default browser should open automatically and show the TestSuite: You're done!

Configuring the TestSuite Server
The OpenUI5 TestSuite server can be configured using environment variables. For example, to allow remote
access to the server, that is, from an interface other than your computer's loopback/localhost, you can
configure the server as follows:

OPENUI5_SRV_ACC_RMT_CON=true npm start

The following server configuration is available:

● OPENUI5_SRV_OPEN=index.html
● OPENUI5_SRV_ACC_RMT_CON=true
● OPENUI5_SRV_PORT=9090

Advanced Setup
The basic setup described above uses a custom setup focused on starting the UI5 server for the OpenUI5
TestSuite project in an easy way.

The advanced setup allows you to use the UI5 CLI and all of its features. The use of Yarn is required in this
setup, as npm cannot handle workspaces yet.

Use the advanced setup if you plan to do any of the following:

● Build an OpenUI5 project.
● Serve a project with HTTPS or HTTP/2.
● Use any of the other UI5 CLI features and parameters.

For the advanced setup, proceed as follows:

1. Install the UI5 Tooling CLI globally, seeUI5 Tooling: Installing the UI5 CLI .
2. Install Yarn. See FAQ: What's the thing with Yarn? .
3. In the OpenUI5 repository root directory, install all dependencies using Yarn. This also links all OpenUI5

libraries between each other.

yarn

4. Navigate into the TestSuite project and start the UI5 server:

cd src/testsuite ui5 serve --open index.html

You can now use the UI5 CLI in any of your local OpenUI5 libraries. Whenever you make changes to your
OpenUI5 repository's node_modules directory (e.g. by executing npm install), you may need to recreate
the links between the OpenUI5 libraries. You can always do this by executing yarn in the OpenUI5 root
directory.

Legacy Setup
You can continue to use the legacy Grunt-based setup. However, the setups described above are recommended
for working with the OpenUI5 repository.

52 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/disclaimer?site=https%3A%2F%2Fgithub.com%2FSAP%2Fui5-tooling%23installing-the-ui5-cli
http://help.sap.com/disclaimer?site=https%3A%2F%2Fgithub.com%2FSAP%2Fui5-tooling%23whats-the-thing-with-yarn

To use the legacy setup, execute npm run start-grunt. Note that in the past this was the default npm
start behavior.

The legacy setup has the following differences to the standard setups as described above:

● testsuite path prefix:
Standard setup: http://localhost:8080/test-resources/testsuite/testframe.html
Legacy setup: http://localhost:8080/testsuite/test-resources/testsuite/
testframe.html

● SDK documentation generated by grunt docs can only be served using the legacy setup.

The Development Process

For a regular development, no build is required. Just modify any source file and reload your browser. Now that's
simple, isn't it?

This build-free development process does not feature optimized runtime performance. For example, there are
many small requests, which would not be acceptable for remote connections. But it is the most convenient way
to modify the OpenUI5 sources. Under the hood there are mainly two mechanisms applied that adapt the
sources:

● The Git repository path contains a folder named like the respective control library (e.g. "sap.m"), which is
omitted at runtime. The UI5 CLI server is mapping the locations.

● The CSS files are transformed (server-side) by the LESS pre-processor during the first request after a CSS
file has been modified. This includes mirroring for right-to-left support.

When you work on OpenUI5 applications or libraries that already make use of the OpenUI5 npm packages, such
as the OpenUI5 sample app, you can link your local OpenUI5 repository into that project. This allows you to
make changes to the project itself as well as to the OpenUI5 libraries simultaneously and test them
immediately.

For a detailed step-by-step guide on how to achieve such a setup with the OpenUI5 sample app, see Working
With Local Dependencies .

Building OpenUI5

The UI5 Tooling is used to build a production-ready version of OpenUI5. Every library needs to be built
individually.

Usage:

ui5 build

The build is responsible for the following tasks:

● Creation of the bundled library.css and library-RTL.css file for all available themes
● Minification of CSS
● Minification of JavaScript
● Bundling the JavaScript modules of the libraries into a single library-preload.js file
● Bundling of the most important OpenUI5 Core modules into sap-ui-core.js

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 53

http://help.sap.com/disclaimer?site=https%3A%2F%2Fgithub.com%2FSAP%2Fopenui5-sample-app%23working-with-local-dependencies
http://help.sap.com/disclaimer?site=https%3A%2F%2Fgithub.com%2FSAP%2Fopenui5-sample-app%23working-with-local-dependencies

If you encounter errors like the one below, execute yarn in the OpenUI5 root directory. There may be new build
tools required which need to be downloaded first.

Error: Cannot find module 'xyz'

Testing OpenUI5
All OpenUI5 code must conform to a certain ruleset which is checked with ESLint.

To run an ESLint check, navigate to the root directory of the repository and execute:

npm run lint

Running Tests

Tests can be executed automatically with the Karma Test-Runner.

To run tests of a library, the --lib needs to be passed. The <library-name> corresponds to the folder
within ./src/, e.g. sap.m.

npm run karma -- --lib=<library-name>

This executes all tests of that library in watch mode, which will automatically re-run tests in case of file
changes.

Example

npm run karma -- --lib=sap.m

Running a Specific Test
Instead of executing all tests of a library, you can also only run one test or a testsuite.

To find the URL, open http://localhost:8080/test.html and search for the test. Copy the URL and
remove the origin part (http://localhost:8080/), so that it starts with resources or test-resources.

npm run karma -- --lib=<library-name> --ui5.testpage="<testpage-url>"

 Note
The corresponding --lib option still needs to be provided accordingly.

Example

npm run karma -- --lib=sap.m --ui5.testpage="resources/sap/ui/test/starter/
Test.qunit.html?testsuite=test-resources/sap/m/qunit/
testsuite.mobile.qunit&test=Button"

Coverage
You enable coverage reporting by additionally passing the --coverage option:

npm run karma -- --lib=<library-name> --coverage

54 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Continuous integration (CI)
You enable the continuous integration mode by additionally passing the --ci option. This enables Chrome
headless and disables the watch mode, so the execution stops after all tests have been executed:

npm run karma -- --lib=<library-name> --ci

You can combine the options --ci and --coverage.

Development for Hybrid Web Containers

You can develop mobile apps as hybrid app consisting of a native app wrapper, for example PhoneGap, and an
HTML viewer to display the content on the user interface.

Hybrid apps have the advantage that you can publish them in app stores. Also, by embedding the application
code and the SAPUI5 library files into the hybrid container, the user needs to install the files only once and does
not need to download them every time he starts the application. But then the library size becomes important,
because every user has to install the files, whereas in web applications, the library is deployed on a server and
the user only needs to download the required parts of the library at runtime.

To include the resources you need in your hybrid app, you can use the static mobile runtime package
openui5-runtime-mobile*.zip. The package is not contained in SAPUI5, but in the Open Source version
OpenUI5.

The library size of these packages is rather small because the content that is most likely not needed has been
removed, for example test pages. A package contains the debug version of all JavaScript files and the
optimized and minimized version. Thus, you can use the package for productive use as well as for debugging
purposes. To use this package in an app wrapper, such as PhoneGap, unzip the package in the respective
resource location of the app development project. The app wrapper build then includes the files and makes
them available at runtime.

To ensure that the file is small, it only contains the control libraries that are most likely used and not all control
libraries. Depending on the hybrid app it may be necessary to add libraries by copying them from the
respective folder of the runtime, or to delete libraries to reduce the package size and, thus, also reduce the
installation size for the user.

The file contains the following control libraries:

● sap.f
● sap.m
● sap.tnt
● sap.ui.core
● sap.ui.layout
● sap.ui.suite
● sap.ui.unified
● sap.uxap

The decision, which libraries to include or not may be disputed. It is only based on a rule of thumb, and
adaptations are required anyway for many apps.

Also, the mobile/hybrid package excludes certain types of files which are typically not needed. Your mileage
may vary, so you might need to add the respective files for the requirements of your specific app. The

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 55

library-preload.js files which contain all controls from a library to reduce the number of HTTP requests
are not required in hybrid apps because there is no HTTP latency. SAPUI5 will by default try to access them, so
you might see a failed attempt to load these files in the log file or developer tools. These error messages do not
hurt, though, and you can get rid of them by declaring that no such files exist and by setting the following
configuration in the SAPUI5 bootstrap script tag:

data-sap-ui-preload=""

Optimization of the Package Size

Although the static package is small enough to be included in hybrid apps, you can reduce the size further and
optimize the content for a specific application by deleting additional files. The following list gives some
examples:

● You can delete all library folders if the respective control library is not needed. For example, in the OpenUI5
version you can delete the suite and the unified folder.

● In each of the /resources/sap/* ... */themes folders, you can delete all theme folders except the
one for the theme you are using.

 Note
For all JavaScript files, an optimized version and a debug (dbg) version exists. If you delete the files, make
sure that you always delete both versions. If you can do without easy debugging and want to achieve a
minimum installation size, we recommend to delete all *-dbg.js files.

You can delete further files, but the size reduction is limited and to find out the files that are not required gets
increasingly difficult.

Device Ready Event

The hybrid web container needs some time for initialization. During this time, the sending of AJAX requests is
blocked, meaning that JavaScript code stops once an AJAX request is sent and the code execution stops as
well. This leads to a UI freeze effect.

The OData model in SAPUI5 uses AJAX requests internally and the OData model initialization must therefore
be done after the hybrid container is ready to avoid a user interface freeze. After initialization, the hybrid web
containers fires an event, which is called deviceready in PhoneGap. To fix this issue, move the code where the
OData model is created and set to the core object or any other controls' model property to the deviceready
event listener.

Example:

<script> <!-- put the following code in the beginning of the application code -->
function appReady(){
 sap.ui.getCore().setModel(new sap.ui.model.odata.v2.ODataModel(<ODATA_URL>));
}
<!-- bind to the deviceready event -->
document.addEventListener("deviceready", appReady, false);

56 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 </script>

Cross Domain Restrictions

If you load data from an external server or service using AJAX, the external domain has to be configured inside
the hybrid web container to make the AJAX request go through the cross domain restriction. The following
findings result from an integration of the demo applications into PhoneGap:

● Android
If the AJAX code runs inside the webview in Android, no cross domain restriction exists. This means that
you can load data using AJAX from everywhere. The PhoneGap documentation, however, still says that the
domain needs to be configured in one XML file.

● iOS
The restriction in webview in iOS still exists and you need to add the domain that is visited using AJAX to a
whitelist file to bypass the restriction. For detailed information about the whitelist file, see the PhoneGap
documentation on the PhoneGap website.

Quick Start

Unleash your SAPUI5 skills with this simple three-step tutorial. We start with a simple "Hello World" example,
and convert it to a minimalist two-page app.

We create an app with two pages and a navigation button to navigate between the pages.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 57

Preview

Figure 1: Ready...Steady...Go!

 Tip
If you want to skip one or more steps, you can jump directly to the step you're interested in. Then simply
download the code from the previous step, and start learning from there. You can download the code for
each step in the the Quick Start Sample.

 Note
All you need to build your app, is a Web browser and a development environment of your choice. For more
information, see the links below.

Related Information

Get Started: Setup, Tutorials, and Demo Apps [page 38]
Development Environment [page 41]

58 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/entity/sap.m.tutorial.quickstart

Step 1: Ready...

Let's get you ready for your journey! We bootstrap SAPUI5 in an HTML page and implement a simple "Hello
World" example.

Preview

Figure 2: The browser shows a "Ready" button that triggers a "Hello World" message

Coding

You can view and download all files at Quick Start - Step 1.

webapp/index.html (new)

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Quickstart Tutorial</title>
 <script id="sap-ui-bootstrap"
 src="../../../../../../../../resources/sap-ui-core.js"
 data-sap-ui-theme="sap_belize"
 data-sap-ui-libs="sap.m"
 data-sap-ui-resourceroots='{"Quickstart": "./"}'
 data-sap-ui-onInit="module:Quickstart/index"

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 59

https://sapui5.hana.ondemand.com/#/sample/sap.m.tutorial.quickstart.01/preview

 data-sap-ui-compatVersion="edge"
 data-sap-ui-async="true">
 </script>
</head>
<body class="sapUiBody" id="content"></body>
</html>

In your development environment (SAP Web IDE is recommended), create the folder webapp. In this folder,
create an index.html file, and paste the above code to this file.

With the script tag, we load and initialize SAPUI5 with typical bootstrap parameters. We define, for example, a
theme, control libraries, as well as performance and compatibility flags.

First, we need a source to load SAPUI5 from. To keep things convenient, we use the path to our Content
Delivery Network (CDN) for OpenUI5.

The bootstrap property resourceroots defines the namespace for all resources of the app. This way, we can
easily reference additional files that we are about to create in this step.

The index module that we load with the onInit parameter will hold the application logic.

The body tag is defined with the sapUiBody class and the content ID. This is where we will add the content of
the app in the next steps.

 Tip
For more information about bootstrapping from the CDN, see Variant for Bootstrapping from Content
Delivery Network [page 696].

webapp/index.js (New)

sap.ui.define([
 "sap/m/Button",
 "sap/m/MessageToast"
], function (Button, MessageToast) {
 "use strict";

 new Button({
 text: "Ready...",
 press: function () {
 MessageToast.show("Hello World!");
 }
 }).placeAt("content");

});

In your webapp folder, create a new file index.js that will be called as soon as SAPUI5 is loaded and
initialized.

We load two UI controls - a button and a message toast - and place the button in the element with the content
ID. The button is defined with a text property and a callback attached to its press event.

Now open the index.html file in your browser. When the button is pressed, a message toast with the "Hello
World" message is shown at the bottom of the screen.

60 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

neo-app.json (new, optional)

 Note
This file is necessary if you use SAP Web IDE as your development environment. It contains all project
settings and is located in the root folder of your project. This file is not part of the downloadable code in the
Demo Kit, so just copy the content from here.

{
 "welcomeFile": "/webapp/index.html",
 "routes": [
 {
 "path": "/resources",
 "target": {
 "type": "application",
 "name": "sapui5preview",
 "entryPath": "/resources"
 },
 "description": "SAPUI5 Resources"
 },
 {
 "path": "/resources",
 "target": {
 "type": "service",
 "name": "sapui5",
 "entryPath": "/resources"
 },
 "description": "SAPUI5 Resources"
 }
],
 "sendWelcomeFileRedirect": true
}

Related Information

Development Environment [page 41]
Create a neo-app.json Project Configuration File [page 46]
Variant for Bootstrapping from Content Delivery Network [page 696]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 61

Step 2: Steady...

Now we extend our minimalist HTML page to a basic app with a view and a controller.

Preview

Figure 3: The browser shows a Steady button in an app

Coding

You can view and download all files at Quick Start - Step 2.

webapp/index.js

sap.ui.define(["sap/ui/core/mvc/XMLView"], function (XMLView) { "use strict"; XMLView.create({viewName: "Quickstart.App"}).then(function (oView) {
 oView.placeAt("content");
 }); });

Now we replace most of the code in this file: We remove the inline button from the previous step, and introduce
a proper XML view to separate the presentation from the controller logic. We prefix the view name
Quickstart.App with our newly defined namespace. The view is loaded asynchronously.

62 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/sample/sap.m.tutorial.quickstart.02/preview

Similar to the step before, the view is placed in the element with the content ID after it has finished loading.

webapp/App.view.xml (New)

<mvc:View
 controllerName="Quickstart.App"
 displayBlock="true"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <App>
 <Page title="My App">
 <Button
 text="Steady..."
 press=".onPress"
 type="Emphasized"
 class="sapUiSmallMargin"/>
 </Page>
 </App>
</mvc:View>

The presentation logic is now defined declaratively in an XML view.

UI controls are located in libraries that we define in the View tag. In our case, we use the bread-and-butter
controls from sap.m.

The new controls in the view are an App and a Page. They define a Web app with a header bar and a title.

The button from the previous examples now also defines a type and a class attribute. This improves the
layout of our button and makes it stand out more.

We outsource the controller logic to an app controller. The .onPress event now references a function in the
controller.

webapp/App.controller.js (New)

sap.ui.define([
 "sap/ui/core/mvc/Controller",
 "sap/m/MessageToast"
], function (Controller, MessageToast) {
 "use strict";

 return Controller.extend("Quickstart.App", {
 onPress : function () {
 MessageToast.show("Hello App!");
 }
 });

});

In our controller, we load the Controller base class and extend it to define the behavior of our app. We also
add the event handler for our button.

The MessageToast is also loaded as a dependency. When the button is pressed, we now display a "Hello App"
message.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 63

Now reload your index.html file. You can see a title bar and a blue button that reacts to your input.
Congratulations, you have created our very first app.

Related Information

XML View [page 787]
Controller [page 807]

64 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Step 3: Go!

Finally, we add a second page to our app showcasing some of the key SAPUI5 concepts.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 65

Preview

Figure 4: The second page shows plenty of UI controls and concepts to explore

Coding

You can view and download all files at Quick Start - Step 3.

66 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/sample/sap.m.tutorial.quickstart.03/preview

webapp/index.html

<!DOCTYPE html> <html>
<head>
 <meta charset="utf-8">
 <title>Quickstart Tutorial</title>
 <script id="sap-ui-bootstrap"
 src="../../../../../../../../resources/sap-ui-core.js"
 data-sap-ui-theme="sap_belize" data-sap-ui-libs="sap.m, sap.ui.layout, sap.tnt" data-sap-ui-resourceroots='{"Quickstart": "./"}'
 data-sap-ui-onInit="module:Quickstart/index"
 data-sap-ui-compatVersion="edge"
 data-sap-ui-async="true">
 </script>
</head>
<body class="sapUiBody" id="content"></body> </html>

Let's spice up our app by adding some more UI controls. We add two more libraries in the bootstrap tag:
sap.ui.layout and sap.tnt.

 Tip
To browse all available controls and libraries, see the Samples.

webapp/App.view.xml

<mvc:View controllerName="Quickstart.App"
 displayBlock="true"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc" xmlns:l="sap.ui.layout"
 xmlns:core="sap.ui.core"
 xmlns:tnt="sap.tnt"> <App id="app"> <Page title="My App">
 <Button icon="sap-icon://sap-ui5"
 text="Go!" press=".onPress"
 type="Emphasized"
 class="sapUiSmallMargin"/>
 </Page> <Page id="intro" title="Create Enterprise-Ready Web Apps with Ease">
 <l:BlockLayout background="Light">
 <l:BlockLayoutRow>
 <l:BlockLayoutCell>
 <core:Icon color="#1873B4" src="sap-icon://sap-ui5"
size="20rem" class="sapUiMediumMarginBottom" width="100%"/>
 <Title level="H1" titleStyle="H1" text="This is UI5!"
width="100%" textAlign="Center"/>
 </l:BlockLayoutCell>
 </l:BlockLayoutRow>
 <l:BlockLayoutRow>
 <l:BlockLayoutCell>
 <FlexBox items="{/features}" justifyContent="Center"

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 67

https://sapui5.hana.ondemand.com/#/controls

wrap="Wrap" class="sapUiSmallMarginBottom">
 <tnt:InfoLabel text="{}" class="sapUiSmallMarginTop
sapUiSmallMarginEnd"/>
 </FlexBox>
 </l:BlockLayoutCell>
 </l:BlockLayoutRow>

 <l:BlockLayoutRow>
 <l:BlockLayoutCell>
 <Panel headerText="Are you ready?" expandable="true">
 <Switch change=".onChange" customTextOn="yes"
customTextOff="no"/>
 <l:HorizontalLayout id="ready" visible="false"
class="sapUiSmallMargin">
 <Text text="Ok, let's get you started!"
class="sapUiTinyMarginEnd"/>
 <Link text="Learn more" href="https://
openui5.hana.ondemand.com/"/>
 </l:HorizontalLayout>
 </Panel>
 </l:BlockLayoutCell>
 </l:BlockLayoutRow>
 </l:BlockLayout>
 </Page> </App> </mvc:View>

We also define the two new libraries in the View tag and give them a meaningful prefix. To the App control, we
will assign an ID so that the controller can easily identify it.

The button now receives an icon and triggers our navigation to page two. Therefore, we change the text to
"Go!".

Copy the second Page control with all its content into the view. It is defined with the intro ID and a new title. It
contains several new UI controls like a BlockLayout, an Icon, and a Panel.

We use essential SAPUI5 concepts like navigation, data binding, and user interaction to define a nice
playground on the second page of our app.

Don't worry too much about the details, we will explain them in the next tutorials.

webapp/App.controller.js

sap.ui.define(["sap/ui/core/mvc/Controller",
 "sap/m/MessageToast", "sap/ui/model/json/JSONModel"], function (Controller, MessageToast, JSONModel) { "use strict";
 return Controller.extend("Quickstart.App", {
 onPress : function () { MessageToast.show("Hello UI5!"); this.byId("app").to(this.byId("intro")); },

 onInit : function () {
 this.getView().setModel(new JSONModel({
 features: [
 "Enterprise-Ready Web Toolkit",
 "Powerful Development Concepts",
 "Feature-Rich UI Controls",

68 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 "Consistent User Experience",
 "Free and Open Source",
 "Responsive Across Browsers and Devices"
]
 })
);
 },

 onChange: function (oEvent) {
 var bState = oEvent.getParameter("state");
 this.byId("ready").setVisible(bState);
 } }); });

The onPress function now also triggers the navigation to the intro page. We fetch the app control by its ID
and instruct it to navigate by calling the to method.

The onInit method is a lifecycle hook that is called automatically when the controller is initialized. It defines a
simple JSON model with some texts located at the features key.

We display these texts on the second page using data binding. The InfoLabel tag from our view is a template
that is repeated as many times as we have entries in our model.

Finally, we make the Panel in the lower part of the view interactive by attaching an onChange event to the
switch defined there. SAPUI5 comes with a large set of feature-rich controls that you can combine as you need.

Run the app, and navigate to the second page to see some nice UI controls and interaction. If we expand the
panel and click the switch, we toggle the visibility of the text and the link next to it.

You now have a little playground in your app that you can modify and extend as you wish. We intentionally did
not go into all the details. If you want to know more, just continue with the Walkthrough tutorial.

Have fun with SAPUI5!

Related Information

Working with Controls [page 1041]
Data Binding [page 815]
Routing and Navigation [page 1072]

Walkthrough

In this tutorial we will introduce you to all major development paradigms of SAPUI5.

We first introduce you to the basic development paradigms like Model-View-Controller and establish a best-
practice structure of our application. We'll do this along the classic example of “Hello World” and start a new
app from scratch. Next, we'll introduce the fundamental data binding concepts of SAPUI5 and extend our app
to show a list of invoices. We'll continue to add more functionality by adding navigation, extending controls, and
making our app responsive.Finally we'll look at the testing features and the built-in support tools of SAPUI5.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 69

Preview

 Tip
You don't have to do all tutorial steps sequentially, you can also jump directly to any step you want. Just
download the code from the previous step, copy it to your workspace and make sure that the application
runs by calling the webapp/index.html file.

You can view and download the samples for all steps in the in the Demo Kit at Walkthrough. Depending on
your development environment you might have to adjust resource paths and configuration entries.

For more information check the following sections of the tutorials overview page (see Get Started: Setup,
Tutorials, and Demo Apps [page 38]):

70 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/entity/sap.m.tutorial.walkthrough/samples

● Downloading Code for a Tutorial Step [page 40]
● Adapting Code to Your Development Environment [page 40]

Step 1: Hello World!

As you know SAPUI5 is all about HTML5. Let’s get started with building a first “Hello World” with only HTML.

Preview

Figure 5: The browser shows the text "Hello World"

Coding

You can view and download all files at Walkthrough - Step 1.

webapp/index.html (New)

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>SAPUI5 Walkthrough</title>
</head>
<body>
 <div>Hello World</div>
</body>
</html>

Create a new folder webapp which will contain all sources of the app we will create throughout this tutorial.
Therefore, we refer to this folder as “app folder”.

Now create a new root HTML file called index.html in your app folder. An HTML document consists basically
of two sections: head and body. The head part will be used by the browser to process the document. Using
meta tags we can influence the behavior of the browser.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 71

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.walkthrough.01/preview

In this case we will tell the browser to use UTF-8 as the document character set. We will also give our app a title
that will be displayed in the browser. Be aware that our hard-coded title can be overruled by the app, for
example to show a title in the language of the user.

The body part describes the layout of the page. In our case we simply display “Hello World” by using a p tag.

 Tip
Typically, the content of the webapp folder is deployed to a Web server as an application package. When
deploying the webapp folder itself the URL for accessing the index.html file contains webapp in the path.

Conventions

● Name the root HTML file of the app index.html and locate it in the webapp folder.

Step 2: Bootstrap

Before we can do something with SAPUI5, we need to load and initialize it. This process of loading and
initializing SAPUI5 is called bootstrapping. Once this bootstrapping is finished, we simply display an alert.

Preview

Figure 6: An alert "UI5 is ready" is displayed

Coding

You can view and download all files at Walkthrough - Step 2.

 Note
SAPUI5 is a JavaScript library that can either be loaded from the same Web server where the app resides,
or from a different server. If SAPUI5 is deployed somewhere else on the server or you want to use a different
server, then you need to adjust the corresponding paths in the bootstrap (here: src="/resources/sap-
ui-core.js") in this tutorial according to your own requirements.

72 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.walkthrough.02/preview

You can use this reference to the latest stable version of SAPUI5 for the tutorial or for testing purposes, but
never use this for productive use. In an actual app, you always have to specify an SAPUI5 version explicitly.

For more information about the CDN, see Variant for Bootstrapping from Content Delivery Network [page
696].

In case you are using SAP Web IDE, you can right-click the project and select New HTML5 Application
Descriptor to make the /resources… reference work. This creates the neo-app.json file, which
configures a URL mapping for this path.

webapp/index.html

<!DOCTYPE html> <html>
<head>
 <meta charset="utf-8">
 <title>SAPUI5 Walkthrough</title> <script
 id="sap-ui-bootstrap"
 src="https://openui5.hana.ondemand.com/resources/sap-ui-core.js"
 data-sap-ui-theme="sap_belize"
 data-sap-ui-libs="sap.m"
 data-sap-ui-compatVersion="edge"
 data-sap-ui-async="true"
 data-sap-ui-onInit="module:sap/ui/demo/walkthrough/index"
 data-sap-ui-resourceroots='{
 "sap.ui.demo.walkthrough": "./"
 }'>

 </script> </head>
<body>
<div>Hello World</div>
</body> </html>

In this step, we load the SAPUI5 framework from our local webserver and initialize the core modules with the
following configuration options:

● The src attribute of the <script> tag tells the browser where to find the SAPUI5 core library – it initializes
the SAPUI5 runtime and loads additional resources, such as the libraries specified in the data-sap-ui-
libs attribute.

● The SAPUI5 controls support different themes, we choose sap_belize as our default theme.
● We specify the required UI library sap.m containing the UI controls we need for this tutorial.
● To make use of the most recent functionality of SAPUI5 we define the compatibility version as edge.
● We configure the process of “bootstrapping” to run asynchronously.

This means that the SAPUI5 resources can be loaded simultaneously in the background for performance
reasons.

● We define the module to be loaded initially in a declarative way. With this, we avoid directly executable
JavaScript code in the HTML file. This makes your app more secure. We will create the script that this
references to further down in this step.

● We tell SAPUI5 core that resources in the sap.ui.demo.walkthrough namespace are located in the
same folder as index.html. This is, for example, necessary for apps that run in the SAP Fiori launchpad.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 73

webapp/index.js (New)

sap.ui.define([], function () {
 "use strict";
 alert("UI5 is ready");
});

Now, we create a new index.js script that will contain the application logic for this tutorial step. We do this to
avoid having executable code directly in the HTML file for security reasons. This script will be called by the
index.html. We defined it there as a module in a declarative way.

Related Information

Bootstrapping: Loading and Initializing [page 692]
Standard Variant for Bootstrapping [page 694]
Compatibility Version Information [page 718]
Variant for Bootstrapping from Content Delivery Network [page 696]
https://jquery.org/
Content Security Policy [page 1481]

Step 3: Controls

Now it is time to build our first little UI by replacing the “Hello World” text in the HTML body by the SAPUI5
control sap.m.Text. In the beginning, we will use the JavaScript control interface to set up the UI, the control
instance is then placed into the HTML body.

Preview

Figure 7: The "Hello World" text is now displayed by a SAPUI5 control

Coding

You can view and download all files at Walkthrough - Step 3.

74 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/disclaimer?site=https%3A%2F%2Fjquery.org%2F
https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.walkthrough.03/preview

webapp/index.html

<!DOCTYPE html> <html>
<head>
 <meta charset="utf-8">
 <title>SAPUI5 Walkthrough</title>
 <script
 id="sap-ui-bootstrap"
 src="https://openui5.hana.ondemand.com/resources/sap-ui-core.js"
 data-sap-ui-theme="sap_belize"
 data-sap-ui-libs="sap.m"
 data-sap-ui-compatVersion="edge"
 data-sap-ui-async="true"
 data-sap-ui-onInit="module:sap/ui/demo/walkthrough/index"
 data-sap-ui-resourceroots='{
 "sap.ui.demo.walkthrough": "./"
 }'>
 </script>
</head> <body class="sapUiBody" id="content">
</body> </html>

The class sapUiBody adds additional theme-dependent styles for displaying SAPUI5 apps.

webapp/index.js

sap.ui.define(["sap/m/Text"], function (Text) { "use strict"; new Text({
 text: "Hello World"
 }).placeAt("content"); });

Instead of using native JavaScript to display a dialog we want to use a simple SAPUI5 control. Controls are used
to define appearance and behavior of parts of the screen.

In the example above, the callback of the init event is where we now instantiate a SAPUI5 text control. The
name of the control is prefixed by the namespace of its control library sap/m/ and the options are passed to
the constructor with a JavaScript object. For our control we set the text property to the value “Hello World”.

We chain the constructor call of the control to the standard method placeAt that is used to place SAPUI5
controls inside a node of the document object model (DOM) or any other SAPUI5 control instance. We pass the
ID of a DOM node as an argument. As the target node we use the body tag of the HTML document and give it
the ID content.

All controls of SAPUI5 have a fixed set of properties, aggregations, and associations for configuration. You can
find their descriptions in the Demo Kit. In addition, each controls comes with a set of public functions that you
can look up in the API reference.

Don’t forget to remove the “Hello World” p.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 75

 Note
Only instances of sap.ui.core.Control or their subclasses can be rendered stand-alone and have a
placeAt function. Each control extends sap.ui.core.Element that can only be rendered inside
controls. Check the API reference to learn more about the inheritance hierarchy of controls. The API
documentation of each control refers to the directly known subclasses.

Related Information

Working with Controls [page 1041]
API Reference: sap.m.Text
Samples: sap.m.Text
API Reference: sap.ui.core.Control
API Reference: sap.ui.core.Element
API Reference: sap.ui.base.ManagedObject

Step 4: XML Views

Putting all our UI into the index.html file will very soon result in a messy setup and there is quite a bit of work
ahead of us. So let’s do a first modularization by putting the sap.m.Text control into a dedicated view.

SAPUI5 supports multiple view types (XML, HTML, JavaScript). We choose XML as this produces the most
readable code and will force us to separate the view declaration from the controller logic. Yet the look of our UI
will not change.

Preview

Figure 8: The "Hello World" text is now displayed by a SAPUI5 control (No visual changes to last step)

Coding

You can view and download all files at Walkthrough - Step 4.

76 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.Text.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.m.Text/samples
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.Control.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.Element.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.base.ManagedObject.html
https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.walkthrough.04/preview

webapp/view/App.view.xml (New)

<mvc:View xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc"> </mvc:View>

We create a new view folder in our app and a new file for our XML view inside the app folder. The root node of
the XML structure is the view. Here, we reference the default namespace sap.m where the majority of our UI
assets are located. We define an additional sap.ui.core.mvc namespace with alias mvc, where the SAPUI5
views and all other Model-View-Controller (MVC) assets are located.

 Note
The namespace identifies all resources of the project and has to be unique. If you develop your own
application code or controls, you cannot use the namespace prefix sap, because this namespace is
reserved for SAP resources. Instead, simply define your own unique namespace (for example,
myCompany.myApp).

webapp/view/App.view.xml

<mvc:View xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc"> <Text text="Hello World"/> </mvc:View>

Inside the view tag, we add the declarative definition of our text control with the same properties as in the
previous step. The XML tags are mapped to controls and the attributes are mapped to the properties of the
control.

webapp/index.js

sap.ui.define(["sap/ui/core/mvc/XMLView"], function (XMLView) { "use strict"; XMLView.create({
 viewName: "sap.ui.demo.walkthrough.view.App"
 }).then(function (oView) {
 oView.placeAt("content");
 }); });

We replace the instantiation of the sap.m.Text control by our new App XML view. The view is created by a
factory function of SAPUI5 which makes sure that the view is correctly configured and can be extended by
customers. The name is prefixed with the namespace sap.ui.demo.walkthrough.view in order to uniquely
identify this resource.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 77

 Note
From this step onwards, it is necessary to run the app on a Web server. We structure the app with multiple
files that are loaded from the local file system. Without a Web server, this is prevented by the browser due
to security reasons. If the error message "sap is not defined" appears in the developer tools of the browser,
you need to check the resource path in the bootstrap.

You can find more information about how to install a Web server for your particular environment at
Development Environment [page 41].

Conventions

● View names are capitalized
● All views are stored in the view folder
● Names of XML views always end with *.view.xml
● The default XML namespace is sap.m
● Other XML namespaces use the last part of the SAP namespace as alias (for example, mvc for

sap.ui.core.mvc)

Related Information

Model View Controller (MVC) [page 784]
Views [page 787]
XML View [page 787]

78 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Step 5: Controllers

In this step, we replace the text with a button and show the “Hello World” message when the button is pressed.
The handling of the button's press event is implemented in the controller of the view.

Preview

Figure 9: A Say Hello button is added

Coding

You can view and download all files at Walkthrough - Step 5.

webapp/view/App.view.xml

<mvc:View controllerName="sap.ui.demo.walkthrough.controller.App" xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc"> <Button
 text="Say Hello"
 press=".onShowHello"/> </mvc:View>

We add a reference to the controller, and replace the text control with a button with text “Say Hello”. The button
triggers the .onShowHello event handler function when being pressed. We also have to specify the name of
the controller that is connected to the view and holds the .onShowHello function by setting the
controllerName attribute of the view.

A view does not necessarily need an explicitly assigned controller. You do not have to create a controller if the
view is just displaying information and no additional functionality is required. If a controller is specified, it is
instantiated after the view is loaded.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 79

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.walkthrough.05/preview

webapp/controller/App.controller.js (New)

sap.ui.define([
 "sap/ui/core/mvc/Controller"
], function (Controller) {
 "use strict";
 return Controller.extend("", {
 });
});

We create the folder webapp/controller and a new file App.controller.js inside. For now, we ignore the
code that manages the required modules. We will explain this part in the next step.

 Note
The "use strict"; literal expression was introduced by ECMAScript 5. It tells the browser to execute the
code in a so called “strict mode”. The strict mode helps to detect potential coding issues at an early state at
development time, that means, for example, it makes sure that variables are declared before they are used.
Thus, it helps to prevent common JavaScript pitfalls and it’s therefore a good practice to use strict mode.

webapp/controller/App.controller.js

sap.ui.define(["sap/ui/core/mvc/Controller"
], function (Controller) {
 "use strict"; return Controller.extend("sap.ui.demo.walkthrough.controller.App", {
 onShowHello : function () {
 // show a native JavaScript alert
 alert("Hello World");
 }
 }); });

We define the app controller in its own file by extending the Controller object of the SAPUI5 core. In the
beginning it holds only a single function called onShowHello that handles the button's press event by
showing an alert.

Conventions

● Controller names are capitalized
● Controllers carry the same name as the related view (if there is a 1:1 relationship)
● Event handlers are prefixed with on
● Controller names always end with *.controller.js

80 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Related Information

Model View Controller (MVC) [page 784]
Controller [page 807]
API Reference: sap.ui.define

Step 6: Modules

In SAPUI5, resources are often referred to as modules. In this step, we replace the alert from the last exercise
with a proper Message Toast from the sap.m library. The required modules are enabled to be loaded
asynchronously.

Preview

Figure 10: A message toast displays the "Hello World" message

Coding

You can view and download all files at Walkthrough - Step 6.

webapp/controller/App.controller.js

sap.ui.define(["sap/ui/core/mvc/Controller",
 "sap/m/MessageToast"], function (Controller, MessageToast) { "use strict";
 return Controller.extend("sap.ui.demo.walkthrough.controller.App", {
 onShowHello : function () { MessageToast.show("Hello World"); }
 }); });

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 81

https://sapui5.hana.ondemand.com/#/api/sap.ui/methods/sap.ui.define
https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.walkthrough.06/preview

We extend the array of required modules with the fully qualified path to sap.m.MessageToast. Once both
modules, Controller and MessageToast, are loaded, the callback function is called and we can make use of
both objects by accessing the parameters passed on to the function.

This Asynchronous Module Definition (AMD) syntax allows to clearly separate the module loading from the
code execution and greatly improves the performance of the application. The browser can decide when and
how the resources are loaded prior to code execution.

Conventions

● Use sap.ui.define for controllers and all other JavaScript modules to define a global namespace. With
the namespace, the object can be addressed throughout the application.

● Use sap.ui.require for asynchronously loading dependencies but without declaring a namespace, for
example code that just needs to be executed, but does not need to be called from other code.

● Use the name of the artifact to load for naming the function parameters (without namespace).

Related Information

API Reference: sap.ui.define
API Reference: sap.ui.require

Step 7: JSON Model

Now that we have set up the view and controller, it’s about time to think about the M in MVC.

We will add an input field to our app, bind its value to the model, and bind the same value to the description of
the input field. The description will be directly updated as the user types.

Preview

Figure 11: An input field and a description displaying the value of the input field

Coding

You can view and download all files at Walkthrough - Step 7.

82 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui/methods/sap.ui.define
https://sapui5.hana.ondemand.com/#/api/sap.ui/methods/sap.ui.require
https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.walkthrough.07/preview

webapp/controller/App.controller.js

sap.ui.define(["sap/ui/core/mvc/Controller", "sap/m/MessageToast",
 "sap/ui/model/json/JSONModel"], function (Controller, MessageToast, JSONModel) { "use strict";
 return Controller.extend("sap.ui.demo.walkthrough.controller.App", { onInit : function () {
 // set data model on view
 var oData = {
 recipient : {
 name : "World"
 }
 };
 var oModel = new JSONModel(oData);
 this.getView().setModel(oModel);
 }, onShowHello : function () {
 MessageToast.show("Hello World");
 }
 });
});

We add an init function to the controller. onInit is one of SAPUI5’s lifecycle methods that is invoked by the
framework when the controller is created, similar to a constructor function of a control.

Inside the function we instantiate a JSON model. The data for the model only contains a single property for the
“recipient”, and inside this it also contains one additional property for the name.

To be able to use this model from within the XML view, we call the setModel function on the view and pass on
our newly created model. The model is now set on the view.

The message toast is just showing the static "Hello World" message. We will show how to load a translated text
here in the next step.

webapp/view/App.view.xml

<mvc:View controllerName="sap.ui.demo.walkthrough.controller.App"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <Button
 text="Say Hello"
 press=".onShowHello"/> <Input
 value="{/recipient/name}"
 description="Hello {/recipient/name}"
 valueLiveUpdate="true"
 width="60%"/> </mvc:View>

We add an sap.m.Input control to the view. With this, the user can enter a recipient for the greetings. We bind
its value to a SAPUI5 model by using the declarative binding syntax for XML views:

● The curly brackets {…} indicate that data is taken from the value of the recipient's object name
property. This is called "data binding".

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 83

● /recipient/name declares the path in the model.

webapp/index.html

<!DOCTYPE html> <html>
<head>
 <meta charset="utf-8">
 <title>SAPUI5 Walkthrough</title>
 <script
 id="sap-ui-bootstrap"
 src="https://openui5.hana.ondemand.com/resources/sap-ui-core.js"
 data-sap-ui-theme="sap_belize"
 data-sap-ui-libs="sap.m" data-sap-ui-compatVersion="edge" data-sap-ui-async="true"
 data-sap-ui-resourceroots='{
 "sap.ui.demo.walkthrough": "./"
 }'
 data-sap-ui-oninit="module:sap/ui/demo/walkthrough/index">
 </script>
 <script src="index.js"></script>
</head>
<body class="sapUiBody" id="content">
</body> </html>

The binding of the value attribute is a simple binding example that contains only a binding pattern. We can also
combine texts and binding pattern to a more complex binding result as seen in the description attribute. To be
able to use the so-called complex binding syntax we have to enable it globally by setting the bootstrap
parameter data-sap-ui-compatVersion to edge. If this setting is omitted, then only standard binding
syntax is allowed, meaning "Hello {/recipient/name}" would not work anymore while "{/recipient/
name}" would work just fine.

 Note
You can either use data-sap-ui-compatVersion="edge" or data-sap-ui-
bindingSyntax="complex" in the script. By setting the "edge" compatibility mode, the complex binding
syntax is automatically enabled. The edge mode automatically enables compatibility features that
otherwise would have to be enabled manually. For more information, see Compatibility Version Information
[page 718].

Conventions

● Use Hungarian notation for variable names.

84 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Related Information

Model View Controller (MVC) [page 784]
Data Binding [page 815]
JSON Model [page 991]
API Reference: sap.ui.define

Step 8: Translatable Texts

In this step we move the texts of our UI to a separate resource file.

This way, they are all in a central place and can be easily translated into other languages. This process of
internationalization – in short i18n – is achieved in SAPUI5 by using a special resource model and the
standard data binding syntax, but without preceding /.

Preview

Figure 12: An input field and a description displaying the value of the input field (No visual changes to last step)

Coding

You can view and download all files at Walkthrough - Step 8.

webapp/i18n/i18n.properties (New)

showHelloButtonText=Say Hello
helloMsg=Hello {0}

We create the folder webapp/i18n and the file i18n.properties inside. The resolved bundle name is
sap.ui.demo.walkthrough.i18n, as we will see later. The properties file for texts contains name-value
pairs for each element. You can add any number of parameters to the texts by adding numbers in curly
brackets to them. These numbers correspond to the sequence in which the parameters are accessed (starting
with 0).

In this tutorial we will only have one properties file. However, in real-world projects, you would have a separate
file for each supported language with a suffix for the locale, for example i18n_de.properties for German,
i18n_en.properties for English, and so on. When a user runs the app, SAPUI5 will load the language file
that fits best to the user's environment.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 85

https://sapui5.hana.ondemand.com/#/api/sap.ui/methods/sap.ui.define
https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.walkthrough.08/preview

controller/App.controller.js

sap.ui.define(["sap/ui/core/mvc/Controller",
 "sap/m/MessageToast", "sap/ui/model/json/JSONModel",
 "sap/ui/model/resource/ResourceModel"], function (Controller, MessageToast, JSONModel, ResourceModel) { "use strict";
 return Controller.extend("sap.ui.demo.walkthrough.controller.App", {
 onInit : function () {
 // set data model on view
 var oData = {
 recipient : {
 name : "World"
 }
 };
 var oModel = new JSONModel(oData);
 this.getView().setModel(oModel); // set i18n model on view
 var i18nModel = new ResourceModel({
 bundleName: "sap.ui.demo.walkthrough.i18n.i18n"
 });
 this.getView().setModel(i18nModel, "i18n"); },
 onShowHello : function () { // read msg from i18n model
 var oBundle = this.getView().getModel("i18n").getResourceBundle();
 var sRecipient = this.getView().getModel().getProperty("/recipient/
name");
 var sMsg = oBundle.getText("helloMsg", [sRecipient]);
 // show message
 MessageToast.show(sMsg); }
 }); });

In the onInit function we instantiate the ResourceModel that points to the new message bundle file where
our texts are now located (i18n.properties file). The bundle name
sap.ui.demo.walkthrough.i18n.i18n consists of the application namespace
sap.ui.demo.walkthrough (the application root as defined in the index.html), the folder name i18n and
finally the file name i18n without extension. The SAPUI5 runtime calculates the correct path to the resource;
in this case the path to our i18n.properties file. Next, the model instance is set on the view as a named
model with the key i18n. You use named models when you need to have several models available in parallel.

In the onShowHello event handler function we access the i18n model to get the text from the message
bundle file and replace the placeholder {0} with the recipient from our data model. The getProperty method
can be called in any model and takes the data path as an argument. In addition, the resource bundle has a
specific getText method that takes an array of strings as second argument.

The resource bundle can be accessed with the getResourceBundle method of a ResourceModel. Rather
than concatenating translatable texts manually, we can use the second parameter of getText to replace parts
of the text with non-static data. During runtime, SAPUI5 tries to load the correct i18n_*.properties file
based on your browser settings and your locale. In our case we have only created one i18n.properties file
to make it simple. However, you can see in the network traffic of your browser’s developer tools that SAPUI5
tries to load one or more i18n_*.properties files before falling back to the default i18n.properties file.

86 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

webapp/view/App.view.xml

<mvc:View controllerName="sap.ui.demo.walkthrough.controller.App"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <Button text="{i18n>showHelloButtonText}" press=".onShowHello"/>
 <Input
 value="{/recipient/name}"
 description="Hello {/recipient/name}"
 valueLiveUpdate="true"
 width="60%"/>
</mvc:View>

In the XML view, we use data binding to connect the button text to the showHelloButtonText property in the
i18n model. A resource bundle is a flat structure, therefore the preceding slash (/) can be omitted for the path.

 Note
The description text is not completely localized in this example for illustration purposes. To be on the safe
side, we would have to use a similar mechanism as in the controller to use a string from the resource
bundle and replace parts of it. This can be done with the jQuery.sap.formatMessage formatter.

Furthermore, i18n files only impact client-side application texts. Texts that are loaded from back-end
systems can appear in all languages that are supported by the back-end system.

Conventions

● The resource model for internationalization is called the i18n model.
● The default filename is i18n.properties.
● Resource bundle keys are written in (lower) camelCase.
● Resource bundle values can contain parameters like {0}, {1}, {2}, …
● Never concatenate strings that are translated, always use placeholders.
● Use Unicode escape sequences for special characters.

Related Information

Resource Model [page 995]
API Reference: jQuery.sap.util.ResourceBundle
API Reference: sap.ui.model.resource.ResourceModel
Samples: sap.ui.model.resource.ResourceModel

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 87

https://sapui5.hana.ondemand.com/#docs/api/symbols/jQuery.sap.util.ResourceBundle.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.resource.ResourceModel.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.ui.model.resource.ResourceModel/samples

Step 9: Component Configuration

After we have introduced all three parts of the Model-View-Controller (MVC) concept, we now come to another
important structural aspect of SAPUI5.

In this step, we will encapsulate all UI assets in a component that is independent from our index.html file.
Components are independent and reusable parts used in SAPUI5 applications. Whenever we access resources,
we will now do this relatively to the component (instead of relatively to the index.html). This architectural
change allows our app to be used in more flexible environments than our static index.html page, such as in a
surrounding container like the SAP Fiori launchpad.

Preview

Figure 13: An input field and a description displaying the value of the input field (No visual changes to last step)

Coding

You can view and download all files at Walkthrough - Step 9.

Figure 14: Folder Structure for this Step

After this step your project structure will look like the figure above. We will create the Component.js file now
and modify the related files in the app.

webapp/Component.js (New)

sap.ui.define([
 "sap/ui/core/UIComponent"
], function (UIComponent) {
 "use strict";
 return UIComponent.extend("", {

 init : function () {
 // call the init function of the parent

88 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.walkthrough.09/preview

 UIComponent.prototype.init.apply(this, arguments);
 }
 });
});

We create an initial Component.js file in the webapp folder that will hold our application setup. The init
function of the component is automatically invoked by SAPUI5 when the component is instantiated. Our
component inherits from the base class sap.ui.core.UIComponent and it is obligatory to make the super
call to the init function of the base class in the overridden init method.

webapp/Component.js

sap.ui.define(["sap/ui/core/UIComponent", "sap/ui/model/json/JSONModel",
 "sap/ui/model/resource/ResourceModel"], function (UIComponent, JSONModel, ResourceModel) { "use strict"; return UIComponent.extend("sap.ui.demo.walkthrough.Component", { metadata : {
 rootView: {
 "viewName": "sap.ui.demo.walkthrough.view.App",
 "type": "XML",
 "async": true,
 "id": "app"
 }
 }, init : function () {
 // call the init function of the parent
 UIComponent.prototype.init.apply(this, arguments); // set data model
 var oData = {
 recipient : {
 name : "World"
 }
 };
 var oModel = new JSONModel(oData);
 this.setModel(oModel);

 // set i18n model
 var i18nModel = new ResourceModel({
 bundleName : "sap.ui.demo.walkthrough.i18n.i18n"
 });
 this.setModel(i18nModel, "i18n"); }
 });
});

The Component.js file consists of two parts now: The new metadata section that simply defines a reference
to the root view and the previously introduced init function that is called when the component is initialized.
Instead of displaying the root view directly in the index.html file as we did previously, the component will now
manage the display of the app view.

In the init function we instantiate our data model and the i18n model like we did before in the app controller.
Be aware that the models are directly set on the component and not on the root view of the component.
However, as nested controls automatically inherit the models from their parent controls, the models will be
available on the view as well.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 89

webapp/controller/App.controller.js

sap.ui.define(["sap/ui/core/mvc/Controller",
 "sap/m/MessageToast"
], function (Controller, MessageToast) {
 "use strict";
 return Controller.extend("sap.ui.demo.walkthrough.controller.App", {
 onShowHello : function () {
 // read msg from i18n model
 var oBundle = this.getView().getModel("i18n").getResourceBundle();
 var sRecipient = this.getView().getModel().getProperty("/recipient/
name");
 var sMsg = oBundle.getText("helloMsg", [sRecipient]);
 // show message
 MessageToast.show(sMsg);
 }
 });
});

Delete the onInit function and the required modules; this is now done in the component. You now have the
code shown above.

webapp\index.js

sap.ui.define(["sap/ui/core/ComponentContainer"], function (ComponentContainer) { "use strict"; new ComponentContainer({
 name: "sap.ui.demo.walkthrough",
 settings : {
 id : "walkthrough"
 },
 async: true
 }).placeAt("content"); });

We now create a component container instead of the view in our index.js that instantiates the view for us
according to the component configuration.

Conventions

● The component is named Component.js.
● Together with all UI assets of the app, the component is located in the webapp folder.
● The index.html file is located in the webapp folder if it is used productively.

90 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Related Information

Components [page 720]
API Reference: sap.ui.core.mvc.ViewType
Samples: sap.ui.core.mvc.ViewType
Declarative API for Initial Components [page 731]
Make Your App CSP Compliant [page 687]

Step 10: Descriptor for Applications

All application-specific configuration settings will now further be put in a separate descriptor file called
manifest.json. This clearly separates the application coding from the configuration settings and makes our
app even more flexible. For example, all SAP Fiori applications are realized as components and come with a
descriptor file in order to be hosted in the SAP Fiori launchpad.

The SAP Fiori launchpad acts as an application container and instantiates the app without having a local HTML
file for the bootstrap. Instead, the descriptor file will be parsed and the component is loaded into the current
HTML page. This allows several apps to be displayed in the same context. Each app can define local settings,
such as language properties, supported devices, and more. And we can also use the descriptor file to load
additional resources and instantiate models like our i18n resource bundle.

Preview

Figure 15: An input field and a description displaying the value of the input field (No visual changes to last step)

Coding

You can view and download all files at Walkthrough - Step 10.

 Caution
Automatic model instantiation is only available as of SAPUI5 version 1.30. If you are using an older version,
you can manually instantiate the resource bundle and other models of the app in the init method of the
Component.js file as we did in Step 9: Component Configuration [page 88].

webapp/manifest.json (New)

{
 "_version": "1.12.0",

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 91

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.mvc.ViewType.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.ui.core.mvc.ViewType/samples
https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.walkthrough.10/preview

 "sap.app": {
 "id": "sap.ui.demo.walkthrough",
 "type": "application",
 "i18n": "i18n/i18n.properties",
 "title": "{{appTitle}}",
 "description": "{{appDescription}}",
 "applicationVersion": {
 "version": "1.0.0"
 }
 },
 "sap.ui": {
 "technology": "UI5",
 "deviceTypes": {
 "desktop": true,
 "tablet": true,
 "phone": true
 }
 },
 "sap.ui5": {
 "rootView": {
 "viewName": "sap.ui.demo.walkthrough.view.App",
 "type": "XML",
 "async": true,
 "id": "app"
 },
 "dependencies": {
 "minUI5Version": "1.60",
 "libs": {
 "sap.m": {}
 }
 },
 "models": {
 "i18n": {
 "type": "sap.ui.model.resource.ResourceModel",
 "settings": {
 "bundleName": "sap.ui.demo.walkthrough.i18n.i18n"
 }
 }
 }
 }
}

 Note
In this tutorial, we only introduce the most important settings and parameters of the descriptor file. In SAP
Web IDE, you may get validation errors because some settings are missing - you can ignore those in this
context.

The content of the manifest.json file is a configuration object in JSON format that contains all global
application settings and parameters. The manifest file is called the descriptor for applications, components,
and libraries and is also referred to as “descriptor” or “app descriptor” when used for applications. It is stored
in the webapp folder and read by SAPUI5 to instantiate the component. There are three important sections
defined by namespaces in the manifest.json file:

● sap.app
The sap.app namespace contains the following application-specific attributes:
○ id (mandatory): The namespace of our application component

The ID must not exceed 70 characters. It must be unique and must correspond to the component ID/
namespace.

○ type: Defines what we want to configure, here: an application
○ i18n: Defines the path to the resource bundle file

92 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

○ title: Title of the application in handlebars syntax referenced from the app's resource bundle
○ description: Short description text what the application does in handlebars syntax referenced from

the app's resource bundle
○ applicationVersion: The version of the application to be able to easily update the application later

on
● sap.ui

The sap.ui namespace contributes the following UI-specific attributes:
○ technology: This value specifies the UI technology; in our case we use SAPUI5
○ deviceTypes: Tells what devices are supported by the app: desktop, tablet, phone (all true by default)

● sap.ui5
The sap.ui5 namespace adds SAPUI5-specific configuration parameters that are automatically
processed by SAPUI5. The most important parameters are:
○ rootView: If you specify this parameter, the component will automatically instantiate the view and

use it as the root for this component
○ dependencies: Here we declare the UI libraries used in the application
○ models: In this section of the descriptor we can define models that will be automatically instantiated

by SAPUI5 when the app starts. Here we can now define the local resource bundle. We define the name
of the model "i18n" as key and specify the bundle file by namespace. As in the previous steps, the file
with our translated texts is stored in the i18n folder and named i18n.properties. We simply prefix
the path to the file with the namespace of our app. The manual instantiation in the app component's
init method will be removed later in this step.

For compatibility reasons the root object and each of the sections state the descriptor version number
1.1.0 under the internal property _version. Features might be added or changed in future versions of
the descriptor and the version number helps to identify the application settings by tools that read the
descriptor.

 Note
Properties of the resource bundle are enclosed in two curly brackets in the descriptor. This is not a SAPUI5
data binding syntax, but a variable reference to the resource bundle in the descriptor in handlebars syntax.
The referred texts are not visible in the app built in this tutorial but can be read by an application container
like the SAP Fiori launchpad.

webapp\index.html

<!DOCTYPE html> <html>
<head>
 <meta charset="utf-8">
 <title>SAPUI5 Walkthrough</title>
 <script
 id="sap-ui-bootstrap"
 src="https://openui5.hana.ondemand.com/resources/sap-ui-core.js"
 data-sap-ui-theme="sap_belize"
 data-sap-ui-resourceroots='{
 "sap.ui.demo.walkthrough": "./"
 }' data-sap-ui-oninit="module:sap/ui/core/ComponentSupport" data-sap-ui-compatVersion="edge"

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 93

 data-sap-ui-async="true">
 </script>
</head>
<body class="sapUiBody" id="content"> <div data-sap-ui-component data-name="sap.ui.demo.walkthrough" data-
id="container" data-settings='{"id" : "walkthrough"}'></div> </body> </html>

Now we declare our component in the body of our index.html. In the bootstrapping script of our
index.html, we enable the ComponentSupport module and remove the sap.m library. Then, we declare our
component in the body via a div tag. This will instantiate the component when the onInit event is executed.

We will no longer need our index.js from now on, because the descriptor takes care of everything.

webapp/i18n/i18n.properties

App Descriptor
appTitle=Hello World
appDescription=A simple walkthrough app that explains the most important
concepts of SAPUI5

Hello Panel showHelloButtonText=Say Hello
helloMsg=Hello {0}

In the resource bundle we simply add the texts for the app and add comments to separate the bundle texts
semantically.

webapp/Component.js

sap.ui.define(["sap/ui/core/UIComponent",
 "sap/ui/model/json/JSONModel"
], function (UIComponent, JSONModel) {
 "use strict";
 return UIComponent.extend("sap.ui.demo.walkthrough.Component", { metadata : {
 manifest: "json"
 }, init : function () {
 // call the init function of the parent
 UIComponent.prototype.init.apply(this, arguments);
 // set data model
 var oData = {
 recipient : {
 name : "World"
 }
 };
 var oModel = new JSONModel(oData);
 this.setModel(oModel);
 }
 });
});

94 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

In the component's metadata section, we now replace the rootView property with the property key
manifest and the value json. This defines a reference to the descriptor that will be loaded and parsed
automatically when the component is instantiated. We can now completely remove the lines of code containing
the model instantiation for our resource bundle. It is done automatically by SAPUI5 with the help of the
configuration entries in the descriptor. We can also remove the dependency to sap/ui/model/resource/
ResourceModel and the corresponding formal parameter ResourceModel because we will not use this inside
our anonymous callback function.

 Tip
In previous versions of SAPUI5, additional configuration settings for the app, like the service configuration,
the root view, and the routing configuration, had to be added to the metadata section of the
Component.js file. As of SAPUI5 version 1.30, we recommend that you define these settings in the
manifest.json descriptor file. Apps and examples that were created based on an older SAPUI5 version
still use the Component.js file for this purpose - so it is still supported, but not recommended.

Conventions

● The descriptor file is named manifest.json and located in the webapp folder.
● Use translatable strings for the title and the description of the app.

Related Information

Descriptor for Applications, Components, and Libraries [page 734]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 95

Step 11: Pages and Panels

After all the work on the app structure it’s time to improve the look of our app. We will use two controls from the
sap.m library to add a bit more "bling" to our UI. You will also learn about control aggregations in this step.

Preview

Figure 16: A panel is now displaying the controls from the previous steps

Coding

You can view and download all files at Walkthrough - Step 11.

webapp/view/App.view.xml

<mvc:View controllerName="sap.ui.demo.walkthrough.controller.App"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc" displayBlock="true">
 <App>
 <pages>
 <Page title="{i18n>homePageTitle}">
 <content>
 <Panel
 headerText="{i18n>helloPanelTitle}">
 <content> <Button
 text="{i18n>showHelloButtonText}"
 press=".onShowHello"/>
 <Input
 value="{/recipient/name}"
 description="Hello {/recipient/name}"
 valueLiveUpdate="true"
 width="60%"/> </content>
 </Panel>
 </content>
 </Page>
 </pages>
 </App>

96 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.walkthrough.11/preview

 </mvc:View>

We put both the input field and the button inside a containing control called sap.m.Page. The page provides
an aggregation to 0..N other controls called content. It also displays the title attribute in a header section on
top of the content. The page itself is placed into the pages aggregation of another control called sap.m.App
which does the following important things for us:

● It writes a bunch of properties into the header of the index.html that are necessary for proper display on
mobile devices.

● It offers functionality to navigate between pages with animations. We will use this soon.

In order to make the fullscreen height of the view work properly, we add the displayBlock attribute with the
value true to the view. The actual content is wrapped inside a Panel control, in order to group related content.

webapp/i18n/i18n.properties

App Descriptor appTitle=Hello World appDescription=A simple walkthrough app that explains the most important
concepts of SAPUI5 # Hello Panel
showHelloButtonText=Say Hello
helloMsg=Hello {0} homePageTitle=Walkthrough
helloPanelTitle=Hello World

We add new key/value pairs to our text bundle for the start page title and the panel title.

Related Information

API Reference: sap.m.NavContainer
Samples: sap.m.NavContainer
API Reference: sap.m.Page
Samples: sap.m.Page

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 97

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.NavContainer.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.m.NavContainer/samples
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.Page.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.m.Page/samples

Step 12: Shell Control as Container

Now we use a shell control as container for our app and use it as our new root element. The shell takes care of
visual adaptation of the application to the device’s screen size by introducing a so-called letterbox on desktop
screens.

Preview

Figure 17: The app is now run in a shell that limits the app width

Coding

You can view and download all files at Walkthrough - Step 12.

webapp/view/App.view.xml

<mvc:View controllerName="sap.ui.demo.walkthrough.controller.App"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc"
 displayBlock="true"> <Shell> <App>
 <pages>
 <Page title="{i18n>homePageTitle}">
 <content>
 <Panel
 headerText="{i18n>helloPanelTitle}">
 <content>
 <Button
 text="{i18n>showHelloButtonText}"
 press=".onShowHello"/>
 <Input
 value="{/recipient/name}"
 description="Hello {/recipient/name}"
 valueLiveUpdate="true"
 width="60%"/>
 </content>
 </Panel>
 </content>
 </Page>
 </pages>

98 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.walkthrough.12/preview

 </App> </Shell> </mvc:View>

The shell control is now the outermost control of our app and automatically displays a so-called letterbox, if the
screen size is larger than a certain width.

 Note
We do not add the Shell control to the declarative UI definition in the XML view, because apps that run in
an external shell, like the SAP Fiori launchpad, there will already be a shell around the component UI.

There are further options to customize the shell, like setting a custom background image or color and setting a
custom logo. Check the related API reference for more details.

Related Information

API Reference: sap.m.Shell

Step 13: Margins and Paddings

Our app content is still glued to the corners of the letterbox. To fine-tune our layout, we can add margins and
paddings to the controls that we added in the previous step.

Instead of manually adding CSS to the controls, we will use the standard classes provided by SAPUI5. These
classes take care of consistent sizing steps, left-to-right support, and responsiveness.

Preview

Figure 18: The layout of the panel and its content now has margins and padding

Coding

You can view and download all files at Walkthrough - Step 13.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 99

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.Shell.html
https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.walkthrough.13/preview

webapp/view/App.view.xml

<mvc:View controllerName="sap.ui.demo.walkthrough.controller.App"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc"
 displayBlock="true">
 <Shell>
 <App>
 <pages>
 <Page title="{i18n>homePageTitle}">
 <content>
 <Panel
 headerText="{i18n>helloPanelTitle}" class="sapUiResponsiveMargin"
 width="auto"> <content>
 <Button
 text="{i18n>showHelloButtonText}"
 press=".onShowHello" class="sapUiSmallMarginEnd"/> <Input
 value="{/recipient/name}"
 valueLiveUpdate="true"
 width="60%"/> <Text
 text="Hello {/recipient/name}"
 class="sapUiSmallMargin"/> </content>
 </Panel>
 </content>
 </Page>
 </pages>
 </App>
 </Shell> </mvc:View>

To layout the panel, we add the CSS class sapUiResponsiveMargin that will add some space around the
panel. We have to set the width of the panel to auto since the margin would otherwise be added to the default
width of 100% and exceed the page size.

If you decrease the screen size, then you can actually see that the margin also decreases. As the name
suggests, the margin is responsive and adapts to the screen size of the device. Tablets will get a smaller margin
and phones in portrait mode will not get a margin to save space on these small screens.

Margins can be added to all kinds of controls and are available in many different options. We can even add
space between the button and the input field by adding class sapUiSmallMarginEnd to the button.

To format the output text individually, we remove the description from the input field and add a new Text
control with the same value. Here we also use a small margin to align it with the other content. Similarly, we
could add the standard padding classes to layout the inner parts of container controls such as our panel, but as
it already brings a padding by default, this is not needed here.

Conventions

● Use the standard SAPUI5 CSS classes for the layout if possible.

100 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Related Information

Using Predefined CSS Margin Classes [page 1046]
Using Container Content Padding CSS Classes [page 1051]

Step 14: Custom CSS and Theme Colors

Sometimes we need to define some more fine-granular layouts and this is when we can use the flexibility of
CSS by adding custom style classes to controls and style them as we like.

Preview

Figure 19: The space between the button and the input field is now smaller and the output text is bold

 Caution
As stated in the Compatibility Rules, the HTML and CSS generated by SAPUI5 is not part of the public API
and may change in patch and minor releases. If you decide to override styles, you have the obligation to test
and update your modifications each time SAPUI5 is updated. A prerequisite for this is that you have control
over the version of SAPUI5 being used, for example in a standalone scenario. This is not possible when
running your app in the SAP Fiori launchpad where SAPUI5 is centrally loaded for all apps. As such, SAP
Fiori launchpad apps should not override styles.

Coding

You can view and download all files at Walkthrough - Step 14.

webapp/css/style.css (New)

html[dir="ltr"] .myAppDemoWT .myCustomButton.sapMBtn {
 margin-right: 0.125rem
}

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 101

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.walkthrough.14/preview

html[dir="rtl"] .myAppDemoWT .myCustomButton.sapMBtn {
 margin-left: 0.125rem
}

.myAppDemoWT .myCustomText {
 display: inline-block;
 font-weight: bold;
}

We create a folder css which will contain our CSS files. In a new style definition file inside the css folder we
create our custom classes combined with a custom namespace class. This makes sure that the styles will only
be applied on controls that are used within our app.

A button has a default margin of 0 that we want to override: We add a custom margin of 2px (or 0.125rem
calculated relatively to the default font size of 16px) to the button with the style class myCustomButton. We
add the CSS class sapMBtn to make our selector more specific: in CSS, the rule with the most specific selector
"wins".

For right-to-left (rtl) languages, like Arabic, you set the left margin and reset the right margin as the app display
is inverted. If you only use standard SAPUI5 controls, you don't need to care about this, in this case where we
use custom CSS, you have to add this information.

In an additional class myCustomText we define a bold text and set the display to inline-block. This time we
just define our custom class without any additional selectors. We do not set a color value here yet, we will do
this in the view.

webapp/manifest.json

... "sap.ui5": {
 ...
 "models": {
 ... },
 "resources": {
 "css": [
 {
 "uri": "css/style.css"
 }
]
 } }

In the resources section of the sap.ui5 namespace, additional resources for the app can be loaded. We load
the CSS styles by defining a URI relative to the component. SAPUI5 then adds this file to the header of the
HTML page as a <link> tag, just like in plain Web pages, and the browser loads it automatically.

webapp/view/App.view.xml

<mvc:View controllerName="sap.ui.demo.walkthrough.controller.App"
 xmlns="sap.m"

102 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 xmlns:mvc="sap.ui.core.mvc"
 displayBlock="true">
 <Shell> <App class="myAppDemoWT"> <pages>
 <Page title="{i18n>homePageTitle}">
 <content>
 <Panel
 headerText="{i18n>helloPanelTitle}"
 class="sapUiResponsiveMargin"
 width="auto">
 <content>
 <Button
 text="{i18n>showHelloButtonText}"
 press=".onShowHello" class="myCustomButton"/> <Input
 value="{/recipient/name}"
 valueLiveUpdate="true"
 width="60%"/>
 <FormattedText
 htmlText="Hello {/recipient/name}" class="sapUiSmallMargin sapThemeHighlight-
asColor myCustomText"/> </content>
 </Panel>
 </content>
 </Page>
 </pages>
 </App>
 </Shell>
</mvc:View>

The app control is configured with our custom namespace class myAppDemoWT. This class has no styling rules
set and is used in the definition of the CSS rules to define CSS selectors that are only valid for this app.

We add our custom CSS class to the button to precisely define the space between the button and the input
field. Now we have a pixel-perfect design for the panel content.

To highlight the output text, we use a FormattedText control which can be styled individually, either by using
custom CSS or with HTML code. We add our custom CSS class (myCustomText) and add a theme-dependent
CSS class to set the highlight color that is defined in the theme.

The actual color now depends on the selected theme which ensures that the color always fits to the theme and
is semantically clear. For a complete list of the available CSS class names, see CSS Classes for Theme
Parameters [page 1262].

Conventions

● Do not specify colors in custom CSS but use the standard theme-dependent classes instead.

Related Information

Descriptor for Applications, Components, and Libraries [page 734]
CSS Classes for Theme Parameters [page 1262]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 103

Creating Themable User Interfaces [page 1261]
Compatibility Rules [page 17]
API Reference: sap.ui.core.theming
Samples: sap.ui.core.theming

Step 15: Nested Views

Our panel content is getting more and more complex and now it is time to move the panel content to a separate
view. With that approach, the application structure is much easier to understand, and the individual parts of the
app can be reused.

Preview

Figure 20: The panel content is now refactored to a separate view (No visual changes to last step)

Coding

You can view and download all files at Walkthrough - Step 15.

webapp/view/App.view.xml

<mvc:View controllerName="sap.ui.demo.walkthrough.controller.App"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc"
 displayBlock="true">
 <Shell>
 <App class="myAppDemoWT">
 <pages>
 <Page title="{i18n>homePageTitle}">
 <content> <mvc:XMLView
viewName="sap.ui.demo.walkthrough.view.HelloPanel"/> </content>
 </Page>
 </pages>
 </App>
 </Shell>
</mvc:View>

104 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.theming.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.ui.core.theming/samples
https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.walkthrough.15/preview

Instead of putting the panel and its content directly into our App view, we will move it to a new separate
HelloPanel view. We refer to this using an XMLView tag in the content aggregation of the panel.

webapp/view/HelloPanel.view.xml (New)

<mvc:View
 controllerName="sap.ui.demo.walkthrough.controller.HelloPanel"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <Panel
 headerText="{i18n>helloPanelTitle}"
 class="sapUiResponsiveMargin"
 width="auto" >
 <content>
 <Button
 text="{i18n>showHelloButtonText}"
 press=".onShowHello"
 class="myAppDemoWT myCustomButton"/>
 <Input
 value="{/recipient/name}"
 valueLiveUpdate="true"
 width="60%"/>
 <FormattedText
 htmlText="Hello {/recipient/name}"
 class="sapUiSmallMargin sapThemeHighlight-asColor myCustomText"/>
 </content>
 </Panel>
</mvc:View>

The whole content for the panel is now added to the new file HelloPanel.view.xml. We also specify the
controller for the view by setting the controllerName attribute of the XML view.

webapp/controller/HelloPanel.controller.js (New)

sap.ui.define([
 "sap/ui/core/mvc/Controller",
 "sap/m/MessageToast"
], function (Controller, MessageToast) {
 "use strict";
 return Controller.extend("sap.ui.demo.walkthrough.controller.HelloPanel", {
 onShowHello : function () {
 // read msg from i18n model
 var oBundle = this.getView().getModel("i18n").getResourceBundle();
 var sRecipient = this.getView().getModel().getProperty("/recipient/
name");
 var sMsg = oBundle.getText("helloMsg", [sRecipient]);
 // show message
 MessageToast.show(sMsg);
 }
 });
});

To have a reusable asset, the method onShowHello is also moved from the app controller to the HelloPanel
controller.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 105

webapp/controller/App.controller.js

sap.ui.define(["sap/ui/core/mvc/Controller"
], function (Controller) {
 "use strict";
 return Controller.extend("sap.ui.demo.walkthrough.controller.App", {
 }); });

We have now moved everything out of the app view and controller. The app controller remains an empty stub
for now, we will use it later to add more functionality.

Step 16: Dialogs and Fragments

In this step, we will take a closer look at another element which can be used to assemble views: the fragment.

Fragments are light-weight UI parts (UI subtrees) which can be reused but do not have any controller. This
means, whenever you want to define a certain part of your UI to be reusable across multiple views, or when you
want to exchange some parts of a view against one another under certain circumstances (different user roles,
edit mode vs read-only mode), a fragment is a good candidate, especially where no additional controller logic is
required.

A fragment can consist of 1 to n controls. At runtime, fragments placed in a view behave similar to "normal"
view content, which means controls inside the fragment will just be included into the view’s DOM when
rendered. There are of course controls that are not designed to become part of a view, for example, dialogs.

But even for these controls, fragments can be particularly useful, as you will see in a minute.

We will now add a dialog to our app. Dialogs are special, because they open on top of the regular app content
and thus do not belong to a specific view. That means the dialog must be instantiated somewhere in the
controller code, but since we want to stick with the declarative approach and create reusable artifacts to be as
flexible as possible, and because dialogs cannot be specified as views, we will create an XML fragment
containing the dialog. A dialog, after all, can be used in more than only one view of your app.

Preview

Figure 21: A dialog opens when the new “Say Hello With Dialog” button is clicked

106 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Coding

You can view and download all files at Walkthrough - Step 16.

webapp/view/HelloPanel.view.xml

<mvc:View controllerName="sap.ui.demo.walkthrough.controller.HelloPanel"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <Panel
 headerText="{i18n>helloPanelTitle}"
 class="sapUiResponsiveMargin"
 width="auto" >
 <content> <Button
 id="helloDialogButton"
 text="{i18n>openDialogButtonText}"
 press=".onOpenDialog"
 class="sapUiSmallMarginEnd"/> <Button
 text="{i18n>showHelloButtonText}"
 press=".onShowHello"
 class="myCustomButton"/>
 <Input
 value="{/recipient/name}"
 valueLiveUpdate="true"
 width="60%"/>
 <FormattedText
 htmlText="Hello {/recipient/name}"
 class="sapUiSmallMargin sapThemeHighlight-asColor myCustomText"/>
 </content>
 </Panel> </mvc:View>

We add a new button to the view to open the dialog. It simply calls an event handler function in the controller of
the panel’s content view. We will need the new id="helloDialogButton" in Step 29: Integration Test with
OPA [page 151].

It is a good practice to set a unique ID like helloWorldButton to key controls of your app so that can be
identified easily. If the attribute `id` is not specified, the OpenUI5 runtime generates unique but changing ID
like `__button23` for the control. Inspect the DOM elements of your app in the browser to see the difference.

webapp/view/HelloDialog.fragment.xml (New)

<core:FragmentDefinition
 xmlns="sap.m"
 xmlns:core="sap.ui.core" >
 <Dialog
 id="helloDialog"
 title="Hello {/recipient/name}">
 </Dialog>
</core:FragmentDefinition>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 107

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.walkthrough.16/preview

We add a new XML file to declaratively define our dialog in a fragment. The fragment assets are located in the
core namespace, so we add an xml namespace for it inside the FragmentDefinition tag.

The syntax is similar to a view, but since fragments do not have a controller this attribute is missing. Also, the
fragment does not have any footprint in the DOM tree of the app, and there is no control instance of the
fragment itself (only the contained controls). It is simply a container for a set of reuse controls.

We also add an id for our Dialog to be able to access the dialog from our HelloPanel controller.

webapp/controller/HelloPanel.controller.js

sap.ui.define(["sap/ui/core/mvc/Controller",
 "sap/m/MessageToast", "sap/ui/core/Fragment"], function (Controller, MessageToast, Fragment) { "use strict";
 return Controller.extend("sap.ui.demo.walkthrough.controller.HelloPanel", {
 onShowHello : function () {
 … },
 onOpenDialog : function () {
 var oView = this.getView();

 // create dialog lazily
 if (!this.byId("helloDialog")) {
 // load asynchronous XML fragment
 Fragment.load({
 id: oView.getId(),
 name: "sap.ui.demo.walkthrough.view.HelloDialog"
 }).then(function (oDialog) {
 // connect dialog to the root view of this component
(models, lifecycle)
 oView.addDependent(oDialog);
 oDialog.open();
 });
 } else {
 this.byId("helloDialog").open();
 }
 } }); });

If the dialog in the fragment does not exist yet, the fragment is instantiated by calling the
sap.ui.xmlfragment method with the following arguments:

● The ID of the HelloPanel view
This parameter is used to prefix the IDs inside our fragment. There, we have defined the ID helloDialog
for the Dialog control, and we can access the dialog via the view by calling
oView.byId("helloDialog"). This makes sure that even if you instantiate the same fragment in other
views in the same way, each dialog will have its unique ID that is concatenated from the view ID and the
dialog ID.
Using unique IDs is important, because duplicate IDs lead to errors in the framework.

● The path of the fragment definition

We add the dialog as "dependent" on the view to be connected to the lifecycle of the view’s model. A convenient
side-effect is that the dialog will automatically be destroyed when the view is destroyed. Otherwise, we would
have to destroy the dialog manually to free its resources.

108 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Conventions

● Always use the addDependent method to connect the dialog to the lifecycle management and data
binding of the view, even though it is not added to its UI tree.

● Private functions and variables should always start with an underscore.

webapp/i18n/i18n.properties

App Descriptor appTitle=Hello World appDescription=A simple walkthrough app that explains the most important
concepts of SAPUI5 # Hello Panel
showHelloButtonText=Say Hello
helloMsg=Hello {0}
homePageTitle=Walkthrough
helloPanelTitle=Hello World openDialogButtonText=Say Hello With Dialog

We add a new text for the open button to the text bundle.

Related Information

Reusing UI Parts: Fragments [page 1004]
Dialogs and other Popups as Fragments [page 1016]
Stable IDs: All You Need to Know [page 1442]
API Reference: sap.ui.core.Fragment

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 109

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.Fragment.html

Step 17: Fragment Callbacks

Now that we have integrated the dialog, it's time to add some user interaction. The user will definitely want to
close the dialog again at some point, so we add a button to close the dialog and assign an event handler.

Preview

Figure 22: The dialog now has an "OK" button

Coding

You can view and download all files at Walkthrough - Step 17.

webapp/controller/HelloPanel.controller.js

sap.ui.define(["sap/ui/core/mvc/Controller",
 "sap/m/MessageToast",
 "sap/ui/core/Fragment"
], function (Controller, MessageToast, Fragment) {
 "use strict";
 return Controller.extend("sap.ui.demo.walkthrough.controller.HelloPanel", {
 onShowHello : function () {
 // read msg from i18n model
 var oBundle = this.getView().getModel("i18n").getResourceBundle();
 var sRecipient = this.getView().getModel().getProperty("/recipient/
name");
 var sMsg = oBundle.getText("helloMsg", [sRecipient]);
 // show message
 MessageToast.show(sMsg);
 },
 onOpenDialog : function () {
 var oView = this.getView();
 // create dialog lazily
 if (!this.byId("helloDialog")) {
 // load asynchronous XML fragment
 Fragment.load({
 id: oView.getId(), name: "sap.ui.demo.walkthrough.view.HelloDialog",
 controller: this }).then(function (oDialog) {

110 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.walkthrough.17/preview

 // connect dialog to the root view of this component
(models, lifecycle)
 oView.addDependent(oDialog);
 oDialog.open();
 });
 } else {
 this.byId("helloDialog").open();
 } },

 onCloseDialog : function () {
 this.byId("helloDialog").close();
 } }); });

As previously described, fragments are pure UI reuse artifacts and do not have a controller. The third
parameter of the sap.ui.xmlfragment function is optional and allows passing in a reference to a (controller)
object. For our dialog we reference the HelloPanel controller. However, the third parameter does not
necessarily have to be a controller but can be any object. Just don't forget the this keyword.

The event handler function is put into the same controller file and it closes the dialog by accessing the internal
helper function that returns the dialog.

webapp/view/HelloDialog.fragment.xml

<core:FragmentDefinition xmlns="sap.m"
 xmlns:core="sap.ui.core" >
 <Dialog
 id="helloDialog"
 title ="Hello {/recipient/name}"> <beginButton>
 <Button
 text="{i18n>dialogCloseButtonText}"
 press=".onCloseDialog"/>
 </beginButton> </Dialog> </core:FragmentDefinition>

In the fragment definition, we add a button to the beginButton aggregation of the dialog. The press handler is
referring to an event handler called .onCloseDialog, and since we passed in the reference to the
HelloPanel controller, the method will be invoked there when the button is pressed. The dialog has an
aggregation named beginButton as well as endButton. Placing buttons in both of these aggregations makes
sure that the beginButton is placed before the endButton on the UI. What before means, however,
depends on the text direction of the current language. We therefore use the terms begin and end as a
synonym to “left” and “right". In languages with left-to-right direction, the beginButton will be rendered left,
the endButton on the right side of the dialog footer; in right-to-left mode for specific languages the order is
switched.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 111

webapp/i18n/i18n.properties

App Descriptor appTitle=Hello World appDescription=A simple walkthrough app that explains the most important
concepts of SAPUI5 # Hello Panel
showHelloButtonText=Say Hello
helloMsg=Hello {0}
homePageTitle=Walkthrough
helloPanelTitle=Hello World
openDialogButtonText=Say Hello With Dialog dialogCloseButtonText=Ok

The text bundle is extended by the new text for the dialog’s close button.

Related Information

Reusing UI Parts: Fragments [page 1004]
Instantiation of Fragments [page 1006]

Step 18: Icons

Our dialog is still pretty much empty. Since SAPUI5 is shipped with a large icon font that contains more than
500 icons, we will add an icon to greet our users when the dialog is opened.

Preview

Figure 23: An icon is now displayed in the dialog box

112 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Coding

You can view and download all files at Walkthrough - Step 18.

webapp/view/HelloPanel.view.xml

<mvc:View controllerName="sap.ui.demo.walkthrough.controller.HelloPanel"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <Panel
 headerText="{i18n>helloPanelTitle}"
 class="sapUiResponsiveMargin"
 width="auto" >
 <content>
 <Button
 id="helloDialogButton" icon="sap-icon://world" text="{i18n>openDialogButtonText}"
 press=".onOpenDialog"
 class="sapUiSmallMarginEnd"/>
 <Button
 text="{i18n>showHelloButtonText}"
 press=".onShowHello"
 class="myCustomButton"/>
 <Input
 value="{/recipient/name}"
 valueLiveUpdate="true"
 width="60%"/>
 <FormattedText
 htmlText="Hello {/recipient/name}"
 class="sapUiSmallMargin sapThemeHighlight-asColor myCustomText"/>
 </content>
 </Panel> </mvc:View>

We add an icon to the button that opens the dialog. The sap-icon:// protocol is indicating that an icon from
the icon font should be loaded. The identifier world is the readable name of the icon in the icon font.

 Tip
You can look up other icons using the Icon Explorer tool in the Demo Kit.

To call any icon, use its name as listed in the Icon Explorer in sap-icon://<iconname>.

webapp/view/HelloDialog.fragment.xml

<core:FragmentDefinition xmlns="sap.m"
 xmlns:core="sap.ui.core" >
 <Dialog
 id="helloDialog"
 title ="Hello {/recipient/name}">

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 113

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.walkthrough.18/preview

 <content>
 <core:Icon
 src="sap-icon://hello-world"
 size="8rem"
 class="sapUiMediumMargin"/>
 </content> <beginButton>
 <Button
 text="{i18n>dialogCloseButtonText}"
 press=".onCloseDialog"/>
 </beginButton>
 </Dialog> </core:FragmentDefinition>

In the dialog fragment, we add an icon control to the content aggregation of the dialog. Luckily, the icon font
also comes with a “Hello World” icon that is perfect for us here. We also define the size of the icon and set a
medium margin on it.

Conventions

● Always use icon fonts rather than images wherever possible, as they are scalable without quality loss
(vector graphics) and do not need to be loaded separately.

Related Information

Icon Explorer
API Reference: sap.ui.core.Icon
Samples: sap.ui.core.Icon

Step 19: Reuse Dialogs

In this step, we expand our reuse concept and invoke the dialog at component level.

In step 16, we created a dialog as fragment, to make it reusable across views or across our whole app. But we
placed the logic for retrieving the dialog instance and for opening and closing it respectively in the controller of
the HelloPanel view. Sticking to this approach would require copying and pasting the code to the controller of
each view that needs our dialog. This would cause an undesired code redundancy which we want to avoid.

In this step, we implement the solution to this problem: We expand our reuse concept and invoke the dialog at
component level.

114 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/test-resources/sap/m/demokit/iconExplorer/webapp/index.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.Icon.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.ui.core.Icon/samples

Preview

Figure 24: The dialog is now opened by the component (no visual changes to last step)

Coding

You can view and download all files at Walkthrough - Step 19.

webapp/Component.js

sap.ui.define(["sap/ui/core/UIComponent", "sap/ui/model/json/JSONModel",
 "./controller/HelloDialog"], function (UIComponent, JSONModel, HelloDialog) { "use strict";
 return UIComponent.extend("sap.ui.demo.walkthrough.Component", {
 metadata : {
 manifest : "json"
 },
 init : function () {
 // call the init function of the parent
 UIComponent.prototype.init.apply(this, arguments);
 // set data model
 var oData = {
 recipient : {
 name : "World"
 }
 };
 var oModel = new JSONModel(oData);
 this.setModel(oModel); // set dialog
 this._helloDialog = new HelloDialog(this.getRootControl());
 },

 exit : function() {
 this._helloDialog.destroy();
 delete this._helloDialog;
 },

 openHelloDialog : function () {
 this._helloDialog.open();

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 115

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.walkthrough.19/preview

 }
 }); });

The dialog instantiation is refactored to a new helper object which is stored in a private property of the
component. For instantiation of the helper object, we have to pass the view instance to which the dialog is
added (see method call addDependent in the implementation of the helper object HelloDialog.js below).

We want to connect the reuse dialog to the lifecycle of the root view of the app, so we pass an instance of the
root view on to the constructor. It can be retrieved by calling the getRootControl method of the component.

 Note
As defined in parameter rootView in the manifest.json file, our root view is
sap.ui.demo.walkthrough.view.App. From the component, the root view can be retrieved at runtime
by accessing the rootControl aggregation.

To be able to open the dialog from other controllers as well, we implement a reuse function openHelloDialog
which calls the open method of our helper object. By doing so, we also decouple the implementation details of
the reuse dialog from the application coding.

Up to this point we added the new property _helloDialog to the component and assigned an instance of the
HelloDialog object to it. We want to make sure that the memory allocated for this helper object is freed up
when the component is destroyed. Otherwise our application may cause memory leaks.

To do so, we use the exit hook. The SAPUI5 framework calls the function assigned to exit when destroying
the component. We call the destroy function of HelloDialog to clean up the helper class and end its lifecycle.
Nevertheless, the instance itself would still exist in the browser memory. Therefore we delete our reference to
the HelloDialog instance by calling delete this._helloDialog and the garbage collection of the
browser can clean up its memory.

 Note
We don't have to destroy the instance of JSONModel that we created, because we assigned it to the
component with the setModel function. The SAPUI5 framework will destroy it together with the
component.

webapp/controller/HelloDialog.js (New)

sap.ui.define([
 "sap/ui/base/ManagedObject",
 "sap/ui/core/Fragment"
], function (ManagedObject, Fragment) {
 "use strict";

 return
ManagedObject.extend("sap.ui.demo.walkthrough.controller.HelloDialog", {

 constructor : function (oView) {
 this._oView = oView;
 },

 exit : function () {

116 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 delete this._oView;
 },

 open : function () {
 var oView = this._oView;

 // create dialog lazily
 if (!oView.byId("helloDialog")) {
 var oFragmentController = {
 onCloseDialog : function () {
 oView.byId("helloDialog").close();
 }
 };
 // load asynchronous XML fragment
 Fragment.load({
 id: oView.getId(),
 name: "sap.ui.demo.walkthrough.view.HelloDialog",
 controller: oFragmentController
 }).then(function (oDialog) {
 // connect dialog to the root view of this component
(models, lifecycle)
 oView.addDependent(oDialog);
 oDialog.open();
 });
 } else {
 oView.byId("helloDialog").open();
 }
 }

 });

});

The implementation of the HelloDialog reuse object extends an sap.ui.base.ManagedObject object to
inherit some of the core functionality of SAPUI5.

Our open method is refactored from the HelloPanel controller and instantiates our dialog fragment as in the
previous steps.

 Note
We do not pass a controller as third parameter to function sap.ui.xmlfragment but a local helper object
oFragmentContoller which included the needed event handler function onCloseDialog for the
fragment.

The open method now contains our dialog instantiation. The first time the open method is called, the dialog is
instantiated. The oView argument of this method is used to connect the current view to the dialog. We will call
the open method of this object later in the controller.

The onCloseDialog event handler is simply moved from the HelloPanel controller to the reuse object.

We also add an exit function, just like we did in the component, that will be called automatically when the
object is being destroyed. To free up all allocated memory in the helper object, we delete the property that
holds the reference to the view. The view itself will be destroyed by the component, so we don't need to take
care for that.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 117

webapp/controller/HelloPanel.controller.js

sap.ui.define(["sap/ui/core/mvc/Controller",
 "sap/m/MessageToast"
], function (Controller, MessageToast) {
 "use strict";
 return Controller.extend("sap.ui.demo.walkthrough.controller.HelloPanel", {
 onShowHello : function () {
 // read msg from i18n model
 var oBundle = this.getView().getModel("i18n").getResourceBundle();
 var sRecipient = this.getView().getModel().getProperty("/recipient/
name");
 var sMsg = oBundle.getText("helloMsg", [sRecipient]);
 // show message
 MessageToast.show(sMsg);
 }, onOpenDialog : function () {
 this.getOwnerComponent().openHelloDialog();
 } }); });

The onOpenDialog method now accesses its component by calling the helper method getOwnerComponent.
When calling the open method of the reuse object we pass in the current view to connect it to the dialog.

webapp/view/App.view.xml

<mvc:View controllerName="sap.ui.demo.walkthrough.controller.App"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc"
 displayBlock="true">
 <Shell>
 <App class="myAppDemoWT">
 <pages>
 <Page title="{i18n>homePageTitle}"> <headerContent>
 <Button
 icon="sap-icon://hello-world"
 press=".onOpenDialog"/>
 </headerContent> <content>
 <mvc:XMLView
viewName="sap.ui.demo.walkthrough.view.HelloPanel"/>
 </content>
 </Page>
 </pages>
 </App>
 </Shell>
</mvc:View>

We add a button to the header area of the app view to show the reuse of the hello world dialog. When pressing
the button the dialog will be opened as with the button that we previously created in the panel.

118 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

webapp/controller/App.controller.js

sap.ui.define(["sap/ui/core/mvc/Controller"
], function (Controller) {
 "use strict";
 return Controller.extend("sap.ui.demo.walkthrough.controller.App", { onOpenDialog : function () {
 this.getOwnerComponent().openHelloDialog();
 } }); });

We add the method onOpenDialog also to the app controller so that the dialog will open with a reference to
the current view.

Conventions

● Put all assets that are used across multiple controllers in separate modules.

Related Information

Memory Management on https://developer.mozilla.org
API Reference: sap.ui.base.ManagedObject

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 119

http://help.sap.com/disclaimer?site=https%3A%2F%2Fdeveloper.mozilla.org%2Fen-US%2Fdocs%2FWeb%2FJavaScript%2FMemory_Management
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.base.ManagedObject.html

Step 20: Aggregation Binding

Now that we have established a good structure for our app, it's time to add some more functionality. We start
exploring more features of data binding by adding some invoice data in JSON format that we display in a list
below the panel.

Preview

Figure 25: A list of invoices is displayed below the panel

Coding

You can view and download all files at Walkthrough - Step 20.

webapp/Invoices.json (New)

{
 "Invoices": [
 {
 "ProductName": "Pineapple",
 "Quantity": 21,
 "ExtendedPrice": 87.2000,
 "ShipperName": "Fun Inc.",
 "ShippedDate": "2015-04-01T00:00:00",
 "Status": "A"
 },
 {
 "ProductName": "Milk",
 "Quantity": 4,

120 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.walkthrough.20/preview

 "ExtendedPrice": 9.99999,
 "ShipperName": "ACME",
 "ShippedDate": "2015-02-18T00:00:00",
 "Status": "B"
 },
 {
 "ProductName": "Canned Beans",
 "Quantity": 3,
 "ExtendedPrice": 6.85000,
 "ShipperName": "ACME",
 "ShippedDate": "2015-03-02T00:00:00",
 "Status": "B"
 },
 {
 "ProductName": "Salad",
 "Quantity": 2,
 "ExtendedPrice": 8.8000,
 "ShipperName": "ACME",
 "ShippedDate": "2015-04-12T00:00:00",
 "Status": "C"
 },
 {
 "ProductName": "Bread",
 "Quantity": 1,
 "ExtendedPrice": 2.71212,
 "ShipperName": "Fun Inc.",
 "ShippedDate": "2015-01-27T00:00:00",
 "Status": "A"
 }
]
}

The invoices file simply contains five invoices in a JSON format that we can use to bind controls against them
in the app. JSON is a very lightweight format for storing data and can be directly used as a data source for
SAPUI5 applications.

webapp/manifest.json

{ …
 "sap.ui5": {
 "rootView": "sap.ui.demo.walkthrough.view.App",
[…]
 "models": {
 "i18n": {
 "type": "sap.ui.model.resource.ResourceModel",
 "settings": {
 "bundleName": "sap.ui.demo.walkthrough.i18n.i18n"
 } },
 "invoice": {
 "type": "sap.ui.model.json.JSONModel",
 "uri": "Invoices.json"
 } }
 } }

We add a new model invoice to the sap.ui5 section of the descriptor. This time we want a JSONModel, so
we set the type to sap.ui.model.json.JSONModel. The uri key is the path to our test data relative to the
component. With this little configuration our component will automatically instantiate a new JSONModel which

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 121

loads the invoice data from the Invoices.json file. Finally, the instantiated JSONModel is put onto the
component as a named model invoice. The named model is then visible throughout our app.

 Note
Automatic model instantiation is only available as of SAPUI5 version 1.30. If you are using an older version,
you can manually instantiate the resource bundle and other models of the app in the onInit method of the
Component.js file as we did for the resource bundle in Step 9: Component Configuration [page 88].

webapp/view/App.view.xml

<mvc:View controllerName="sap.ui.demo.walkthrough.controller.App"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc"
 displayBlock="true">
 <Shell>
 <App class="myAppDemoWT">
 <pages>
 <Page title="{i18n>homePageTitle}">
 <headerContent>
 <Button
 icon="sap-icon://hello-world"
 press=".onOpenDialog"/>
 </headerContent>
 <content>
 <mvc:XMLView
viewName="sap.ui.demo.walkthrough.view.HelloPanel"/> <mvc:XMLView
viewName="sap.ui.demo.walkthrough.view.InvoiceList"/> </content>
 </Page>
 </pages>
 </App>
 </Shell>
</mvc:View>

In the app view we add a second view to display our invoices below the panel.

webapp/view/InvoiceList.view.xml (New)

<mvc:View
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <List
 headerText="{i18n>invoiceListTitle}"
 class="sapUiResponsiveMargin"
 width="auto"
 items="{invoice>/Invoices}" >
 <items>
 <ObjectListItem
 title="{invoice>Quantity} x {invoice>ProductName}"/>
 </items>
 </List>
</mvc:View>

122 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

The new view is displaying a list control with a custom header text. The item aggregation of the list is bound to
the root path Invoices of the JSON data. And since we defined a named model, we have to prefix each
binding definition with the identifier invoice>.

In the items aggregation, we define the template for the list that will be automatically repeated for each invoice
of our test data. More precisely, we use an ObjectListItem to create a control for each aggregated child of
the items aggregation. The title property of the list item is bound to properties of a single invoice. This is
achieved by defining a relative path (without / in the beginning). This works because we have bound the items
aggregation via items={invoice>/Invoices} to the invoices.

webapp/i18n/i18n.properties

App Descriptor appTitle=Hello World appDescription=A simple walkthrough app that explains the most important
concepts of SAPUI5 # Hello Panel
showHelloButtonText=Say Hello
helloMsg=Hello {0}
homePageTitle=Walkthrough
helloPanelTitle=Hello World
openDialogButtonText=Say Hello With Dialog
dialogCloseButtonText=Ok # Invoice List
invoiceListTitle=Invoices

In the text bundle the title of the list is added.

Related Information

Lists [page 2321]
API Reference: sap.m.List
Samples: sap.m.List
List Binding (Aggregation Binding) [page 828]

Step 21: Data Types

The list of invoices is already looking nice, but what is an invoice without a price assigned? Typically prices are
stored in a technical format and with a '.' delimiter in the data model. For example, our invoice for pineapples
has the calculated price 87.2 without a currency. We are going to use the SAPUI5 data types to format the
price properly, with a locale-dependent decimal separator and two digits after the separator.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 123

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.List.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.m.List/samples

Preview

Figure 26: The list of invoices with prices and number units

Coding

You can view and download all files at Walkthrough - Step 21.

webapp/view/InvoiceList.view.xml

<mvc:View controllerName="sap.ui.demo.walkthrough.controller.InvoiceList" xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <List
 headerText="{i18n>invoiceListTitle}"
 class="sapUiResponsiveMargin"
 width="auto"
 items="{invoice>/Invoices}">
 <items>
 <ObjectListItem
 title="{invoice>Quantity} x {invoice>ProductName}" number="{
 parts: [{path: 'invoice>ExtendedPrice'}, {path: 'view>/currency'}],
 type: 'sap.ui.model.type.Currency',
 formatOptions: {
 showMeasure: false
 }
 }"
 numberUnit="{view>/currency}"/> </items>
 </List>

124 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.walkthrough.21/preview

</mvc:View>

We add a price to our invoices list in the view by adding the number and numberUnit attributes to the
ObjectListItem control, then we apply the currency data type on the number by setting the type attribute
of the binding syntax to sap.ui.model.type.Currency.

As you can see above, we are using a special binding syntax for the number property of the ObjectListItem.
This binding syntax makes use of so-called "Calculated Fields", which allows the binding of multiple properties
from different models to a single property of a control. The properties bound from different models are called
“parts”. In the example above, the property of the control is number and the bound properties (“parts”)
retrieved from two different models are invoice>ExtendedPrice and view>/currency.

We want to display the price in Euro, and typically the currency is part of our data model on the back end. In our
case this is not the case, so we need to define it directly in the app. We therefore add a controller for the invoice
list, and use the currency property as the second part of our binding syntax. The Currency type will handle
the formatting of the price for us, based on the currency code. In our case, the price is displayed with 2
decimals.

Additionally, we set the formatting option showMeasure to false. This hides the currency code in the
property number, because it is passed on to the ObjectListItem control as a separate property
numberUnit.

webapp/controller/InvoiceList.controller.js (New)

sap.ui.define([
 "sap/ui/core/mvc/Controller",
 "sap/ui/model/json/JSONModel"
], function (Controller, JSONModel) {
 "use strict";

 return Controller.extend("sap.ui.demo.walkthrough.controller.InvoiceList", {

 onInit : function () {
 var oViewModel = new JSONModel({
 currency: "EUR"
 });
 this.getView().setModel(oViewModel, "view");
 }

 });
});

To be able to access the currency code that is not part of our data model, we define a view model in the
controller of the invoice list. It is a simple JSON model with just one key currency and the value EUR. This can
be bound to the formatter of the number field. View models can hold any configuration options assigned to a
control to bind properties such as the visibility.

Conventions

● Use data types instead of custom formatters whenever possible.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 125

Related Information

Composite Binding [page 843]
Formatting, Parsing, and Validating Data [page 854]
API Reference: sap.ui.model.type
API Reference: sap.ui.model.type.Currency
Samples: sap.ui.model.type.Currency

Step 22: Expression Binding

Sometimes the predefined types of SAPUI5 are not flexible enough and you want to do a simple calculation or
formatting in the view - that is where expressions are really helpful. We use them to format our price according
to the current number in the data model.

Preview

Figure 27: The price is now formatted according to its number

Coding

You can view and download all files at Walkthrough - Step 22.

126 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.type-1.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.type.Currency.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.ui.model.type.Currency/samples
https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.walkthrough.22/preview

webapp/view/InvoiceList.view.xml

<mvc:View controllerName="sap.ui.demo.walkthrough.controller.InvoiceList"
xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <List
 headerText="{i18n>invoiceListTitle}"
 class="sapUiResponsiveMargin"
 width="auto"
 items="{invoice>/Invoices}" >
 <items>
 <ObjectListItem
 title="{invoice>Quantity} x {invoice>ProductName}"
 number="{
 parts: [{path: 'invoice>ExtendedPrice'}, {path: 'view>/currency'}],
 type: 'sap.ui.model.type.Currency',
 formatOptions: {
 showMeasure: false
 }
 }"
 numberUnit="{view>/currency}" numberState="{= ${invoice>ExtendedPrice} > 50 ? 'Error' :
'Success' }"/> </items>
 </List> </mvc:View>

We add the property numberState in our declarative view and introduce a new binding syntax that starts with
= inside the brackets. This symbol is used to initiate a new binding syntax, it's called an expression and can do
simple calculation logic like the ternary operator shown here.

The condition of the operator is a value from our data model. A model binding inside an expression binding has
to be escaped with the $ sign as you can see in the code. We set the state to 'Error' (the number will appear
in red) if the price is higher than 50 and to ‘Success’ (the number will appear in green) otherwise.

Expressions are limited to a particular set of operations that help formatting the data such as Math expression,
comparisons, and such. You can lookup the possible operations in the documentation.

Conventions

● Only use expression binding for trivial calculations.

Related Information

Expression Binding [page 845]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 127

Step 23: Custom Formatters

If we want to do a more complex logic for formatting properties of our data model, we can also write a custom
formatting function. We will now add a localized status with a custom formatter, because the status in our data
model is in a rather technical format.

Preview

Figure 28: A status is now displayed with a custom formatter

Coding

You can view and download all files at Walkthrough - Step 23.

webapp/model/formatter.js (New)

sap.ui.define([], function () {
 "use strict";
 return {
 statusText: function (sStatus) {
 var resourceBundle =
this.getView().getModel("i18n").getResourceBundle();

128 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.walkthrough.23/preview

 switch (sStatus) {
 case "A":
 return resourceBundle.getText("invoiceStatusA");
 case "B":
 return resourceBundle.getText("invoiceStatusB");
 case "C":
 return resourceBundle.getText("invoiceStatusC");
 default:
 return sStatus;
 }
 }
 };
});

We create a new folder model in our app project. The new formatter file is placed in the model folder of the
app, because formatters are working on data properties and format them for display on the UI. So far we did
not have any model-related artifacts, except for the Invoices.json file, we will now add the folder webapp/
model to our app. This time we do not extend from any base object but just return a JavaScript object with our
formatter functions inside the sap.ui.define call.

Function statusText gets the technical status from the data model as input parameter and returns a human-
readable text that is read from the resourceBundle file.

webapp/controller/InvoiceList.controller.js

sap.ui.define(["sap/ui/core/mvc/Controller", "sap/ui/model/json/JSONModel",
 "../model/formatter"], function (Controller, JSONModel, formatter) { "use strict";
 return Controller.extend("sap.ui.demo.walkthrough.controller.InvoiceList", { formatter: formatter, onInit : function () {
 var oViewModel = new JSONModel({
 currency: "EUR"
 });
 this.getView().setModel(oViewModel, "view");
 }
 }); });

To load our formatter functions, we have to add it to the InvoiceList.controller.js. In this controller, we
first add a dependency to our custom formatter module. The controller simply stores the loaded formatter
functions in the local property formatter to be able to access them in the view.

webapp/view/InvoiceList.view.xml

<mvc:View controllerName="sap.ui.demo.walkthrough.controller.InvoiceList"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <List
 headerText="{i18n>invoiceListTitle}"

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 129

 class="sapUiResponsiveMargin"
 width="auto"
 items="{invoice>/Invoices}">
 <items>
 <ObjectListItem
 title="{invoice>Quantity} x {invoice>ProductName}"
 number="{
 parts: [{path: 'invoice>ExtendedPrice'}, {path: 'view>/
currency'}],
 type: 'sap.ui.model.type.Currency',
 formatOptions: {
 showMeasure: false
 }
 }"
 numberUnit="{view>/currency}" numberState="{= ${invoice>ExtendedPrice} > 50 ? 'Error' :
'Success' }">
 <firstStatus>
 <ObjectStatus text="{
 path: 'invoice>Status',
 formatter: '.formatter.statusText'
 }"/>
 </firstStatus>
 </ObjectListItem> </items>
 </List> </mvc:View>

We add a status using the firstStatus aggregation to our ObjectListItem that will display the status of
our invoice. The custom formatter function is specified with the reserved property formatter of the binding
syntax. A "." in front of the formatter name means that the function is looked up in the controller of the
current view. There we defined a property formatter that holds our formatter functions, so we can access it
by .formatter.statusText.

webapp/i18n/i18n.properties

App Descriptor appTitle=Hello World appDescription=A simple walkthrough app that explains the most important
concepts of SAPUI5 # Hello Panel
showHelloButtonText=Say Hello
helloMsg=Hello {0}
homePageTitle=Walkthrough
helloPanelTitle=Hello World
openDialogButtonText=Say Hello With Dialog
dialogCloseButtonText=Ok
Invoice List
invoiceListTitle=Invoices invoiceStatusA=New
invoiceStatusB=In Progress
invoiceStatusC=Done

We add three new entries to the resource bundle that reflect our translated status texts. These texts are now
displayed below the number attribute of the ObjectListItem dependent on the status of the invoice.

130 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Related Information

Formatting, Parsing, and Validating Data [page 854]

Step 24: Filtering

In this step, we add a search field for our product list and define a filter that represents the search term. When
searching, the list is automatically updated to show only the items that match the search term.

Preview

Figure 29: A search field is displayed above the list

Coding

You can view and download all files at Walkthrough - Step 24.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 131

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.walkthrough.24/preview

webapp/view/InvoiceList.view.xml

<mvc:View controllerName="sap.ui.demo.walkthrough.controller.InvoiceList"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <List id="invoiceList" class="sapUiResponsiveMargin"
 width="auto"
 items="{invoice>/Invoices}" > <headerToolbar>
 <Toolbar>
 <Title text="{i18n>invoiceListTitle}"/>
 <ToolbarSpacer/>
 <SearchField width="50%" search=".onFilterInvoices"/>
 </Toolbar>
 </headerToolbar> <items>
 <ObjectListItem>
 …
 </ObjectListItem/>
 </items>
 </List> </mvc:View>

The view is extended by a search control that we add to the list of invoices. We also need to specify an ID
invoiceList for the list control to be able to identify the list from the event handler function
onFilterInvoices that we add to the search field. In addition, the search field is part of the list header and
therefore, each change on the list binding will trigger a rerendering of the whole list, including the search field.

The headerToolbar aggregation replaces the simple title property that we used before for our list header.
A toolbar control is way more flexible and can be adjusted as you like. We are now displaying the title on the left
side with a sap.m.Title control, a spacer, and the sap.m.SearchField on the right.

webapp/controller/InvoiceList.controller.js

sap.ui.define(["sap/ui/core/mvc/Controller",
 "sap/ui/model/json/JSONModel", "../model/formatter",
 "sap/ui/model/Filter",
 "sap/ui/model/FilterOperator"], function (Controller, JSONModel, formatter, Filter, FilterOperator) { "use strict";
 return Controller.extend("sap.ui.demo.walkthrough.controller.InvoiceList", {
 formatter: formatter,
 onInit : function () {
 var oViewModel = new JSONModel({
 currency: "EUR"
 });
 this.getView().setModel(oViewModel, "view"); },
 onFilterInvoices : function (oEvent) {

 // build filter array
 var aFilter = [];
 var sQuery = oEvent.getParameter("query");

132 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 if (sQuery) {
 aFilter.push(new Filter("ProductName", FilterOperator.Contains,
sQuery));
 }

 // filter binding
 var oList = this.byId("invoiceList");
 var oBinding = oList.getBinding("items");
 oBinding.filter(aFilter);
 } }); });

We load two new dependencies for the filtering. The filter object will hold our configuration for the filter action
and the FilterOperator is a helper type that we need in order to specify the filter.

In the onFilterInvoices function we construct a filter object from the search string that the user has typed
in the search field. Event handlers always receive an event argument that can be used to access the parameters
that the event provides. In our case the search field defines a parameter query that we access by calling
getParameter(“query”) on the oEvent parameter.

If the query is not empty, we add a new filter object to the still empty array of filters. However, if the query is
empty, we filter the binding with an empty array. This makes sure that we see all list elements again. We could
also add more filters to the array, if we wanted to search more than one data field. In our example, we just
search in the ProductName path and specify a filter operator that will search for the given query string.

The list is accessed with the ID that we have specified in the view, because the control is automatically prefixed
by the view ID, we need to ask the view for the control with the helper function byId. On the list control we
access the binding of the aggregation items to filter it with our newly constructed filter object. This will
automatically filter the list by our search string so that only the matching items are shown when the search is
triggered. The filter operator FilterOperator.Contains is not case-sensitive.

Related Information

API Reference: sap.ui.model.Filter
API Reference: sap.ui.model.FilterOperator
API Reference: sap.m.SearchField

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 133

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.Filter.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.FilterOperator.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.SearchField.html

Step 25: Sorting and Grouping

To make our list of invoices even more user-friendly, we sort it alphabetically instead of just showing the order
from the data model. Additionally, we introduce groups and add the company that ships the products so that
the data is easier to consume.

Preview

Figure 30: The list is now sorted and grouped by the shipping company

Coding

You can view and download all files at Walkthrough - Step 25.

webapp/view/InvoiceList.view.xml

<mvc:View controllerName="sap.ui.demo.walkthrough.controller.InvoiceList"
 xmlns="sap.m"

134 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.walkthrough.25/preview

 xmlns:mvc="sap.ui.core.mvc">
 <List
 id="invoiceList"
 class="sapUiResponsiveMargin"
 width="auto" items="{
 path : 'invoice>/Invoices',
 sorter : {
 path : 'ProductName'
 }
 }" > <headerToolbar>
 ...
 </headerToolbar>
 <items>
 ...
 </items>
 </List> </mvc:View>

We add a declarative sorter to our binding syntax. As usual, we transform the simple binding syntax to the
object notation, specify the path to the data, and now add an additional sorter property. We specify the data
path by which the invoice items should be sorted, the rest is done automatically. By default, the sorting is
ascending, but you could also add a property descending with the value true inside the sorter property to
change the sorting order.

If we run the app now we can see a list of invoices sorted by the name of the products.

webapp/view/InvoiceList.view.xml

<mvc:View controllerName="sap.ui.demo.walkthrough.controller.InvoiceList"
xmlns="sap.m"
xmlns:mvc="sap.ui.core.mvc">
<List
 id="invoiceList"
 class="sapUiResponsiveMargin"
 width="auto"
 items="{
 path : 'invoice>/Invoices', sorter : {
 path : 'ShipperName',
 group : true
 } }">
 <headerToolbar>
 <Toolbar>
 <Title text="{i18n>invoiceListTitle}"/>
 <ToolbarSpacer/>
 <SearchField width="50%" search=".onFilterInvoices"/>
 </Toolbar>
 </headerToolbar>
 <items>
 …
 </items>
</List>
</mvc:View>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 135

We modify the view and add a different sorter, or better; we change the sorter and set the attribute group to
true. We also specify the path to the ShipperName data field. This groups the invoice items by the shipping
company.

As with the sorter, no further action is required. The list and the data binding features of SAPUI5 will do the
trick to display group headers automatically and categorize the items in the groups. We could define a custom
grouping function if we wanted by setting the groupHeaderFactory property, but the result looks already
fine.

Related Information

API Reference: sap.ui.model.Sorter
Sample: List - Grouping

Step 26: Remote OData Service

So far we have worked with local JSON data, but now we will access a real OData service to visualize remote
data.

In the real world, data often resides on remote servers and is accessed via an OData service. We will add a data
source configuration to the manifest and replace the JSONModel type for our invoice model with the publicly
available Northwind OData service to visualize remote data. You will be surprised how little needs to be
changed in order to make this work!

 Note
If you cannot get it to run, don't worry too much, the remaining steps will also work with the local JSON
data you have used so far. In Step 27: Mock Server Configuration [page 139], you will learn how to simulate
a back-end system to achieve a similar working scenario. However, you should at least read this chapter
about remote OData services to learn about non-local data sources.

136 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.Sorter.html
https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.sample.ListGrouping/preview

Preview

Figure 31: Products from the OData invoices test service are now shown within our app

Coding

You can view and download all files at Walkthrough - Step 26.

webapp/manifest.json

{ "_version": "1.12.0",

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 137

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.walkthrough.26/preview

 "sap.app": {
 ... "ach": "CA-UI5-DOC",
 "dataSources": {
 "invoiceRemote": {
 "uri": "https://services.odata.org/V2/Northwind/Northwind.svc/",
 "type": "OData",
 "settings": {
 "odataVersion": "2.0"
 }
 }
 } },
 "sap.ui": {
 ...
 },
 "sap.ui5": {
 ...
 "models": {
 "i18n": {
 "type": "sap.ui.model.resource.ResourceModel",
 "settings": {
 "bundleName": "sap.ui.demo.walkthrough.i18n.i18n"
 }
 }, "invoice": {
 "dataSource": "invoiceRemote"
 } }
 } }

In the sap.app section of the descriptor file, we add a data source configuration. With the invoiceRemote,
key we specify a configuration object that allows automatic model instantiation. We specify the type of the
service (OData) and the model version (2.0). In this step, we want to use the publicly available Northwind
OData service located at https://services.odata.org/V2/Northwind/Northwind.svc/. Therefore,
the URI points to the official Northwind OData service.

In the models section, we replace the content of the invoice model. This key is still used as model name
when the model is automatically instantiated during the component initialization. However, the
invoiceRemote value of the dataSource key is a reference to the data source section that we specified
above. This configuration allows the component to retrieve the technical information for this model during the
start-up of the app.

Our component now automatically creates an instance of sap.ui.model.odata.v2.ODataModel according
to the settings we specified above, and makes it available as a model named invoice. When you use the
invoiceRemote data source, the ODataModel fetches the data from the real Northwind OData service. The
invoices we receive from the Northwind OData service have identical properties as the JSON data we used
previously (except for the status property, which is not available in the Northwind OData service).

 Note
If you want to have a default model on the component, you can change the name of the model to an empty
string in the descriptor file. Automatically instantiated models can be retrieved by calling this.getModel
in the component. In the controllers of component-based apps you can call
this.getView().getModel() to get the automatically instantiated model. For retrieving a named model
you have to pass on the model name defined in the descriptor file to getModel, that is, in the component
you would call this.getModel("invoice") to get our automatically generated invoice model that we
defined in the descriptor.

138 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

You can now try to run the app and see what happens - we will see an error related to our new configuration in
the console:

Figure 32: Violations of the same-origin policy in Google Chrome

Due to the so called same-origin policy, browsers deny AJAX requests to service endpoints in case the service
endpoint has a different domain/subdomain, protocol, or port than the app. The browser refuses to connect to
a remote URL directly for security reasons. Depending on your development environment you have different
options to overcome this limitation:

● SAP Web IDE: Configure a destination [page 1392]
● Local Development: Configure a local proxy (CORS anywhere) [page 1394]
● Workaround: Disabling the same-origin policy in the browser [page 1395] (not recommended, only for

testing)

Related Information

OData Home Page
API Reference: sap.ui.model.odata.v2.ODataModel
First-Aid Kit [page 1386]
Request Fails Due to Same-Origin Policy (Cross-Origin Resource Sharing - CORS) [page 1391]

Step 27: Mock Server Configuration

We just ran our app against a real service, but for developing and testing our app we do not want to rely on the
availability of the “real” service or put additional load on the system where the data service is located.

This system is the so-called back-end system that we will now simulate with an SAPUI5 feature called mock
server. It serves local files, but it simulates a back-end system more realistically than just loading the local data.
We will also change the model instantiation part so that the model is configured in the descriptor and
instantiated automatically by SAPUI5. This way, we do not need to take care of the model instantiation in the
code.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 139

http://help.sap.com/disclaimer?site=http%3A%2F%2Fwww.odata.org%2F
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v2.ODataModel.html

Preview

Figure 33: The list of invoices is now served by the Mock Server

Coding

You can view and download all files at Walkthrough - Step 27.

140 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.walkthrough.27/preview

Figure 34: Folder Structure for this Step

The folder structure of our app project is clearly separating test and productive files after this step. The new
test folder now contains a new HTML page mockServer.html which will launch our application in test mode
without calling the real service.

The new localService folder contains a metadata.xml service description file for OData, the
mockserver.js file that simulates a real service with local data, and the mockdata subfolder that contains
the local test data (Invoices.json).

webapp/test/mockServer.html (New)

<!DOCTYPE html> <html>
<head>
 <meta charset="utf-8">
 <title>SAPUI5 Walkthrough</title>
 <script
 id="sap-ui-bootstrap"
 src="https://openui5.hana.ondemand.com/resources/sap-ui-core.js"
 data-sap-ui-theme="sap_belize"
 data-sap-ui-libs="sap.m"
 data-sap-ui-resourceroots='{
 "sap.ui.demo.walkthrough": "./"
 }'
 data-sap-ui-oninit="module:sap/ui/core/ComponentSupport"
 data-sap-ui-compatVersion="edge"
 data-sap-ui-async="true">
 </script>
</head>
<body class="sapUiBody" id="content">
 <div data-sap-ui-component data-name="sap.ui.demo.walkthrough" data-
id="container" data-settings='{"id" : "walkthrough"}'></div>
</body>
</html>

We copy the index.html to a separate file in the webapp/test folder and name it mockServer.html. We
will now use this file to run our app in test mode with mock data loaded from a JSON file. Test pages should not

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 141

be placed in the application root folder but in a subfolder called test to clearly separate productive and test
coding.

From this point on, you have two different entry pages: One for the real “connected” app (index.html) and
one for local testing (mockServer.html). You can freely decide if you want to do the next steps on the real
service data or on the local data within the app.

 Note
If no connection to the real service is available or the proxy configuration from the previous step does not
work, you can always use the mockServer.html file. This will display the app with simulated test data. The
index.html file will always load the data from a remote server. If the request fails, the list of invoices will
stay empty.

webapp/test/mockServer.html

<!DOCTYPE html> <html>
<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>SAPUI5 Walkthrough - Test Page</title> <script
 id="sap-ui-bootstrap"
 src="https://openui5.hana.ondemand.com/resources/sap-ui-core.js"
 data-sap-ui-theme="sap_belize"
 data-sap-ui-resourceroots='{ "sap.ui.demo.walkthrough": "../" }' data-sap-ui-oninit="module:sap/ui/demo/walkthrough/test/initMockServer" data-sap-ui-compatVersion="edge"
 data-sap-ui-async="true">
 </script>
</head>
<body class="sapUiBody" id="content">
 <div data-sap-ui-component data-name="sap.ui.demo.walkthrough" data-
id="container" data-settings='{"id" : "walkthrough"}'></div>
</body>
</html>

We modify the mockServer.html file and change the page title to distinguish it from the productive start
page. In the bootstrap, the data-sap-ui-resourceroots property is also changed. The namespace now
points to the folder above ("../"), because the mockServer.html file is now in a subfolder of the webapp
folder. Instead of loading the app component directly, we now call a script initMockServer.js.

webapp/test/initMockServer.js (New)

sap.ui.define([
 "../localService/mockserver"
], function (mockserver) {
 "use strict";

142 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 // initialize the mock server
 mockserver.init();

 // initialize the embedded component on the HTML page
 sap.ui.require(["sap/ui/core/ComponentSupport"]);
});

The first dependency is a file called mockserver.js that will be located in the localService folder later.

The mockserver depencency that we are about to implement is our local test server. Its init method is
immediately called before we load the component. This way we can catch all requests that would go to the
"real" service and process them locally by our test server when launching the app with the mockServer.html
file. The component itself does not "know" that it will now run in test mode.

webapp/localService/mockdata/Invoices.json (New)

[
 {
 "ProductName": "Pineapple",
 "Quantity": 21,
 "ExtendedPrice": 87.2000,
 "ShipperName": "Fun Inc.",
 "ShippedDate": "2015-04-01T00:00:00",
 "Status": "A"
 },
 {
 "ProductName": "Milk",
 "Quantity": 4,
 "ExtendedPrice": 9.99999,
 "ShipperName": "ACME",
 "ShippedDate": "2015-02-18T00:00:00",
 "Status": "B"
 },
 {
 "ProductName": "Canned Beans",
 "Quantity": 3,
 "ExtendedPrice": 6.85000,
 "ShipperName": "ACME",
 "ShippedDate": "2015-03-02T00:00:00",
 "Status": "B"
 },
 {
 "ProductName": "Salad",
 "Quantity": 2,
 "ExtendedPrice": 8.8000,
 "ShipperName": "ACME",
 "ShippedDate": "2015-04-12T00:00:00",
 "Status": "C"
 },
 {
 "ProductName": "Bread",
 "Quantity": 1,
 "ExtendedPrice": 2.71212,
 "ShipperName": "Fun Inc.",
 "ShippedDate": "2015-01-27T00:00:00",
 "Status": "A"
 }
]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 143

The Invoices.json file is similar to our previous file in the webapp folder. Just copy the content and remove
the outer object structure with the key invoices so that the file consists of one flat array of invoice items. This
file will automatically be read by our server later in this step.

Remove the old Invoices.json file from the webapp folder, it is no longer used.

webapp/localService/metadata.xml (New)

<edmx:Edmx Version="1.0" xmlns:edmx="http://schemas.microsoft.com/ado/2007/06/
edmx">
 <edmx:DataServices m:DataServiceVersion="1.0" m:MaxDataServiceVersion="3.0"
 xmlns:m="http://schemas.microsoft.com/ado/2007/08/
dataservices/metadata">
 <Schema Namespace="NorthwindModel" xmlns="http://
schemas.microsoft.com/ado/2008/09/edm">
 <EntityType Name="Invoice">
 <Key>
 <PropertyRef Name="ProductName"/>
 <PropertyRef Name="Quantity"/>
 <PropertyRef Name="ShipperName"/>
 </Key>
 <Property Name="ShipperName" Type="Edm.String" Nullable="false"
MaxLength="40" FixedLength="false"
 Unicode="true"/>
 <Property Name="ProductName" Type="Edm.String" Nullable="false"
MaxLength="40" FixedLength="false"
 Unicode="true"/>
 <Property Name="Quantity" Type="Edm.Int16" Nullable="false"/>
 <Property Name="ExtendedPrice" Type="Edm.Decimal" Precision="19"
Scale="4"/>
 </EntityType>
 </Schema>
 <Schema Namespace="ODataWebV2.Northwind.Model" xmlns="http://
schemas.microsoft.com/ado/2008/09/edm">
 <EntityContainer Name="NorthwindEntities"
m:IsDefaultEntityContainer="true" p6:LazyLoadingEnabled="true"
 xmlns:p6="http://schemas.microsoft.com/ado/
2009/02/edm/annotation">
 <EntitySet Name="Invoices" EntityType="NorthwindModel.Invoice"/>
 </EntityContainer>
 </Schema>
 </edmx:DataServices>
</edmx:Edmx>

The metadata file contains information about the service interface and does not need to be written manually. It
can be accessed directly from the “real” service by calling the service URL and adding $metadata at the end
(e.g. in our case http://services.odata.org/V2/Northwind/Northwind.svc/$metadata). The mock
server will read this file to simulate the real OData service, and will return the results from our local source files
in the proper format so that it can be consumed by the app (either in XML or in JSON format).

For simplicity, we have removed all content from the original Northwind OData metadata document that we do
not need in our scenario. We have also added the status field to the metadata since it is not available in the
real Northwind service.

144 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

webapp/localService/mockserver.js (New)

sap.ui.define([
 "sap/ui/core/util/MockServer",
 "sap/base/util/UriParameters"
], function (MockServer, UriParameters) {
 "use strict";

 return {
 init: function () {
 // create
 var oMockServer = new MockServer({
 rootUri: "https://services.odata.org/V2/Northwind/Northwind.svc/"
 });

 var oUriParameters = new UriParameters(window.location.href);

 // configure mock server with a delay
 MockServer.config({
 autoRespond: true,
 autoRespondAfter: oUriParameters.get("serverDelay") || 500
 });

 // simulate
 var sPath = "../localService";
 oMockServer.simulate(sPath + "/metadata.xml", sPath + "/mockdata");

 // start
 oMockServer.start();
 }
 };

});

Now that we have added the OData service description file metadata.xml file, we can write the code to
initialize the mock server which will then simulate any OData request to the real Northwind server.

We load the standard SAPUI5 MockServer module as a dependency and create a helper object that defines an
init method to start the server. This method is called before the component initialization in the
mockServer.html file above. The init method creates a MockServer instance with the same URL as the
real service calls.

The URL in configuration parameter rootUri has to be exactly the same as the uri that is defined for the data
source in the manifest.json descriptor file. This can be an absolute or, for example in SAP Web IDE, a
relative URL to a destination. The URL will now be served by our test server instead of the real service. Next, we
set two global configuration settings that tell the server to respond automatically and introduce a delay of one
second to imitate a typical server response time. Otherwise, we would have to call the respond method on the
MockServer manually to simulate the call.

To simulate a service, we can simply call the simulate method on the MockServer instance with the path to
our newly created metadata.xml. This will read the test data from our local file system and set up the URL
patterns that will mimic the real service.

Finally, we call start on oMockServer. From this point, each request to the URL pattern rootUri will be
processed by the MockServer. If you switch from the index.html file to the mockServer.html file in the
browser, you can now see that the test data is displayed from the local sources again, but with a short delay.
The delay can be specified with the URI parameter serverDelay, the default value is one second.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 145

This approach is perfect for local testing, even without any network connection. This way your development
does not depend on the availability of a remote server, i.e. to run your tests.

Try calling the app with the index.html file and the mockServer.html file to see the difference. If the real
service connection cannot be made, for example when there is no network connection, you can always fall back
to the local test page.

Conventions

● The webapp/test folder contains non-productive code only.
● Mock data and the script to start the MockServer are stored in the webapp/localService folder.
● The script to start the MockServer is called mockserver.js.

Related Information

Mock Server [page 1222]
API Reference: sap.ui.core.util.MockServer
Create a Northwind Destination [page 49]

Step 28: Unit Test with QUnit

Now that we have a test folder in the app, we can start to increase our test coverage.

Actually, every feature that we added to the app so far, would require a separate test case. We have totally
neglected this so far, so let’s add a simple unit test for our custom formatter function from Step 23. We will test
if the long text for our status is correct by comparing it with the texts from our resource bundle.

 Note
In this tutorial, we focus on a simple use case for the test implementation. If you want to learn more about
QUnit tests, have a look at our Testing [page 368] tutorial, especially Step 2: A First Unit Test [page 376].

146 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.util.MockServer.html

Preview

Figure 35: A unit test for our formatters is now available

Coding

You can view and download all files at Walkthrough - Step 28.

Figure 36: Folder Structure for this Step

We add a new folder unit under the test folder and a model subfolder where we will place our formatter unit
test. The folder structure matches the app structure to easily find the corresponding unit tests.

webapp/test/unit/model/formatter.js

/*global QUnit*/

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 147

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.walkthrough.28/preview

sap.ui.define([
 "sap/ui/demo/walkthrough/model/formatter",
 "sap/ui/model/resource/ResourceModel"
], function (formatter, ResourceModel) {
 "use strict";

 QUnit.module("Formatting functions", {
 beforeEach: function () {
 this._oResourceModel = new ResourceModel({
 bundleUrl: sap.ui.require.toUrl("sap/ui/demo/walkthrough") + "/
i18n/i18n.properties"
 });
 },
 afterEach: function () {
 this._oResourceModel.destroy();
 }
 });

 QUnit.test("Should return the translated texts", function (assert) {

 // Arrange
 // this.stub() does not support chaining and always returns the right
data
 // even if a wrong or empty parameter is passed.
 var oModel = this.stub();
 oModel.withArgs("i18n").returns(this._oResourceModel);
 var oViewStub = {
 getModel: oModel
 };
 var oControllerStub = {
 getView: this.stub().returns(oViewStub)
 };

 // System under test
 var fnIsolatedFormatter = formatter.statusText.bind(oControllerStub);

 // Assert
 assert.strictEqual(fnIsolatedFormatter("A"), "New", "The long text for
status A is correct");

 assert.strictEqual(fnIsolatedFormatter("B"), "In Progress", "The long
text for status B is correct");

 assert.strictEqual(fnIsolatedFormatter("C"), "Done", "The long text for
status C is correct");

 assert.strictEqual(fnIsolatedFormatter("Foo"), "Foo", "The long text for
status Foo is correct");
 });

});

We create a new formatter.js file under webapp/test/unit/model where the unit test for the custom
formatter is implemented. The formatter file that we want to test is loaded as a dependency. We also need a
dependency to the ResourceModel, because we want to check if the translated texts are correct.

The formatter file just contains one QUnit module for our formatter function. It instantiates our
ResourceBundle with the localized texts in the beforeEach function and destroys it again in the afterEach
function. These functions are called before and after each test is executed.

Next is our unit test for the formatter function. In the implementation of the statusText function that we
created in step 23 we access the ResourceBundle with the following queued call: var resourceBundle =
this.getView().getModel("i18n").getResourceBundle();.

148 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Since we do not want to test the controller, the view, or the model functionality, we first remove the
dependencies by replacing these calls with empty hulls with the help of SinonJS and its stub method. This
happens in the Arrange section of the unit test. SinonJS injects a stub method for all objects so we can simply
call this.stub() to create a new stub for any behavior we need to mock.

Test stubs are functions with pre-programmed behavior. They support the full SinonJS test spy API in addition
to methods which can be used to alter the stub’s behavior. If this part is a bit confusing have a look at the
official SinonJS documentation for test spies or ignore it for now, it will become clear later on.

Then we bind our stub to the statusText formatter by calling the bind function of JavaScript. The this
pointer is now bound to our controller stub when the function is invoked using the variable
fnIsolatedFormatter and we can still pass in arguments as we like. This happens in the "system under test"
part of the test.

Finally we perform our assertions. We check each branch of the formatter logic by invoking the isolated
formatter function with the values that we expect in the data model (A, B, C, and everything else). We strictly
compare the result of the formatter function with the hard-coded strings that we expect from the resource
bundle and give a meaningful error message if the test should fail. We hard-code the strings here to identify
issues with the resource bundle properties. If a property was missing, the test would still be successful if we
check against the real value (that would be an empty string on both sides) from the resource bundle.

webapp/test/unit/unitTests.qunit.html (New)

<!DOCTYPE html>
<html>
<head>
 <title>Unit tests for SAPUI5 Walkthrough</title>
 <meta charset="utf-8">

 <script
 id="sap-ui-bootstrap"
 src="https://openui5.hana.ondemand.com/resources/sap-ui-core.js"
 data-sap-ui-resourceroots='{
 "sap.ui.demo.walkthrough": "../../"
 }'
 data-sap-ui-async="true">
 </script>

 <link rel="stylesheet" type="text/css" href="https://
openui5.hana.ondemand.com/resources/sap/ui/thirdparty/qunit-2.css">

 <script src="https://openui5.hana.ondemand.com/resources/sap/ui/thirdparty/
qunit-2.js"></script>
 <script src="https://openui5.hana.ondemand.com/resources/sap/ui/qunit/qunit-
junit.js"></script>
 <script src="https://openui5.hana.ondemand.com/resources/sap/ui/qunit/qunit-
coverage.js"></script>
 <script src="https://openui5.hana.ondemand.com/resources/sap/ui/thirdparty/
sinon.js"></script>
 <script src="https://openui5.hana.ondemand.com/resources/sap/ui/thirdparty/
sinon-qunit.js"></script>

 <script src="unitTests.qunit.js"></script>
</head>
<body>
 <div id="qunit"/>
 <div id="qunit-fixture"/>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 149

</body>
</html>

The so-called QUnit test suite is an HTML page that triggers all QUnit tests for the application. Most of it is
generating the layout of the result page that you can see in the preview and we won’t further explain these parts
but focus on the application parts instead.

Let’s start with the namespaces. Since we are now in the webapp/test/unit folder, we actually need to go up
two levels to get the src folder again. This namespace can be used inside the tests to load and trigger
application functionality.

First, we load some basic QUnit functionality via script tags. Other QUnit tests can be added here as well. Then
the HTML page loads another script called unitTests.qunit.js, which we will create next. This script will
execute our formatter.

webapp/test/unit/unitTests.qunit.js (New)

/* global QUnit */ QUnit.config.autostart = false;
sap.ui.getCore().attachInit(function () {
 "use strict";
 sap.ui.require([
 "sap/ui/demo/walkthrough/test/unit/model/formatter"
], function () {
 QUnit.start();
 });
});

This script loads and executes our formatter. If we now open the webapp/test/unit/
unitTests.qunit.html file in the browser, we should see our test running and verifying the formatter logic.

Conventions

● All unit tests are placed in the webapp/test/unit folder of the app.
● Files in the test suite end with *.qunit.html.
● The unitTests.qunit.html file triggers all unit tests of the app.
● A unit test should be written for formatters, controller logic, and other individual functionality.
● All dependencies are replaced by stubs to test only the functionality in scope.

Related Information

Unit Testing with QUnit [page 1159]
QUnit Home Page
Sinon.JS Home Page
Testing [page 368]

150 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/disclaimer?site=https%3A%2F%2Fqunitjs.com%2F
http://help.sap.com/disclaimer?site=http%3A%2F%2Fsinonjs.org%2F

Step 29: Integration Test with OPA

If we want to test interaction patterns or more visual features of our app, we can also write an integration test.

We haven’t thought about testing our interaction with the app yet, so in this step we will check if the dialog
actually opens when we click the “Say Hello with Dialog” button. We can easily do this with OPA5, a feature of
SAPUI5 that is easy to set up and is based on JavaScript and QUnit. Using integration and unit tests and
running them consistently in a continuous integration (CI) environment, we can make sure that we don’t
accidentally break our app or introduce logical errors in existing code.

 Note
In this tutorial, we focus on a simple use case for the test implementation. If you want to learn more about
OPA tests, have a look at our Testing [page 368] tutorial, especially Step 6: A First OPA Test [page 393].

Preview

Figure 37: An OPA test opens the "Hello" dialog from step 16

Coding

You can view and download all files at Walkthrough - Step 29.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 151

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.walkthrough.29/preview

Figure 38: Folder Structure for this Step

We add a new folder integration below the test folder, where we put our new test cases. Page objects that
help structuring such integration tests are put in the pages subfolder that we also create now.

webapp/test/integration/NavigationJourney.js (New)

/*global QUnit, opaTest*/

sap.ui.define([
 "sap/ui/demo/walkthrough/localService/mockserver",
 "sap/ui/test/opaQunit",
 "./pages/App"
], function (mockserver) {
 "use strict";

 QUnit.module("Navigation");

 opaTest("Should open the Hello dialog", function (Given, When, Then) {
 // initialize the mock server
 mockserver.init();

 // Arrangements
 Given.iStartMyUIComponent({
 componentConfig: {
 name: "sap.ui.demo.walkthrough"
 }
 });

 //Actions
 When.onTheAppPage.iPressTheSayHelloWithDialogButton();

 // Assertions
 Then.onTheAppPage.iShouldSeeTheHelloDialog();

152 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 // Cleanup
 Then.iTeardownMyApp();
 });
});

Let’s start with the journey first. A journey consists of a series of integration tests that belong to the same
context such as navigating through the app. Similar to the QUnit test implementation, OPA5 uses QUnit, that's
why we first set up a QUnit module Navigation that will be displayed on our result page.

The function opaTest is the main aspect for defining integration tests with OPA. Its parameters define a test
name and a callback function that gets executed with the following OPA5 helper objects to write meaningful
tests that read like a user story.

● Given
On the given object we can call arrangement functions like iStartMyUIComponent to load our app
component for integration testing.

● When
Contains custom actions that we can execute to get the application in a state where we can test the
expected behavior.

● Then
Contains custom assertions that check a specific constellation in the application and the teardown
function that removes our component again.

In our journey, we create a very simple test that starts the app. Inside the app, we simulate a click on a button
and expect that the dialog is opened afterwards. Finally, we shut down the app again.

As you can see, the test case reads like a user story, we actually do not need the implementation of the
methods yet to understand the meaning of the test case. This approach is called "Behavior Driven
Development" or simply BDD and is popular in "Agile Software Development".

webapp/test/integration/pages/App.js (New)

sap.ui.define([
 "sap/ui/test/Opa5",
 "sap/ui/test/actions/Press"
], function (Opa5, Press) {
 "use strict";

 var sViewName = "sap.ui.demo.walkthrough.view.HelloPanel";

 Opa5.createPageObjects({
 onTheAppPage: {
 actions: {
 iPressTheSayHelloWithDialogButton: function () {
 return this.waitFor({
 id: "helloDialogButton",
 viewName: sViewName,
 actions: new Press(),
 errorMessage: "Did not find the 'Say Hello With Dialog'
button on the HelloPanel view"
 });
 }
 },

 assertions: {
 iShouldSeeTheHelloDialog: function () {

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 153

 return this.waitFor({
 controlType: "sap.m.Dialog",
 success: function () {
 // we set the view busy, so we need to query the
parent of the app
 Opa5.assert.ok(true, "The dialog is open");
 },
 errorMessage: "Did not find the dialog control"
 });
 }
 }
 }
 });
});

The implementation of the page object holds the helper functions we just called in our journey. We require
OPA5 from the sap.ui.test namespace and define a page object with the helper function
createPageObjects. We pass in an object with the key of our page onTheAppPage and two sections:
actions and assertions.

In the actions section of the page object we define a function to click the "Hello" dialog button. This is done in
OPA5 with a waitFor statement, it is basically a loop that checks for the conditions defined as parameters. If
the conditions are met, the success callback is executed, if the test fails because the conditions have not been
met, the text in the errorMessage property is displayed on the result page.

We define a waitFor statement that checks for controls of type sap.m.Button. As soon as a button is found
on the app page the success handler is executed and we use jQuery to trigger a tap event on the first button
that we found. This should open the HelloDialog similar to clicking on the button manually.

In the assertions section we define another waitFor statement that checks if a sap.m.Dialog control is
existing in the DOM of the app. When the dialog has been found, the test is successful and we can immediately
confirm by calling an ok statement with a meaningful message.

webapp/test/integration/opaTests.qunit.html (New)

<!DOCTYPE html>
<html>
<head>
 <title>Integration tests for SAPUI5 Walkthrough</title>
 <meta charset="utf-8">

 <script
 id="sap-ui-bootstrap"
 src="https://openui5.hana.ondemand.com/resources/sap-ui-core.js"
 data-sap-ui-theme="sap_belize"
 data-sap-ui-resourceroots='{
 "sap.ui.demo.walkthrough": "../../"
 }'
 data-sap-ui-animation="false"
 data-sap-ui-compatVersion="edge"
 data-sap-ui-async="true">
 </script>

 <link rel="stylesheet" type="text/css" href="https://
openui5.hana.ondemand.com/resources/sap/ui/thirdparty/qunit-2.css">

 <script src="https://openui5.hana.ondemand.com/resources/sap/ui/thirdparty/
qunit-2.js"></script>

154 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 <script src="https://openui5.hana.ondemand.com/resources/sap/ui/qunit/qunit-
junit.js"></script>

 <script src="opaTests.qunit.js"></script>
</head>
<body>
 <div id="qunit"></div>
 <div id="qunit-fixture"></div>
</body>
</html>

This file contains our test suite for all OPA tests of the app. We use the same namespace as for our application.

Then we load the basic QUnit functionality via script tags from SAPUI5 so that we can execute the test journey.
The NavigationJourney we defined above will be loaded via a script called opaTests.qunit.js:

webapp/test/integration/opaTests.qunit.js (New)

/* global QUnit */ QUnit.config.autostart = false;
sap.ui.getCore().attachInit(function () {
 "use strict";
 sap.ui.require([
 "sap/ui/demo/walkthrough/test/integration/NavigationJourney"
], function () {
 QUnit.start();
 });
});

This script loads the NavigationJourney, and the test functions inside are immediately executed. When you
call the webapp/test/integration/opaTests.qunit.html page of your project on the server, you should
see the QUnit layout and a test “Should see the Hello dialog” is executed immediately. It will load the app
component on the right side of the page. There you can see what operations the test is performing on the app,
if everything works correctly the button click is triggered, then a dialog is shown and the test case is green.

Conventions

● OPA tests are located in the webapp/test/integration folder of the application.
● Use page objects and journeys for structuring OPA tests.

Related Information

Integration Testing with One Page Acceptance Tests (OPA5) [page 1182]
Samples: sap.ui.test.Opa5
Testing [page 368]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 155

https://sapui5.hana.ondemand.com/explored.html#/entity/sap.ui.test.Opa5/samples

Step 30: Debugging Tools

Even though we have added a basic test coverage in the previous steps, it seems like we accidentally broke our
app, because it does not display prices to our invoices anymore. We need to debug the issue and fix it before
someone finds out.

Luckily, SAPUI5 provides a couple of debugging tools that we can use within the app to check the application
logic and the developer tools of modern browsers are also quite good. We will now check for the root cause.

Preview

Figure 39: The diagnostics window

Coding

You can view and download all files at Walkthrough - Step 30.

156 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.walkthrough.30/preview

webapp/view/InvoiceList.view.xml

<mvc:View controllerName="sap.ui.demo.walkthrough.controller.InvoiceList"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <List
 id="invoiceList"
 class="sapUiResponsiveMargin"
 width="auto"
 items="{
 path : 'invoice>/Invoices',
 sorter : {
 path : 'ShipperName',
 group : true
 }
 }">
 <headerToolbar>
 <Toolbar>
 <Title text="{i18n>invoiceListTitle}"/>
 <ToolbarSpacer/>
 <SearchField width="50%" search=".onFilterInvoices"/>
 </Toolbar>
 </headerToolbar>
 <items>
 <ObjectListItem
 title="{invoice>Quantity} x {invoice>ProductName}"
 number="{ parts: [{path: 'invoice>ExTendedPrice'}, {path: 'view>/
currency'}], type: 'sap.ui.model.type.Currency',
 formatOptions: {
 showMeasure: false
 }
 }"
 numberUnit="{view>/currency}"
 numberState="{= ${invoice>ExtendedPrice} > 50 ? 'Error' :
'Success' }">
 <attributes>
 <ObjectAttribute text="{
 path: 'invoice>Status',
 formatter: '.formatter.statusText'
 }"/>
 </attributes>
 </ObjectListItem>
 </items>
 </List> </mvc:View>

We introduced a typo in the binding of the number attribute to simulate a frequent error; instead of using
'invoice>ExtendedPrice' we use 'invoice>ExTendedPrice'. Now we call the app and notice that the
price is actually missing. By pressing CTRL + ALT + SHIFT + S we open the SAPUI5 support diagnostics
tool and check the app.

 Note
If you use the Google Chrome browser, you can install the UI5 Inspector plugin. With this plugin, you can
easily debug your SAPUI5- or OpenUI5-based apps. For more information, see UI5 Inspector [page 1374].

Besides technical information about the app and a trace that is similar to the developer tools console of the
browser, there is a really handy tool for checking such errors in this dialog. Open the tab Control Tree by clicking
on the expand symbol on the right.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 157

A hierarchical tree of SAPUI5 controls is shown on the left and the properties of the selected control are
displayed on the right. If we now select the first ObjectListItem control of the tree and go to the Binding
Infos tab on the right, we can actually see that the binding path of the number attribute is marked as invalid. We
can now correct the error in the view and the price should appear in the list of invoices again.

Sometimes errors are not as easy to spot and you actually need to debug the JavaScript code with the tools of
the browser. For performance reasons, the SAPUI5 files are shipped in a minified version, this means that all
possible variable names are shortened and comments are removed.

This makes debugging harder because the code is a lot less readable. You can load the debug sources by
adding the URL parameter sap-ui-debug=true or by pressing CTRL + ALT + SHIFT + P and select Use
Debug Sources in the dialog box that is displayed. After reloading the page, you can see in the Network tab of
the browser’s developer tools that now a lot of files with the –dbg suffix are loaded. These are the source code
files that include comments and the uncompressed code of the app and the SAPUI5 artifacts.

Figure 40: Technical information dialog

For a more detailed explanation of the SAPUI5 support tools, go through the Troubleshooting [page 194]
tutorial.

If you're stuck and need help for some development task, you can also post a question in the SAPUI5-related
forums, for example in the SAP Community or on Stack Overflow.

Conventions

● As per SAPUI5 convention uncompressed source files end with *-dbg.js

Related Information

Debugging [page 1315]
Diagnostics [page 1326]

158 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://www.sap.com/community/topic/ui5.html
https://stackoverflow.com/search?q=sapui5

Technical Information Dialog [page 1322]

Step 31: Routing and Navigation

So far, we have put all app content on one single page. As we add more and more features, we want to split the
content and put it on separate pages.

In this step, we will use the SAPUI5 navigation features to load and show a separate detail page that we can
later use to display details for an invoice. In the previous steps, we defined the page directly in the app view so
that it is displayed when the app is loaded. We will now use the SAPUI5 router class to load the pages and
update the URL for us automatically. We specify a routing configuration for our app and create a separate view
for each page of the app, then we connect the views by triggering navigation events.

Preview

Figure 41: A second page is added to display the invoice

Coding

You can view and download all files at Walkthrough - Step 31.

webapp/manifest.json

{ "_version": "1.12.0",
 …
 "sap.ui5": {
 …
 "models": {
 … },
 "routing": {
 "config": {
 "routerClass": "sap.m.routing.Router",
 "viewType": "XML",

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 159

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.walkthrough.31/preview

 "viewPath": "sap.ui.demo.walkthrough.view",
 "controlId": "app",
 "controlAggregation": "pages",
 "async": true
 },
 "routes": [
 {
 "pattern": "",
 "name": "overview",
 "target": "overview"
 },
 {
 "pattern": "detail",
 "name": "detail",
 "target": "detail"
 }
],
 "targets": {
 "overview": {
 "viewId": "overview",
 "viewName": "Overview"
 },
 "detail": {
 "viewId": "detail",
 "viewName": "Detail"
 }
 }
 } } }

We add a new “routing" section to the sap.ui5 part of the descriptor. There are three subsections that define
the routing and navigation structure of the app:

● config
This section contains the global router configuration and default values that apply for all routes and
targets. We define the router class that we want to use and where our views are located in the app. To load
and display views automatically, we also specify which control is used to display the pages and what
aggregation should be filled when a new page is displayed.

● routes
Each route defines a name, a pattern, and one or more targets to navigate to when the route has been hit.
The pattern is basically the URL part that matches to the route, we define two routes for our app. The first
one is a default route that will show the overview page with the content from the previous steps, and the
second is the detail route with the URL pattern detail that will show a new page.

● targets
A target defines a view that is displayed, it is associated with one or more routes and it can also be
displayed manually from within the app. Whenever a target is displayed, the corresponding view is loaded
and shown in the app. In our app we simply define two targets with a view name that corresponds to the
target name.

webapp/Component.js

sap.ui.define(["sap/ui/core/UIComponent",
 "sap/ui/model/json/JSONModel",
 "./controller/HelloDialog"
], function (UIComponent, JSONModel, HelloDialog) {

160 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 "use strict";
 return UIComponent.extend("sap.ui.demo.walkthrough.Component", {
 metadata: {
 manifest: "json"
 },
 init: function () {
 // call the init function of the parent
 UIComponent.prototype.init.apply(this, arguments);
 // set data model
 var oData = {
 recipient: {
 name: "World"
 }
 };
 var oModel = new JSONModel(oData);
 this.setModel(oModel);
 // set dialog
 this._helloDialog = new HelloDialog(this.getRootControl()); // create the views based on the url/hash
 this.getRouter().initialize(); },
 });
 exit : function () {
 this._helloDialog.destroy();
 delete this._helloDialog;
 },
 openHelloDialog : function () {
 this._helloDialog.open();
 }
 }); });

In the component initialization method, we now add a call to initialize the router. We do not need to instantiate
the router manually, it is automatically instantiated based on our AppDescriptor configuration and assigned
to the component.

Initializing the router will evaluate the current URL and load the corresponding view automatically. This is done
with the help of the routes and targets that have been configured in the AppDescriptor. If a route has been
hit, the view of its corresponding target is loaded and displayed.

webapp/view/Overview.view.xml (New)

<mvc:View
 controllerName="sap.ui.demo.walkthrough.controller.App"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <Page title="{i18n>homePageTitle}">
 <headerContent>
 <Button
 icon="sap-icon://hello-world"
 press=".onOpenDialog"/>
 </headerContent>
 <content>
 <mvc:XMLView viewName="sap.ui.demo.walkthrough.view.HelloPanel"/>
 <mvc:XMLView viewName="sap.ui.demo.walkthrough.view.InvoiceList"/>
 </content>
 </Page>
</mvc:View>

We move the content of the previous steps from the App view to a new Overview view. For simplicity, we do not
change the controller as it only contains our helper method to open the dialog, that means we reuse the

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 161

controller sap.ui.demo.walkthrough.controller.App for two different views (for the new overview and
for the app view). However, two instances of that controller are instantiated at runtime. In general, one instance
of a controller is instantiated for each view that references the controller.

webapp/view/App.view.xml

<mvc:View controllerName="sap.ui.demo.walkthrough.controller.App"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc"
 displayBlock="true"> <Shell>
 <App class="myAppDemoWT" id="app"/>
</Shell> </mvc:View>

Our App view is now only containing the empty app tag. The router will automatically add the view that
corresponds to the current URL into the app control. The router identifies the app control with the ID that
corresponds to the property controlId: “app” in the AppDescriptor.

webapp/view/Detail.view.xml (New)

<mvc:View
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <Page
 title="{i18n>detailPageTitle}">
 <ObjectHeader
 title="Invoice"/>
 </Page>
</mvc:View>

Now we add a second view for the detail view. It only contains a page and an ObjectHeader control that
displays the static text Invoice for now.

webapp/i18n/i18n.properties

… # Invoice List
invoiceListTitle=Invoices
invoiceStatusA=New
invoiceStatusB=In Progress
invoiceStatusC=Done # Detail Page
detailPageTitle=Walkthrough - Details

We add a new string to the resource bundle for the detail page title.

162 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

webapp/view/InvoiceList.view.xml

<mvc:View controllerName="sap.ui.demo.walkthrough.controller.InvoiceList"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <List …>
 …
 <items>
 <ObjectListItem

 title="{invoice>Quantity} x {invoice>ProductName}"
 number="{
 parts: [{path: 'invoice>ExtendedPrice'}, {path: 'view>/
currency'}],
 type: 'sap.ui.model.type.Currency',
 formatOptions: {
 showMeasure: false
 }
 }"
 numberUnit="{view>/currency}"
 numberState="{= ${invoice>ExtendedPrice} > 50 ? 'Error' :
'Success' }" type="Navigation"
 press="onPress"> <firstStatus>
 <ObjectStatus text="{
 path: 'invoice>Status',
 formatter: '.formatter.statusText'
 }"/>
 </firstStatus>
 </ObjectListItem>
 </items>
 </List> </mvc:View>

In the invoice list view we add a press event to the list item and set the item type to Navigation so that the
item can actually be clicked.

webapp/controller/InvoiceList.controller.js

sap.ui.define(["sap/ui/core/mvc/Controller",
 "sap/ui/model/json/JSONModel",
 "../model/formatter",
 "sap/ui/model/Filter",
 "sap/ui/model/FilterOperator"
], function (Controller, JSONModel, formatter, Filter, FilterOperator) {
 "use strict";
 return Controller.extend("sap.ui.demo.walkthrough.controller.InvoiceList", {
 … onPress: function (oEvent) {
 var oRouter = sap.ui.core.UIComponent.getRouterFor(this);
 oRouter.navTo("detail");
 } }); });

We add the event handler function to the controller of our invoices list. Now it is time to navigate to the detail
page by clicking an item in the invoice list. We access the router instance for our app by calling the helper

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 163

method sap.ui.core.UIComponent.getRouterFor(this). On the router we call the navTo method to
navigate to the detail route that we specified in the routing configuration.

You should now see the detail page when you click an item in the list of invoices.

Conventions

● Define the routing configuration in the descriptor

Related Information

Routing and Navigation [page 1072]
Tutorial: Navigation and Routing [page 291]
API Reference: sap.m.routing.Router
Samples: sap.m.routing.Router

Step 32: Routing with Parameters

We can now navigate between the overview and the detail page, but the actual item that we selected in the
overview is not displayed on the detail page yet. A typical use case for our app is to show additional information
for the selected item on the detail page.

To make this work, we have to pass over the information which item has been selected to the detail page and
show the details for the item there.

Preview

Figure 42: The selected invoice details are now shown in the details page

164 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.routing.Router.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.m.routing.Router/samples

Coding

You can view and download all files at Walkthrough - Step 32.

webapp/manifest.json

{ "_version": "1.12.0",
 …
 "sap.ui5": {
 …
 "routing": {
 "config": {
 "routerClass": "sap.m.routing.Router",
 "viewType": "XML",
 "viewPath": "sap.ui.demo.walkthrough.view",
 "controlId": "app",
 "controlAggregation": "pages",
 "async": true
 },
 "routes": [
 {
 "pattern": "",
 "name": "overview",
 "target": "overview"
 },
 { "pattern": "detail/{invoicePath}", "name": "detail",
 "target": "detail"
 }
],
 "targets": {
 "overview": {
 "viewID": "overview"
 "viewName": "Overview"
 },
 "detail": {
 "viewId": "detail"
 "viewName": "Detail"
 }
 }
 }
 } }

We now add a navigation parameter invoicePath to the detail route so that we can hand over the information
for the selected item to the detail page. Mandatory navigation parameters are defined with curly brackets.

webapp/view/Detail.view.xml

<mvc:View controllerName="sap.ui.demo.walkthrough.controller.Detail" xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 165

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.walkthrough.32/preview

 <Page
 title="{i18n>detailPageTitle}">
 <ObjectHeader intro="{invoice>ShipperName}"
 title="{invoice>ProductName}"/> </Page> </mvc:View>

We add a controller that will take care of setting the item's context on the view and bind some properties of the
ObjectHeader to the fields of our invoice model. We could add more detailed information from the
invoice object here, but for simplicity reasons we just display two fields for now.

webapp/controller/InvoiceList.controller.js

sap.ui.define(["sap/ui/core/mvc/Controller",
 "sap/ui/model/json/JSONModel",
 "../model/formatter",
 "sap/ui/model/Filter",
 "sap/ui/model/FilterOperator"
], function (Controller, JSONModel, formatter, Filter, FilterOperator) {
 "use strict";
 return Controller.extend("sap.ui.demo.walkthrough.controller.InvoiceList", {
 …
 onPress: function (oEvent) { var oItem = oEvent.getSource(); var oRouter = sap.ui.core.UIComponent.getRouterFor(this); oRouter.navTo("detail", {
 invoicePath:
window.encodeURIComponent(oItem.getBindingContext("invoice").getPath().substr(1))
 }); }
 }); });

The control instance that has been interacted with can be accessed by the getSource method that is available
for all SAPUI5 events. It will return the ObjectListItem that has been clicked in our case. We will use it to
pass the information of the clicked item to the detail page so that the same item can be displayed there.

In the navTo method we now add a configuration object to fill the navigation parameter invoicePath with the
current information of the item. This will update the URL and navigate to the detail view at the same time. On
the detail page, we can access this context information again and display the corresponding item.

To identify the object that we selected, we would typically use the key of the item in the back-end system
because it is short and precise. For our invoice items however, we do not have a simple key and directly use the
binding path to keep the example short and simple. The path to the item is part of the binding context which is
a helper object of SAPUI5 to manage the binding information for controls. The binding context can be accessed
by calling the getBindingContext method with the model name on any bound SAPUI5 control. We need to
remove the first / from the binding path by calling .substr(1) on the string because this is a special
character in URLs and is not allowed, we will add it again on the detail page.

166 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

webapp/controller/Detail.controller.js (New)

sap.ui.define([
 "sap/ui/core/mvc/Controller",
 "sap/ui/core/UIComponent"
], function (Controller, UIComponent) {
 "use strict";
 return Controller.extend("sap.ui.demo.walkthrough.controller.Detail", {
 onInit: function () {
 var oRouter = sap.ui.core.UIComponent.getRouterFor(this);

oRouter.getRoute("detail").attachPatternMatched(this._onObjectMatched, this);
 },
 _onObjectMatched: function (oEvent) {
 this.getView().bindElement({
 path: "/" +
window.decodeURIComponent(oEvent.getParameter("arguments").invoicePath),
 model: "invoice"
 });
 }
 });
});

Our last piece to fit the puzzle together is the detail controller. It needs to set the context that we passed in with
the URL parameter invoicePath on the view, so that the item that has been selected in the list of invoices is
actually displayed, otherwise, the view would simply stay empty.

In the onInit method of the controller we fetch the instance of our app router and attach to the detail route by
calling the method attachPatternMatched on the route that we accessed by its name. We register an
internal callback function _onObjectMatched that will be executed when the route is hit, either by clicking on
the item or by calling the app with a URL for the detail page.

In the _onObjectMatched method that is triggered by the router we receive an event that we can use to
access the URL and navigation parameters. The arguments parameter will return an object that corresponds
to our navigation parameters from the route pattern. We access the invoicePath that we set in the invoice list
controller and call the bindElement function on the view to set the context. We have to add the root / in front
of the path again that was removed for passing on the path as a URL parameter.

The bindElement function is creating a binding context for a SAPUI5 control and receives the model name as
well as the path to an item in a configuration object. This will trigger an update of the UI controls that we
connected with fields of the invoice model. You should now see the invoice details on a separate page when you
click on an item in the list of invoices.

Conventions

● Define the routing configuration in the AppDescriptor

Related Information

Routing and Navigation [page 1072]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 167

Tutorial: Navigation and Routing [page 291]
API Reference: sap.m.routing.Router
Samples: sap.m.routing.Router

Step 33: Routing Back and History

Now we can navigate to our detail page and display an invoice, but we cannot go back to the overview page yet.
We'll add a back button to the detail page and implement a function that shows our overview page again.

Preview

Figure 43: A back button is now displayed on the detail page

Coding

You can view and download all files at Walkthrough - Step 33.

webapp/view/Detail.view.xml

<mvc:View controllerName="sap.ui.demo.walkthrough.controller.Detail"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <Page
 title="{i18n>detailPageTitle}" showNavButton="true"
 navButtonPress=".onNavBack"> <ObjectHeader
 intro="{invoice>ShipperName}"
 title="{invoice>ProductName}"/>
 </Page> </mvc:View>

On the detail page, we tell the control to display a back button by setting the parameter showNavButton to
true and register an event handler that is called when the back button is pressed.

168 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.routing.Router.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.m.routing.Router/samples
https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.walkthrough.33/preview

webapp/controller/Detail.controller.js

sap.ui.define(["sap/ui/core/mvc/Controller", "sap/ui/core/routing/History", "sap/ui/core/UIComponent"], function (Controller, History, UIComponent) { "use strict";
 return Controller.extend("sap.ui.demo.walkthrough.controller.Detail", {
 onInit: function () {
 var oRouter = UIComponent.getRouterFor(this);

oRouter.getRoute("detail").attachPatternMatched(this._onObjectMatched, this);
 },
 _onObjectMatched: function (oEvent) {
 this.getView().bindElement({
 path: "/" +
window.decodeURIComponent(oEvent.getParameter("arguments").invoicePath),
 model: "invoice"
 }); },

 onNavBack: function () {
 var oHistory = History.getInstance();
 var sPreviousHash = oHistory.getPreviousHash();

 if (sPreviousHash !== undefined) {
 window.history.go(-1);
 } else {
 var oRouter = UIComponent.getRouterFor(this);
 oRouter.navTo("overview", {}, true);
 }
 } });
});

We load a new dependency that helps us to manage the navigation history from the sap.ui.core.routing
namespace and add the implementation for the event handler to our detail page controller.

In the event handler we access the navigation history and try to determine the previous hash. In contrast to the
browser history, we will get a valid result only if a navigation step inside our app has already happened. Then we
will simply use the browser history to go back to the previous page. If no navigation has happened before, we
can tell the router to go to our overview page directly. The third parameter true tells the router to replace the
current history state with the new one since we actually do a back navigation by ourselves. The second
parameter is an empty array ({}) as we do not pass any additional parameters to this route.

This implementation is a bit better than the browser’s back button for our use case. The browser would simply
go back one step in the history even though we were on another page outside of the app. In the app, we always
want to go back to the overview page even if we came from another link or opened the detail page directly with
a bookmark. You can try it by loading the detail page in a new tab directly and clicking on the back button in the
app, it will still go back to the overview page.

Conventions

● Add a path to go back to the parent page when the history state is unclear.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 169

Step 34: Custom Controls

In this step, we are going to extend the functionality of SAPUI5 with a custom control. We want to rate the
product shown on the detail page, so we create a composition of multiple standard controls using the SAPUI5
extension mechanism and add some glue code to make them work nicely together. This way, we can reuse the
control across the app and keep all related functionality in one module.

Preview

Figure 44: A custom product rating control is added to the detail page

Coding

You can view and download all files at Walkthrough - Step 34.

webapp/control/ProductRating.js (New)

sap.ui.define([
 "sap/ui/core/Control"
], function (Control) {
 "use strict";
 return Control.extend("sap.ui.demo.walkthrough.control.ProductRating", {
 metadata : {
 },
 init : function () {
 },
 renderer : function (oRM, oControl) {
 }
 });
});

We create a new folder control and a file ProductRating.js that will hold our new control. As with our
controllers and views, the custom control inherits the common control functionality from a SAPUI5 base
object, for controls this is done by extending the base class sap.ui.core.Control.

Custom controls are small reuse components that can be created within the app very easily. Due to their
nature, they are sometimes also referred to as "notepad” or “on the fly” controls. A custom control is a

170 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.walkthrough.34/preview

JavaScript object that has two special sections (metadata and renderer) and a number of methods that
implement the functionality of the control.

The metadata section defines the data structure and thus the API of the control. With this meta information
on the properties, events, and aggregations of the control SAPUI5 automatically creates setter and getter
methods and other convenience functions that can be called within the app.

The renderer defines the HTML structure that will be added to the DOM tree of your app whenever the control
is instantiated in a view. It is usually called initially by the core of SAPUI5 and whenever a property of the control
is changed. The parameter oRM of the render function is the SAPUI5 render manager that can be used to write
strings and control properties to the HTML page.

The init method is a special function that is called by the SAPUI5 core whenever the control is instantiated. It
can be used to set up the control and prepare its content for display.

 Note
Controls always extend sap.ui.core.Control and render themselves. You could also extend
sap.ui.core.Element or sap.ui.base.ManagedObject directly if you want to reuse life cycle features
of SAPUI5 including data binding for objects that are not rendered. Please refer to the API reference to
learn more about the inheritance hierarchy of controls.

webapp/control/ProductRating.js

sap.ui.define(["sap/ui/core/Control", "sap/m/RatingIndicator",
 "sap/m/Label",
 "sap/m/Button"], function (Control, RatingIndicator, Label, Button) { "use strict";
 return Control.extend("sap.ui.demo.walkthrough.control.ProductRating", {
 metadata : { properties : {
 value: {type : "float", defaultValue : 0}
 },
 aggregations : {
 _rating : {type : "sap.m.RatingIndicator", multiple: false,
visibility : "hidden"},
 _label : {type : "sap.m.Label", multiple: false, visibility :
"hidden"},
 _button : {type : "sap.m.Button", multiple: false, visibility :
"hidden"}
 },
 events : {
 change : {
 parameters : {
 value : {type : "int"}
 }
 }
 } }, init : function () {
 this.setAggregation("_rating", new RatingIndicator({
 value: this.getValue(),
 iconSize: "2rem",
 visualMode: "Half",
 liveChange: this._onRate.bind(this)

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 171

 }));
 this.setAggregation("_label", new Label({
 text: "{i18n>productRatingLabelInitial}"
 }).addStyleClass("sapUiSmallMargin"));
 this.setAggregation("_button", new Button({
 text: "{i18n>productRatingButton}",
 press: this._onSubmit.bind(this)
 }).addStyleClass("sapUiTinyMarginTopBottom"));
 },

 setValue: function (fValue) {
 this.setProperty("value", fValue, true);
 this.getAggregation("_rating").setValue(fValue);
 },

 reset: function () {
 var oResourceBundle = this.getModel("i18n").getResourceBundle();

 this.setValue(0);
 this.getAggregation("_label").setDesign("Standard");
 this.getAggregation("_rating").setEnabled(true);

this.getAggregation("_label").setText(oResourceBundle.getText("productRatingLabel
Initial"));
 this.getAggregation("_button").setEnabled(true);
 },

 _onRate : function (oEvent) {
 var oRessourceBundle = this.getModel("i18n").getResourceBundle();
 var fValue = oEvent.getParameter("value");

 this.setProperty("value", fValue, true);

this.getAggregation("_label").setText(oRessourceBundle.getText("productRatingLabe
lIndicator", [fValue, oEvent.getSource().getMaxValue()]));
 this.getAggregation("_label").setDesign("Bold");
 },

 _onSubmit : function (oEvent) {
 var oResourceBundle = this.getModel("i18n").getResourceBundle();

 this.getAggregation("_rating").setEnabled(false);

this.getAggregation("_label").setText(oResourceBundle.getText("productRatingLabel
Final"));
 this.getAggregation("_button").setEnabled(false);
 this.fireEvent("change", {
 value: this.getValue()
 });
 }, renderer : function (oRm, oControl) {
 oRm.openStart("div", oControl);
 oRm.class("myAppDemoWTProductRating");
 oRm.openEnd();
 oRm.renderControl(oControl.getAggregation("_rating"));
 oRm.renderControl(oControl.getAggregation("_label"));
 oRm.renderControl(oControl.getAggregation("_button"));
 oRm.close("div"); }
 }); });

We now enhance our new custom control with the custom functionality that we need. In our case we want to
create an interactive product rating, so we define a value and use three internal controls that are displayed

172 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

updated by our control automatically. A RatingIndicator control is used to collect user input on the
product, a label is displaying further information, and a button submits the rating to the app to store it.

In the metadata section we therefore define several properties that we make use in the implementation:

● Properties
○ Value

We define a control property value that will hold the value that the user selected in the rating. Getter
and setter function for this property will automatically be created and we can also bind it to a field of
the data model in the XML view if we like.

● Aggregations
As described in the first paragraph, we need three internal controls to realize our rating functionality. We
therefore create three “hidden aggregations” by setting the visibility attribute to hidden. This way, we
can use the models that are set on the view also in the inner controls and SAPUI5 will take care of the
lifecycle management and destroy the controls when they are not needed anymore. Aggregations can also
be used to hold arrays of controls but we just want a single control in each of the aggregations so we need
to adjust the cardinality by setting the attribute multiple to false.
○ _rating: A sap.m.RatingIndicator control for user input
○ _label: A sap.m.Label to display additional information
○ _button: A sap.m.Button to submit the rating

 Note
You can define aggregations and associations for controls. The difference is in the relation
between the parent and the related control:
○ An aggregation is a strong relation that also manages the lifecycle of the related control, for

example, when the parent is destroyed, the related control is also destroyed. Also, a control can
only be assigned to one single aggregation, if it is assigned to a second aggregation, it is removed
from the previous aggregation automatically.

○ An association is a weak relation that does not manage the lifecycle and can be defined multiple
times. To have a clear distinction, an association only stores the ID, whereas an aggregation stores
the direct reference to the control. We do not specify associations in this example, as we want to
have our internal controls managed by the parent.

● Events
○ Change

We specify a change event that the control will fire when the rating is submitted. It contains the
current value as an event parameter. Applications can register to this event and process the result
similar to “regular” SAPUI5 controls, which are in fact built similar to custom controls.

In the init function that is called by SAPUI5 automatically whenever a new instance of the control is
instantiated, we set up our internal controls. We instantiate the three controls and store them in the internal
aggregation by calling the framework method setAggregation that has been inherited from
sap.ui.core.Control. We pass on the name of the internal aggregations that we specified above and the
new control instances. We specify some control properties to make our custom control look nicer and register
a liveChange event to the rating and a press event to the button. The initial texts for the label and the button
are referenced from our i18n model.

Let’s ignore the other internal helper functions and event handlers for now and define our renderer. With the
help of the SAPUI5 render manager and the control instance that are passed on as a reference, we can now
render the HTML structure of our control. We render the start of the outer <div> tag as <div and call the

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 173

helper method writeControlData to render the ID and other basic attributes of the control inside the div
tag. Next, we add a custom CSS class so that we can define styling rules for the custom control in our CSS file
later. This CSS class and others that have been added in the view are then rendered by calling writeClasses
on the renderer instance. Then we close the surrounding div tag and render three internal controls by passing
the content of the internal aggregation to the render managers renderControl function. This will call the
renderer of the controls and add their HTML to the page. Finally, we close our surrounding <div> tag.

The setValue is an overridden setter. SAPUI5 will generate a setter that updates the property value when
called in a controller or defined in the XML view, but we also need to update the internal rating control in the
hidden aggregation to reflect the state properly. Also, we can skip the rerendering of SAPUI5 that is usually
triggered when a property is changed on a control by calling the setProperty method to update the control
property with true as the third parameter.

Now we define the event handler for the internal rating control. It is called every time the user changes the
rating. The current value of the rating control can be read from the event parameter value of the
sap.m.RatingIndicator control. With the value we call our overridden setter to update the control state,
then we update the label next to the rating to show the user which value he has selected currently and also
displays the maximum value. The string with the placeholder values is read from the i18n model that is
assigned to the control automatically.

Next, we have the press handler for the rating button that submits our rating. We assume that rating a product
is a one-time action and first disable the rating and the button so that the user is not allowed to submit another
rating. We also update the label to show a "Thank you for your rating!" message, then we fire the change event
of the control and pass in the current value as a parameter so that applications that are listening to this event
can react on the rating interaction.

We define the reset method to be able to revert the state of the control on the UI to its initial state so that the
user can again submit a rating.

webapp/view/Detail.view.xml

<mvc:View controllerName="sap.ui.demo.walkthrough.controller.Detail"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc" xmlns:wt="sap.ui.demo.walkthrough.control"> <Page
 title="{i18n>detailPageTitle}"
 showNavButton="true"
 navButtonPress=".onNavBack">
 <ObjectHeader
 intro="{invoice>ShipperName}"
 title="{invoice>ProductName}"/> <wt:ProductRating id="rating" class="sapUiSmallMarginBeginEnd"
change=".onRatingChange"/> </Page>
</mvc:View>

A new namespace wt is defined on the detail view so that we can reference our custom controls easily in the
view. We then add an instance of the ProductRating control to our detail page and register an event handler
for the change event. To have a proper layout, we also add a margin style class.

174 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

webapp/controller/Detail.controller.js

sap.ui.define(["sap/ui/core/mvc/Controller",
 "sap/ui/core/routing/History", "sap/m/MessageToast", "sap/ui/core/UIComponent"], function (Controller, History, MessageToast, UIComponent) { "use strict";
 return Controller.extend("sap.ui.demo.walkthrough.controller.Detail", {
 …
 _onObjectMatched: function (oEvent) { this.byId("rating").reset(); this.getView().bindElement({
 path: "/" +
window.decodeURIComponent(oEvent.getParameter("arguments").invoicePath),
 model: "invoice"
 });
 },
 onNavBack: function () {
 var oHistory = History.getInstance();
 var sPreviousHash = oHistory.getPreviousHash();
 if (sPreviousHash !== undefined) {
 window.history.go(-1);
 } else {
 var oRouter = UIComponent.getRouterFor(this);
 oRouter.navTo("overview", {}, true);
 } },

 onRatingChange: function (oEvent) {
 var fValue = oEvent.getParameter("value");
 var oResourceBundle =
this.getView().getModel("i18n").getResourceBundle();

 MessageToast.show(oResourceBundle.getText("ratingConfirmation",
[fValue]));
 } }); });

In the Detail controller we load the dependency to the sap.m.MessageToast because we will simply display
a message instead of sending the rating to the backend to keep the example simple. The event handler
onRatingChange reads the value of our custom change event that is fired when the rating has been
submitted. We then display a confirmation message with the value in a MessageToast control.

In the onObjectMatched private method, we call the reset method to make it possible to submit another
rating as soon as the detail view is displayed for a different item.

webapp/css/style.css

.myAppDemoWTmyCustomButton.sapMBtn { margin-right: 0.125rem;
}
.myAppDemoWTmyCustomText {
 font-weight: bold;
} /* ProductRating */
.myAppDemoWTProductRating {

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 175

 padding: 0.75rem;
}
.myAppDemoWTProductRating .sapMRI {
 vertical-align: initial;
}

To layout our control, we add a little padding to the root class to have some space around the three inner
controls, and we override the alignment of the RatingIndicator control so that it is aligned in one line with
the label and the button.

We could also do this with more HTML in the renderer but this is the simplest way and it will only be applied
inside our custom control. However, please be aware that the custom control is in your app and might have to
be adjusted when the inner controls change in future versions of SAPUI5.

webapp/i18n/i18n.properties

… # Detail Page
detailPageTitle=Walkthrough - Details ratingConfirmation=You have rated this product with {0} stars

Product Rating
productRatingLabelInitial=Please rate this product
productRatingLabelIndicator=Your rating: {0} out of {1}
productRatingLabelFinal=Thank you for your rating!
productRatingButton=Rate

The resource bundle is extended with the confirmation message and the strings that we reference inside the
custom control. We can now rate a product on the detail page with our brand new control.

Conventions

● Put custom controls in the control folder of your app.

Related Information

Developing Controls [page 2158]
Defining the Control Metadata [page 2188]
API Reference: sap.m.RatingIndicator
Samples: sap.m.RatingIndicator
API Reference: sap.m.Label
Samples: sap.m.Label
API Reference: sap.m.Button
Samples: sap.m.Button
API Reference: sap.ui.core.Control

176 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.RatingIndicator.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.m.RatingIndicator/samples
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.Label.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.m.Label/samples
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.Button.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.m.Button/samples
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.Control.html

API Reference: sap.ui.core.Element
API Reference: sap.ui.base.ManagedObject

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 177

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.Element.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.base.ManagedObject.html

Step 35: Responsiveness

In this step, we improve the responsiveness of our app. SAPUI5 applications can be run on phone, tablet, and
desktop devices and we can configure the application to make best use of the screen estate for each scenario.
Fortunately, SAPUI5 controls like the sap.m.Table already deliver a lot of features that we can use.

Preview

Figure 45: A responsive table is hiding some of the columns on small devices

178 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Coding

You can view and download all files at Walkthrough - Step 35.

webapp/view/InvoiceList.view.xml

<mvc:View controllerName="sap.ui.demo.walkthrough.controller.InvoiceList"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc"> <Table id="invoiceList"
 class="sapUiResponsiveMargin"
 width="auto"
 items="{
 path : 'invoice>/Invoices',
 sorter : {
 path : 'ShipperName',
 group : true
 }
 }">
 <headerToolbar>
 <Toolbar>
 <Title text="{i18n>invoiceListTitle}"/>
 <ToolbarSpacer/>
 <SearchField width="50%" search=".onFilterInvoices"/>
 </Toolbar>
 </headerToolbar> <columns>
 <Column
 hAlign="End"
 minScreenWidth="Small"
 demandPopin="true"
 width="4em">
 <Text text="{i18n>columnQuantity}"/>
 </Column>
 <Column>
 <Text text="{i18n>columnName}"/>
 </Column>
 <Column
 minScreenWidth="Small"
 demandPopin="true">
 <Text text="{i18n>columnStatus}"/>
 </Column>
 <Column
 minScreenWidth="Tablet"
 demandPopin="false">
 <Text text="{i18n>columnSupplier}"/>
 </Column>
 <Column
 hAlign="End">
 <Text text="{i18n>columnPrice}"/>
 </Column>
 </columns>
 <items>
 <ColumnListItem
 type="Navigation"
 press=".onPress">
 <cells>
 <ObjectNumber number="{invoice>Quantity}"
emphasized="false"/>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 179

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.walkthrough.35/preview

 <ObjectIdentifier title="{invoice>ProductName}"/>
 <Text text="{
 path: 'invoice>Status',
 formatter: '.formatter.statusText'
 }"/>
 <Text text="{invoice>ShipperName}"/>
 <ObjectNumber
 number="{
 parts: [{path: 'invoice>ExtendedPrice'}, {path:
'view>/currency'}],
 type: 'sap.ui.model.type.Currency',
 formatOptions: {
 showMeasure: false
 }
 }"
 unit="{view>/currency}"
 state="{= ${invoice>ExtendedPrice} > 50 ? 'Error' :
'Success' }"/>
 </cells>
 </ColumnListItem>
 </items>
 </Table> </mvc:View>

We exchange the list with a table simply by replacing the tag <List> with <Table>. The table has a built-in
responsiveness feature that allows us to make the app more flexible. The table and the list share the same set
of properties so we can simply reuse these and also the sorter.

Since a table has multiple cells in each row, we have to define columns for our table and name these according
to the data. We add five sap.m.Column controls to the column aggregation and configure each one a bit
differently:

● Quantity
This column will contain a short number, so we set the alignment to End (which means "right" in LTR
languages) and the width to 4em which is long enough for the column description. As a description text we
use a sap.m.Text control that references a property of the resource bundle. We set the property
minScreenWidth to Small to indicate that this column is not so important on phones. We will tell the
table to display this column below the main column by setting the property demandPopin to true.

● Name
Our main column that has a pretty large width to show all the details. It will always be displayed.

● Status
The status is not so important, so we also display it below the name field on small screens by setting
minScreenWidth to small and demandPopin to true

● Supplier
We completely hide the Supplier column on phone devices by setting minScreenWidth to Tablet and
demandPopin to false.

● Price
This column is always visible as it contains our invoice price.

Instead of the ObjectListItem that we had before, we will now split the information onto the cells that match
the columns defined above. Therefore we change it to a ColumnListItem control with the same attributes,
but now with cells aggregation. Here we create five controls to display our data:

● Quantity
A simple sap.m.ObjectNumber control that is bound to our data field.

● Name
A sap.m.ObjectIdentifier controls that specifies the name.

180 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

● Status
A sap.m.Text control with the same formatter as before.

● Supplier
A simple sap.m.Text control.

● Price
An ObjectNumber control with the same formatter as the attributes number and numberUnit from the
previous steps.

Now we have defined our table responsively and can see the results when we decrease the browsers screen
size. The Supplier column is not shown on phone sizes and the two columns Quantity and Status will be shown
below the name.

webapp/i18n/i18n.properties

... # Invoice List
invoiceListTitle=Invoices
invoiceStatusA=New
invoiceStatusB=In Progress
invoiceStatusC=Done columnQuantity=Quantity
columnName=Name
columnSupplier=Supplier
columnStatus=Status
columnPrice=Price # Detail Page ...

We add the column names and the attribute titles to our i18n file.

We can see the results when we decrease the browser's screen size or open the app on a small device.

Conventions

● Optimize your application for the different screen sizes of phone, tablet, and desktop devices.

Related Information

Configuring Responsive Behavior of a Table [page 2332]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 181

Step 36: Device Adaptation

We now configure the visibility and properties of controls based on the device that we run the application on. By
making use of the sap.ui.Device API and defining a device model we will make the app look great on many
devices.

Preview

Figure 46: On phone devices, the panel is collapsed to save screen space and a button is hidden

Coding

You can view and download all files at Walkthrough - Step 36.

182 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.walkthrough.36/preview

webapp/view/HelloPanel.view.xml

<mvc:View controllerName="sap.ui.demo.walkthrough.controller.HelloPanel"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <Panel
 headerText="{i18n>helloPanelTitle}"
 class="sapUiResponsiveMargin" width="auto"
 expandable="{device>/system/phone}"
 expanded="{= !${device>/system/phone} }"> <content>
 <Button
 id="helloDialogButton"
 icon="sap-icon://world"
 text="{i18n>openDialogButtonText}"
 press=".onOpenDialog" class="sapUiSmallMarginEnd sapUiVisibleOnlyOnDesktop"/> <Button
 text="{i18n>showHelloButtonText}"
 press=".onShowHello"
 class="myCustomButton"/>
 <Input
 value="{/recipient/name}"
 valueLiveUpdate="true"
 width="60%"/>
 <FormattedText
 htmlText="Hello {/recipient/name}"
 class="sapUiSmallMargin sapThemeHighlight-asColor myCustomText"/>
 </content>
 </Panel> </mvc:View>

We add two new properties expandable and expanded to the HelloPanel. The user can now close and open
the panel to have more space for the table below on devices with small screens. The property expandable is
bound to a model named device and the path /system/phone. So the panel can be expanded on phone
devices only. The device model is filled with the sap.ui.Device API of SAPUI5 as we see further down. The
expanded property controls the state of the panel and we use expression binding syntax to close it on phone
devices and have the panel expanded on all other devices. The device API of SAPUI5 offers more functionality
to detect various device-specific settings, please have a look at the documentation for more details.

 Note
The sap.ui.Device API detects the device type (Phone, Tablet, Desktop) based on the user agent and
many other properties of the device. Therefore simply reducing the screen size will not change the device
type. To test this feature, you will have to enable device emulation in your browser or open it on a real
device.

We can also hide single controls by device type when we set a CSS class like sapUiVisibleOnlyOnDesktop
or sapUiHideOnDesktop . We only show the button that opens the dialog on desktop devices and hide it for
other devices. For more options, see the documentation linked below.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 183

webapp/Component.js

sap.ui.define(["sap/ui/core/UIComponent",
 "sap/ui/model/json/JSONModel", "./controller/HelloDialog",
 "sap/ui/Device"], function (UIComponent, JSONModel, HelloDialog, Device) { "use strict";
 return UIComponent.extend("sap.ui.demo.walkthrough.Component", {
 metadata: {
 manifest: "json"
 },
 init: function () {
 // call the init function of the parent
 UIComponent.prototype.init.apply(this, arguments);
 // set data model
 var oData = {
 recipient: {
 name: "World"
 }
 };
 var oModel = new JSONModel(oData);
 this.setModel(oModel);
 // disable batch grouping for v2 API of the northwind service
 this.getModel("invoice").setUseBatch(false); // set device model
 var oDeviceModel = new JSONModel(Device);
 oDeviceModel.setDefaultBindingMode("OneWay");
 this.setModel(oDeviceModel, "device"); // set dialog
 this._helloDialog = new HelloDialog(this.getRootControl());
 // create the views based on the url/hash
 this.getRouter().initialize();
 },
 exit : function () {
 this._helloDialog.destroy();
 delete this._helloDialog;
 },
 openHelloDialog : function () {
 this._helloDialog.open();
 }
 }); });

In the app component we add a dependency to sap.ui.Device and initialize the device model in the init
method. We can simply pass the loaded dependency Device to the constructor function of the JSONModel.
This will make most properties of the SAPUI5 device API available as a JSON model. The model is then set on
the component as a named model so that we can reference it in data binding as we have seen in the view above.

 Note
We have to set the binding mode to OneWay as the device model is read-only and we want to avoid changing
the model accidentally when we bind properties of a control to it. By default, models in SAPUI5 are
bidirectional (TwoWay). When the property changes, the bound model value is updated as well.

184 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

webapp/view/Detail.view.xml

 Tip
You can test the device specific features of your app with the developer tools of your browser. For example
in Google Chrome, you can emulate a tablet or a phone easily and see the effects. Some responsive options
of SAPUI5 are only set initially when loading the app, so you might have to reload your page to see the
results.

<mvc:View controllerName="sap.ui.demo.walkthrough.controller.Detail"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc"
 xmlns:wt="sap.ui.demo.walkthrough.control">
 <Page
 title="{i18n>detailPageTitle}"
 showNavButton="true"
 navButtonPress=".onNavBack"> <ObjectHeader
 responsive="true"
 fullScreenOptimized="true"
 number="{
 parts: [{path: 'invoice>ExtendedPrice'}, {path: 'view>/
currency'}],
 type: 'sap.ui.model.type.Currency',
 formatOptions: {
 showMeasure: false
 }
 }"
 numberUnit="{view>/currency}" intro="{invoice>ShipperName}"
 title="{invoice>ProductName}"> <attributes>
 <ObjectAttribute title="{i18n>quantityTitle}"
text="{invoice>Quantity}"></ObjectAttribute>
 <ObjectAttribute title="{i18n>dateTitle}" text="{
 path: 'invoice>ShippedDate',
 type: 'sap.ui.model.type.Date',
 formatOptions: {
 style: 'long',
 source: {
 pattern: 'yyyy-MM-ddTHH:mm:ss'
 }
 }
 }"/>
 </attributes> </ObjectHeader>
 <wt:ProductRating id="rating" class="sapUiSmallMarginBeginEnd"
change=".onRatingChange"/>
 </Page> </mvc:View>

Some controls already have built-in responsive features that can be configured. The ObjectHeader control
can be put in a more flexible mode by setting the attribute responsive to true and fullScreenOptimized
to true as well. This will show the data that we add to the view now at different positions on the screen based on
the device size.

We add the number and numberUnit field from the list of the previous steps also to the ObjectHeader and
use the same formatter with the currency type as in the previous steps. We then define two attributes: The
quantity of the invoice and the shipped date which is part of the data model. We have not used this
shippedDate field from the invoices JSON file so far, it contains a date in typical string format.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 185

We now use the Date type and provide the pattern of our date format in the source section of the format
options. It will display a more human-readable formatted date text that also fits to small screen devices.

webapp/controller/Detail.controller.js

sap.ui.define(["sap/ui/core/mvc/Controller",
 "sap/ui/core/routing/History",
 "sap/m/MessageToast", "sap/ui/model/json/JSONModel", "sap/ui/core/UIComponent"], function (Controller, History, MessageToast, JSONModel, UIComponent) { "use strict";
 return Controller.extend("sap.ui.demo.walkthrough.controller.Detail", {
 onInit : function () { var oViewModel = new JSONModel({
 currency: "EUR"
 });
 this.getView().setModel(oViewModel, "view"); var oRouter = sap.ui.core.UIComponent.getRouterFor(this);

oRouter.getRoute("detail").attachPatternMatched(this._onObjectMatched, this);
 },
 _onObjectMatched : … });

In the Detail controller we simply add the view model with our currency definition to display the number
properly. It is the same code as in the InvoiceList controller file.

webapp/i18n/i18n.properties

Detail Page detailPageTitle=Walkthrough - Details
ratingConfirmation=You have rated this product with {0} stars dateTitle=Order date
quantityTitle=Quantity

We add the column names and the attribute titles to our i18n file.

We can see the results when we decrease the browser's screen size or open the app on a small device.

Conventions

Optimize your application for the different screen sizes of phone, tablet, and desktop devices.

186 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Related Information

API Reference: sap.ui.Device.media.RANGESETS
API Reference: sap.ui.Device

Step 37: Content Density

In this step of our Walkthrough tutorial, we adjust the content density based on the user’s device. SAPUI5
contains different content densities allowing you to display larger controls for touch-enabled devices and a
smaller, more compact design for devices that are operated by mouse. In our app, we will detect the device and
adjust the density accordingly.

Preview

Figure 47: The content density is compact on desktop devices and cozy on touch-enabled devices

Coding

You can view and download all files at Walkthrough - Step 37.

webapp/Component.js

... init: function () { ... },

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 187

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.Device.media.RANGESETS.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.Device.html
https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.walkthrough.37/preview

 ... getContentDensityClass : function () {
 if (!this._sContentDensityClass) {
 if (!Device.support.touch) {
 this._sContentDensityClass = "sapUiSizeCompact";
 } else {
 this._sContentDensityClass = "sapUiSizeCozy";
 }
 }
 return this._sContentDensityClass;
 } }); });

To prepare the content density feature we will also add a helper method getContentDensityClass. SAPUI5
controls can be displayed in multiple sizes, for example in a compact size that is optimized for desktop and
non-touch devices, and in a cozy mode that is optimized for touch interaction. The controls look for a specific
CSS class in the HTML structure of the application to adjust their size.

This helper method queries the Device API directly for touch support of the client and returns the CSS class
sapUiSizeCompact if touch interaction is not supported and sapUiSizeCozy for all other cases. We will use
it throughout the application coding to set the proper content density CSS class.

webapp/controller/App.controller.js

sap.ui.define(["sap/ui/core/mvc/Controller"
], function (Controller) {
 "use strict";
 return Controller.extend("sap.ui.demo.walkthrough.controller.App", { onInit: function () {

this.getView().addStyleClass(this.getOwnerComponent().getContentDensityClass());
 }, onOpenDialog: function () {
 this.getOwnerComponent().openHelloDialog();
 }
 }); });

We add a method onInit on the app controller that is called when the app view is instantiated. There we query
the helper function that we defined on the app component to set the corresponding style class on the app view,
All controls inside the app view will now automatically adjust either to the compact or cozy size as defined by
the style.

webapp/controller/HelloDialog.js

sap.ui.define(["sap/ui/base/ManagedObject",
 "sap/ui/core/Fragment", "sap/ui/core/syncStyleClass"], function (ManagedObject, Fragment, syncStyleClass) { "use strict";

188 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 return
ManagedObject.extend("sap.ui.demo.walkthrough.controller.HelloDialog", {
 constructor : function (oView) {
 this._oView = oView;
 },
 exit : function () {
 delete this._oView;
 },
 open : function () {
 var oView = this._oView;
 // create dialog lazily
 if (!oView.byId("helloDialog")) {
 var oFragmentController = {
 onCloseDialog : function () {
 oView.byId("helloDialog").close();
 }
 };
 // load asynchronous XML fragment
 Fragment.load({
 id: oView.getId(),
 name: "sap.ui.demo.walkthrough.view.HelloDialog",
 controller: oFragmentController
 }).then(function (oDialog){
 // connect dialog to the root view of this component
(models, lifecycle)
 oView.addDependent(oDialog); // forward compact/cozy style into dialog

syncStyleClass(oView.getController().getOwnerComponent().getContentDensityClass()
, oView, oDialog); oDialog.open();
 });
 } else {
 oView.byId("helloDialog").open();
 }
 }
 });
});

The "Hello World" dialog is not part of the app view but opened in a special part of the DOM called "static area".
The content density class defined on the app view is not known to the dialog so we sync the style class of the
app with the dialog manually.

webapp/manifest.json

... "sap.ui5": {
 ...
 "dependencies": {
 ... },
 "contentDensities": {
 "compact": true,
 "cozy": true
 } }

In the contentDensities section of the sap.ui5 namespace, we specify the modes that the application
supports. Containers like the SAP Fiori launchpad allow switching the content density based on these settings.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 189

As we have just enabled the app to run in both modes depending on the devices capabilities, we can set both to
true in the application descriptor.

Summary

You should now be familiar with the major development paradigms and concepts of SAPUI5 and have created a
very simple first app. You are now ready to build a proper app based on what you've learned.

If you want to dive deeper into specific topics, you can use the other tutorials that show some of the aspects of
this Walkthrough and advanced topics in more detail.

Related Information

Content Densities [page 1142]
API Reference: sap.ui.Device.media.RANGESETS
API Reference: sap.ui.Device
API Reference: jQuery.sap.syncStyleClass

Step 38: Accessibility

As the last step in this tutorial, we are going to improve the accessibility of our app.

To achieve this, we will add ARIA attributes. ARIA attributes are used by screen readers to recognize the
application structure and to interpret UI elements properly. That way, we can make our app more accessible for
users who are limited in their use of computers, for example visually impaired persons. The main goal here is to
make our app usable for as many people as we can.

 Tip
ARIA is short for Accessible Rich Internet Applications. It is a set of attributes that enable us to make
apps more accessible by assigning semantic characteristics to certain elements. For more information, see
Accessible Rich Internet Applications (ARIA) – Part 1: Introduction .

190 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.Device.media.RANGESETS.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.Device.html
https://sapui5.hana.ondemand.com/#/api/jQuery.sap/methods/jQuery.sap.syncStyleClass
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Fskillup%2Faccessible-rich-internet-applications-aria-part-1-introduction%2F

Preview

Figure 48: Landmarks in our app

Coding

You can view and download all files at Walkthrough - Step 38.

One part of the ARIA attribute set is the so-called landmarks. You can compare landmarks to maps in that they
help the user navigate through an app. For this step, we will use Google Chrome with a free landmark navigation
extension We will now add meaningful landmarks to our code.

webapp/view/Overview.view.xml

<mvc:View controllerName="sap.ui.demo.walkthrough.controller.App"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <Page title="{i18n>homePageTitle}"> <landmarkInfo>
 <PageAccessibleLandmarkInfo
 rootRole="Region"
 rootLabel="{i18n>Overview_rootLabel}"
 contentRole="Main"
 contentLabel="{i18n>Overview_contentLabel}"
 headerRole="Banner"
 headerLabel="{i18n>Overview_headerLabel}"/>
 </landmarkInfo> <headerContent>
 …
 </headerContent>
 <content>
 …
 </content>
 </Page>
</mvc:View>

We use sap.m.PageAccessibleLandmarkInfo to define ARIA roles and labels for the overview page areas.
For more information, see the API Reference: sap.m.PageAccessibleLandmarkInfo.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 191

https://sapui5.hana.ondemand.com/#/sample/sap.m.tutorial.walkthrough.38/preview
http://help.sap.com/disclaimer?site=https%3A%2F%2Fchrome.google.com%2Fwebstore%2Fdetail%2Flandmark-navigation-via-k%2Fddpokpbjopmeeiiolheejjpkonlkklgp
http://help.sap.com/disclaimer?site=https%3A%2F%2Fchrome.google.com%2Fwebstore%2Fdetail%2Flandmark-navigation-via-k%2Fddpokpbjopmeeiiolheejjpkonlkklgp
https://sapui5.hana.ondemand.com/#/api/sap.m.PageAccessibleLandmarkInfo

webapp/view/InvoiceList.view.xml

<mvc:View controllerName="sap.ui.demo.walkthrough.controller.InvoiceList"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc"> <Panel accessibleRole="Region">
 <headerToolbar>
 <Toolbar>
 <Title text="{i18n>invoiceListTitle}"/>
 <ToolbarSpacer/>
 <SearchField
 width="50%"
 search=".onFilterInvoices"
 ariaLabelledBy="searchFieldLabel"
 ariaDescribedBy="searchFieldDescription"
 placeholder="{i18n>searchFieldPlaceholder}"/>
 </Toolbar>
 </headerToolbar> <Table
 id="invoiceList"
 class="sapUiResponsiveMargin"
 width="auto"
 items="{
 path : 'invoice>/Invoices',
 sorter : {
 path : 'ShipperName',
 group : true
 }
 }">
 <columns>
 <Column
 hAlign="End"
 …
 </columns>
 </Table> </Panel> </mvc:View>

We add a sap.m.Panel around the invoice list, and we move the toolbar from the table into the panel so the
region can take the title of the toolbar as its own. This has the effect that it will now be a region in our
landmarks.

webapp/view/HelloPanel.view.xml

<mvc:View controllerName="sap.ui.demo.walkthrough.controller.HelloPanel"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <Panel
 headerText="{i18n>helloPanelTitle}"
 class="sapUiResponsiveMargin"
 width="auto"
 expandable="{device>/system/phone}"
 expanded="{= !${device>/system/phone} }" accessibleRole="Region"> …
 </Panel>
</mvc:View>

192 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

In this view, we already have a panel, so we just add the accessibleRole attribute.

 Note
To add ARIA roles, labels and panels to other views, for example your Detail.view.xml, you can follow
the same pattern. We won't go into detail in this tutorial step, but if you're interested, simply download the
tutorial code and take a look at the Detail.view.xml.

webapp/i18n/i18n.properties

... #Overview Page
Overview_rootLabel=Overview Page
Overview_headerLabel=Header
Overview_contentLabel=Page Content
ratingTitle=Rate the Product ...

Here, we add the text for the rating panel title and the labels for the ARIA regions to the text bundle.

Result

Landmarks on the overview page - before Landmarks on the overview page - after

As you can see, we now have four landmarks on our page. The top three landmarks structure our page:

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 193

● Overview Page marks the complete page.
● Header marks the page title.
● Page Content marks the content of our page. This landmark already has two children.

Congratulations!

You've completed the walkthrough, good job! You should be familiar with all major development paradigms of
SAPUI5 now. Our other tutorials focus on certain aspects of SAPUI5, so feel free to explore!

Related Information

Accessibility [page 1485]
Screen Reader Support for SAPUI5 Controls [page 2244]
SAP Software Accessibility

Troubleshooting

In this tutorial, we will show you some tools that will help you if you run into problems with your SAPUI5 app.

We will introduce you to the browser developer tools and show you the various tools that SAPUI5 offers.

194 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/disclaimer?site=https%3A%2F%2Fwww.sap.com%2Fcorporate%2Fen%2Fcompany%2Fdiversity%2Faccessibility.about.html

For example, the SAPUI5 tools can help you with the following tasks:

● Inspect and debug apps
● Examine bugs and analyze errors
● Simulate UI changes
● Find out how to improve performance

To help you practice using the tools, we created an app with errors that we will use throughout the tutorial. You
can view and download the app in the Demo Kit at Troubleshooting.

Get Help

If you're stuck and need help with a development task, you can also post a question in the SAPUI5-related
forums, for example in the SAP Community or on Stack Overflow.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 195

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.troubleshooting.01/preview
https://www.sap.com/community/topic/ui5.html
https://stackoverflow.com/search?q=sapui5

Step 1: Browser Developer Tools

In this step, you will learn how to use your browser's developers tools to troubleshoot your SAPUI5 app.

Most modern web browsers contain some form of Developer Tools. They allow you to examine the details of the
current web page. You can also use them to debug JavaScript code, analyze network performance, live-edit
DOM elements, and much more. As an example, we will show you how to use the Developer Tools in Google
Chrome. Other browsers have similar capabilities, and you can easily adapt the examples shown here to these
browsers.

Opening the Example App and the Developer Tools

1. Download the example app with errors from the Demo Kit at Troubleshooting and run the app.

 Note
If you run the app within the Demo Kit frame, this step will not work as described. Open the app in a

new tab first with .

2. Open the Developer Tools by pressing F12 .

Inspecting DOM Elements and CSS Styles in the Elements Tab

1. Activate the Inspect Element mode by pressing Ctrl + Shift + C .
2. Click the Do Something button in the app.

The DOM tree in the Elements tab highlights the button's DOM element. Depending on which part of the
button (icon or text) you clicked, different HTML tags are highlighted.

3. Search for the following line:

<button id="container-HeapOfShards---app--myButton" data-sap-ui="container-
HeapOfShards---app--myButton" aria-describedby="__text1" class="sapMBtn sapMBtnBase sapMBtnInverted"> </button>

The Styles section in the panel on the right shows the active and overruled (striked-through) CSS styles for
the DOM element that is currently selected.

4. In the Styles section, switch to the Computed tab.
You can see that the margin of the button is set to 0px.

5. In the context menu of the element, choose Edit as HTML and add sapUiLargeMargin to the class
section of the button tag.
You can immediately see the effect on the web page.
The edited element should now look like this:

<button id="container-HeapOfShards---app--myButton" data-sap-ui="container-
HeapOfShards---app--myButton" aria-describedby="__text1" class="sapMBtn sapMBtnBase sapMBtnInverted sapUiLargeMargin">

196 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.troubleshooting.01/preview

 </button>

6. In the Styles section, switch again to the Computed tab.
You can see that the margin of the button is now set to 48px.

Analyzing Messages in the Console Tab

Interacting with the document
1. Switch to the Console tab and enter $("#container-HeapOfShards---app--myButton")

The console displays the DOM element structure of the button:

Q.fn.init [button#container-HeapOfShards---app--
myButton.sapMBtn.sapMBtnBase.sapMBtnInverted, context: document, selector: "#container-HeapOfShards---app--myButton"]

2. Examine the button element by expanding the structure.
3. On the Console tab, enter myView=sap.ui.getCore().byId("container-HeapOfShards---app").
4. On the Console tab, enter myView.byId("myButton").

The console displays the SAPUI5 structure of the button control:

f {bAllowTextSelection: true, mEventRegistry: {…}, sId: "container-HeapOfShards---app--myButton", mProperties: PropertyBag,
mAggregations: {…}, …}

Examine the SAPUI5 structure by expanding it.

 Note
The method of retrieval is different for SAPUI5 controls and DOM elements:

SAPUI5 Control DOM Element

sap.ui.getCore().byId("container-
HeapOfShards---app--myButton")

jQuery("#container-HeapOfShards---app--
myButton")

Watching messages
1. Switch to the Console tab.
2. Click the Do Something button in the app.

A MessageToast appears with the text Sorry, an error occurred!.
3. In the console, you see the following error message:

TypeError: oEvent.getSourceXYZ is not a function at f.onPress (http://.../App.controller.js?eval:20:69) ...

This means that an error occurred in the onPress function in the App.controller.js file at line 20.
4. Click the first link in the stack trace after f.onPress to look at the source code where you can see that it

wasn't the generic getSource function that was called, but an undefined getSourceXYZ.

sMessage = this.getResourceBundle().getText("buttonOk",
[oEvent.getSourceXYZ().getId()])

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 197

Debugging in the Sources Tab

1. Switch to the Source tab.
2. To view the source of the App.controller file, press Ctrl + P , enter App.controller, and select

App.controller.js?eval.
3. Set a breakpoint in line 20 by clicking on the line number of the following line:

sMessage = this.getResourceBundle().getText("buttonOk",
[oEvent.getSourceXYZ().getId()]);

4. Click the Do Something button in the app.
The debugger stops at line 20.

5. In line 20, replace getSourceXYZ() with getSource() and press Ctrl + S :

sMessage = this.getResourceBundle().getText("buttonOk",
[oEvent.getSourceXYZ().getId()]);

6. Resume the execution of the code by pressing F8 .
The message toast is now displayed on the web page with the following message: "HeapOfShards---app--
myButton" pressed

 Note
You can also use the Pause on exception button and select Pause on caught exceptions on the top right of
the Sources tab to pause the execution before an exception occurs without setting breakpoints.

Checking the Network Tab

The Network tab shows the sequence and duration of files being loaded. It can be used to optimize loading
performance and debug request issues.

1. Switch to the Network tab.
2. Press F5 to reload the page.

You see a list of the files that are currently loaded.
You can see that the NavigationBar.js file is loaded, but the view does not contain any
NavigationBar elements so it is not used.

3. You can't edit the code directly in this tab. You have to fix the source files in your development environment
and then reload the app.
Remove the unnecessary reference to the NavigationBar in the App.controller file:

sap.ui.define(["sap/ui/core/mvc/Controller",
 'sap/m/MessageToast', 'sap/ui/ux3/NavigationBar', 'jquery.sap.global'], function(Controller, MessageToast, NavigationBar, jQuery) { ...

198 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Testing Responsiveness with Device Mode

Switch to Device mode by clicking the respective button or by pressing Ctrl + Shift + M .

Emulate different mobile devices by selecting different devices, or switch orientation from landscape to
portrait.

Analyzing Performance Problems and Memory Leaks

There are additional tabs that can help you to analyze performance problems or memory leaks. For more
information, refer to the documentation of the developer tools of your browser.

● Memory or Profiles
● Performance or Timeline
● Application or Resources

Related Information

Documentation of the Chrome DevTools on https://developers.google.com

Step 2: Technical Information Dialog
In this tutorial step, we will have a closer look at the "Technical Information Dialog". This tool comes in handy
whenever you want to know the technical details of the running application, and also has some other useful
features.

Preview

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 199

http://help.sap.com/disclaimer?site=https%3A%2F%2Fdevelopers.google.com%2Fweb%2Ftools%2Fchrome-devtools%2F

Opening the Example App and the Technical Information Dialog

1. Download the example app with errors from the Demo Kit at Troubleshooting and run the app.
2. Open the Technical Information Dialog by pressing Ctrl + Shift + Alt + P .

The dialog box shows information related to the app and provides access to additional support options.

Checking the SAPUI5 Version

When you run into problems with your app, you should check the SAPUI5 version that you're using. The feature
that you want to use may not be available in your version or may have some bugs that are already solved in a
later version.

1. Check the displayed version information for theSAPUI5 Core Package and the
OpenUI5 Version.

2. Open the version overview at https://ui5.sap.com/versionoverview.html to see if there are newer patch
levels or releases of SAPUI5.

3. Read the What's New [page 6] section in the documentation and check the Change Log to find information
about new features and bug fixes.

 Note
You can view a specific version of the Demo Kit by adding the version number to the URL, for example,
https://ui5.sap.com/1.38.8/.

For more information, see Versioning of SAPUI5 [page 29].

Checking the Device

The device on which you run the app may not be supported or might be detected incorrectly by SAPUI5. This
can lead to issues with responsiveness or device adaption.

1. Verify that the User Agent shown in the dialog box matches your device, browser, and operating system. If
the information is truncated because there is not enough space, you can see the full string as a tooltip. To
copy the information, use the Copy technical information to clipboard button.

2. Test the functionality on another device or by using the device emulation features that are offered in the
developer tools of your browser.

Turning On Debug Sources

The SAPUI5 libraries are included in your app in a compressed form. To be able to efficiently debug these
libraries, they have to be reloaded in their source format and with developer comments.

1. Select the Use Debug Sources checkbox and confirm reloading the app.

200 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.troubleshooting.01/preview
https://ui5.sap.com/versionoverview.html
https://sapui5.hana.ondemand.com/#releasenotes.html

2. Open the developer tools of your browser
3. Choose Crtl + O and type the name of an SAPUI5 framework artifact to display its source code in

debug mode.

 Note
You may see additional errors and warnings in the developer console. These can help you investigate
the problem further.

For performance reasons, you should deactivate this feature again when you're done.

You can also select debug mode only for specific packages:

1. Next to the Use Debug Sources checkbox, choose Select specific modules to open the selection dialog box.
2. Select one or more modules in the module tree and notice that the value of the input field changes

accordingly.
3. Apply the selection and reload the app.

Only the selected modules are now loaded in debug mode.

Copying Technical Info

If you're really stuck or have found a bug, you can open a ticket. Choose the Copy technical information to
clipboard button to copy the technical details from this dialog box and then attach them to your message.

Accessing Other Tools

The Technical Information Dialog also includes links to Diagnostics and Support Assistant that we will discuss in
the following steps of this tutorial.

Related Information

Technical Information Dialog [page 1322]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 201

Step 3: Support Assistant

In this tutorial step, we will have a closer look at Support Assistant. You can use this tool to check whether your
app is built according to the best practices with predefined rules.

Preview

Opening the Example App and Support Assistant

1. Download the example app with errors from the Demo Kit at Troubleshooting and run the app.
2. Activate the Support Assistant using one of the following options:

○ Open the Technical Information Dialog by pressing Ctrl + Shift + Alt + P and choose Activate
Support Assistant.

○ Use the URL parameter: sap-ui-support=true.
The Support Assistant toolbar opens in the footer of the app.

202 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.troubleshooting.01/preview

Analyzing and Fixing Issues

1. In the Support Assistant toolbar, choose Rules.
2. In the Available Rules tab, select all rules, and choose Analyze.

You now see a list of issues.
3. Select Model: Unresolved binding path in the list of issues. In the issue details, you see the following

message: Element HeapOfShards---app--LabelWithMissingI18NText with binding path
'Label_Missing_I18N_Text' has the same value as the path. Potential Error.

4. Open the i18n.properties file in your development environment and add the missing text.

[…] item1Text=Item 1
item2Text=Item 2
selectEventMessage=Event "{0}" fired. Label_Missing_I18N_Text=Label Text

For more information, see Walkthrough Step 8: Translatable Texts [page 85]
5. Restart the app and start the analysis again. This issue should now be gone. We have intentionally hidden

some more errors in the code - check and see if you can find and correct them.

Related Information

Support Assistant [page 1339]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 203

Step 4: Diagnostics Window

In this tutorial step, we have a closer look at the Diagnostics window. It offers a wealth of information including
comprehensive technical information, a control tree, and debugging features.

Preview

Opening the Example App and the Diagnostics Window

1. Download the example app with errors from the Demo Kit at Troubleshooting and run the app.
2. Open the Diagnostics window by pressing Ctrl + Shift + Alt + S .

Improving App Performance

Let's say that you are facing a performance issue in your app, so let's check some performance-relevant
settings in the Diagnostics window:

204 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.troubleshooting.01/preview

1. Expand the Technical Information section and scroll down to view the loaded libraries.
2. If you spot any libraries that you originally defined, but you don't actually use, remove them from the

manifest.json file in your development environment to prevent them from loading. In this case, you can
see that the example app loads the sap.ui.layout library, even though the layout control is not used.

3. Scroll to the Configuration (bootstrap) section. You see that the preload method is set to synchronous
processing.

4. To improve performance, set the bootstrap parameter data-sap-ui-async to true in the index.html
file.

<!DOCTYPE HTML> <html>
<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <title>Heap Of Shards</title>
 <!-- set data-sap-ui-async="true" to enable the user to fix it in the
 troubleshooting tutorial step 4: Diagnostics Window -->
 <script id="sap-ui-bootstrap"
 src="https://openui5.hana.ondemand.com/resources/sap-ui-core.js"
 data-sap-ui-theme="sap_belize"
 data-sap-ui-libs="sap.f"
 data-sap-ui-resourceroots='{
 "sap.ui.demo.HeapOfShards": "./",
 "sap.ui.demo.DoesNotExist": "./DoesNotExist"
 }'
 data-sap-ui-oninit="module:sap/ui/core/ComponentSupport"
 data-sap-ui-compatVersion="edge" data-sap-ui-async="true"> </script> […]

Simulating UI Changes

The app contains a Do Something button and you want to make the button bigger. The control tree allows you
to test which width is the best.

1. Expand the Control Tree section. Make sure that you display both the app and the Diagnostics windows
side-by-side or on different monitors. Otherwise the diagnostics window will go to the background.

2. Press and hold the Ctrl + Shift + Alt keys and click the Do Something button in the app. You see the
button blinking green.

3. In the control tree of the Diagnostics window, the button is selected and you can see its properties on the
right.

4. Change the value of the width property to 100% and confirm with Enter .
The button width is automatically increased.

5. The changes that you make in the Diagnostics window are only temporary. To make your change
permanent, you have to change the app code.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 205

Trying Different SAPUI5 Versions

If you find a bug in your application, you can easily check whether it has already been fixed in a newer SAPUI5
version. Just try the app with a different SAPUI5 version:

1. Expand the Technical Information section and check the loaded version.
2. Expand the Debugging section.
3. Choose Other from the Boot application with different UI5 version on next reload dropdown list.
4. Enter a custom URL, for example https://openui5.hana.ondemand.com/1.46.6/resources/sap-

ui-core.js.
5. Choose Activate Reboot URL, confirm the dialog box, and reload the app.
6. Reopen the Diagnostics window and expand the Technical Information section. The loaded SAPUI5 version

is now changed.

More Features

More features are waiting for you to discover in the Diagnostics window. For more information, see Diagnostics
[page 1326].

Step 5: UI5 Inspector

In this tutorial step, we will have a closer look at UI5 Inspector - a plug-in specifically created for analyzing and
debugging SAPUI5 code.

With UI Inspector, you can find answers to the following questions, for example:

● What is the structure of your app?
● How are the elements related to each other?
● Which controls are involved when a function is performed?
● Which data is bound to a specific control and how (model and path)?

 Note
UI5 Inspector is only available for the Google Chrome browser.

206 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Preview

Opening the Example App and the UI5 Inspector

1. Download UI5 Inspector from the Chrome Web Store and add it to your Chrome browser as a standard
extension .

2. Download the example app with errors from the Demo Kit at Troubleshooting and run the app.
3. Open the Developer Tools in Google Chrome by pressing F12 .
4. Choose the UI5 tab on the right side of the developer tools panel.
5. Choose Control Inspector.

You now see a list of all of the controls that are used in the current view of the app. When you select an
entry, you see the properties and their values in the Properties area on the right. You can analyze line by line
without being overwhelmed by too much information.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 207

http://help.sap.com/disclaimer?site=https%3A%2F%2Fchrome.google.com%2Fwebstore%2Fdetail%2Fui5-inspector%2Fbebecogbafbighhaildooiibipcnbngo%3Fhl%3Den
https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.troubleshooting.01/preview

Simulating UI Changes

The app contains a Do Something button with meaningless icon (sap-icon://action) and text. We want to
use the sap-icon://activate icon instead and change the text. With UI Inspector, we want to simulate how
that will effect the UI change.

1. Right-click the Do Something button and from the context menu select Inspect UI5 Control.
The corresponding line in the Control Inspector is highlighted and you can view its properties.

2. Double-click the value for the icon property, which is currently sap-icon://action.
3. Replace action with activate and confirm with Enter .

The icon on the button in the app is updated to show the new icon .
4. Double-click the value for the text property and change the value to Activate.
5. The changes that you make in the UI5 Inspector are only temporary, and the icon will be reset to the default

when the page is reloaded. To make your change permanent, you have to change the app code.

Related Information

UI5 Inspector [page 1374]

208 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

First-Aid Kit

This section contains the most common issues that you might face when developing SAPUI5 apps and how to
solve them.

An Empty Page Comes Up

You find yourself in one of these situations:

● The browser shows an empty page: there's no content and no error message is displayed
● An Uncaught Error message is shown in the developer console

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 209

Preview

Figure 49: The browser displays an empty page and an Uncaught Error is issued in the console

Root Cause

This can happen for one of the following reasons:

● A critical reference error is prohibiting the app from starting.
● A syntax error is stopping the execution of your application code.
● A parsing error has occurred in an XML view.
● The tag of the control is written with lowercase letters.
● The root view is missing a root control.

210 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Resolution

Console shows "ReferenceError: sap is not defined"

Have a look at the resource path in the bootstrap of the HTML page you are trying to open. The path to the file
sap-ui-core.js is probably incorrect and needs to point to the path where the SAPUI5 resources are located
(typically globally under /resources or locally under resources).

If you are running the code in SAP Web IDE, you have to configure the neo-app.json project descriptor (see
Create a neo-app.json Project Configuration File [page 46]).

Other development environments might need the resources to be copied to the server and referenced relatively
to the app (see Standard Variant for Bootstrapping [page 694]).

Alternatively, you can use the CDN version (see Variant for Bootstrapping from Content Delivery Network [page
696]).

Console shows SyntaxError: <error details>

A JavaScript error in the application code throws an exception and stops all subsequent execution. Take a look
at the error details: In most cases, the root cause is mentioned in the first line of the error message.

The stack trace can provide more context on the execution scope. Analyze it from thoroughly to find a line
referencing your application code and start debugging there.

Console shows Error: Invalid XML

If the XML view to be displayed cannot be parsed, SAPUI5 stops the execution and throws a parse error. Check
the XML view for namespace issues, typos, and missing closing tags. Do a schema validation with an XML
validator tool.

Console shows Uncaught Error: failed to load 'sap/m/xxxxx.js'

During the development on Microsoft Windows, your app works fine, but a soon as you deploy it on a Linux
system, only an empty page comes up.

This could happen if you wrote the tag of the control with lowercase letters, because Linux systems use case-
sensitive file names.

Correct Example Incorrect Example

<Button text="Click me" /> <button text="Click me" />

Error message: Uncaught Error: failed to load
'sap/m/button.js'

 Tip
Control tags always start with capital letters after the namespace like <Button>, <l:FixFlex>,
<f:SimpleForm>.

Aggregations always start with lowercase letters like <content>, <l:fixContent>, <f:content>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 211

Console shows no error

Your root view is missing a root control. In the context of SAPUI5, sap.m.App or sap.m.SplitApp function as
root controls. Please check your root view (for example App.view.xml) and add the missing root control.

Content or Control Is Not Visible

You find yourself in the situation that a control or the content of a control is not visible, but you don't see an
error message in the console.

Root Cause

This can happen for one of the following reasons:

● The element is not properly bound
● The visible property is set to false
● The height or width dimension is set to 0

Resolution

First, you should check if your control was rendered properly by using the developer tool of your browser to
check the DOM element. For information about how to use your browser tools, see the documentation of you
browser or check our Troubleshooting Tutorial Step 1: Browser Developer Tools [page 196].

Wrong binding

If you bound your control to a source, for example, an image control, the binding may not be resolved properly.
This can be caused by minor mistakes such as typos. We recommend using Diagnostics to debug your
bindings. For more information, see Diagnostics [page 1326].

In the Diagnostics window, you can check whether you used a relative binding instead of an absolute one or vice
versa.

If you, for example, use a List control, you bind the list itself to an absolute path like items="{/Products}"
whereas the aggregations are bound to a relative path like title="{Name}". The actual path of the title
property is now {/Products/*Product_Index*/Name}.

If you used an absolute binding path like title="{/Name} for an aggregation instead of a relative one, the
result in the window would look like this:

212 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Another common error related to binding is to refer to the default model instead of referring to a specific
model. This happens, for examples, if you forgot to add the model name to the binding declaration.

For example, you have two models in your application: the default model, which has no name and another
model named cartProducts. To bind to the cartProducts model you have to write the model name
explicitly like items="{cartProducts>/cartEntries}".

If you used the binding correctly Diagnostics displays the following:

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 213

If the model name is missing, you see the following:

visible property set to false
If you set the visible property of a control to false, it will not be rendered at all.

Nested controls inherit the value of the visible property from their parents. Therefore, if the control that you
are missing is nested in a parent control that is set to invisible, the nested control will also not be rendered.

You can fix this by setting the visible property of the parent control to true or by moving your missing
control in the XML view so that it is not longer nested inside an invisible control.

Dimensions set to 0
Most controls have the properties width and height. If one of them is explicitly set to 0 some controls may
not be displayed at all. Similar to the visible property, the value of width and height are also inherited from
parent controls, as long as you don't set an explicit value for these dimensions. If you, for example, set one of
the dimension values for a control to 100% it will have the same size as the parent control. And if the parent's
width is 0 the nested control will also be 0.

As with the visible property, you can solve this by either increasing the size of the parent or setting fixed
values for the child (for example, 100px) instead of a relative value.

Request Fails Due to Same-Origin Policy (Cross-Origin
Resource Sharing - CORS)

If you use a remote URL in your code, for example a remote OData service, such as the publicly available
Northwind OData service, the browser may refuse to connect to a remote URL. Due to the same-origin policy,
browsers deny AJAX requests to service endpoints in case the service endpoint has a different domain/
subdomain, protocol, or port than the app.

214 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Preview

Figure 50: Violations of the same-origin policy in Google Chrome

Root Cause

Normally, the remote system would be configured to send the cross-origin resource sharing (CORS) headers to
make the browser also allow direct access to remote URLs. However, if you, for example, use a Northwind
OData service, you cannot modify the publicly available service. Then when you try to execute XHR requests
(XMLHttpRequest) the browser prevents the call due to the same-origin policy.

Resolution

To solve the issue, you have the following options:

● SAP Web IDE: Configure a destination as described below (recommended)
● Local Development: Configure a local proxy (CORS anywhere)
● Workaround: Disable the same-origin policy in the browser for local testing (not recommended, only for

testing)
● Set the CORS-relevant response headers on the remote system (if possible)

SAP Web IDE: Configure a destination

SAP Web IDE and the SAP Cloud Platform offer destinations that allow you to easily connect to remote
systems. The destination to the Northwind OData service is an internet proxy made available inside the app at
<protocol>://<domain>/destinations/northwind/*. Any request that is sent to this location is
forwarded to https://services.odata.org automatically.

Create Destination in SAP Cloud Platform Cockpit

Requested URL Forwarded To

/destinations/northwind/V2/Northwind/
Northwind.svc/$metadata

https://services.odata.org/V2/Northwind/
Northwind.svc/$metadata

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 215

Requested URL Forwarded To

/destinations/northwind/V2/Northwind/
Northwind.svc/Invoices

https://services.odata.org/V2/Northwind/
Northwind.svc/Invoices

The destination itself is configured inside the SAP Cloud Platform Cockpit. For more information, see Create a
Northwind Destination [page 49].

neo-app.json
For SAP Web IDE, a neo-app.json file is needed to make sure that the destination and resource mapping are
available in the app. It has to be located in the root folder (webapp), on the same level as the
user.project.json file that is automatically created.

If it does not exist yet, create a neo-app.json file and reference the Northwind destination there. Just copy
the content of the code into that file and try to run the app again.

{
 "routes": [
 {
 "path": "/destinations/northwind",
 "target": {
 "type": "destination",
 "name": "northwind"
 },
 "description": "Northwind OData Service"
 }
]
}

 Note
If the file already exists, for example, because you already created it to map the SAPUI5 resources, just
append the destination to the existing route definitions.

manifest.json
In the manifest.json descriptor file of your app, you can now change the data source to use the remote
destination, for example:

{ "_version": "1.12.0",
 "sap.app": {
 ...
 "dataSources": {
 "invoiceRemote": { "uri": "/destinations/northwind/V2/Northwind/Northwind.svc/", "type": "OData",
 "settings": {
 "odataVersion": "2.0"
 }
 }
 }
 },
 "sap.ui": {
 ...
 },
 "sap.ui5": {
 ...

216 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 } }

After this change, you can run the app in SAP Web IDE without disabling the same-origin policy of your browser.
The destination now manages the connection to the remote service.

Local Development: Configure a local proxy (CORS anywhere)

A proxy is simply a service end point on the same domain of your app to overcome the restrictions. It receives
requests from the app, forwards them to another server, and finally returns the corresponding response from
the remote service.

Follow the below steps to configure such a proxy in your poject.

Prerequisites: NodeJS is installed on your machine.

package.json

{ "name": "Sample-Package",
 "version": "1.0.0",
 "description": "Sample package.json", "scripts": {
 "proxy": "node proxy.js"
 },
 "devDependencies": {
 "cors-anywhere": "^0.4.1"
 }, "dependencies": {
 } }

Add the devDependency called "cors-anywhere": "^0.4.1" to your existing package.json. Run node
install to install the npm module. Add the proxy script to the scripts section in the package.json so
that you can run a script via npm run <script_name>.

proxy.js (new)

var cors_proxy = require('cors-anywhere');

// Listen on a specific IP Address
var host = 'localhost';

// Listen on a specific port, adjust if necessary
var port = 8081;

cors_proxy.createServer({
 originWhitelist: [], // Allow all origins
 requireHeader: ['origin', 'x-requested-with'],
 removeHeaders: ['cookie', 'cookie2']
}).listen(port, host, function() {
 console.log('Running CORS Anywhere on ' + host + ':' + port);
});

Create a new file proxy.js, and copy the above script into your project directory. This is the pre-configured
proxy server we are going to use to prevent the occurrence of same-origin policy error. We can start it by
running the command node proxy.js or npm run proxy. It runs a local proxy on port in the
console.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 217

manifest.json

{ "sap.app": {
 ...
 "dataSources": {
 "northwind": { "uri": "http://localhost:8081/https://services.odata.org/V2/
Northwind/Northwind.svc/", "type": "OData",
 "settings": {
 "odataVersion": "2.0"
 }
 }
 }
 } }

To use a service in the local ui5 application we have to change the uri in the manifest file.

 Note
The uri must start with http://localhost:<port>.

 Note
By default, you can't run the request in your browser with the proxy.js script. It throws the following
exception: exception Missing required request header. Must specify one of:
origin,x-requested-with. If you want to test the service in your browser, you can temporarily
comment out the line requireHeader: ['origin', 'x-requested-with'] from your proxy.js.

For more information on CORS Anywhere, see https://www.npmjs.com/package/cors-anywhere

Workaround: Disable the same-origin policy in the browser (not
recommended, only for testing)

. It runs a local proxyIn Google Chrome, you can easily disable the same-origin policy of Chrome by running
Chrome with the following command: [your-path-to-chrome-installation-dir]\chrome.exe --
disable-web-security --user-data-dir. Make sure that all instances of Chrome are closed before you
run the command. This allows all web sites to break out of the same-origin policy and connect to the remote
service directly.

 Caution
This approach is not recommended for productive apps. Running Chrome this way for surfing on the
internet poses a security risk. However, it allows you to avoid the need of setting up a proxy at
development time or for testing purposes.

218 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/disclaimer?site=https%3A%2F%2Fwww.npmjs.com%2Fpackage%2Fcors-anywhere

App or Control Looks Odd

You find yourself in a situation that your app or a control looks different than you expected.

Root Cause

This can happen for one of the following reasons:

● An HTML file is missing the DOCTYPE specification (this leads, for example, to exceptionally high table
headers)

● Custom styles aren't working properly
● The theme you are using does not support the used libraries

Resolution

To solve the issue, you have the following options:

● Check whether the <!DOCTYPE html> tag is placed at the beginning of each HTML file, before the <html>
tag.

● Check if you have used a custom CSS in your app.
If you have used a custom CSS, it is probably interfering with the styling in the standard SAPUI5 theming
libraries.
Use the developer tools of your browser to inspect the element that has the wrong styling. In the HTML tab,
you can usually see which styles are applied to a DOM element. If you have styles in the list that are added
by your app, disable these styles in the debugger to see whether this solves the problem.

 Note
SAPUI5-specific CSS classes and IDs all have an sapUi prefix, for example, sapUiButton.

If this does not solve the issue, check for inline styles that are applied to the element in the HTML code. You
can also try to isolate the control from the app to see whether there is an issue with the control instead of a
collision of styles.

● Check whether the theme you that you are using is supported in combination with the libraries that you are
using in your app. For more information, see Supported Combinations of Themes and Libraries [page 27]
and Deprecated Themes and Libraries [page 34].

Data Binding

In this tutorial, we will explain the concepts of data binding in SAPUI5.

You use data binding to bind UI elements to data sources to keep the data in sync and allow data editing on the
UI.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 219

For data binding, you need a model and a binding instance: The model instance holds the data and provides
methods to set the data or to retrieve the data from a server. It also provides a method for creating bindings to
the data. When this method is called, a binding instance is created, which contains the binding information and
provides an event, which is fired whenever the bound data changes. An element can listen to this event and
update its visualization according to the new data.

The UI uses data binding to bind controls to the model which holds the application data, so that the controls
are updated automatically whenever application data changes. Data binding is also used the other way round,
when changes in the control cause updates in the underlying application data, for example data entered by the
user. This is called two-way binding.

Preview

220 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Tip
You don't have to do all tutorial steps sequentially, you can also jump directly to any step you want. Just
download the code from the previous step, copy it to your workspace and make sure that the application
runs by calling the webapp/index.html file.

You can view and download the files for all steps in the Demo Kit at Data Binding. Depending on your
development environment you might have to adjust resource paths and configuration entries.

For more information check the following sections of the tutorials overview page (see Get Started: Setup,
Tutorials, and Demo Apps [page 38]):

● Downloading Code for a Tutorial Step [page 40]
● Adapting Code to Your Development Environment [page 40]

Related Information

Data Binding [page 815]
Model View Controller (MVC) [page 784]

Step 1: No Data Binding

In this step, we simply place some text on the screen using a standard sap.m.Text control. The text in this
control is a hard-coded part of the control's definition; therefore, this is not an example of data binding!

Preview

Figure 51: Screen with text

Coding

You can view and download all files in the Demo Kit at Data Binding - Step 1.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 221

https://sapui5.hana.ondemand.com/explored.html#/entity/sap.ui.core.tutorial.databinding/samples
https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.databinding.01/preview

webapp/index.html (New)

<!DOCTYPE HTML>
<html>
<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <title>Data Binding</title>
 <script id="sap-ui-bootstrap"
 src="resources/sap-ui-core.js"
 data-sap-ui-theme="sap_belize"
 data-sap-ui-libs="sap.m"
 data-sap-ui-compatVersion="edge"
 data-sap-ui-async="true">
 </script>
 <script src="index.js"></script>
</head>
<body class="sapUiBody" id="content"></body>
</html>

Create a new folder webapp which will contain all sources of the app that we will create throughout this tutorial,
and create the index.html file within this folder.

webapp/index.js (New)

sap.ui.require(["sap/m/Text"
], function (Text) {
 "use strict";
 // Attach an anonymous function to the SAPUI5 'init' event
 sap.ui.getCore().attachInit(function () {
 // Create a text UI element that displays a hardcoded text string
 new Text({text: "Hi, my name is Harry Hawk"}).placeAt("content");
 }); });

Create a new index.js file that will contain the application logic for this tutorial. We start by placing the
sap.m.Text control into the html content. Since the value of the control's text property has been hard-coded,
it is unrelated to any data that might exist within a model object. Therefore, data binding is not being used here.

Step 2: Creating a Model

In this step, we create a model as container for the data on which your application operates.

The business data within a model can be defined using various formats:

● JavaScript Object Notation (JSON)
● Extensible Markup Language (XML)
● OData
● Your own custom format (not covered in this tutorial)

222 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Note
There is also a special type of model called a "resource model". This model type is used as a wrapper object
around a resource bundle file. The names of such files must end with .properties and are used typically
for holding language-specific text.

We will use this in Step 6: Resource Models [page 229].

When JSON, XML and resource models are created, the data they contain is loaded in a single request (either
from a file stored locally on the client or by requesting it from a Web server). In other words, after the model's
data has been requested, the entire model is known to the application. These models are known as client-side
models and tasks such as filtering and sorting are performed locally on the client.

An OData model however, is a server-side model. This means that whenever an application needs data from the
model, it must be requested from the server. Such a request will almost never return all the data in the model,
typically because this would be far more data than is required by the client application. Consequently, tasks
such as sorting and filtering should always be delegated to the server.

In this tutorial, we will focus on JSON models since they are the simplest ones to work with.

Preview

Figure 52: Screen with text derived from a model object (No visual changes to last step)

Coding

You can view and download all files in the Demo Kit at Data Binding - Step 2.

webapp/index.js

sap.ui.require(["sap/m/Text",
 "sap/ui/model/json/JSONModel"
], function (Text, JSONModel) {
 "use strict";
 // Attach an anonymous function to the SAPUI5 'init' event
 sap.ui.getCore().attachInit(function () { // Create a JSON model from an object literal
 var oModel = new JSONModel({

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 223

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.databinding.02/preview

 greetingText: "Hi, my name is Harry Hawk"
 });

 // Assign the model object to the SAPUI5 core
 sap.ui.getCore().setModel(oModel); // Create a text UI element that displays a hardcoded text string
 new Text({text: "Hi, my name is Harry Hawk"}).placeAt("content");
 });
});

Create a new JSON model passing the data as object literal and store the resulting model instance in a local
variable called oModel.

Set oModel to be the default model within the entire SAPUI5 core.

This makes the model object globally available to all controls used within the application.

In this case we have bound the model object to the SAPUI5 core. This has been done for simplicity, but is not
considered good practice. Generally speaking, a model object holding business data should be bound to the
view that displays the data. We will correct this part of the code in the following steps.

 Note
Models can be set on every control by calling setModel(). The model is then propagated to all aggregated
child controls (and their children, and so on…). All child control will then have access to that model

The text that is displayed on the UI is still hard-coded and not taken from the model - we will bind the property
greetingText to our UI control in the next step.

Related Information

Models [page 882]
JSON Model [page 991]

224 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Step 3: Create Property Binding

Although there is no visible difference, the text on the screen is now derived from model data.

Preview

Figure 53: Screen with text derived from various sources (No visual changes to last step)

Coding

You can view and download all files in the Demo Kit at Data Binding - Step 3.

webapp/index.js

sap.ui.require(["sap/m/Text",
 "sap/ui/model/json/JSONModel"
], function (Text, JSONModel) {
 "use strict";
 // Attach an anonymous function to the SAPUI5 'init' event
 sap.ui.getCore().attachInit(function () {
 // Create a JSON model from an object literal
 var oModel = new JSONModel({
 greetingText: "Hi, my name is Harry Hawk"
 });
 // Assign the model object to the SAPUI5 core
 sap.ui.getCore().setModel(oModel); // Display a text element whose text is derived
 // from the model object new Text({text: "{/greetingText}"}).placeAt("content"); });
});

The text property of the sap.m.Text control is set to the value {/greetingText}. The curly brackets
enclosing a binding path (binding syntax) are automatically interpreted as a binding. These binding instances
are called PropertyBindings. In this case, the control's text property is bound to the greetingText
property at the root of the default model, as the slash (/) at the beginning of the binding path denotes an
absolute binding path.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 225

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.databinding.03/preview

Related Information

Binding Types [page 817]
Property Binding [page 818]

Step 4: Two-Way Data Binding

In the examples used so far, we have used a read-only field to display the value of a model property. We will now
change the user interface so that the first and last name fields are displayed using sap.m.Input fields and an
additional check box control is used to enable or disable both input fields. This arrangement illustrates a
feature known as "two-way data binding". Now that the view contains more controls, we will also move the view
definition into an XML file.

Preview

Figure 54: Input fields can be enabled or disabled

Coding

You can view and download all files in the Demo Kit at Data Binding - Step 4.

webapp/view/App.view.xml (New)

<mvc:View xmlns="sap.m" xmlns:mvc="sap.ui.core.mvc">
 <Panel headerText="{/panelHeaderText}" class="sapUiResponsiveMargin"
width="auto">
 <content>
 <Label text="First Name" class="sapUiSmallMargin" />
 <Input value="{/firstName}" valueLiveUpdate="true" width="200px"
enabled="{/enabled}" />
 <Label text="Last Name" class="sapUiSmallMargin" />
 <Input value="{/lastName}" valueLiveUpdate="true" width="200px" enabled="{/
enabled}" />
 <CheckBox selected="{/enabled}" text="Enabled" />
 </content>
 </Panel>
</mvc:View>

226 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.databinding.04/preview

We create a new view folder in our app and a new file for our XML view inside the app folder.

webapp/index.js

sap.ui.require(["sap/ui/model/json/JSONModel",
 "sap/ui/core/mvc/XMLView"
], function (JSONModel, XMLView) {
 "use strict";
 // Attach an anonymous function to the SAPUI5 'init' event
 sap.ui.getCore().attachInit(function () {
 // Create a JSON model from an object literal
 var oModel = new JSONModel({ firstName: "Harry",
 lastName: "Hawk",
 enabled: true,
 panelHeaderText: "Data Binding Basics" });
 // Assign the model object to the SAPUI5 core
 sap.ui.getCore().setModel(oModel); // Display the XML view called "App"
 new XMLView({
 viewName: "sap.ui.demo.db.view.App"
 }).placeAt("content"); }); });

We delete the code that assigned the sap.m.Text field to the UI and add an XML view that is identified by its
resource name.

You can now refresh the application preview and select or deselect the checkbox. You will see that the input
fields are automatically enabled or disabled in response to the state of the checkbox.

It is clear that we have not written any code to transfer data between the user interface and the model, yet the
Input controls are enabled or disabled according to the state of the checkbox. This behaviour is the result of
the fact that all SAPUI5 models implement two-way data binding, and for JSON Models, two-way binding is the
default behavior.

Two things are happening here:

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 227

● Data binding allows the property of a control to derive its value from any suitable property in a model.
● SAPUI5 automatically handles the transport of data both from the model to the controls, and back from

the controls to the model. This is called two-way binding.

Related Information

Data Binding [page 815]

Step 5: One-Way Data Binding

In contrast to the two-way binding behavior shown above, one-way data binding is also possible. Here, data is
transported in one direction only: from the model, through the binding instance to the consumer (usually the
property of a control), but never in the other direction. In this example, we will change the previous example to
use one-way data binding. This will illustrate how the flow of data from the user interface back to the model can
be switched off if required.

Preview

Figure 55: Two-way data binding disabled for the checkbox

Coding

You can view and download all files in the Demo Kit at Data Binding - Step 5.

webapp/index.js

sap.ui.require(["sap/ui/model/json/JSONModel",
 "sap/ui/core/mvc/XMLView",
 "sap/ui/model/BindingMode"
], function (JSONModel, XMLView, BindingMode) {
 "use strict";
 // Attach an anonymous function to the SAPUI5 'init' event

228 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.databinding.05/preview

 sap.ui.getCore().attachInit(function () {
 // Create a JSON model from an object literal
 var oModel = new JSONModel({
 firstName: "Harry",
 lastName: "Hawk",
 enabled: true,
 panelHeaderText: "Data Binding Basics"
 }); oModel.setDefaultBindingMode(BindingMode.OneWay);

tml // Assign the model object to the SAPUI5 core
 sap.ui.getCore().setModel(oModel);
 // Display the XML view called "App"
 new XMLView({
 viewName: "sap.ui.demo.db.view.App"
 }).placeAt("content");
 });
});

Insert the single highlighted line immediately after the creation of the model object in index.js.

Now, no matter what state the checkbox is in, the input fields remain open for input because one-way data
binding ensures that data flows only from the model to the UI, but never in the other direction.

The binding mode (one-way or two-way) is set on the model itself. Therefore, unless you specifically alter it, a
binding instance will always be created using the model's default binding mode.

Should you wish to alter the binding mode, then there are two ways of doing this:

● Alter the model's default binding mode. This is the approach used above.
● Specify the data binding mode for a specific binding instance by using the oBindingInfo.mode

parameter. This change applies only to this data binding instance. Any other binding instances will continue
to use the model's default binding mode. For more information, see API Reference:
sap.ui.base.ManagedObject.bindProperty.

 Note
There are two important points to understand about alterations to a model object's data binding mode:

● If you alter the default binding mode of a model (as in the example above), then unless you explicitly
say otherwise, all binding instances created after that point in time will use the altered binding mode.

● Altering a model's default binding mode has no effect on already existing binding instances.

Step 6: Resource Models

Business applications also require language-specific (translatable) texts used as labels and descriptions on the
user interface.

The example we used at the start of this tutorial was overly simplistic as we stored language-specific text
directly in a JSON model object. Generally speaking, unless language-specific text is derived directly from a
back-end system, it is not considered good programming practice to place translatable texts directly into a
model. So let's correct this situation by placing all translatable texts (such as field labels) into a resource
bundle.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 229

https://sapui5.hana.ondemand.com/#/api/sap.ui.base.ManagedObject/methods/bindProperty
https://sapui5.hana.ondemand.com/#/api/sap.ui.base.ManagedObject/methods/bindProperty

Preview

Figure 56: Texts derived from the resource model (No visual change to last step)

Coding

You can view and download all files in the Demo Kit at Data Binding - Step 6.

webapp/index.js

sap.ui.require(["sap/ui/model/json/JSONModel",
 "sap/ui/core/mvc/XMLView",
 "sap/ui/model/resource/ResourceModel"
], function (JSONModel, XMLView, ResourceModel) {
 "use strict";
 // Attach an anonymous function to the SAPUI5 'init' event
 sap.ui.getCore().attachInit(function () {
 // Create a JSON model from an object literal
 var oModel = new JSONModel({
 firstName: "Harry",
 lastName: "Hawk",
 enabled: true
 });
 // Assign the model object to the SAPUI5 core
 sap.ui.getCore().setModel(oModel);
 // Create a resource bundle for language specific texts var oResourceModel = new ResourceModel({
 bundleName: "sap.ui.demo.db.i18n.i18n"
 });

 // Assign the model object to the SAPUI5 core using the name "i18n"
 sap.ui.getCore().setModel(oResourceModel, "i18n"); // Display the XML view called "App"
 new XMLView({
 viewName: "sap.ui.demo.db.view.App"
 }).placeAt("content");
 });
});

Since we are creating a resource model, the file name is assumed to have the extension .properties; this
does not need to be stated explicitly. The resource model is set to the core using the model name i18n.

 Note
Remove , panelHeaderText : "Data Binding Basics" from the model definition in the index.js
file. This text is now moved to the resource model.

230 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.databinding.06/preview

webapp/i18n/i18n.properties (New)

Field labels
firstName=First Name
lastName=Last Name
enabled=Enabled

Screen titles
panelHeaderText=Data Binding Basics

Create a new folder i18n, and a new file i18n.properties within and add the code above.

The panelHeaderText property has been moved from the JSON model into the i18n resource bundle, also
the field labels are no longer hard coded in the XML view. This is because all of these text fields need to be
translated.

Language-specific text stored in resource models obeys the Java convention for internationalization (i18n).

webapp/view/App.view.xml

<mvc:View xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc"> <Panel headerText="i18n>panelHeaderText}" class="sapUiResponsiveMargin"
width="auto"> <content> <Label text="{i18n>firstName}" class="sapUiSmallMargin"/> <Input value="{/firstName}" valueLiveUpdate="true" width="200px"
enabled="{/enabled}"/> <Label text="{i18n>lastName}" class="sapUiSmallMargin"/> <Input value="{/lastName}" valueLiveUpdate="true" width="200px"
enabled="{/enabled}"/> <CheckBox selected="{/enabled}" text="{i18n>enabled}"/> </content>
 </Panel>
</mvc:View>

Modify the data binding for the panel header and the labels in App.view.xml to include the model name.
Notice that a "greater than" character separates the model name and the property name, and that i18n
property names must not start with a slash character.

You could use multiple model instances by using different model names. The model name could be set as
second parameter using the setModel(oResourceModel,“i18n”) method. The model is then propagated
under this name to all aggregated child controls (and their children, and so on…). All these controls have
access to this model under the name i18n as well as to the JSONModel (default model, which has no name).

Related Information

Resource Model [page 995]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 231

Step 7: (Optional) Resource Bundles and Multiple Languages

The reason we have resource bundles is to allow an app to run in multiple languages without the need to
change any code. To demonstrate this feature, we will create a German version of the app – in fact all we need
to do is create a German version of the resource bundle file. No code changes are needed.

Preview

Figure 57: German version of our UI

Coding

You can view and download all files in the Demo Kit at Data Binding - Step 7.

webapp/i18n/i18n_de.properties (New)

Field labels firstName=Vorname lastName=Nachname enabled=Aktiviert # Screen titles panelHeaderText=Data Binding Grundlagen

In the i18n folder, take a copy of the file i18n.properties and call it i18n_de.properties. Change the
English text to the German text.

To test the outcome, change the default language of your browser to German and refresh your preview.

Related Information

Localization [page 1269]

232 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.databinding.07/preview

Step 8: Binding Paths: Accessing Properties in Hierarchically
Structured Models

In step 6 , we stated that the fields in a resource model are arranged in a flat structure; in other words, there
can be no hierarchy of properties; however, this is true only for resource models. The properties within JSON
and OData models almost always are arranged in a hierarchical structure. Therefore, we should take a look at
how to reference fields in a hierarchically structured model object.

Preview

Figure 58: Second panel with additional data

Coding

You can view and download all files in the Demo Kit at Data Binding - Step 8.

webapp/index.js

sap.ui.require(["sap/ui/model/json/JSONModel",
 "sap/ui/core/mvc/XMLView",
 "sap/ui/model/resource/ResourceModel"
], function (JSONModel, XMLView, ResourceModel) {
 "use strict";
 // Attach an anonymous function to the SAPUI5 'init' event
 sap.ui.getCore().attachInit(function () {
 var oModel = new JSONModel({
 firstName: "Harry",
 lastName: "Hawk", enabled: true,
 address: {
 street: "Dietmar-Hopp-Allee 16",
 city: "Walldorf",

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 233

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.databinding.08/preview

 zip: "69190",
 country: "Germany"
 } });
 // Assign the model object to the SAPUI5 core
 sap.ui.getCore().setModel(oModel);
 var oResourceBundle = new ResourceModel({
 bundleName: "sap.ui.demo.db.i18n.i18n"
 });
 sap.ui.getCore().setModel(oResourceBundle, "i18n");
 // Display the XML view called "App"
 new XMLView({
 viewName: "sap.ui.demo.db.view.App"
 }).placeAt("content");
 });
});

The JSON model object now contains an additional sub-object called address. Within this object are four
properties: street, city, zip, and country.

webapp/view/App.view.xml

<mvc:View xmlns="sap.m" xmlns:l="sap.ui.layout" xmlns:mvc="sap.ui.core.mvc"> <Panel headerText="{i18n>panel1HeaderText}" class="sapUiResponsiveMargin"
width="auto"> <content>
 <Label text="{i18n>firstName}" class="sapUiSmallMargin"/>
 <Input value="{/firstName}" valueLiveUpdate="true" width="200px"
enabled="{/enabled}"/>
 <Label text="{i18n>lastName}" class="sapUiSmallMargin"/>
 <Input value="{/lastName}" valueLiveUpdate="true" width="200px"
enabled="{/enabled}"/>
 <CheckBox selected="{/enabled}" text="Enabled"/>
 </content>
 </Panel> <Panel headerText="{i18n>panel2HeaderText}" class="sapUiResponsiveMargin"
width="auto">
 <content>
 <l:VerticalLayout>
 <Label class="sapUiSmallMargin" text="{i18n>address}:"/>
 <FormattedText class="sapUiSmallMarginBegin
sapUiSmallMarginBottom" htmlText="{/address/street}
{/address/zip} {/
address/city}
{/address/country}" width="200px"/>
 </l:VerticalLayout>
 </content>
 </Panel> </mvc:View>

We add a new panel to the XML view with a new Label and Text pair of elements.

The text property of the Label element is bound to the i18n resource bundle field address.

The text property of the Text element is bound to three i18n properties: /address/street, /address/
zip, /address/city, and /address/country. The resulting address format is achieved by separating each
one of these model property references with a hard-coded newline character while zip and city are separated
by a space.

234 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

webapp/i18n/i18n.properties

Field labels firstName=First Name
lastName=Last Name
enabled=Enabled address=Address # Screen titles panel1HeaderText=Data Binding Basics panel2HeaderText=Address Details

webapp/i18n/i18n_de.properties

Field labels firstName=Vorname
lastName=Nachname
enabled=Aktiviert
address=Adresse
Screen titles panel1HeaderText=Data Binding Grundlagen panel2HeaderText=Adressdetails

 Note
The resource bundle files now contain new properties for the Address and a new panel header text. Both
panel properties have been numbered.

In the XML view, inside the curly brackets for the binding path of the Text element, notice that the first
character is a forward slash. This is required for binding paths that make absolute references to properties
in JSON and OData models, but must not be used for resource models. After the first forward slash
character, the binding path syntax uses the object names and the property name separated by forward
slash characters ({/address/street}).

As has been mentioned previously, all binding path names are case-sensitive.

Related Information

JSON Model [page 991]

Step 9: Formatting Values

We also want to provide our users a way of contacting Harry Hawk. Therefore we will add a link that sends an e-
mail to Harry. To achieve that we will convert our data in the model to match the

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 235

sap.m.URLHelper.normalizeEmail API. As soon as the user changes the name, the e-mail will also
change. We will need a custom formatter function for this.

Preview

Figure 59: Address with e-mail link

Coding

You can view and download all files in the Demo Kit at Data Binding - Step 9.

webapp/controller/App.controller.js (New)

sap.ui.define([
 "sap/ui/core/mvc/Controller",
 "sap/m/library"
], function (Controller, mobileLibrary) {
 "use strict";

 return Controller.extend("sap.ui.demo.db.controller.App", {
 formatMail: function(sFirstName, sLastName) {
 var oBundle = this.getView().getModel("i18n").getResourceBundle();
 return mobileLibrary.URLHelper.normalizeEmail(
 sFirstName + "." + sLastName + "@example.com",
 oBundle.getText("mailSubject", [sFirstName]),
 oBundle.getText("mailBody"));
 }
 });
});

236 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.databinding.09/preview

Create a new folder controller within your webapp folder as a general location for all controller files for this
app and create a new file App.controller.js.

In our custom formatter, we define the first and last name that are currently in the model as function
parameters. When a user changes the data in the model by entering a different name in the input fields, our
formatter will be invoked automatically by the framework. This makes sure that the UI is in sync with the data
model.

In the formatMail function, we use the sap.m.URLHelper.normalizeEmail function that expects an e-
mail address, a mail subject and a text body. When a user chooses the link, the default email client will open
with these parameters.For more information, see API Reference: sap.m.URLHelper.normalizeEmail. The
mailSubject resource bundle text will contain a placeholder for the first name of the recipient (see below).
Therefore, we provide the name with [sFirstName].

 Note
For a detailed description of the e-mail link format, see https://developer.mozilla.org/de/docs/Web/Guide/
HTML/Email_links .

webapp/view/App.view.xml

<mvc:View controllerName="sap.ui.demo.db.controller.App" xmlns="sap.m"
 xmlns:l="sap.ui.layout"
 xmlns:mvc="sap.ui.core.mvc">
 <Panel headerText="{i18n>panel1HeaderText}" class="sapUiResponsiveMargin"
width="auto">
 <content>
 <Label text="{i18n>firstName}" class="sapUiSmallMargin"/>
 <Input value="{/firstName}" valueLiveUpdate="true" width="200px"
enabled="{/enabled}"/>
 <Label text="{i18n>lastName}" class="sapUiSmallMargin"/>
 <Input value="{/lastName}" valueLiveUpdate="true" width="200px"
enabled="{/enabled}"/>
 <CheckBox selected="{/enabled}" text="Enabled"/>
 </content>
 </Panel>
 <Panel headerText="{i18n>panel2HeaderText}" class="sapUiResponsiveMargin"
width="auto">
 <content>
 <l:VerticalLayout>
 <Label class="sapUiSmallMargin" text="{i18n>address}:"/> <FormattedText class="sapUiSmallMarginBegin
sapUiSmallMarginBottom" htmlText="{/address/street}
{/address/zip} {/
address/city}
{/address/country}" width="200px"/> <Link class="sapUiSmallMarginBegin"
 href="{
 parts: [
 '/firstName',
 '/lastName'
],
 formatter: '.formatMail'
 }"
 text="{i18n>sendEmail}"/> </l:VerticalLayout>
 </content>
 </Panel>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 237

https://sapui5.hana.ondemand.com/#/api/sap.m.URLHelper/methods/normalizeEmail
http://help.sap.com/disclaimer?site=https%3A%2F%2Fdeveloper.mozilla.org%2Fde%2Fdocs%2FWeb%2FGuide%2FHTML%2FEmail_links
http://help.sap.com/disclaimer?site=https%3A%2F%2Fdeveloper.mozilla.org%2Fde%2Fdocs%2FWeb%2FGuide%2FHTML%2FEmail_links

 </mvc:View>

For more complex bindings we cannot use the simple binding syntax with the curly braces anymore. The href
property of the Link element now contains an entire object inside the string value. In this case, the object has
two properties:

● parts
This is a JavaScript array in which each element is an object containing a path property. The number and
order of the elements in this array corresponds directly to the number and order of parameters expected
by the formatMail function.

● formatter
A reference to the function that receives the parameters listed in the parts array. Whatever value is
returned by the formatter function becomes the value set for this property. The dot (formatMail) at the
beginning of the formatter tellsSAPUI5 to look for a formatMail function on the controller instance of the
view. If you do not use the dot, the function will be resolved by looking into the global namespace.

 Note

webapp/i18n/i18n.properties

… # Screen titles
panel1HeaderText=Data Binding Basics
panel2HeaderText=Address Details
When using formatter functions, the binding is automatically switched to
 "one-way". So you can’t use a formatter function for "two-
way" scenarios, but you can use data types (which will be explained in the
following steps).# E-mail
sendEmail=Send Mail
mailSubject=Hi {0}!
mailBody=How are you?

webapp/i18n/i18n_de.properties

… # Screen titles
panel1HeaderText=Data Binding Grundlagen
panel2HeaderText=Adressdetails # E-mail
sendEmail=E-mail versenden
mailSubject=Hallo {0}!
mailBody=Wie geht es dir?

And we add the missing texts to the properties files

238 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Related Information

Formatting, Parsing, and Validating Data [page 854]

Step 10: Property Formatting Using Data Types

SAPUI5 provides a set of simple data types such as Boolean, Currency, Date and Float. These data types
can then be applied to controls in order to ensure that the value presented on the screen is formatted correctly,
and, if the field is open for input, that the value entered by the user adheres to the requirements of that data
type. We will now add a new field called Sales to Date of type Currency.

Preview

Figure 60: New Sales to Date input field

Coding

You can view and download all files in the Demo Kit at Data Binding - Step 10.

webapp/index.js

sap.ui.require(["sap/ui/model/json/JSONModel",
 "sap/ui/core/mvc/XMLView",
 "sap/ui/model/resource/ResourceModel"
], function (JSONModel, XMLView, ResourceModel) {
 "use strict";

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 239

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.databinding.10/preview

 // Attach an anonymous function to the SAPUI5 'init' event
 sap.ui.getCore().attachInit(function () {
 var oModel = new JSONModel({
 firstName: "Harry",
 lastName: "Hawk",
 enabled: true,
 address: {
 street: "Dietmar-Hopp-Allee 16",
 city: "Walldorf",
 zip: "69190",
 country: "Germany" },
 "salesToDate" : 12345.6789,
 "currencyCode" : "EUR" });
 // Assign the model object to the SAPUI5 core
 sap.ui.getCore().setModel(oModel);
 var oResourceBundle = new ResourceModel({
 bundleName: "sap.ui.demo.db.i18n.i18n"
 });
 sap.ui.getCore().setModel(oResourceBundle, "i18n");
 // Display the XML view called "App"
 new XMLView({
 viewName: "sap.ui.demo.db.view.App"
 }).placeAt("content");
 });
});

We create two new model properties salesToDate and currencyCode.

webapp/view/App.view.xml

... <Panel headerText="{i18n>panel1HeaderText}" class="sapUiResponsiveMargin"
width="auto">
 <content>
 <Label text="{i18n>firstName}" class="sapUiSmallMargin"/>
 <Input value="{/firstName}" valueLiveUpdate="true" width="200px"
enabled="{/enabled}"/>
 <Label text="{i18n>lastName}" class="sapUiSmallMargin"/>
 <Input value="{/lastName}" valueLiveUpdate="true" width="200px"
enabled="{/enabled}"/>
 <CheckBox selected="{/enabled}" text="Enabled"/>
 </content>
 </Panel>
 <Panel headerText="{i18n>panel2HeaderText}" class="sapUiResponsiveMargin"
width="auto">
 <content>
 <l:HorizontalLayout>
 <l:VerticalLayout>
 <Label class="sapUiSmallMargin" text="{i18n>address}:"/>
 <FormattedText class="sapUiSmallMarginBegin
sapUiSmallMarginBottom" htmlText="{/address/street}
{/address/zip} {/
address/city}
{/address/country}" width="200px"/>
 <Link class="sapUiSmallMarginBegin"
 href="{
 parts: [
 '/firstName',
 '/lastName'
],
 formatter: '.formatMail'
 }"
 text="{i18n>sendEmail}"/>

240 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 </l:VerticalLayout>
 <l:VerticalLayout>
 <Label text="{i18n>salesToDate}:" class="sapUiSmallMargin"/>
 <Input width="200px" enabled="{/enabled}" description="{/
currencyCode}"
 value="{
 parts: [
 {path: '/salesToDate'},
 {path: '/currencyCode'}
],
 type: 'sap.ui.model.type.Currency',
 formatOptions: {showMeasure: false}
 }"/>
 </l:VerticalLayout> </l:HorizontalLayout>
 </content>
 </Panel> </mvc:View>

A new pair of Label and Input elements have been created for the salesToDate model property. The
description property of the Input element has been bound to the currencyCode model property. The value
property of the Input element has been bound to the model properties salesToDate and currencyCode.
The {showMeasure: false} parameter switches off the display of the currency symbol within the input field
itself. This is not needed because it is being displayed using the Input element's description property.

webapp/i18n/i18n.properties

Field labels firstName=Vorname
lastName=Nachname
enabled=Enabled
address=Address salesToDate=Sales to Date...

webapp/i18n/i18n_de.properties

Field labels firstName=Vorname
lastName=Nachname
enabled=Aktiviert
address=Adresse salesToDate=Verk\u00e4ufe bis zum heutigen Datum ...

Add the missing texts to the properties files. Please note that special characters (non-Latin-1) have to be
entered by using Unicode escape characters.

Related Information

Formatting, Parsing, and Validating Data [page 854]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 241

Step 11: Validation Using the Message Manager

So far, we have created a currency field that can format itself correctly. The currency data type also has the
ability to validate that user input adheres to to the requirements of a currency; however, data type validation
functions are managed by SAPUI5, which of itself has no mechanism for reporting error messages back to the
UI; therefore, we need a mechanism for reporting error messages raised by validation functions back to the
user. In this step, we will connect the entire view to a feature known as the "Message Manager". Once this
connection is established, any validation error messages generated based on the user input will be passed to
the message manager which in turn will connect them to the appropriate view and control that caused the
error.

Preview

Figure 61: A message appears

Coding

You can view and download all files in the Demo Kit at Data Binding - Step 11.

webapp/index.js

sap.ui.require(["sap/ui/model/json/JSONModel",
 "sap/ui/core/mvc/XMLView",
 "sap/ui/model/resource/ResourceModel"
], function (JSONModel, XMLView, ResourceModel) {
 "use strict";
 // Attach an anonymous function to the SAPUI5 'init' event
 sap.ui.getCore().attachInit(function () {
 var oModel = new JSONModel({
 firstName: "Harry",

242 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.databinding.11/preview

 lastName: "Hawk",
 enabled: true,
 address: {
 street: "Dietmar-Hopp-Allee 16",
 city: "Walldorf",
 zip: "69190",
 country: "Germany"
 },
 "salesToDate": 12345.6789,
 "currencyCode": "EUR"
 });
 // Assign the model object to the SAPUI5 core
 sap.ui.getCore().setModel(oModel);
 var oResourceBundle = new ResourceModel({
 bundleName: "sap.ui.demo.db.i18n.i18n"
 });
 sap.ui.getCore().setModel(oResourceBundle, "i18n");
 // Display the XML view called "App" var oView = new XMLView({ viewName: "sap.ui.demo.db.view.App"
 }).placeAt("content"); // Register the view with the message manager
 sap.ui.getCore().getMessageManager().registerObject(oView, true); // Insert the view into the DOM oView.placeAt("content"); });
});

The changes to the coding are minimal:

● The XML view is now created as a named object called oView.
● The view object oView is registered with the MessageManager.
● Once registered, the XML view is then inserted into the DOM as before.

You can now enter a non-numeric value into the Sales To Date field and either press Enter or move the focus
to a different UI control. This action triggers either the onenter or onchange event and then SAPUI5 executes
the validation function belonging to the sap.ui.model.type.Currency data type.

Now that the view has been registered with the MessageManager, any validation error messages will be picked
up by the MessageManager, which in turn checks its list of registered objects and then passes the error
message back to the correct view for display.

Note that the field in error has a red border:

However, the error message itself will only be displayed when that particular field has focus:

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 243

Related Information

Error, Warning, and Info Messages [page 1063]

Step 12: Aggregation Binding Using Templates

Aggregation binding (or "list binding") allows a control to be bound to a list within the model data and allows
relative binding to the list entries by its child controls.

It will automatically create as many child controls as are needed to display the data in the model using one of
the following two approaches:

● Use template control that is cloned as many times as needed to display the data.
● Use a factory function to generate the correct control per bound list entry based on the data received at

runtime.

244 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Preview

Figure 62: List with aggregation binding

Coding

You can view and download all files in the Demo Kit at Data Binding - Step 12.

webapp/index.js

sap.ui.require(["sap/ui/model/json/JSONModel",
 "sap/ui/core/mvc/XMLView",
 "sap/ui/model/resource/ResourceModel"
], function (JSONModel, XMLView, ResourceModel) {
 "use strict";
 // Attach an anonymous function to the SAPUI5 'init' event
 sap.ui.getCore().attachInit(function () {

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 245

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.databinding.12/preview

 var oProductModel = new JSONModel();
 oProductModel.loadData("./model/Products.json");
 sap.ui.getCore().setModel(oProductModel, "products"); var oModel = new JSONModel({
 firstName: "Harry",
 lastName: "Hawk",
 enabled: true,
 address: {
 street: "Dietmar-Hopp-Allee 16",
 city: "Walldorf",
 zip: "69190",
 country: "Germany"
 },
 "salesToDate": 12345.6789,
 "currencyCode": "EUR"
 });
 // Assign the model object to the SAPUI5 core
 sap.ui.getCore().setModel(oModel);
 var oResourceBundle = new ResourceModel({
 bundleName: "sap.ui.demo.db.i18n.i18n"
 });
 sap.ui.getCore().setModel(oResourceBundle, "i18n");
 // Create the XML view called "App"
 var oView = new XMLView({
 viewName: "sap.ui.demo.db.view.App"
 });
 // Register the view with the message manager
 sap.ui.getCore().getMessageManager().registerObject(oView, true);
 // Display the view
 oView.placeAt("content");
 });
});

webapp/view/App.view.xml

... <Input width="200px" enabled="{/enabled}" description="{/
currencyCode}"
 value="{
 parts: [
 {path: '/salesToDate'},
 {path: '/currencyCode'}
],
 type: 'sap.ui.model.type.Currency',
 formatOptions: {showMeasure: false}
 }"/>
 </l:VerticalLayout>
 </l:HorizontalLayout>
 </content>
 </Panel> <Panel headerText="{i18n>panel3HeaderText}" class="sapUiResponsiveMargin"
width="auto">
 <content>
 <List headerText="{i18n>productListTitle}" items="{products>/
Products}">
 <items>
 <ObjectListItem title="{products>ProductName}"
 number="{
 parts: [
 {path: 'products>UnitPrice'},
 {path: '/currencyCode'}
],
 type: 'sap.ui.model.type.Currency',

246 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 formatOptions: { showMeasure: false }
 }"
 numberUnit="{/currencyCode}">
 <attributes>
 <ObjectAttribute text="{products>QuantityPerUnit}"/>
 <ObjectAttribute title="{i18n>stockValue}"
 text="{
 parts: [
 {path: 'products>UnitPrice'},
 {path: 'products>UnitsInStock'},
 {path: '/currencyCode'}
],
 formatter: '.formatStockValue'
 }"/>
 </attributes>
 </ObjectListItem>
 </items>
 </List>
 </content>
 </Panel> ...

We add a new panel to the view.

webapp/controller/App.controller.js

sap.ui.define(["sap/ui/core/mvc/Controller", "sap/m/library",
 "sap/ui/core/Locale",
 "sap/ui/core/LocaleData",
 "sap/ui/model/type/Currency"], function (Controller, mobileLibrary, Locale, LocaleData, Currency) { "use strict";
 return Controller.extend("sap.ui.demo.db.controller.App", {
 formatMail: function(sFirstName, sLastName) {
 var oBundle = this.getView().getModel("i18n").getResourceBundle();
 return mobileLibrary.URLHelper.normalizeEmail(
 sFirstName + "." + sLastName + "@example.com",
 oBundle.getText("mailSubject", [sFirstName]),
 oBundle.getText("mailBody")); },
 formatStockValue: function(fUnitPrice, iStockLevel, sCurrCode) {
 var sBrowserLocale =
sap.ui.getCore().getConfiguration().getLanguage();
 var oLocale = new Locale(sBrowserLocale);
 var oLocaleData = new LocaleData(oLocale);
 var oCurrency = new Currency(oLocaleData.mData.currencyFormat);
 return oCurrency.formatValue([fUnitPrice * iStockLevel, sCurrCode],
"string"); }
 });
});

webapp/model/Products.json (New)

{ "Products": [{
 "ProductID": 1,

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 247

 "ProductName": "Chai",
 "SupplierID": 1,
 "CategoryID": 1,
 "QuantityPerUnit": "10 boxes x 20 bags",
 "UnitPrice": "18.0000",
 "UnitsInStock": 39,
 "UnitsOnOrder": 0,
 "ReorderLevel": 10,
 "Discontinued": false
 }, {
 "ProductID": 2,
 "ProductName": "Chang",
 "SupplierID": 1,
 "CategoryID": 1,
 "QuantityPerUnit": "24 - 12 oz bottles",
 "UnitPrice": "19.0000",
 "UnitsInStock": 17,
 "UnitsOnOrder": 40,
 "ReorderLevel": 25,
 "Discontinued": true
 }, {
 "ProductID": 3,
 "ProductName": "Aniseed Syrup",
 "SupplierID": 1,
 "CategoryID": 2,
 "QuantityPerUnit": "12 - 550 ml bottles",
 "UnitPrice": "10.0000",
 "UnitsInStock": 0,
 "UnitsOnOrder": 70,
 "ReorderLevel": 25,
 "Discontinued": false
 }, {
 "ProductID": 4,
 "ProductName": "Chef Anton's Cajun Seasoning",
 "SupplierID": 2,
 "CategoryID": 2,
 "QuantityPerUnit": "48 - 6 oz jars",
 "UnitPrice": "22.0000",
 "UnitsInStock": 53,
 "UnitsOnOrder": 0,
 "ReorderLevel": 0,
 "Discontinued": false
 }, {
 "ProductID": 5,
 "ProductName": "Chef Anton's Gumbo Mix",
 "SupplierID": 2,
 "CategoryID": 2,
 "QuantityPerUnit": "36 boxes",
 "UnitPrice": "21.3500",
 "UnitsInStock": 0,
 "UnitsOnOrder": 0,
 "ReorderLevel": 0,
 "Discontinued": true
 }]
 }

We now use a new JSON model file for product data.

webapp/i18n/i18n.properties

... # Screen titles
panel1HeaderText=Data Binding Basics

248 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

panel2HeaderText=Address Details panel3HeaderText=Aggregation Binding # Invoice List
invoiceListTitle=Invoices
statusA=New
statusB=In Progress
statusC=Done # Product list
productListTitle=Product List
stockValue=Current Stock Value

webapp/i18n/i18n_de.properties

... # Screen titles
panel1HeaderText=Data Binding Basics
panel2HeaderText=Adressdetails panel3HeaderText=Aggregation Binding # Invoice List
invoiceListTitle=Rechnungen
statusA=Neu
statusB=Laufend
statusC=Abgeschlossen # Product list
productListTitle=Artikelliste
stockValue=Lagerbestand Wert

We add the missing texts.

Related Information

List Binding (Aggregation Binding) [page 828]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 249

Step 13: Element Binding

Now we want to do something with that newly generated list. In most cases you will use a list to allow the
selection of an item and then show the details of that item elsewhere. In order to achieve this, we use a form
with relatively bound controls and bind it to the selected entity via element binding.

Preview

Figure 63: Element binding implemented, product details displayed per item

Coding

You can view and download all files in the Demo Kit at Data Binding - Step 13.

250 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.databinding.13/preview

webapp/view/App.view.xml

... </items>
 </List>
 </content>
 </Panel> <Panel id="productDetailsPanel" headerText="{i18n>panel4HeaderText}"
class="sapUiResponsiveMargin" width="auto">
 <l:Grid defaultSpan="L3 M6 S12" containerQuery="true">
 <Label text="{i18n>ProductID}:" />
 <Input value="{products>ProductID}" />

 <Label text="{i18n>ProductName}:" />
 <Input value="{products>ProductName}" />

 <Label text="{i18n>QuantityPerUnit}:" />
 <Input value="{products>QuantityPerUnit}" />

 <Label text="{i18n>UnitPrice}:" />
 <Input value="{products>UnitPrice}" />

 <Label text="{i18n>UnitsInStock}:" />
 <Input value="{products>UnitsInStock}" />

 <Label text="{i18n>Discontinued}:" />
 <CheckBox selected="{products>Discontinued}" />
 </l:Grid>
 </Panel> </mvc:View>

Now we have an empty form. In order to fill this form with data, we will bind the whole panel to the path of the
element which we clicked in the list. We need to add a press-event handler to the items in the list.

webapp/view/App.views.xml

... <Panel headerText="{i18n>panel4HeaderText}" class="sapUiResponsiveMargin"
width="auto">
 <content>
 <List headerText="{i18n>productListTitle}" items="{products>/Products}">
 <items>
 <ObjectListItem press=".onItemSelected"
 type="Active" title="{products>ProductName}"
 number="{ parts: [{path: 'products>UnitPrice'},
 {path: '/currencyCode'}],
 type: 'sap.ui.model.type.Currency',
 formatOptions: { showMeasure: false }
 }"
 numberUnit="{/currencyCode}">
 <attributes> ...

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 251

webapp/controller/App.controller.js

sap.ui.define(["sap/ui/core/mvc/Controller",
 "sap/m/library",
 "sap/ui/core/Locale",
 "sap/ui/core/LocaleData",
 "sap/ui/model/type/Currency"
], function (Controller, mobileLibrary, Locale, LocaleData, Currency) {
 "use strict";
 return Controller.extend("sap.ui.demo.db.controller.App", {
 formatMail: function(sFirstName, sLastName) {
 var oBundle = this.getView().getModel("i18n").getResourceBundle();
 return mobileLibrary.URLHelper.normalizeEmail(
 sFirstName + "." + sLastName + "@example.com",
 oBundle.getText("mailSubject", [sFirstName]),
 oBundle.getText("mailBody"));
 },
 formatStockValue: function(fUnitPrice, iStockLevel, sCurrCode) {
 var sBrowserLocale =
sap.ui.getCore().getConfiguration().getLanguage();
 var oLocale = new Locale(sBrowserLocale);
 var oLocaleData = new LocaleData(oLocale);
 var oCurrency = new Currency(oLocaleData.mData.currencyFormat);
 return oCurrency.formatValue([fUnitPrice * iStockLevel, sCurrCode],
"string"); },
 onItemSelected: function(oEvent) {
 var oSelectedItem = oEvent.getSource();
 var oContext = oSelectedItem.getBindingContext("products");
 var sPath = oContext.getPath();
 var oProductDetailPanel = this.byId("productDetailsPanel");
 oProductDetailPanel.bindElement({ path: sPath, model: "products" }); }
 });
});

In the controller, we bind the newly created panel to the correct item whenever it is pressed.

We can now click on an element in the list and see its details in the panel below. We can even edit these details
and these changes are directly shown in the list because we use two-way binding.

 Note
Element bindings can also be relative to its parent context.

webapp/i18n/i18n.properties

... # Screen titles
panel1HeaderText=Data Binding Basics
panel2HeaderText=Address Details
panel3HeaderText=Aggregation Binding panel4HeaderText=Product Details # Product list
productListTitle=Product List
stockValue=Current Stock Value # Product Details
ProductID=Product ID

252 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

ProductName=Product Name
QuantityPerUnit=Quantity per Unit
UnitPrice=Unit Price
UnitsInStock=Number of Units in Stock
Discontinued=Discontinued

webapp/i18n/i18n_de.properties

Screen titles panel1HeaderText=Data Binding Grundlagen
panel2HeaderText=Adressdetails
panel3HeaderText=Aggregation Binding panel4HeaderText=Produktdetails
Product list
productListTitle=Artikelliste
stockValue=Lagerbestand Wert # Product Details
ProductID=Produkt-ID
ProductName=Produktname
QuantityPerUnit=Menge pro Einheit
UnitPrice=Preis der Einheit
UnitsInStock=Lagerbestand
Discontinued=Eingestellt

Add the missing texts to the properties files.

Related Information

Context Binding (Element Binding) [page 824]

Step 14: Expression Binding

Expression binding allows you to display a value on the screen that has been calculated from values found in
some model object. This way simple formatting or calculations can be inserted directly into the data binding
string. In this example, we will change the color of the price depending on whether it is above or below some
arbitrary threshold. The threshold value is also stored in the JSON model.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 253

Preview

Figure 64: Values formatted

Coding

You can view and download all files in the Demo Kit at Data Binding - Step 14.

webapp/view/App.view.xml

... </content>
 </Panel>
 <Panel headerText="{i18n>panel3HeaderText}" class="sapUiResponsiveMargin"
width="auto">
 <content>
 <List headerText="{i18n>productListTitle}" items="{products>/
Products}">
 <items>
 <ObjectListItem
 press=".onItemSelected"
 type="Active"

254 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.databinding.14/preview

 title="{products>ProductName}"
 number="{
 parts: [
 {path: 'products>UnitPrice'},
 {path: '/currencyCode'}
],
 type: 'sap.ui.model.type.Currency',
 formatOptions: { showMeasure: false }
 }"
 numberUnit="{/currencyCode}" numberState="{= ${products>UnitPrice} > ${/
priceThreshold} ? 'Error' : 'Success' }"> <attributes>
 <ObjectAttribute text="{products>QuantityPerUnit}"/>
 <ObjectAttribute title="{i18n>stockValue}"
 text="{
 parts: [
 {path: 'products>UnitPrice'},
 {path: 'products>UnitsInStock'},
 {path: '/currencyCode'}
],
 formatter: '.formatStockValue'
 }"/>
 </attributes>
 </ObjectListItem>
 </items>
 </List>
 </content>
 </Panel> ...

In the XML view, we add a new numberState property to the ObjectListItem element within the List. The
value of this property is an expression that will be evaluated for each item.

webapp/index.js

sap.ui.require(["sap/ui/model/json/JSONModel",
 "sap/ui/core/mvc/XMLView",
 "sap/ui/model/resource/ResourceModel"
], function (JSONModel, XMLView, ResourceModel) {
 "use strict";
 // Attach an anonymous function to the SAPUI5 'init' event
 sap.ui.getCore().attachInit(function () {
 var oProductModel = new JSONModel();
 oProductModel.loadData("./model/Products.json");
 sap.ui.getCore().setModel(oProductModel, "products");
 var oModel = new JSONModel({
 firstName: "Harry",
 lastName: "Hawk",
 enabled: true,
 address: {
 street: "Dietmar-Hopp-Allee 16",
 city: "Walldorf",
 zip: "69190",
 country: "Germany"
 },
 "salesToDate": 12345.6789, "priceThreshold": 20, "currencyCode": "EUR"
 });
 // Assign the model object to the SAPUI5 core

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 255

 sap.ui.getCore().setModel(oModel);
 var oResourceBundle = new ResourceModel({
 bundleName: "sap.ui.demo.db.i18n.i18n"
 });
 sap.ui.getCore().setModel(oResourceBundle, "i18n");
 // Display the XML view called "App"
 var oView = new XMLView({
 viewName: "sap.ui.demo.db.view.App"
 }).placeAt("content");
 // Register the view with the message manager
 sap.ui.getCore().getMessageManager().registerObject(oView, true);
 // Insert the view into the DOM
 oView.placeAt("content");
 });
});

We add a new property called priceThreshold against which each invoice value will be checked.

As a result of binding an expression to the numberState property, the error status (color) of the price field will
change depending on the invoice value.

Look at the following two expressions:

● numberState="{= ${products>UnitPrice} > ${/priceThreshold} ? 'Error' :
'Success' }"

● numberState="{= ${products>UnitPrice} <= ${/priceThreshold} ? 'Success' :
'Error' }"

Can you see why one of these expressions will work, and the other will not?

Logically, both expressions are identical; yet the first one works, and the second does not: it produces only an
empty screen and an "Invalid XML" message in the browser's console… Hmmm, what's going on here?

In order to understand why this situation occurs, you must understand how XML files are parsed.

When an XML file is parsed, certain characters have a special (that is, high priority) meaning to the XML parser.
When such characters are encountered, they are always interpreted to be part of the XML definition itself and
not part of any other content that might exist within the XML document.

As soon as the XML parser encounters one of these high-priority characters (in this case, a less-than (<)
character), it will always be interpreted as the start of a new XML tag – irrespective of any other meaning that
character might have within the context of the expression. This is known as a syntax collision.

In this case, the collision occurs between the syntax of XML and the syntax of the JavaScript-like expression
language used by SAPUI5.

Therefore, this statement fails because the less-than character is interpreted as the start of an XML tag:
numberState="{= ${products>UnitPrice} <= ${/priceThreshold} ? 'Success' :
'Error' }"

This particular problem can be avoided in one of two ways:

● Reverse the logic of the condition (use "greater than or equal to" instead of "less than")
● Use the escaped value for the less-than character: numberState="{= ${products>UnitPrice}

<= ${/priceThreshold} ? 'Success' : 'Error' }"

Since the use of an escaped character is not so easy to read, the preferred approach is to reverse the logic of
the condition and use a greater-than character instead.

256 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

The ampersand (&) character also has a high priority meaning to the XML parser. This character will always be
interpreted to mean "The start of an escaped character". So if you wish to use the Boolean AND operator (&&) in
a condition, you must escape both ampersand characters (&&).

Related Information

Expression Binding [page 845]

Step 15: Aggregation Binding Using a Factory Function

Instead of hard-coding a single template control, we use a factory function to generate different controls based
on the data received at runtime. This approach is much more flexible and allows complex or heterogeneous
data to be displayed.

Preview

Figure 65: Controls generated based on data

Coding

You can view and download all files in the Demo Kit at Data Binding - Step 15.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 257

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.databinding.15/preview

webapp/view/App.view.xml

... <Panel headerText="{i18n>panel3HeaderText}" class="sapUiResponsiveMargin"
width="auto">
 <content> <List
 id="ProductList"
 headerText="{i18n>productListTitle}"
 items="{
 path: 'products>/Products',
 factory: '.productListFactory'
 }">
 <dependents>
 <core:Fragment
fragmentName="sap.ui.demo.db.view.ProductSimple" type="XML"/>
 <core:Fragment
fragmentName="sap.ui.demo.db.view.ProductExtended" type="XML"/>
 </dependents>
 </List> </content>
 </Panel> ...

The List XML element that previously held the product list is now reduced simply to a named, but otherwise
empty placeholder. Without a factory function to populate it, this List would always remain empty.

webapp/controller/App.controller.js

sap.ui.define(["sap/ui/core/mvc/Controller",
 "sap/m/library",
 "sap/ui/core/Locale",
 "sap/ui/core/LocaleData",
 "sap/ui/model/type/Currency", "sap/m/ObjectAttribute"], function (Controller, mobileLibrary, Locale, LocaleData, Currency,
ObjectAttribute) { "use strict";
 return Controller.extend("sap.ui.demo.db.controller.App", {
 formatMail: function(sFirstName, sLastName) {
 var oBundle = this.getView().getModel("i18n").getResourceBundle();
 return mobileLibrary.URLHelper.normalizeEmail(
 sFirstName + "." + sLastName + "@example.com",
 oBundle.getText("mailSubject", [sFirstName]),
 oBundle.getText("mailBody"));
 },
 formatStockValue : function(fUnitPrice, iStockLevel, sCurrCode) {
 var sBrowserLocale =
sap.ui.getCore().getConfiguration().getLanguage();
 var oLocale = new Locale(sBrowserLocale);
 var oLocaleData = new LocaleData(oLocale);
 var oCurrency = new Currency(oLocaleData.mData.currencyFormat);
 return oCurrency.formatValue([fUnitPrice * iStockLevel, sCurrCode],
"string");
 },
 onItemSelected : function(oEvent) {
 var oSelectedItem = oEvent.getSource();
 var oContext = oSelectedItem.getBindingContext("products");
 var sPath = oContext.getPath();

258 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 var oProductDetailPanel = this.byId("productDetailsPanel");
 oProductDetailPanel.bindElement({ path: sPath, model: "products" });
 }, productListFactory : function(sId, oContext) {
 var oUIControl;

 // Decide based on the data which dependent to clone
 if (oContext.getProperty("UnitsInStock") === 0 &&
oContext.getProperty("Discontinued")) {
 // The item is discontinued, so use a StandardListItem
 oUIControl = this.byId("productSimple").clone(sId);
 } else {
 // The item is available, so we will create an ObjectListItem
 oUIControl = this.byId("productExtended").clone(sId);

 // The item is temporarily out of stock, so we will add a status
 if (oContext.getProperty("UnitsInStock") < 1) {
 oUIControl.addAttribute(new ObjectAttribute({
 text : {
 path: "i18n>outOfStock"
 }
 }));
 }
 }

 return oUIControl;
 } });
});

In the App controller, we create a new function called productListFactory. A factory function returns a
control for the associated binding context, similar to the XML templates we have defined in the previous steps.
The types of controls returned by this factory function must suit the items aggregation of the sap.m.List
object. In this case, we return either a StandardListItem or an ObjectListItem based on the data stored
in the context of the item to be created.

We decide which type of control to return by checking the current stock level and whether or not the product
has been discontinued. For both options, we prepare and load an XML fragment so that we can define the view
logic declaratively and assign the current controller. If the stock level is zero and the product has also been
discontinued, then we use the ProductSimple XML fragment, otherwise the ProductExtended XML
fragment.

The XML fragments need to be loaded only once for each case, so we create a Singleton by storing a helper
variable on the controller and only loading it once. For each item of the list, we clone the corresponding control
stored on the controller. This protected method creates a fresh copy of a control that we can bind to the
context of the list item. Please note: In a factory function, you are responsible for the life cycle of the control
you create.

If the product is not discontinued but the stock level is zero, we are temporarily out of stock. In this case, we
add a single ObjectAttribute that adds the Out of Stock message to the control using JavaScript. Similar to
declarative definitions in the XML view or fragments, we can bind properties using data binding syntax. In this
case, we bind the text to a property in the resource bundle. Since the Attribute is a child of the list item, it
has access to all assigned models and the current binding context.

Finally, we return the control that is displayed inside the list.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 259

webapp/view/ProductSimple.fragment.xml (new)

<core:FragmentDefinition
 xmlns="sap.m"
 xmlns:core="sap.ui.core">
 <StandardListItem
 id="productSimple"

 icon="sap-icon://warning"
 title="{products>ProductName} ({products>QuantityPerUnit})"
 info="{i18n>Discontinued}"
 type="Active"
 infoState="Error"
 press=".onItemSelected">
 </StandardListItem>
</core:FragmentDefinition>

The XML fragment defines a StandardListItem that is used if the stock level is zero and the product has also
been discontinued. This is our simple use case where we just define a warning icon and a Product Discontinued
message in the info property.

webapp/view/ProductExtended.fragment.xml (new)

<core:FragmentDefinition xmlns="sap.m"
 xmlns:core="sap.ui.core">
 <ObjectListItem
 id="productExtended"
 title="{products>ProductName} ({products>QuantityPerUnit})"
 number="{
 parts: [
 {path: 'products>UnitPrice'},
 {path: '/currencyCode'}
],
 type: 'sap.ui.model.type.Currency',
 formatOptions : {
 showMeasure : false
 }
 }"
 type="Active"
 numberUnit="{/currencyCode}"
 press=".onItemSelected">
 </ObjectListItem>
</core:FragmentDefinition>

In our extended use case, we create an ObjectListItem to display more details of the product. The
properties are bound to the fields of the current data binding context and therefore can use types, formatters,
and all handlers that are defined in the assigned controller.

However, more complex logic can’t be defined declaratively in XML. Therefore, when the stock level is zero, we
add a single ObjectAttribute that displays the Out of Stock message in the controller using JavaScript.

260 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

webapp/i18n/i18n.properties

... # Product Details

... outOfStock=Out of Stock

webapp/i18n/i18n_de.properties

... # Product Details

... outOfStock=Nicht vorr\u00e4tig

We add the missing texts to the properties files.

That's all - you completed the Data Binding tutorial!

Related Information

List Binding (Aggregation Binding) [page 828]
XML Fragments [page 1005]
Using Factory Functions [page 831]

OData V4

In this tutorial, we explore how features of OData V4 can be used in SAPUI5. We write a small app that
consumes data from an OData V4 service to understand how to access, modify, aggregate, and filter data in an
OData V4 model.

OData is a standard protocol for creating and consuming data by using simple HTTP and REST APIs for create,
read, update, delete (CRUD) operations.

We start with an initial app that simply retrieves data from an OData V4 service and displays it as a plain list.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 261

Preview

 Tip
You don't have to do all tutorial steps sequentially, you can jump directly to any step you want. In each step,
download the code from the previous step, copy it to your workspace, and make sure that the application
runs by calling the webapp/index.html file.

You can view and download the samples for all steps in the Demo Kit at OData V4. Depending on your
development environment you might have to adjust resource paths and configuration entries.

For more information, check the following sections of the tutorial overview page (see Get Started: Setup,
Tutorials, and Demo Apps [page 38]):

● Downloading Code for a Tutorial Step [page 40]
● Adapting Code to Your Development Environment [page 40]

Related Information

OData Standard Protocol
OData V4 Model [page 918]
Basic Tutorial on the OData Home Page

262 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/entity/sap.ui.core.tutorial.odatav4/samples
http://help.sap.com/disclaimer?site=http%3A%2F%2Fwww.odata.org%2Fdocumentation%2F
http://help.sap.com/disclaimer?site=http%3A%2F%2Fwww.odata.org%2Fgetting-started%2Fbasic-tutorial%2F

Step 1: The Initial App

We start by setting up a simple app that loads data from an OData service and displays it in a table. We use a
mock server to simulate requests to and responses from the service.

The structure and data model created in this step will be used throughout this tutorial to illustrate the OData
V4 features in SAPUI5.

Preview

Figure 66: Initial app with a simple table

Setup

To set up your project for this tutorial, download the files at OData V4 - Step 1. Copy or import the code to your
workspace and make sure that the application runs by calling the webapp/index.html file.

Depending on your development environment, you might have to adjust resource paths and configuration
entries. The project structure and the files provided with this tutorial are explained in detail in the Walkthrough
[page 69] tutorial.

You should now have the following files:

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 263

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.odatav4.01/preview

Figure 67: Folder structure with downloaded files

The Initial App

The downloaded code includes an app that displays a table containing a table of users. For performance
reasons, the table only loads 10 users at a time. More data can be retrieved by using the More button at the
bottom of the page.

During the implementation of the app, we use local mock data so that we can concentrate on the application
logic without dealing with back-end readiness or connectivity issues. We use the TripPin sample service as a
"real" OData service.

The most important files are the following:

webapp/index.html
This file defines the home page of the app. It contains the bootstrap script and tells the runtime where to find
our custom resources. It also initializes the mock server that intercepts all requests to the real TripPin service
and sends back mock responses.

webapp/manifest.json
The manifest.json descriptor file contains the app configuration. In the sap.app section, the OData V4
service is configured as the default service:

"dataSources": { "default": {
 "uri": "https://services.odata.org/TripPinRESTierService/(S(id))/",
 "type": "OData",

264 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 "settings": {
 "odataVersion": "4.0"
 }
 }
}

Mock server (webapp/localService/*)

 Note
The mock server included in this tutorial is only meant to support the features needed in this tutorial.
Currently, there is no "general-purpose mock server" for application development available with OData V4
(like there is for OData V2).

The mockserver.js file contains the implementation of the mock server. It is quite simple since the mock
server is only used to simulate certain types of requests to the TripPin service.

The metadata.xml file contains the service metadata that includes, for example, entity types and entity sets.
Those define the possible requests as well as the structure of responses.

To be able to add data to the emulated OData responses, we have to store the entities for each entity type we
use in a JSON file: The people.json file contains some data that is used for the mock service responses.

In this tutorial, we only use the entity type Person of the TripPin service. The entities of type Person are
collected in the entity set People. Each Person has a key property UserName and the properties Age,
FirstName, and LastName.

Related Information

OData Reference Services including TripPin
Bootstrapping: Loading and Initializing [page 692]
Descriptor for Applications, Components, and Libraries [page 734]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 265

http://help.sap.com/disclaimer?site=http%3A%2F%2Fwww.odata.org%2Fodata-services%2F

Step 2: Data Access and Client-Server Communication

In this step, we see how the Table that is bound to the People entity set initially requests its data, and how the
data can be refreshed. We use the Console tab in the browser developer tools to monitor the communication
between the browser and the server. We see the initial request as well as the requests for refreshing the data.

Preview

Figure 68: App with a toolbar that contains a Refresh button

Coding

You can view and download all files at OData V4 - Step 2.

webapp/controller/App.controller.js

sap.ui.define(["sap/ui/core/mvc/Controller", "sap/m/MessageToast",
 "sap/m/MessageBox", "sap/ui/model/json/JSONModel"], function (Controller, MessageToast, MessageBox, JSONModel) { "use strict";
 return Controller.extend("sap.ui.core.tutorial.odatav4.controller.App", {
 onInit : function () {
 var oJSONData = {
 busy : false
 };
 var oModel = new JSONModel(oJSONData);
 this.getView().setModel(oModel, "appView"); },

 onRefresh : function () {
 var oBinding = this.byId("peopleList").getBinding("items");

 if (oBinding.hasPendingChanges()) {
 MessageBox.error(this._getText("refreshNotPossibleMessage"));
 return;
 }
 oBinding.refresh();
 MessageToast.show(this._getText("refreshSuccessMessage"));

266 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.odatav4.02/preview

 },

 _getText : function (sTextId, aArgs) {
 return
this.getOwnerComponent().getModel("i18n").getResourceBundle().getText(sTextId,
aArgs);

 } }); });

We add the event handler onRefresh to the controller. In this method, we retrieve the current data binding of
the table. If the binding has unsaved changes, we display an error message, otherwise we call refresh() and
display a success message.

 Note
At this stage, our app cannot have unsaved changes. We will change this in Step 6.

We also add the private method _getText to retrieve translatable texts from the resource bundle (i18n
model).

webapp/view/App.view.xml

... <Page title="{i18n>peoplePageTitle}">
 <content>
 <Table
 id="peopleList"
 growing="true"
 growingThreshold="10"
 items="{
 path: '/People'
 }"> <headerToolbar>
 <OverflowToolbar>
 <content>
 <ToolbarSpacer/>
 <Button
 id="refreshUsersButton"
 icon="sap-icon://refresh"
 tooltip="{i18n>refreshButtonText}"
 press=".onRefresh"/>
 </content>
 </OverflowToolbar>
 </headerToolbar> <columns> ...

We add the headerToolbar with a single Button to the Table. The button has a press event to which we
attach an event handler called onRefresh.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 267

webapp/i18n/i18n.properties

App Descriptor ... # Toolbar
#XTOL: Tooltip for refresh data
refreshButtonText=Refresh Data # Table Area
... # Messages
#XMSG: Message for refresh failed
refreshNotPossibleMessage=Before refreshing, please save or revert your changes

#XMSG: Message for refresh succeeded
refreshSuccessMessage=Data refreshed

We add the tooltip and message texts to the properties file.

Under the Hood

To get more insight into the client-server communication, we open the Console tab of the browser developer
tools and then reload the app.

 Note
To monitor the client-server communication in a productive app, you would use the Network tab of the
developer tools.

In this tutorial, we are using a mock server instead of a real OData service so that we can execute the code
in every environment. The mock server does not generate any network traffic, so we use the Console tab to
monitor the communication.

If you want to switch to the real service, do the following:

1. In the index.html file, remove the line data-sap-ui-oninit="module:sap/ui/core/
tutorial/odatav4/initMockServer".

2. Check the URI of the default data source in the manifest.json file. Depending on the environment,
change it to something that avoids cross-origin resource sharing (CORS) problems. For more
information, see Request Fails Due to Same-Origin Policy (Cross-Origin Resource Sharing - CORS)
[page 1391]

We search for the following mock server requests:

● http://services.odata.org/TripPinRESTierService/(S(id))/$metadata
This first request fetches the metadata that describes the entities of the service (see also OData Version
4.0. Part 3: Common Schema Definition Language (CSDL) Plus Errata 03).
The server responds with an XML file that describes the entities, for example, entity type "Person" has
several properties such as UserName, FirstName, LastName, and Age.

 Note
The URL contains the session ID (S(id)). Since the public TripPin service can be used by multiple
persons at the same time, the session ID separates read and write requests from different sources. You

268 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/disclaimer?site=http%3A%2F%2Fservices.odata.org%2FTripPinRESTierService%2F%28S%28id%29%29%2F%24metadata
http://help.sap.com/disclaimer?site=http%3A%2F%2Fdocs.oasis-open.org%2Fodata%2Fodata%2Fv4.0%2Fodata-v4.0-part3-csdl.html
http://help.sap.com/disclaimer?site=http%3A%2F%2Fdocs.oasis-open.org%2Fodata%2Fodata%2Fv4.0%2Fodata-v4.0-part3-csdl.html

could use a different ID or request the service without a specified session ID. In the latter case, you will
get a response with a new, random session ID.

● http://services.odata.org/TripPinRESTierService/(S(id))/People?
$select=Age,FirstName,LastName,UserName&$skip=0&$top=10 .
The second request fetches the first 10 entities from the OData service. The growingThreshold="10"
setting in the implementation of the Table control in the App.view.xml file defines that only 10 entities
are fetched at the same time from the '/people' path. Further data is only loaded when requested from
the user interface (growing="true"). Therefore, there are only 10 entities requested at the same time by
using $skip=0&$top=10 (see System Query Option $top and $skip in the Basic Tutorial on the OData
home page.)
This request explicitly lists the fields that should be included in the response by using the $select query
option. Although the TripPin service has more fields in its People entity set, only those four are included in
the response. This is a feature of the OData V4 Model called "automatic determination of $select", or
"auto-$select". It helps restricting the size of responses to what is really needed. The ODataModel
computes the required fields from binding paths specified for controls. This feature is not active by default.
In our case, this is activated by setting the autoExpandSelect property to true when instantiating the
model in the manifest.json descriptor file .

Related Information

Bindings [page 922]
API Reference: sap.ui.model.odata.v4.ODataMetaModel
API Reference: sap.ui.model.odata.v4.ODataListBinding.refresh
Troubleshooting Tutorial Step 1: Browser Developer Tools [page 196]

Step 3: Automatic Data Type Detection

In this step, we use the automatic data type detection of the OData V4 model to parse, validate, and format
user entries. The service metadata contains type information for the properties of each entity.

The OData V4 Model utilizes this information to compute the corresponding SAPUI5 type, including
constraints, and sets this type to the SAPUI5 property binding for the entity property. For example, for <Input
value={Age}/> the SAPUI5 type Int64 is used, which corresponds to the OData type Edm.Int64.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 269

http://help.sap.com/disclaimer?site=http%3A%2F%2Fservices.odata.org%2FTripPinRESTierService%2F%28S%28id%29%29%2FPeople%3F%24select%3DAge%2CFirstName%2CLastName%2CUserName%26%24skip%3D0%26%24top%3D10
http://help.sap.com/disclaimer?site=http%3A%2F%2Fservices.odata.org%2FTripPinRESTierService%2F%28S%28id%29%29%2FPeople%3F%24select%3DAge%2CFirstName%2CLastName%2CUserName%26%24skip%3D0%26%24top%3D10
http://help.sap.com/disclaimer?site=http%3A%2F%2Fwww.odata.org%2Fgetting-started%2Fbasic-tutorial%2F%23topskip
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v4.ODataMetaModel.html
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataListBinding/methods/refresh

Preview

Figure 69: Input does not match the underlying data type

Coding

You can view and download all files at OData V4 - Step 3.

webapp/manifest.json

{ "_version": "1.12.0",
 "sap.app": {...
 },
 "sap.ui": {
 "technology": "UI5",
 "deviceTypes": {

 }
 },
 "sap.ui5": {
 "rootView": {
 ...
 },
 "dependencies": {
 ...
 }
 },
 "contentDensities": {
 ...
 }, "handleValidation": true,
 "models": {
 ...
 }
 }
 },
 "sap.platform.hcp": {
 ...
 }

In the manifest.json descriptor file, we add the "handleValidation": true setting. This makes sure
that any validation errors that are detected by the SAPUI5 types are shown on the UI using the message
manager.

270 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.odatav4.03/preview

We now run the app using the index.html file and enter values that don't match the type and constraints
given in the metadata file. For example, enter the string value Young at Heart in field Age, which requires an
integer input (SAPUI5 type sap.ui.model.odata.type.Int64, corresponding to OData type Edm.Int64),
or remove an entry from the User Name or First Name fields, which are mandatory. Fields with incorrect entries
are highlighted and an error message is displayed.

 Note
If you explicitly define a type in the binding info of a control, the automatic type detection for that binding
will be turned off. For example, if you change the Input for Age in the view to <Input
value="{path:'Age', type:'sap.ui.model.type.String'}/>, the String type will be used, not
the Int64 type from the service metadata.

localService/metadata.xml

<EntityType Name="Person"> <Key>
 <PropertyRef Name="UserName"/>
 </Key>
 <Property Name="UserName" Type="Edm.String" Nullable="false" /> <Property Name="FirstName" Type="Edm.String" /> <Property Name="LastName" Type="Edm.String"/>
 <Property Name="MiddleName" Type="Edm.String"/>
 <Property Name="Gender"
Type="Microsoft.OData.Service.Sample.TrippinInMemory.Models.PersonGender"
 Nullable="false"/>
 <Property Name="Age" Type="Edm.Int64" />

To make the First Name optional, we remove the parameter Nullable="false" from the FirstName
property. You can play around with the settings for the other properties, for example, change the type of
property Age to Type="Edm.String" to allow free text.

 Tip
To see the metadata of an OData service, you append the $metadata variable to the URL of the service.
You can try this, for example, with http://services.odata.org/TripPinRESTierService/ and http://
services.odata.org/TripPinRESTierService/$metadata

Related Information

Type Determination [page 931]
API Reference: sap.ui.model.odata.type
Sample for sap.ui.core.mvc.XMLView: XML Templating: UI5 OData types

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 271

http://help.sap.com/disclaimer?site=http%3A%2F%2Fservices.odata.org%2FTripPinRESTierService%2F
http://help.sap.com/disclaimer?site=http%3A%2F%2Fservices.odata.org%2FTripPinRESTierService%2F%24metadata
http://help.sap.com/disclaimer?site=http%3A%2F%2Fservices.odata.org%2FTripPinRESTierService%2F%24metadata
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.type.html
https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.sample.ViewTemplate.types/preview

Step 4: Filtering, Sorting, and Counting

In this step, we add features to filter, sort, and count the user data by using the OData V4 model API to apply
OData system query options $filter, $orderby, and $count.

Preview

Figure 70: App now has a search field, the entries can be sorted, and you can see how many entities are loaded and how
many more are available

Coding

You can view and download all files at OData V4 - Step 4.

webapp/controller/App.controller.js

sap.ui.define(["sap/ui/core/mvc/Controller",
 "sap/m/MessageToast",
 "sap/m/MessageBox", "sap/ui/model/Sorter",
 "sap/ui/model/Filter",
 "sap/ui/model/FilterOperator",
 "sap/ui/model/FilterType",

272 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.odatav4.04/preview

 "sap/ui/model/json/JSONModel"], function (Controller, MessageToast, MessageBox, Sorter, Filter,
FilterOperator, FilterType, JSONModel) { "use strict";
 return Controller.extend("sap.ui.core.tutorial.odatav4.controller.App", {
 onInit : function () {
 var oJSONData = {
 busy : false, order : 0 };
 var oModel = new JSONModel(oJSONData);
 this.getView().setModel(oModel, "appView");
 },
 onRefresh : function () {
 ... },

 onSearch : function () {
 var oView = this.getView(),
 sValue = oView.byId("searchField").getValue(),
 oFilter = new Filter("LastName", FilterOperator.Contains,
sValue);

 oView.byId("peopleList").getBinding("items").filter(oFilter,
FilterType.Application);
 },

 onSort : function () {
 var oView = this.getView(),
 aStates = [undefined, "asc", "desc"],
 aStateTextIds = ["sortNone", "sortAscending", "sortDescending"],
 sMessage,
 iOrder = oView.getModel("appView").getProperty("/order");

 iOrder = (iOrder + 1) % aStates.length;
 var sOrder = aStates[iOrder];

 oView.getModel("appView").setProperty("/order", iOrder);
 oView.byId("peopleList").getBinding("items").sort(sOrder && new
Sorter("LastName", sOrder === "desc"));

 sMessage = this._getText("sortMessage",
[this._getText(aStateTextIds[iOrder])]);
 MessageToast.show(sMessage);
 }, _getText : function (sTextId, aArgs) {
 ...
 }
 }); });

We add the onSearch and onSort event handlers for the Search field and the Sort button to the controller. We
also enhance the appView model to store the active sorting order.

The onSearch event handler filters the table for people whose last name contains any string value entered in
the Search field. We define a sap.ui.model.Filter and apply it to the binding of the Table using the
filter method. The binding will then automatically retrieve filtered data from the OData V4 service and
update the Table.

When the request is triggered, only entities that match the given filter criteria are requested from the OData V4
service.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 273

 Note
Filters of OData services are case-sensitive. If you prefer a non case-sensitive search, implement it in the
controller logic.

The onSort event handler requests the data unordered, or in ascending order, or descending order. Each time
the Sort button is clicked, the next sort order is applied. The sorting is applied to the table by calling the sort
method of the list binding with a new sap.ui.model.Sorter.

 Note
The features of filtering and sorting can also be combined.

We add the order property to variable oJSONData in onInit method. This property stores the current sort
order.

webapp/view/App.view.xml

<mvc:View controllerName="sap.ui.core.tutorial.odatav4.controller.App"
 displayBlock="true"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <Shell>
 <App busy="{appView>/busy}" class="sapUiSizeCompact">
 <pages>
 <Page title="{i18n>peoplePageTitle}">
 <content>
 <Table
 id="peopleList"
 growing="true"
 growingThreshold="10"
 items="{
 path: '/People', parameters: {
 $count: true }
 }">
 <headerToolbar>
 <OverflowToolbar>
 <content>
 <ToolbarSpacer/> <SearchField
 id="searchField"
 width="20%"

placeholder="{i18n>searchFieldPlaceholder}"
 search=".onSearch"/> <Button
 id="refreshUsersButton"
 icon="sap-icon://refresh"
 tooltip="{i18n>refreshButtonText}"
 press=".onRefresh"/> <Button
 id="sortUsersButton"
 press="onSort"
 tooltip="{i18n>sortButtonText}"
 icon="sap-icon://sort"/>

274 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 </content>
 </OverflowToolbar>
 </headerToolbar>
 <columns>
 <Column id="userNameColumn">
 <Text text="{i18n>userNameLabelText}"/>
 </Column>
 <Column id="firstNameColumn">
 <Text text="{i18n>firstNameLabelText}"/>
 </Column>
 <Column id="lastNameColumn">
 <Text text="{i18n>lastNameLabelText}"/>
 </Column>
 <Column id="ageColumn">
 <Text text="{i18n>ageLabelText}"/>
 </Column>
 </columns>
 <items>
 <ColumnListItem>
 <cells>
 <Input value="{UserName}"/>
 </cells>
 <cells>
 <Input value="{FirstName}"/>
 </cells>
 <cells>
 <Input value="{LastName}"/>
 </cells>
 <cells>
 <Input value="{Age}"/>
 </cells>
 </ColumnListItem>
 </items>
 </Table>
 </content>
 </Page>
 </pages>
 </App>
 </Shell>
</mvc:View>

We add the $count : true parameter to tell the OData service to send the number of entities. With this
setting, we automatically get the full number of entities (20) and the number of displayed entities (10) beneath
the More button.

 Note
The live TripPin service does not support the $count parameter yet. If you use the live service instead of
the mock server, as described in Step 2, leave out the $count parameter.

In the OverflowToolbar, we add a Search field and a Sort button with their events.

webapp/i18n/i18n.properties

... #XTOL: Tooltip for refresh data
refreshButtonText=Refresh Data #XTOL: Tooltip for sort
sortButtonText=Sort by Last Name

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 275

#XTXT: Placeholder text for search field
searchFieldPlaceholder=Type in a last name ...
Messages
...
#XMSG: Message for refresh succeeded
refreshSuccessMessage=Data refreshed #MSG: Message for sorting
sortMessage=Users sorted by {0}

#MSG: Suffix for sorting by LastName, ascending
sortAscending=last name, ascending

#MSG: Suffix for sorting by LastName, descending
sortDescending=last name, descending

#MSG: Suffix for no sorting
sortNone=the sequence on the server

We add the missing texts to the properties file.

Related Information

Filtering [page 939]
Sorting [page 942]
Query Options under Querying Data in the Basic Tutorial on the OData home page

276 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/disclaimer?site=http%3A%2F%2Fwww.odata.org%2Fgetting-started%2Fbasic-tutorial%2F%23queryData

Step 5: Batch Groups

In this step, we have a closer look at batch groups. Batch groups are used to group multiple requests into one
server request to improve the overall performance.

Preview

Figure 71: No visual change compared to the last step

Coding

You can view and download all files at OData V4 - Step 5.

webapp/manifest.json

... "": {
 "dataSource": "default",
 "settings": {
 "autoExpandSelect": true,
 "operationMode": "Server", "groupId": "$auto", "synchronizationMode": "None"

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 277

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.odatav4.05/preview

 } ...

In the previous steps, batch processing was turned off, so that we could monitor the network traffic between
our app and the service more easily. Now we turn on batch processing by changing the groupID to $auto. You
can also just remove the line from the code as this is the default.

We now run the app and open the browser developer tools. On the Console tab, we clear all messages and
choose the Refresh button.

 Tip
Change the settings of the Console so that it only displays information messages, not warnings and errors,
to make it easier to find the messages we're looking for.

We see that the request is now bundled: To read the user data, the app now sends a POST request instead of a
GET request to the server. The URL of the POST request does not include the path to the data we want. Instead
it ends with $batch that indicates that this is a batch request.

A $batch request uses multipart MIME to put several requests into one. This makes it harder to analyze when
looking at the request in the browser developer tools. To overcome this issue, you can:

● Switch the group ID to $direct temporarily by changing the source code or changing the default value in
the debugger.

● Copy the relevant part of the request or response from the developer tools to an editor and auto-format it
as JSON to analyze it.

Related Information

Batch Control [page 952]
Performance Aspects [page 967]

278 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Step 6: Create and Edit

In this step, we will make it possible to create and edit (update) user data from the user interface and send the
data to the back end.

Preview

Figure 72: Data can now be edited and added.

Coding

You can view and download all files at OData V4 - Step 6.

webapp/controller/App.controller.js

... onInit : function () { var oMessageManager = sap.ui.getCore().getMessageManager(),
 oMessageModel = oMessageManager.getMessageModel(),
 oMessageModelBinding = oMessageModel.bindList("/", undefined, [],
 new Filter("technical", FilterOperator.EQ, true)),
 oViewModel = new JSONModel({
 busy : false,
 hasUIChanges : false,
 usernameEmpty : true,
 order : 0
 });
 this.getView().setModel(oViewModel, "appView");
 this.getView().setModel(oMessageModel, "message");

 oMessageModelBinding.attachChange(this.onMessageBindingChange, this);
 this._bTechnicalErrors = false; }, ...

We change the onInit method: The appView model receives two additional properties, which we will use to
control whether certain controls in the view are enabled or visible during user entries. We also make the
MessageModel available to the view and add a ListBinding. When the OData service reports errors while

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 279

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.odatav4.06/preview

writing data, the OData Model adds them to the MessageModel as technical messages. Therefore we apply a
filter to the ListBinding. We register our own handler to the change event of that ListBinding in order to
capture any errors.

... onSort : function () {
 ...
 },
 _getText : function (sTextId, aArgs) {
 ... }, _setUIChanges : function (bHasUIChanges) {
 if (this._bTechnicalErrors) {
 // If there is currently a technical error, then force 'true'.
 bHasUIChanges = true;
 } else if (bHasUIChanges === undefined) {
 bHasUIChanges = this.getView().getModel().hasPendingChanges();
 }
 var oModel = this.getView().getModel("appView");
 oModel.setProperty("/hasUIChanges", bHasUIChanges);
 } }); });

We add the _setUIChanges private method that lets us set the property hasUIChanges of the appView
model. Unless there are currently technical messages in the MessageModel or it is called with a given value for
its bHasUIChanges parameter, the method uses ODataModel.hasPendingChanges. That method returns
true if there are any changes that have not yet been written to the service.

... onInit: function () {
 ... }, onCreate : function () {
 var oList = this.byId("peopleList"),
 oBinding = oList.getBinding("items"),
 oContext = oBinding.create({
 "UserName" : "",
 "FirstName" : "",
 "LastName" : "",
 "Age" : "18"
 });

 this._setUIChanges();
 this.getView().getModel("appView").setProperty("/usernameEmpty",
true);

 oList.getItems().some(function (oItem) {
 if (oItem.getBindingContext() === oContext) {
 oItem.focus();
 oItem.setSelected(true);
 return true;
 }
 });
 }, onRefresh ...

We add the onCreate event handler that responds to the press event of the Add User button. We use the
create method of the ODataListBinding API to create a new user with some initial data and insert it at the
top of the table. The create method returns the binding context of the new user. That context provides a

280 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

created method which returns a Promise. The Promise is resolved when the new user is successfully
transferred to the OData service.

We also use the binding context returned by the create method to focus and select the new row in which the
new data can be entered.

... onRefresh: function () {
 ...
 }, onSave : function () {
 var fnSuccess = function () {
 this._setBusy(false);
 MessageToast.show(this._getText("changesSentMessage"));
 this._setUIChanges(false);
 }.bind(this);

 var fnError = function (oError) {
 this._setBusy(false);
 this._setUIChanges(false);
 MessageBox.error(oError.message);
 }.bind(this);

 this._setBusy(true); // Lock UI until submitBatch is resolved.
 this.getView().getModel().submitBatch("peopleGroup").then(fnSuccess,
fnError);
 this._bTechnicalErrors = false; // If there were technical errors, a
new save resets them.
 }, onSearch: function () {
 ...
 },
 ...
 _setUIChanges : function (bHasUIChanges) {
 ... }, _setBusy : function (bIsBusy) {
 var oModel = this.getView().getModel("appView");
 oModel.setProperty("/busy", bIsBusy);
 } }); });

We create the onSave event handler, in which we call the submitBatch method of the ODataModel API to
submit our changes. Because the changes that we submit refer to the table, we need to pass the update group
peopleGroup that we declared in the table binding.

The submitBatch method returns a Promise that is rejected only if the batch request itself fails, for example,
if the OData service is unavailable or if there were authorization problems. It is resolved in all other cases, also if
the service returns errors for single requests that are contained in the batch request. Therefore, we have to
implement the error handling for single requests differently.

We also define a _setBusy private function to lock the whole UI while the data is submitted to the back end.

... onSort : function () {
 ...
 }, onMessageBindingChange : function (oEvent) {
 var aContexts = oEvent.getSource().getContexts(),
 aMessages,
 bMessageOpen = false;

 if (bMessageOpen || !aContexts.length) {

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 281

 return;
 }

 // Extract and remove the technical messages
 aMessages = aContexts.map(function (oContext) {
 return oContext.getObject();
 });
 sap.ui.getCore().getMessageManager().removeMessages(aMessages);

 this._setUIChanges(true);
 this._bTechnicalErrors = true;
 MessageBox.error(aMessages[0].message, {
 id : "serviceErrorMessageBox",
 onClose : function () {
 bMessageOpen = false;
 }
 });

 bMessageOpen = true;
 }, ...

We implement the event handler for the change event of the ListBinding to the MessageModel. We created
the ListBinding with a filter to only include technical messages. That means that the change event will be
fired with every change but only technical messages will have a binding context. In case of technical messages,
we get the first one and display it as an error. We also make sure that the toolbar for saving or discarding
changes stays visible. We delete the technical messages so that they do not accumulate.

... onRefresh: function () {
 ...
 }, onResetChanges : function () {
 this.byId("peopleList").getBinding("items").resetChanges();
 this._bTechnicalErrors = false;
 this._setUIChanges();
 }, onSearch: function () {
 ...
 }, ...

The onResetChanges method handles discarding pending changes. It uses the resetChanges method of the
ODataListBinding API to remove any such changes. Then it calls the _setUIChanges private method to
enable the elements of the header toolbar again and hide the footer.

... onCreate: function () {
 ...
 }, onInputChange : function (oEvt) {
 if (oEvt.getParameter("escPressed")) {
 this._setUIChanges();
 } else {
 this._setUIChanges(true);
 if
(oEvt.getSource().getParent().getBindingContext().getProperty("UserName")) {
 this.getView().getModel("appView").setProperty("/
usernameEmpty", false);
 }
 }
 }, onRefresh : function () {
 ...

282 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 }, ...

The onInputChange event handler manages entries in any of the Input fields and triggers updates to the
appView model as needed. It does an extra check on the UserName field to make sure that users cannot be
saved without a UserName. Otherwise the OData service would return errors because UserName is a
mandatory field.

webapp/view/App.view.xml

<mvc:View controllerName="sap.ui.core.tutorial.odatav4.controller.App"
 displayBlock="true"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <Shell>
 <App busy="{appView>/busy}" class="sapUiSizeCompact">
 <pages>
 <Page title="{i18n>peoplePageTitle}">
 <content>
 <Table
 id="peopleList"
 growing="true"
 growingThreshold="10"
 items="{
 path: '/People',
 parameters: {
 $count: true, $$updateGroupId : 'peopleGroup' }
 }">
 <headerToolbar>
 <OverflowToolbar>
 <content>
 <ToolbarSpacer/>
 <SearchField
 id="searchField"
 width="20%"

placeholder="{i18n>searchFieldPlaceholder}" enabled="{= !${appView>/
hasUIChanges}}" search=".onSearch"/> <Button
 id="addUserButton"
 icon="sap-icon://add"
 tooltip="{i18n>createButtonText}"
 press=".onCreate">
 <layoutData>
 <OverflowToolbarLayoutData
priority="NeverOverflow"/>
 </layoutData>
 </Button> <Button
 id="refreshUsersButton"
 icon="sap-icon://refresh" enabled="{= !${appView>/
hasUIChanges}}" tooltip="{i18n>refreshButtonText}"
 press=".onRefresh"/>
 <Button
 id="sortUsersButton"

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 283

 icon="sap-icon://sort" enabled="{= !${appView>/
hasUIChanges}}" tooltip="{i18n>sortButtonText}"
 press=".onSort"/>
 </content>
 </OverflowToolbar>
 </headerToolbar>
 <columns>
 <Column id="userNameColumn">
 <Text text="{i18n>userNameLabelText}"/>
 </Column>
 <Column id="firstNameColumn">
 <Text text="{i18n>firstNameLabelText}"/>
 </Column>
 <Column id="lastNameColumn">
 <Text text="{i18n>lastNameLabelText}"/>
 </Column>
 <Column id="ageColumn">
 <Text text="{i18n>ageLabelText}"/>
 </Column>
 </columns>
 <items>
 <ColumnListItem>
 <cells>
 <Input
 value="{UserName}" valueLiveUpdate="true"
 liveChange=".onInputChange"/> </cells>
 <cells>
 <Input
 value="{FirstName}" liveChange=".onInputChange"/> </cells>
 <cells>
 <Input
 value="{LastName}" liveChange=".onInputChange"/> </cells>
 <cells>
 <Input
 value="{Age}" valueLiveUpdate="true"
 liveChange=".onInputChange"/> </cells>
 </ColumnListItem>
 </items>
 </Table>
 </content> <footer>
 <Toolbar visible="{appView>/hasUIChanges}">
 <ToolbarSpacer/>
 <Button
 id="saveButton"
 type="Emphasized"
 text="{i18n>saveButtonText}"
 enabled="{= ${message>/}.length === 0 &&
${appView>/usernameEmpty} === false }"
 press=".onSave"/>
 <Button
 id="doneButton"
 text="{i18n>cancelButtonText}"
 press=".onResetChanges"/>
 </Toolbar>
 </footer> </Page>
 </pages>

284 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 </App>
 </Shell>
</mvc:View>

We add the $$updateGroupId: 'peopleGroup' parameter to the table. This means that changes in the
table are not sent to the service immediately but instead are collected until we explicitly send them.

We add a new Add User button to the overflow toolbar in the table header, and define a footer toolbar that
contains Save and Cancel buttons that we can display or hide through the appView model. We can disable the
Save button separately, for example when a user enters invalid data.

Finally, we add the liveChange="onInputChange" event handler to the table cells to make it possible to
react to user input. In addition, we set the valueLiveUpdate properties for the fields for UserName and Age.
That makes sure that the SAPUI5 types validate the field content with each keystroke.

webapp/i18n/i18n.properties

Toolbar #XBUT: Button text for save
saveButtonText=Save

#XBUT: Button text for cancel
cancelButtonText=Cancel #XTOL: Tooltip for sort
sortButtonText=Sort by Last Name #XBUT: Button text for add user
createButtonText=Add User ...
Messages #XMSG: Message for user changes sent to the service
changesSentMessage=User data sent to the server ...

We add the new message texts.

Related Information

Model Instantiation and Data Access [page 918]
Batch Control [page 952]
OData Operations [page 945]
Creating an Entity [page 974]
Message Model [page 1070]
API Reference: sap.ui.model.odata.v4.ODataContextBinding

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 285

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v4.ODataContextBinding.html

Step 7: Delete

In this step, we make it possible to delete user data.

Preview

Figure 73: A new Delete User button is added

Coding

You can view and download all files at OData V4 - Step 7.

webapp/App.controller.js

 onDelete : function () {
 var oSelected = this.byId("peopleList").getSelectedItem();

 if (oSelected) {
 oSelected.getBindingContext().delete("$auto").then(function () {
 MessageToast.show(this._getText("deletionSuccessMessage"));
 }.bind(this), function (oError) {
 MessageBox.error(oError.message);
 });
 }
 },

We add the onDelete event handler to the controller. In the event handler, we check whether an item is
selected in the table and if so, the related data is deleted from the model. To do that, we retrieve the binding
context of the selection and call its delete method.

We explicitly set the update group ID for the deletion to $auto to make sure that the request to the service is
sent immediately as a batch request. Otherwise the delete function would apply the deferred batch
processing that we defined for the table’s list binding event though, delete does not currently support
deferred batch processing.

286 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.odatav4.07/preview

webapp/App.view.xml

<mvc:View controllerName="sap.ui.core.tutorial.odatav4.controller.App"
 displayBlock="true"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <Shell>
 <App busy="{appView>/busy}" class="sapUiSizeCompact">
 <pages>
 <Page title="{i18n>peoplePageTitle}">
 <content>
 <Table
 id="peopleList"
 growing="true"
 growingThreshold="10"
 items="{
 path: '/People',
 parameters: {
 $count: true,
 $$updateGroupId : 'peopleGroup'
 }
 }" mode="SingleSelectLeft"> <headerToolbar>
 <OverflowToolbar>
 <content>
 <ToolbarSpacer/>
 <SearchField
 .../>
 <Button
 .../> <Button
 id="deleteUserButton"
 icon="sap-icon://delete"
 tooltip="{i18n>deleteButtonText}"
 press=".onDelete">
 <layoutData>
 <OverflowToolbarLayoutData
priority="NeverOverflow"/>
 </layoutData>
 </Button> <Button
 .../>
 <Button
 ...>
 </content>
 </OverflowToolbar>
 </headerToolbar>
 <columns>
 ...
 </columns>
 <items>
 ...
 </items>
 </Table>
 </content>
 <footer>
 ...
 </footer>
 </Page>
 </pages>
 </App>
 </Shell> </mvc:View>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 287

We change the mode of the table to SingleSelectLeft to make it possible to select a row.

We add the Delete button to the toolbar. With the OverflowToolbarLayoutData
priority="NeverOverflow" parameter, we make sure that the button is always visible.

webapp/i18n/i18n.properties

... # Toolbar

... #XBUT: Button text for delete user
deleteButtonText=Delete User ...
Messages
... #XMSG: Message for user deleted
deletionSuccessMessage=User deleted ...

We add the missing texts to the properties file.

Related Information

Deleting an Entity [page 976]

288 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Step 8: OData Operations

Our OData service provides one OData operation: the ResetDataSource action. In this step, we add a button
that resets all data changes we made during the tutorial to their original state using this action.

Preview

Figure 74: A Restart Tutorial button is added

Coding

You can view and download all files at OData V4 - Step 8.

webapp/controller/App.controller.js

... onResetChanges : function () {
 this.byId("peopleList").getBinding("items").resetChanges();
 this._setUIChanges();
 }, onResetDataSource : function () {
 var oModel = this.getView().getModel(),
 oOperation = oModel.bindContext("/ResetDataSource(...)");

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 289

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.odatav4.08/preview

 oOperation.execute().then(function () {
 oModel.refresh();

MessageToast.show(this._getText("sourceResetSuccessMessage"));
 }.bind(this), function (oError) {
 MessageBox.error(oError.message);
 }
);
 }, onSave : function () {
...

The onResetDataSource event handler calls the ResetDataSource action, which is an action of the TripPin
OData service that resets the data of the service to its original state.

We call that action by first creating a deferred operation binding on the model. The (…) part of the binding
syntax marks the binding as deferred. We use a deferred binding because we want to control when the action is
executed. Since it is deferred, we need to explicitly call its execute method.

The execution is asynchronous, therefore the execute method returns a Promise. We attach simple success
and error handlers to that Promise by calling its then method.

 Note
Many of the methods in the OData V4 API of SAPUI5 return a Promise to manage asynchronous
processing

webapp/view/App.view.xml

<mvc:View controllerName="sap.ui.core.tutorial.odatav4.controller.App"
 displayBlock="true"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <Shell>
 <App busy="{appView>/busy}" class="sapUiSizeCompact">
 <pages>
 <Page title="{i18n>peoplePageTitle}"> <headerContent>
 <Button
 id="resetChangesButton"
 text="{i18n>resetChangesButtonText}"
 enabled="{= !${appView>/hasUIChanges}}"
 press="onResetDataSource"
 type="Emphasized">
 </Button>
 </headerContent> ...

We add the headerContent aggregation to the Page and insert the new Button. We add the
onResetDataSource event handler to the press event.

290 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

webapp/i18n/i18n.properties

... # Toolbar

... #XBUT: Button text for reset changes
resetChangesButtonText=Restart Tutorial ...
Messages
... #XMSG: Message for changes reverted
sourceResetSuccessMessage=All changes reverted back to start

We add the missing texts to the properties file.

And now we are done! We built a simple application with user data from an OData V4 service. We can display,
edit, create, and delete users. And we use OData V4 features such as batch groups and automatic type
detection.

Related Information

Bindings [page 922]
OData Operations [page 945]

Navigation and Routing

SAPUI5 comes with a powerful routing API that helps you control the state of your application efficiently. This
tutorial will illustrate all major features and APIs related to navigation and routing in SAPUI5 apps by creating a
simple and easy to understand mobile app. It represents a set of best practices for applying the navigation and
routing features of SAPUI5 to your applications.

In classical Web applications, the server determines which resource is requested based on the URL pattern of
the request and serves it accordingly. The server-side logic controls how the requested resource or page is
displayed in an appropriate way.

In single-page applications, only one page is initially requested from the server and additional resources are
dynamically loaded using client-side logic. The user only navigates within this page. The navigation is persisted
in the hash instead of the server path or URL parameters.

For example, a classical Web application might display the employee’s resume page when URL http://
<your-host>/<some-path-to-the-app>/employees/resume.html?id=3 or http://<your-host>/
<some-path-to-the-app>/employees/3/resume is called. A single-page application instead would do the
same thing by using a hash-based URL like http://<your-host>/<some-path-to-the-app>/#/
employees/3/resume.

The information in the hash, namely everything that is following the # character, is interpreted by the router.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 291

 Note
This tutorial does not handle cross-app navigation with the SAP Fiori launchpad. However, the concepts
described in this tutorial are also fundamental for navigation and routing between apps in the SAP Fiori
launchpad.

We will create a simple app displaying the data of a company’s employees to show typical navigation patterns
and routing features. The complete flow of the application can be seen in the figure below. We'll start with the
home page which lets users do the following:

● Display a Not Found page
● Navigate to a list of employees and drill further down to see a Details page for each employee
● Show an Employee Overview that they can search and sort

Figure 75: Page flow of the final app

Throughout this tutorial we will add features for navigating to pages and bookmarking them. We will add
backward and forward navigation with common transition animations (slide, show, flip, etc.). We will add more
pages to the app and navigate between them to show typical use cases. We will even learn how to implement
features for bookmarking a specific search, table sorting via filters, and dialogs.

 Tip
You don't have to do all tutorial steps sequentially, you can also jump directly to any step you want. Just
download the code from the previous step, and start there.

You can view and download the files for all steps in the Demo Kit at Navigation and Routing. Copy the code
to your workspace and make sure that the application runs by calling the webapp/index.html file.
Depending on your development environment you might have to adjust resource paths and configuration
entries.

For more information check the following sections of the tutorials overview page (see Get Started: Setup,
Tutorials, and Demo Apps [page 38]):

292 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/entity/sap.ui.core.tutorial.navigation/samples

● Downloading Code for a Tutorial Step [page 40]
● Adapting Code to Your Development Environment [page 40]

Step 1: Set Up the Initial App

We start by setting up a simple app for this tutorial. The app displays mock data only and mimics real OData
back-end calls with the mock server as you have seen in the Walkthrough tutorial.

The structure and data model created in this step will be used throughout the rest of this tutorial. The initial
app created in this step will be extended in the subsequent steps to illustrate the navigation and routing
features of SAPUI5.

Preview

Figure 76: Initial app with a simple button

Setup

To set up your project for this tutorial, download the files for Step 1 from the Samples in the Demo Kit at
Navigation and Routing - Step 1. Copy the code to your workspace and make sure that the application runs by
calling the webapp/index.html file.

Depending on your development environment you might have to adjust resource paths and configuration
entries. The project structure and the files coming with this tutorial are explained in detail in the Walkthrough
[page 69] tutorial.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 293

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.navigation.01/preview

You should have the same files as displayed in the following figure:

Figure 77: Folder structure with downloaded files

 Note
The content of the localService folders will not be changed in this tutorial. The i18n folder will always
contain the i18n.properties file only. Therefore, we will show both subfolders collapsed in the following
steps.

The Initial App

With the downloaded coding, you have an initial app with recommended settings that provides the basic
features of an SAPUI5 app:

● Home Page
The home page of our app is defined in the webapp/index.html file. In this file we bootstrap SAPUI5 and
tell the runtime where to find our custom resources. Furthermore, we initialize the MockServer to simulate
back-end requests as we do not have a real back-end service throughout this tutorial. Finally, we instantiate
the application component, assign it to a sap.m.Shell control, and place the shell into the body. The
corresponding Component.js file in the webapp folder will be extended throughout this tutorial.

● Data
In the webapp/localService/mockserver.js file, we configure the mock server. Using the mock
server in this tutorial allows us to easily run the code even without network connection and without the
need of having a remote server for our application data.

294 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

The metadata.xml file used by the mock server describes our OData service. The service only has two
OData entities:
○ Employee

An employee has typical properties like FirstName and LastName as well as a navigation property to
a resume entity referenced by a ResumeID. Of course, the entity also has an ID property: EmployeeID.
The corresponding EntitySet is Employees. The actual test data containing several employees is
located in the webapp/localService/mockdata/Employees.json file.

○ Resume
In our case, we want to keep the resume of employees very simple. Therefore, we just have simple
properties of type Edm.String. The properties are Information, Projects, Hobbies and Notes;
all of them contain textual information. The entity has an ID property ResumeID and the corresponding
EntitySet is Resumes. The resume data for an employee is located in file webapp/localService/
mockdata/Resumes.json.

● Configuration of the App
In the webapp/manifest.json descriptor file, we configure our app. The descriptor file contains the
following most interesting sections:
○ sap.app

In this section we reference an i18n.properties file and use a special syntax to bind the texts for
the title and description properties.
In the dataSources part, we tell our app where to find our OData service employeeRemote. As you
might guess, the uri correlates to the rootUri of our mock server instance which can be found in
webapp/localService/mockserver.js. It is important that these two paths match to allow our
mock server to provide the test data we defined above. The localUri is used to determine the
location of the metadata.xml file.

○ sap.ui5
Under sap.ui5 we declare with the rootView parameter that our sap.ui.demo.nav.view.App
view shall be loaded and used as the rootView for our app. Furthermore, we define two models to be
automatically instantiated and bound to the i18n component and a default model "". The latter
references our employeeRemote dataSource which is declared in our sap.app section as an OData
2.0 data source. The i18n file can be found at webapp/i18n/i18n.properties. This data source
will be mocked by our mock server.

So far we have a basic app that does not really have any navigation or routing implemented. This will change in
the next steps when we implement our first navigation features.

Step 2: Enable Routing

In this step we will modify the app and introduce routing. Instead of having the home page of the app hard
coded we will configure a router to wire multiple views together when our app is called. The routing

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 295

configuration controls the application flow when the user triggers a navigation action or opens a link to the
application directly.

Preview

Figure 78: Views are wired together using the router

Coding

You can view and download all files in the Samples in the Demo Kit at Routing and Navigation - Step 2.

Figure 79: Folder structure for this step

webapp/manifest.json

{ "_version": "1.12.0",
 "sap.app": {
 ...
 },
 "sap.ui": {
 ...
 },
 "sap.ui5": {
 "rootView": {
 "viewName": "sap.ui.demo.nav.view.App",
 "type": "XML",
 "async": true,

296 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.navigation.02/preview

 "id": "app"
 },
 "dependencies": {
 ...
 },
 "models": {
 ... },
 "routing": {
 "config": {
 "routerClass": "sap.m.routing.Router",
 "viewType": "XML",
 "viewPath": "sap.ui.demo.nav.view",
 "controlId": "app",
 "controlAggregation": "pages",
 "transition": "slide",
 "async": true
 },
 "routes": [{
 "pattern": "",
 "name": "appHome",
 "target": "home"
 }],
 "targets": {
 "home": {
 "viewId": "home",
 "viewName": "Home",
 "viewLevel" : 1
 }
 }
 } }
}

Single-page applications based on SAPUI5 can use a so-called “router” to dispatch hash-based URLs to one or
more views of the app. Therefore, the router needs to know how to address and show the views. In SAPUI5, we
can simply add a routing section to our existing sap.ui5 section in the descriptor file to configure the router.
There are three properties that can be used to configure the routing of your application:

● config
This section contains the global router configuration and default values that apply for all routes and
targets. The property routerClass is special as it determines the router implementation. The default
value is sap.ui.core.routing.Router. Here, we set the routerClass to sap.m.routing.Router,
because we implement an app based on sap.m. All other properties in config are given to the router
instance. For example, we define where our views are located in the app. To load and display views
automatically, we also specify the controlId of the control that is used to display the pages and the
aggregation (controlAggregation) that will be filled when a new page is displayed. We will create only
XMLviews in this tutorial, so we can set the viewType property to XML. All our views will be available in the
view folder of the namespace sap.ui.demo.nav, so we can set the viewPath to
sap.ui.demo.nav.view. The transition allows us to set a default value for how the transition should
happen; you can choose between slide (default), flip, fade, and show. All parameters of the config
section can be overruled in the individual route and target definitions if needed.

 Note
The possible values for routerClass are sap.ui.core.routing.Router,
sap.m.routing.Router, or any other subclasses of sap.ui.core.routing.Router. Compared to
sap.ui.core.routing.Router the sap.m.routing.Router is optimized for mobile apps and
adds the properties viewLevel, transition and transitionParameters which can be specified

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 297

for each route or target created by the sap.m.routing.Router. The transitionParameters can
also be used for custom transitions. Please check the API Reference for more information.

● routes
Each route defines a name, a pattern, and one or more targets to navigate to when the route has been hit.
The pattern is basically the hash part of the URL that matches the route. The sequence of the routes is
important because only the first matched route is used by the router. In our case, we have an empty
pattern to match the empty hash. The name property allows you to choose a unique route name that helps
you to navigate a specific route or to determine the matched route in one of the matched handlers (we'll
explain that in a later step). The target property references one or more targets from the section below that
will be displayed when the route has been matched.

● targets
A target defines the view that is displayed. It is associated with one or more routes or it can be displayed
manually from within the app. Whenever a target is displayed, the corresponding view is loaded and added
to the aggregation configured with the controlAggregation option of the control. This option is
configured using controlId. Each target has a unique key (home). The viewName defines which view shall
be loaded. In our little example, the absolute view path to be loaded for our home target is determined by
the default "viewPath": "sap.ui.demo.nav.view" and "viewName": "Home". This leads to
"sap.ui.demo.nav.view.Home". The viewLevel is especially relevant for flip and slide transitions.
It helps the router to determine the direction of the transition from one page to another. (This will also be
explained later.) A target can be assigned to a route, but it's not necessary. Targets can be displayed
directly in the app without hitting a route.
This basic routing configuration was easy enough. However, you can’t see it in action until you have
initialized the router.

 Note
As of SAPUI5 version 1.30, we recommend that you define the routing in the manifest.json descriptor
file using routes and targets. In older versions of SAPUI5, the routing configuration had to be done directly
in the metadata section of the component, and with different syntax.

webapp/Component.js

sap.ui.define(["sap/ui/core/UIComponent"
], function (UIComponent) {
 "use strict";
 return UIComponent.extend("sap.ui.demo.nav.Component", {
 metadata: {
 manifest: "json" },

 init: function () {
 // call the init function of the parent
 UIComponent.prototype.init.apply(this, arguments);

 // create the views based on the url/hash
 this.getRouter().initialize();
 } }); });

298 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

We override the init function and call the parent’s init function first. We get a reference to the router and call
initialize() on it. The router is instantiated automatically with the configuration loaded in the descriptor.
The routing events and our configuration in the descriptor are now automatically enabled in the app. Running
the app at this point would lead to an error, because the home view is not implemented yet.

webapp/view/App.view.xml

<mvc:View controllerName="sap.ui.demo.nav.controller.App"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc"
 displayBlock="true">
 <Shell>
 <App id="app"/>
 </Shell>
</mvc:View>

In the App view, we remove the content of App control. The pages will be added dynamically the way we have
configured it in the descriptor. The view configured with the property rootView is automatically instantiated
when the app is called initially.

webapp/view/Home.view.xml (New)

<mvc:View
 controllerName="sap.ui.demo.nav.controller.Home"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <Page title="{i18n>homePageTitle}" class="sapUiResponsiveContentPadding">
 <content>
 <Button text="{i18n>iWantToNavigate}" class="sapUiTinyMarginEnd"/>
 </content>
 </Page>
</mvc:View>

Create a file Home.view.xml in the webapp/view folder. The home view only contains a page control that
displays a button. For illustration, we bind the title of the page to the i18n>homePageTitle, you can use data
binding just the way you are used to it.

webapp/controller/Home.controller.js (New)

sap.ui.define([
 "sap/ui/core/mvc/Controller"
], function (Controller) {
 "use strict";

 return Controller.extend("sap.ui.demo.nav.controller.Home", {

 });

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 299

});

Create a file Home.controller.js in the webapp/controller folder. The controller for the home view does
not contain any custom logic in this step, but we will add some features to it soon. Finally, run the app by calling
the webapp/index.html file. This will be the entry point for our app in all the next steps. As you can see, the
app is initially displaying the home view that we configured as the default pattern in the routing configuration.
We have now successfully enabled routing in the app.

 Note
We think of routing as a set of features that dispatch hash-based URLs to an app's views and manage the
views' states.

Based on the routing configuration, you define the navigation between pages and pass parameters to the
target views.

Conventions

● Configure the router in the manifest.json descriptor file
● Initialize the router exactly once
● Initialize the router in the component

Related Information

Routing and Navigation [page 1072]
API Reference: sap.ui.core.routing
API Reference: sap.ui.core.routing.Route
API Reference: sap.ui.core.routing.Route: Constructor Detail
API Reference: sap.m.routing.Router

Step 3: Catch Invalid Hashes

Sometimes it is important to display an indication that the requested resource was not found. To give you an
example: If a user tries to access an invalid pattern which does not match any of the configured routes, the user
is notified that something went wrong. You might also know this as a “404” or Not Found Page from traditional
web pages. In this step, we will implement a feature that detects invalid hashes and visualizes this in a nice way.

300 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.routing.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.routing.Route.html
https://sapui5.hana.ondemand.com/#/api/sap.ui.core.routing.Route/constructor
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.routing.Router.html

Preview

Figure 80: Not Found page

Coding

You can view and download all files in the Samples in the Demo Kit at Routing and Navigation - Step 3.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 301

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.navigation.03/preview

Figure 81: Folder structure for this step

webapp/manifest.json

{ ...
 "sap.ui5": {
 ...
 "routing": {
 "config": {
 "routerClass": "sap.m.routing.Router",
 "viewType": "XML",
 "viewPath": "sap.ui.demo.nav.view",
 "controlId": "app",
 "controlAggregation": "pages",
 "transition": "slide", "bypassed": {
 "target": "notFound"
 }, "async": true
 },
 "routes": [{
 "pattern": "",
 "name": "appHome",
 "target": "home"
 }],
 "targets": {
 "home": {
 "viewId": "home",
 "viewName": "Home",
 "viewLevel" : 1 },
 "notFound": {
 "viewId": "notFound",
 "viewName": "NotFound",
 "transition": "show"
 } }
 }
 }

302 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

}

Let’s extend the routing configuration in the descriptor by adding a bypassed property and setting its target
to notFound. This configuration tells the router to display the notFound target in case no route was matched
to the current hash. Next, we add a notFound target to the bypassed section. The notFound target simply
configures a notFound view with a show transition.

webapp/view/NotFound.view.xml (New)

<mvc:View
 controllerName="sap.ui.demo.nav.controller.NotFound"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <MessagePage
 title="{i18n>NotFound}"
 text="{i18n>NotFound.text}"
 description="{i18n>NotFound.description}"/>
</mvc:View>

Now we create the view referenced above in a new file NotFound.view.xml in the webapp/view folder. It
uses a sap.m.MessagePage control to display an error message to the user. In a real app you might use a
dynamic message matching the current error situation. Here, we simply display a preconfigured text from our
resource bundle.

webapp/controller/NotFound.controller.js (New)

sap.ui.define([
 "sap/ui/core/mvc/Controller"
], function (Controller) {
 "use strict";
 return Controller.extend("sap.ui.demo.nav.controller.NotFound", {
 onInit: function () {
 }
 });
});

Now we create the controller for the NotFound view and save it into the webapp/controller folder. This
controller will be extended later.

webapp/i18n/i18n.properties

... NotFound=Not Found
NotFound.text=Sorry, but the requested resource is not available.
NotFound.description=Please check the URL and try again.

Add the new properties to the i18n.properties file.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 303

Open the URL index.html#/thisIsInvalid in your browser. From now on the user will see a nice Not Found
page if a hash could not be matched to one of our routes.

Conventions

● Always configure the bypassed property and a corresponding target
● Use the sap.m.MessagePage control to display routing related error messages

Related Information

API Reference: sap.m.MessagePage
API Overview and Samples: sap.m.MessagePage

304 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.MessagePage.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.m.MessagePage/samples

Step 4: Add a Back Button to Not Found Page

When we are on the Not Found page because of an invalid hash, we want to get back to our app to select
another page. Therefore, we will add a Back button to the Not Found view and make sure that the user gets
redirected to either the previous page or the overview page when the Back button is pressed.

Preview

Figure 82: Not Found page with Back button

Coding

You can view and download all files in the Samples in the Demo Kit at Routing and Navigation - Step 4.

webapp/view/NotFound.view.xml

<mvc:View controllerName="sap.ui.demo.nav.controller.NotFound"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <MessagePage
 title="{i18n>NotFound}"
 text="{i18n>NotFound.text}"
 description="{i18n>NotFound.description}" showNavButton="true"
 navButtonPress="onNavBack"/> </mvc:View>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 305

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.navigation.04/preview

In the NotFound view, we set the property showNavButton of the MessagePage control to true to
automatically display the Back button. We also add an event handler function onNavBack to the
navButtonPress event of the control. The onNavBack function will handle the actual back navigation. We
could directly add this function to the view’s controller. However, we are smart enough to anticipate that we
might need the same handler function for different views. DRY (“Don’t Repeat Yourself”) is the right approach
for us, so let’s create a BaseController from which all other controllers will inherit.

webapp/controller/BaseController.js (New)

sap.ui.define([
 "sap/ui/core/mvc/Controller",
 "sap/ui/core/routing/History",
 "sap/ui/core/UIComponent"
], function(Controller, History, UIComponent) {
 "use strict";

 return Controller.extend("sap.ui.demo.nav.controller.BaseController", {

 getRouter : function () {
 return UIComponent.getRouterFor(this);
 },

 onNavBack: function () {
 var oHistory, sPreviousHash;

 oHistory = History.getInstance();
 sPreviousHash = oHistory.getPreviousHash();

 if (sPreviousHash !== undefined) {
 window.history.go(-1);
 } else {
 this.getRouter().navTo("appHome", {}, true /*no history*/);
 }
 }

 });

});

Create a new BaseController.js file in the webapp/controller folder. The base controller implements a
set of functions that are reused by its subclasses. The onNavBack handler is a great example of code that we
don’t want to duplicate in our controllers for each page that has a back navigation.

The function checks if there is a previous hash value in the app history. If so, it redirects to the previous hash via
the browser’s native History API. In case there is no previous hash we simply use the router to navigate to the
route appHome which is our home view.

The third parameter of navTo("appHome", {}, true /*no history*/); has the value true and makes
sure that the hash is replaced. With the line sap.ui.core.UIComponent.getRouterFor(this) you can
easily access your component’s router throughout the app. To make it even more comfortable, we also add a
handy shortcut getRouter to the base controller. This function is now available in each subclass as well. It is
also used in the onNavBack handler to get a reference to the router before calling navTo. We now have to
implement the reuse in all other controllers.

306 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Note
In SAPUI5 there are multiple options to reuse code. We recommend to use a base controller for such helper
methods because this allows us to decoratively use the onNavBack handler directly in any XML view
without adding additional code to the controller. Our base controller is an abstract controller that will not be
instantiated in any view. Therefore, the naming convention *.controller.js does not apply, and we can
just call the file BaseController.js. By not using the naming convention *.controller.js we can
even prevent any usage in views.

webapp/controller/NotFound.controller.js

sap.ui.define(["sap/ui/demo/nav/controller/BaseController"], function (BaseController) { "use strict"; return BaseController.extend("sap.ui.demo.nav.controller.NotFound", { onInit: function () {
 }
 }); });

In order to reuse the base controller implementation, we have to change the dependency from sap/ui/
core/mvc/Controller to sap/ui/demo/nav/controller/BaseController and directly extend the
base controller.

At this point you can open index.html#/thisIsInvalid in your browser and press the Back button to see
what happens. You will be redirected to the app’s home page that is matched by the route appHome as you
opened the Not Found page with an invalid hash. If you change the hash to something invalid when you are on
the home page of the app, you will also go to the Not Found page but with a history entry. When you press back,
you will get to the home page again, but this time with a native history navigation.

webapp/controller/App.controller.js

sap.ui.define(["sap/ui/demo/nav/controller/BaseController"], function (BaseController) { "use strict"; return BaseController.extend("sap.ui.demo.nav.controller.App", { onInit: function () {
 }
 }); });

To be consistent, we will now extend all of our controllers with the base controller. Change the app controller as
described above.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 307

webapp/controller/Home.controller.js

sap.ui.define(["sap/ui/demo/nav/controller/BaseController"], function (BaseController) { "use strict"; return BaseController.extend("sap.ui.demo.nav.controller.Home", { }); });

The same applies to our home controller, we also extend it with the base controller now.

 Note
In this step we have added the Back button. The user can always use the browser’s native Back button as
well. Each app can freely configure the behavior of the Back button. However, there is no clean way to apply
the same logic for the browser’s Back button in single-page applications. Tweaking the browser history or
using other quirks for cancelling backward or forward navigation is not recommended due to the
implementation details of the browsers. The browser’s Back button always uses the browser history while
the Back button of the app can make use of the browser history or can implement its own navigation logic.
Make sure to understand this difference and only control the Back button inside the app.

Conventions

● Implement a global onNavBack handler for back navigation in your app
● Query the history and go to the home page if there is no history available for the current app

Related Information

Routing and Navigation [page 1072]

Step 5: Display a Target Without Changing the Hash

In this step, you will learn more about targets and how to display a target from the routing configuration
manually.

We will display the Not Found target from the previous step without changing the hash to illustrate this
navigation pattern. We will also consider a side-effect that prevents us from navigating back in this case.

Fortunately, we can extend our app and offer an easy solution. There are some use cases that should not be
persisted in the URL but just be triggered by the application logic if needed. A target is a navigation-related
configuration for a view and we can display targets manually without referencing them in a navigation route.
Good examples for this are temporary errors, switching to an edit page for a business object, or going to a
Settings page. Sometimes you will also have to implement a way back manually.

308 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Preview

Figure 83: The new Home page with a navigation button

Coding

You can view and download all files in the Samples in the Demo -kit at Routing and Navigation - Step 5.

webapp/view/Home.view.xml

<mvc:View controllerName="sap.ui.demo.nav.controller.Home"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <Page title="{i18n>homePageTitle}" class="sapUiResponsiveContentPadding">
 <content> <Button id="displayNotFoundBtn" text="{i18n>DisplayNotFound}"
press=".onDisplayNotFound" class="sapUiTinyMarginEnd"/>
 </content>
 </Page>
</mvc:View>

We start by changing the Button control from the home view. When the button is pressed, the
onDisplayNotFound handler is called.

webapp/controller/Home.controller.js

sap.ui.define(["sap/ui/demo/nav/controller/BaseController"
], function (BaseController) {
 "use strict";
 return BaseController.extend("sap.ui.demo.nav.controller.Home", { onDisplayNotFound : function () {
 //display the "notFound" target without changing the hash
 this.getRouter().getTargets().display("notFound");
 } }); });

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 309

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.navigation.05/preview

Inside the onDisplayNotFound handler we get a reference to the Targets helper object of the router and
simply call display("notFound"). The view associated to the target with the name notFound from the
routing configuration will be displayed by the router without changing the hash.

The sap.m.routing.Targets object itself can be retrieved by calling getTargets() on the router. It
provides a convenient way for placing views into the correct containers of your application. The main benefits
of targets are structuring and lazy loading: you just configure the views in the routing configuration and you do
not have to load the views until you really need them.

 Note
In the example code we get a reference to the sap.m.routing.Targets object by calling getTargets()
on this.getRouter() from the base controller. However, you could also get a reference to the
sap.m.routing.Targets object by calling
this.getOwnerComponent().getRouter().getTargets() or
this.getOwnerComponent().getTargets().

If you now call the app and press the Display Not Found button you see that the notFound target is displayed
without changing the URL. That was easy, but suddenly our app’s Back button does not work anymore. The
bug we have just introduced illustrates an interesting navigation trap. The application hash is still empty since
we just display the target and did not hit a route.

When pressing the app’s Back button, the onNavBack from the previous step is called. It detects that there is
no previous hash and therefore tries to navigate to the appHome route again. The router is smart enough to
detect that the current hash did not change and therefore skips the navigation to the route. Fortunately, there is
an easy workaround for us. However, we need to touch the Home controller again.

webapp/controller/Home.controller.js (Changed Again)

sap.ui.define(["sap/ui/demo/nav/controller/BaseController"
], function (BaseController) {
 "use strict";
 return BaseController.extend("sap.ui.demo.nav.controller.Home", {
 onDisplayNotFound : function () {
 //display the "notFound" target without changing the hash this.getRouter().getTargets().display("notFound", {
 fromTarget : "home"
 }); }
 });
});

This time we pass on a data object as the second parameter for the display method which contains the name of
the current target; the one from which we navigate to the notFound target. We decide to choose the key
fromTarget but since it is a custom configuration object any other key would be fine as well.

310 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

webapp/controller/NotFound.controller.js

sap.ui.define(["sap/ui/demo/nav/controller/BaseController"
], function (BaseController) {
 "use strict";
 return BaseController.extend("sap.ui.demo.nav.controller.NotFound", {
 onInit: function () { var oRouter, oTarget;

 oRouter = this.getRouter();
 oTarget = oRouter.getTarget("notFound");
 oTarget.attachDisplay(function (oEvent) {
 this._oData = oEvent.getParameter("data"); // store the data
 }, this); },

 // override the parent's onNavBack (inherited from BaseController)
 onNavBack : function () {
 // in some cases we could display a certain target when the back
button is pressed
 if (this._oData && this._oData.fromTarget) {
 this.getRouter().getTargets().display(this._oData.fromTarget);
 delete this._oData.fromTarget;
 return;
 }

 // call the parent's onNavBack
 BaseController.prototype.onNavBack.apply(this, arguments);
 } }); });

Next, we have to register an event listener to the display event of the notFound target. The best place for us
to register an event listener for this is inside the init function of our NotFound controller. There we can
access and store the custom data that we are passing on when displaying the target manually.

From the router reference we can fetch a reference to the notFound target. Each target configuration will
create a runtime object that can be accessed through the router.

Similar to SAPUI5 controls, targets define API methods and events that can be attached. We attach a display
event handler and save the data that was received as the event parameter data in an internal controller
variable _oData. This data also includes the fromTarget information in case the caller passed it on. However,
we now have to override the base controller’s onNavBack implementation to change the behavior a bit. We add
a special case for our target back functionality in case the fromTarget property has been passed on. If
specified, we simply display the target defined as fromTarget manually the same way we actually called the
notFound target manually. Otherwise we just call the base controller’s onNavBack implementation.

webapp/i18n/i18n.properties

... DisplayNotFound=Display Not Found

Add the new property to the i18n.properties file.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 311

When we now click the Back button, it works as expected and brings us back to the overview page, also when
the Not Found view is displayed manually.

Conventions

● Display targets manually if you want to trigger a navigation without changing the hash
● Think carefully about all navigation patterns in your application, otherwise the user might get stuck

Related Information

API Reference: sap.m.routing.Targets
API Reference: sap.ui.core.routing.Targets
API Reference: sap.ui.core.routing.Target

Step 6: Navigate to Routes with Hard-Coded Patterns

In this step, we'll create a second button on the home page, with which we can navigate to a simple list of
employees. This example illustrates how to navigate to a route that has a hard-coded pattern.

Preview

Figure 84: Show Employee List button on the Home page

312 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.routing.Targets.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.routing.Targets.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.routing.Target.html

Figure 85: Employee list with Back button

Coding

You can view and download all files in the Samples in the Demo Kit at Routing and Navigation - Step 6.

Figure 86: Folder structure for this step

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 313

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.navigation.06/preview

webapp/view/Home.view.xml

<mvc:View controllerName="sap.ui.demo.nav.controller.Home"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <Page title="{i18n>homePageTitle}" class="sapUiResponsiveContentPadding">
 <content>
 <Button id="displayNotFoundBtn" text="{i18n>DisplayNotFound}"
press=".onDisplayNotFound" class="sapUiTinyMarginEnd"/> <Button id="employeeListBtn" text="{i18n>ShowEmployeeList}"
press=".onNavToEmployees" class="sapUiTinyMarginEnd"/> </content> </Page>

First, we change the Home view by adding the Show Employee List button. We register an event handler
onNavToEmployees for the press event.

webapp/controller/Home.controller.js

sap.ui.define(["sap/ui/demo/nav/controller/BaseController"
], function (BaseController) {
 "use strict";
 return BaseController.extend("sap.ui.demo.nav.controller.Home", {
 onDisplayNotFound : function () {
 // display the "notFound" target without changing the hash
 this.getRouter().getTargets().display("notFound", {
 fromTarget : "home"
 }); },
 onNavToEmployees : function (){
 this.getRouter().navTo("employeeList");
 } }); });

The new event handler onNavToEmployees calls navTo("employeeList") on the router instance. The
parameter employeeList is the name of the route that we want to navigate to.

webapp/manifest.json

{ "_version": "1.12.0",
 "sap.app": {
 ...
 },
 "sap.ui": {
 ...
 },
 "sap.ui5": {
 ...
 "routing": {
 "config": {

314 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 "routerClass": "sap.m.routing.Router",
 "viewType": "XML",
 "viewPath": "sap.ui.demo.nav.view",
 "controlId": "app",
 "controlAggregation": "pages",
 "transition": "slide",
 "bypassed": {
 "target": "notFound"
 }
 },
 "routes": [{
 "pattern": "",
 "name": "appHome",
 "target": "home" }, {
 "pattern": "employees",
 "name": "employeeList",
 "target": "employees"
 }], "targets": {
 "home": {
 "viewId": "home",
 "viewName": "Home",
 "viewLevel" : 1
 },
 "notFound": {
 "viewId": "notFound",
 "viewName": "NotFound",
 "transition": "show" },
 "employees": {
 "viewId": "employeeList",
 "viewPath": "sap.ui.demo.nav.view.employee",
 "viewName": "EmployeeList",
 "viewLevel" : 2
 } }
 }
 } }

To make the navigation work, we have to extend the routing configuration of the app in the descriptor file. We
add a new pattern called employeeList; this is the name we used in the controller to trigger the navigation.

The pattern of the route is the hard-coded value employees, meaning the matching hash for this route is /#/
employees in the address bar of the browser. The target employees should be displayed when this URL
pattern is matched.

The employees entry in the targets section references the
sap.ui.demo.nav.view.employee.EmployeeList view. As you can see, we added a new namespace
employee for all views related to employees with the property viewPath. This overrides the default settings in
the config section for the current target.

The view that we are about to create has to be placed in the webapp/view/employee folder accordingly. This
approach helps to structure the views of the app according to business objects and to better understand the
navigation patterns of the app in larger projects.

 Note
We could also have left out the viewPath property to use the default viewPath defined in the config
section. In that case, we would have to change the viewName to employee.EmployeeList to achieve the
same effect.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 315

Setting the viewLevel to 2 helps the router to determine how to animate the (in our case) slide transition.
For us, this means that a navigation from the home page to the employees target will be animated with a
“Slide to Left” animation. In contrast to that, the back navigation from the employees target to the home page
will be animated with a “Slide to Right” animation. This behavior is due to the fact that the home page has a
lower viewLevel than the employees target.

webapp/view/employee/EmployeeList.view.xml (New)

<mvc:View
 controllerName="sap.ui.demo.nav.controller.employee.EmployeeList"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <Page
 id="employeeListPage"
 title="{i18n>EmployeeList}"
 showNavButton="true"
 navButtonPress=".onNavBack"
 class="sapUiResponsiveContentPadding">
 <content>
 <List id="employeeList" headerText="{i18n>ListOfAllEmployees}"
items="{/Employees}">
 <items>
 <StandardListItem
 title="{FirstName} {LastName}"
 iconDensityAware="false"
 iconInset="false"/>
 </items>
 </List>
 </content>
 </Page>
</mvc:View>

We now create a subfolder employee below webapp/view and a file EmployeeList.view.xml.

We name the folder after the business object, to make it obvious from looking at the hash (included in the
browser's address bar) where a view file for a certain business object is located. For example, we can determine
from the URL /#/employee that the corresponding view must be somewhere in the folder ./employee (in
our case: webapp/view/employee) just by looking at the URL.

In the view, we use a sap.m.List control and bind its items to the data from our simulated OData service.
Note that we have also registered the onNavBack handler from the base controller again to be able to navigate
back to the overview.

This view can be referenced by sap.ui.demo.nav.view.employee.EmployeeList.

webapp/controller/employee/EmployeeList.controller.js (New)

sap.ui.define([
 "sap/ui/demo/nav/controller/BaseController"
], function (BaseController) {
 "use strict";
 return
BaseController.extend("sap.ui.demo.nav.controller.employee.EmployeeList", {

316 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 });
});

Finally, we will add a new controller. Create a subfolder employee inside webapp/controller folder and
place the file EmployeeList.controller.js there. As you can see, the folder structure of the controllers is
in sync with the folder structure of the views.

webapp/i18n/i18n.properties

...
ShowEmployeeList=Show Employee List
EmployeeList=Employee List
ListOfAllEmployees=List of all employees

Add the new texts to the i18n.properties file.

Now you can open the app and press the Show Employee List button to navigate to the employee list. From
there, you can press either the browser’s or the app’s Back button to get back to the home page.

Related Information

Methods and Events for Navigation [page 1078]
API Reference: sap.ui.core.routing.Route

Step 7: Navigate to Routes with Mandatory Parameters

In this step, we implement a feature that allows the user to click on an employee in the list to see additional
details of the employee. A route pattern can have one or more mandatory parameters to identify objects in an
app.

The detail page has to read the ID of the employee from the URL to fetch and display the employee data from
the server. If the employee was not found, for example, because an invalid employee ID was passed on, we want
to inform the user by displaying the notFound target. Of course, the back navigation has to work as well for
this page.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 317

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.routing.Route.html

Preview

Figure 87: Employee list with navigation option for items

Figure 88: Detail Page for a selected employee

318 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Figure 89: Not Found page for an invalid EmployeeID

Coding

You can view and download all files in the Samples in the Demo Kit at Routing and Navigation - Step 7.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 319

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.navigation.07/preview

Figure 90: Folder structure for this step

webapp/manifest.json

{ "_version": "1.12.0",
 "sap.app": {
 ...
 },
 "sap.ui": {
 ...
 },
 "sap.ui5": {
 ...
 "routing": {
 "config": {
 "routerClass": "sap.m.routing.Router",
 "viewType": "XML",
 "viewPath": "sap.ui.demo.nav.view",
 "controlId": "app",
 "controlAggregation": "pages",
 "transition": "slide",
 "bypassed": {
 "target": "notFound"
 }
 },
 "routes": [{
 "pattern": "",
 "name": "appHome",

320 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 "target": "home"
 }, {
 "pattern": "employees",
 "name": "employeeList",
 "target": "employees" }, {
 "pattern": "employees/{employeeId}",
 "name": "employee",
 "target": "employee"
 }], "targets": {
 "home": {
 "viewId": "home",
 "viewName": "Home",
 "viewLevel" : 1
 },
 "notFound": {
 "viewId": "notFound",
 "viewName": "NotFound",
 "transition": "show"
 },
 "employees": {
 "viewId": "employeeList",
 "viewPath": "sap.ui.demo.nav.view.employee",
 "viewName": "EmployeeList",
 "viewLevel" : 2 },
 "employee": {
 "viewId": "employee",
 "viewName": "employee.Employee",
 "viewLevel" : 3
 } }
 }
 } }

From our data model (webapp/localService/metadata.xml or webapp/localService/mockdata/
Employees.json), you can see that each employee entity is identified by an EmployeeID. We define a new
route that expects a mandatory employeeId in its pattern to address an employee. Unlike the patterns we
used before, this pattern has a dynamic part. We create a new route employee and use employees/
{employeeId} as its pattern.

The {employeeId} part of the pattern is a mandatory parameter as indicated by the curly brackets. The hash
that contains an actual employee ID is matched against that pattern at runtime.

The following hashes would match in our case: employees/2, employees/7, employees/anInvalidId,
and so on. However, the hash employees/ will not match as it does not contain an ID at all. The target of our
route is employee. We create the target employee with viewLevel 3. With that, we make sure that we have
the correct slide animation direction.

Next, we have to create the view employees.Employee; for better illustration the viewPath is not specified
this time.

webapp/view/employee/Employee.view.xml (New)

<mvc:View
 controllerName="sap.ui.demo.nav.controller.employee.Employee"
 xmlns="sap.m"

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 321

 xmlns:mvc="sap.ui.core.mvc"
 xmlns:f="sap.ui.layout.form"
 busyIndicatorDelay="0">
 <Page
 id="employeePage"
 title="{i18n>EmployeeDetailsOf} {FirstName} {LastName}"
 showNavButton="true"
 navButtonPress=".onNavBack"
 class="sapUiResponsiveContentPadding">
 <content>
 <Panel
 id="employeePanel"
 width="auto"
 class="sapUiResponsiveMargin sapUiNoContentPadding">
 <headerToolbar>
 <Toolbar>
 <Title text="{i18n>EmployeeIDColon} {EmployeeID}"
level="H2"/>
 <ToolbarSpacer />
 </Toolbar>
 </headerToolbar>
 <content>
 <f:SimpleForm
 minWidth="1024"
 editable="false"
 layout="ResponsiveGridLayout"
 labelSpanL="3" labelSpanM="3" emptySpanL="4"
emptySpanM="4"
 columnsL="1" columnsM="1">
 <f:content>
 <Label text="{i18n>formFirstName}"/>
 <Text text="{FirstName}"/>
 <Label text="{i18n>formLastName}"/>
 <Text text="{LastName}"/>
 <Label text="{i18n>formAddress}"/>
 <Text text="{Address}"/>
 <Label text="{i18n>formCity}"/>
 <Text text="{City}, {Region}"/>
 <Label text="{i18n>formPostalCode}"/>
 <Text text="{PostalCode}"/>
 <Label text="{i18n>formPhoneHome}"/>
 <Text text="{HomePhone}"/>
 <Label text="{i18n>formCountry}"/>
 <Text text="{Country}"/>
 </f:content>
 </f:SimpleForm>
 </content>
 </Panel>
 </content>
 </Page>
</mvc:View>

Create the file Employee.view.xml inside the webapp/view/employee folder. This employee view displays
master data for an employee in a panel with a SimpleForm control: first name, last name and so on. The data
comes from a relative data binding that is set on the view level as we can see in the controller later. As we are
focusing on the navigation aspects in this tutorial, we won’t go into detail on the controls of the view. Just copy
the code.

webapp/controller/employee/Employee.controller.js (New)

sap.ui.define([
 "sap/ui/demo/nav/controller/BaseController"

322 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

], function (BaseController) {
 "use strict";
 return BaseController.extend("sap.ui.demo.nav.controller.employee.Employee",
{
 onInit: function () {
 var oRouter = this.getRouter();
 oRouter.getRoute("employee").attachMatched(this._onRouteMatched,
this);
 // Hint: we don't want to do it this way
 /*
 oRouter.attachRouteMatched(function (oEvent){
 var sRouteName, oArgs, oView;
 sRouteName = oEvent.getParameter("name");
 if (sRouteName === "employee"){
 this._onRouteMatched(oEvent);
 }
 }, this);
 */
 },
 _onRouteMatched : function (oEvent) {
 var oArgs, oView;
 oArgs = oEvent.getParameter("arguments");
 oView = this.getView();

 oView.bindElement({
 path : "/Employees(" + oArgs.employeeId + ")",
 events : {
 change: this._onBindingChange.bind(this),
 dataRequested: function (oEvent) {
 oView.setBusy(true);
 },
 dataReceived: function (oEvent) {
 oView.setBusy(false);
 }
 }
 });
 },
 _onBindingChange : function (oEvent) {
 // No data for the binding
 if (!this.getView().getBindingContext()) {
 this.getRouter().getTargets().display("notFound");
 }
 }
 });
});

Now we create the file Employee.controller.js in the webapp/controller/employee folder. In this
controller file, we want to detect which employee shall be displayed in order to show the employee’s data in the
view. Therefore, we query the router for the route employee and attach a private event listener function
_onRouteMatched to the matched event of this route.

In the event handler, we can access the arguments parameter from the oEvent parameter that contains all
parameters of the pattern. Since this listener is only called when the route is matched, we can be sure that the
mandatory parameter employeeId is always available as a key in arguments; otherwise the route would not
have matched. The name of the mandatory parameter employeeId correlates to the {employeeId} from our
pattern definition of the route employee and thus to the value in the URL.

In _onRouteMatched we call bindElement() on the view to make sure that the data of the specified
employee is available in the view and it’s controls. The ODataModel will handle the necessary data requests to
the back end in the background. While the data is loading, it would be nice to show a busy indicator by simply
setting the view to busy. Therefore, we pass an events object to bindElement() to listen to the events

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 323

dataRequested and dataReceived. The attached functions handle the busy state by calling
oView.setBusy(true) and oView.setBusy(false) respectively.

We also add an event handler to the change event as a private function _onBindingChange. It checks if the
data could be loaded by querying the binding context of the view. As seen in the previous steps, we will display
the notFound target if the data could not be loaded.

 Note
Instead of calling attachMatched(…) on a route we could also call attachRouteMatched(…) directly on
the router. However, the event for the latter is fired for every matched event of any route in the whole app.
We don’t use the latter because we would have to implement an additional check for making sure that
current route is the route that has been matched. We want to avoid this extra overhead and register on the
route instead.

webapp/view/employee/EmployeeList.view.xml

<mvc:View controllerName="sap.ui.demo.nav.controller.employee.EmployeeList"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <Page
 id="employeeListPage"
 title="{i18n>EmployeeList}"
 showNavButton="true"
 navButtonPress=".onNavBack"
 class="sapUiResponsiveContentPadding">
 <content>
 <List id="employeeList" headerText="{i18n>ListOfAllEmployees}"
items="{/Employees}">
 <items>
 <StandardListItem
 title="{FirstName} {LastName}"
 iconDensityAware="false"
 iconInset="false" type="Navigation"
 press=".onListItemPressed"/> </items>
 </List>
 </content>
 </Page> </mvc:View>

It’s time to change the EmployeeList view so that we can navigate to the new view. We set the attribute type
of the StandardListItem template to Navigation to make the item clickable and indicate a navigation
feature to the user. Additionally, we add an event handler for the press event that is called when the user clicks
on an employee list item.

webapp/controller/employee/EmployeeList.controller.js

sap.ui.define(["sap/ui/demo/nav/controller/BaseController"

324 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

], function (BaseController) {
 "use strict";
 return
BaseController.extend("sap.ui.demo.nav.controller.employee.EmployeeList", { onListItemPressed : function(oEvent){
 var oItem, oCtx;
 oItem = oEvent.getSource();
 oCtx = oItem.getBindingContext();
 this.getRouter().navTo("employee",{
 employeeId : oCtx.getProperty("EmployeeID")
 });
 } }); });

Finally, we add the handler onListItemPressed for the press event to the EmployeeList controller. In the
handler, we determine the EmployeeID of the list item by querying the binding context and accessing the
property EmployeeID from the data model.

Then we navigate to the employee route and pass a configuration object on to the navTo method with the
mandatory parameter employeeId filled with the correct EmployeeID. The router always makes sure that
mandatory parameters as specified in the route’s pattern are set; otherwise an error is thrown.

webapp/i18n/i18n.properties

...
formEmployeeDetailsOf=Employee Details of
formEmployeeIDColon=Employee ID:
formFirstName=First Name
formLastName=Last Name
formAddress=Address
formCity=City
formPostalCode=Postal Code
formPhoneHome=Phone (Home)
formCountry=Country

Add the new texts to the i18n.properties file.

That’s it. You can go to webapp/index.html#/employees and click on any list item to be redirected to
corresponding employee’s details. Check also what happens when you directly navigate to the following files:

● webapp/index.html#/employees/3
● webapp/index.html#/employees/33

Related Information

API Reference: sap.ui.model.Binding

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 325

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.Binding.html

Step 8: Navigate with Flip Transition

In this step, we want to illustrate how to navigate to a page with a custom transition animation. Both forward
and backward navigation will use the “flip” transition but with a different direction. We will create a simple link
on the Employee view that triggers a flip navigation to a page that displays the resume data of a certain
employee. Pressing the Back button will navigate back to the Employee view with a reversed flip transition.

Preview

Figure 91: Employee Details page with Flip to Resume link

Figure 92: Resume page with multiple tabs

326 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Figure 93: Not Found page for resume

Coding

You can view and download all files in the Samples in the Demo Kit at Routing and Navigation - Step 8.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 327

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.navigation.08/preview

Figure 94: Folder structure for this step

webapp/view/employee/Employee.view.xml

<mvc:View controllerName="sap.ui.demo.nav.controller.employee.Employee"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc"
 xmlns:f="sap.ui.layout.form"
 busyIndicatorDelay="0">
 <Page
 id="employeePage"
 title="{i18n>EmployeeDetailsOf} {FirstName} {LastName}"
 showNavButton="true"
 navButtonPress=".onNavBack"
 class="sapUiResponsiveContentPadding">
 <content>
 <Panel
 id="employeePanel"
 width="auto"
 class="sapUiResponsiveMargin sapUiNoContentPadding">
 <headerToolbar>
 <Toolbar>

328 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 <Title text="{i18n>EmployeeIDColon} {EmployeeID}"
level="H2"/>
 <ToolbarSpacer /> <Link text="{i18n>FlipToResume}"
tooltip="{i18n>FlipToResume.tooltip}" press=".onShowResume"/> </Toolbar>
 </headerToolbar>
 <content>
 ...
 </content>
 </Panel>
 </content>
 </Page> </mvc:View>

First we add the Flip to Resume link to the Employee Details view to trigger the navigation to the resume of the
employee that is currently displayed.

webapp/controller/employee/Employee.controller.js

sap.ui.define(["sap/ui/demo/nav/controller/BaseController"
], function (BaseController) {
 "use strict";
 return BaseController.extend("sap.ui.demo.nav.controller.employee.Employee",
{
 ...
 _onBindingChange : function (oEvent) {
 // No data for the binding
 if (!this.getView().getBindingContext()) {
 this.getRouter().getTargets().display("notFound");
 }
 }
 ... },
 onShowResume : function (oEvent) {
 var oCtx = this.getView().getElementBinding().getBoundContext();

 this.getRouter().navTo("employeeResume", {
 employeeId : oCtx.getProperty("EmployeeID")
 });
 } }); });

Then we change the Employee.controller.js file by adding the press handler onShowResume for the Flip
to Resume link. The handler simply navigates to a new route employeeResume and fills the mandatory
parameter employeeId with the property EmployeeID from the view’s bound context. The route
employeeResume is not available yet, so we will have to add it to our routing configuration.

webapp/manifest.json

{ "_version": "1.12.0",
 "sap.app": {

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 329

 ...
 },
 "sap.ui": {
 ...
 },
 "sap.ui5": {
 ...
 "routing": {
 "config": {
 "routerClass": "sap.m.routing.Router",
 "viewType": "XML",
 "viewPath": "sap.ui.demo.nav.view",
 "controlId": "app",
 "controlAggregation": "pages",
 "transition": "slide",
 "bypassed": {
 "target": "notFound"
 }
 },
 "routes": [{
 "pattern": "",
 "name": "appHome",
 "target": "home"
 }, {
 "pattern": "employees",
 "name": "employeeList",
 "target": "employees"
 }, {
 "pattern": "employees/{employeeId}",
 "name": "employee",
 "target": "employee" }, {
 "pattern": "employees/{employeeId}/resume",
 "name": "employeeResume",
 "target": "employeeResume"
 }], "targets": {
 "home": {
 "viewId": "home",
 "viewName": "Home",
 "viewLevel" : 1
 },
 "notFound": {
 "viewId": "notFound",
 "viewName": "NotFound",
 "transition": "show"
 },
 "employees": {
 "viewId": "employees",
 "viewPath": "sap.ui.demo.nav.view.employee",
 "viewName": "EmployeeList",
 "viewLevel" : 2
 },
 "employee": {
 "viewId": "employee",
 "viewName": "employee.Employee",
 "viewLevel" : 3 },
 "employeeResume": {
 "viewId": "resume",
 "viewName": "employee.Resume",
 "viewLevel" : 4,
 "transition": "flip"
 } }
 }
 } }

330 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

In the routing configuration, we add a new route employeeResume which references a target with the same
name. The route’s pattern expects an {employeeId} as a mandatory parameter and ends with the static
string /resume.

The target employeeResume references the view employee.Resume that we are about to create. The target’s
viewLevel is 4; compared to the employee target this is one level lower again. To configure a flip navigation,
we simply set the transition of our target to flip. Together with the correct viewLevel configuration this will
trigger the correct forward and backward flip navigation whenever the target is displayed.

 Note
Possible values for the transition parameter are:

● slide (default)
● flip
● show
● fade

You can also implement your own transitions and add it to a control that extends sap.m.NavContainer
(for example, sap.m.App or sap.m.SplitApp). For more information, see the API Reference for
NavContainer.

webapp/view/employee/Resume.view.xml (New)

<mvc:View
 controllerName="sap.ui.demo.nav.controller.employee.Resume"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <Page
 title="{i18n>ResumeOf} {FirstName} {LastName}"
 id="employeeResumePage"
 showNavButton="true"
 navButtonPress=".onNavBack">
 <content>
 <IconTabBar
 id="iconTabBar"
 headerBackgroundDesign="Transparent"
 class="sapUiResponsiveContentPadding"
 binding="{Resume}">
 <items>
 <IconTabFilter id="infoTab" text="{i18n>tabInfo}" key="Info">
 <Text text="{Information}"/>
 </IconTabFilter>
 <IconTabFilter id="projectsTab" text="{i18n>tabProjects}"
key="Projects">
 <mvc:XMLView
viewName="sap.ui.demo.nav.view.employee.ResumeProjects"></mvc:XMLView>
 </IconTabFilter>
 <IconTabFilter id="hobbiesTab" text="{i18n>tabHobbies}"
key="Hobbies">
 <Text text="{Hobbies}"/>
 </IconTabFilter>
 <IconTabFilter id="notesTab" text="{i18n>tabNotes}"
key="Notes">
 <Text text="{Notes}"/>
 </IconTabFilter>
 </items>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 331

 </IconTabBar>
 </content>
 </Page>
</mvc:View>

Create a file Resume.view.xml inside the webapp/view/employee folder. The view uses an IconTabBar to
display the resume data. Therefore, its binding attribute is set to {Resume}.

In the IconTabBar we display four tabs. Three of them simply use a Text control to display the data from the
service. The Projects tab uses a nested XML view to display the projects of the employee. SAPUI5 takes care of
loading the XML view automatically when the user navigates to the Resume page.

webapp/controller/employee/Resume.controller.js (New)

sap.ui.define([
 "sap/ui/demo/nav/controller/BaseController"
], function (BaseController) {
 "use strict";
 return BaseController.extend("sap.ui.demo.nav.controller.employee.Resume", {
 onInit: function () {
 var oRouter = this.getRouter();

oRouter.getRoute("employeeResume").attachMatched(this._onRouteMatched, this);
 },
 _onRouteMatched : function (oEvent) {
 var oArgs, oView;
 oArgs = oEvent.getParameter("arguments");
 oView = this.getView();
 oView.bindElement({
 path : "/Employees(" + oArgs.employeeId + ")",
 events : {
 change: this._onBindingChange.bind(this),
 dataRequested: function (oEvent) {
 oView.setBusy(true);
 },
 dataReceived: function (oEvent) {
 oView.setBusy(false);
 }
 }
 });
 },
 _onBindingChange : function (oEvent) {
 // No data for the binding
 if (!this.getView().getBindingContext()) {
 this.getRouter().getTargets().display("notFound");
 }
 }
 });
});

Create a file Resumee.controller.js in the webapp/controller/employee folder. In this controller, we
make sure to bind the view to the correct employee whenever the employeeResume route has matched. We
have already used this approach in the previous step so you should be able to recognize the building blocks in
the code above. Again, in case the user cannot be found we display the notFound target.

332 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

webapp/view/employee/ResumeProjects.view.xml (New)

 <mvc:View xmlns="sap.m" xmlns:mvc="sap.ui.core.mvc">
 <Text text="{Projects}"/>
</mvc:View>

Create a file ResumeProjects.view.xml in the webapp/view/employee folder. This view does not have a
controller as we don’t need it. It just displays a Text control with the projects text of the selected employee. It
illustrates that using nested views works just fine in combination with navigation and routing in SAPUI5.

 Note
For more complex applications, the performance is significantly increased if parts of the UI are only loaded
when the user is actively selecting it. In this example, the view is always loaded even though the user never
decided to display the project information. In the next steps, we will extend the UI so that the content is
loaded “lazy” by SAPUI5 only when the filter item is clicked. The back-end service will fetch the data only on
request and the UI will only have to be updated with the selected data instead of loading all data.

webapp/i18n/i18n.properties

...
ResumeOf=Resume of
tabInfo=Info
tabProjects=Projects
tabHobbies=Hobbies
tabNotes=Notes
FlipToResume=Flip to Resume
FlipToResume.tooltip=See the resume of this employee

Add the new texts to the i18n.properties file.

You can go to webapp/index.html#/employees/3 and click on the Flip to Resume link to be redirected with
a nice flip transition to the employee’s resume. The back navigation uses a reverse flip navigation to get back to
the Employee Details page. You can also directly navigate to webapp/index.html#/employees/3/resume
or webapp/index.html#/employees/33/resume to see what happens.

Related Information

API Reference: sap.m.NavContainer
API Overview and Samples: sap.m.NavContainer

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 333

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.NavContainer.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.m.NavContainer/samples

Step 9: Allow Bookmarkable Tabs with Optional Query
Parameters

The resume view contains four tabs as we have seen in the previous steps. However, when the user navigates
to the resume page, only the first tab is displayed initially. Navigating directly to a specific tab or bookmarking a
tab is not yet supported in our current app.

In this step, we implement a bookmarking feature by enabling deep linking to tabs with optional query
parameters. A deep link is basically a link that directly references a deeper structure and parameters of the app
in the URL. It is often bookmarked or shared to have a convenient entry point into the app for a certain task or
action. The selected tab should be reflected in the URL but the tab can also be omitted, for example, when we
initially navigate to the resume page.

Preview

Figure 95: Deep link to allow bookmarkable tabs

Coding

You can view and download all files in the Samples in the Demo Kit at Routing and Navigation - Step 9.

webapp/manifest.json

{ "_version": "1.12.0",
 "sap.app": {
 ...
 },
 "sap.ui": {
 ...
 },
 "sap.ui5": {
 ...
 "routing": {

334 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.navigation.09/preview

 "config": {
 "routerClass": "sap.m.routing.Router",
 "viewType": "XML",
 "viewPath": "sap.ui.demo.nav.view",
 "controlId": "app",
 "controlAggregation": "pages",
 "transition": "slide",
 "bypassed": {
 "target": "notFound"
 }
 },
 "routes": [{
 "pattern": "",
 "name": "appHome",
 "target": "home"
 }, {
 "pattern": "employees",
 "name": "employeeList",
 "target": "employees"
 }, {
 "pattern": "employees/{employeeId}",
 "name": "employee",
 "target": "employee"
 }, { "pattern": "employees/{employeeId}/resume:?query:", "name": "employeeResume",
 "target": "employeeResume"
 }],
 "targets": {
 ...
 }
 }
 } }

Up until now, you could only navigate to an employee’s resume with the deep link webapp/index.html#/
employees/3/resume. This will always select the first tab as implemented by the IconTabBar control. In
order to open the page directly with a specific tab selected and to make the tabs bookmarkable, we add the ?
query parameter to the URL pattern.

This allows URLs like webapp/index.html#/employees/3/resume?tab=Projects where the query
parameter defines which tab shall be displayed. We change the pattern of the employeeResume route to
employees/{employeeId}/resume:?query:. The new part :?query: allows to pass on queries with any
parameters, for example, the hash /#/employees/3/resume?tab=Projects or /#/employees/3/
resume?tab=Projects&action=edit matches the pattern and can be processed in the matched event.

The :?query: parameter starts and ends with ":", which means that it is optional. If you want to make it
mandatory, you can use the {?query} syntax (everything in between {} is considered as being mandatory).

webapp/view/employee/Resume.view.xml

<mvc:View controllerName="sap.ui.demo.nav.controller.employee.Resume"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <Page
 title="{i18n>ResumeOf} {FirstName} {LastName}"
 id="employeeResumePage"
 showNavButton="true"

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 335

 navButtonPress=".onNavBack">
 <content>
 <IconTabBar
 id="iconTabBar"
 headerBackgroundDesign="Transparent"
 class="sapUiResponsiveContentPadding"
 binding="{Resume}" select=".onTabSelect"
 selectedKey="{view>/selectedTabKey}"> <items>
 <IconTabFilter id="infoTab" text="{i18n>tabInfo}" key="Info">
 <Text text="{Information}"/>
 </IconTabFilter>
 <IconTabFilter id="projectsTab" text="{i18n>tabProjects}"
key="Projects">
 <mvc:XMLView
viewName="sap.ui.demo.nav.view.employee.ResumeProjects"></mvc:XMLView>
 </IconTabFilter>
 <IconTabFilter id="hobbiesTab" text="{i18n>tabHobbies}"
key="Hobbies">
 <Text text="{Hobbies}"/>
 </IconTabFilter>
 <IconTabFilter id="notesTab" text="{i18n>tabNotes}"
key="Notes">
 <Text text="{Notes}"/>
 </IconTabFilter>
 </items>
 </IconTabBar>
 </content>
 </Page>
</mvc:View>

To update the currently selected tab in the URL we listen to the select event of the IconTabBar by setting
select=".onTabSelect" in the resume view. The selectedKey is bound to a view model. This allows to
easily change the selectedKey according to the selected tab in the URL.

webapp/controller/employee/Resume.controller.js

sap.ui.define(["sap/ui/demo/nav/controller/BaseController",
 "sap/ui/model/json/JSONModel"], function (BaseController, JSONModel) { "use strict"; var _aValidTabKeys = ["Info", "Projects", "Hobbies", "Notes"]; return BaseController.extend("sap.ui.demo.nav.controller.employee.Resume", {
 onInit: function () {
 var oRouter = this.getRouter(); this.getView().setModel(new JSONModel(), "view");
oRouter.getRoute("employeeResume").attachMatched(this._onRouteMatched, this);
 },
 _onRouteMatched: function (oEvent) { var oArgs, oView, oQuery; oArgs = oEvent.getParameter("arguments");
 oView = this.getView();
 oView.bindElement({
 path: "/Employees(" + oArgs.employeeId + ")",
 events: {
 change: this._onBindingChange.bind(this),
 dataRequested: function (oEvent) {
 oView.setBusy(true);
 },

336 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 dataReceived: function (oEvent) {
 oView.setBusy(false);
 }
 } });
 oQuery = oArgs["?query"];
 if (oQuery && _aValidTabKeys.indexOf(oQuery.tab) > -1){
 oView.getModel("view").setProperty("/selectedTabKey",
oQuery.tab);
 } else {
 // the default query param should be visible at all time
 this.getRouter().navTo("employeeResume", {
 employeeId: oArgs.employeeId,
 "?query": {
 tab: _aValidTabKeys[0]
 }
 }, true /*no history*/);
 } },
 _onBindingChange: function (oEvent) {
 // No data for the binding
 if (!this.getView().getBindingContext()) {
 this.getRouter().getTargets().display("notFound");
 } },
 onTabSelect: function (oEvent){
 var oCtx = this.getView().getBindingContext();
 this.getRouter().navTo("employeeResume", {
 employeeId: oCtx.getProperty("EmployeeID"),
 "?query": {
 tab: oEvent.getParameter("selectedKey")
 }
 }, true /*without history*/);
 } }); });

When a tab is selected manually, its select handler is called. Therefore, let’s first have a look at the
onTabSelect event handler that is added at the end of the resume controller. It detects the selectedKey of
the tab and navigates to the employeeResume route to update the URL in the address bar. Additionally to the
mandatory parameter employeeId, we pass on a custom query object with a parameter tab and fill it with
the selectedKey value that we receive from the select event of the IconTabBar. By passing on true as the
third argument we replace the current history to make sure that manually clicked tabs won’t be added to the
browser history.

A dependency to sap/ui/model/json/JSONModel is added to the controller. Now, we modify the onInit
function to instantiate a JSONModel and use it as the view model. _aValidTabKeys is added to the
controller. We want to make sure that only valid tabs can be selected. Therefore, the array _aValidTabKeys
contains all allowed tab keys that we can check against to validate the tab parameter from the URL later. The
keys are equal to the keys of our IconTabFilters in the resume view.

In the _onRouteMatched event handler, we add the oQuery variable to store a reference to the query object
from the router. This allows a more comfortable access to the query object.

In case a query object is passed on and the tab parameter has a valid value, we display the specific tab by
updating the property selectedTabKey in the view model. As the selectedKey property of the IconTabBar
is bound to {view>/selectedTabKey} the corresponding tab is selected.

The else case is called when either no or an invalid tab parameter is specified. We navigate to the Info tab to
make sure that the tab parameter is reflected in the URL at all times. The actual requirements of your app
might differ, feel free to change it accordingly...

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 337

From now on our tabs are bookmarkable. Try to access the following (deep) links directly:

● webapp/index.html#/employees/3/resume
● webapp/index.html#/employees/3/resume?tab=Info
● webapp/index.html#/employees/3/resume?tab=Projects
● webapp/index.html#/employees/3/resume?tab=Hobbies
● webapp/index.html#/employees/3/resume?tab=Notes
● webapp/index.html#/employees/3/resume?tab=SomethingInvalid

When you click on any tab you will see that the hash in the URL changes immediately, and when you change the
hash in the URL parameter manually, you can see that the UI is also updated accordingly.

Related Information

API Reference: sap.m.IconTabBar

Step 10: Implement “Lazy Loading”

In the previous steps, we have implemented a Resume view that uses tabs to display data. The complete
content of the tabs is loaded once, no matter which tab is currently displayed. We can increase the
performance of our app by avoiding to load content that is not visible. Therefore, we implement a “lazy loading”
feature that only loads the view and data when requested by the user.

Preview

Figure 96: Tabs with lazy loading

Coding

You can view and download all files in the Samples in the Demo Kit at Routing and Navigation - Step 10 .

338 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.IconTabBar.html
https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.navigation.10/preview

Figure 97: Folder Structure for this Step

webapp/view/employee/Resume.view.xml

<mvc:View controllerName="sap.ui.demo.nav.controller.employee.Resume"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <Page
 title="{i18n>ResumeOf} {FirstName} {LastName}"
 id="employeeResumePage"
 showNavButton="true"
 navButtonPress=".onNavBack">
 <content>
 <IconTabBar
 id="iconTabBar"
 headerBackgroundDesign="Transparent"
 class="sapUiResponsiveContentPadding"
 binding="{Resume}"
 select=".onTabSelect"

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 339

 selectedKey="{view>/selectedTabKey}">
 <items>
 <IconTabFilter id="infoTab" text="{i18n>tabInfo}" key="Info">
 <Text text="{Information}"/>
 </IconTabFilter>
 <IconTabFilter id="projectsTab" text="{i18n>Projects}"
key="Projects">
 <mvc:XMLView
viewName="sap.ui.demo.nav.view.employee.ResumeProjects"></mvc:XMLView>
 </IconTabFilter>
 <IconTabFilter id="hobbiesTab" text="{i18n>Hobbies}"
key="Hobbies"> <!-- place content via lazy loading --> </IconTabFilter>
 <IconTabFilter id="notesTab" text="{i18n>Notes}" key="Notes"> <!-- place content via lazy loading --> </IconTabFilter>
 </items>
 </IconTabBar>
 </content>
 </Page> </mvc:View>

To illustrate lazy loading, we implement that the content is loaded only when the user selects the
corresponding tab for two of our tabs from the IconTabBar: Hobbies and Notes. The IconTabFilter
controls each have a hard-coded ID so that we can address them later in our routing configuration. In real use
cases, you would do this for tabs that contain a lot of content or trigger expensive service calls to a back-end
service.

In the resume view we remove the content of the Hobbies and Notes tabs as we will now fill it dynamically with
navigation features.

webapp/view/employee/ResumeHobbies.view.xml (New)

<mvc:View xmlns="sap.m" xmlns:mvc="sap.ui.core.mvc">
 <Text text="{Hobbies}"/>
</mvc:View>

Create the file ResumeHobbies.view.xml in the webapp/view/employee folder. Move the content for the
tab that was previously in the resume view to that view. We don’t need a controller for this view as there is no
additional logic involved. This view will be lazy-loaded and placed into the content of the Hobbies tab with
navigation features.

webapp/view/employee/ResumeNotes.view.xml (New)

<mvc:View xmlns="sap.m" xmlns:mvc="sap.ui.core.mvc">
 <Text text="{Notes}"/>
</mvc:View>

Create the file ResumeNotes.view.xml in the webapp/view/employee folder similar to the Hobbies view to
transform this tab to a separate view as well.

340 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

webapp/controller/employee/Resume.controller.js

sap.ui.define(["sap/ui/demo/nav/controller/BaseController",
 "sap/ui/model/json/JSONModel"
], function (BaseController, JSONModel) {
 "use strict";
 var _aValidTabKeys = ["Info", "Projects", "Hobbies", "Notes"];
 return BaseController.extend("sap.ui.demo.nav.controller.employee.Resume", {
 ...
 _onRouteMatched : function (oEvent) {
 var oArgs, oView, oQuery;
 oArgs = oEvent.getParameter("arguments");
 oView = this.getView();
 oView.bindElement({
 ...
 });
 oQuery = oArgs["?query"];
 if (oQuery && _aValidTabKeys.indexOf(oQuery.tab) > -1){
 oView.getModel("view").setProperty("/selectedTabKey",
oQuery.tab); // support lazy loading for the hobbies and notes tab
 if (oQuery.tab === "Hobbies" || oQuery.tab === "Notes"){
 // the target is either "resumeTabHobbies" or
"resumeTabNotes"
 this.getRouter().getTargets().display("resumeTab" +
oQuery.tab);
 } } else {
 // the default query param should be visible at all time
 this.getRouter().navTo("employeeResume", {
 employeeId : oArgs.employeeId,
 "?query": {
 tab : _aValidTabKeys[0]
 }
 }, true /*no history*/);
 }
 },
 ...
 }); });

Now we extend the resume controller a little and add additional logic to the part of the _onRouteMatched
function where a new tab has been selected and validated. In case the selectedKey matches Hobbies or
Notes we call this.getRouter().getTargets().display("resumeTab" + oQuery.tab) to display
the corresponding target manually. Here the valid targets are resumeTabHobbies and resumeTabNotes as
we have changed the behavior for these two tabs by creating separate views.

These lines of code make sure that the targets are only loaded when they are needed (“lazy loading”). But the
router does not know the new targets yet, so let’s create them in our routing configuration.

webapp/manifest.json

{ "_version": "1.12.0",
 "sap.app": {
 ...
 },

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 341

 "sap.ui": {
 ...
 },
 "sap.ui5": {
 ...
 "routing": {
 "config": {
 "routerClass": "sap.m.routing.Router",
 "viewType": "XML",
 "viewPath": "sap.ui.demo.nav.view",
 "controlId": "app",
 "controlAggregation": "pages",
 "transition": "slide",
 "bypassed": {
 "target": "notFound"
 }
 },
 "routes": [{
 ...
 }, {
 "pattern": "employees/{employeeId}/resume:?query:",
 "name": "employeeResume",
 "target": "employeeResume"
 }],
 "targets": {
 ...
 "employeeResume": {
 "viewId": "resume",
 "viewName": "employee.Resume",
 "viewLevel" : 4,
 "transition": "flip" },
 "resumeTabHobbies": {
 "viewId": "resumeHobbies",
 "parent": "employeeResume",
 "viewPath": "sap.ui.demo.nav.view.employee",
 "viewName": "ResumeHobbies",
 "controlId": "hobbiesTab",
 "controlAggregation": "content"
 },
 "resumeTabNotes": {
 "viewId": "resumeNotes",
 "parent": "employeeResume",
 "viewPath": "sap.ui.demo.nav.view.employee",
 "viewName": "ResumeNotes",
 "controlId": "notesTab",
 "controlAggregation": "content"
 } }
 }
 } }

We add the resumeTabHobbies and resumeTabNotes targets to the descriptor file with additional fields that
override the default configuration as we now want to display the targets locally inside the IconTabBar control
and not as pages of the app.

The resumeTabHobbies target sets the parent property to employeeResume. The parent property expects
the name of another target. In our case, this makes sure that the view from the parent target employeeResume
is loaded before the target resumeTabHobbies is displayed. This can be considered as a “view dependency”.
By setting the controlId and controlAggregation properties the router places the view ResumeHobbies
into the content aggregation of the IconTabFilter control with ID hobbiesTab. We also set a parameter
viewId to a custom ID to illustrate how you could overrule a hard-coded ID inside a view.

342 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Note
Each target can define only one parent with its parent property. This is similar to the SAPUI5 control tree
where each control can have only one parent control (accessed with the method getParent() of
sap.ui.base.ManagedObject). The controlId property always references a control inside the parent
view that is specified with the parent target.

Now we add the resumeTabNotes target similar to the Hobbies target. The resumeTabNotes target defines
the parent target employeeResume as well, because they share the same parent view. We place the
ResumeNotes view into the content aggregation of the IconTabFilter control with ID notesTab.

We have now implemented lazy loading for the tabs Hobbies and Notes. These two tabs are now managed by
the routing configuration and only loaded when we click on them the first time.

Try it out yourself: Open the Network tab of your browser's developer tools and click on the tabs of your app. In
the network traffic you will see that ResumeHobbies.view.xml file is only loaded when the Hobbies tab is
displayed the first time. The same applies for the Notes tab. Mission accomplished!

Conventions

● Lazy-load content that is not initially displayed to the user

Related Information

API Reference: ap.m.routing.Targets

Step 11: Assign Multiple Targets

In this step, we will add a new button to the home page to illustrate the usage of multiple targets for a route.
When the button is pressed, a new page opens that contains two parts: a header part at the top and a content
part. The content part displays a table of employees that can be sorted and searched. We will use the array
notation in the routing configuration to assign multiple targets to a route - a feature that we have not yet
introduced.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 343

https://sapui5.hana.ondemand.com/#docs/api/symbols/ap.m.routing.Targets.html

Preview

Figure 98: New button Show Employee Overview

Figure 99: Employee Overview with search field

344 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Figure 100: Sort options for the Employee Overview

Coding

You can view and download all files in the Demo Kit at Routing and Navigation - Step 11 .

Figure 101: Folder Structure for this Step

webapp/view/Home.view.xml

<mvc:View controllerName="sap.ui.demo.nav.controller.Home"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <Page title="{i18n>homePageTitle}" class="sapUiResponsiveContentPadding">
 <content>
 <Button id="displayNotFoundBtn" text="{i18n>DisplayNotFound}"
press=".onDisplayNotFound" class="sapUiTinyMarginEnd"/>
 <Button id="employeeListBtn" text="{i18n>ShowEmployeeList}"
press=".onNavToEmployees" class="sapUiTinyMarginEnd"/> <Button id="employeeOverviewBtn" text="{i18n>ShowEmployeeOverview}"
press=".onNavToEmployeeOverview" class="sapUiTinyMarginEnd"/> </content>
 </Page>
</mvc:View>

First we add a new button to the Home view and add an event handler for the press event.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 345

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.navigation.11/preview

webapp/controller/Home.controller.js

sap.ui.define(["sap/ui/demo/nav/controller/BaseController"
], function (BaseController) {
 "use strict";
 return BaseController.extend("sap.ui.demo.nav.controller.Home", {
 ...
 onNavToEmployees : function () {
 this.getRouter().navTo("employeeList"); },
 onNavToEmployeeOverview : function () {
 this.getRouter().navTo("employeeOverview");
 } }); });

As you know already from the previous steps, we add the press event handler onNavToEmployeeOverview.
It navigates to the route employeeOverview which does not exist yet, so let’s create it.

webapp/manifest.json

{ "_version": "1.12.0",
 "sap.app": {
 ...
 },
 "sap.ui": {
 ...
 },
 "sap.ui5": {
 ...
 "routing": {
 "config": {
 "routerClass": "sap.m.routing.Router",
 "viewType": "XML",
 "viewPath": "sap.ui.demo.nav.view",
 "controlId": "app",
 "controlAggregation": "pages",
 "transition": "slide",
 "bypassed": {
 "target": "notFound"
 }
 },
 "routes": [{
 "pattern": "",
 "name": "appHome",
 "target": "home"
 }, {
 "pattern": "employees",
 "name": "employeeList",
 "target": "employees" }, {
 "pattern": "employees/overview",
 "name": "employeeOverview",
 "target": ["employeeOverviewTop", "employeeOverviewContent"]
 }, { "pattern": "employees/{employeeId}",
 "name": "employee",
 "target": "employee"

346 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 }, {
 "pattern": "employees/{employeeId}/resume:?query:",
 "name": "employeeResume",
 "target": "employeeResume"
 }],
 "targets": {
 ...
 "resumeTabNotes": {
 "viewId": "resumeNotes",
 "parent": "employeeResume",
 "viewPath": "sap.ui.demo.nav.view.employee",
 "viewName": "ResumeNotes",
 "controlId": "notesTab",
 "controlAggregation": "content" },
 "employeeOverview": {
 "viewId": "employeeOverview",
 "viewPath": "sap.ui.demo.nav.view.employee.overview",
 "viewName": "EmployeeOverview",
 "viewLevel" : 2
 },
 "employeeOverviewTop": {
 "viewId": "employeeOverviewTop",
 "parent": "employeeOverview",
 "viewPath": "sap.ui.demo.nav.view.employee.overview",
 "viewName": "EmployeeOverviewTop",
 "controlId": "EmployeeOverviewParent",
 "controlAggregation": "content"
 },
 "employeeOverviewContent": {
 "viewId": "employeeOverviewContent",
 "parent": "employeeOverview",
 "viewPath": "sap.ui.demo.nav.view.employee.overview",
 "viewName": "EmployeeOverviewContent",
 "controlId": "EmployeeOverviewParent",
 "controlAggregation": "content"
 } }
 }
 } }

We extend our current routing configuration with a new route employeeOverview. Note that this route has to
be configured before the employee route, else the employee route would be matched with a hash like /#/
employees/overview. The new route employeeOverview references two targets at the same time with an
array notation: employeeOverviewTop and employeeOverviewContent. As you can see here, a route can
reference an arbitrary number of targets that will be displayed when the route is matched.

Both targets employeeOverviewTop and employeeOverviewContent reference the target
employeeOverview as their parent target because we want to place them both inside the parent. Please also
note that we also introduce a new layer overview in the viewPath property.

 Note
The order of the routing configuration matters here, because the router stops matching additional routes
when the first match is found. You can override this behavior if you set parameter greedy to true on the
route. Then the route will always be matched when the pattern matches the current URL, even if another
route has been matched before. The greedy option comes from the underlying Crossroads.js library, a
popular routing library. A common use case for using greedy is configuring targets without views and then
listening for route-matched events.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 347

Now we create both targets employeeOverviewTop and employeeOverviewContent as well as their parent
target employeeOverview. On the parent target we set viewLevel to 2 to ensure a correct transition
animation. In the targets, we also configure where the corresponding views of the children shall be displayed by
setting the parameters controlId and controlAggregation to a control ID of a
sap.ui.layout.HorizontalLayout that we are about to create in a new view. You should be familiar with
this configuration from the last step.

The router makes sure that the parent view is loaded in addition to the target view when a corresponding route
has been matched and the targets are displayed. The referenced views are displayed automatically at the
configured place in the parent’s view, in our case in the content aggregation of the page control. We have
mentioned three different views that we still need to add to the app to make the configuration work:

● EmployeeOverview
● EmployeeOverviewTop
● EmployeeOverviewContent

webapp/view/employee/overview/EmployeeOverview.view.xml (New)

<mvc:View

controllerName="sap.ui.demo.nav.controller.employee.overview.EmployeeOverview"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <Page id="EmployeeOverviewParent" title="{i18n>EmployeeOverview}"
 showNavButton="true"
 navButtonPress=".onNavBack"
 class="sapUiResponsiveContentPadding">
 <content>
 <!-- inserted by routing -->
 </content>
 </Page>
</mvc:View>

First we create the parent view by creating the folder overview under webapp/view/employee and placing
the file EmployeeOverview.view.xml into that folder. This view contains a Page control that is referenced
from the targets in our manifest.json descriptor file. The content aggregation of the page will be filled by the
router with the top and content part when the corresponding route has been hit.

webapp/controller/employee/overview/EmployeeOverview.controller.js
(New)

sap.ui.define([
 "sap/ui/demo/nav/controller/BaseController"
], function (BaseController) {
 "use strict";
 return
BaseController.extend("sap.ui.demo.nav.controller.employee.overview.EmployeeOverv
iew", {
 });
});

348 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

The controller does not contain any logic yet, but we will add back navigation features here in the next steps.

webapp/view/employee/overview/EmployeeOverviewTop.view.xml (New)

<mvc:View xmlns="sap.m" xmlns:mvc="sap.ui.core.mvc"
class="sapUiMediumMarginBottom">
 <Title text="{i18n>EmployeeOverviewTop}"/>
</mvc:View>

Create the file EmployeeOverviewTop.view.xml and place it in the webapp/view/employee/overview
folder. This view displays a static text for illustration purposes. Change it according to your own requirements.
We don’t need a controller for this view

webapp/view/employee/overview/EmployeeOverviewContent.view.xml
(New)

<mvc:View

controllerName="sap.ui.demo.nav.controller.employee.overview.EmployeeOverviewCont
ent"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <Table id="employeesTable"
 items="{/Employees}">
 <headerToolbar>
 <Toolbar>
 <Title text="{i18n>Employees}" level="H2"/>
 <ToolbarSpacer />
 <SearchField id="searchField" search=".onSearchEmployeesTable"
width="50%"/>
 <Button icon="sap-icon://sort" press=".onSortButtonPressed"/>
 </Toolbar>
 </headerToolbar>
 <columns>
 <Column id="employeeIDCol"><Text text="{i18n>EmployeeID}"/></Column>
 <Column id="firstNameCol" demandPopin="true"><Text
text="{i18n>FirstName}"/></Column>
 <Column id="lastNameCol" demandPopin="true"><Text
text="{i18n>LastName}"/></Column>
 <Column id="addressCol" minScreenWidth="Tablet"
demandPopin="true"><Text text="{i18n>Address}"/></Column>
 <Column id="cityCol" minScreenWidth="Tablet"
demandPopin="true"><Text text="{i18n>City}"/></Column>
 <Column id="regionCol" minScreenWidth="Tablet"
demandPopin="true"><Text text="{i18n>Region}"/></Column>
 <Column id="postalCodeCol" minScreenWidth="Tablet"
demandPopin="true"><Text text="{i18n>PostalCode}"/></Column>
 <Column id="countryCol" minScreenWidth="Tablet"
demandPopin="true"><Text text="{i18n>Country}"/></Column>
 <Column id="homePhoneCol" minScreenWidth="Tablet" demandPopin="true"
hAlign="Right"><Text text="{i18n>Phone}"/></Column>
 </columns>
 <items>
 <ColumnListItem>
 <cells>
 <Text text="{EmployeeID}"/>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 349

 <Text text="{FirstName}"/>
 <Text text="{LastName}"/>
 <Text text="{Address}"/>
 <Text text="{City}"/>
 <Text text="{Region}"/>
 <Text text="{PostalCode}"/>
 <Text text="{Country}"/>
 <Text text="{HomePhone}"/>
 </cells>
 </ColumnListItem>
 </items>
 </Table>
</mvc:View>

Create the file EmployeeOverviewContent.view.xml in the webapp/view/employee/overview folder. This
view displays a responsive table with several columns containing employee data like Employee ID, First Name,
Last Name and so on. In the headerToolbar, we add the SearchField and a Button. The SearchField in
the header area allows to search in the table. The Button next to it opens a dialog to adjust the sorting of the
table.

webapp/controller/employee/overview/
EmployeeOverviewContent.controller.js (New)

sap.ui.define([
 "sap/ui/demo/nav/controller/BaseController",
 "sap/ui/model/Filter",
 "sap/ui/model/FilterOperator",
 "sap/ui/model/Sorter",
 "sap/m/ViewSettingsDialog",
 "sap/m/ViewSettingsItem"
], function(
 BaseController,
 Filter,
 FilterOperator,
 Sorter,
 ViewSettingsDialog,
 ViewSettingsItem
) {
 "use strict";

 return
BaseController.extend("sap.ui.demo.nav.controller.employee.overview.EmployeeOverv
iewContent", {

 onInit: function () {
 this._oTable = this.byId("employeesTable");
 this._oVSD = null;
 this._sSortField = null;
 this._bSortDescending = false;
 this._aValidSortFields = ["EmployeeID", "FirstName", "LastName"];
 this._sSearchQuery = null;

 this._initViewSettingsDialog();
 },

 onSortButtonPressed : function () {
 this._oVSD.open();
 },

 onSearchEmployeesTable : function (oEvent) {

350 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 this._applySearchFilter(oEvent.getSource().getValue());
 },

 _initViewSettingsDialog : function () {
 this._oVSD = new ViewSettingsDialog("vsd", {
 confirm: function (oEvent) {
 var oSortItem = oEvent.getParameter("sortItem");
 this._applySorter(oSortItem.getKey(),
oEvent.getParameter("sortDescending"));
 }.bind(this)
 });

 // init sorting (with simple sorters as custom data for all fields)
 this._oVSD.addSortItem(new ViewSettingsItem({
 key: "EmployeeID",
 text: "Employee ID",
 selected: true // by default the MockData is sorted
by EmployeeID
 }));

 this._oVSD.addSortItem(new ViewSettingsItem({
 key: "FirstName",
 text: "First Name",
 selected: false
 }));

 this._oVSD.addSortItem(new ViewSettingsItem({
 key: "LastName",
 text: "Last Name",
 selected: false
 }));
 },

 _applySearchFilter : function (sSearchQuery) {
 var aFilters, oFilter, oBinding;

 // first check if we already have this search value
 if (this._sSearchQuery === sSearchQuery) {
 return;
 }
 this._sSearchQuery = sSearchQuery;
 this.byId("searchField").setValue(sSearchQuery);

 // add filters for search
 aFilters = [];
 if (sSearchQuery && sSearchQuery.length > 0) {
 aFilters.push(new Filter("FirstName", FilterOperator.Contains,
sSearchQuery));
 aFilters.push(new Filter("LastName", FilterOperator.Contains,
sSearchQuery));
 oFilter = new Filter({ filters: aFilters, and: false }); // OR
filter
 } else {
 oFilter = null;
 }

 // update list binding
 oBinding = this._oTable.getBinding("items");
 oBinding.filter(oFilter, "Application");
 },

 /**
 * Applies sorting on our table control.
 * @param {string} sSortField the name of the field used for
sorting
 * @param {string} sortDescending true or false as a string or
boolean value to specify a descending sorting
 * @private

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 351

 */
 _applySorter : function (sSortField, sortDescending){
 var bSortDescending, oBinding, oSorter;

 // only continue if we have a valid sort field
 if (sSortField && this._aValidSortFields.indexOf(sSortField) > -1) {

 // convert the sort order to a boolean value
 if (typeof sortDescending === "string") {
 bSortDescending = sortDescending === "true";
 } else if (typeof sortDescending === "boolean") {
 bSortDescending = sortDescending;
 } else {
 bSortDescending = false;
 }

 // sort only if the sorter has changed
 if (this._sSortField && this._sSortField === sSortField &&
this._bSortDescending === bSortDescending) {
 return;
 }

 this._sSortField = sSortField;
 this._bSortDescending = bSortDescending;
 oSorter = new Sorter(sSortField, bSortDescending);

 // sync with View Settings Dialog
 this._syncViewSettingsDialogSorter(sSortField, bSortDescending);

 oBinding = this._oTable.getBinding("items");
 oBinding.sort(oSorter);
 }
 },

 _syncViewSettingsDialogSorter : function (sSortField, bSortDescending) {
 // the possible keys are: "EmployeeID" | "FirstName" | "LastName"
 // Note: no input validation is implemented here
 this._oVSD.setSelectedSortItem(sSortField);
 this._oVSD.setSortDescending(bSortDescending);
 }

 });

});

Finally create the controller for the Employee Overview page in the webapp/controller/employee/
overview folder. It basically sets up a ViewSettingsDialog to sort and filter the table of employees and
implements event handlers for the search field and for the sorting of the table.

There is nothing special about this implementation. If you are interested in how to set up a table with sorting
and filtering you can check the corresponding steps of the Walkthrough tutorial or the examples in the Demo
Kit. We will mainly make use of the UI and the functionality for showing additional navigation and routing
features. Therefore, we suggest copying the code and trying it out.

Open webapp/index.html#/employees/overview and check the new views. As you can see, the three
views are wired together automatically by the router based on our configuration in the descriptor. In the top
area of the page, you see a static text and below you see the table filled with data from our test service. The
whole routing functionality that we see in this example is implemented by referencing two targets from one
route.

Of course, you can also search the table and change the sorting. When the sorting dialog opens, it creates a
block layer so that the back button and other controls cannot be accessed. However, you can still use the back
button of the browser. As you can see, the dialog is closed automatically by the router before navigating.

352 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Note
The default behavior of the sap.m router is that all dialogs are closed when the hash changes (i.e. when
calling navTo, display or pressing the back button of the browser). You can change this default behavior
by calling getTargetHandler().setCloseDialogs(false) on the router or on the Targets object.

However, we have one problem yet to solve: the search and table ordering are not bookmarkable. Fortunately,
we have additional navigation features at hand and you will see how this works in the next steps

webapp/i18n/i18n.properties

...
EmployeeOverview=Employee Overview
ShowEmployeeOverview=Show Employee Overview

EmployeeOverviewTop=Employee Overview Top

Region=Region
EmployeeID=Employee ID
Phone=Phone
Employees=Employees

Add the new texts to the properties file.

Related Information

API Reference: sap.m.routing.TargetHandler
API Overview and Samples: sap.ui.core.sample.PatternMatching

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 353

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.routing.TargetHandler.html
https://sapui5.hana.ondemand.com/explored.html#/sap.ui.core.sample.PatternMatching/preview

Step 12: Make a Search Bookmarkable

In this step we will make the search bookmarkable. This allows users to search for employees in the Employees
table and they can bookmark their search query or share the URL.

Preview

Figure 102: Search and sorting bookmarkable

Coding

You can view and download all files in the Samples in the Demo Kit at Routing and Navigation - Step 12 .

webapp/manifest.json

{ "_version": "1.12.0",
 "sap.app": {
 ...
 },
 "sap.ui": {

354 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.navigation.12/preview

 ...
 },
 "sap.ui5": {
 ...
 "routing": {
 "config": {
 "routerClass": "sap.m.routing.Router",
 "viewType": "XML",
 "viewPath": "sap.ui.demo.nav.view",
 "controlId": "app",
 "controlAggregation": "pages",
 "transition": "slide",
 "bypassed": {
 "target": "notFound"
 }
 },
 "routes": [{
 "pattern": "",
 "name": "appHome",
 "target": "home"
 }, {
 "pattern": "employees",
 "name": "employeeList",
 "target": "employees"
 }, { "pattern": "employees/overview:?query:", "name": "employeeOverview",
 "target": ["employeeOverviewTop", "employeeOverviewContent"]
 }, {
 "pattern": "employees/{employeeId}",
 "name": "employee",
 "target": "employee"
 }, {
 "pattern": "employees/{employeeId}/resume:?query:",
 "name": "employeeResume",
 "target": "employeeResume"
 }],
 "targets": {
 ...
 }
 }
 } }

In order to make the search bookmarkable we have to think about how the pattern of the corresponding route
should match the bookmark. We decide to allow /#/employees/overview?
search=mySearchQueryString in order to bookmark a search. Therefore, we simply extend our routing
configuration a little. We add the optional :?query: parameter to the route employeeOverview. We keep in
mind that we want to use search as the URL parameter for the search term that was entered in the search
field.

webapp/controller/employee/overview/
EmployeeOverviewContent.controller.js

sap.ui.define(["sap/ui/demo/nav/controller/BaseController",
 "sap/ui/model/Filter",
 "sap/ui/model/FilterOperator",
 "sap/ui/model/Sorter",
 "sap/m/ViewSettingsDialog",

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 355

 "sap/m/ViewSettingsItem"
], function(
 BaseController,
 Filter,
 FilterOperator,
 Sorter,
 ViewSettingsDialog,
 ViewSettingsItem
) {
 "use strict";
 return
BaseController.extend("sap.ui.demo.nav.controller.employee.overview.EmployeeOverv
iewContent", {
 onInit: function () { var oRouter = this.getRouter(); this._oTable = this.byId("employeesTable");
 this._oVSD = null;
 this._sSortField = null;
 this._bSortDescending = false;
 this._aValidSortFields = ["EmployeeID", "FirstName", "LastName"];
 this._sSearchQuery = null; this._oRouterArgs = null; this._initViewSettingsDialog(); // make the search bookmarkable

oRouter.getRoute("employeeOverview").attachMatched(this._onRouteMatched, this); }, _onRouteMatched: function (oEvent) {
 // save the current query state
 this._oRouterArgs = oEvent.getParameter("arguments");
 this._oRouterArgs["?query"] = this._oRouterArgs["?query"] || {};

 // search/filter via URL hash
 this._applySearchFilter(this._oRouterArgs["?query"].search);
 }, onSortButtonPressed : function (oEvent) {
 this._oVSD.open();
 },
 onSearchEmployeesTable : function (oEvent) { var oRouter = this.getRouter();
 // update the hash with the current search term
 this._oRouterArgs["?query"].search = oEvent.getSource().getValue();
 oRouter.navTo("employeeOverview", this._oRouterArgs, true /*no
history*/); },
 ...
 }); });

Now we handle the optional query parameter from the employeeOverview route in our
EmployeeOverviewContent controller. First we change the onInit function by adding an event listener for
the matched event of the employeeOverview route. Then we buffer the current router arguments as received
from the event. If a query is available, the result from oEvent.getParameter("arguments") will contain a ?
query property with an object of all URL parameters specified, otherwise it is undefined. If no query parameter
is defined, we always initialize the query and save it to this._oRouterArgs["?query"]. If we have a search
term query at the search key we continue and call this._applySearchFilter(this._oRouterArgs["?
query"].search) to trigger a search based on the search query parameter from the URL.

Storing the arguments objects internally in the controller is important, because we will use the current
arguments when calling navTo() in the search event handler onSearchEmployeesTable and pass on the
arguments with the updated search term. We keep the URL and the UI in sync by navigating to the current
target again with the current value of the search field from the event’s source. The search value is stored in

356 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

this._oRouterArgs["?query"].search together with the other query parameters and it is passed directly
to the router again

That’s it, now our search is bookmarkable and reflected in the URL. Try to access the following pages in your
browser:

● webapp/index.html#/employees/overview
● webapp/index.html#/employees/overview?search=
● webapp/index.html#/employees/overview?search=an

When you change the value in the search field, you see that the hash updates accordingly.

Step 13: Make Table Sorting Bookmarkable

In this step, we will create a button at the top of the table which will change the sorting of the table. When the
current sorting state of the table is changed, the sorting state will be reflected in the URL. This illustrates how
to make the table sorting bookmarkable.

Preview

Figure 103: Bookmarkable search and sorting

Coding

You can view and download all files in the Samples in the Demo Kit at Routing and Navigation - Step 13.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 357

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.navigation.13/preview

webapp/controller/employee/overview/
EmployeeOverviewContent.controller.js

sap.ui.define(["sap/ui/demo/nav/controller/BaseController",
 "sap/ui/model/Filter",
 "sap/ui/model/FilterOperator",
 "sap/ui/model/Sorter",
 "sap/m/ViewSettingsDialog",
 "sap/m/ViewSettingsItem"
], function(
 BaseController,
 Filter,
 FilterOperator,
 Sorter,
 ViewSettingsDialog,
 ViewSettingsItem
) {
 "use strict";
 return
BaseController.extend("sap.ui.demo.nav.controller.employee.overview.EmployeeOverv
iewContent", {
 onInit: function () {
 ...
 },
 _onRouteMatched: function (oEvent) {
 // save the current query state
 this._oRouterArgs = oEvent.getParameter("arguments");
 this._oRouterArgs["?query"] = this._oRouterArgs["?query"] || {};
 var oQueryParameter = this._oRouterArgs["?query"];
 // search/filter via URL hash
 this._applySearchFilter(oQueryParameter.search); // sorting via URL hash
 this._applySorter(oQueryParameter.sortField,
oQueryParameter.sortDescending);
 },
 ...
 _initViewSettingsDialog: function () {
 var oRouter = this.getRouter();
 this._oVSD = new sap.m.ViewSettingsDialog("vsd", {
 confirm: function (oEvent) {
 var oSortItem = oEvent.getParameter("sortItem"); this._oRouterArgs["?query"].sortField = oSortItem.getKey();
 this._oRouterArgs["?query"].sortDescending =
oEvent.getParameter("sortDescending");
 oRouter.navTo("employeeOverview", this._oRouterArgs, true /
without history/); }.bind(this)
 });
 ...
 },
 ...
 }); });

We enhance the EmployeeOverviewContent controller further to add support for bookmarking the table’s
sorting options. We expect two query parameters sortField and sortDescending from the URL for
configuring the sorting of the table. In the matched handler of the route employeeOverview, we store the
query parameter in the oQueryParameter variable and add an additional call to
this._applySorter(oQueryParameter.sortField, oQueryParameter.sortDescending) . This

358 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

triggers the sorting action based on the two query parameters sortField and sortDescending from the
URL.

Next we change the confirm event handlers of our ViewSettingsDialog. The confirm handler updates the
current router arguments with the parameters from the event accordingly. Then we call
oRouter.navTo("employeeOverview", this._oRouterArgs, true) with the updated router
arguments to persist the new sorting parameters in the URL. Both the previous arguments (i.e. search) and
the new arguments for the sorting will then be handled by the matched event handler for the
employeeOverview route.

Congratulations! Even the sorting options of the table can now be bookmarked. Try to access the following
pages:

● webapp/index.html#/employees/overview?sortField=EmployeeID&sortDescending=true
● webapp/index.html#/employees/overview?

search=an&sortField=EmployeeID&sortDescending=true

When changing the table’s sorting options, you will see that the hash updates accordingly.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 359

Step 14: Make Dialogs Bookmarkable

In this step, we want to allow bookmarking of the dialog box that is opened when the user clicks the Sort
button. The dialog should automatically open when the URL contains the query parameter showDialog.

Preview

Figure 104: Bookmark for a dialog

Coding

You can view and download all files in the Samples in the Demo Kit at Routing and Navigation - Step 14.

/controller/employee/overview/EmployeeOverviewContent.controller.js

sap.ui.define(["sap/ui/demo/nav/controller/BaseController",

360 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.navigation.14/preview

 "sap/ui/model/Filter",
 "sap/ui/model/FilterOperator",
 "sap/ui/model/Sorter",
 "sap/m/ViewSettingsDialog",
 "sap/m/ViewSettingsItem"
], function(
 BaseController,
 Filter,
 FilterOperator,
 Sorter,
 ViewSettingsDialog,
 ViewSettingsItem
) {
 "use strict";
 return
BaseController.extend("sap.ui.demo.nav.controller.employee.overview.EmployeeOverv
iewContent", {
 onInit: function () {
 ...
 },
 _onRouteMatched: function (oEvent) {
 // save the current query state
 this._oRouterArgs = oEvent.getParameter("arguments");
 this._oRouterArgs["?query"] = this._oRouterArgs["?query"] || {};
 var oQueryParameter = this._oRouterArgs["?query"];
 // search/filter via URL hash
 this._applySearchFilter(oQueryParameter.search);
 // sorting via URL hash
 this._applySorter(oQueryParameter.sortField,
oQueryParameter.sortDescending); // show dialog via URL hash
 if (oQueryParameter.showDialog) {
 this._oVSD.open();
 }
 },
 onSortButtonPressed: function (oEvent) { var oRouter = this.getRouter();
 this._oRouterArgs["?query"].showDialog = 1;
 oRouter.navTo("employeeOverview", this._oRouterArgs); },
 ...
 _initViewSettingsDialog: function () {
 var oRouter = this.getRouter();
 this._oVSD = new sap.m.ViewSettingsDialog("vsd", {
 confirm: function (oEvent) {
 var oSortItem = oEvent.getParameter("sortItem");
 this._oRouterArgs["?query"].sortField = oSortItem.getKey();
 this._oRouterArgs["?query"].sortDescending =
oEvent.getParameter("sortDescending");
 delete this._oRouterArgs["?query"].showDialog;
 oRouter.navTo("employeeOverview", this._oRouterArgs, true /
without history/); }.bind(this),
 cancel: function (oEvent){
 delete this._oRouterArgs.query.showDialog;
 oRouter.navTo("employeeOverview", this._oRouterArgs, true /
without history/);
 }.bind(this) });
 ...
 },
 ...
 }); });

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 361

Once again we will update the EmployeeOverviewContent controller to add support for the bookmarking of
our sorting dialog. We decide to choose a query parameter showDialog that controls if the dialog is opened
directly when we navigate to the page with a deep link. Therefore, we extend the matched event handler for the
employeeOverview route. If the query parameter showDialog is set to 1, we open the dialog. We only have to
make sure that the dialog does not get closed again by the router as this behavior is the default when
navigating.

Next we change the press handler of the sort button. In the onSortButtonPressed function we set
this._oRouterArgs["?query"].showDialog = 1 and call navTo() to let the router do the job instead of
directly opening the dialog. Finally, we delete this._oRouterArgs["?query"].showDialog before calling
navTo() in the confirm and cancel event handlers of the ViewSettingsDialog. This is important to make
sure that the dialog does not open again by the matched handler.

We are now done with this step. Try to access the following pages:

● webapp/index.html#/employees/overview?showDialog=1
● webapp/index.html#/employees/overview?

search=an&sortField=EmployeeID&sortDescending=true&showDialog=1

As you can see, the dialog opens automatically if the parameter showDialog=1 is added to the URL. That’s
exactly what we wanted.

Step 15: Reuse an Existing Route

The Employees table displays employee data. However, the resumes of the employees are not accessible from
this view yet. We could create a new route and a new view to visualize the resume again, but we could also
simply reuse an existing route to cross-link the resume of a certain employee. In this step, we will add a feature
that allows users to directly navigate to the resume of a certain employee. We will reuse the Resume page that
we have created in an earlier step. This example illustrates that there can be multiple navigation paths that
direct to the same page.

362 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Preview

Figure 105: Navigation to an existing route from a table item

Coding

You can view and download all files in the Samples in the Demo Kit at Routing and Navigation - Step 15.

webapp/view/employee/overview/EmployeeOverviewContent.view.xml

<mvc:View
controllerName="sap.ui.demo.nav.controller.employee.overview.EmployeeOverviewCont
ent"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <Table id="employeesTable"
 items="{/Employees}" itemPress=".onItemPressed"> <headerToolbar>
 ...
 </headerToolbar>
 <columns>
 ...
 </columns>
 <items> <ColumnListItem type="Active"> <cells>
 ...
 </cells>
 </ColumnListItem>
 </items>
 </Table> </mvc:View>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 363

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.navigation.15/preview

In the EmployeeOverviewContent view we register an event handler for the itemPress event and set the
type attribute of the ColumnListItem to Active so that we can choose an item and trigger the navigation.

webapp/controller/employee/overview/
EmployeeOverviewContent.controller.js

sap.ui.define(["sap/ui/demo/nav/controller/BaseController",
 "sap/ui/model/Filter",
 "sap/ui/model/FilterOperator",
 "sap/ui/model/Sorter",
 "sap/m/ViewSettingsDialog",
 "sap/m/ViewSettingsItem"
], function(
 BaseController,
 Filter,
 FilterOperator,
 Sorter,
 ViewSettingsDialog,
 ViewSettingsItem
) {
 "use strict";
 return
BaseController.extend("sap.ui.demo.nav.controller.employee.overview.EmployeeOverv
iewContent", {
 ...
 _syncViewSettingsDialogSorter: function (sSortField, bSortDescending) {
 // the possible keys are: "EmployeeID" | "FirstName" | "LastName"
 // Note: no input validation is implemented here
 this._oVSD.setSelectedSortItem(sSortField);
 this._oVSD.setSortDescending(bSortDescending); },
 onItemPressed: function (oEvent) {
 var oItem, oCtx, oRouter;
 oItem = oEvent.getParameter("listItem");
 oCtx = oItem.getBindingContext();
 this.getRouter().navTo("employeeResume",{
 employeeId : oCtx.getProperty("EmployeeID"),
 "?query": {
 tab: "Info"
 }
 });
 } }); });

Next we add the itemPress handler .onItemPressed to the EmployeeOverviewContent controller. It
reads from the binding context which item has been chosen and navigates to the employeeResume route. We
have already added this route and the corresponding target in a previous step and can now reuse it. From now
on it is possible to navigate to the employeeResume route from our employee table as well as from the
employee detail page created in an earlier step (the route name is employee).

364 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Step 16: Handle Invalid Hashes by Listening to Bypassed
Events

So far we have created many useful routes in our app. In the very early steps we have also made sure that a Not
Found page is displayed in case the app was called with an invalid hash. Now, we proceed further and track
invalid hashes to be able to detect and correct any invalid links or add new URL patterns that are often
requested but not found. Therefore, we simply listen to the bypassed events

Preview

Figure 106: Console output for invalid hashes when listening to bypassed events

Coding

You can view and download all files in the Samples in the Demo Kit at Routing and Navigation - Step 16.

webapp/controller/App.controller.js

sap.ui.define(["sap/ui/demo/nav/controller/BaseController"
], function (BaseController) {
 "use strict";
 return BaseController.extend("sap.ui.demo.nav.controller.App", {
 onInit: function () {

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 365

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.navigation.16/preview

 // This is ONLY for being used within the tutorial.
 // The default log level of the current running environment may be
higher than INFO,
 // in order to see the debug info in the console, the log level
needs to be explicitly
 // set to INFO here.
 // But for application development, the log level doesn't need to be
set again in the code.
 Log.setLevel(Log.Level.INFO);

 var oRouter = this.getRouter();

 oRouter.attachBypassed(function (oEvent) {
 var sHash = oEvent.getParameter("hash");
 // do something here, i.e. send logging data to the backend for
analysis
 // telling what resource the user tried to access...
 Log.info("Sorry, but the hash '" + sHash + "' is invalid.", "The
resource was not found.");
 }); }
 }); });

All we need to do is listen to the bypassed event on the router. If the bypassed event is triggered, we simply get
the current hash and log a message. In an actual app this is probably the right place to add some application
analysis features, i.e. sending analytical logs to the back end for later evaluation and processing. This could be
used to improve the app, for example, to find out why the user called the app with an invalid hash.

 Note
We have chosen to place this piece of code into the App controller because this is a global feature of the
app. However, you could also place it anywhere else, for example in the NotFound controller file or in a
helper module related to analysis.

Now try to access webapp/index.html#/thisIsInvalid while you have your browser console open. As you
can see, there is a message that issues a faulty hash. Furthermore, our NotFound page is displayed.

Related Information

API Reference: sap.m.routing.Router

Step 17: Listen to Matched Events of Any Route

In the previous step, we have listened for bypassed events to detect possible technical issues with our app. In
this step, we want to improve the analysis use case even more by listening to any matched event of the route.
We could use this information to measure how the app is used and how frequently the pages are called. Many
Web analytic tools track page hits this way. The collected information can be used, for example to improve our
app and its usability.

366 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.routing.Router.html

Preview

Figure 107: Console output for routes matched by listening to routeMatched events

Coding

You can view and download all files in the Samples in the Demo Kit at Routing and Navigation - Step 17.

webapp/controller/App.controller.js

sap.ui.define(["sap/ui/demo/nav/controller/BaseController",
 "sap/base/Log"
], function (BaseController, Log) {
 "use strict";
 return BaseController.extend("sap.ui.demo.nav.controller.App", {
 onInit: function () {
 var oRouter = this.getRouter();
 oRouter.attachBypassed(function (oEvent) {
 var sHash = oEvent.getParameter("hash");
 // do something here, i.e. send logging data to the back end for
analysis
 // telling what resource the user tried to access...
 Log.info("Sorry, but the hash '" + sHash + "' is invalid.", "The
resource was not found.");

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 367

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.navigation.17/preview

 }); oRouter.attachRouteMatched(function (oEvent){
 var sRouteName = oEvent.getParameter("name");
 // do something, i.e. send usage statistics to back end
 // in order to improve our app and the user experience (Build-
Measure-Learn cycle)
 Log.info("User accessed route " + sRouteName + ", timestamp = "
+ new Date().getTime());
 }); }
 }); });

We extend the App controller again and listen to the routeMatched event. The routeMatched event is thrown
for any route that matches to our route configuration in the descriptor file. In the event handler, we determine
the name of the matched route from the event parameters and log it together with a time stamp. In an actual
app, the information could be sent to a back-end system or an analytics server to find out more about the
usage of your app.

Now you can access, for example, webapp/index.html#/employees while you have the console of the
browser open. As you can see, there is a message logged for each navigation step that you do within the app.

Testing

In this tutorial we will test application functionality with the testing tools that are delivered with SAPUI5. At
different steps of this tutorial you will write tests using QUnit, OPA5, and the mock server. Additionally, you will
learn about testing strategies, Test Driven Development (TDD), and much more.

For the application features that we add, we focus on writing clean and testable code with the goal of having
good test coverage and a high quality app. We will create a simple full screen app that we will extend with more
tests and features throughout the tutorial.

Imagine the following situation: You and your development team take over a bulletin board prototype that will
be shipped as a product soon. A bulletin board typically consists of functionality to browse posts and add own
offers to the board. However, the prototype only covers a minimum set of features and tests so far.

With this very minimalistic app as a starting point, we have a good foundation and we can inspect the most
important testing functionality. Furthermore, we want to implement new features for the app that were
requested by the product team using Test Driven Development and best practices for writing testable code and
testing SAPUI5 apps.

So why do we do all this? Obviously, writing tests and testable code does not come without effort. Well, we want
to ensure the implementation of a high quality app by having decent test coverage of our application logic. And
we check that our code does not break by running the automated tests whenever we change something or
when we upgrade to a newer version of the SAPUI5 framework or other external libraries. Additionally, we can
find bugs proactively and do not need excessive manual testing anymore so the efforts definitely pay off. Also,
when we decide to refactor something in the future, we can easily verify that the features of the app are still
working as expected.

There are a lot more reasons and many small details that we will address throughout this tutorial. You can work
yourself through the steps by applying the code deltas individually or by downloading the samples for each
step and playing around with it.

368 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Preview

Prerequisites

In addition to the prerequisites that are presupposed for all our tutorials (see Prerequisites [page 38]), you
should also be familiar with the basics of JavaScript unit testing with QUnit. Have a look at the official QUnit
documentation to make yourself familiar with basic testing knowledge. Steps 27 to 29 of the Walkthrough
tutorial also cover the test setup in an app that is used throughout this tutorial.

If you want to automate the test execution using a test runner, you can set this up as described under Test
Automation [page 1229].

 Tip
You don't have to do all tutorial steps sequentially, you can also jump directly to any step you want. Just
download the code from the previous step, and start there.

You can view and download the files for all steps in the Demo Kit at Testing Apps. Copy the code to your
workspace and make sure that the application runs by calling the webapp/test/test.html file.
Depending on your development environment you might have to adjust resource paths and configuration
entries.

For more information check the following sections of the tutorials overview page (see Get Started: Setup,
Tutorials, and Demo Apps [page 38]):

● Downloading Code for a Tutorial Step [page 40]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 369

https://sapui5.hana.ondemand.com/explored.html#/entity/sap.m.tutorial.testing/samples

● Adapting Code to Your Development Environment [page 40]

Related Information

Testing [page 1158]
QUnit Home Page

Step 1: Overview and Testing Strategy

In this step, we will take a look at the prototype and define the test strategy for our app. The prototype already
contains the infrastructure for unit and integration testing and a minimum set of tests and features.

 Note
In this tutorial we will focus on writing clean unit and integration tests for apps. They build the foundation
and are crucial for good application quality. We will also outline how to write testable code. Not all
implementation patterns can be tested easily, but when writing the test code together with the
implementation code as we have in this tutorial, testable code is a natural result.

370 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/disclaimer?site=https%3A%2F%2Fqunitjs.com%2F

Preview

Figure 108: The prototype app

Coding

To set up your project for this tutorial, download the files for Step 1 from the Samples in the Demo Kit at Testing
- Step 1. Copy the code to your workspace and make sure that the application runs by calling the webapp/
test/mockServer.html file.

Depending on your development environment, you might have to adjust resource paths and configuration
entries. The project structure and the files provided with this tutorial are explained in detail in the Walkthrough
[page 69] tutorial.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 371

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.testing.01/preview
https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.testing.01/preview

After downloading Step 1, you should have the following files:

Figure 109: Folder structure with downloaded files

372 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

The Initial App

With the downloaded code, you now have the bulletin board prototype, set up according to the SAPUI5 best
practices. The prototype provides the common features of an SAPUI5 app. If you have completed the
Walkthrough tutorial, you should be familiar with most of the source code in this step. Additional features of the
app are:

● Entry Page
In this tutorial, we will often switch between testing application features manually, and running automated
tests. The webapp/test/test.html file provides a list of entry points for the app so that you do not have
to enter the URLs manually. From this page you can open the app with mock data, run the unit tests, run
the integration tests, or run the app’s test suite (this will be added later in the tutorial). Note that in a
productive scenario we would have an additional entry point that calls the app with a real service. At this
stage we are working with mock data and don't have a real service for our prototype yet, so we have left
this step out.

● Home Page
The home page of our bulletin board app is the webapp/test/mockServer.html file. On this page, we
initialize SAPUI5, start the mock server, and instantiate our app component. It consists of a single view that
displays a list of posts from a bulletin board with several attributes in a table.

 Note
We do not yet have a real service for the bulletin board prototype so run the app with mock data and
this test page throughout the tutorial. The mock server helps by mimicking a real service and it
processes requests with a small delay, just as a real service would. This is perfect for realistic
application testing and is also helpful for local development tests. It is a good practice to put all test
pages in the test folder of the app, so that they are clearly separated from the productive coding.

● Data
In the webapp/localService/ folder, you can find the metadata and the mock data for the app. The
metadata.xml file is used by the mock server to simulate real back-end service calls in the app. It
describes our OData service and you can replace it later with a real service. The service we use has a single
OData entity:
○ Post

A post consists of typical properties like Title, Description, and Price. Each post is assigned to a
Category and a Contact. The entity can be identified with its ID property: PostID. The corresponding
EntitySet is Posts.

○ Category
In our example, the category only has a Name property. Posts are sorted into a category by the
category name. The corresponding EntitySet is Categories.

○ Comment
A comment has an Author, a Date, and a CommentText property. The entity can be identified by the
CommentID property and is linked to a post by the ParentID. The corresponding EntitySet is
Comments.

The actual test data containing several mock posts is located in the webapp/test/service/
posts.json file.

● Testing Functionality
The team that created the first prototype already took care of the basic test setup. Everything required for
application testing is shipped with SAPUI5 and can simply be used within the app. The testing
infrastructure is set up in the test folder that is located in the webapp folder of the app:

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 373

○ Mock Server
The mock server is set up in the webapp/localService/mockserver.js file. It loads the metadata
and the mock data in the same folder. Using the mock server allows us to run the app easily and show
realistic data for testing, even without a network connection and without the need of having a remote
server for our application data.
There is a configurable delay for each request that is processed by the mock server that allows you to
mimick a slow back-end server.

○ Unit Tests
All unit tests are located in the webapp/test/unit folder and can be started by calling the
unitTests.qunit.html file in the same folder. Initially, there are only a few tests for model
instantiation and formatters that cover basic functionality in the prototype. We will give you more
details about the unit test setup later in the tutorial.

○ Integration Tests
Integration tests are written in OPA5 – a tool for integration testing that is included in SAPUI5 – and
can be found in the webapp/test/integration folder. You can start all OPA5 tests by calling the
opaTests.qunit.html file in the same folder. OPA5 tests are organized in test journeys, and we have
included a worklist journey that checks if the table of posts is displayed properly. We will give you more
details about the integration test setup later in the tutorial.

● Other quality-related features of the app
The app is set up according to best practices and already contains many helpful features.
○ Separation of concerns (MVC)

All artifacts are located in either the model, view, or controller folder of the app. The app’s
component and its descriptor configure which of those MVC artifacts to load. This configuration
controls the navigation flow of the app.

○ Separation of productive and nonproductive code
All nonproductive code is located in the test subfolder. This includes the unit and integration tests,
and the test page to call the app with mock data. All productive code is located in the webapp folder.
This clearly separates the test artifacts from the application coding and makes it easy to remove all
test-related artifacts before deploying the app for productive use.

○ Busy handling
As a best practice, you should always give users instant feedback when triggering actions and
navigating in the app. The app already includes functionality to display a busy indication when data is
loaded or actions are triggered. To simulate a slow backend and show the behavior of the app, the
mock server is configured with a delay of one second for each request.

Now that we have a running prototype, we can further extend it with additional tests and features. Make sure
that the app is running by calling the test page, the unit tests, and the integration tests from the entry page
webapp/test/test.html. The app should display a list of bulletin board posts as seen in the screenshot
above and the tests should run without errors.

Test Strategy

Let’s first take a look at best practices for testing apps written in SAPUI5. JavaScript is a dynamic programming
language and only some issues can be detected by static code check tools and manual testing. Automated
tests that execute the code regularly are beneficial for good quality and development productivity – especially
when you're developing in short development cycles.

We expect our prototype to be released and shipped as a product soon, so we need a solid testing strategy.
Fortunately the prototype team has already thought ahead and prepared an infrastructure for unit and

374 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

integration testing that is included in the app. This is a really good starting point for further enhancements of
the app.

The mock server is also set up and allows us to test the app with local test data instead of a real back-end
service. We can use the mock data for writing reliable integration tests that do not depend on another system
which might be unavailable when the tests are run.

 Note
If you start developing an app from scratch, you should always consider testing from the very beginning of
the software life cycle. Nobody wants to write tests for undocumented code and make assumptions about
the logic. It is worth the effort to think about code checks, unit and integration testing, and a solid testing
strategy from the very start.

Before you start implementing your first test, you should think about how to test the different aspects of your
application. The image below shows the testing tools along the agile testing pyramid.

Figure 110: Testing pyramid

When you set up application testing, you should automate as many testing steps as possible. If you
immediately write a test for all the features that we implement, then you can greatly reduce manual testing
efforts that are time consuming and cumbersome. If you change something later, you can simply run the
existing tests and see if the functionality is still working as expected.

SAPUI5 comes with two testing tools: QUnit for unit testing and OPA5 for integration testing. The unit tests are
the foundation of our testing pyramid and they should validate the most important logic of our app. In addition,
you can write integration tests for more interaction-related functionality, such as interacting with UI elements
of the app.

There might still be features that are hard to test with these client-side testing frameworks. Certain features
might require a more sophisticated system test, such as a screenshot comparison that can be implemented
with additional testing frameworks. And of course, you should also schedule manual tests (for example,
browser, performance, or security tests) to make sure that the app is behaving as expected.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 375

Conventions

● Write unit tests in QUnit for more logic-related functionality
● Write integration tests in OPA5 for user interaction
● Separate productive and nonproductive code in the app (webapp, test folder)
● Provide a local test page that triggers the app in test mode with mock data (test/mockServer.html)

Related Information

App Templates: Kick Start Your App Development [page 1399]
Worklist Template [page 1400]
Testing [page 1158]
Unit Testing with QUnit [page 1159]
Integration Testing with One Page Acceptance Tests (OPA5) [page 1182]
Mock Server [page 1222]
Walkthrough [page 69]

Step 2: A First Unit Test

In this step we will analyze the unit testing infrastructure and write a first unit test.

The product team requested a feature to highlight the price with colors depending on the amount. This can be
done using the standard semantic colors that are defined for states like Success, Warning, or Error.

The price values can be mapped to semantic states as follows:

● price < 50: Status is green (Success)
● price >= 50 and price < 250: Status is normal (None)
● price >= 250 and price < 2000: Status is orange (Warning)
● price >= 2000: Status is red (Error)

As we use Test Driven Development (TDD) we define the test case first, before we actually implement the
feature. So we will now start by implementing a test for the Price State feature. Naturally the test will fail until
the feature is implemented in the next step.

 Note
Test Driven Development (TDD) is a software development model that relies on a very short development
cycle. When using TDD a developer first writes a failing automatic test case to describe the behavior of a
new feature or functionality. As soon as the test fails (due to the still missing implementation) the role of
the developer switches to the implementation. The code is added to make the test run successful and then
the cycle starts over again.

There might also be iterations where just the implementation or testing code is refactored to make it more
elegant. TDD reduces complexity while maintaining high test coverage of the application coding at the
same time.

376 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Preview

Figure 111: The unit test will initially fail as the implementation is not provided yet

Unit Test Setup

All unit tests are located in the webapp/test/unit folder and can be started manually by calling the
unitTests.qunit.html file in the same folder or the entry page. This HTML page is a QUnit runner that calls
all unit tests of the app and displays the test results in a readable format.

 Note
Some testrunners like Karma do not require an HTML page to invoke the tests but work with configuration
files instead. They can directly invoke the AllTests.js file and log the test results in their own format.
Therefore we make sure that the AllTests.js file does not contain any UI output and just calls the
various test cases of the app.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 377

Figure 112: Unit test infrastructure in the application

Let’s take a closer look at the unitTests.qunit.html file. The application root is stored in the webapp folder
two levels above. In the bootstrap tag of the HTML page we define two namespaces to refer to the app and
the unit tests. The namespace of the unit tests points to the current folder as all test artifacts are located below
the current folder:

● sap.ui.demo.bulletinboard: "../../"
● test.unit: "./"

The namespace abstraction allows us to refer to all application and testing parts without having to use the full
path. Furthermore, all unit tests are put in a similar folder structure and get the same name as the artifact that
is tested. For example, the tests for the file webapp/model/formatter.js are located in the webapp/test/
unit/model/formatters.js folder. For more details on the unit test setup please have a look at the coding
of the prototype.

Coding

You can view and download all files in the Samples in the Demo Kit at Testing Apps - Step 2.

webapp/model/formatter.js

sap.ui.define(["sap/m/Text"
], function (Text) {
 "use strict";
 return {

378 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.testing.02/preview

 numberUnit: function (sValue) {
 … },
 priceState: function () {
 } }; });

First we think about the feature that we want to implement. We want to introduce a new state for the price, and
its value should depend on certain price ranges. SAPUI5 controls typically have semantic states like Success,
Warning, or Error. We will need this formatter function to convert the numeric price value from the model to a
state value for the control. But without caring too much about the actual implementation of this formatter we
just add an empty function priceState to the formatter file for now and focus on the unit tests first.

webapp/test/unit/model/formatter.js

sap.ui.define(["./model/formatter"
], function (formatter) {
 "use strict";
 QUnit.module("Number unit");
 … QUnit.module("Price State");

 function priceStateTestCase(oOptions) {
 // Act
 var sState = formatter.priceState(oOptions.price);

 // Assert
 oOptions.assert.strictEqual(sState, oOptions.expected, "The price state
was correct");
 }

 QUnit.test("Should format the products with a price lower than 50 to
Success", function (assert) {
 priceStateTestCase.call(this, {
 assert: assert,
 price: 42,
 expected: "Success"
 });
 });

 QUnit.test("Should format the products with a price of 50 to Normal",
function (assert) {
 priceStateTestCase.call(this, {
 assert: assert,
 price: 50,
 expected: "None"
 });
 });

 QUnit.test("Should format the products with a price between 50 and 250 to
Normal", function (assert) {
 priceStateTestCase.call(this, {
 assert: assert,
 price: 112,
 expected: "None"
 });
 });

 QUnit.test("Should format the products with a price between 250 and 2000 to

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 379

Warning", function (assert) {
 priceStateTestCase.call(this, {
 assert: assert,
 price: 798,
 expected: "Warning"
 });
 });

 QUnit.test("Should format the products with a price higher than 2000 to
Error", function (assert) {
 priceStateTestCase.call(this, {
 assert: assert,
 price: 2001,
 expected: "Error"
 });
 }); });

Now we write tests that call the function we have just defined and check for the correct result when passing in
various arguments.

By writing these tests, we actually implement the following specification in our tests that was defined by the
product team.

● price < 50: Status is green (Success)
● price >= 50 and price < 250: Status is normal (None)
● price >= 250 and price < 2000: Status is orange (Warning)
● price >= 2000: Status is red (Error)

Whenever we run the tests, we will implicitly check that the feature is still working as it was designed. To keep it
simple, we should only write a minimum set of tests that cover the most important cases, but also including
edge cases like the value 50 or unexpected values.

Let’s have a look at the implementation of the unit tests now: We add our unit tests to the webapp/test/
unit/model/formatter.js file. The path below the app and the test folder is similar so it can easily
associate the test with the tested functionality. There are already formatter functions for the number unit
conversion defined in the code - you can have a quick look before we add our own tests.

We add a new QUnit module for our price state tests after the number unit conversion tests. We could write a
test checking the result of the formatter for each of these cases but we do not want to repeat ourselves
(“DRY”) – neither in the tests nor in the application coding – so we create a reuse function called
priceStateTestCase. In this function, we call the formatter with the arguments provided as oOptions and
make a strictEqual assertion for the expected parameter.

 Note
There must be at least one assertion per QUnit test. If the actual value matches the expected value then the
test is successful. However, if there are more assertions in a test case and a subsequent assertion fails, the
whole test fails with the error message of the failed assertion.

There are also other types of assertions, for example the ok assertion that does not check the type. For
more details, have a look at the official QUnit documentation.

The assert object – a special object injected by QUnit – is passed on as a reference to the function. QUnit is
loaded once for the whole unit testing part of the app.

380 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Note
The main page for calling the unit tests is webapp/test/unit/unitTests.qunit.html. In this file we
load the QUnit runtime and an AllTests.js file that loads and directly executes all files with unit tests.
The other content of this file is just HTML for displaying the QUnit test result page.

And now for the actual test cases: Whenever we want to start a new test we call QUnit.test with a test
description and a callback function containing the test logic as an argument. The callback is invoked with a
special assert object that is maintained by QUnit. We can simply call assertions as we saw above.

Inside each test we simply call our reuse function with different parameters for the price and the expected state
that reflect our specification above. With five tests we can check the most important cases for our price state
converter. There are four tests for the four different states and one edge case test with the value 50, that makes
sure that the correct state is chosen.

That’s it, you just wrote your first unit test. When you call the webapp/test/unit/unitTests.qunit.html
file in your browser, you can see that the first module for the number unit formatter is still green but our price
state tests are red and failing. The error message tells us that the result of the empty formatter function is not
as expected.

TDD methodology tells us to do the implementation as soon as the test fails and to come back to testing as
soon as the tests are successful again. You run the unit tests after each code change, and you're done when the
test does not fail anymore. We now switch to the implementation part and define the details of the formatter
function in the next step.

Conventions

● Write unit tests for testing the logical correctness of your features

Related Information

Unit Testing with QUnit [page 1159]
QUnit Home Page

Step 3: Adding the Price Formatter

We will now take care of the implementation of the price formatter and make sure that the tests we wrote in the
previous step run successfully.

If the tests are passed, we can be sure that the formatter is formally correct but it is still not visible in the app.
So additionally, we will add the formatter to the UI to be able to verify and check that the price is shown
properly.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 381

http://help.sap.com/disclaimer?site=https%3A%2F%2Fqunitjs.com%2F

Preview

Figure 113: The price is now formatted with a semantic color

Coding

You can view and download all files in the Samples in the Demo Kit at Testing - Step 3.

webapp/model/formatter.js

sap.ui.define(["sap/m/Text"
], function (Text) {
 "use strict";
 return {
 numberUnit: function (sValue) {
 …

382 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.testing.03/preview

 },
 /**
 * Defines a value state based on the price
 *
 * @public
 * @param {number} iPrice the price of a post
 * @returns {string} sValue the state for the price
 */
 priceState: function (iPrice) {
 if (iPrice < 50) {
 return "Success";
 } else if (iPrice >= 50 && iPrice < 250) {
 return "None";
 } else if (iPrice >= 250 && iPrice < 2000) {
 return "Warning";
 } else {
 return "Error";
 }
 } }; });

We change the empty formatter function that we have added in the last step and add the implementation
details to it. If the implementation matches the specification embedded in our tests we are done with
implementing the formatter.

The input for the formatter is the price value from the model and the result is the state as a string value. The
actual implementation logic is quite simple and returns a semantic state value based on the price as we have
seen already in the test. There are four cases that are reflected in the if/else statements inside the
formatter.

You can now run the file webapp/test/unit/unitTests.qunit.html and check if the unit tests run
successfully. You should see your new test cases on the result page. If the overall result is successful then we
have successfully implemented our first feature.

webapp/view/Worklist.view.xml

… <ColumnListItem vAlign="Middle">
 <cells>
 …
 <ObjectNumber
 number="{
 path: 'Price',
 formatter: '.formatter.numberUnit'
 }" state="{
 path: 'Price',
 formatter: '.formatter.priceState'
 }" unit="{Currency}"/>
 </cells>
</ColumnListItem> …

We still have to apply the changes to our UI so that we can actually see the formatted price in the app. Unit
tests are typically testing the logic independent of the user interface. That is why the tests are running
successfully even though we did not adapt the UI yet.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 383

In our worklist view we simply add a state attribute to the ObjectNumber control in the columns aggregation.
We define the same data binding path as for the number, but we use our new formatter function to determine
the proper state. If you now run the webapp/test/mockServer.html file, you can see that some of the
product prices are listed in green, black, orange, and red depending on their price.

Related Information

API Reference: sap.ui.core.ValueState
API Reference: sap.m.ObjectNumber

Step 4: Testing a New Module

In the first unit test we have just extended the formatters module with a new function. Now we will write a unit
test that will test the functionality of an entirely new module.

A frequently used feature of a bulletin board is to flag interesting posts to mark them for later reading. The UI
should contain a button to toggle the flagged state for each item. We will implement this feature with a custom
type and again start writing the test case for it first and add the implementation later.

384 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.ValueState.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.ObjectNumber.html

Preview

Figure 114: The unit test for the Flagged feature will fail until the feature is implemented

Coding

You can view and download all files in the Samples in the Demo Kit at Testing - Step 4.

webapp/model/FlaggedType.js (new)

sap.ui.define([
 "sap/ui/model/SimpleType"
], function (SimpleType) {
 "use strict";
 return SimpleType.extend("sap.ui.demo.bulletinboard.model.FlaggedType", {
 formatValue: function () {
 },
 parseValue: function () {
 },
 validateValue: function () {
 }
 });
});

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 385

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.testing.04/preview

We plan to control a button state based on the Flagged property in the model. The button expects a Boolean
value for the pressed state. In the model, we have a binary integer representation, so we will again need
conversion logic to format the model value. And we also need a back conversion to store a state change in the
model when the user clicks the button.

A formatter function will only take care of one direction so this time we decide to implement a custom data
type for the conversions. As with the previous test, we add an empty hull for our new data type in the model
folder. The FlaggedType extends the SimpleType. Its interface provides two conversion functions and a
validation function:

● formatValue: formats a model value to be displayed in the UI
● parseValue: parses a UI value to be stored in the model
● validateValue: checks a value for displaying validation errors

webapp/test/unit/model/FlaggedType.js (new)

sap.ui.require(
 [
 "sap/ui/demo/bulletinboard/model/FlaggedType"
],
 function (FlaggedType) {
 "use strict";
 QUnit.module("FlaggedType - formatting");
 QUnit.test("Should convert 1 to true", function (assert) {
 // Act
 var bFormattedValue = new FlaggedType().formatValue(1);
 // Assert
 assert.strictEqual(bFormattedValue , true, "The formatting
conversion was correct");
 });
 QUnit.test("Should convert other values to false", function (assert) {
 var oFlaggedType = new FlaggedType();
 // Act
 var bFormattedZero = oFlaggedType.formatValue(0);
 var bFormattedNegativeNumber = oFlaggedType.formatValue(-666);
 // Assert
 assert.strictEqual(bFormattedZero, false, "The formatting conversion
was correct");
 assert.strictEqual(bFormattedNegativeNumber, false, "The formatting
conversion was correct");
 });
 QUnit.module("FlaggedType - parsing");
 QUnit.test("Should parse false to 0", function (assert) {
 // Act
 var iParsedValue = new FlaggedType().parseValue(false);
 // Assert
 assert.strictEqual(iParsedValue, 0, "The parsing conversion matched
the input");
 });
 QUnit.test("Should parse true to 1", function (assert) {
 // Act
 var iParsedValue = new FlaggedType().parseValue(true);
 // Assert
 assert.strictEqual(iParsedValue, 1, "The parsing conversion matched
the input");
 });
 }
);

386 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

The new FlaggedType.js file matches the file name of the implementation and is put in the model subfolder
of the test/unit folder similar to the implementation under the webapp folder. By keeping the same
structure for tests and productive code, we can easily relate the tests to the implementation.

We define this testing module with sap.ui.require since we just want to load dependencies but do not want
to declare a namespace for this testing module. We load the new and still empty FlaggedType implementation
as the only dependency and declare two QUnit modules: one for formatting and one for parsing, to check both
the to- and back-conversion of the flagged type.

 Note
We do not test the validation function of the data type as our conversion is so simple. There are no
expected validation errors that we have to take care of.

In each QUnit module we define test cases for each condition. For a Boolean conversion there are just two
cases, true and false. So we expect that the integer value 1 is converted to true and everything else to
false.

Let's have a look at the first test case to see how the custom data type is invoked for testing.

As we have loaded the type as a dependency, we can just access it with the variable FlaggedType and create a
new instance of it in each test case. This time we do not create a reuse function but simply create the instance
inside the test case. On the type we manually call the function formatValue that we want to test and compare
the result to the expected value in an assertion.

In the second test case, we check all other values, we expect it to be 0 but it could be also a negative value. So
we check both cases in the same test case with a separate assertion each. Only when both assertions are
fulfilled the test will be successful.

The other test cases in the parsing module are similar and check the back conversion from Boolean value to
integer value.

webapp/test/unit/AllTests.js

sap.ui.define(["./model/models", "./model/formatter",
 "./model/FlaggedType"], function() {
 "use strict"; });

In the AllTests.js file we just load the new testing module as a dependency so that it is executed
automatically whenever we execute the unit tests.

You can now call the unit tests and check the result. As in the previous step, the tests should fail with an error
message that the conversion is not correct. This is expected as we did not implement the conversion logic yet
but just the tests for it.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 387

Conventions

● Use data types if you need both formatting and parsing of a model value
● Organize the tests in the same file structure as the productive code

Related Information

API Reference: sap.ui.model.SimpleType
API Reference: sap.ui.require
Formatting, Parsing, and Validating Data [page 854]

388 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.SimpleType.html
https://sapui5.hana.ondemand.com/#/api/sap.ui/methods/sap.ui.require

Step 5: Adding a Flag Button

Now that we have implemented the conversion tests, we add the corresponding functionality and show the
button to flag a post in the app. The design team has specified that the flag feature should be implemented
with a toggle button that has a flag icon.

Preview

Figure 115: The Flag button is now added to the table

Coding

You can view and download all files in the Samples in the Demo Kit at Testing - Step 5.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 389

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.testing.05/preview

webapp/model/FlaggedType.js

sap.ui.define(["sap/ui/model/SimpleType"
], function (SimpleType) {
 "use strict";
 return SimpleType.extend("sap.ui.demo.bulletinboard.model.FlaggedType", { /**
 * Formats the integer value from the model to a boolean for the pressed
state of the flagged button
 *
 * @public
 * @param {number} iFlagged the integer value of the formatted property
 * @returns {boolean} 1 means true, all other numbers means false
 */
 formatValue: function (iFlagged) {
 return iFlagged === 1;
 },
 /**
 * Parses a boolean value from the property to an integer
 *
 * @public
 * @param {boolean} bFlagged true means flagged, false means not flagged
 * @returns {number} true means 1 , false means 0
 */
 parseValue: function (bFlagged) {
 if (bFlagged) {
 return 1;
 }

 return 0;
 },
 /**
 * Validates the value to be parsed
 *
 * @public
 * Since there is only true and false, no client side validation is
required
 * @returns {boolean} true
 */
 validateValue: function () {
 return true;
 } }); });

Lets start with the implementation code for the FlaggedType. We now add the documentation in JSDoc
format and the implementation of the three functions of the data type to the previously empty stub:

● The formatValue function takes care of the conversion from the model to the UI. As specified in the tests,
a model value of 1 will be converted to true, everything else to false. In the implementation code, this
equals to ”iFlagged === 1”.

● Similarly, the parseValue function is called by SAPUI5 when the data is written back to the model. Here,
we convert the Boolean value to an integer again.

● The validation function always returns true in this simple case, we do not expect any validation errors for
this data type.

We call these functions of the data type in the unit tests directly. So if you now run your unit tests by calling the
webapp/test/unit/unitTests.qunit.html page, the tests should already run successfully.

390 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

webapp/view/Worklist.view.xml

… <Table …>
 …
 <columns>
 …
 <Column width="33%" id="unitNumberColumn" hAlign="End" vAlign="Middle">
 <Text text="{i18n>TableUnitNumberColumnTitle}"
id="unitNumberColumnTitle"/>
 </Column> <Column width="80px" id="flaggedColumn" demandPopin="true"
vAlign="Middle"/> </columns>
 <items>
 <ColumnListItem vAlign="Middle">
 <cells>
 …
 <ObjectNumber… /> <ToggleButton
 id="flaggedButton"
 tooltip="{i18n>flaggedTooltip}"
 icon="sap-icon://flag"
 pressed="{
 path: 'Flagged',
 type: '.types.flagged'
 }"
 class="sapUiMediumMarginBeginEnd"/> </cells>
 </ColumnListItem>
 </items>
</Table> …

In the view, we add a new column and a cell for the flag feature at the end of the table. We fill the cell with a
sap.m.ToggleButton control that serves as our input control for the Flagged state. We define a flag icon in
the button, a tooltip from the resource bundle, and a layouting class to make our example complete. The
control's pressed property is bound to the Flagged field in the model. Here we also apply the custom data
type that is part of the controller.

webapp/controller/Worklist.controller.js

sap.ui.define(['./BaseController',
 'sap/ui/model/json/JSONModel', '../model/formatter',
 '../model/FlaggedType' 'sap/m/library'], function (BaseController, JSONModel, formatter, FlaggedType, mobileLibrary) { "use strict";
 return
BaseController.extend("sap.ui.demo.bulletinboard.controller.Worklist", { types : {
 flagged: new FlaggedType()
 }, formatter: formatter,
 …
 }); });

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 391

The controller loads the custom data type as a dependency similar to the formatters. It is then provided as a
property of the internal variable types so that it can be accessed as .types.flagged in the view as we have
seen above.

The conversion functions that are made available when we create an instance of the type are called
automatically by SAPUI5 when needed. However, by default the back conversion to the model is not enabled,
so we still need a small change in the component.

webapp/Component.js

sap.ui.define([…
], function (UIComponent, ResourceModel, models) {
 "use strict";
 return UIComponent.extend("sap.ui.demo.bulletinboard.Component", {
 …
 init: function () {
 // call the base component's init function
 UIComponent.prototype.init.apply(this, arguments); // allow saving values to the OData model
 this.getModel().setDefaultBindingMode("TwoWay"); …
 }
 }); });

To enable the propagation of the bound view properties to the model, we need to set the model's default
binding mode to TwoWay. For an OData model the default mode is OneWay which means that properties are not
written back to the model automatically. We want to propagate the state of the button automatically to the
model, when the button for a post is clicked.

webapp/i18n/i18n.properties

#~~~ Worklist View ~~~~~~~~~~~~~~~~~~~~~~~~~~ … #XTOL: tooltip for the flagged button
flaggedTooltip=Mark this post as flagged …

Finally, add the new string for the button tooltip to the resource bundle file. Now we can also test the
application manually by calling the webapp/test/mockServer.html page and making sure some of the
buttons are pressed initially as reflected in the model. When we flag an item by choosing the button, the
property is written back to the model transparently.

 Note
As this feature covers both conversion and interaction parts, we could also have written an integration test
for it to test the interaction part also. Feel free to add an integration test for this feature if you like, we will
skip it here to focus on unit testing in this step.

392 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Related Information

Formatting, Parsing, and Validating Data [page 854]

Step 6: A First OPA Test

A bulletin board may contain many posts. We expect to have a high data load once it is officially released. Then,
there might be performance issues and long loading times if we display all entries at the same time. Therefore
we will introduce a feature that limits the initial display to 20 items. The user can then click on a more button to
view more items. As with the unit test, we start by writing an integration test for this feature and then add the
application functionality later.

Preview

Figure 116: The OPA test page is waiting for more items to be loaded

Coding

You can view and download all files in the Demo Kit at Testing - Step 6.

Integration Test Setup

All integration tests are located in the webapp/test/integration folder and can be started manually by
calling the opaTests.qunit.html file in the same folder or the entry page. Similar to the unit tests, the HTML

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 393

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.testing.06/preview

page is a QUnit runner that calls all integration tests of the app and displays the test results in a readable
format. It also might be omitted by other testrunners. There are also two namespaces defined for the app and
the integration test folder as you have seen in the unit test setup.

We write integration tests with OPA5 – a tool that is integrated and delivered with SAPUI5. It is the short name
for One-Page Acceptance tests for SAPUI5. "One-Page" here means that OPA5 is designed for single-page Web
applications, i.e. applications that consist only of one HTML file. OPA5 runs in the same browser window as the
application to be tested.

 Note
There is also a stand-alone version of OPA5 called “OPA” available that can be used for testing any kind of
single-page Web application and that does not provide any SAPUI5-specific functionality. In this tutorial,
“OPA” always refers to OPA5. It includes functionality for easily finding and matching SAPUI5 controls as
well as their properties and aggregations.

Figure 117: Integration test infrastructure in the project

For structuring integration tests with OPA we use “journeys”. A test journey contains all test cases for a specific
view or use case, for example the navigation journey simulates user interaction with the app.

The journey uses another structuring element of OPA called “page object” that encapsulates actions and
assertions needed to describe the journey. Typically those are related to a view in the app but there can also be
stand-alone pages for browsers or common functionality.

 Note
When you first start writing tests, you may find it difficult to figure out the correct control locators. The Test
Recorder tool can suggest a solution in the form of a code snippet. For most controls, it can find a
combination of matchers that match a single control. Then, all you need to do is copy the code snippet to
your OPA5 page object. For more information, see Test Recorder [page 1251].

394 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

webapp/test/integration/WorklistJourney.js

sap.ui.define(["sap/ui/test/opaQunit",
 "./pages/Worklist"
], function (opaTest) {
 "use strict";
 QUnit.module("Posts");
 opaTest("Should see the table with all posts", function (Given, When, Then) {
 // Arrangements
 Given.iStartMyApp();
 // Assertions Then.onTheWorklistPage.theTableShouldHavePagination().
 and.theTitleShouldDisplayTheTotalAmountOfItems();
 });

 opaTest("Should be able to load more items", function (Given, When, Then) {
 //Actions
 When.onTheWorklistPage.iPressOnMoreData();

 // Assertions Then.onTheWorklistPage.theTableShouldHaveAllEntries();
 // Cleanup
 Then.iTeardownMyApp();
 }); });

Let’s add our first new OPA test to the WorklistJourney.js file. We describe all test cases related to the
worklist logic. We can see that there is already a test Should see the table with all posts defined
that checks if the table contains the expected number of items. There is a function opaTest that initiates a test
description and receives a test description as the first argument as well as a callback function as the second
argument. This format is similar to the unit test function QUnit.test except for the three arguments of the
callback function that are specific to OPA.

The three objects Given, When, Then are filled by the OPA runtime when the test is executed and contain the
arrangements, actions, and assertions for the test. The "Given-When-Then" pattern is a common style
for writing tests in a readable format. To describe a test case, you basically write a user story. Test cases in this
format are easy to understand, even by non-technical people.

Let’s give it a try with our new feature that only displays 20 posts in the table initially and will load more posts
when we press a trigger button or scroll down. Here is our user story "Should see the table with all posts" and
its code representation:

● Arrangements
Define possible initial states, e.g. the app is started, or specific data exists. For performance reasons,
starting the app is usually done only in the first test case of a journey. Given.iStartMyApp();

● Actions
Define possible events triggered by a user, e.g. entering some text, clicking a button, navigating to another
page. When.onTheWorklistPage.iPressOnMoreData();

● Assertions
Define possible verifications, e.g. do we have the correct amount of items displayed, does a label display
the right data, is a list filled. At the end of the test case, the app is destroyed again. This is typically done
only once in the last test case of the journey for performance reasons.
Then.onTheWorklistPage.theTableShouldHaveAllEntries ().and.iTeardownMyApp();

Please also note that you have to move the and.iTeardownMyApp() concatenation from the previous
opaTest function and put it at the end of the last test of a journey, in this case this is our new test. For

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 395

performance reasons, we only start and destroy the app once per journey, as it takes several seconds to load
the app. You can concatenate actions and assertions with the OPA helper object and in an easily readable way.
The functions will be executed one after another.

Now you might wonder where all those descriptive functions and the helper object onTheWorklistPage are
coming from. The answer is simple, the onTheWorklistPage object is a structuring element of OPA and
inside we will implement the actions and assertions used in this test.

webapp/test/integration/pages/Worklist.js

sap.ui.define(['sap/ui/test/Opa5',
 'sap/ui/test/matchers/AggregationLengthEquals',
 'sap/ui/test/matchers/I18NText', 'sap/ui/test/actions/Press'],
 function (Opa5,
 AggregationLengthEquals,
 I18NText,
 Press) {
 "use strict";
 var sViewName = "Worklist",
 sTableId = "table";
 Opa5.createPageObjects({
 onTheWorklistPage: {
 actions: { iPressOnMoreData: function () {
 // Press action hits the "more" trigger on a table
 return this.waitFor({
 id: sTableId,
 viewName: sViewName,
 actions: new Press(),
 errorMessage: "The table does not have a trigger."
 });
 } },
 assertions: { theTableShouldHavePagination: function () {
 return this.waitFor({
 id: sTableId,
 viewName: sViewName,
 matchers: new AggregationLengthEquals({
 name: "items",
 length: 20
 }),
 success: function () {
 Opa5.assert.ok(true, "The table has 20 items on
the first page");
 },
 errorMessage: "The table does not contain all items."
 });
 }, theTableShouldHaveAllEntries: function () {
 return this.waitFor({
 id: sTableId,
 viewName: sViewName,
 matchers: new AggregationLengthEquals({
 name: "items",
 length: 23
 }),
 success: function () {

396 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Opa5.assert.ok(true, "The table has 23 items");
 },
 errorMessage: "The table does not contain all items."
 });
 },
 theTitleShouldDisplayTheTotalAmountOfItems: function () {
 return this.waitFor({
 id: "tableHeader",
 viewName: sViewName,
 matchers: new I18NText({
 key: "worklistTableTitleCount",
 propertyName: "text",
 parameters: [23]
 }),
 success: function () {
 Opa5.assert.ok(true, "The table header has 23
items");
 },
 errorMessage: "The table header does not contain the
number of items: 23"
 });
 }
 }
 } });

As you can see, the OPA page object is constructed with the call Opa5.createPageObjects and a
configuration object that contains the actions and assertions properties.

For our test case we need to add an action iPressOnMoreData and an existing assertion
theTableShouldHaveAllEntries. OPA tests are running asynchronously, so each action and assertion
starts with a waitFor statement. The OPA run time will check and wait for the condition to be fulfilled every
400 ms by polling. If the condition is met, the success function of the configuration is called. If the condition is
still not fulfilled after a certain amount of time (by default it is 15 seconds but this can be configured) the test
will fail.

Let’s start with the action iPressOnMoreData. We define a waitFor statement with the current view and the
table. Those IDs are stored as internal variables in the require statement above and are available in all tests.
OPA will now try to find the table based on IDs. As soon as the table is available on the screen and it can be
interacted with (it is visible, not busy,...), the Press action is invoked, if not, the error message is displayed and
the test fails. When executed on a table, the Press action will simulate that a users chooses the More Data
button.

 Note
The Press action depends on the control that it is triggered on and has a default behavior for most UI
controls. If you, for example, execute Press on a sap.m.Page, this will trigger the Back button's Press
event. This behavior can be overridden by passing an ID as argument to the action. For more information,
see the API Reference: sap.ui.test.actions.Press.

The assertion theTableShouldHaveAllEntries is structured similarly, but it does not trigger an action.
Here, we use the success function of waitFor to assert if our application is in the expected state. This state is
defined by the matchers (in our case we expect that the list contains 23 items by using the
AggregationLengthEquals. The success function does not execute the additional checks that are needed
for triggering an action. the liste does not have to be interactable to verify that the state of the application is
correct..

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 397

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.test.actions.Press.html

With this helper object we can simply check the length of the table aggregation items to the expected number
of items. We have 23 entries in our local mock data that we also use for this integration test. You can see that
the number of items is actually hard-coded in the test. So only if the table has exactly 23 items, the matcher is
evaluating to true and the assertion is passed successfully.

 Note
The items in our app are served from the mock server with a slight delay so that we can see how a real
service on a backend system would behave. Even if we would have a real backend, we would purposely use
the mock server for manual testing and for using them in our test cases as the test data remains stable and
unchanged. This creates a more reliable test environment and easier tests. So we can write a test that
checks exactly for 23 items here.

Now run the webapp/test/integration/opaTests.qunit.html file and make sure that the test is failing.
When our new test is invoked, OPA will run into a timeout because the trigger area is not found yet. You can see
more information, if you open the developer console of your browser and check the messages in the console.

Conventions

● Use OPA tests for UI-related integration tests
● Structure OPA tests with page objects
● Use the standard matchers provided by OPA5 if possible

Related Information

Integration Testing with One Page Acceptance Tests (OPA5) [page 1182]
Test Recorder [page 1251]
API Reference: sap.ui.test.matchers
API Reference: sap.ui.test.Opa5
Samples: sap.ui.test.Opa5

398 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.test.matchers
https://sapui5.hana.ondemand.com/#/api/sap.ui.test.Opa5
https://sapui5.hana.ondemand.com/#/entity/sap.ui.test.Opa5

Step 7: Changing the Table to a Growing Table

Let’s switch back to developing and add the missing feature for the test we implemented in the previous step.
We will simply change the table to a growing table as this is a basic feature of the table. This will display a
trigger at the end of the table that the user can click on to display more items.

Preview

Figure 118: The List of posts is now dynamically loading more items when we scroll to the end of the page

Coding

You can view and download all files in the Samples in the Demo Kit at Testing - Step 7.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 399

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.testing.07/preview

webapp/view/Worklist.view.xml

<mvc:View … <semantic:FullscreenPage
 id="page"
 title="{i18n>worklistViewTitle}">
 <semantic:content>
 <Table
 id="table" growing="true" width="auto"
 …
 >
 …
 </Table>
 </semantic:content>
 …
 </semantic:FullscreenPage> </mvc:View>

We simply set the parameter growing to true to enable our feature. Now we can run the integration test that
we just wrote in the previous step and it should not fail anymore. Similarly, if we run the app, we now see only
20 items initially. And if we choose the More button then three more items are loaded.

Conventions

● Use OPA tests for UI-related integration tests

Related Information

Growing Feature for Table and List [page 2342]
API Reference: sap.m.Table

Step 8: Testing Navigation

So far, we have a list of posts on the home page of the app. But typically, a post comes with more details that
should be displayed on a separate detail page. We call it the post page because it displays details of a post. In
this step we will introduce a new journey to test the post page. We write tests that trigger typical navigation
events with OPA. Testing navigation greatly helps in reducing manual testing efforts as it covers a lot of testing
paths. It is good practice to cover every view of your application with at least one test, since OPA will check if an
exception is thrown. In this way you can detect critical errors very fast.

400 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.Table.html

Preview

Figure 119: We add an OPA test that selects an item from the table and navigates to the post page

Coding

You can view and download all files in the Demo Kit at Testing - Step 8.

webapp/test/integration/PostJourney.js (New)

sap.ui.define([
 "sap/ui/test/opaQunit",
 "./pages/Worklist",
 "./pages/Browser",
 "./pages/Post"
], function (opaTest) {
 "use strict";

 QUnit.module("Post");

 opaTest("Should see the post page when a user clicks on an entry of the
list", function (Given, When, Then) {
 // Arrangements
 Given.iStartMyApp();

 //Actions
 When.onTheWorklistPage.iPressOnTheItemWithTheID("PostID_15");

 // Assertions
 Then.onThePostPage.theTitleShouldDisplayTheName("Jeans");
 });

 opaTest("Should go back to the TablePage", function (Given, When, Then) {
 // Actions
 When.onThePostPage.iPressTheBackButton();

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 401

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.testing.08/preview

 // Assertions
 Then.onTheWorklistPage.iShouldSeeTheTable();
 });

 opaTest("Should be on the post page again when the browser's forward button
is pressed", function (Given, When, Then) {
 // Actions
 When.onTheBrowser.iPressOnTheForwardButton();

 // Assertions
 Then.onThePostPage.theTitleShouldDisplayTheName("Jeans");

 // Cleanup
 Then.iTeardownMyApp();
 });
});

This new journey for the Post page introduces a test case that tests the navigation and also tests if the browser
history is in the correct state, so that the user can navigate through our app with the back and forward button
of the browser. This time, instead of adding a test we will add a new journey.

A journey represents a user’s task in our app. Journeys start with the startup of our app and end with a
teardown in the last test. We don’t write isolated tests here, since starting up the app takes a lot of time and
doing it too often slows down our test execution and feedback time considerably. If the execution speed of the
tests is no problem, you may also write isolated tests.

Our new journey consists of three user interaction steps:

1. User chooses a Post to view the details
2. User chooses the Back button on the Detail page of the Post to see the list again
3. User chooses the Forward button to revisit the details of the post

webapp/test/integration/pages/Worklist.js – action object

sap.ui.define(['sap/ui/test/Opa5',
 'sap/ui/test/matchers/AggregationLengthEquals',
 'sap/ui/test/matchers/I18NText', 'sap/ui/test/matchers/BindingPath', 'sap/ui/test/actions/Press'
],
 function (Opa5,
 AggregationLengthEquals,
 I18NText,
 BindingPath,
 Press) {
 "use strict";
 var sViewName = "Worklist",
 sTableId = "table";
 Opa5.createPageObjects({
 onTheWorklistPage: {
 actions: {
… ,
 iPressOnTheItemWithTheID: function (sId) {
 return this.waitFor({
 controlType: "sap.m.ColumnListItem",
 viewName: sViewName,
 matchers: new BindingPath({

402 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 path: "/Posts('" + sId + "')"
 }),
 actions: new Press(),
 errorMessage: "No list item with the id " + sId + "
was found."
 });
 }

Now that we have written our spec how the navigation to the Post page is planned, we first need to implement
the "click" on a list item. To identify the item we are looking for, we use the BindingPath matcher. Doing so, we
make sure that even if the order of the items changes, we always choose the same item. The press action
simulates a user click on the item.

webapp/test/integration/pages/Post.js (New)

sap.ui.define([
 'sap/ui/test/Opa5',
 'sap/ui/test/matchers/Properties',
 'sap/ui/test/actions/Press'
], function (Opa5, Properties, Press) {
 "use strict";
 var sViewName = "Post";
 Opa5.createPageObjects({
 onThePostPage: {
 baseClass: Common,
 actions: {
 iPressTheBackButton: function () {
 return this.waitFor({
 id: "page",
 viewName: sViewName,
 actions: new Press(),
 errorMessage: "Did not find the nav button on object
page"
 });
 }
 },
 assertions: {
 theTitleShouldDisplayTheName: function (sName) {
 return this.waitFor({
 success: function () {
 return this.waitFor({
 id: "objectHeader",
 viewName: sViewName,
 matchers: new Properties({
 title: sName
 }),
 success: function (oPage) {
 Opa5.assert.ok(true, "was on the
remembered detail page");
 },
 errorMessage: "The Post " + sName + " is not
shown"
 });
 }
 });
 }
 }
 }
 });
 });

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 403

After navigating to the Post page, we need a new OPA5 Page object for the page to implement our actions and
assertions.

An OPA5 Page object is used to group and reuse actions and assertions that are related to a specific part of the
screen. For more information, see Cookbook for OPA5 [page 1188].

We implement a press event on the page’s nav button and we assert that we are on the correct page by
checking the title in the object header. The nav button is retrieved via DOM reference, because the page does
not offer us an API here. Since the DOM ID is the most stable attribute, we are using this to retrieve the button.

webapp/test/integration/pages/Worklist.js – assertion object

… ,
 iShouldSeeTheTable: function () {
 return this.waitFor({
 id: sTableId,
 viewName: sViewName,
 success: function () {
 Opa5.assert.ok(true, "The table is visible");
 },
 errorMessage: "Was not able to see the table."
 });
 } …

After going back, we want to move forwards again, but we need to check if the back navigation actually took
place. So we assert that we are back on our table of posts again. We achieve this with a very simple waitFor
statement just checking if the table is present.

webapp/test/integration/pages/Browser.js (New)

sap.ui.define([
 'sap/ui/test/Opa5'
], function (Opa5) {
 "use strict";
 Opa5.createPageObjects({
 onTheBrowser: {
 baseClass: Common,
 actions: {
 iPressOnTheForwardButton: function () {
 return this.waitFor({
 success: function () {
 Opa5.getWindow().history.forward();
 }
 });
 }
 },
 assertions: {}
 }
 });
 });

We now implement an action that is triggered when the Forward button is chosen. Since it is not part of the
browser's UI and it could be used on any page of our application, we just declare our browser’s UI as an own

404 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

OPA page object. To simulate the Forward button, we use the history API of the browser. We have to wrap our
action in a waitFor statement. Otherwise the action would be executed before our app is started.

webapp/test/integration/AllJourneys.js

sap.ui.define(["sap/ui/test/Opa5",
 "./arrangements/Startup",
 "./WorklistJourney", "./PostJourney"], function (Opa5, Startup) {
 "use strict";
 Opa5.extendConfig({
 arrangements: new Startup(),
 viewNamespace: "sap.ui.demo.bulletinboard.view.",
 autoWait: true
 }); });

To make navigation tests complete, we add the new journey to the AllJourneys file that is invoked by the OPA
test page.

If you execute the tests now, you can see in the logs of the developer tools that OPA is waiting for the object
page to be displayed. Of course, this will not happen as it is not yet implemented. But we already have a pretty
good idea on how we will implement the feature in the next step

Related Information

API Reference: sap.ui.test.matchers.BindingPath

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 405

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.test.matchers.BindingPath.html

Step 9: Adding the Post Page

Now that we have covered all kinds of tests for navigation, we introduce our Post page that shows details of a
post in the bulletin board. To achieve this, we have to introduce a new view/controller pair and adjust the
routing of the application.

Preview

Figure 120: The Post page with more details about the post

Coding

You can view and download all files in the Samples in the Demo Kit at Testing - Step 9.

webapp/manifest.json

{ "_version": "1.12.0",
 …
 "sap.ui5": {
 …
 "routing": {
 "config": {
 "routerClass": "sap.m.routing.Router",
 "viewType": "XML",
 "viewPath": "sap.ui.demo.bulletinboard.view",
 "controlId": "app",
 "controlAggregation": "pages",
 "async": true
 },
 "routes": [
 {
 "pattern": "",
 "name": "worklist",
 "target": "worklist" },
 {
 "pattern": "Post/{postId}",
 "name": "post",

406 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.testing.09/preview

 "target": "post"
 }],
 "targets": {
 "worklist": {
 "viewName": "Worklist",
 "viewId": "worklist",
 "viewLevel": 1 },
 "post": {
 "viewName": "Post",
 "viewId": "post",
 "viewLevel": 2
 } }
 }
 } }

We have already used the #/Posts/{postId} hash in our tests and a view called the Post page, so we will now
add a route and a target to the routing configuration of the descriptor with these patterns. It is simply defining a
mandatory routing parameter postId that we fill with the ID from the model when navigating. The target
configuration references a view called Post with a view level deeper than the home page. For more information,
see the Navigation and Routing [page 291] tutorial.

webapp/view/Worklist.view.xml

<mvc:View controllerName="sap.ui.demo.bulletinboard.controller.Worklist"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc"
 xmlns:core="sap.ui.core"
 xmlns:semantic="sap.m.semantic">
 <semantic:FullscreenPage
 id="page"
 title="{i18n>worklistViewTitle}">
 <semantic:content>
 <Table …>
 …
 <items>
 <ColumnListItem vAlign="Middle"
 type="Navigation"
 press=".onPress"> …
 </ColumnListItem>
 </items>
 </Table>
 </semantic:content>
 …
 </semantic:FullscreenPage> </mvc:View>

We configure the table items to be of type Navigation, so a user can trigger the navigation by choosing an
item. When a press event is triggered, the onPress handler is called to navigate to the Post page.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 407

webapp/controller/Worklist.controller.js

sap.ui.define(['./BaseController',
 'sap/ui/model/json/JSONModel',
 '../model/formatter',
 '../model/FlaggedType',
 'sap/m/library'
], function(BaseController, JSONModel, formatter, FlaggedType, mobileLibrary) {
 "use strict";
 return
BaseController.extend("sap.ui.demo.bulletinboard.controller.Worklist", {
 …
 /* === */
 /* event handlers */
 /* === */
 … /**
 * Event handler when a table item gets pressed
 * @param {sap.ui.base.Event} oEvent the table selectionChange event
 * @public
 */
 onPress: function (oEvent) {
 this.getRouter().navTo("post", {
 // The source is the list item that got pressed
 postId:
oEvent.getSource().getBindingContext().getProperty("PostID")
 });

 }, …
 }); });

The press handler function instructs the router to navigate to the post pattern with the PostID from the
binding context of the currently selected item. This fills the mandatory URL parameter, navigates to the post
page, and updates the hash automatically.

webapp/view/Post.view.xml (New)

<mvc:View
 controllerName="sap.ui.demo.bulletinboard.controller.Post"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc"
 xmlns:semantic="sap.m.semantic">
 <semantic:FullscreenPage
 id="page"
 busy="{postView>/busy}"
 busyIndicatorDelay="0"
 navButtonPress=".onNavBack"
 showNavButton="true"
 title="{i18n>objectTitle}">
 <semantic:content>
 <ObjectHeader
 id="objectHeader"
 title="{Title}"
 number="{
 path: 'Price',
 formatter: '.formatter.numberUnit'
 }"

408 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 numberUnit="{Currency}"
 backgroundDesign="Translucent">
 </ObjectHeader>
 </semantic:content>
 </semantic:FullscreenPage>
</mvc:View>

We provide a minimalistic detail page showing only some fields of the selected post for now. In the test we use
the following information:

● Control with the ID page on this view
● title of the post we navigate to
● Back button to navigate back to the home page

webapp/controller/Post.controller.js (New)

sap.ui.define([
 './BaseController',
 'sap/ui/model/json/JSONModel',
 '../model/formatter'
], function (BaseController, JSONModel, formatter) {
 "use strict";
 return BaseController.extend("sap.ui.demo.bulletinboard.controller.Post", {
 formatter: formatter,
 /* === */
 /* lifecycle methods */
 /* === */
 /**
 * Called when the worklist controller is instantiated.
 * @public
 */
 onInit: function () {
 // Model used to manipulate control states. The chosen values make
sure,
 // detail page is busy indication immediately so there is no break in
 // between the busy indication for loading the view's meta data
 var oViewModel = new JSONModel({
 busy: false
 });

this.getRouter().getRoute("post").attachPatternMatched(this._onPostMatched,
this);
 this.setModel(oViewModel, "postView");
 },
 /* === */
 /* event handlers */
 /* === */
 /**
 * Navigates back to the worklist
 * @function
 */
 onNavBack: function () {
 this.myNavBack("worklist");
 },
 /* === */
 /* internal methods */
 /* === */
 /**
 * Binds the view to the post path.
 *
 * @function

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 409

 * @param {sap.ui.base.Event} oEvent pattern match event in route
'object'
 * @private
 */
 _onPostMatched: function (oEvent) {
 var oViewModel = this.getModel("postView"),
 oDataModel = this.getModel();
 this.getView().bindElement({
 path: "/Posts('" + oEvent.getParameter("arguments").postId +
"')",
 events: {
 dataRequested: function () {
 oDataModel.metadataLoaded().then(function () {
 // Busy indicator on view should only be set if
metadata is loaded,
 // otherwise there may be two busy indications next
to each other on the
 // screen. This happens because route matched
handler already calls '_bindView'
 // while metadata is loaded.
 oViewModel.setProperty("/busy", true);
 });
 },
 dataReceived: function () {
 oViewModel.setProperty("/busy", false);
 }
 }
 });
 }
 });
});

The controller of the Post page needs to take care of the data binding when a navigation event has happened.
In the init function of the controller we define a local view model and attach to the routing event. When the
routing event is triggered, we bind the view to the post with the specified ID.

410 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Step 10: Test Suite and Automated Testing

In this step, we will step back from our tests and application features that we have implemented so far and add
another important piece of test code: The test suite page. A test suite can execute multiple tests and collect the
results. This comes in handy for automatic tools in a continuous integration process.

Preview

Figure 121: A Selenium runner for the test suite of the bulletin board

Coding

You can view and download all files in the Samples in the Demo Kit at Testing - Step 10.

webapp/test/testsuite.qunit.html (New)

<!DOCTYPE HTML>
<html>
<head>
 <title>QUnit test suite for Bulletin Board</title>
 <script src="resources/sap/ui/qunit/qunit-redirect.js"></script>
 <script src="testsuite.qunit.js" data-sap-ui-testsuite></script>
</head>
<body>
</body>
</html>

Create a new testsuite.qunit.html file. Here, you add the testsuite.qunit.js script, which we will
define next, as a source.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 411

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.testing.10/preview

webapp/test/testsuite.qunit.js (New)

window.suite = function() {
 "use strict";

 var oSuite = new parent.jsUnitTestSuite(),
 sContextPath = location.pathname.substring(0,
location.pathname.lastIndexOf("/") + 1);

 oSuite.addTestPage(sContextPath + "unit/unitTests.qunit.html");
 oSuite.addTestPage(sContextPath + "integration/opaTests.qunit.html");

 return oSuite;
};

This new testsuite.qunit.js file contains the logic for the QUnit tests. The coding is quite straightforward:
We require the relevant QUnit files for redirecting to the central test suite and provide a configuration function
suite() that is called automatically by the testrunner.

Inside this function, we add the QUnit pages for the app’s unit and integration tests. For technical reasons, we
have to provide an absolute path to the HTML pages so that the testrunner can execute them centrally. You can
now run the webapp/test/testsuite.qunit.html file to check if all unit and integration tests are running
fine with one URL.

 Note
A similar test suite can be configured as a pre-commit hook in local build environments or as a pre-submit
hook in a continuous integration scenario on the central build server. Only when all tests run successfully, a
new change is accepted and may be merged.

Alternatively you can use a local test runner, such as Selenium or Karma, that automatically executes all
tests whenever a file in the app project has been changed. All of these configurations run the tests and
collect the resulting messages for further analysis. Therefore, it is very important to define meaningful test
descriptions and success as well as error messages as you write your application tests.

Conventions

● Create a test suite app that triggers all your tests at once
● Run the test suite whenever you change the code of the app

Related Information

Karma Home Page
Selenium Home Page
Test Automation [page 1229]

412 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/disclaimer?site=https%3A%2F%2Fwww.npmjs.com%2Fpackage%2Fkarma
http://help.sap.com/disclaimer?site=http%3A%2F%2Fdocs.seleniumhq.org%2F

Step 11: Testing User Input

In this step, we will write a test that simulates a user search. We will enter the search string into the search field
and check if the correct results are shown in worklist table.

Preview

Figure 122: Testing user input in a search field

Coding

You can view and download all files in the Demo Kit at Testing - Step 11.

test/integration/WorklistJourney.js

sap.ui.define(["sap/ui/test/opaQunit",
 "./pages/Worklist"
], function (opaTest) {
 "use strict";
 QUnit.module("Posts");
 opaTest("Should see the table with all posts", function (Given, When, Then) {
 // Arrangements
 Given.iStartMyApp();
 // Assertions
 Then.onTheWorklistPage.theTableShouldHavePagination().
 and.theTitleShouldDisplayTheTotalAmountOfItems();
 });
 opaTest("Should be able to load more items", function (Given, When, Then) {
 //Actions

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 413

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.testing.11/preview

 When.onTheWorklistPage.iPressOnMoreData();
 // Assertions
 Then.onTheWorklistPage.theTableShouldHaveAllEntries();
 }); opaTest("Should be able to search for items", function (Given, When, Then) {
 //Actions
 When.onTheWorklistPage.iSearchFor("Bear");

 // Assertions
 Then.onTheWorklistPage.theTableHasOneItem();

 // Cleanup
 Then.iTeardownMyApp();
 }); });

In this example, we extend the WorklistJourney.js file with a new test "Should be able to enter
text into the search field". The action within this test simulates a user entering text into a search
field, so we pass a search string "Bear" to this action. It is important to move the Teardown step to the last
test, otherwise our app would be destroyed and the test would not be able to find the Statistics tab.

Delete .and.iTeardownMyApp(); from the previous test in the file and add the new test case.

test/integration/pages/Worklist.js

sap.ui.require(['sap/ui/test/Opa5',
 'sap/ui/test/matchers/AggregationLengthEquals',
 'sap/ui/test/matchers/I18NText',
 'sap/ui/test/matchers/BindingPath',
 'sap/ui/demo/bulletinboard/test/integration/pages/Common', 'sap/ui/test/actions/Press',
 'sap/ui/test/actions/EnterText'],
 function (Opa5,
 AggregationLengthEquals,
 I18NText,
 BindingPath,
 Common, Press,
 EnterText) { "use strict";
 var sViewName = "Worklist",
 sTableId = "table";
 Opa5.createPageObjects({
 onTheWorklistPage: {
 baseClass: Common,
 actions: {
... },

 iSearchFor: function (sSearchString) {
 return this.waitFor({
 id: "searchField",
 viewName: sViewName,
 actions: new EnterText({
 text: sSearchString
 }),
 errorMessage: "SearchField was not found."
 });
 }

414 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 },
 assertions: { theTableHasOneItem: function () {
 return this.waitFor({
 id: sTableId,
 viewName: sViewName,
 matchers: new AggregationLengthEquals({
 name: "items",
 length: 1
 }),
 success: function () {
 Opa5.assert.ok(true, "The table contains one
corresponding entry");
 },
 errorMessage: "The table does not contain one item."
 });
 }, ...

For the new test case we add an action iEnterSearchStringIntoSearchField and a new assertion
theTableShouldHaveCorrespondingEntries.

In iEnterSearchStringIntoSearchField, we use the EnterText action and load the dependency
sap/ui/test/actions/EnterText.

We define a waitFor statement with the current view and with the ID of our SearchField, which is stored as
an internal variable. This is done in the same way as in the iPressOnMoreData action that we implemented in
our first OPA test. But now we don't use the EnterText action. As soon as the SearchField is visible on the
screen and can be interacted with, the EnterText action is invoked. If is is not invoked, an error message is
displayed and the test fails.

The assert part is implemented in the same way as in our first OPA test. Again, we use the matchers to check
the state. Here we check the number of items in the table resulting from the simulated search. According to our
mock data, there should be only one item visible.

Conventions

Actions in OPA never contain a QUnit assertion.

Related Information

API Reference: sap.ui.test.actions.EnterText

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 415

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.test.actions.EnterText.html

Step 12: Adding a Search

We now add a search field to our bulletin board and define a filter that represents the search term. This is done
similarly as in step 24 of the Walkthrough tutorial.

Preview

Figure 123: Search field

Coding

You can view and download all files in the Samples in the Demo Kit at Testing - Step 12.

webapp/view/Worklist.view.xml

... <Table
 id="table"
 width="auto"
 class="sapUiResponsiveMargin"
 growing="true"
 items="{
 path: '/Posts',
 sorter: {
 path: 'Title',
 descending: false
 }
 }"
 busyIndicatorDelay="{worklistView>/tableBusyDelay}"
 updateFinished=".onUpdateFinished">
 <headerToolbar>
 <Toolbar>
 <Label id="tableHeader" text="{worklistView>/
worklistTableTitle}"/>

416 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.testing.12/preview

 <ToolbarSpacer />
 <SearchField id="searchField" width="auto"
search=".onFilterPosts" /> </Toolbar>
 </headerToolbar> ...

We add a ToolbarSpacer and a SearchField to the headerToolbar of our table.

webapp/controller/Worklist.controller.js

sap.ui.define(['./BaseController',
 'sap/ui/model/json/JSONModel',
 '../model/formatter',
 '../model/FlaggedType', "sap/ui/model/Filter",
 "sap/ui/model/FilterOperator", 'sap/m/library'], function (BaseController, JSONModel, formatter, FlaggedType, Filter,
FilterOperator, mobileLibrary) { "use strict";
...
 onUpdateFinished: function (oEvent) {
 // update the worklist's object counter after the table update
 var sTitle,
 oTable = oEvent.getSource(),
 iTotalItems = oEvent.getParameter("total");
 // only update the counter if the length is final and
 // the table is not empty
 if (iTotalItems && oTable.getBinding("items").isLengthFinal()) {
 sTitle =
this.getResourceBundle().getText("worklistTableTitleCount", [iTotalItems]);
 } else {
 sTitle = this.getResourceBundle().getText("worklistTableTitle");
 }
 this.getModel("worklistView").setProperty("/worklistTableTitle",
sTitle);
 }, onFilterPosts: function (oEvent) {

 // build filter array
 var aFilter = [];
 var sQuery = oEvent.getParameter("query");
 if (sQuery) {
 aFilter.push(new Filter("Title", FilterOperator.Contains,
sQuery));
 }

 // filter binding
 var oTable = this.byId("table");
 var oBinding = oTable.getBinding("items");
 oBinding.filter(aFilter);
 }, ...

To enable filtering, we extend the controller with a method that applies the search term entered in the search
field to the list binding, similarly as we did for InvoiceList.controller.js in step 24 of the Walkthrough
tutorial.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 417

Related Information

Step 42 of Walkthrough: Filtering [page 131]

Step 13: Testing User Interaction

In this step we want to write a test that simulates user interaction with an icon tab bar. We want to change the
tab and check if the correct content is shown.

Preview

Figure 124: Test interacting with an icon tab bar

Coding

You can view and download all files in the Samples in the Demo Kit at Testing - Step 13.

test/integration/journeys/PostJourney.js

sap.ui.define(["sap/ui/test/opaQunit",
 "./pages/Worklist",
 "./pages/Browser",

418 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.testing.13/preview

 "./pages/Post"
], function (opaTest) {
 "use strict";
 …
 opaTest(…) {
 // Actions
 When.onTheBrowser.iPressOnTheForwardButton();

 // Assertions Then.onThePostPage.theTitleShouldDisplayTheName("Jeans");
 });
 opaTest("Should select the statistics tab", function (Given, When, Then)
{
 // Actions
 When.onThePostPage.iPressOnTheTabWithTheKey("statistics");
 // Assertions
 Then.onThePostPage.iShouldSeeTheViewCounter()
 .and.iTeardownMyApp();
 });

We extend the PostJourney.js file with a new test. It is important to move the Teardown to the last test,
otherwise our app would be removed and the test would not be able to find the Statistics tab.

Delete .and.iTeardownMyApp(); from the last test in the file and add the new test case

test/integration/pages/Post.js

sap.ui.define(['sap/ui/test/Opa5',
 'sap/ui/test/matchers/Properties',
 'sap/ui/test/actions/Press'
], function (Opa5, Properties, Press) {
 "use strict";

 var sViewName = "Post";

 Opa5.createPageObjects({
 onThePostPage: {
 actions: {
 iPressTheBackButton: function () {
 return this.waitFor({
 id: "page",
 viewName: sViewName,
 actions: new Press(),
 errorMessage: "Did not find the nav button on object
page"
 }); },
 iPressOnTheTabWithTheKey: function (sKey) {
 return this.waitFor({
 controlType: "sap.m.IconTabFilter",
 viewName : sViewName,
 matchers: new Properties({
 key: sKey
 }),
 actions: new Press(),
 errorMessage: "Cannot find the icon tab bar"
 });

 } },
 assertions: {

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 419

 theTitleShouldDisplayTheName: function (sName) {
 return this.waitFor({
 id: "objectHeader",
 viewName: sViewName,
 matchers: new Properties({
 title: sName
 }),
 success: function (oPage) {
 Opa5.assert.ok(true, "was on the remembered
detail page");
 },
 errorMessage: "The Post " + sName + " is not shown"
 }); },

 iShouldSeeTheViewCounter: function () {
 return this.waitFor({
 id: "viewCounter",
 viewName: sViewName,
 success: function () {
 Opa5.assert.ok(true, "The view counter was
visible");
 },
 errorMessage: "The view counter could not be found"
 });
 } }
 }
 }); });

To change the selected tab, you set the selected key of the sap.m.IconTabBar. We have looked up the
setSelectedKey function in the API documentation of the control, so we know that we can write a waitFor
statement that makes use of it.

There is no uniform way of triggering user interactions with OPA. In most cases it is sufficient to use the API of
the controls, e.g. setting a value. Note however, that calling the API methods of a control might not trigger the
same events as when pressing the control.

In the assert part we add a new assertion for checking the visibility of a control with the ID viewCounter.
Each waitFor statement checks if the control is rendered and visible unless you set visible: false.
Therefore, we only use the ok(true) assertion in the success handler of the waitFor statement since QUnit
expects at least one assertion for a test.

Conventions

● Actions in OPA never contain a QUnit assertion

Related Information

API Reference: sap.m.IconTabBar
API Overview and Samples: sap.m.IconTabBar

420 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.IconTabBar.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.m.IconTabBar/samples

Step 14: Adding Tabs

We want to display statistics for posts, for example, how many times it was viewed. To achieve this, we
implement an icon tab bar with an Info tab and a Statistics tab. The existing content should be placed on the
Info tab and the view count on the Statistics tab.

Preview

Figure 125: An icon tab bar with statistics

Coding

You can view and download all files in the Samples in the Demo Kit at Testing - Step 14.

view/Post.view.xml

<mvc:View controllerName="sap.ui.demo.bulletinboard.controller.Post"
 xmlns="sap.m" xmlns:form="sap.ui.layout.form" xmlns:mvc="sap.ui.core.mvc"
 xmlns:semantic="sap.m.semantic">
 <semantic:FullscreenPage
 id="page"
 busy="{postView>/busy}"
 busyIndicatorDelay="0"
 navButtonPress=".onNavBack"
 showNavButton="true"
 title="{i18n>objectTitle}">
 <semantic:content>
 <ObjectHeader
 id="objectHeader"
 title="{Title}"
 number="{
 path: 'Price',
 formatter: '.formatter.numberUnit'
 }"

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 421

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.testing.14/preview

 numberUnit="{Currency}"
 backgroundDesign="Translucent">
 </ObjectHeader> <IconTabBar id="iconTabBar"
 expanded="{device>/isNoPhone}"
 class="sapUiNoContentPadding">
 <items>
 <IconTabFilter icon="sap-icon://hint" key="info" >
 <form:SimpleForm>
 <form:content>
 <Label text="{i18n>postDateLabel}"/>
 <Text text="{Timestamp}"/>
 <Label text="{i18n>postDescriptionLabel}"/>
 <Text text="{Description}"/>
 </form:content>
 </form:SimpleForm>
 </IconTabFilter>
 <IconTabFilter icon="sap-icon://inspection" key="statistics">
 <Text text="Viewed 55555 times" id="viewCounter"/>
 </IconTabFilter>
 </items>
 </IconTabBar> </semantic:content>
 </semantic:FullscreenPage> </mvc:View>

We add a sap.m.IconTabBar with the two tabs info and statistics. The statistics tab we have
already referred to in our test case.

Inside the first tab there is a sap.ui.layout.form.SimpleForm with a date and a description field that are
mapped to the model data. In the second tab we place a new Text control.

In this very simple example, we just put a static text in the tab. In a real application, we would bind the value to
the model.

webapp/i18n/i18n.properties

#~~~ Object View ~~~~~~~~~~~~~~~~~~~~~~~~~~ #XTIT: Object view title
objectTitle=Post
#XTIT: Post view date label
postDateLabel=Posted At

#XTIT: Post view description label
postDescriptionLabel=Description #~~~ Footer Options ~~~~~~~~~~~~~~~~~~~~~~~

We add the missing texts to the i18n.properties file.

422 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Step 15: Writing a Short Date Formatter Using TDD

It's now time to improve the content of the Info tab. We want to see the Posted At date in a formatted way.
Based on the age of the post, we either display the time, a textural representation of the day, or the date only.

Preview

Figure 126: Unit tests of the formatter

Depending on the current date, we distinguish four different formatting categories, as shown in the table below:

Table 6: Formatting Categories

Category Sample Input Expected Output (for en-US)

Today 2013/02/13 12:05:20 12:05 PM

Yesterday 2013/02/12 12:05:20 Yesterday

Last 7 days 2013/02/08 12:05:20 Friday

Others 2011/02/05 12:05:20 Dec 5, 2011

As you can see, we have many different cases, and our formatter contains real logic.

We test this in a unit test. In this step we will follow an iterative approach. We first write a failing test and
immediately fix it by adding the production code to make the test pass. Then the next iteration starts. We do
not write more than one failing unit test at once.

 Note
There are many benefits of consequently applying the test-driven development (TDD) methodology, for
example, very fast feedback, you can execute your tests after each change and get immediate feedback if
the tests run green. You also spend less time debugging and for analysis. We recommend that you get
familiar with TDD and clean code practices. In this step you get a first impression how TDD results in better

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 423

separation of concerns, APIs, handling of dependencies, code reuse, and a test suite growing together with
the code.

Coding

You can view and download all files in the Samples in the Demo Kit at Testing - Step 15.

webapp/test/unit/AllTests.js

sap.ui.define(["./model/models",
 "./model/formatter",
 "./model/FlaggedType", "./model/DateFormatter"], function() {
 "use strict"; });

First, we add the new test file we are about to create to the AllTests.js file.

webapp/model/DateFormatter.js (New)

sap.ui.define([
 "sap/ui/base/Object"
], function(Object) {
 return Object.extend("sap.ui.demo.bulletinboard.model.DateFormatter", {
 });
});

We create an empty hull for our formatter implementation first so that we can include it in our test. It does not
contain any logic yet but simply extends an SAPUI5 base object.

webapp/test/unit/model/DateFormatter.js (New)

sap.ui.define([
 "sap/ui/demo/bulletinboard/model/DateFormatter"
], function(DateFormatter) {
 QUnit.module("DateFormatter");
 QUnit.test("initial", function(assert) {
 assert.ok(new DateFormatter());
 });
});

And we create our test that checks if there is a DateFormatter object. Now we can execute our unit tests. We
see that this test is failing as the object does not exist in our code yet.

424 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.testing.15/preview

webapp/test/unit/model/DateFormatter.js

sap.ui.define(["sap/ui/demo/bulletinboard/model/DateFormatter"
], function(DateFormatter) {
 QUnit.module("DateFormatter"); QUnit.test("Should return empty string if no date is given",
function(assert) {
 var oFormatter = new DateFormatter();
 var sFormattedDate = oFormatter.format(null);
 assert.strictEqual(sFormattedDate, "");
 }); });

Now we implement a test for the API of the format function. We assume it will have a Date object as input
parameter. In the first step, the test verifies that the format function returns an empty string if we pass null.

webapp/model/DateFormatter.js

sap.ui.define(["sap/ui/base/Object"
], function(Object) {
 return Object.extend("sap.ui.demo.bulletinboard.model.DateFormatter", { format: function() {
 return "";
 } });
 });

Now we fix our test again by returning the expected string.

Dependency Injection:

webapp/test/unit/model/DateFormatter.js

sap.ui.define(["sap/ui/demo/bulletinboard/model/DateFormatter",
 "sap/ui/core/Locale"
], function(DateFormatter, Locale) {
 QUnit.module("DateFormatter");
 QUnit.test("Should return empty string if no date is given",
function(assert) {
 var oFormatter = new DateFormatter({
 locale : new Locale("en-US")
 });
 var sFormattedDate = oFormatter.format(null);
 assert.strictEqual(sFormattedDate, "");
 }); QUnit.test("Should return time if date from today", function(assert) {
 var oFormatter = new DateFormatter({
 locale : new Locale("en-US")

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 425

 });
 var oDate = new Date(2015, 2, 14, 12, 5, 0, 0);
 var sFormattedDate = oFormatter.format(oDate);
 assert.strictEqual(sFormattedDate, "12:05 PM");
 }); });

Here our test expects that the date is displayed as time when the post is from today. If we rely on the browser
language the test would be fragile. It will fail in some languages. To avoid this, we pass the locale settings to the
formatter’s constructor. The test will use a fixed locale en-US in order to remain stable. This mechanism is
called Dependency Injection.

webapp/model/DateFormatter.js

sap.ui.define(["sap/ui/base/Object",
 "sap/ui/core/format/DateFormat"], function(Object, DateFormat) { return Object.extend("sap.ui.demo.bulletinboard.model.DateFormatter", { constructor: function(oProperties) {
 this.timeFormat = DateFormat.getTimeInstance({
 style: "short"
 }, oProperties.locale);
 }, format: function(oDate) { if (!oDate) { return ""; }
 return this.timeFormat.format(oDate); }
 });
 });

In the implementation we use the DateFormat of SAPUI5 to create a short date. The locale is passed on to the
getTimeInstance function.

 Note
The implementation should not do more than the current tests covers. This makes sure you cover all the
code paths. You can enable the code coverage by selecting the Enable coverage checkbox.

It will show the lines covered by your tests (white) and the ones that were not covered (red). For the single
test above the coverage looks like this. The red line is already covered by the previous test so in total we
have a test coverage of 100%.

426 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Refactoring:

webapp/test/unit/model/DateFormatter.js

sap.ui.define(["sap/ui/demo/bulletinboard/model/DateFormatter",
 "sap/ui/core/Locale"
], function(DateFormatter, Locale) { var oFormatter = null; QUnit.module("DateFormatter", {
 beforeEach: function() {
 oFormatter = new DateFormatter({
 locale: new Locale("en-US")
 });
 }
 }); QUnit.test("Should return empty string if no date is given",
function(assert) { /*Delete in your code: var oFormatter = new DateFormatter(); ...
 });
 QUnit.test("Should return time if date from today", function(assert) { /*Delete in your code: var oFormatter = new DateFormatter({
 /*Delete in your code: locale: new Locale("en-US")
 /*Delete in your code: }); ...
 }); });

Our tests are running so we can start refactoring our code. Since we need the DateFormatter object in every
test case we will move it to the QUnit module’s beforeEach function. As the name suggests, the function is
invoked before each test so we may use it to save some code we need in every test.

Dependency Injection to Get Independent from System Time:

webapp/test/unit/model/DateFormatter.js

sap.ui.define(["sap/ui/demo/bulletinboard/model/DateFormatter" "sap/ui/core/Locale"], function(DateFormatter, Locale) { var oFormatter = null;
 QUnit.module("DateFormatter", {
 beforeEach: function() {
 oFormatter = new DateFormatter({ now : function() {
 return new Date(2015, 2, 14, 14, 0, 0, 0).getTime();
 }, locale : new Locale("en-US")
 });
 }
 });
 ... QUnit.test("Should return 'Yesterday' if date from yesterday",
function(assert) {
 var oDate = new Date(2015, 2, 13);

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 427

 var sFormattedDate = oFormatter.format(oDate);
 assert.strictEqual(sFormattedDate, "Yesterday");
 }); });

The next test verifies that Yesterday is returned for yesterday's date. To keep the test independent of the
system time, we pass on a stable date to the formatter.

webapp/model/DateFormatter.js

sap.ui.define(["sap/ui/base/Object",
 "sap/ui/core/format/DateFormat"
], function(Object, DateFormat) {
 return Object.extend("sap.ui.demo.bulletinboard.model.DateFormatter", {
 constructor : function(oProperties) {
 this.timeFormat = DateFormat.getTimeInstance({
 style : "short"
 }, oProperties.locale); this.now = oProperties.now; },
 format : function(oDate) {
 if (!oDate) {
 return "";
 } var iElapsedDays = this._getElapsedDays(oDate);
 if (iElapsedDays === 0) { return this.timeFormat.format(oDate); } else if (iElapsedDays === 1) {
 return "Yesterday";
 }
 return this.dateFormat.format(oDate); },
 _getElapsedDays : function(oDate) {
 var iElapsedMilliseconds = this.now() - oDate.getTime();
 var fElapsedDays = iElapsedMilliseconds / 1000 / 60 / 60 / 24;
 return Math.floor(fElapsedDays);
 } }); });

In the implementation we add a calculation for determining how many days passed. If zero days passed, the
format function is called, and if one day passed Yesterday is returned. Currently we skip reading "Yesterday"
from the i18n model to keep the example simple.

Boundary Testing:

webapp/test/unit/model/DateFormatter.js

sap.ui.define(["sap/ui/demo/bulletinboard/model/DateFormatter",
 "sap/ui/core/Locale"
], function(DateFormatter, Locale) {
 var oFormatter = null;

428 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 ... QUnit.test("Should return day of the week if date < 7 days ago",
function(assert) {
 var oDate = new Date(2015, 2, 8);
 var sFormattedDate = oFormatter.format(oDate);
 assert.strictEqual(sFormattedDate, "Sunday");
 }); });

The next test verifies that the day of the week is returned. As test input we take a value at the boundary:
Sunday is one day before a different formatting pattern should be applied.

webapp/model/DateFormatter.js

sap.ui.define(["sap/ui/base/Object",
 "sap/ui/core/format/DateFormat"
], function(Object, DateFormat) {
 return Object.extend("sap.ui.demo.bulletinboard.model.DateFormatter", {
 constructor: function(oProperties) {
 this.timeFormat = DateFormat.getTimeInstance({
 style: "short"
 }, oProperties.locale); this.weekdayFormat = DateFormat.getDateInstance({
 pattern: "EEEE"
 }, oProperties.locale); this.now = oProperties.now;
 },
 format: function(oDate) {
 if (!oDate) {
 return "";
 }
 var iElapsedDays = this._getElapsedDays(oDate);
 if (iElapsedDays === 0) {
 return this.timeFormat.format(oDate);
 } else if (iElapsedDays === 1) {
 return "Yesterday"; } else if (iElapsedDays < 7) {
 return this.weekdayFormat.format(oDate);
 } } …

Now we define a new format in our constructor, the weekdayFormat. In the format function we apply the
format if the elapsed days are smaller than 7.

webapp/test/unit/model/DateFormatter.js

sap.ui.define(["sap/ui/demo/bulletinboard/model/DateFormatter",
 "sap/ui/core/Locale"
], function(DateFormatter, Locale) {
 var oFormatter = null;
 ... QUnit.test("Should return date w/o time if date > 7 days ago",
function(assert) {

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 429

 var oDate = new Date(2015, 2, 7);
 var sFormattedDate = oFormatter.format(oDate);
 assert.strictEqual(sFormattedDate, "Mar 7, 2015");
 }); });

In the next test we verify that the date is formatted as date without time. Again, we take a value at the
boundary.

webapp/model/DateFormatter.js

… constructor: function(oProperties) {
 this.timeFormat = DateFormat.getTimeInstance({
 style : "short"
 }, oProperties.locale);
 this.weekdayFormat = DateFormat.getDateInstance({
 pattern : "EEEE"
 }, oProperties.locale); this.dateFormat = DateFormat.getDateInstance({
 style : "medium"
 }, oProperties.locale); this.now = oProperties.now;
 },
 format: function(oDate) {
 if (!oDate) {
 return "";
 }
 var iElapsedDays = this._getElapsedDays(oDate);
 if (iElapsedDays === 0) {
 return this.timeFormat.format(oDate);
 } else if (iElapsedDays === 1) {
 return "Yesterday";
 } else if (iElapsedDays < 7) {
 return this.weekdayFormat.format(oDate); } else {
 return this.dateFormat.format(oDate);
 } }, …

In the implementation, we use a different style property for instantiating the dateFormat property. We call
the format of this instance for dates that are more than 6 days in the past.

Although our formatter depends on system time and locale settings, our tests are very easy to read and
maintain. We wrote blackbox tests, providing only the input and expecting a certain output without knowing the
implementation details. The DateFormatter does not actively resolve the dependencies to the system time
and locale settings. Instead, it asks its creator to pass the dependencies along in the constructor. In the next
step, we have to bring the pieces together.

430 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Step 16: Adding the Date Formatter

Our formatter does its job, but it is not yet used. In this step we will use it.

Preview

Figure 127: Date formatter in action

Coding

You can view and download all files in the Samples in the Demo Kit at Testing - Step 16.

webapp/view/Post.view.xml

… <IconTabBar id="iconTabBar"
 expanded="{device>/isNoPhone}"
 class="sapUiResponsiveContentPadding">
 <items>
 <IconTabFilter icon="sap-icon://hint" key="info">
 <form:SimpleForm>
 <form:content>
 <Label text="{i18n>postDateLabel}"/> <Text text="{
 path: 'Timestamp',
 formatter: '.formatter.date'
 }"/> <Label text="{i18n>postDescriptionLabel}"/>
 <Text text="{Description}"/>
 </form:content>
 </form:SimpleForm>
 </IconTabFilter>
 …
 </items>
</IconTabBar> …

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 431

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.testing.16/preview

On the Info tab we bind the date field to a format method .formatter.date of the controller of the view. The
leading . indicates that the function is defined on the controller instance.

webapp/model/formatter.js

sap.ui.define(["sap/ui/demo/bulletinboard/model/DateFormatter"], function
(DateFormatter) { ...
 return {
 ...
 numberUnit: function(sValue) {
 ... },
 date: function(date) {
 return new DateFormatter({now: Date.now}).format(date);
 } }; });

In the formatter.js file, create an instance of the previously implemented DateFormatter and provide
the necessary dependencies.

Now run the app again to see that the formatter is applied on the post date of the detail page.

 Note
The files that create objects with dependencies should be kept simple. They do not have multiple code
paths caused by if-else statements or loops. To test these components, just a few simple integration tests,
or merely smoke tests, are sufficient. We already know that the DateFormatter does the job right for all
the different cases.

Summary

You should now be familiar with the major development paradigms and concepts of SAPUI5 and have created a
very simple first app. You are now ready to build a proper app based on what you've learned.

Mock Server

In this tutorial, we will explore some advanced features of the mock server.

If no OData service is available or you simply don’t want to depend on the OData backend connectivity for your
development and tests, the mock server can mimic the OData back-end calls. It is designed to simulate an
OData provider by intercepting the HTTP communication made to the server, and providing a fake output. All
this is transparent to the data binding and usage of OData model.

In certain scenarios, using only the built-in OData simulation of the mock server is insufficient for completely
server-independent tests. For example, if your application is using an OData feature that is not supported by

432 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

the mock server, or if your application invokes a function import that depends on server specific
implementation (and thus is also not simulated generically). We will demonstrate how to use function callbacks
in order to change existing mock requests.

Additionally, we will demonstrate how to mock an additional request that is not simulated out of the box by the
SAPUI5 mock server.

 Caution
The tutorial describes how to use some advanced features of the mock server, disregarding the legal
aspects of shipping mock data. Usually the mock data and mock server invocation is done in a test folder
that is not shipped to customers. Be very careful that you don't ship mock data!

Preview

 Tip
You don't have to do all tutorial steps sequentially, you can also jump directly to any step you want. Just
download the code from the previous step, and start there.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 433

You can view and download the files for all steps in the Demo Kit at Mock Server. Copy the code to your
workspace and make sure that the application runs by calling the webapp/index.html file. Depending on
your development environment you might have to adjust resource paths and configuration entries.

For more information check the following sections of the tutorials overview page (see Get Started: Setup,
Tutorials, and Demo Apps [page 38]):

● Downloading Code for a Tutorial Step [page 40]
● Adapting Code to Your Development Environment [page 40]

Prerequisites

This tutorial assumes you have access to the SAP Web IDE either by having a trial account or a customer
account. For more information, see App Development Using SAP Web IDE [page 44].

You should also be familiar with the concepts explained in the Walkthrough [page 69] tutorial and with the
OData specification.

Related Information

Mock Server [page 1222]

Step 1: Initial App Without Data

We start with a simple app scenario with a list of items bound to an OData service. Since the OData service is
not available yet on a real server, we will use the mock server to simulate both data and data calls.

For this very simple tutorial app we will use an OData service called NerdMeetups that lists meet-up groups
according to location, date, topic, etc. The app will display a simple list populated by a function import call to
display only upcoming meet-ups (meet-ups with an event date greater to the current date).

Additionally, a button will fetch the first three meet-ups (using a custom URL parameter called first). This
exercise simply shows an app with no data retrieved from the back end. This can happen when the back end is
down, or when the service is not implemented yet.

Usually you start the development of an app with local mock data first. This way you can continue
implementing the application logic without depending on the back end readiness and connectivity.

434 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/entity/sap.ui.core.tutorial.mockserver/samples

Preview

Figure 128: The initial app

Coding

To set up your project for this tutorial, download the files for Step 1 in the Demo Kit at Mock Server - Step 1.
Copy the code to your workspace and make sure that the application runs by calling the webapp/test/
mockServer.html file.

Depending on your development environment you might have to adjust resource paths and configuration
entries. The project structure and the files coming with this tutorial are explained in detail in the Walkthrough
[page 69] tutorial.

You should have the same files as displayed in the following figure:

Figure 129: Folder structure with downloaded files

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 435

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.mockserver.01/preview

Step 2: Creating a Mock Server to Simulate Data

In this step, we use the mock server to add data to our app without dependency to any remote server or
system.

Preview

Figure 130: The app now contains data

Coding

You can view and download all files in the Demo Kit at Mock Server - Step 2.

webapp/test/mockServer.html

<!DOCTYPE HTML> <html>

436 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.mockserver.02/preview

<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <title>Mock Server Tutorial</title>
 <script id="sap-ui-bootstrap"
 src="resources/sap-ui-core.js"
 data-sap-ui-theme="sap_belize"
 data-sap-ui-resourceroots='{
 "sap.ui.demo.MockServer": "../"
 }' data-sap-ui-oninit="module:sap/ui/demo/MockServer/test/initMockServer" data-sap-ui-compatVersion="edge"
 data-sap-ui-async="true">
 </script>
</head>
<body class="sapUiBody">
 <div data-sap-ui-component data-name="sap.ui.demo.MockServer" data-
id="container" data-settings='{"id" : "MockServer"}'></div>
</body>
</html>

We use this file to run our app in test mode with mock data. The new artifact initMockServer performs the
required set up steps before the application component is instantiated. By doing so, we can catch all requests
that would go to the real service and process it locally with our mock server when the app is launched with the
webapp/test/mockServer.html.

 Note
A productive application does not contain the mock server code and thus connects to the real service
instead. The HTML page above is defined only for local testing and to be called in automated tests. The
application coding itself is unchanged and does not know the difference between the real and the mocked
back-end service.

The mock server does not need to be called from anywhere else in our code so we use sap.ui.require to
load dependencies asynchronously without defining a global namespace.

webapp/test/initMockServer.js

sap.ui.define(["sap/ui/demo/MockServer/localService/mockserver"
], function (mockserver) {
 "use strict";
 // initialize the mock server
 mockserver.init();
 // initialize the embedded component on the HTML page
 sap.ui.require(["sap/ui/core/ComponentSupport"]); });

We load a dependency to a file called mockserver.js that is located in the webapp/localService folder.
This file contains our local mock server. It is immediately called with the init method before we initialize the
application component.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 437

webapp/localService/metadata.xml

<?xml version="1.0" encoding="utf-8" standalone="yes"?> <edmx:Edmx Version="1.0"
 xmlns:edmx="http://schemas.microsoft.com/ado/2007/06/edmx">
 <edmx:DataServices
 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"
m:DataServiceVersion="1.0">
 <Schema Namespace="NerdMeetup.Models"
 xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"
 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/
metadata"
 xmlns="http://schemas.microsoft.com/ado/2006/04/edm">
 <EntityType Name="Meetup">
 <Key>
 <PropertyRef Name="MeetupID" />
 </Key>
 <Property Name="MeetupID" Type="Edm.Int32" Nullable="false" />
 <Property Name="Title" Type="Edm.String" Nullable="true" />
 <Property Name="EventDate" Type="Edm.DateTime"
Nullable="false" />
 <Property Name="Description" Type="Edm.String" Nullable="true" />
 <Property Name="HostedBy" Type="Edm.String" Nullable="true" />
 <Property Name="ContactPhone" Type="Edm.String"
Nullable="true" />
 <Property Name="Address" Type="Edm.String" Nullable="true" />
 <Property Name="Country" Type="Edm.String" Nullable="true" />
 <Property Name="Latitude" Type="Edm.Double" Nullable="false" />
 <Property Name="Longitude" Type="Edm.Double" Nullable="false" />
 <Property Name="HostedById" Type="Edm.String" Nullable="true" />
 <Property Name="Location"
Type="NerdMeetup.Models.LocationDetail" Nullable="false" />
 </EntityType>
 <ComplexType Name="LocationDetail" />
 <EntityContainer Name="NerdMeetups"
m:IsDefaultEntityContainer="true">
 <EntitySet Name="Meetups"
EntityType="NerdMeetup.Models.Meetup" />
 <FunctionImport Name="FindUpcomingMeetups" EntitySet="Meetups"
ReturnType="Collection(NerdMeetup.Models.Meetup)" m:HttpMethod="GET" />
 </EntityContainer>
 </Schema>
 </edmx:DataServices> </edmx:Edmx>

The metadata file contains information about the service interface and does not need to be written manually.
It defines a Meetup entity, a Meetups entity set and a function import definition.

webapp/localService/mockdata/Meetups.json (New)

[{
 "MeetupID": 1,
 "Title": "Toronto Tech Meet-Up",
 "EventDate": "/Date(1593810000000)/",
 "Description": "The best way to expand your knowledge and network of the
Toronto technology community"
},
{
 "MeetupID": 2,
 "Title": "Los Angeles redditors",

438 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 "EventDate": "/Date(1572779994000)/",
 "Description": "This is a meet-up group specifically for redditors of r/
LosAngeles. If you don't know what that is, this isn't the meet-up you're
looking for"
}, {
 "MeetupID": 3,
 "Title": "San Francisco UI5 Lovers",
 "EventDate": "/Date(1642122807784)/",
 "Description": "Meet the bay area UI5 community and spread the love for UI5
technology"
}, {
 "MeetupID": 4,
 "Title": "Designers + Geeks New York",
 "EventDate": "/Date(1575544794000)/",
 "Description": "Bringing designers + geeks together to talk shop, startups,
and do some knowledge sharing. All types of designers + geeks welcome"
}, {
 "MeetupID": 5,
 "Title": "New York City Geek Adventure Group",
 "EventDate": "/Date(1539339594000)/",
 "Description": "Are you looking to have fun and go on random adventures?"
}]

The Meetups.json file is automatically read by the mock server later in this step. It represents a flat array of
Meetup items.

webapp/localService/mockserver.js (New)

sap.ui.define([
 "sap/ui/core/util/MockServer",
 "sap/base/Log"
], function(MockServer, Log) {
 "use strict";

 return {
 /**
 * Initializes the mock server.
 * You can configure the delay with the URL parameter "serverDelay".
 * The local mock data in this folder is returned instead of the real
data for testing.
 * @public
 */
 init: function() {
 // create
 var oMockServer = new MockServer({
 rootUri: "/"
 });

 // simulate against the metadata and mock data
 oMockServer.simulate("../localService/metadata.xml", {
 sMockdataBaseUrl: "../localService/mockdata",
 bGenerateMissingMockData: true
 });

 // start
 oMockServer.start();

 Log.info("Running the app with mock data");
 }

 };

});

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 439

Now we can write the code to initialize the mock server that will simulate the requests instead of the real server.
We load the MockServer module as a dependency and create a helper object that defines an init method to
start the server. This method is called before the Component initialization in the mockServer.html file above.
The init method creates a MockServer instance with the same URL as the real service. The URL in
configuration parameter rootURI is now served by our test server instead of the real service.

Next, we set two global configuration settings for all MockServer instances that tell the server to respond
automatically and introduce a delay of one second to imitate a typical server response time.

In order to simulate a manual back-end call we can simply call the simulate method on the MockServer
instance with the path to our newly created metadata.xml file. This will read the test data from our local file
system and set up the URL patterns that will mimic the real service. The first parameter is the path to the
service metadata.xml document. The second parameter is an object with the following properties:

● sMockdataBaseUrl: path where to look for mock data files in JSON format
● bGenerateMissingMockData: Boolean property to tell the MockServer to use auto-generated mock

data in case no JSON files are found.

We call the function start on the mock server instance. From this point on, each request matching the URL
pattern rootURI will be processed by the MockServer.

Finally, we add a message toast to indicate for the user that the app runs with mock data.

This approach is perfect for local and automated testing, even without any network connection. Your
development does not depend on the availability of a remote server, i.e. to run your tests independently from
the back-end service. You can control the mocked data so the requests will return reliable and predictable
results.

If the real service connection cannot be established, for example, when there is no network connection, you can
always fall back to the local test page and run the app with mock data.

Just run the app now again with the mockServer.html file.. The list should now be populated with meet-ups
from our mock data. You can also choose the button and see data.

Related Information

Mock Server [page 1222]
API Reference: sap.ui.core.util.MockServer

Step 3: Handling Custom URL Parameters

In this step, we add the functionality to interpret URL parameters in our local mock server configuration.

We know that the OData provider of this service implements a URL parameter that returns only the first three
entries of a set. So, for example, calling the URL with parameter/Meetups?first=3 should return only the
first 3 meet-up entries instead of all available entries.

440 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.util.MockServer.html

Preview

Figure 131: Only the next three meet-ups are shown

Coding

You can view and download all files in the Demo Kit at Mock Server - Step 3.

webapp/localService/mockserver.js

sap.ui.define(["sap/ui/core/util/MockServer",
 "sap/base/Log"
], function(MockServer, Log) {
 "use strict";
 return {
 /**
 * Initializes the mock server.
 * You can configure the delay with the URL parameter "serverDelay".

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 441

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.mockserver.03/preview

 * The local mock data in this folder is returned instead of the real
data for testing.
 * @public
 */
 init: function() {
 // create
 var oMockServer = new MockServer({
 rootUri: "/"
 });
 oMockServer.simulate("../localService/metadata.xml", {
 sMockdataBaseUrl: "../localService/mockdata",
 bGenerateMissingMockData: true
 }); // handling custom URL parameter step
 var fnCustom = function(oEvent) {
 var oXhr = oEvent.getParameter("oXhr");
 if (oXhr && oXhr.url.indexOf("first") > -1) {
 oEvent.getParameter("oFilteredData").results.splice(3, 100);
 }
 };
 oMockServer.attachAfter("GET", fnCustom, "Meetups"); // start
 oMockServer.start();
 Log.info("Running the app with mock data");
 }
 };
});

In some scenarios, a server-specific implementation is used to calculate the returned data. For example, you
can use a custom URL parameter that is typically interpreted by the server. The mock server ignores it, thus
still returning the entire set of meet-ups.

In this tutorial, we use the URL parameter first=3 to fetch the first three entries. So, for example, calling to /
Meetups?first=3 should return at most three meet-up entries.

However, since this is a custom parameter that is not part of the standard official OData query options, it will
not get processed correctly by the mock server. Moreover, the mock server simply ignores it and return the
entire set of meet-ups.

We now enable the functionality when running in mock mode. As its functionality corresponds to the OData
$top system query, we simply evaluate it to $top at runtime.

First, we create a callback function that we later attach to every GET request made to the Meetups entity set of
the service. Note that we choose the attachAfter event that is fired after the built-in request processing of
the mock server. The event contains the actual XHR object and the mock data to be returned to the application.
Inside the callback function we remove all results starting from third entry: The oFilteredData parameter
comes with the event attachAfter and contains the mock data entries that are about to be returned in the
response.

Second, we attach the callback to every GET request to the specific Meetups entity set.

442 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Step 4: Calling a Function Import

We only want to display the upcoming meetings and hide the meetings happened in the past in our app. By
using a function import that calculates these items on the back end we do not need to do the calculation on the
client. The mock server will be instructed to do the calculation locally for testing purposes.

Preview

Figure 132: Only the upcoming meet-ups are shown

Coding

You can view and download all files in the Demo Kit at Mock Server - Step 4.

webapp/localService/metadata.xml

... <EntityContainer Name="NerdMeetups" m:IsDefaultEntityContainer="true">
 <EntitySet Name="Meetups" EntityType="NerdMeetup.Models.Meetup" />
 <FunctionImport Name="FindUpcomingMeetups" EntitySet="Meetups"
ReturnType="Collection(NerdMeetup.Models.Meetup)" m:HttpMethod="GET" />
 </EntityContainer>
 </Schema>
 </edmx:DataServices> </edmx:Edmx>

The function import we are going to use is declared in the metadata.xml file.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 443

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.tutorial.mockserver.04/preview

webapp/view/App.view.xml

... //Delete items="{/Meetups}" <List id="list" items="{/FindUpcomingMeetups}"
noDataText="{i18n>noDataText}"> ...

We change the binding of the list to a function import call that returns only upcoming meet-ups, instead of the
call to the entire meet-ups collection.

After saving and running the app again, we should get the following result:

Figure 133: No data visible

Since the function import call is not simulated automatically by the mock server, we do not see any data in list,
and a failed network call is issued in the developer tools of the browser.

 Tip
In Google Chrome, mocked requests will appear in a debug level log of the console (both request and
response) and not on the Network tab. If you do see them in the Network tab, they are not mocked and you
need to check your code.

In order to simulate the function import call, we write our own (mocked) implementation, and add to the
internal list of requests.

webapp/localService/mockserver.js

sap.ui.define(["sap/ui/thirdparty/jquery", "sap/ui/core/util/MockServer",
 "sap/base/Log"], function(jQuery, MockServer, Log) { "use strict";
 return {
 /**
 * Initializes the mock server.
 * You can configure the delay with the URL parameter "serverDelay".
 * The local mock data in this folder is returned instead of the real
data for testing.
 * @public
 */
 init: function() {
 // create

444 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 var oMockServer = new MockServer({
 rootUri: "/"
 });
 oMockServer.simulate("../localService/metadata.xml", {
 sMockdataBaseUrl: "../localService/mockdata",
 bGenerateMissingMockData: true
 }); // handling mocking a function import call step
 var aRequests = oMockServer.getRequests();
 aRequests.push({
 method: "GET",
 path: new RegExp("FindUpcomingMeetups(.*)"),
 response: function(oXhr) {
 Log.debug("Incoming request for FindUpcomingMeetups");
 var today = new Date();
 today.setHours(0); // or today.toUTCString(0) due to
timezone differences
 today.setMinutes(0);
 today.setSeconds(0);
 jQuery.ajax({
 url: "/Meetups?$filter=EventDate ge " + "/Date(" +
today.getTime() + ")/",
 dataType : 'json',
 async: false,
 success : function(oData) {
 oXhr.respondJSON(200, {}, JSON.stringify(oData));
 }
 });
 return true;
 }
 });
 oMockServer.setRequests(aRequests); // handling custom URL parameter step
 var fnCustom = function(oEvent) {
 var oXhr = oEvent.getParameter("oXhr");
 if (oXhr && oXhr.url.indexOf("first") > -1) {
 oEvent.getParameter("oFilteredData").results.splice(3, 100);
 }
 };
 oMockServer.attachAfter("GET", fnCustom, "Meetups");
 // start
 oMockServer.start();
 Log.info("Running the app with mock data");
 }
 }; });

We push a new request handler to mock the function import call as follows:

1. Fetch the array of requests from the MockServer. The mock server holds an internal list of requests that
you have to get and set if you want to modify.

2. Push a new request handler to handle the function import
3. Set the updated request array

The request handler has the following structure:

● method: The HTTP method of the mock request
● path: The relative path (appended to the rootUri) of the request.

We can define the path as a regular expression, for example, to handle URL parameters.
● response: A response function that simulates the answer from the server

The response function executes a request to the Meetups entity set with an OData $filter query that
actually returns all meet-ups with EventDate that is greater than or equals today. We compose a date for the
filter and send it to the server manually as a synchronous request.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 445

It is o.k. to use jQuery.sap.sjax here, because the call will not actually leave the client. It triggers a new
request that again is intercepted and processed by the mock server.

We finally respond on the XHR object by calling the respondJSON API. It will add the proper content type
header for the JSON format and send the result. We provide the HTTP status code 200 (success) and the
'stringified' response data as the arguments. Returning true at the end of the function indicates that we have
completed the processing of the request in this handler (no additional request handlers should be checked for
that request).

When you now start the app again you will see a list of upcoming meet-ups.

Creating and Editing Mock Data in SAP Web IDE (Optional)

webapp/localService/mockserver.js

... oMockServer.simulate("localService/metadata.xml", { sMockdataBaseUrl : "localService/mockdata", bGenerateMissingMockData : true
}); ...

The path we gave in the simulate function for mock data is where we want to store the .json file(s).

● Save it (in JSON format) from a real service
● Create it manually
● Generate it in SAP Web IDE by choosing Edit Mock Data in the context menu of the medatdata.xml file.

For more information about SAP Web IDE, see the documentation for SAP Web IDE on the SAP Help Portal
at https://help.sap.com/viewer/p/SAP_Web_IDE.

Figure 134: Editing mock data in SAP Web IDE

446 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://help.sap.com/viewer/p/SAP_Web_IDE

Worklist App

In this tutorial we will build an app using SAPUI5 that, for example, a shop owner can use to manage his
product stock levels.

The app provides the following features:

● Overview of all products
● Track products with shortages or products that are completely out of stock
● Reorder products that are low in stock
● View product details and add comments

We will use the worklist template as a starting point for this tutorial and add additional features to the app as
we go through the steps. The template implements a typical "Worklist" floorplan, one of the patterns that are
specified by the SAP Fiori design guidelines, but you can also use it as a starting point for easily creating any
kind of list-based apps. For more information about worklist floorplans, see the Related Information section at
the bottom of this topic.

Preview

Figure 135: Start page of the app with list of products and actions

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 447

Figure 136: Product detail page of the app

Choose your development environment

You can do this tutorial either with SAP Web IDE or choose your own development environment:

● If you use SAP Web IDE, you don't need to set up a development environment, a server and so on. All you
need is a browser and an account for the SAP Cloud Platform. If you don't have an account yet, you can
easily get a trial account. We recommend to continue with the SAP Web IDE as it has out-of-the-box
support for SAPUI5 and because there is no setup overhead at all.
In this case, you start with the template that is available in SAP Web IDE as described in option 1 for step 1
of this tutorial (see Step 1 (Option 1): Creating the Initial App with an App Template in SAP Web IDE [page
449]).

● If you want to use your local development environment and deploy to any Web server of your choice, you
download the code for step 1 from the Demo Kit at Worklist App. In this case, start with option 2 for step 1
of this tutorial (see Step 1 (Option 2): Downloading the Code [page 454]).

There might be some small differences between the worklist app code generated by the SAP Web IDE template
and the code downloaded from the Demo Kit. However, the differences are small and not relevant for the
purpose of this tutorial

 Tip
You don't have to do all tutorial steps sequentially, you can also jump directly to any step you want. Just
download the code from the previous step, copy it to your workspace and make sure that the application
runs by calling the webapp/test.html file.

For more information check the following sections of the tutorials overview page (see Get Started: Setup,
Tutorials, and Demo Apps [page 38]):

448 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/entity/sap.m.tutorial.worklist/samples

● Downloading Code for a Tutorial Step [page 40]
● Adapting Code to Your Development Environment [page 40]

Related Information

SAP Fiori design guidelines: Worklist Floorplans
Worklist Template [page 1400]
Get a SAP Cloud Platform trial account

Step 1 (Option 1): Creating the Initial App with an App
Template in SAP Web IDE

This first step is only relevant if you decided to use the SAP Web IDE. In this step, we will set up the worklist app
using a template and configure the service to display products in the app. The template includes generic app
functionality and tests that can be easily extended with custom functionality for our use case.

Prerequisites

Set up your SAP Web IDE and define a destination to the Northwind OData service as described under App
Development Using SAP Web IDE [page 44].

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 449

https://experience.sap.com/fiori-design/floorplans/work-list/
https://account.hanatrial.ondemand.com/

Preview

Figure 137: The worklist app

Create the Initial App Using the Template Wizard

1. Launch SAP Web IDE.

2. Choose File New Project from Template
3. Select the SAP Fiori Worklist Application template, and choose the latest SAPUI5 version from the SAPUI5

Version dropdown box. Choose Next.
4. On the Basic Information screen, enter MyWorklistApp as project name. Enter the following data:

Table 7: App Descriptor Data

Field Value Description

Title Manage Products Title of the app, which will be dis
played as header.

450 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Field Value Description

Namespace mycompany.myapp The application namespace is a
unique identifier for your application
resources.

Description My Worklist App Short description of your app.

Choose Next.

5. On the Data Connection screen, select Service URL in the Sources area.
Choose northwind - Northwind OData Service and enter the URL /V2/Northwind/Northwind.svc/.

 Note
If you cannot find the Northwind service, create the destination as described under Create a Northwind
Destination [page 49].

Validate the URL by choosing Test next to the URL. You should now see the service entities as displayed in
the following screenshot:

 Note
At runtime, the relative URL /V2/Northwind/Northwind.svc/ is prefixed with /destinations/
northwind. As a result, all our Northwind OData requests will be proxied via the Northwind OData
Service destination that is defined in the SAP Cloud Platform Cockpit. The destination contains the
URL to the resource http://services.odata.org and has the proxy type Internet. From this
configuration the proxy knows where the requests are directed.

Choose Next.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 451

6. On the Template Customization screen, select the following data:

Table 8: Application Scenario

Field Value Description

App Type Standalone App We create a standalone app that can
be run without SAP Fiori launchpad
(FLP).

If you choose to build an SAP Fiori
Launchpad Component, you automat
ically get test HTML files with the FLP
Sandbox, and the app automatically
includes additional features like Save
as Tile.

Table 9: Data Binding - Object

Field Value Description

Object Collection Products This is the main entity set that will be
displayed in the app. Some of the
other fields below are automatically
selected depending on this field.

Object Collection ID ProductID The unique key that is used to identify
the object collection.

Object Title ProductName The display name of the main entity.

Object Numeric Attribute UnitsInStock The number displayed next to the
product name. In this scenario we pick
the UnitsInStock. This represents
the stock quantity of the product.

7. Choose Next and Finish

452 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

A new folder MyWorklistApp is now available in your local workspace. It contains the following files and
folders of the initial app:

Figure 138: Folder structure of the initial project

 Note
The auto-generated files Gruntfile.js, package-lock.json, and package.json are only
necessary for working with SAP Web IDE or a local IDE. They are not included in case you download the
example code from the Samples.

These three files will not be changed throughout this tutorial, so we will ignore them in the following
steps.

8. Run the app.
There are several HTML files available in the webapp/test folder, which enable you to run the app with a
Mock Server. You can also use them to run unit tests and OPA tests.

 Note
The template comes with two run configurations for SAP Web IDE: You can either run the app with data
from a real back end service (Run webapp/index.html) or with local mock data (Run webapp/test/
mockServer.html (Mock Server)).

We choose the mock server option, because then the app will still be able to run even if the back end is
unavailable or the service is not implemented yet. We could even configure a delay to make local
testing more realistic.

You should see the screen, which contains generated mock data.

From now on you can quickly run the app by selecting the root folder MyWorklistApp of your project in SAP
Web IDE and pressing the Run button. The system will automatically use the option from the Run menu that
you chose last (in this case, the Run with MockServer option).

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 453

 Note
The texts in the i18n.properties file are automatically generated based on the template Customizing
(OData entity set, entities, properties, and texts). The result can be incorrect texts like "Enter an
<Products> name or a part of it." You should therefore revise the generated texts in the i18n.properties
file.

Related Information

App Development Using SAP Web IDE [page 44]

Step 1 (Option 2): Downloading the Code

In this step, we set up the initial app without SAP Web IDE.

If you are working with another IDE or development environment than the SAP Web IDE, you can simply
download the code from the Samples in the Demo Kit at Worklist App - Step 1 and skip the wizard steps
described in the previous step of this tutorial. The code contains a preconfigured application project that can
be used as a starting point to develop the worklist app. You can deploy the downloaded application to a (local)
Web server and call the webapp/test/mockServer.html file in your browser manually to start the app.

To access the real service, you would need to set up a proxy service that connects your app project deployed on
a Web server to the remote service. Due to the so called same-origin policy browsers deny AJAX requests to
service endpoints in case the domain/subdomain, protocol, or port differ from the app’s domain/subdomain,
protocol, or port. Cross-origin resource sharing (CORS) makes it possible to break out of these restrictions
derived from the same-origin policy. With CORS the server and browser agree which cross-origin requests are
allowed. Another way to bypass the same-origin policy is using a proxy on the same host of the app. To keep it
simple, our app contains a test page to run the app with local mock data instead of retrieving the data from a
real server hosted somewhere else. This way we won’t have any issues related to the same-origin policy of the
browsers, as long as we run the app with our mock server.

 Note
The texts in the i18n.properties file are automatically generated based on the template Customizing
(OData entity set, entities, properties, and texts). The result can be incorrect texts like "Enter an
<Products> name or a part of it." You should therefore revise the generated texts in the i18n.properties
file.

Related Information

Development Environment [page 41]

454 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.worklist.01/preview

Step 1 (Result): The Initial App

With the generated code (SAP Web IDE) or the downloaded code from the Demo Kit, you have an initial app
structure with the following content inside the webapp folder.

● Home Page (webapp/view/Worklist.view.xml file)
The home page of the app shows a table of products including the corresponding number of units in the
stock. The title of the table shows how many items are available. A search field in the header toolbar of the
table allows you to search for a product by name. Pressing a table row navigates the user to a new page
that shows the details of the pressed product.

● Data
You can run the app with the real service or with the mock server serving mock data. In the webapp/
localService/mockserver.js file, the mock server is configured. Using the mock server in this tutorial
allows us to easily run the code even without network connection and without the need of having a remote
server for our application data. To run the app with the mock server and its corresponding mock data the /
webapp/test/mockServer.html file has to be called in the browser.
The webapp/localService/metadata.xml file is used by the mock server to describe our OData
service. In this step, the mock server will generate mock data based on this file. In a subsequent step the
mock server will use our own custom mock data.

● Configuration of the App
In the webapp/manifest.json descriptor file, we configure our app. The descriptor file contains the
following relevant sections:
○ sap.app

In this section we reference an i18n.properties file and use a special syntax to bind the texts for
the title and description properties. In the dataSources section, we tell our app where to find our
mainService OData service. As you might guess, the URI correlates to the rootUri of our mock
server instance, which can be found in webapp/localService/mockserver.js. It is important that
these two paths match to allow our mock server to provide the test data we defined above.

○ sap.ui5
In the sap.ui5 section, we declare with the rootView parameter that our
mycompany.myapp.MyWorklistApp.view.App view shall be loaded and used as the rootView for
our app.
Furthermore, we define two models to be automatically instantiated and bound to the component: an
i18n model and a default model "". The latter references our mainService dataSource, which is
declared in our sap.app section as an OData 2.0 data source. The i18n file can be found at webapp/
i18n/i18n.properties. The mainService data source will be mocked by our mock server.

 Note
There is a test.html file in the webapp folder. This file serves as an easy entry point for developers to
run and test the app in various ways during development. It contains links to the relevant files inside the
test folder, which you can use to run with the Mock Server or to run unit tests and OPA tests.

Related Information

App Templates: Kick Start Your App Development [page 1399]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 455

Folder Structure: Where to Put Your Files [page 1428]

Step 2: Custom Mock Data

In this step, we want to change the mock data of the initial app. The service metadata only contains a
description of the service entities. The mock server that is part of the app will auto-generate random mock
data based on the data types defined in the metadata file. To have a more realistic development environment
we will now add additional sample data.

Preview

Figure 139: The product list of the initial app with custom mock data

456 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Figure 140: Folder structure for this step including custom mock data

The webapp/localService/metadata.xml file used by the mock server describes our OData service. The
service only has two OData entities, and the data for these two entities is located in the folder webapp/
localService/mockdata:

● Products
A product has typical properties like ProductName and UnitsInStock as well as a navigation property to
a supplier entity referenced by a SupplierID. Of course, the entity has an ID property ProductID. The
corresponding EntitySet is Products. The actual test data containing several products is located in the
webapp/localService/mockdata/Products.json file.

● Suppliers
Later in this tutorial, we will display some information about the supplier of a product. The properties are
CompanyName, Address, City, PostalCode, Country, and so on; all of them contain textual information
of type Edm.String. The entity has an ID property SupplierID and the corresponding EntitySet is
Suppliers. The supplier data for products is located in the file webapp/localService/mockdata/
Suppliers.json.

Coding

You can view and download all files in the Samples in the Demo Kit at Worklist App - Step 2.

webapp/localService/mockdata/Products.json (New)

[
 {

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 457

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.worklist.02/preview

 "ProductID": 1,
 "ProductName": "Chai",
 "UnitsInStock": 39,
 "UnitsOnOrder": 10,
 "UnitPrice": 8,
 "SupplierID": 1,
 "Discontinued": false,
 "Supplier": {
 "__deferred": {
 "uri": "/destinations/northwind/V2/Northwind/Northwind.svc/Products(1)/
Supplier"
 }
 }
 },
 {
 "ProductID": 2,
 "ProductName": "Chang",
 "UnitsInStock": 81,
 "UnitsOnOrder": 7,
 "UnitPrice": 6,
 "SupplierID": 1,
 "Discontinued": true,
 "Supplier": {
 "__deferred": {
 "uri": "/destinations/northwind/V2/Northwind/Northwind.svc/Products(2)/
Supplier"
 }
 }
 },
 {
 "ProductID": 3,
 "ProductName": "Aniseed Syrup",
 "UnitsInStock": 100,
 "UnitsOnOrder": 6,
 "UnitPrice": 3,
 "SupplierID": 3,
 "Discontinued": false,
 "Supplier": {
 "__deferred": {
 "uri": "/destinations/northwind/V2/Northwind/Northwind.svc/Products(3)/
Supplier"
 }
 }
 },
 {
 "ProductID": 4,
 "ProductName": "Schwarzwälder Kirschtorte",
 "UnitsInStock": 2,
 "UnitsOnOrder": 3,
 "UnitPrice": 19,
 "SupplierID": 3,
 "Discontinued": false,
 "Supplier": {
 "__deferred": {
 "uri": "/destinations/northwind/V2/Northwind/Northwind.svc/Products(4)/
Supplier"
 }
 }
 },
 {
 "ProductID": 5,
 "ProductName": "Chef Anton's Cajun Seasoning",
 "UnitsInStock": 11,
 "UnitsOnOrder": 9,
 "UnitPrice": 108,
 "SupplierID": 3,
 "Discontinued": false,
 "Supplier": {

458 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 "__deferred": {
 "uri": "/destinations/northwind/V2/Northwind/Northwind.svc/Products(5)/
Supplier"
 }
 }
 },
 {
 "ProductID": 6,
 "ProductName": "Chef Anton's Gumbo Mix",
 "UnitsInStock": 21,
 "UnitsOnOrder": 12,
 "UnitPrice": 18,
 "SupplierID": 4,
 "Discontinued": false,
 "Supplier": {
 "__deferred": {
 "uri": "/destinations/northwind/V2/Northwind/Northwind.svc/Products(6)/
Supplier"
 }
 }
 },
 {
 "ProductID": 7,
 "ProductName": "Grandma's Boysenberry Spread",
 "UnitsInStock": 25,
 "UnitsOnOrder": 25,
 "UnitPrice": 18,
 "SupplierID": 5,
 "Discontinued": false,
 "Supplier": {
 "__deferred": {
 "uri": "/destinations/northwind/V2/Northwind/Northwind.svc/Products(7)/
Supplier"
 }
 }
 },
 {
 "ProductID": 8,
 "ProductName": "Uncle Bob's Organic Dried Pears",
 "UnitsInStock": 29,
 "UnitsOnOrder": 7,
 "UnitPrice": 35,
 "SupplierID": 6,
 "Discontinued": false,
 "Supplier": {
 "__deferred": {
 "uri": "/destinations/northwind/V2/Northwind/Northwind.svc/Products(8)/
Supplier"
 }
 }
 },
 {
 "ProductID": 9,
 "ProductName": "Northwoods Cranberry Sauce",
 "UnitsInStock": 4,
 "UnitsOnOrder": 32,
 "UnitPrice": 35,
 "SupplierID": 6,
 "Discontinued": false,
 "Supplier": {
 "__deferred": {
 "uri": "/destinations/northwind/V2/Northwind/Northwind.svc/Products(9)/
Supplier"
 }
 }
 },
 {
 "ProductID": 10,

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 459

 "ProductName": "Mishi Kobe Niku",
 "UnitsInStock": 40,
 "UnitsOnOrder": 5,
 "UnitPrice": 130,
 "SupplierID": 5,
 "Discontinued": false,
 "Supplier": {
 "__deferred": {
 "uri": "/destinations/northwind/V2/Northwind/Northwind.svc/Products(10)/
Supplier"
 }
 }
 },
 {
 "ProductID": 11,
 "ProductName": "Ikura",
 "UnitsInStock": 4,
 "UnitsOnOrder": 10,
 "UnitPrice": 13,
 "SupplierID": 4,
 "Discontinued": false,
 "Supplier": {
 "__deferred": {
 "uri": "/destinations/northwind/V2/Northwind/Northwind.svc/Products(11)/
Supplier"
 }
 }
 },
 {
 "ProductID": 13,
 "ProductName": "Carnarvon Tigers",
 "UnitsInStock": 36,
 "UnitsOnOrder": 40,
 "UnitPrice": 56,
 "SupplierID": 3,
 "Discontinued": false,
 "Supplier": {
 "__deferred": {
 "uri": "/destinations/northwind/V2/Northwind/Northwind.svc/Products(13)/
Supplier"
 }
 }
 },
 {
 "ProductID": 14,
 "ProductName": "Teatime Chocolate Biscuits",
 "UnitsInStock": 21,
 "UnitsOnOrder": 40,
 "UnitPrice": 7,
 "SupplierID": 2,
 "Discontinued": false,
 "Supplier": {
 "__deferred": {
 "uri": "/destinations/northwind/V2/Northwind/Northwind.svc/Products(14)/
Supplier"
 }
 }
 },
 {
 "ProductID": 15,
 "ProductName": "Alice Mutton",
 "UnitsInStock": 90,
 "UnitsOnOrder": 20,
 "UnitPrice": 75,
 "SupplierID": 2,
 "Discontinued": true,
 "Supplier": {
 "__deferred": {

460 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 "uri": "/destinations/northwind/V2/Northwind/Northwind.svc/Products(15)/
Supplier"
 }
 }
 }
]

First create a new mockdata folder inside webapp/localService. Create a Products.json file, and copy
and paste the code.

webapp/localService/mockdata/Suppliers.json (New)

[
 {
 "SupplierID": 1,
 "CompanyName": "New Orleans Cajun Delights",
 "ContactName": "Shelley Burke",
 "ContactTitle": "Order Administrator",
 "Address": "P.O. Box 78934",
 "City": "New Orleans",
 "Region": "LA",
 "PostalCode": "70117",
 "Country": "USA"
 },
 {
 "SupplierID": 2,
 "CompanyName": "Exotic Liquids",
 "ContactName": "Charlotte Cooper",
 "ContactTitle": "Purchasing Manager",
 "Address": "49 Gilbert St.",
 "City": "London",
 "Region": "UK",
 "PostalCode": "EC1 4SD",
 "Country": "UK"
 },
 {
 "SupplierID": 3,
 "CompanyName": "Grandma Kelly's Homestead",
 "ContactName": "Regina Murphy",
 "ContactTitle": "Sales Representative",
 "Address": "707 Oxford Rd.",
 "City": "Ann Arbor",
 "Region": "MI",
 "PostalCode": "48104",
 "Country": "USA"
 },
 {
 "SupplierID": 4,
 "CompanyName": "Forêts d'érables",
 "ContactName": "Chantal Goulet",
 "ContactTitle": "Accounting Manager",
 "Address": "148 rue Chasseur",
 "City": "Ste-Hyacinthe",
 "Region": "Québec",
 "PostalCode": "J2S 7S8",
 "Country": "Canada"
 },
 {
 "SupplierID": 5,
 "CompanyName": "Plutzer Lebensmittelgroßmärkte AG",
 "ContactName": "Martin Bein",
 "ContactTitle": "International Marketing Mgr.",
 "Address": "Bogenallee 51",
 "City": "Frankfurt",
 "Region": "DE",
 "PostalCode": "60439",
 "Country": "Germany"

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 461

 },
 {
 "SupplierID": 6,
 "CompanyName": "Lyngbysild",
 "ContactName": "Niels Petersen",
 "ContactTitle": "Sales Manager",
 "Address": "Lyngbysild Fiskebakken 10",
 "City": "Lyngby",
 "Region": "NL",
 "PostalCode": "2800",
 "Country": "Denmark"
 },
 {
 "SupplierID": 7,
 "CompanyName": "Formaggi Fortini s.r.l.",
 "ContactName": "Elio Rossi",
 "ContactTitle": "Sales Representative",
 "Address": "Viale Dante, 75",
 "City": "Ravenna",
 "Region": "IL",
 "PostalCode": "48100",
 "Country": "Italy"
 }
]

Create a Suppliers.json file, and copy and paste the code.

You can now run the app again and see the mock data in your app.

 Note
In order to get realistic mock data you can call a real OData service directly in your browser to receive the
real data of a given Entity or EntitySet. Make sure that you call the service with the system option
$format=json, that is http://services.odata.org/V2/Northwind/Northwind.svc/Products?
$format=json. This will return the data in JSON format, which is the format required for our mock data.
This data is put into a local file in your application’s webapp/localService/mockdata folder. The file
name is expected to be the name of the corresponding EntitySet ends with .json, for example
Products.json. The obtained data from the OData service can serve as a first set of mock data, which
you can change to your needs if necessary. SAP Web IDE also offers a dedicated editor for mock data that
makes the maintenance of the data even easier.

462 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Step 3: Extending the Worklist Table

In this step, we will edit the worklist table to include additional columns for our manage product stocks
scenario. We display the supplier, the product price, and the number of units on order for each product and
format the values accordingly.

Preview

Figure 141: The improved worklist table with new columns and formatting

Coding

You can view and download all files in the Demo Kit at Worklist App - Step 3.

webapp/view/Worklist.view.xml

… <Table
 id="table"
 width="auto"
 items="{
 path: '/Products',
 sorter: {
 path: 'ProductName',
 descending: false },
 parameters: {
 'expand': 'Supplier' }
 }"

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 463

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.worklist.03/preview

 noDataText="{worklistView>/tableNoDataText}"
 busyIndicatorDelay="{worklistView>/tableBusyDelay}"
 growing="true"
 growingScrollToLoad="true"
 updateFinished=".onUpdateFinished">
 <headerToolbar>
 <Toolbar>
 <Title id="tableHeader" text="{worklistView>/worklistTableTitle}"/>
 <ToolbarSpacer />
 <SearchField
 id="searchField"
 tooltip="{i18n>worklistSearchTooltip}"
 search=".onSearch"
 width="auto">
 </SearchField>
 </Toolbar>
…

We want to display the supplier’s company name in a separate column in the table for each product. Therefore,
we extend the items aggregation of the table with an expand parameter for the Supplier entity. With this,
the supplier data will be already included in the service request for the products.

We expand the supplier because we want to avoid sending one additional request for each product to get the
supplier. Furthermore, this allows us to bind directly to {Supplier/CompanyName} later.

 Note
OData’s “expand” Mechanism:

OData $expand is very helpful when combining data from different service entities. Instead of having to
send an additional service request for the second entity, we simply expand the service call to include the
second entity as well – similar to a join in a relational database. Have a look at the local service metadata
definition file webapp/localService/metadata.xml that represents the interface of our service. In the
metadata you can see a list of entities that are available in this service, for example Products and
Suppliers. Each entity lists a number of fields that we can bind to the properties of our view.

webapp/localService/metadata.xml

<EntityType Name="Product"> <Key>
 <PropertyRef Name="ProductID"/>
 </Key>
 <Property
 xmlns:p8="http://schemas.microsoft.com/ado/2009/02/edm/annotation"
Name="ProductID" Type="Edm.Int32" Nullable="false"
p8:StoreGeneratedPattern="Identity"/>
 <Property Name="ProductName" Type="Edm.String" Nullable="false"
MaxLength="40" Unicode="true" FixedLength="false"/>
 <Property Name="SupplierID" Type="Edm.Int32" Nullable="true"/>
 <Property Name="CategoryID" Type="Edm.Int32" Nullable="true"/>
 <Property Name="QuantityPerUnit" Type="Edm.String" Nullable="true"
MaxLength="20" Unicode="true" FixedLength="false"/>
 <Property Name="UnitPrice" Type="Edm.Decimal" Nullable="true"
Precision="19" Scale="4"/>
 <Property Name="UnitsInStock" Type="Edm.Int16" Nullable="true"/>
 <Property Name="UnitsOnOrder" Type="Edm.Int16" Nullable="true"/>
 <Property Name="ReorderLevel" Type="Edm.Int16" Nullable="true"/>
 <Property Name="Discontinued" Type="Edm.Boolean" Nullable="false"/>
 <NavigationProperty Name="Category"
Relationship="NorthwindModel.FK_Products_Categories" FromRole="Products"
ToRole="Categories"/>

464 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 <NavigationProperty Name="Order_Details"
Relationship="NorthwindModel.FK_Order_Details_Products" FromRole="Products"
ToRole="Order_Details"/> <NavigationProperty Name="Supplier"
Relationship="NorthwindModel.FK_Products_Suppliers" FromRole="Products"
ToRole="Suppliers"/> </EntityType>

In the entity Products, you can see that an additional relation to the Supplier is available as a
NavigationProperty. A navigation property links two entities of an OData service and assigns the supplier to
the product here.

When using a real OData service, the interface would be available by calling the service URL directly in a
browser (e.g. http://services.odata.org/V3/Northwind/Northwind.svc/$metadata for the
Northwind OData test service). In our app project we use local mock data and serve the data with the mock
server instead.

webapp/view/Worklist.view.xml

… <columns> <Column id="nameColumn">
 <Text
 id="nameColumnTitle"
 text="{i18n>TableNameColumnTitle}"/>
 </Column>
 <Column
 id="supplierNameColumn"
 demandPopin="false"
 minScreenWidth="Tablet">
 <Text text="{i18n>TableSupplierColumnTitle}"/>
 </Column>
 <Column
 id="unitPriceColumn"
 hAlign="End"
 demandPopin="true"
 minScreenWidth="Tablet">
 <Text text="{i18n>TablePriceColumnTitle}"/>
 </Column>
 <Column
 id="unitsOnOrderColumn"
 demandPopin="true"
 minScreenWidth="Tablet"
 hAlign="End">
 <Text text="{i18n>TableUnitsOrderedColumnTitle}"/>
 </Column>
 <Column
 id="unitsInStockColumn"
 hAlign="End">
 <Text text="{i18n>TableUnitsInStockColumnTitle}"/>
 </Column> </columns> …

Next, we change the column definitions of the table. We define the new columns and update the existing ones
in the columns aggregation of the table according to the code above (i.e. just copy and paste the highlighted
content into your columns aggregation).

The column definitions include a text that we will later define in the resource bundle (i18n model – a short
name for internationalization) so that the column titles can be translated to other languages. And we will define
additional settings for text alignment and making the table responsive. Some columns are not as important as
others and can be displayed below the main columns (popin) on devices with small or medium-sized screens.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 465

Let's have a detailed look at the columns:

● Product Name
The product name is the first column and it is always visible on any device.

● Supplier
Each product has a supplier. This column contains the company name of the supplier supplying the
product. On small screen devices like smart phones we hide this column as we do not have much screen
space for a table.

● Price
The currency of the product’s unit price is Euro (EUR). We are talking about stock levels in this app, so the
number of units is most interesting for us - not their price. Price is still good to know, so it is not entirely
removed. However, this field is not as important as the unit fields and will popin on smart phones.

● Units on Order
This column shows the units that have been ordered already for this product and will be added to the stock
shortly. In other words, this is the number of items ordered, but not yet received. A shortage for a product
can easily be resolved by reordering the product in advance (we add this feature later). This field will popin
on smart phone devices.

● Units in Stock
The column contains the product’s stock units currently available for sale. This field is the most important
column for our manage product stocks app. Therefore, this column is visible for all devices and it’s visible
without a popin. Later, we will use this column to visualize a stock status for the specific products so that
attention will be drawn to any stock issues with the products.

webapp/model/formatter.js

sap.ui.define(["sap/ui/core/library"] , function (coreLibrary) { "use strict"; // shortcut for sap.ui.core.ValueState
 var ValueState = coreLibrary.ValueState; return {
 ... },

 /**
 * Defines a value state based on the stock level
 *
 * @public
 * @param {number} iValue the stock level of a product
 * @returns {string} sValue the state for the stock level
 */
 quantityState: function(iValue) {
 if (iValue === 0) {
 return ValueState.Error;
 } else if (iValue <= 10) {
 return ValueState.Warning;
 } else {
 return ValueState.Success;
 }
 } };
});

Our table has a column that will contain the units in stock for each product. It would be nice to visualize the
corresponding numbers so that we can point out important information to the users, such as a shortage. We
want to visualize the numbers by using a specific ValueState depending on the units in stock. This can be
achieved by a simple formatter, which we will use later.

466 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

We add a new formatter function quantityState to the webapp/model/formatter.js file. The
ValueState type is loaded as an additional dependency. The formatter implements the following logic with a
simple if/else statement:

● A totally depleted stock (0 pieces remaining) will return a semantic Error state that will color the text in
the units in stock field red.

● Very low stock (10 or less pieces remaining) will lead to a Warning state (orange).
● A stock of more than 10 items will convert to Success (green)

webapp/view/Worklist.view.xml

… <items>
 <ColumnListItem
 type="Navigation"
 press="onPress">
 <cells> <ObjectIdentifier
 title="{ProductName}"/>
 <Text text = "{Supplier/CompanyName}"/>
 <ObjectNumber
 unit="EUR"
 number="{
 path: 'UnitPrice',
 formatter: '.formatter.numberUnit'
 }"/>
 <ObjectNumber
 number="{UnitsOnOrder}"
 unit="PC"/>
 <ObjectNumber
 number="{UnitsInStock}"
 unit="PC"
 state="{
 path: 'UnitsInStock',
 formatter: '.formatter.quantityState'
 }"/> </cells>
 </ColumnListItem>
</items> …

The next task is to define the cells to appear in each row of the table. For each column, we define a control in
the cells aggregation of the table and configure the data binding as well as the formatting of the data.

● The first cell simply displays the ProductName property of the corresponding entity by using an
ObjectIdentifier control.

● The Supplier cell of each row is a simple sap.m.Text control. Its text property is bound to Supplier/
CompanyName. This references the property CompanyName of the entity’s NavigationProperty
Supplier. This NavigationProperty will be expanded automatically; we configured this earlier in this
step.

● The Price cell uses an sap.m.ObjectNumber control and a custom formatter. You can find the formatter’s
implementation in the webapp/model/formatter.js file. The unit property is not bound and hard coded
to “EUR” as the currency is not part of the model for our app. The units on order are displayed with a
sap.m.ObjectNumber control as well, but without additional formatting. Its unit property is hard coded to
PC, which is the short form for "pieces".

● The last cell shows the units in stock and was already specified in the previous step. We would like to use
this field to show an additional status based on the stock level so we change the binding syntax to an object

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 467

notation and add an additional formatter quantityState. We implemented this formatter in the previous
code block above.

 Note
The formatter functions used in this XML view are loaded by the controller and thus can be accessed
relatively to the controller through the property name .formatter. This logic is already part of the initial
app.

webapp/i18n/i18n.properties

#XTIT: The title of the column containing Product name TableProductColumnTitle=Product #XTIT: The title of the column containing Supplier name
TableSupplierColumnTitle=Supplier

#XTIT: The title of the column containing Price
TablePriceColumnTitle=Price

#XTIT: The title of the column containing Ordered Units
TableUnitsOrderedColumnTitle=Units Ordered

#XTIT: The title of the column containing Units in Stock
TableUnitsInStockColumnTitle=Units in Stock #XBLI: Text for a table with no data
tableNoDataText=No products are currently available ...

Finally, we modify the existing column names in the resource bundle file webapp/i18n/i18n.properties to
match our scenario and add the new texts for the column titles.

 Note
The webapp/i18n/i18n.properties file contains some annotations for each key in the file. These
annotations offer some more context, which can help translators to better interpret the semantics of the
text belonging to the keys. An example for such an annotation is XTIT in the i18n.properties file above,
which tells that the corresponding key is supposed to be used as a title. The guidelines at https://
github.com/SAP/openui5/blob/master/docs/guidelines/translationfiles.md give you a better idea of how
this can be used. Be aware that this is how SAP uses the annotations internally. In case you want to use this
approach to work with your own translators make sure that you agree on a common set of allowed
annotations that everybody understands.

 Tip
Testing the Responsiveness of the App

In the previous code blocks of this step we made sure that our table is responsive. Depending on the device
type columns are hidden, displayed as a popin, or displayed without a popin. Now, we want to test the
responsiveness without the having different devices. This can be done in different ways, we will cover two
options:

● Testing the responsiveness with the SAP Web IDE
SAP Web IDE can simulate different screen sizes. You just have to make sure that the run configuration
is set up correctly:

1. In SAP Web IDE, choose Run New Configuration

468 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://github.com/SAP/openui5/blob/master/docs/guidelines/translationfiles.md
https://github.com/SAP/openui5/blob/master/docs/guidelines/translationfiles.md

2. Select the Run with MockServer configuration.
3. In the Frame screen area, select the Open with frame checkbox.

If you create a new project this option is switched on by default. For apps created based on the
Worklist template, however, this option is switched off to make it easier to debug the application
coding.

4. Save the configuration and close the dialog.
If you now run the application again, you will see the surrounding frame, in which you can easily choose
between different screen sizes and change the device orientation.
Switch, for example from Medium to Small, and you will see that the table behaves as expected.

Figure 142: Testing the responsiveness in SAP Web IDE
● Testing the responsiveness using the Developer Tools of Google Chrome

If you use the Google Chrome browser, you can also use its great developer tools to test the
responsiveness of your app.
1. Call the app and open the developer tools in Chrome with F12
2. Choose the Toggle device mode icon.
3. Now choose from the different devices in the Models field, and observe the behavior of your app.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 469

Step 4: Quick Filter for the Worklist

For easily detecting and managing product shortages in our app, we will add a quick filter for the worklist table.
Users can press the filter tabs to display the products according to whether they are in stock, have low stock or
no stock. The table will update accordingly and show only the products matching the criteria.

Preview

Figure 143: A quick filter allows filtering the product table

Coding

You can view and download all files in the Demo Kit at Worklist App - Step 4.

webapp/view/Worklist.view.xml

<mvc:View controllerName="myCompany.myApp.controller.Worklist"
 xmlns:mvc="sap.ui.core.mvc"
 xmlns:semantic="sap.m.semantic"
 xmlns="sap.m">
 <semantic:FullscreenPage
 id="page"

470 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.worklist.04/preview

 navButtonPress="onNavBack"
 showNavButton="true"
 title="{i18n>worklistViewTitle}">
 <semantic:content> <IconTabBar
 id="iconTabBar"
 select=".onQuickFilter"
 expandable="false"
 headerBackgroundDesign="Transparent">
 <items>
 <IconTabFilter
 key="all"
 showAll="true"
 count="{worklistView>/countAll}"
 text="{i18n>WorklistFilterProductsAll}"/>
 <IconTabSeparator/>
 <IconTabFilter
 key="inStock"
 icon="sap-icon://message-success"
 iconColor="Positive"
 count="{worklistView>/inStock}"
 text="{i18n>WorklistFilterInStock}"/>
 <IconTabFilter
 key="shortage"
 icon="sap-icon://message-warning"
 iconColor="Critical"
 count="{worklistView>/shortage}"
 text="{i18n>WorklistFilterShortage}"/>
 <IconTabFilter
 key="outOfStock"
 icon="sap-icon://message-error"
 iconColor="Negative"
 count="{worklistView>/outOfStock}"
 text="{i18n>WorklistFilterOutOfStock}"/>
 </items>
 <content> <Table
...
 </Table> </content>
 </IconTabBar> </semantic:content>
 <semantic:sendEmailAction>
 <semantic:SendEmailAction
 id="shareEmail"
 press="onShareEmailPress"/>
 </semantic:sendEmailAction>
 </semantic:FullscreenPage>
</mvc:View>

We now update the view and add the new UI for the quick filter to the content aggregation of the
sap.m.SemanticPage control just before the table. It is modeled using a sap.m.IconTabBar control and a
sap.m.IconTabFilter for each of the following filter options:

● Total Stock
This tab will simply show the overall number of products that has been returned by the data service. The
count property is bound to a local view model and the number will be updated in the controller later in this
step. This tab will show a larger number only (optional) and no icon by using the showAll property.

● Out of Stock
This tab will show all the products that are out of stock. We choose a matching icon from the icon font and
set the icon color to the semantic Negative state so that it will appear in red.

● Shortage

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 471

This tab will show products that have less than 10 pieces remaining with a semantic Critical state that
will make the icon appear in orange. The count of the number of low stock products will be displayed on the
tab and the icon will appear in orange.

● Plenty in Stock
This tab will show products that have more than 10 pieces in stock. The semantic Positive state will let
the icon appear in green. As usual the UI texts for the tabs are linked to the resource bundle file and will be
added later. Do not forget to set the standard CSS class sapUiNoMarginTop on the table to remove the
spacing between the IconTabBar and the table and make the UI look nicer.

 Note
Each IconTabFilter element has a key property that is used to identify the tab that was pressed in
the event handler onQuickFilter that is registered on the IconTabBar control directly. The event
handler implementation does the actual filtering on the table and is defined in the controller.

webapp/controller/Worklist.controller.js

... onInit: function() {
 var oViewModel,
 iOriginalBusyDelay,
 oTable = this.byId("table");
 // Put down worklist table's original value for busy indicator delay,
 // so it can be restored later on. Busy handling on the table is
 // taken care of by the table itself.
 iOriginalBusyDelay = oTable.getBusyIndicatorDelay(); this._oTable = oTable; // keeps the search state
 this._oTableSearchState = [];
 // Model used to manipulate control states
 oViewModel = new JSONModel({
 worklistTableTitle:
this.getResourceBundle().getText("worklistTableTitle"),
 shareOnJamTitle: this.getResourceBundle().getText("worklistTitle"),
 shareSendEmailSubject:
this.getResourceBundle().getText("shareSendEmailWorklistSubject"),
 shareSendEmailMessage:
this.getResourceBundle().getText("shareSendEmailWorklistMessage",
[location.href]),
 tableNoDataText: this.getResourceBundle().getText("tableNoDataText"), tableBusyDelay: 0,
 inStock: 0,
 shortage: 0,
 outOfStock: 0,
 countAll: 0 });
 this.setModel(oViewModel, "worklistView"); // Create an object of filters
 this._mFilters = {
 "inStock": [new Filter("UnitsInStock", "GT", 10)],
 "outOfStock": [new Filter("UnitsInStock", "LE", 0)],
 "shortage": [new Filter("UnitsInStock", "BT", 1, 10)],
 "all": []
 }; // Make sure, busy indication is showing immediately so there is no
 // break after the busy indication for loading the view's meta data is
 // ended (see promise 'oWhenMetadataIsLoaded' in AppController)
 oTable.attachEventOnce("updateFinished", function() {
 // Restore original busy indicator delay for worklist's table
 oViewModel.setProperty("/tableBusyDelay", iOriginalBusyDelay);
 });
},

472 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

...

As a preparation step for the filter tabs we add properties for the counters into the local view model of the
worklist controller. We initialize the four values with 0 each. Furthermore, we create an object _mFilters that
contains a filter for each tab. We will use the filters for filtering the table below the tabs. The properties in
_mFilters correlate to the keys of the IconTabFilter controls we defined above in the
Worklist.view.xml file. This way we can easily access a filter for a given tab based on the key of the
corresponding tab.

Creating a simple filter requires a binding path as first parameter of the filter constructor (e.g.
"UnitsInStock"), a filter operator (e.g. "GT") as second argument, and a value to compare (e.g. 10) as the
third argument. We create such filters for all three tabs with different filter operators as described in the view
part above. Additionally, we create an all filter, which is an empty array for clearing the binding again (when
the user chooses the All tab).

webapp/controller/Worklist.controller.js

... onUpdateFinished: function(oEvent) {
 // update the worklist's object counter after the table update
 var sTitle,
 oTable = oEvent.getSource(), oViewModel = this.getModel("worklistView"), iTotalItems = oEvent.getParameter("total");
 // only update the counter if the length is final and
 // the table is not empty if (iTotalItems && oTable.getBinding("items").isLengthFinal()) { sTitle = this.getResourceBundle().getText("worklistTableTitleCount",
[iTotalItems]); // Get the count for all the products and set the value to 'countAll'
property
 this.getModel().read("/Products/$count", {
 success: function (oData) {
 oViewModel.setProperty("/countAll", oData);
 }
 });
 // read the count for the unitsInStock filter
 this.getModel().read("/Products/$count", {
 success: function (oData) {
 oViewModel.setProperty("/inStock", oData);
 },
 filters: this._mFilters.inStock
 });
 // read the count for the outOfStock filter
 this.getModel().read("/Products/$count", {
 success: function(oData){
 oViewModel.setProperty("/outOfStock", oData);
 },
 filters: this._mFilters.outOfStock
 });
 // read the count for the shortage filter
 this.getModel().read("/Products/$count", {
 success: function(oData){
 oViewModel.setProperty("/shortage", oData);
 },
 filters: this._mFilters.shortage
 }); } else {
 sTitle = this.getResourceBundle().getText("worklistTableTitle");
 }
 this.getModel("worklistView").setProperty("/worklistTableTitle", sTitle);
}, ...

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 473

In the onUpdateFinished function, we get the count of all products by triggering a read operation on the
model with the appropriate filter. The filter is a helper object of SAPUI5 that defines the condition for each tab
on the data binding level. We already created the filters in the onInit function.

 Note
The v2.ODataModel will automatically bundle these read requests to one batch request to the server (if
batch mode is enabled).

In the success handler of each read operation we update the corresponding property in the view model with
the real count of the matching items that were returned by the service.

webapp/controller/Worklist.controller.js

... _applySearch: function(oTableSearchState) {
 ... },
/**
 * Event handler when a filter tab gets pressed
 * @param {sap.ui.base.Event} oEvent the filter tab event
 * @public
 */
onQuickFilter: function(oEvent) {
 var oBinding = this._oTable.getBinding("items"),
 sKey = oEvent.getParameter("selectedKey");
 oBinding.filter(this._mFilters[sKey]);
} ...

Next, we implement the handler for the select event of the IconTabBar. In this event handler we get a
reference to the binding for the items aggregation of our table and store it in the variable oBinding. Then we
read the parameter selectedKey from the event object to find out which tab has been selected. This
selectedKey is used to get the correct filter for the selected tab. Next, we simply call the filter method on
oBinding and pass the correct filter of the selected tab.

The filters are always applied as an array on the binding level, so you don't need to take care of managing the
data, the data binding features of SAPUI5 will automatically take care.

webapp/i18n/i18n.properties
 ...
#XTIT: The title of the products quick filter
WorklistFilterProductsAll=Products

#XTIT: The title of the out of stock products filter
WorklistFilterOutOfStock=Out of Stock

#XTIT: The title of the low stock products filter
WorklistFilterShortage=Shortage

#XTIT: The title of the products in stock filter
WorklistFilterInStock=Plenty in Stock #~~~ Object View ~~~~~~~~~~~~~~~~~~~~~~~~~~ ...

We finally add the texts for the tab filters to the resource bundle. Copy the text definitions from the code
section above to the end of the Worklistn View section in the i18n file.

474 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Now run the app again and click the filter icons on top of the table. The products should be filtered according to
the selection in the filter bar and the count should match the number of items displayed.

Related Information

API Reference: sap.ui.model.ListBinding.filter

Step 5: Adding Actions to the Worklist

Now we can easily spot shortages on our stock, but we would also like to take action and resolve it. Either we
can decide to remove the product until the shortage is resolved or order new items of the product. In this step,
we will add these actions to the footer of the worklist table.

Preview

Figure 144: Actions are now available in the footer bar

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 475

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.ListBinding.html

Coding

You can view and download all files in the Samples in the Demo Kit at Worklist App - Step 5.

webapp/view/Worklist.view.xml

... <Table
 id="table"
 busyIndicatorDelay="{worklistView>/tableBusyDelay}"
 growing="true"
 growingScrollToLoad="true"
 noDataText="{worklistView>/tableNoDataText}"
 updateFinished=".onUpdateFinished"
 width="auto" mode="MultiSelect" items="{
 path: '/Products',
 sorter: {
 path: 'ProductName',
 descending: false
 },
 parameters: {
 'expand': 'Supplier'
 }
 }"> ...

We change the table mode to MultiSelect. This allows you to select multiple items in the table. Below, we will
add two buttons to the footer bar of the screen. The first button will add to the UnitsInStock property, and
the second will remove the selected products.

webapp/view/Worklist.view.xml

<mvc:View controllerName="mycompany.myapp.MyWorklistApp.controller.Worklist"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc"
 xmlns:semantic="sap.f.semantic">
 <semantic:SemanticPage
 id="page"
 headerPinnable="false"
 toggleHeaderOnTitleClick="false" showFooter="true"> <semantic:titleHeading>
 <Title text="{i18n>worklistTitle}"/>
 </semantic:titleHeading>
 ...
 </semantic:content>
 <semantic:sendEmailAction>
 <semantic:SendEmailAction id="shareEmail" press=".onShareEmailPress"/>
 </semantic:sendEmailAction> <semantic:positiveAction>
 <semantic:PositiveAction text="{i18n>TableProductsReorder}"
press=".onUpdateStockObjects"/>
 </semantic:positiveAction>
 <semantic:negativeAction>
 <semantic:NegativeAction text="{i18n>TablePorductsUnlist}"
press=".onUnlistObjects"/>
 </semantic:negativeAction> </semantic:SemanticPage> ...

476 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.worklist.05/preview

Now we add the buttons to the footer bar of the page. The two semantic actions Negative and Positive will
automatically be positioned in the footer bar. The first button will order new items of the selected products and
the second one will remove them. The corresponding event handlers will be implemented in the controller.

webapp/controller/Worklist.controller.js

sap.ui.define(["./BaseController",
 "sap/ui/model/json/JSONModel",
 "myCompany/myApp/model/formatter",
 "sap/ui/model/Filter", "sap/ui/model/FilterOperator",
 "sap/m/MessageToast",
 "sap/m/MessageBox"], function(BaseController, JSONModel, formatter, Filter, FilterOperator,
MessageToast, MessageBox) { "use strict";
 return BaseController.extend("myCompany.myApp.controller.Worklist", {
 formatter: formatter,
... /**
 * Displays an error message dialog. The displayed dialog is content
density aware.
 * @param {string} sMsg The error message to be displayed
 * @private
 */
 _showErrorMessage: function(sMsg) {
 MessageBox.error(sMsg, {
 styleClass: this.getOwnerComponent().getContentDensityClass()
 });
 }, /**
 * Event handler when a filter tab gets pressed
 * @param {sap.ui.base.Event} oEvent the filter tab event
 * @public
 */
 onQuickFilter: function(oEvent) {
 var oBinding = this._oTable.getBinding("items"),
 sKey = oEvent.getParameter("selectedKey");
 oBinding.filter(this._mFilters[sKey]); }, /**
 * Error and success handler for the unlist action.
 * @param {string} sProductId the product ID for which this handler is
called
 * @param {boolean} bSuccess true in case of a success handler, else
false (for error handler)
 * @param {number} iRequestNumber the counter which specifies the
position of this request
 * @param {number} iTotalRequests the number of all requests sent
 * @private
 */
 _handleUnlistActionResult : function (sProductId, bSuccess,
iRequestNumber, iTotalRequests){
 // we could create a counter for successful and one for failed
requests
 // however, we just assume that every single request was successful
and display a success message once
 if (iRequestNumber === iTotalRequests) {

MessageToast.show(this.getModel("i18n").getResourceBundle().getText("StockRemoved
SuccessMsg", [iTotalRequests]));
 }
 },

 /**
 * Error and success handler for the reorder action.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 477

 * @param {string} sProductId the product ID for which this handler is
called
 * @param {boolean} bSuccess true in case of a success handler, else
false (for error handler)
 * @param {number} iRequestNumber the counter which specifies the
position of this request
 * @param {number} iTotalRequests the number of all requests sent
 * @private
 */
 _handleReorderActionResult : function (sProductId, bSuccess,
iRequestNumber, iTotalRequests){
 // we could create a counter for successful and one for failed
requests
 // however, we just assume that every single request was successful
and display a success message once
 if (iRequestNumber === iTotalRequests) {

MessageToast.show(this.getModel("i18n").getResourceBundle().getText("StockUpdated
SuccessMsg", [iTotalRequests]));
 }
 },

 /**
 * Event handler for the unlist button. Will delete the
 * product from the (local) model.
 * @public
 */
 onUnlistObjects: function() {
 var aSelectedProducts, i, sPath, oProduct, oProductId;

 aSelectedProducts = this.byId("table").getSelectedItems();
 if (aSelectedProducts.length) {
 for (i = 0; i < aSelectedProducts.length; i++) {
 oProduct = aSelectedProducts[i];
 oProductId =
oProduct.getBindingContext().getProperty("ProductID");
 sPath = oProduct.getBindingContext().getPath();
 this.getModel().remove(sPath, {
 success : this._handleUnlistActionResult.bind(this,
oProductId, true, i+1, aSelectedProducts.length),
 error : this._handleUnlistActionResult.bind(this,
oProductId, false, i+1, aSelectedProducts.length)
 });
 }
 } else {

this._showErrorMessage(this.getModel("i18n").getResourceBundle().getText("TableSe
lectProduct"));
 }
 },

 /**
 * Event handler for the reorder button. Will reorder the
 * product by updating the (local) model
 * @public
 */
 onUpdateStockObjects: function() {
 var aSelectedProducts, i, sPath, oProductObject;

 aSelectedProducts = this.byId("table").getSelectedItems();
 if (aSelectedProducts.length) {
 for (i = 0; i < aSelectedProducts.length; i++) {
 sPath = aSelectedProducts[i].getBindingContext().getPath();
 oProductObject =
aSelectedProducts[i].getBindingContext().getObject();
 oProductObject.UnitsInStock += 10;
 this.getModel().update(sPath, oProductObject, {

478 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 success : this._handleReorderActionResult.bind(this,
oProductObject.ProductID, true, i+1, aSelectedProducts.length),
 error : this._handleReorderActionResult.bind(this,
oProductObject.ProductID, false, i+1, aSelectedProducts.length)
 });
 }
 } else {

this._showErrorMessage(this.getModel("i18n").getResourceBundle().getText("TableSe
lectProduct"));
 }
 } }); });

Let’s have a look at the implementation of the event handlers for the new actions. We first load the
sap.m.MessageToast control as a new dependency to display a success message for the unlist and
reorder actions.

Both actions are similar from an implementation perspective and the details are described below. They both
loop over the selected items in the table and trigger a model update or deletion on the selected path. After that,
a success message with the number of products processed is displayed. The table is updated automatically by
the model change.

● Order
For each of the selected items the binding path in the model is retrieved by calling the helper method
getBindingContextPath on the selected item. Additionally, the data object from the model is fetched by
calling getBindingContext().getObject() on the item. We update the data object and simply add 10
items to the stock to keep things simple in this example. Then we call the update function on the model
with the product path and the new object. This will trigger an OData update request to the back end and a
refresh of the model afterwards (multiple requests are handled together in batch mode). When the model
refreshes, the table will be updated as well because of its binding.

● Remove
For each of the selected items the binding path in the model is retrieved by calling the helper method
getBindingContextPath on the selected item. Then, we call the remove function on the model with the
product path. This triggers an OData delete request to the back end and a refresh of the OData model
afterwards. Again, when the model is refreshed, the table will be updated as well because of its binding.
The ODataModel v2 collects all these requests and only sends one batch request (this default behavior can
be changed).

For each action we register both a success handler and an error handler. The success handler and error
handler for each action is the same, but the function is called with different parameters. This allows us to use
the same handler function for both the error and success case. Inside the corresponding handlers we simply
display a success message once by comparing the current request number with the total number of requests.
Furthermore, we assume that all of our requests always succeed.

In a real scenario, you could have a counter for error responses, and one for success responses. Finally, you
could implement you own business logic for error and success cases, like displaying the number of failed and
succeeded requests together with the corresponding product identified by the product ID parameter of the
handlers. We don’t do this to keep things simple.

 Note
In our example, the remove or order actions are only applied to items that are visible in the table, even if the
Select All checkbox of the table is selected. Keep in mind that there may be more data on the back end that
is currently not loaded, and therefore it is neither displayed and nor can it be selected by the user.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 479

If you want to change this behavior, you might need to change both back-end and front-end code.

webapp/i18n/i18n.properties
 ... #text of the button for Products reordering
TableProductsReorder=Order

#text for the button for Products unlisting
TablePorductsUnlist=Remove

#Text for no product selected
TableNoProductsSelected=No product selected

#Product successfully deleted
StockRemovedSuccessMsg=Product removed

#Product successfully updated
StockUpdatedSuccessMsg=Product stock level updated #~~~ Object View ~~~~~~~~~~~~~~~~~~~~~~~~~~ ...

Add the missing texts for the buttons and the message toast.

Save the changes and run the application again. Try the Order and Remove buttons with one or more products
selected. The stock value will be increased or the product will be (temporarily) removed from the worklist table.
Since all of our changes happen on a local mock server, we can simply reload the app to reset the data again.

480 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Step 6: Extending the Detail Page

In this step, we will extend the detail page of our app to show more information of a given product with various
UI controls. We will enrich the header area and display further attributes in an info panel for information about
the supplier.

Preview

Figure 145: Detail page with more product information

Coding

You can view and download all files in the Samples in the Demo Kit at Worklist App - Step 6 .

webapp/view/Object.view.xml

<mvc:View controllerName="mycompany.myapp.MyWorklistApp.controller.Object"
xmlns="sap.m"
xmlns:mvc="sap.ui.core.mvc"
xmlns:semantic="sap.f.semantic" xmlns:form="sap.ui.layout.form"> <semantic:SemanticPage
 id="page"
 headerPinnable="false"
 toggleHeaderOnTitleClick="false"
 busy="{objectView>/busy}"
 busyIndicatorDelay="{objectView>/delay}">
 <semantic:titleHeading>
 <Title text="{ProductName}" />
 </semantic:titleHeading> <semantic:headerContent>
 <FlexBox
 alignItems="Start"
 justifyContent="SpaceBetween">
 <Panel backgroundDesign="Transparent">
 <ObjectAttribute

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 481

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.worklist.06/preview

 title="{i18n>ObjectProductIdText}"
 text="{
 path: 'ProductID',
 formatter: '.formatter.numberUnit'}"/>
 <ObjectAttribute
 title="{i18n>ObjectPriceTitle}"
 text="{
 path: 'UnitPrice',
 formatter: '.formatter.numberUnit'} EUR"/>
 </Panel>
 <Panel backgroundDesign="Transparent">
 <ObjectNumber
 id="objectHeader"
 unit="PC"
 textAlign="End"
 state="{
 path: 'UnitsInStock',
 formatter: '.formatter.quantityState'}"
 number="{
 path: 'UnitsInStock',
 formatter: '.formatter.numberUnit'}">
 </ObjectNumber>
 <ObjectStatus
 text="{i18n>ObjectDiscontinuedStatusText}"
 state="Error"
 visible="{path:'Discontinued'}"/>
 <ProgressIndicator
 width="300px"
 percentValue="{UnitsInStock}"
 displayValue="{UnitsInStock}"
 showValue="true"
 state="{
 path: 'UnitsInStock',
 formatter: '.formatter.quantityState'}"/>
 </Panel>
 </FlexBox>
 </semantic:headerContent> <semantic:content> <Panel
 class="sapUiNoContentPadding"
 headerText="{i18n>ObjectSupplierTabTitle}">
 <content>
 <form:SimpleForm
 minWidth="1024"
 maxContainerCols="2"
 editable="false"
 layout="ResponsiveGridLayout"
 labelSpanL="3"
 labelSpanM="3"
 emptySpanL="4"
 emptySpanM="4"
 columnsL="1"
 columnsM="1">
 <form:content>
 <Label text="{i18n>ObjectSupplierName}"/>
 <Text text="{Supplier/CompanyName}"/>
 <Label text="{i18n>ObjectSupplierAddress}"/>
 <Text text="{Supplier/Address}"/>
 <Label text="{i18n>ObjectSupplierZipcode} /
{i18n>ObjectSupplierCity}"/>
 <Text text="{Supplier/PostalCode} / {Supplier/City}"/>
 <Label text="{i18n>ObjectSupplierCountry}"/>
 <Text text="{Supplier/Country}"/>
 </form:content>
 </form:SimpleForm>
 </content>
 </Panel> </semantic:content>

482 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 <semantic:sendEmailAction>
 <semantic:SendEmailAction id="shareEmail" press="onShareEmailPress"/>
 </semantic:sendEmailAction>
</semantic:SemanticPage> </mvc:View>

We define a new headerContent section as well as some additional attributes for the product with two
sap.m.ObjectAttribute controls, one for the Price and one for the ProductID. These are important
product attributes for us, so we want to include them in our header area.

To get a better visual representation of the current stock of the shown product, we use the ObjectStatus and
ProgressIndicator control statuses. If our product will not be produced anymore, the ObjectStatus
shows up as Discontinued. The ProgressIndicator uses the same formatter function as our UnitsInStock
(in the state of the ObjectNumber).

Below the object header we can use sap.m.Panel to display some additional information in a nice layout on
the page. Inside the panel we use sap.ui.layout.form.SimpleForm to align the labels and texts we want to
display.

webapp/i18n/i18n.properties

... #Price per unit text
ObjectPriceTitle=Price

#Discontinued text
ObjectDiscontinuedStatusText=Discontinued

#Supplier tab title
ObjectSupplierTabTitle=Supplier Info

#Supplier company name
ObjectSupplierName=Name

#Supplier contact person name
ObjectSupplierContact=Contact

#Supplier contact address
ObjectSupplierAddress=Address

#Supplier zip code
ObjectSupplierZipcode=ZIP Code

#Supplier city name
ObjectSupplierCity=City

#Supplier country
ObjectSupplierCountry=Country

#Object Product ID text
ObjectProductIdText=Product ID #~~~ Footer Options ~~~~~~~~~~~~~~~~~~~~~~~ ...

As before, we add new i18n texts to the resource bundle.

Save all the changes and run the application. Click on any product and see the product details displayed on the
detail page.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 483

Step 7: Adding a Comments Section

In this step, we extend the product detail view by adding a feature allowing to add comments to the product.

Preview

Figure 146: Comments section added to the detail page

Coding

You can view and download all files in the Samples in the Demo Kit at Worklist App - Step 7 .

webapp/view/Object.view.xml
 <mvc:View
 controllerName="mycompany.myapp.MyWorklistApp.controller.Object"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc"
 xmlns:semantic="sap.f.semantic"
 xmlns:form="sap.ui.layout.form" xmlns:l="sap.ui.layout"> ...
 <semantic:content> <l:VerticalLayout width="100%"> <Panel backgroundDesign="Transparent" headerText="{i18n>ObjectSupplierTabTitle}">
...

484 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.tutorial.worklist.07/preview

 </Panel> <Panel
 backgroundDesign="Transparent"
 headerText="{i18n>ObjectCommentsTabTitle}">
 <content>
 <FeedInput post=".onPost"/>
 <List
 id="idCommentsList"
 noDataText="{i18n>ObjectCommentNoData}"
 showSeparators="Inner"
 items="{
 path: 'productFeedback>/productComments',
 sorter: {
 path: 'date',
 descending: true
 }
 }">
 <FeedListItem
 info="{productFeedback>type}"
 text="{productFeedback>comment}"
 timestamp="{productFeedback>date}"/>
 </List>
 </content>
 </Panel>
 </l:VerticalLayout> </semantic:content>

Below the already existing panel, we add another panel that will serve as a container for our comments section.
We put both panels inside a vertical layout, because sap.f.semanticPage allows only one control for content
aggregation. Within the new panel, we add a sap.m.FeedInput control and attach an event handler onPost
for the post event. This control will render an input field and a button, which allow users to post comments.
The event handler we registered will be implemented below.

Below the FeedInput control, we add a list with all existing comments. The items aggregation of the list is
bound to the /productComments property of the named model productFeedback that we will create below.
All comments shall be displayed in descending order based on their publishing date. Therefore, we also
configure a sorter for our items in the list.

The template for each row is a FeedListItem control. We configure the FeedListItem to simply display the
date of the post, the text of the post itself, and the type of the post.

webapp/controller/Object.controller.js

... /*global location*/
sap.ui.define([
 "myCompany/myApp/controller/BaseController",
 "sap/ui/model/json/JSONModel",
 "sap/ui/core/routing/History", "myCompany/myApp/model/formatter",
 "sap/ui/core/format/DateFormat",
 "sap/ui/model/Filter",
 "sap/ui/model/FilterOperator"], function(BaseController, JSONModel, History, formatter, DateFormat, Filter,
FilterOperator) { "use strict";
 return BaseController.extend("myCompany.myApp.controller.Object", {
 formatter: formatter,
 ...
 _onBindingChange: function(oEvent) {
 ... // Update the comments in the list
 var oList = this.byId("idCommentsList");
 var oBinding = oList.getBinding("items");

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 485

 oBinding.filter(new Filter("productID", FilterOperator.EQ, sObjectId));
 },
 /**
 * Updates the model with the user comments on Products.
 * @function
 * @param {sap.ui.base.Event} oEvent object of the user input
 */
 onPost: function (oEvent) {
 var oFormat = DateFormat.getDateTimeInstance({style: "medium"});
 var sDate = oFormat.format(new Date());
 var oObject = this.getView().getBindingContext().getObject();
 var sValue = oEvent.getParameter("value");
 var oEntry = {
 productID: oObject.ProductID,
 type: "Comment",
 date: sDate,
 comment: sValue
 };
 // update model
 var oFeedbackModel = this.getModel("productFeedback");
 var aEntries = oFeedbackModel.getData().productComments;
 aEntries.push(oEntry);
 oFeedbackModel.setData({
 productComments : aEntries
 });
 } }); });

First, we add three new dependencies to the controller. We need these dependencies because we want to
create a filter for the list and because we format the date and time of each post.

Whenever the binding of the detail view changes, we want to make sure that the comments for the current
product are displayed. Therefore, we change the private function _onBindingChange and update the filter of
the list that displays the comments by getting a reference to the binding of the items aggregation of our list
and calling the filter() API afterwards. The filter is passed on to the filter() API. We use the productID
as filter criterion, because we only want comments for a specific product.

Next, the event handler for the post event of the FeedInput is implemented. In the onPost handler, we create
a new entry object that contains all data we want to store in our model. This data is the productId, the type
of the post (hard-coded in our example), the current date in a medium date format, and the comment itself.
The comment is retrieved from the event object. The productId is determined by calling getObject() on the
view’s binding context.

Finally, the new entry is added to the named model called productFeedback. This model does not exist yet,
so let’s create it next.

webapp/model/models.js

sap.ui.define(["sap/ui/model/json/JSONModel",
 "sap/ui/Device"
], function(JSONModel, Device) {
 "use strict";
 return {
 createDeviceModel: function() {
 var oModel = new JSONModel(Device);
 oModel.setDefaultBindingMode("OneWay");
 return oModel; },
 createCommentsModel: function() {
 return new JSONModel({ productComments : [] });
 }

486 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 }; });

In both the object view (detail page) as well as in the corresponding controller we used a named model called
productFeedback. In our example this model is a simple JSONModel. It is created in the function
createCommentsModel() in the model.js file. As you can see above, the function simply returns a new
instance of a JSONModel with a simple data object. The property productComments is an empty array and it
will be updated every time someone posts a new comment.

However, this model is not yet accessible throughout our app. Let’s fix this next.

webapp/Component.js

sap.ui.define(["sap/ui/core/UIComponent",
 "sap/ui/Device",
 "./model/models",
 "./controller/ErrorHandler"
], function(UIComponent, Device, models, ErrorHandler) {
 "use strict";
 return UIComponent.extend("myCompany.myApp.Component", {
 ...
 init: function() {
 // call the base component's init function
 UIComponent.prototype.init.apply(this, arguments);
 // initialize the error handler with the component
 this._oErrorHandler = new ErrorHandler(this);
 // set the device model
 this.setModel(models.createDeviceModel(), "device");
 // set the product feedback model
 this.setModel(models.createCommentsModel(), "productFeedback"); // create the views based on the url/hash
 this.getRouter().initialize();
 },
 ...
 }); });

Now it’s time to make the named model productFeedback available to our app. Therefore, just change the
init function of our Component.js file by calling our createCommentsModel() method and setting the
returned model on the component. After this, our model is accessible in our app.

webapp/i18n/i18n.properties

... #Comments tab title
ObjectCommentsTabTitle=Comments

#No comments text
ObjectCommentNoData=No Comments #~~~ Footer Options ~~~~~~~~~~~~~~~~~~~~~~~ ...

Now add the new texts to our i18n.properties file and you’re done.

You can test the new features by navigating to the details page of any given product. After that, just create a
new comment for that product and post it.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 487

Summary

You have learned how to use SAP Web IDE to create a simple worklist app from a template and you know where
to find the code in the Samples. Based on the initial app you have seen how easy it can be to generate or
download initial code and to extend it according to your own requirements. This tutorial also illustrated how to
communicate easily with an OData back end using the OData V2 model. Furthermore, it illustrated how to use
the mock server with both generated mock data and more realistic data.

SAP Fiori 2.0 App

In this tutorial, we showcase how to structure your SAPUI5 app using the layout patterns that comply with the
latest SAP Fiori design guidelines.

The app provides the following features:

● An up-to-three-column layout based on the sap.f.FlexibleColumnLayout control. This layout has
predefined layout types and defined routing between them that enables smooth navigation between the
master-detail and master-detail-detail patterns of the app.

● A master page based on the sap.f.DynamicPage control that lists the available products and has
filtering and sorting options.

● A detail page based on the sap.uxap.ObjectPageLayout control containing detailed information about
the selected object from the master page:
○ It implements the dynamic header of the ObjectPageLayout control.
○ The sap.f.Avatar control is used in the title area to display an image of the selected product.
○ The header title area can be collapsed (snapped to the title) by scrolling down the content of the page

or by clicking/tapping the title area. The header area can also be pinned so that it remains visible when
the user scrolls down the content of the page.

○ The title area has a set of actions on the right. The title area can display specific content when the
header is snapped.

○ The floating footer is positioned at the bottom of the page, on top of the page content. It holds
finalizing actions on the right.

● A detail-detail page based on sap.f.DynamicPage to display further details of the selected object from
the detail page.

● A simple about page based on sap.f.DynamicPage to display further details of the selected object from
the detail-detail page.

488 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Preview

Figure 147: Master-detail-detail pattern with sap.f.FlexibleColumnLayout, sap.f.DynamicPage and
sap.uxap.ObjectPageLayout

Choose your development environment

You can do this tutorial either with SAP Web IDE or choose your own development environment:

● If you use SAP Web IDE, you don't need to set up a development environment, a server and so on. All you
need is a browser and an account for the SAP Cloud Platform. If you don't have an account yet, you can
easily get a trial account. We recommend to continue with the SAP Web IDE as it has out-of-the-box
support for SAPUI5 and because there is no setup overhead at all.
In this case, you start with the template that is available in SAP Web IDE as described in step 1 of this
tutorial.

● If you want to use your local development environment and deploy to any Web server of your choice, you
can download the code for step 1 from the Samples in the Demo Kit at SAP Fiori 2.0 App - Step 1.

 Tip
You don't have to do all tutorial steps sequentially, you can also jump directly to any step you want. Just
download the code from the previous step, copy it to your workspace and make sure that the app runs by
calling the webapp/index.html file.

For more information check the following sections of the tutorials overview page (see Get Started: Setup,
Tutorials, and Demo Apps [page 38]):

● Downloading Code for a Tutorial Step [page 40]
● Adapting Code to Your Development Environment [page 40]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 489

https://sapui5.hana.ondemand.com/#/sample/sap.f.tutorial.fiori2.01/preview

Step 1: Setting Up the Initial App

We start by setting up a basic SAPUI5 app for this tutorial.

The structure in this step will be used throughout the rest of this tutorial. The basic SAPUI5 app created in this
step will be extended in the subsequent steps to illustrate the main features of an SAP Fiori 2.0 app.

Prerequisites

You have set up your SAP Web IDE as described under App Development Using SAP Web IDE [page 44].

 Note
If your preferred development environment is not SAP Web IDE, you can skip the instructions below and set
up your project for this tutorial by directly downloading the files for the initial app from the Samples in the
Demo Kit at SAP Fiori 2.0 App - Step 1. Copy the code to your workspace and make sure that the app runs
by calling the webapp/index.html file.

Preview

Figure 148: The basic SAPUI5 app

Create the Initial App Using the SAP Web IDE Import Functionality

1. Download the code for the initial app from the Samples in the Demo Kit at SAP Fiori 2.0 App - Step 1.
2. Launch SAP Web IDE.

3. Choose File Import File or Project
4. Choose Browse and select the downloaded sap.f.tutorial.fiori2.01.zip file, then choose Open.

490 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/sample/sap.f.tutorial.fiori2.01/preview
https://sapui5.hana.ondemand.com/#/sample/sap.f.tutorial.fiori2.01/preview

5. Make sure Extract Archive is checked and choose OK.
A new folder sap.ui.demo.fiori2.01 is now available in your local workspace. It contains the following
files and folders of the initial app:

6. Run the app by selecting the webapp folder and then Run Run as Web Application . Keep in mind
that there is no content yet and the app appears as an empty page.

From now on, you can quickly run the app by selecting the root folder sap.ui.demo.fiori2 of your project in
SAP Web IDE and pressing the Run button. The system will automatically use the option from the Run menu
that you chose last (in this case, the Run index.html option).

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 491

Step 2: Creating an Empty Flexible Column Layout

In this step, we add an instance of the sap.f.FlexibleColumnLayout in the main view of the app.

Preview

Figure 149: An empty instance of the sap.f.FlexibleColumnLayout control

Coding

You can view and download all files at SAP Fiori 2.0 App - Step 2.

webapp/manifest.json [MODIFY]

{ "_version": "1.12.0",
 "sap.app": {
 "id": "sap.ui.demo.fiori2",
 "type": "application",
 "applicationVersion": {
 "version": "1.0.0"
 }
 },
 "sap.ui5": { "rootView": {
 "viewName": "sap.ui.demo.fiori2.view.App",
 "type": "XML",
 "async": true,
 "id": "fcl"
 }, "dependencies": {
 "minUI5Version": "1.60.0",
 "libs": { "sap.ui.core": {},
 "sap.f": {} }
 },
 "config": {
 "fullWidth": true
 }
 }

492 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/sample/sap.f.tutorial.fiori2.02/preview

 }

First, we add the sap.f library as a dependency in the manifest.json file as most of the SAP Fiori 2.0
controls are in this library.

webapp/view/App.view.xml [NEW]

<mvc:View
 displayBlock="true"
 height="100%"
 xmlns="sap.f"
 xmlns:mvc="sap.ui.core.mvc">
 <FlexibleColumnLayout id="flexibleColumnLayout"
backgroundDesign="Solid"></FlexibleColumnLayout>
</mvc:View>

We create a new App.view.xml that contains an instance of the sap.f.FlexibleColumnLayout control.
Keep in mind that there is no content yet and the app appears as an empty page.

webapp/manifest.json [MODIFY]

{ "_version": "1.12.0",
 "sap.app": {
 "id": "sap.ui.demo.fiori2",
 "type": "application",
 "applicationVersion": {
 "version": "1.0.0"
 }
 },
 "sap.ui5": { "rootView": {
 "viewName": "sap.ui.demo.fiori2.view.App",
 "type": "XML",
 "async": false,
 "id": "fcl"
 }, "dependencies": {
 "minUI5Version": "1.60.0",
 "libs": {
 "sap.ui.core": {},
 "sap.f": {}
 }
 },
 "config": {
 "fullWidth": true
 }
 } }

We set the rootView to point to the created App.view.xml.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 493

Step 3: Using Dynamic Page for the Master View

In this step, we create the master view of the app using sap.f.DynamicPage control.

Preview

Figure 150: Master page with sap.f.DynamicPage

Coding

You can view and download all files at SAP Fiori 2.0 App - Step 3.

webapp/manifest.json [MODIFY]

{ "_version": "1.12.0",
 "sap.app": {
 "id": "sap.ui.demo.fiori2",
 "type": "application",
 "applicationVersion": {
 "version": "1.0.0"
 }
 },
 "sap.ui5": {
 "rootView": {
 "viewName": "sap.ui.demo.fiori2.view.App",
 "type": "XML",
 "async": true,

494 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/sample/sap.f.tutorial.fiori2.03/preview

 "id": "fcl"
 },
 "dependencies": {
 "minUI5Version": "1.60.0",
 "libs": { "sap.ui.core": {},
 "sap.m": {}, "sap.f": {}
 }
 },
 "config": {
 "fullWidth": true
 }
 } }

First, we add the sap.m library as a dependency in the manifest.json.

webapp/index.html [MODIFY]

 ... <script id="sap-ui-bootstrap"
 src="https://openui5.hana.ondemand.com/resources/sap-ui-core.js"
 data-sap-ui-theme="sap_belize"
 data-sap-ui-resourceroots='{ "sap.ui.demo.fiori2": "./",
 "sap.ui.demo.mock": "https://openui5.hana.ondemand.com/test-
resources/sap/ui/documentation/sdk/" }'
 data-sap-ui-oninit="module:sap/ui/core/ComponentSupport"
 data-sap-ui-compatVersion="edge"
 data-sap-ui-async="true"
 data-sap-ui-frameOptions="trusted">
 </script> ...

We add the link to the mock data that is used in the app.

webapp/Component.js [MODIFY]

sap.ui.define(['sap/ui/core/UIComponent',
 'sap/ui/model/json/JSONModel'], function(UIComponent, JSONModel) { 'use strict';
 return UIComponent.extend('sap.ui.demo.fiori2.Component', {
 metadata: {
 manifest: 'json' },

 init: function () {
 var oProductsModel;

 UIComponent.prototype.init.apply(this, arguments);

 // set products demo model on this sample
 oProductsModel = new JSONModel(sap.ui.require.toUrl('sap/ui/demo/

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 495

mock') + '/products.json');
 oProductsModel.setSizeLimit(1000);
 this.setModel(oProductsModel, 'products');
 } }); });

We create the init method in the Component.js to set the model.

webapp/view/Master.view.xml [NEW]

<mvc:View
 controllerName="sap.ui.demo.fiori2.controller.Master"
 xmlns="sap.m"
 xmlns:f="sap.f"
 xmlns:mvc="sap.ui.core.mvc">
 <f:DynamicPage id="dynamicPageId" toggleHeaderOnTitleClick="false">
 <!-- DynamicPage Title -->
 <f:title>
 <f:DynamicPageTitle>
 <f:heading>
 <Title text="Products ({products>/ProductCollectionStats/
Counts/Total})"/>
 </f:heading>
 </f:DynamicPageTitle>
 </f:title>

 <!-- DynamicPage Content -->
 <f:content>
 <VBox fitContainer="true">
 <OverflowToolbar class="sapFDynamicPageAlignContent">
 <ToolbarSpacer/>
 <SearchField search=".onSearch" width="17.5rem"/>
 <OverflowToolbarButton icon="sap-icon://add" text="Add"
type="Transparent" press=".onAdd"/>
 <OverflowToolbarButton icon="sap-icon://sort" text="Sort"
type="Transparent" press=".onSort"/>
 </OverflowToolbar>
 <Table
 id="productsTable"
 inset="false"
 items="{
 path: 'products>/ProductCollection',
 sorter: {
 path: 'Name'
 }
 }"
 class="sapFDynamicPageAlignContent"
 width="auto">
 <columns>
 <Column width="12em">
 <Text text="Product"/>
 </Column>
 <Column hAlign="End">
 <Text text="Price"/>
 </Column>
 </columns>
 <items>
 <ColumnListItem type="Navigation">
 <cells>
 <ObjectIdentifier title="{products>Name}"
text="{products>ProductId}"/>
 <ObjectNumber

496 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 number="{
 parts:[
 {path:'products>Price'},
 {path:'products>CurrencyCode'}
],
 type: 'sap.ui.model.type.Currency',
 formatOptions: {showMeasure: false}
 }"
 unit="{products>CurrencyCode}"/>
 </cells>
 </ColumnListItem>
 </items>
 </Table>
 </VBox>
 </f:content>

 <!-- DynamicPage Footer -->
 <f:footer>
 <OverflowToolbar>
 <ToolbarSpacer/>
 <Button type="Accept" text="Accept"/>
 <Button type="Reject" text="Reject"/>
 </OverflowToolbar>
 </f:footer>
 </f:DynamicPage>
</mvc:View>

We create the master view using sap.f.DynamicPage. The page consists of a list with all products.

webapp/view/App.view.xml [MODIFY]

<mvc:View displayBlock="true"
 height="100%"
 xmlns="sap.f"
 xmlns:mvc="sap.ui.core.mvc"> <FlexibleColumnLayout id="flexibleColumnLayout" backgroundDesign="Solid">
 <beginColumnPages>
 <mvc:XMLView id="beginView"
viewName="sap.ui.demo.fiori2.view.Master"/>
 </beginColumnPages>
 </FlexibleColumnLayout> </mvc:View>

We add the master view in FlexibleColumnLayout's beginColumnPages aggregation.

webapp/controller/Master.controller.js [NEW]

sap.ui.define([
 "sap/ui/model/json/JSONModel",
 "sap/ui/core/mvc/Controller",
 "sap/ui/model/Filter",
 "sap/ui/model/FilterOperator",
 'sap/ui/model/Sorter',
 'sap/m/MessageBox'
], function (JSONModel, Controller, Filter, FilterOperator, Sorter, MessageBox) {
 "use strict";

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 497

 return Controller.extend("sap.ui.demo.fiori2.controller.Master", {
 onInit: function () {
 this.oView = this.getView();
 this._bDescendingSort = false;
 this.oProductsTable = this.oView.byId("productsTable");
 },

 onSearch: function (oEvent) {
 var oTableSearchState = [],
 sQuery = oEvent.getParameter("query");

 if (sQuery && sQuery.length > 0) {
 oTableSearchState = [new Filter("Name", FilterOperator.Contains,
sQuery)];
 }

 this.oProductsTable.getBinding("items").filter(oTableSearchState,
"Application");
 },

 onAdd: function () {
 MessageBox.information("This functionality is not ready yet.",
{title: "Aw, Snap!"});
 },

 onSort: function () {
 this._bDescendingSort = !this._bDescendingSort;
 var oBinding = this.oProductsTable.getBinding("items"),
 oSorter = new Sorter("Name", this._bDescendingSort);

 oBinding.sort(oSorter);
 }
 });
});

We create the master controller that provides a basic search and sort functionality for the products listed in the
master page.

498 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Step 4: Adding a Detail Page

In this step, we add an empty detail page.

Preview

Figure 151: Master Page with Empty Detail Page

Coding

You can view and download all files at SAP Fiori 2.0 App - Step 4.

webapp/view/Detail.view.xml [NEW]

<mvc:View
 xmlns:mvc="sap.ui.core.mvc">
</mvc:View>

First, we create a blank detail page.

webapp/view/App.view.xml [MODIFY]

<mvc:View

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 499

https://sapui5.hana.ondemand.com/#/sample/sap.f.tutorial.fiori2.04/preview

 displayBlock="true"
 height="100%"
 xmlns="sap.f"
 xmlns:mvc="sap.ui.core.mvc">
 <FlexibleColumnLayout id="flexibleColumnLayout" backgroundDesign="Solid">
 <beginColumnPages>
 <mvc:XMLView id="beginView"
viewName="sap.ui.demo.fiori2.view.Master"/>
 </beginColumnPages> <midColumnPages>
 <mvc:XMLView id="detailView"
viewName="sap.ui.demo.fiori2.view.Detail"/>
 </midColumnPages> </FlexibleColumnLayout> </mvc:View>

We add the detail page in FlexibleColumnLayout's midColumnPages aggregation in the App.view.xml
file. This way the detail page will be displayed in the middle column.

webapp/view/Master.view.xml [MODIFY]

 ... <!-- DynamicPage Content -->
 ...
 ...
 <items> <ColumnListItem type="Navigation"
press=".onListItemPress"> <cells>
 <ObjectIdentifier title="{products>Name}"
text="{products>ProductId}"/>
 <ObjectNumber
 number="{
 parts:[
 {path:'products>Price'},
 {path:'products>CurrencyCode'}
],
 type: 'sap.ui.model.type.Currency',
 formatOptions: {showMeasure: false}
 }"
 unit="{products>CurrencyCode}"/>
 </cells>
 </ColumnListItem>
 </items> ...

We add a press handler to each ColumnListItem in the Master.view.xml.

webapp/controller/Master.controller.js [MODIFY]

sap.ui.define(["sap/ui/model/json/JSONModel",
 "sap/ui/core/mvc/Controller",
 "sap/ui/model/Filter",
 "sap/ui/model/FilterOperator",
 'sap/ui/model/Sorter',

500 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 'sap/m/MessageBox',
 'sap/f/library'], function (JSONModel, Controller, Filter, FilterOperator, Sorter, MessageBox,
fioriLibrary) { "use strict";
 ...
 ...
 onSort: function () {
 this._bDescendingSort = !this._bDescendingSort;
 var oBinding = this.oProductsTable.getBinding("items"),
 oSorter = new Sorter("Name", this._bDescendingSort);
 oBinding.sort(oSorter); },

 onListItemPress: function () {
 var oFCL = this.oView.getParent().getParent();

 oFCL.setLayout(fioriLibrary.LayoutType.TwoColumnsMidExpanded);
 } }); });

In the Master.controller.js, we attach a onListItemPress function to the press handler, which
changes the layout to TwoColumnsBeginExpanded. This means that there are going to be two columns,
where the first one is larger than the second. For more information on the available layout types, see Types of
Layout [page 2290].

Step 5: Using Object Page Layout as a Detail Page

In this step, we add sap.uxap.ObjectPageLayout to the detail page to display more information about each
product.

The ObjectPageLayout control provides a layout that allows apps to easily display information related to a
business object.

As of version 1.52, the control can have the same dynamic header that is used in the sap.f.DynamicPage.
This ensures the availability of all the latest SAP Fiori 2.0 features, such as, having breadcrumbs navigation,
navigation actions, and expanding/collapsing the header by tapping/clicking the title area or by selecting the
available arrow buttons. For more information, see Object Page Headers [page 2488].

Compared to sap.f.DynamicPage, the sap.uxap.ObjectPageLayout can provide a more structured page
content using an optional anchor bar and block content wrapped in sections and subsections that structure
the information. For more information, see Object Page Layout [page 2482].

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 501

Preview

Figure 152: ObjectPageLayout with dynamic header for the detail page

Coding

You can view and download all files at SAP Fiori 2.0 App - Step 5.

webapp/manifest.json [MODIFY]

{ "_version": "1.12.0",
 "sap.app": {
 "id": "sap.ui.demo.fiori2",
 "type": "application",
 "applicationVersion": {
 "version": "1.0.0"
 }
 },
 "sap.ui5": {
 "rootView": {
 "viewName": "sap.ui.demo.fiori2.view.App",
 "type": "XML",
 "async": true,
 "id": "fcl"
 },
 "dependencies": {
 "minUI5Version": "1.60.0",
 "libs": {
 "sap.ui.core": {},
 "sap.m": {}, "sap.f": {},
 "sap.uxap": {}

502 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/sample/sap.f.tutorial.fiori2.05/preview

 }
 },
 "config": {
 "fullWidth": true
 }
 } }

First, we add the related libraries that we will need to the dependencies in the manifest.json.

webapp/view/Detail.view.xml [MODIFY]

<mvc:View xmlns="sap.uxap"
 xmlns:m="sap.m"
 xmlns:f="sap.f"
 xmlns:form="sap.ui.layout.form" xmlns:mvc="sap.ui.core.mvc"> <ObjectPageLayout
 id="ObjectPageLayout"
 showTitleInHeaderContent="true"
 alwaysShowContentHeader="false"
 preserveHeaderStateOnScroll="false"
 headerContentPinnable="true"
 isChildPage="true"
 upperCaseAnchorBar="false">
 </ObjectPageLayout> </mvc:View>

We add an instance of the sap.uxap.ObjectPageLayout control.

webapp/view/Detail.view.xml [MODIFY]

<mvc:View xmlns="sap.uxap"
 xmlns:m="sap.m"
 xmlns:f="sap.f"
 xmlns:form="sap.ui.layout.form"
 xmlns:mvc="sap.ui.core.mvc">
 <ObjectPageLayout
 id="ObjectPageLayout"
 showTitleInHeaderContent="true"
 alwaysShowContentHeader="false"
 preserveHeaderStateOnScroll="false"
 headerContentPinnable="true"
 isChildPage="true"
 upperCaseAnchorBar="false"> <headerTitle>
 <ObjectPageDynamicHeaderTitle>
 <actions>
 <m:ToggleButton
 text="Edit"
 type="Emphasized"/>
 <m:Button
 text="Delete"
 type="Transparent"/>
 <m:Button

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 503

 text="Copy"
 type="Transparent"/>
 <m:Button
 icon="sap-icon://action"
 type="Transparent"/>
 </actions>
 </ObjectPageDynamicHeaderTitle>
 </headerTitle> </ObjectPageLayout> </mvc:View>

We add the recommended dynamic header with an instance of the ObjectPageDynamicHeaderTitle in the
headerTitle aggregation of the ObjectPageLayout. For more information, see Object Page Dynamic
Header [page 2494] and Object Page Headers Comparison [page 2497].

webapp/view/Detail.view.xml [MODIFY]

 ... <headerTitle>
 <ObjectPageDynamicHeaderTitle>
 <actions>
 <m:ToggleButton
 text="Edit"
 type="Emphasized"/>
 <m:Button
 text="Delete"
 type="Transparent"/>
 <m:Button
 text="Copy"
 type="Transparent"/>
 <m:Button
 icon="sap-icon://action"
 type="Transparent"/>
 </actions>
 </ObjectPageDynamicHeaderTitle>
 </headerTitle> <headerContent>
 <m:FlexBox wrap="Wrap" fitContainer="true" alignItems="Stretch">
 <f:Avatar
 displaySize="L"
 displayShape="Square"
 class="sapUiTinyMarginEnd">
 </f:Avatar>
 <m:VBox justifyContent="Center" class="sapUiSmallMarginEnd">
 <m:Label text="Main Category"/>
 </m:VBox>
 <m:VBox justifyContent="Center" class="sapUiSmallMarginEnd">
 <m:Label text="Subcategory"/>
 </m:VBox>
 <m:VBox justifyContent="Center" class="sapUiSmallMarginEnd">
 <m:Label text="Price"/>
 </m:VBox>
 </m:FlexBox>
 </headerContent> </ObjectPageLayout> </mvc:View>

We add content in the headerContent aggregation. We're using sap.f.Avatar as the recommended SAP
Fiori 2.0 control for displaying images.

504 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

webapp/view/Detail.view.xml [MODIFY]

 ... <headerContent>
 <m:FlexBox wrap="Wrap" fitContainer="true" alignItems="Stretch">
 <f:Avatar
 displaySize="L"
 displayShape="Square"
 class="sapUiTinyMarginEnd">
 </f:Avatar>
 <m:VBox justifyContent="Center" class="sapUiSmallMarginEnd">
 <m:Label text="Main Category"/>
 </m:VBox>
 <m:VBox justifyContent="Center" class="sapUiSmallMarginEnd">
 <m:Label text="Subcategory"/>
 </m:VBox>
 <m:VBox justifyContent="Center" class="sapUiSmallMarginEnd">
 <m:Label text="Price"/>
 </m:VBox>
 </m:FlexBox>
 </headerContent> <sections>
 <ObjectPageSection title="General Information">
 <subSections>
 <ObjectPageSubSection>
 <blocks>
 <form:SimpleForm
 maxContainerCols="2"
 editable="false"
 layout="ResponsiveGridLayout"
 labelSpanL="12"
 labelSpanM="12"
 emptySpanL="0"
 emptySpanM="0"
 columnsL="1"
 columnsM="1">
 <form:content>
 <m:Label text="Product ID"/>
 <m:Label text="Description"/>
 <m:Label text="Supplier"/>
 </form:content>
 </form:SimpleForm>
 </blocks>
 </ObjectPageSubSection>
 </subSections>
 </ObjectPageSection>

 <ObjectPageSection title="Suppliers">
 <subSections>
 <ObjectPageSubSection>
 <blocks>
 <m:Table
 id="suppliersTable"
 items="{path : 'products>/ProductCollectionStats/
Filters/1/values'}">
 <m:columns>
 <m:Column/>
 </m:columns>
 <m:items>
 <m:ColumnListItem type="Navigation">
 <m:cells>
 <m:ObjectIdentifier
text="{products>text}"/>
 </m:cells>
 </m:ColumnListItem>
 </m:items>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 505

 </m:Table>
 </blocks>
 </ObjectPageSubSection>
 </subSections>
 </ObjectPageSection>
 </sections> </ObjectPageLayout> </mvc:View>

Finally, we add page content in two separate sections with blocks. For more information, see Object Page
Blocks [page 2504].

Step 6: Adding a Floating Footer

In this step, we add a floating footer to the detail page.

Preview

Figure 153: ObjectPageLayout with a floating footer

Coding

You can view and download all files at SAP Fiori 2.0 App - Step 6.

506 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/sample/sap.f.tutorial.fiori2.06/preview

webapp/view/App.view.xml [MODIFY]

<mvc:View displayBlock="true"
 height="100%"
 xmlns="sap.f"
 xmlns:mvc="sap.ui.core.mvc"> <FlexibleColumnLayout id="flexibleColumnLayout" stateChange="onStateChanged"
backgroundDesign="Solid"> <beginColumnPages>
 <mvc:XMLView id="beginView"
viewName="sap.ui.demo.fiori2.view.Master"/>
 </beginColumnPages>
 <midColumnPages>
 <mvc:XMLView id="detailView"
viewName="sap.ui.demo.fiori2.view.Detail"/>
 </midColumnPages>
 </FlexibleColumnLayout> </mvc:View>

First, we communicate changes to the layout with the use of the stateChange event.

webapp/view/Detail.view.xml [MODIFY]

 ... </sections> <footer>
 <m:OverflowToolbar>
 <m:ToolbarSpacer/>
 <m:Button type="Accept" text="Save"/>
 <m:Button type="Reject" text="Cancel"/>
 </m:OverflowToolbar>
 </footer> </ObjectPageLayout> </mvc:View>

We add a footer inside the sap.uxap.ObjectPageLayout.

webapp/view/Detail.view.xml [MODIFY]

<mvc:View controllerName="sap.ui.demo.fiori2.controller.Detail" xmlns="sap.uxap"
 xmlns:m="sap.m"
 xmlns:f="sap.f"
 xmlns:form="sap.ui.layout.form"
 xmlns:mvc="sap.ui.core.mvc">
 <ObjectPageLayout
 id="ObjectPageLayout"
 showTitleInHeaderContent="true"
 alwaysShowContentHeader="false"
 preserveHeaderStateOnScroll="false"
 headerContentPinnable="true"
 isChildPage="true"

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 507

 upperCaseAnchorBar="false">
 <headerTitle>
 <ObjectPageDynamicHeaderTitle>
 <actions>
 <m:ToggleButton
 text="Edit" type="Emphasized"
 press=".onEditToggleButtonPress"/> <m:Button
 text="Delete"
 type="Transparent"/>
 <m:Button
 text="Copy"
 type="Transparent"/>
 <m:Button
 icon="sap-icon://action"
 type="Transparent"/>
 </actions>
 </ObjectPageDynamicHeaderTitle>
 </headerTitle> ...

We add a press event handler to the Edit button.

webapp/controller/Detail.controller.js [NEW]

sap.ui.define([
 "sap/ui/core/mvc/Controller"
], function (Controller) {
 "use strict";

 return Controller.extend("sap.ui.demo.fiori2.controller.Detail", {
 onEditToggleButtonPress: function() {
 var oObjectPage = this.getView().byId("ObjectPageLayout"),
 bCurrentShowFooterState = oObjectPage.getShowFooter();

 oObjectPage.setShowFooter(!bCurrentShowFooterState);
 }
 });
});

Finally, we create the controller and add a simple function to it to show and hide the footer.

508 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Step 7: Routing

In this step, we utilize the sap.f.routing.Router.

Preview

Figure 154: Changing layouts based on the sap.f.routing.Router (no visual changes to last step)

Coding

You can view and download all files at SAP Fiori 2.0 App - Step 7.

webapp/views/App.view.xml [MODIFY]

<mvc:View controllerName="sap.ui.demo.fiori2.controller.App" displayBlock="true"
 height="100%"
 xmlns="sap.f"
 xmlns:mvc="sap.ui.core.mvc"> <FlexibleColumnLayout
 id="flexibleColumnLayout"
 stateChange=".onStateChanged"
 backgroundDesign="Solid"
 layout="{/layout}"/> </mvc:View>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 509

https://sapui5.hana.ondemand.com/#/sample/sap.f.tutorial.fiori2.07/preview

We remove the hardcoded beginColumnPages and endColumnPages aggregations (since the router will add
them automatically from now on), and we bind the layout property so that it can be changed easily from the
controller.

webapp/controller/App.controller.js [NEW]

sap.ui.define([
 "sap/ui/model/json/JSONModel",
 "sap/ui/core/mvc/Controller"
], function (JSONModel, Controller) {
 "use strict";

 return Controller.extend("sap.ui.demo.fiori2.controller.App", {
 onInit: function () {
 this.oOwnerComponent = this.getOwnerComponent();
 this.oRouter = this.oOwnerComponent.getRouter();
 this.oRouter.attachRouteMatched(this.onRouteMatched, this);
 },

 onRouteMatched: function (oEvent) {
 var sRouteName = oEvent.getParameter("name"),
 oArguments = oEvent.getParameter("arguments");

 // Save the current route name
 this.currentRouteName = sRouteName;
 this.currentProduct = oArguments.product;
 },

 onStateChanged: function (oEvent) {
 var bIsNavigationArrow = oEvent.getParameter("isNavigationArrow"),
 sLayout = oEvent.getParameter("layout");

 // Replace the URL with the new layout if a navigation arrow was used
 if (bIsNavigationArrow) {
 this.oRouter.navTo(this.currentRouteName, {layout: sLayout,
product: this.currentProduct}, true);
 }
 },

 onExit: function () {
 this.oRouter.detachRouteMatched(this.onRouteMatched, this);
 }
 });
});

We access the router and bind to its routeMatched event. For more information, see Router [page 2296].

webapp/controller/Master.controller.js [MODIFY]

sap.ui.define(["sap/ui/model/json/JSONModel",
 "sap/ui/core/mvc/Controller",
 "sap/ui/model/Filter",
 "sap/ui/model/FilterOperator",
 'sap/ui/model/Sorter',
 'sap/m/MessageBox',

510 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 'sap/f/library'
], function (JSONModel, Controller, Filter, FilterOperator, Sorter, MessageBox,
fioriLibrary) {
 "use strict";
 return Controller.extend("sap.ui.demo.fiori2.controller.Master", {
 onInit: function () {
 this.oView = this.getView();
 this._bDescendingSort = false;
 this.oProductsTable = this.oView.byId("productsTable"); this.oRouter = this.getOwnerComponent().getRouter(); },
 onSearch: function (oEvent) {
 var oTableSearchState = [],
 sQuery = oEvent.getParameter("query");
 if (sQuery && sQuery.length > 0) {
 oTableSearchState = [new Filter("Name", FilterOperator.Contains,
sQuery)];
 }
 this.oProductsTable.getBinding("items").filter(oTableSearchState,
"Application");
 },
 onAdd: function () {
 MessageBox.show("This functionality is not ready yet.", {
 icon: MessageBox.Icon.INFORMATION,
 title: "Aw, Snap!",
 actions: [MessageBox.Action.OK]
 });
 },
 onSort: function () {
 this._bDescendingSort = !this._bDescendingSort;
 var oBinding = this.oProductsTable.getBinding("items"),
 oSorter = new Sorter("Name", this._bDescendingSort);
 oBinding.sort(oSorter);
 }, onListItemPress: function (oEvent) { var productPath =
oEvent.getSource().getBindingContext("products").getPath(),
 product = productPath.split("/").slice(-1).pop(); this.oRouter.navTo("detail", {layout:
fioriLibrary.LayoutType.TwoColumnsMidExpanded, product: product}); }
 }); });

We change the event handler for pressing an item from the master view to use the router instead of manually
manipulating the FlexibleColumnLayout instance. When we call the router's navTo method, the router
itself will change the layout property of the FlexibleColumnLayout.

webapp/controller/Detail.controller.js [MODIFY]

sap.ui.define(["sap/ui/core/mvc/Controller"
], function (Controller) {
 "use strict";
 return Controller.extend("sap.ui.demo.fiori2.controller.Detail", { onInit: function () {
 var oOwnerComponent = this.getOwnerComponent();

 this.oRouter = oOwnerComponent.getRouter();
 this.oModel = oOwnerComponent.getModel();

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 511

this.oRouter.getRoute("master").attachPatternMatched(this._onProductMatched,
this);

this.oRouter.getRoute("detail").attachPatternMatched(this._onProductMatched,
this);
 },

 _onProductMatched: function (oEvent) {
 this._product = oEvent.getParameter("arguments").product ||
this._product || "0";
 this.getView().bindElement({
 path: "/ProductCollection/" + this._product,
 model: "products"
 });
 }, onEditToggleButtonPress: function() {
 var oObjectPage = this.getView().byId("ObjectPageLayout"),
 bCurrentShowFooterState = oObjectPage.getShowFooter();
 oObjectPage.setShowFooter(!bCurrentShowFooterState); },

 onExit: function () {

this.oRouter.getRoute("master").detachPatternMatched(this._onProductMatched,
this);

this.oRouter.getRoute("detail").detachPatternMatched(this._onProductMatched,
this);
 } }); });

We bind the table in the detail view to reflect the currently selected product from the master view.

webapp/Component.js [MODIFY]

sap.ui.define(['sap/ui/core/UIComponent', 'sap/ui/model/json/JSONModel',
 'sap/f/library'], function(UIComponent, JSONModel, fioriLibrary) { 'use strict';
 return UIComponent.extend('sap.ui.demo.fiori2.Component', {
 metadata: {
 manifest: 'json'
 },
 init: function () { var oModel,
 oProductsModel,
 oRouter; UIComponent.prototype.init.apply(this, arguments); oModel = new JSONModel();
 this.setModel(oModel); // set products demo model on this sample
 oProductsModel = new JSONModel(sap.ui.require.toUrl('sap/ui/demo/
mock') + '/products.json');
 oProductsModel.setSizeLimit(1000);
 this.setModel(oProductsModel, 'products'); oRouter = this.getRouter();
 oRouter.attachBeforeRouteMatched(this._onBeforeRouteMatched, this);
 oRouter.initialize();
 },

512 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 _onBeforeRouteMatched: function(oEvent) {
 var oModel = this.getModel(),
 sLayout = oEvent.getParameters().arguments.layout;

 // If there is no layout parameter, set a default layout (normally
OneColumn)
 if (!sLayout) {
 sLayout = fioriLibrary.LayoutType.OneColumn;
 }

 oModel.setProperty("/layout", sLayout); }
 }); });

We initialize the router and bind to its onBeforeRouteMatched event, and we introduce a model, which will be
used for the layout.

webapp/manifest.json [MODIFY]

{ "_version": "1.12.0",
 "sap.app": {
 "id": "sap.ui.demo.fiori2",
 "type": "application",
 "applicationVersion": {
 "version": "1.0.0"
 }
 },
 "sap.ui5": {
 "rootView": {
 "viewName": "sap.ui.demo.fiori2.view.App",
 "type": "XML",
 "async": true,
 "id": "fcl"
 },
 "dependencies": {
 "minUI5Version": "1.60.0",
 "libs": {
 "sap.ui.core": {},
 "sap.m": {},
 "sap.f": {},
 "sap.uxap": {}
 }
 },
 "config": {
 "fullWidth": true },
 "routing": {
 "config": {
 "routerClass": "sap.f.routing.Router",
 "viewType": "XML",
 "viewPath": "sap.ui.demo.fiori2.view",
 "controlId": "flexibleColumnLayout",
 "transition": "slide",
 "bypassed": {
 },
 "async": true
 },
 "routes": [
 {
 "pattern": ":layout:",

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 513

 "name": "master",
 "target": [
 "master",
 "detail"
]
 },
 {
 "pattern": "detail/{product}/{layout}",
 "name": "detail",
 "target": [
 "master",
 "detail"
]
 }
],
 "targets": {
 "master": {
 "viewName": "Master",
 "controlAggregation": "beginColumnPages"
 },
 "detail": {
 "viewName": "Detail",
 "controlAggregation": "midColumnPages"
 }
 }
 } } }

Finally, we add the routing configuration in the manifest.json.

514 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Step 8: Enhancing the Detail Page

With routing implemented, the model of the detail page is updated for each product. In this step, we enhance
the detail page to show information specific for the selected product.

Preview

Figure 155: Enhanced detail page displaying information specific to the selected product

Coding

You can view and download all files at SAP Fiori 2.0 App - Step 8.

webapp/view/Detail.view.xml [MODIFY]

<mvc:View controllerName="sap.ui.demo.fiori2.controller.Detail"
 xmlns="sap.uxap"
 xmlns:m="sap.m"
 xmlns:f="sap.f"
 xmlns:form="sap.ui.layout.form"
 xmlns:mvc="sap.ui.core.mvc">
 <ObjectPageLayout
 id="ObjectPageLayout"
 showTitleInHeaderContent="true"
 alwaysShowContentHeader="false"
 preserveHeaderStateOnScroll="false"
 headerContentPinnable="true"

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 515

https://sapui5.hana.ondemand.com/#/sample/sap.f.tutorial.fiori2.08/preview

 isChildPage="true"
 upperCaseAnchorBar="false">
 <headerTitle>
 <ObjectPageDynamicHeaderTitle> <expandedHeading>
 <m:Title text="{products>Name}" wrapping="true"
class="sapUiSmallMarginEnd"/>
 </expandedHeading>

 <snappedHeading>
 <m:FlexBox wrap="Wrap" fitContainer="true"
alignItems="Center">
 <m:FlexBox wrap="NoWrap" fitContainer="true"
alignItems="Center" class="sapUiTinyMarginEnd">
 <f:Avatar
 src="https://sapui5.hana.ondemand.com/
{products>ProductPicUrl}"
 displaySize="S"
 displayShape="Square"
 class="sapUiTinyMarginEnd"/>
 <m:Title text="{products>Name}" wrapping="true"/>
 </m:FlexBox>
 </m:FlexBox>
 </snappedHeading> <actions> ...

Using the expandedHeading and snappedHeading aggregations, we specify different content to be
displayed in the title area depending on whether the header is expanded or collapsed.

webapp/view/Detail.view.xml [MODIFY]

 ... <headerContent>
 <m:FlexBox wrap="Wrap" fitContainer="true" alignItems="Stretch">
 <f:Avatar src="https://sapui5.hana.ondemand.com/
{products>ProductPicUrl}" displaySize="L"
 displayShape="Square"
 class="sapUiTinyMarginEnd">
 </f:Avatar>
 <m:VBox justifyContent="Center" class="sapUiSmallMarginEnd">
 <m:Label text="Main Category"/> <m:Text text="{products>MainCategory}"/> </m:VBox>
 <m:VBox justifyContent="Center" class="sapUiSmallMarginEnd">
 <m:Label text="Subcategory"/> <m:Text text="{products>Category}"/> </m:VBox>
 <m:VBox justifyContent="Center" class="sapUiSmallMarginEnd">
 <m:Label text="Price"/> <m:ObjectNumber number="{products>CurrencyCode}
{products>Price}" emphasized="false"/> </m:VBox>
 </m:FlexBox>
 </headerContent> ...

We adjust the headerContent so that the sap.f.Avatar displays the specific image of the selected product
and the header displays the product's Main Category, Category and Price information, which is provided in the
products.json we're using.

516 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

webapp/view/Detail.view.xml [MODIFY]

 ... <sections>
 <ObjectPageSection title="General Information">
 <subSections>
 <ObjectPageSubSection>
 <blocks>
 <form:SimpleForm
 maxContainerCols="2"
 editable="false"
 layout="ResponsiveGridLayout"
 labelSpanL="12"
 labelSpanM="12"
 emptySpanL="0"
 emptySpanM="0"
 columnsL="1"
 columnsM="1">
 <form:content>
 <m:Label text="Product ID"/> <m:Text text="{products>ProductId}"/> <m:Label text="Description"/> <m:Text text="{products>Description}"/> <m:Label text="Supplier"/> <m:Text text="{products>SupplierName}"/> </form:content>
 </form:SimpleForm>
 </blocks>
 </ObjectPageSubSection>
 </subSections>
 </ObjectPageSection> ...

We adjust the General Information section to display Product ID, Description and Supplier of the selected
product.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 517

Step 9: Adding a Detail-Detail Page

In this step, we create a detail-detail page using sap.f.DynamicPage, which is opened by choosing a supplier
from the detail page.

Preview

Figure 156: Detail-detail page displaying the name of the selected supplier

Coding

You can view and download all files at SAP Fiori 2.0 App - Step 9.

webapp/view/DetailDetail.view.xml [NEW]

<mvc:View
 controllerName="sap.ui.demo.fiori2.controller.DetailDetail"
 xmlns="sap.f"
 xmlns:m="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <DynamicPage toggleHeaderOnTitleClick="false">
 <title>
 <DynamicPageTitle>
 <heading>
 <m:FlexBox wrap="Wrap" fitContainer="true"
alignItems="Center">
 <m:Title text="{products>text}" wrapping="true"
class="sapUiTinyMarginEnd"/>

518 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/sample/sap.f.tutorial.fiori2.09/preview

 </m:FlexBox>
 </heading>
 </DynamicPageTitle>
 </title>
 </DynamicPage>
</mvc:View>

We create a detail-detail page view using sap.f.DynamicPage with only a title.

webapp/controller/DetailDetail.controller.js [NEW]

sap.ui.define([
 "sap/ui/model/json/JSONModel",
 "sap/ui/core/mvc/Controller"
], function (JSONModel, Controller) {
 "use strict";

 return Controller.extend("sap.ui.demo.fiori2.controller.DetailDetail", {
 onInit: function () {
 var oOwnerComponent = this.getOwnerComponent();

 this.oRouter = oOwnerComponent.getRouter();
 this.oModel = oOwnerComponent.getModel();

this.oRouter.getRoute("detailDetail").attachPatternMatched(this._onPatternMatch,
this);
 },

 _onPatternMatch: function (oEvent) {
 this._supplier = oEvent.getParameter("arguments").supplier ||
this._supplier || "0";
 this._product = oEvent.getParameter("arguments").product ||
this._product || "0";

 this.getView().bindElement({
 path: "/ProductCollectionStats/Filters/1/values/" +
this._supplier,
 model: "products"
 });
 },

 onExit: function () {

this.oRouter.getRoute("detailDetail").detachPatternMatched(this._onPatternMatch,
this);
 }
 });
});

We create the detail-detail page controller.

webapp/manifest.json [MODIFY]

 ... "routes": [
 {

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 519

 "pattern": ":layout:",
 "name": "master",
 "target": [
 "master",
 "detail"
]
 },
 {
 "pattern": "detail/{product}/{layout}",
 "name": "detail",
 "target": [
 "master",
 "detail"
] },
 {
 "pattern": "detail/{product}/detailDetail/{supplier}/
{layout}",
 "name": "detailDetail",
 "target": [
 "master",
 "detail",
 "detailDetail"
]
 }],
 "targets": {
 "master": {
 "viewName": "Master",
 "controlAggregation": "beginColumnPages"
 },
 "detail": {
 "viewName": "Detail",
 "controlAggregation": "midColumnPages" },
 "detailDetail": {
 "viewName": "DetailDetail",
 "controlAggregation": "endColumnPages"
 } }
 }
 } }

We add the detail-detail page to our existing routes in the manifest.json.

webapp/view/Detail.view.xml [MODIFY]

 ... <ObjectPageSection title="Suppliers">
 <subSections>
 <ObjectPageSubSection>
 <blocks>
 <m:Table
 id="suppliersTable"
 items="{path : 'products>/ProductCollectionStats/
Filters/1/values'}">
 <m:columns>
 <m:Column/>
 </m:columns>
 <m:items> <m:ColumnListItem type="Navigation"
press=".onSupplierPress">

520 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 <m:cells>
 <m:ObjectIdentifier
text="{products>text}"/>
 </m:cells>
 </m:ColumnListItem>
 </m:items>
 </m:Table>
 </blocks>
 </ObjectPageSubSection>
 </subSections>
 </ObjectPageSection>
 </sections> ...

We add a press event handler for each item in the SUPPLIERS table in the detail page.

webapp/controller/Detail.controller.js [MODIFY]

sap.ui.define(["sap/ui/core/mvc/Controller",
 'sap/f/library'], function (Controller, fioriLibrary) { "use strict";
 return Controller.extend("sap.ui.demo.fiori2.controller.Detail", {
 onInit: function () {
 var oOwnerComponent = this.getOwnerComponent();
 this.oRouter = oOwnerComponent.getRouter();
 this.oModel = oOwnerComponent.getModel();

this.oRouter.getRoute("master").attachPatternMatched(this._onProductMatched,
this);

this.oRouter.getRoute("detail").attachPatternMatched(this._onProductMatched,
this);
this.oRouter.getRoute("detailDetail").attachPatternMatched(this._onProductMatched
, this); }, onSupplierPress: function (oEvent) {
 var supplierPath =
oEvent.getSource().getBindingContext("products").getPath(),
 supplier = supplierPath.split("/").slice(-1).pop();

 this.oRouter.navTo("detailDetail", {layout:
fioriLibrary.LayoutType.ThreeColumnsMidExpanded, supplier: supplier, product:
this._product});
 }, _onProductMatched: function (oEvent) { ...

We add an onSupplierPress function in the detail page controller in order to pass the data for the selected
supplier and navigate to the detail-detail page.

webapp/controller/App.controller.js [MODIFY]

 ...

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 521

 onRouteMatched: function (oEvent) {
 var sRouteName = oEvent.getParameter("name"),
 oArguments = oEvent.getParameter("arguments");
 // Save the current route name
 this.currentRouteName = sRouteName;
 this.currentProduct = oArguments.product; this.currentSupplier = oArguments.supplier; },
 onStateChanged: function (oEvent) {
 var bIsNavigationArrow = oEvent.getParameter("isNavigationArrow"),
 sLayout = oEvent.getParameter("layout");
 // Replace the URL with the new layout if a navigation arrow was used
 if (bIsNavigationArrow) { this.oRouter.navTo(this.currentRouteName, {layout: sLayout,
product: this.currentProduct, supplier: this.currentSupplier}, true); }
 },
 onExit: function () {
 this.oRouter.detachRouteMatched(this.onRouteMatched, this);
 }
 }); });

Finally, we pass data for the supplier in the detail-detail page.

Step 10: Adding More Pages

In this step, we create an additional page that is displayed in a separate fullscreen column.

Preview

Figure 157: Additional page displayed in a separate fullscreen column

522 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Coding

You can view and download all files at SAP Fiori 2.0 App - Step 10.

webapp/view/AboutPage.view.xml [NEW]

<mvc:View
 xmlns="sap.m"
 xmlns:f="sap.f"
 xmlns:mvc="sap.ui.core.mvc">
 <f:DynamicPage toggleHeaderOnTitleClick="false">
 <!-- DynamicPage Title -->
 <f:title>
 <f:DynamicPageTitle>
 <f:heading>
 <Title text="About supplier"/>
 </f:heading>
 </f:DynamicPageTitle>
 </f:title>
 </f:DynamicPage>
</mvc:View>

We create a simple additional page view.

webapp/manifest.json [MODIFY]

 ... "routes": [{
 "pattern": "page2",
 "name": "page2",
 "target": "page2",
 "layout": "EndColumnFullScreen"
 }, {
 "pattern": ":layout:",
 "name": "master",
 "target": [
 "master",
 "detail"
]
 },
 {
 "pattern": "detail/{product}/{layout}",
 "name": "detail",
 "target": [
 "master",
 "detail"
]
 },
 {
 "pattern": "detail/{product}/detailDetail/{supplier}/
{layout}",
 "name": "detailDetail",
 "target": [
 "master",

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 523

https://sapui5.hana.ondemand.com/#/sample/sap.f.tutorial.fiori2.10/preview

 "detail",
 "detailDetail"
]
 }
],
 "targets": {
 "master": {
 "viewName": "Master",
 "controlAggregation": "beginColumnPages"
 },
 "detail": {
 "viewName": "Detail",
 "controlAggregation": "midColumnPages"
 },
 "detailDetail": {
 "viewName": "DetailDetail",
 "controlAggregation": "endColumnPages" },
 "page2": {
 "viewName": "AboutPage",
 "controlAggregation": "endColumnPages"
 } }
 }
 } }

Similar to the previous step, we add the additional page view to our existing routes in the manifest.json.

webapp/view/DetailDetail.view.xml [MODIFY]

<mvc:View controllerName="sap.ui.demo.fiori2.controller.DetailDetail"
 xmlns="sap.f"
 xmlns:m="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <DynamicPage toggleHeaderOnTitleClick="false">
 <title>
 <DynamicPageTitle>
 <heading>
 <m:FlexBox wrap="Wrap" fitContainer="true"
alignItems="Center">
 <m:Title text="{products>text}" wrapping="true"
class="sapUiTinyMarginEnd"/>
 </m:FlexBox>
 </heading>
 </DynamicPageTitle>
 </title> <content>
 <m:Link text="Navigate to next page…" press=".handleAboutPress"/>
 </content> </DynamicPage> </mvc:View>

We add a link in the detail-detail page with a press event handler.

524 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

webapp/controller/DetailDetail.controller.js [MODIFY]

sap.ui.define(["sap/ui/model/json/JSONModel", "sap/ui/core/mvc/Controller",
 'sap/f/library'], function (JSONModel, Controller, fioriLibrary) { "use strict";
 return Controller.extend("sap.ui.demo.fiori2.controller.DetailDetail", {
 onInit: function () {
 var oOwnerComponent = this.getOwnerComponent();
 this.oRouter = oOwnerComponent.getRouter();
 this.oModel = oOwnerComponent.getModel();

this.oRouter.getRoute("detailDetail").attachPatternMatched(this._onPatternMatch,
this);
 }, handleAboutPress: function () {
 this.oRouter.navTo("page2", {layout:
fioriLibrary.LayoutType.EndColumnFullScreen});
 }, _onPatternMatch: function (oEvent) { ...

Finally, we add a handleAboutPress function in the detail-detail page controller to navigate to the additional
page without passing any data this time.

Step 11: Using the Flexible Column Layout Semantic Helper

In this step, we use the sap.f.FlexibleColumnLayoutSemanticHelper class to implement the
recommended UX patterns for layout changes in the app.

FlexibleColumnLayout gives you the freedom to implement any app logic that involves changing the layout
(showing/hiding columns) as a result of the user’s actions. However, there are certain UX patterns that are
considered as optimal and are recommended for SAP Fiori 2.0 apps. The
FlexibleColumnLayoutSemanticHelper class helps you implement them by giving you tips about what
layout to display when.

 Note
Using this class is NOT mandatory in order to build an app with the FlexibleColumnLayout, but makes it
easier to achieve the optimal UX recommended in the SAP Fiori 2.0 design guidelines.

For more information, see Flexible Column Layout Semantic Helper [page 2294].

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 525

Preview

Figure 158: Master-detail-detail pattern using sap.f.FlexibleColumnLayoutSemanticHelper

Coding

You can view and download all files at SAP Fiori 2.0 App - Step 11.

webapp/Component.js [MODIFY]

sap.ui.define(['sap/ui/core/UIComponent', 'sap/ui/model/json/JSONModel',
 'sap/f/FlexibleColumnLayoutSemanticHelper', 'sap/f/library'], function(UIComponent, JSONModel, FlexibleColumnLayoutSemanticHelper,
fioriLibrary) { 'use strict';
 return UIComponent.extend('sap.ui.demo.fiori2.Component', {
 metadata: {
 manifest: 'json'
 },
 init: function () {
 var oModel,
 oProductsModel,
 oRouter;
 UIComponent.prototype.init.apply(this, arguments);
 oModel = new JSONModel();
 this.setModel(oModel);
 // set products demo model on this sample
 oProductsModel = new JSONModel(sap.ui.require.toUrl('sap/ui/demo/
mock') + '/products.json');
 oProductsModel.setSizeLimit(1000);

526 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/sample/sap.f.tutorial.fiori2.11/preview

 this.setModel(oProductsModel, 'products');
 oRouter = this.getRouter();
 oRouter.attachBeforeRouteMatched(this._onBeforeRouteMatched, this);
 oRouter.initialize();
 }, getHelper: function () {
 return this._getFcl().then(function(oFCL) {
 var oSettings = {
 defaultTwoColumnLayoutType:
fioriLibrary.LayoutType.TwoColumnsMidExpanded,
 defaultThreeColumnLayoutType:
fioriLibrary.LayoutType.ThreeColumnsMidExpanded
 };
 return (FlexibleColumnLayoutSemanticHelper.getInstanceFor(oFCL,
oSettings));
 });
 }, _onBeforeRouteMatched: function(oEvent) {
 var oModel = this.getModel(), sLayout = oEvent.getParameters().arguments.layout,
 oNextUIState; // If there is no layout parameter, query for the default level 0
layout (normally OneColumn) if (!sLayout) { this.getHelper().then(function(oHelper) {
 oNextUIState = oHelper.getNextUIState(0);
 oModel.setProperty("/layout", oNextUIState.layout);
 });
 return; }
 oModel.setProperty("/layout", sLayout); },

 _getFcl: function () {
 return new Promise(function(resolve, reject) {
 var oFCL = this.getRootControl().byId('flexibleColumnLayout');
 if (!oFCL) {
 this.getRootControl().attachAfterInit(function(oEvent) {
 resolve(oEvent.getSource().byId('flexibleColumnLayout'));
 }, this);
 return;
 }
 resolve(oFCL);

 }.bind(this));
 } }); });

First, we add a getHelper function in the Component.js file in order to pass the default
sap.f.FlexibleColumnLayout parameters.

webapp/view/Detail.view.xml [MODIFY]

 ... <snappedHeading>
 <m:FlexBox wrap="Wrap" fitContainer="true"
alignItems="Center">
 <m:FlexBox wrap="NoWrap" fitContainer="true"
alignItems="Center" class="sapUiTinyMarginEnd">
 <f:Avatar
 src="https://sapui5.hana.ondemand.com/
{products>ProductPicUrl}"

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 527

 displaySize="S"
 displayShape="Square"
 class="sapUiTinyMarginEnd"/>
 <m:Title text="{products>Name}" wrapping="true"/>
 </m:FlexBox>
 </m:FlexBox>
 </snappedHeading> <navigationActions>
 <m:OverflowToolbarButton
 type="Transparent"
 icon="sap-icon://full-screen"
 press=".handleFullScreen"
 tooltip="Enter Full Screen Mode"
 visible="{= ${/actionButtonsInfo/midColumn/fullScreen} !
== null }"/>
 <m:OverflowToolbarButton
 type="Transparent"
 icon="sap-icon://exit-full-screen"
 press=".handleExitFullScreen"
 tooltip="Exit Full Screen Mode"
 visible="{= ${/actionButtonsInfo/midColumn/
exitFullScreen} !== null }"/>
 <m:OverflowToolbarButton
 type="Transparent"
 icon="sap-icon://decline"
 press=".handleClose"
 tooltip="Close column"
 visible="{= ${/actionButtonsInfo/midColumn/closeColumn} !
== null }"/>
 </navigationActions> <actions>
 <m:ToggleButton
 text="Edit"
 type="Emphasized"
 press=".onEditToggleButtonPress"/>
 <m:Button
 text="Delete"
 type="Transparent"/>
 <m:Button
 text="Copy"
 type="Transparent"/>
 <m:Button
 icon="sap-icon://action"
 type="Transparent"/>
 </actions>
 </ObjectPageDynamicHeaderTitle>
 </headerTitle> ...

We add navigation actions for entering and exiting fullscreen and closing the column for the detail page.

webapp/controller/Detail.controller.js [MODIFY]

sap.ui.define(["sap/ui/core/mvc/Controller"
], function (Controller) { "use strict";
 return Controller.extend("sap.ui.demo.fiori2.controller.Detail", {
 onInit: function () { this.oOwnerComponent = this.getOwnerComponent(); this.oRouter = this.oOwnerComponent.getRouter(); this.oModel = this.oOwnerComponent.getModel();

528 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

this.oRouter.getRoute("master").attachPatternMatched(this._onProductMatched,
this);

this.oRouter.getRoute("detail").attachPatternMatched(this._onProductMatched,
this);

this.oRouter.getRoute("detailDetail").attachPatternMatched(this._onProductMatched
, this);
 },
 onSupplierPress: function (oEvent) {
 var supplierPath =
oEvent.getSource().getBindingContext("products").getPath(), supplier = supplierPath.split("/").slice(-1).pop(),
 oNextUIState;

 this.oOwnerComponent.getHelper().then(function (oHelper) {
 oNextUIState = oHelper.getNextUIState(2);
 this.oRouter.navTo("detailDetail", {
 layout: oNextUIState.layout,
 supplier: supplier,
 product: this._product
 });
 }.bind(this)); },
 _onProductMatched: function (oEvent) {
 this._product = oEvent.getParameter("arguments").product ||
this._product || "0";
 this.getView().bindElement({
 path: "/ProductCollection/" + this._product,
 model: "products"
 });
 },
 onEditToggleButtonPress: function() {
 var oObjectPage = this.getView().byId("ObjectPageLayout"),
 bCurrentShowFooterState = oObjectPage.getShowFooter();
 oObjectPage.setShowFooter(!bCurrentShowFooterState);
 }, handleFullScreen: function () {
 var sNextLayout = this.oModel.getProperty("/actionButtonsInfo/
midColumn/fullScreen");
 this.oRouter.navTo("detail", {layout: sNextLayout, product:
this._product});
 },

 handleExitFullScreen: function () {
 var sNextLayout = this.oModel.getProperty("/actionButtonsInfo/
midColumn/exitFullScreen");
 this.oRouter.navTo("detail", {layout: sNextLayout, product:
this._product});
 },

 handleClose: function () {
 var sNextLayout = this.oModel.getProperty("/actionButtonsInfo/
midColumn/closeColumn");
 this.oRouter.navTo("master", {layout: sNextLayout});
 }, onExit: function () {

this.oRouter.getRoute("master").detachPatternMatched(this._onProductMatched,
this);

this.oRouter.getRoute("detail").detachPatternMatched(this._onProductMatched,
this);
 }
 }); });

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 529

We create the handlers needed for the navigation actions.

webapp/view/DetailDetail.view.xml [MODIFY]

<mvc:View controllerName="sap.ui.demo.fiori2.controller.DetailDetail"
 xmlns="sap.f"
 xmlns:m="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <DynamicPage toggleHeaderOnTitleClick="false">
 <title>
 <DynamicPageTitle>
 <heading>
 <m:FlexBox wrap="Wrap" fitContainer="true"
alignItems="Center">
 <m:Title text="{products>text}" wrapping="true"
class="sapUiTinyMarginEnd"/>
 </m:FlexBox>
 </heading> <navigationActions>
 <m:OverflowToolbarButton
 type="Transparent"
 icon="sap-icon://full-screen"
 press=".handleFullScreen"
 tooltip="Enter Full Screen Mode"
 visible="{= ${/actionButtonsInfo/endColumn/fullScreen} !
== null }"/>
 <m:OverflowToolbarButton
 type="Transparent"
 icon="sap-icon://exit-full-screen"
 press=".handleExitFullScreen"
 tooltip="Exit Full Screen Mode"
 visible="{= ${/actionButtonsInfo/endColumn/
exitFullScreen} !== null }"/>
 <m:OverflowToolbarButton
 type="Transparent"
 icon="sap-icon://decline"
 press=".handleClose"
 tooltip="Close column"
 visible="{= ${/actionButtonsInfo/endColumn/closeColumn} !
== null }"/>
 </navigationActions> </DynamicPageTitle>
 </title>
 <content>
 <m:Link text="Navigate to next page…" press=".handleAboutPress"/>
 </content>
 </DynamicPage> </mvc:View>

Again, we add navigation actions for entering and exiting fullscreen and closing the column for the detail-detail
page.

webapp/controller/DetailDetail.controller.js [MODIFY]

sap.ui.define(["sap/ui/model/json/JSONModel",

530 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 "sap/ui/core/mvc/Controller"
], function (JSONModel, Controller) { "use strict";
 return Controller.extend("sap.ui.demo.fiori2.controller.DetailDetail", {
 onInit: function () { this.oOwnerComponent = this.getOwnerComponent(); this.oRouter = this.oOwnerComponent.getRouter(); this.oModel = this.oOwnerComponent.getModel();
this.oRouter.getRoute("detailDetail").attachPatternMatched(this._onPatternMatch,
this);
 },
 handleAboutPress: function () { var oNextUIState;
 this.oOwnerComponent.getHelper().then(function (oHelper) {
 oNextUIState = oHelper.getNextUIState(3);
 this.oRouter.navTo("page2", {layout: oNextUIState.layout});
 }.bind(this)); },
 _onPatternMatch: function (oEvent) {
 this._supplier = oEvent.getParameter("arguments").supplier ||
this._supplier || "0";
 this._product = oEvent.getParameter("arguments").product ||
this._product || "0";
 this.getView().bindElement({
 path: "/ProductCollectionStats/Filters/1/values/" +
this._supplier,
 model: "products"
 });
 }, handleFullScreen: function () {
 var sNextLayout = this.oModel.getProperty("/actionButtonsInfo/
endColumn/fullScreen");
 this.oRouter.navTo("detailDetail", {layout: sNextLayout, product:
this._product, supplier: this._supplier});
 },

 handleExitFullScreen: function () {
 var sNextLayout = this.oModel.getProperty("/actionButtonsInfo/
endColumn/exitFullScreen");
 this.oRouter.navTo("detailDetail", {layout: sNextLayout, product:
this._product, supplier: this._supplier});
 },

 handleClose: function () {
 var sNextLayout = this.oModel.getProperty("/actionButtonsInfo/
endColumn/closeColumn");
 this.oRouter.navTo("detail", {layout: sNextLayout, product:
this._product});
 }, onExit: function () {

this.oRouter.getRoute("detailDetail").detachPatternMatched(this._onPatternMatch,
this);
 }
 }); });

And respectively, we create the handlers needed for the navigation actions in the detail-detail controller.

webapp/controller/Master.controller.js [MODIFY]

sap.ui.define([

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 531

 "sap/ui/model/json/JSONModel",
 "sap/ui/core/mvc/Controller",
 "sap/ui/model/Filter",
 "sap/ui/model/FilterOperator",
 'sap/ui/model/Sorter', 'sap/m/MessageBox'
], function (JSONModel, Controller, Filter, FilterOperator, Sorter, MessageBox) { "use strict";
 return Controller.extend("sap.ui.demo.fiori2.controller.Master", {
 onInit: function () {
 this.oView = this.getView();
 this._bDescendingSort = false;
 this.oProductsTable = this.oView.byId("productsTable");
 this.oRouter = this.getOwnerComponent().getRouter();
 },
 onSearch: function (oEvent) {
 var oTableSearchState = [],
 sQuery = oEvent.getParameter("query");
 if (sQuery && sQuery.length > 0) {
 oTableSearchState = [new Filter("Name", FilterOperator.Contains,
sQuery)];
 }
 this.oProductsTable.getBinding("items").filter(oTableSearchState,
"Application");
 },
 onAdd: function () {
 MessageBox.information("This functionality is not ready yet.",
{title: "Aw, Snap!"});
 },
 onSort: function () {
 this._bDescendingSort = !this._bDescendingSort;
 var oBinding = this.oProductsTable.getBinding("items"),
 oSorter = new Sorter("Name", this._bDescendingSort);
 oBinding.sort(oSorter);
 },
 onListItemPress: function (oEvent) {
 var productPath =
oEvent.getSource().getBindingContext("products").getPath(), product = productPath.split("/").slice(-1).pop(),
 oNextUIState;
 this.getOwnerComponent().getHelper().then(function (oHelper) {
 oNextUIState = oHelper.getNextUIState(1);
 this.oRouter.navTo("detail", {
 layout: oNextUIState.layout,
 product: product
 });
 }.bind(this)); }
 }); });

We get the next layout from the semantic helper rather than hard coding them ourselves.

webapp/controller/App.controller.js [MODIFY]

sap.ui.define(["sap/ui/model/json/JSONModel",
 "sap/ui/core/mvc/Controller"
], function (JSONModel, Controller) {
 "use strict";
 return Controller.extend("sap.ui.demo.fiori2.controller.App", {
 onInit: function () {
 this.oOwnerComponent = this.getOwnerComponent();

532 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 this.oRouter = this.oOwnerComponent.getRouter();
 this.oRouter.attachRouteMatched(this.onRouteMatched, this);
 },
 onRouteMatched: function (oEvent) {
 var sRouteName = oEvent.getParameter("name"),
 oArguments = oEvent.getParameter("arguments"); this._updateUIElements(); // Save the current route name
 this.currentRouteName = sRouteName;
 this.currentProduct = oArguments.product;
 this.currentSupplier = oArguments.supplier;
 },
 onStateChanged: function (oEvent) {
 var bIsNavigationArrow = oEvent.getParameter("isNavigationArrow"),
 sLayout = oEvent.getParameter("layout"); this._updateUIElements(); // Replace the URL with the new layout if a navigation arrow was used
 if (bIsNavigationArrow) {
 this.oRouter.navTo(this.currentRouteName, {layout: sLayout,
product: this.currentProduct, supplier: this.currentSupplier}, true);
 }
 }, // Update the close/fullscreen buttons visibility
 _updateUIElements: function () {
 var oModel = this.oOwnerComponent.getModel(),
 oUIState;
 this.oOwnerComponent.getHelper().then(function(oHelper) {
 oUIState = oHelper.getCurrentUIState();
 oModel.setData(oUIState);
 });
 }, onExit: function () {
 this.oRouter.detachRouteMatched(this.onRouteMatched, this); this.oRouter.detachBeforeRouteMatched(this.onBeforeRouteMatched,
this); }
 }); });

Finally, we create a function in the App.controller.js to update the visibility of the master, detail, and
detail-detail pages.

Step 12: Starting with Two Columns

In this step, we set up the app to start with an initial layout of two columns.

By default, the FlexibleColumnLayout starts off with one column. If your use case requires it, you can set
the initial layout to start with two columns. The user can still navigate to a single-column layout by closing the
detail page from the navigation actions or a three-column layout by selecting an item from the detail page.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 533

Preview

Figure 159: Initial layout with two columns

Coding

You can view and download all files at SAP Fiori 2.0 App - Step 12.

webapp/Component.js [MODIFY]

 ... getHelper: function () {
 return this._getFcl().then(function(oFCL) {
 var oSettings = {
 defaultTwoColumnLayoutType:
fioriLibrary.LayoutType.TwoColumnsMidExpanded, defaultThreeColumnLayoutType:
fioriLibrary.LayoutType.ThreeColumnsMidExpanded,
 initialColumnsCount: 2 };
 return (FlexibleColumnLayoutSemanticHelper.getInstanceFor(oFCL,
oSettings));
 });
 }, ...

We set the initialColumnsCount parameter of the getHelper method to 2.

534 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/sample/sap.f.tutorial.fiori2.12/preview

Step 13: Setting the Master-Detail Pattern

In this step, we set up the app to follow the master-detail pattern.

Apps using the master-detail pattern operate with a layout divided into two separate areas - a master list area
and a details area. The master list area displays the items available to the user and the details area displays the
details for an item that is selected in the master list. If your use case requires it, you can set the
FlexibleColumnLayout to use a maximum of two columns. For more information, see the SAP Fiori Design
Guidelines .

Preview

Figure 160: Master-detail pattern with FlexibleColumnLayout

Coding

You can view and download all files at SAP Fiori 2.0 App - Step 13.

webapp/Component.js [MODIFY]

 ... getHelper: function () {
 return this._getFcl().then(function(oFCL) {
 var oSettings = {
 defaultTwoColumnLayoutType:
fioriLibrary.LayoutType.TwoColumnsMidExpanded,

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 535

http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fflexible-column-layout%2F%23two-columns-masterdetail-mode
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fflexible-column-layout%2F%23two-columns-masterdetail-mode
https://sapui5.hana.ondemand.com/#/sample/sap.f.tutorial.fiori2.13/preview

 defaultThreeColumnLayoutType:
fioriLibrary.LayoutType.ThreeColumnsMidExpanded, initialColumnsCount: 2,
 maxColumnsCount: 2 };
 return (FlexibleColumnLayoutSemanticHelper.getInstanceFor(oFCL,
oSettings));
 });
 }, ...

We set maxColumnsCount parameter of the getHelper method to 2.

Rule Builder Control

In this tutorial you will learn how to embed a rule builder control to manage business rules in your application.

A business rule is a logic that defines some aspect of business and always resolves to either true or false. This
logic can be maintained by non-technical users via a simplified rule language and user interface. Thus, business
rules allow your application’s customers to add their own logic without needing technical customization or
coding.

The rule builder control enables business users to create and edit business rules in applications based on
SAPUI5. The control defines SAP standard UX for creating business rules in an SAP Fiori application and should
be the default UI component for SAP Fiori UI developers to add business rule capabilities.

The sap.rules.ui library provides controls to manage business rules. The two main components are:

● RuleBuilder – Provides visualization of the rule in the form of a decision table and text rule to simplify
the creation and editing of the rule's business logic.

● Expression Language Services – Provides expression language services to support the readability and
correctness of business rules.

The visualization provided by the RuleBuilder component contains text parts and the expression language
services support the end user in creating and editing those text parts.

 Tip
You do not have to do the tutorial steps sequentially; you can start the tutorial at any step you want. Just
download the code, copy it to your workspace and make sure that the application runs by calling the
index.html file.

You can view and download all the files required for steps 1 and 2 in decision table section at Rule Builder -
Guided Decision Table. This is applicable only for decision table rules modeled using rule expression
language.

You can view and download all the files required for steps 1 and 2 in text rule section at Rule Builder - Text
Rule.

For more information, check the following sections of the tutorials overview page (see Get Started: Setup,
Tutorials, and Demo Apps [page 38]):

● Downloading Code for a Tutorial Step [page 40]
● Adapting Code to Your Development Environment [page 40]

536 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.rules.ui.sample.GuidedDecisionTable/preview
https://sapui5.hana.ondemand.com/explored.html#/sample/sap.rules.ui.sample.GuidedDecisionTable/preview
https://sapui5.hana.ondemand.com/#/sample/sap.rules.ui.sample.TextRule/preview
https://sapui5.hana.ondemand.com/#/sample/sap.rules.ui.sample.TextRule/preview

Expression Languages

You can model rules using an expression language. There are two expression languages supported by the rule
builder:

● Expression Language 1.0 (Rule Expression Language): Expression language 1.0 enable users to define
business decision logic in simple readable syntax. This is the default language supported by the rule
builder. A typical rule condition in expression language 1.0 is as shown below:
customer_name of the customer is equal to 'John

● Expression Language 2.0 (DMN SFEEL): Expression language 2.0 or DMN SFEEL is a subset of the
Friendly Enough Expression Language (FEEL), provides a standard syntax for rule conditions, and reduces
ambiguities while modeling a rule. A typical rule condition in expression language 2.0 is as shown below:
customer.customer name MATCHES 'John'
Key features of expression language 2.0 include:
○ Autosuggest list is a suggestion dropdown menu that lets you select the required element of the rule

expression. You do not have to type the rule expression in the corresponding fields.
○ You can also type the rule expression in the field and select the corresponding vocabulary elements

from the autosuggest list. Using free flow typing, you can also edit and delete the tokens in a rule
expressions.

 Example
In the following rule expression:

DO1.Equipment = 'Laptop' AND DO2.Date = 'Dec 3, 2020'

○ If the cursor is placed between DO and 1, then all the data objects starting with DO are listed in
the autosuggest list. Similarly, according to the cursor position, the corresponding data object
or attribute name is listed.

○ To change a date or timestamp value, edit the value in the Fixed Value field of the autosuggest
list.

○ If the cursor is placed before the attribute name Equipment, then the attribute name is deleted.
○ If the cursor is placed in between or before the data object name, DO1, then both the data

object and attribute name, DO1.Equipment, is deleted.

○ Expression language 2.0 supports the use of vocabulary rules. The rules which can be used in a rule
expression are called vocabulary rules. The result returned by the vocabulary rule can be consumed in
a rule expression.

The following are the objects for each expression language:

Expression Language Expression Language Object

Expression language 1.0 ExpressionLanguage

Expression language 2.0 AstExpressionLanguage

 Note
You can migrate your projects from expression language 1.0 to expression language 2.0 using the business
rules API. For more information, see SAP Cloud Platform Business Rules . You should manually change

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 537

http://help.sap.com/disclaimer?site=https%3A%2F%2Fapi.sap.com%2Fpackage%2FSAPCPBusinessRulesAPIs%3Fsection%3DArtifacts

the expression language object to AstExpressionLanguage to load the migrated content in expression
language 2.0.

Prerequisites

You should already have some general knowledge about SAPUI5 application development and the SAP rules
framework.

For more information, see the documentation for the SAP HANA Rules Framework on the SAP Help Portal at
https://help.sap.com/viewer/p/SAP_HANA_RULES_FRAMEWORK.

This tutorial uses a mock server to provide the required data. Before proceeding with this tutorial, ensure that
you are familiar with the concepts introduced in the following tutorials:

● Walkthrough [page 69], specifically Step 27: Mock Server Configuration [page 139]
● Mock Server [page 432]

 Note
Alternatively, you can use a properly configured backend system with the following implemented OData
services:

● Rules OData service – provides rule resources to create and edit all the elements required for rules.
● Vocabulary OData service – provides vocabulary data resources.

For more information, see the OData API reference on the SAP Help Portal at https://help.sap.com/doc/
12167f8dbcc54650b47644c140fa0d0b/DEV/en-US/Rules_odata_api_index.html.

We will use a simple HTML page that will serve as a single-page application. There we will define the content of
this page, which will include the meta tags, a script tag to load the SAPUI5 sap.rules.ui libraries, and the
RuleBuilder control with data from the mock server.

File Structure

For this tutorial, you will be creating a folder with the following files:

● <FolderName> (folder)
○ Component.js
○ index.html
○ Page.controller.js
○ Page.view.xml
○ localService (folder)

○ rule (folder)
○ mockdata (folder)
○ metadata.xml
○ responses.json

538 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://help.sap.com/viewer/p/SAP_HANA_RULES_FRAMEWORK
https://help.sap.com/doc/12167f8dbcc54650b47644c140fa0d0b/DEV/en-US/Rules_odata_api_index.html
https://help.sap.com/doc/12167f8dbcc54650b47644c140fa0d0b/DEV/en-US/Rules_odata_api_index.html

○ vocabulary (folder)
○ mockdata (folder)
○ metadata.xml

Decision Table

Create a business logic by defining the conditions in decision table, which is associated with the expression
language.

Features

Refresh Data Object

The refresh data object feature reads the attributes of the data object and automatically fetches the predefined
result attributes.

Cut/Copy/Paste

● The Copy option is used to duplicate the specific row and it can be inserted in any other row of the decision
table using Paste option.

● The Cut option is used to remove the specific row and that can also be inserted in any other row of the
decision table using paste option.

Hit Policy

For a decision table rule, you can specify how the rule engine should fetch the result. The two types of hit
policies are first match and all match:

● First Match: The rule engine fetches the first occurrence that matches the condition and the corresponding
result is returned.

● All Match: The rule engine fetches all the occurrences that matches the condition and returns them as
result.

Access Modes

The access modes provided to the value in the decision table settings should be either Editable or Hidden.

● The hidden access sets that default value to all the rows corresponding to the attribute in decision table,
where the result column gets hidden. The default value is mandatory.

● The editable access sets that default value to the new row, which is created after the settings are applied.
The default value is optional.

Basic and Advanced Mode

● The Basic mode is explained as follows
○ It provides the easy way of creating a rule in decision table, which is applicable only for conditions

column.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 539

○ If the operator is not set in the settings of the decision table, then the operator list will be provided as a
dropdown in the popover of the decision table row. Once the operator is selected, you will get the input
field option to set the value for the column.

○ Different options are provided to set the values based on the selected data type such as, input field for
string and number, date picker for date, dropdown for boolean, time picker for time.

○ If the expression is given in the input field for the data type string and number, then the expression can
be validated by clicking on the popover itself. If the data is wrong, then the expression will not be taken
and the popover gets closed.

○ If the data type is string, the value can be entered without quotes.
○ Exist in operator is not supported.
○ Auto suggestion is limited to advance mode which is not available in the basic mode.

● The Advanced mode enables you to create a rule with the auto suggestion and value help feature, which is
applicable only for result column.

 Note
Basic and advanced modes are applicable only for decision table rules that are modeled using rule
expression language.

Step 1: Creating an Initial Rule Control

In this step, we embed a rule control into an application view.

The RuleBuilder component is a container of rules controls, which can bundle different visualization means.
Currently the only visualization available is the decision table. The RuleBuilder defines common rules UI
consumption patterns and APIs to be followed by UI developers.

In this example, we create a decision table, which will use the guided input mode.

 Note
Guided input mode is predefined in the settings for each condition column in the data for this tutorial.

Coding

You can view and download all files at Rule Builder - Guided Decision Table.

Page.view.xml

<mvc:View xmlns:mvc="sap.ui.core.mvc"
 displayBlock="true"
 xmlns="sap.m"

540 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.rules.ui.sample.GuidedDecisionTable/preview

 controllerName="sap.rules.ui.sample.GuidedDecisionTable.Page"
 viewName="sap.rules.ui.sample.GuidedDecisionTable.Page.view"
 xmlns:rules="sap.rules.ui">
 <Button id="editButton" press="handleEditButton" text="Edit"/>
 <rules:RuleBuilder id="ruleBuilder" types="DecisionTable" editable="false"/>
</mvc:View>

We add to the view a RuleBuilder control of type DecisionTable.

The above code will place and render the RuleBuilder control in the view without data. Initially, the control is
set to Display mode, which means that the decision table cannot be edited. The Edit button allows users to
change the mode for editing.

Now we need to connect the ExpressionLanguage object association to the RuleBuilder, which we do in
the next step, and then the control loads its data via the OData model.

Step 2: Associating the Expression Language

Expression languages provide the required services for rule authoring, rule visualization, and rule content
validation. The services provided by the expression language object include expression validations, expression
parsing, auto-complete suggestions, retrieval of expression metadata and tokens, and performing runtime
services such as fetching data objects, outputs, and so on.

The vocabulary OData model and the binding context path for the specific vocabulary are mandatory input for
the expression language.

The expression language objects are an association of the RuleBuilder object, and it can be associated with
multiple RuleBuilder objects.

Preview

Figure 161: Decision Table with Guided Input

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 541

Coding

You can view and download all files at Rule Builder - Guided Decision Table. This is applicable only for rule
expression language.

Before you begin, customize the Page.controller.js as per your requirements.

● Set the expression language object:
For rule expression language:

oExpressionLanguage = new sap.rules.ui.services.ExpressionLanguage(); oRuleBuilder.setExpressionLanguage(oExpressionLanguage);
For DMN SFEEL:

oAstExpressionLanguage = new sap.rules.ui.services.AstExpressionLanguage(); oRuleBuilder.setAstExpressionLanguage(oAstExpressionLanguage);
● Ensure that you have set the data before setting the vocabulary model for the expression language as

shown:

oExpressionLanguage.setData(data); oExpressionLanguage.setModel(that.oVocabularyModel);

Page.controller.js

 sap.ui.define([
 'jquery.sap.global',
 'sap/ui/core/mvc/Controller',
 'sap/ui/model/odata/v2/ODataModel',
 'sap/rules/ui/services/ExpressionLanguage', //For DMN SFEEL language, use
'AstExpressionLanguage'.
 'sap/ui/core/util/MockServer',
 'sap/m/MessageToast'
], function (jQuery, Controller, ODataModel, ExpressionLanguage, MockServer,
MessageToast) { //For DMN SFEEL language, use 'AstExpressionLanguage' instead
of 'ExpressionLanguage'.
 "use strict";
 return Controller.extend("sap.rules.ui.sample.GuidedDecisionTable.Page", {
 onInit: function () {
 sap.ui.getCore().applyTheme("sap_belize");
 // apply compact density for desktop, the cozy design otherwise
 this.getView().addStyleClass(sap.ui.Device.system.desktop ?
"sapUiSizeCompact" : "sapUiSizeCozy");
 var mPath =
jQuery.sap.getModulePath("sap.rules.ui.sample.GuidedDecisionTable", "/");

 // Initialize Expression Language services
 this.oVocabularyMockServer = new MockServer({rootUri: "/sap/opu/
odata/SAP/vocabulary_srv/"});
 this.oVocabularyMockServer.simulate(
 mPath + "localService/vocabulary/metadata.xml",
 {'sMockdataBaseUrl': mPath + "localService/vocabulary/mockdata/"}
);
 this.oVocabularyMockServer.start();
 this.oVocabularyModel = new ODataModel("/sap/opu/odata/SAP/
vocabulary_srv/");
 this.oExpressionLanguage = new ExpressionLanguage(); //
For DMN SFEEL, use 'new AstExpressionLanguage();'.
 this.oExpressionLanguage.setModel(this.oVocabularyModel);
 this.oExpressionLanguage.setBindingContextPath("/
Vocabularies('FA163E38C6481EE785F409DCAD583D43')");

542 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.rules.ui.sample.GuidedDecisionTable/preview

 // Initialize the Rule Builder
 this.oRuleMockServer = new MockServer({rootUri: "/sap/opu/odata/SAP/
RULE_SRV/"});
 this.oRuleMockServer.simulate(
 mPath + "localService/rule/metadata.xml",
 {'sMockdataBaseUrl': mPath + "localService/rule/mockdata/"}
);
 var aRequests = this.loadRequests(mPath);
 this.oRuleMockServer.setRequests(aRequests);
 this.oRuleMockServer.start();
 this.oRuleModel = new ODataModel({
 serviceUrl: "/sap/opu/odata/SAP/RULE_SRV/",
 defaultBindingMode: sap.ui.model.BindingMode.TwoWay
 });
 var oRuleBuilder = this.byId("ruleBuilder");
 oRuleBuilder.setModel(this.oRuleModel);
 oRuleBuilder.setExpressionLanguage(this.oExpressionLanguage);
 oRuleBuilder.setBindingContextPath("/
Rules(Id='FA163E38C6481EE785F409DCAD583D43',Version='000001')");
 },
 handleEditButton: function () {
 var oEditButton = this.byId("editButton");
 var oRuleBuilder = this.byId("ruleBuilder");
 var bEdit = (oEditButton.getText() === "Edit");
 oRuleBuilder.setEditable(bEdit);
 oEditButton.setText(bEdit ? "Display" : "Edit");
 },
 onAfterRendering: function () {
 // Line actions are not supported in this demo
 var oRuleBuilder = this.byId("ruleBuilder");
 var oDecisionTable = oRuleBuilder.getAggregation("_rule");
 var oToolbar = oDecisionTable.getAggregation("_toolbar");
 var arrContent = oToolbar.getContent();
 for (var i = 0; i < arrContent.length; i++) {
 if (arrContent[i].getMetadata().getName() === "sap.m.Button") {

arrContent[i].detachPress(arrContent[i].mEventRegistry.press[0].fFunction,
arrContent[i].mEventRegistry.press[0].oListner);
 arrContent[i].attachPress(function (oEvent) {
 var msg = 'Line action pressed';
 MessageToast.show(msg);
 }
);
 } else if (arrContent[i].getMetadata().getName() ===
"sap.m.MenuButton") {
 var oMenu = arrContent[i].getMenu();

oMenu.detachItemSelected(oMenu.mEventRegistry.itemSelected[1].fFunction,
oMenu.mEventRegistry.itemSelected[1].oListner);
 oMenu.attachItemSelected(function (oEvent) {
 var msg = 'Line action pressed';
 MessageToast.show(msg);
 }
);
 }
 }
 },
 loadRequests: function (mPath) {
 // The mock server does not support 1 to 1 navigation.
 // Hence we provide the responses directly by adding custom requests
to the MockServer
 var oRresponses = jQuery.sap.sjax({
 type: "GET",
 url: mPath + "localService/rule/responses.json",
 dataType: "json"
 }
).data;

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 543

 var aRequests = this.oRuleMockServer.getRequests();
 var sMethod = "GET";
 var sPath = /Rules\
(Id='FA163E38C6481EE785F409DCAD583D43',Version='000001'\)\/DecisionTable\/
DecisionTableRows\/\$count/;
 var fnResponse1 = function (xhr) {
 xhr.respond(200, {
 "Content-Type": "text/plain;charset=utf-8"
 }, "5");
 };
 aRequests.push({method: sMethod, path: sPath, response:
fnResponse1});

 sPath = /Rules\
(Id='FA163E38C6481EE785F409DCAD583D43',Version='000001'\)\/DecisionTable\/
DecisionTableRows\?\$skip=0&\$top=\d+&\$orderby=Sequence%20asc&\$expand=Cells/;
 var response_1 = this.response_1;
 var fnResponse2 = function (xhr) {
 xhr.respondJSON(200, {
 "Content-Type": "application/json;charset=utf-8"
 }, oRresponses.response_1);
 };
 aRequests.push({method: sMethod, path: sPath, response:
fnResponse2});
 sPath = /Rules\
(Id='FA163E38C6481EE785F409DCAD583D43',Version='000001'\)\/DecisionTable\/
DecisionTableColumns\/\$count/;
 var fnResponse3 = function (xhr) {
 xhr.respond(200, {
 "Content-Type": "text/plain;charset=utf-8"
 }, "5");
 }
 aRequests.push({method: sMethod, path: sPath, response:
fnResponse3});
 sPath = /Rules\
(Id='FA163E38C6481EE785F409DCAD583D43',Version='000001'\)\/DecisionTable\/
DecisionTableColumns\?\$skip=0&\$top=\d+&\$expand=Condition%2cResult/;
 var response_2 = this.response_2;
 var fnResponse4 = function (xhr) {
 xhr.respondJSON(200, {
 "Content-Type": "application/json;charset=utf-8"
 }, oRresponses.response_2);
 }
 aRequests.push({method: sMethod, path: sPath, response:
fnResponse4});
 return aRequests;
 }
 }); });

This code adds an expression language object to the view controller, and connects it to the RuleBuilder as an
association. For the expression language service, this code sets the model and then does all the necessary data
binding internally (unlike other SAPUI5 controls where the developer defines the data binding). The data for the
expression language is loaded via the vocabulary OData service.

The following are the code modifications that you can make to include additional functionalities:

● For reading specific vocabulary content like data objects, attributes, value help, rules or vocabulary rules,
use the following code:

this.oVocabularyModel.read(sVocabularyPath, { urlParameters: {
 "$expand": "DataObjects/Associations,DataObjects/
Attributes,ValueSources,Rules"
 },

544 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

● To set the vocabulary context shown in autosuggestion, use the following code:

oExpressionLanguage.setBindingContextPath("/Vocabularies(\'" + <vocabulary
context> + "\')");

 Note
Vocabulary context is ProjectId by default and all the data objects of the given project are listed in
autosuggestion. The possible contexts include RuleserviceId, RuleId and ProjectId.

The code also sets a binding context path on RuleBuilder to the specific rule you are currently working on.

Now, when running the application, the decision table will be rendered filled with rule data from the mock
server.

 Note
If you are using a back-end system with the relevant implemented OData services, use the following code:

sap.ui.define(['sap/ui/core/mvc/Controller',
 'sap/ui/model/odata/v2/ODataModel',
 'sap/rules/ui/services/ExpressionLanguage' //For DMN SFEEL
language, use 'sap/rules/ui/services/AstExpressionLanguage'.
], function (Controller, ODataModel, ExpressionLanguage) { //For DMN SFEEL
language, use 'AstExpressionLanguage' instead of 'ExpressionLanguage'.
 "use strict";
 return Controller.extend("mySample.RuleBuilder.Page", {
 onInit: function () {
 // apply compact density for desktop, the cozy design otherwise
 this.getView().addStyleClass(sap.ui.Device.system.desktop ?
"sapUiSizeCompact" : "sapUiSizeCozy");

 // Initialize Expression Language services
 this.oVocabularyModel = new ODataModel("/vocabulary_srv/");
 this.oExpressionLanguage = new ExpressionLanguage(); //For
DMN SFEEL, use 'new AstExpressionLanguage()'.
 this.oExpressionLanguage.setModel(this.oVocabularyModel); this.oExpressionLanguage.setBindingContextPath("/
Vocabularies('<your rule ID>')"); // Initialize the Rule Builder
 this.oRuleModel = new ODataModel({
 serviceUrl: "/sap/opu/odata/SAP/RULE_SRV/",
 defaultBindingMode: sap.ui.model.BindingMode.TwoWay
 });
 var oRuleBuilder = this.byId("ruleBuilder");
 oRuleBuilder.setModel(this.oRuleModel);
 oRuleBuilder.setExpressionLanguage(this.oExpressionLanguage); oRuleBuilder.setBindingContextPath("/Rules(Id='<your rule
ID>',Version='000001')"); },
 handleEditButton: function () {
 var oEditButton = this.byId("editButton");
 var oRuleBuilder = this.byId("ruleBuilder");
 var bEdit = (oEditButton.getText() === "Edit");
 oRuleBuilder.setEditable(bEdit);
 oEditButton.setText(bEdit ? "Display" : "Edit");
 }
 }); });

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 545

Step 3: Changing the Decision Table Configuration

Decision table has a set of configurations that influence different aspects of the its functionality and the actions
that business users can perform. The decision table configuration object has default values, which you can
change. Part of the configuration of the decision table can be exposed to the end user via the decision table
Settings dialog box.

Preview

Figure 162: Decision Table with Settings Button

Figure 163: Decision Table Settings Dialog Box

Coding

You can view and download all files at Rule Builder - Guided Decision Table.

 Note
The new code described in this step is not included in the download sample files.

546 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.rules.ui.sample.GuidedDecisionTable/preview

Page.view.xml

<mvc:View xmlns:mvc="sap.ui.core.mvc"
 displayBlock="true"
 xmlns="sap.m"
 controllerName="sap.rules.ui.sample.GuidedDecisionTable.Page"
 viewName="sap.rules.ui.sample.GuidedDecisionTable.Page.view"
 xmlns:rules="sap.rules.ui">
 <Button id="editButton" press="handleEditButton" text="Edit"/> <rules:RuleBuilder id="ruleBuilder" types="DecisionTable" editable="true">
 <rules:decisionTableConfiguration>
 <rules:DecisionTableConfiguration enableSettings="true"/>
 </rules:decisionTableConfiguration>
 </rules:RuleBuilder> </mvc:View>

This code changes the decision table to display and enable the Settings icon (), which opens the Settings
dialog box.

 Note
The Cell Format property of the decision table is deprecated from SAPUI5 version 1.52.8. The following is
the new property is introduced.

decisionTableFormat: { type: "sap.rules.ui.DecisionTableFormat",
 defaultValue: sap.rules.ui.DecisionTableFormat.CellFormat
 }

The enum for type sap.rules.ui.DecisionTableFormat is

sap.rules.ui.DecisionTableFormat = { CellFormat: "CELLFORMAT",
 RuleFormat: "RULEFORMAT"
 };

The user has to set the the enum type to RuleFormat for the DecisionTable to be rendered based on rule
format.

The value for the rule format is set at the time of rule creation to either basic or advanced mode depending on
which the entire rule will be rendered based on basic mode or advanced mode.

Text Rule

Create a business logic by defining conditions (if, else if) in the form of text that has the result parts (then,
else), which is associated with the rule expression language.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 547

Features

Refresh Data Object

The refresh data object feature reads the attributes of the data object and automatically fetches the predefined
result attributes.

Access Modes

The access modes provided to the value in the text rule settings should be either Editable or Hidden.

● The hidden access sets that default value to the attribute of data object in text rule, where it gets hidden
from the text rule. The default value is mandatory.

● The editable access sets that default value to the new entries of data object which is created after the
settings are applied and new else block is created. The default value is optional. When the result data
object changes, by default all the attributes will have the access mode as Editable with no default value.

Operations

You can model a text rule without a result data object too. This type of text rule lets you perform operations on
existing data objects or its attributes and is supported only in expression language 2.0. You can also add
multiple result operations in a text rule.

 Note
Select No Default Result as the text rule result to perform the operations.

To view the list of operations that can be performed on any data object or attribute of your project, press CTRL
+ SPACE in the Then field of your text rule.

List of Operations:

Operation Syntax Input Description Example

Update UPDATE(<Target>,
<Source>)

Target Entity The target data object
or attribute that should
be updated as per the
value of the Source
Entity or
Expression.

UPDATE(Employee
_Table.Employee
Name ,
Employee.Employ
ee Name)

548 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Operation Syntax Input Description Example

Source Entity or
Source
Expression.

The data object,
Employee_Table.
Employee Name is
updated as per the
value of
Employee.Employ
ee Name.

The value of the
Target Entity is
updated to the value of
the Source Entity
or the value returned
by the Source
Expression.

 Note
You can also use
vocabulary rules
as the source ex
pression by select
ing it from the au
tosuggest list.

Append APPEND(<Target>,
<Source>)

Target Entity The target data object
of type Table to which
the Source has to be
appended.

APPEND(FlightTab
le, Flight)

The data object
Flight is appended
to the data object
FlightTable.

Source Entity or
Source
Expression

A data object that
should be appended to
the Target data ob
ject. Source data ob
ject should be of type
Structure or Table or a
rule that returns a data
object of type
Structure or Table.

Value Help

While authoring a rule in advanced mode, the auto-complete suggestion list provides the corresponding list of
values as value help items along with other auto-complete suggestions.

There are two types of value help:

● Value List : The values are created and maintained in the business rules by adding code and description.
● Service URL Mapping : The values are maintained outside the business rules and you have to configure the

managed system to consume the values from external system. For more information on configuring
managed system, see Configuring Managed System in SAP Cloud Platform Business Rules.

 Note
● The value list link is provided with the suggestions, only if the attribute is of type value help.
● The value help dialog can also be consumed by pressing f4 while authoring a rule.
● To change the value help while authoring the rule, you can also click the value help attribute which

opens the value help dialog.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 549

https://help.sap.com/viewer/9d7cfeaba766433eaea8a29fdb8a688c/Cloud/en-US/74dfe0537d8e47889cdfc8a874ecde27.html

● In the following example, the ID of an equipment is an attribute of type value help. While authoring the rule,
the value help is provided in the suggestion which has the value list with descriptions as shown in the table.
The value can be selected from the list and consumed in the rule.

If ID of an Equipment is equal to 'E001' Then
 Order

Table 10: Value List

Code Description

E001 Smartphone

E002 Laptop

E003 Tablet

E004 Smartphone

● You can search for the value and description in the search bar.
● The advanced filter option is used to filter a value and description based on conditions which can be

included or excluded. It can be applied in both value and description field.
For Example:
If you want to filter the description Smartphone from the list which has Smartphone, Laptop, and
Tablet, then the condition can be applied in both the value and description field as the following.
Include: Description is equal to Smartphone.
Exclude: Value is equal to E004.
So that the filtered result is E001, Smartphone.

● The value column can be sorted in both ascending and descending order.

 Note
The search and filter options are case sensitive.

Date Control

While authoring a rule in advanced mode, the auto-complete suggestion list of the Rule Builder UI control
provides the date link where the value can be picked from the calendar. This date link is provided in the
suggestion list, only if the attribute is of type date.

In the following example, the DOB of an employee is an attribute of type date. While authoring the rule, the date
link is provided in the suggestion which opens a calendar from where the value can be selected and consumed
in the rule.

 If DOB of an Employee is equal to '01/01/18' Then
 Discount

550 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Step 1: Creating a Rule Control

In this step, we embed rule builder of type TextRule into an application view.

Coding

You can view and download all files at Rule Builder - Text Rule.

Page.view.xml

<mvc:View xmlns:mvc="sap.ui.core.mvc"
 displayBlock="true"
 xmlns="sap.m"
 controllerName="sap.rules.ui.sample.TextRule.Page"
 viewName="sap.rules.ui.sample.TextRule.Page.view"
 xmlns:rules="sap.rules.ui">
 <Button id="editButton" press="handleEditButton" text="Edit"/>
 <rules:RuleBuilder id="ruleBuilder" types="TextRule" editable="false"/>
</mvc:View>

Step 2: Associating the Expression Language

Preview

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 551

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.rules.ui.sample.TextRule/preview

Coding

You can view and download all files at Rule Builder - Text Rule.

Page.controller.js

This code adds an expression language object to the view controller, and connects it to the RuleBuilder. For
the expression language object, this code sets the model and then does all the necessary data binding
internally (unlike other SAPUI5 controls where the developer defines the data binding). The data for expression
language object is loaded via the vocabulary OData service.

Before you begin, customize the Page.controller.js as per your requirements.

● Set the expression language object:
For rule expression language:

oExpressionLanguage = new sap.rules.ui.services.ExpressionLanguage(); oRuleBuilder.setExpressionLanguage(oExpressionLanguage);
For DMN SFEEL:

oAstExpressionLanguage = new sap.rules.ui.services.AstExpressionLanguage(); oRuleBuilder.setAstExpressionLanguage(oAstExpressionLanguage);
● Ensure that you have set the data before setting the vocabulary model for the expression language as

shown:

oExpressionLanguage.setData(data); oExpressionLanguage.setModel(that.oVocabularyModel);

 Note
Text rule will not load if the batch mode is disabled. Set setUseBatch to true in the OData model used to
enable batch mode.

The code also sets a binding context path on RuleBuilder to the specific rule you are currently working on.

 sap.ui.define(['jquery.sap.global',
 'sap/ui/core/mvc/Controller',
 'sap/ui/model/odata/v2/ODataModel',
 'sap/rules/ui/services/ExpressionLanguage', //For DMN SFEEL, use 'sap/
rules/ui/services/AstExpressionLanguage'.
 'sap/ui/core/util/MockServer',
 'sap/m/MessageToast'
], function (jQuery, Controller, ODataModel, ExpressionLanguage, MockServer,
MessageToast) { //For DMN SFEEL, use 'AstExpressionLanguage' instead of
'ExpressionLanguage'.
 "use strict";
 return Controller.extend("sap.rules.ui.sample.TextRule.Page", {
 /**
 * This sample uses the sap.ui.core.uti.MockServer. The RuleBuilder
control is meant to be used
 * with the Vocabulary OData service and the Rules OData service.
 * Hence, when using th eproper OData services the mockServer code
should be removed.

552 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.rules.ui.sample.TextRule/preview

 */
 onInit: function () {
 sap.ui.getCore().applyTheme("sap_belize");
 // apply compact density for desktop, the cozy design otherwise
 this.getView().addStyleClass(sap.ui.Device.system.desktop ?
"sapUiSizeCompact" : "sapUiSizeCozy");
 var mPath = jQuery.sap.getModulePath("sap.rules.ui.sample.TextRule",
"/");
 // Initialiaze Expression Language services
 this.oVocabularyMockServer = new MockServer({rootUri: "/rule-service/
vocabulary_srv/"});
 this.oVocabularyMockServer.simulate(
 mPath + "localService/vocabulary/mockdata/metadata.xml",
 {'sMockdataBaseUrl': mPath + "localService/vocabulary/mockdata/"}
);
 this.oVocabularyMockServer.start();
 this.oVocabularyModel = new ODataModel("/rule-service/
vocabulary_srv/");
 this.oExpressionLanguage = new ExpressionLanguage(); //For
DMN SFEEL, use 'new AstExpressionLanguage();'.
 this.oExpressionLanguage.setModel(this.oVocabularyModel);
 this.oExpressionLanguage.setBindingContextPath("/
Vocabularies('<project-id>')");
 // Initialiaze the Rule Builder

 this.oRuleMockServer = new MockServer({rootUri: "/rule-service/
rule_srv/"});
 this.oRuleMockServer.simulate(
 mPath + "localService/rule/mockdata/metadata.xml",
 {'sMockdataBaseUrl': mPath + "localService/rule/mockdata/"}
);
 var aRequests = this.loadRequests(mPath);
 this.oRuleMockServer.setRequests(aRequests);
 this.oRuleMockServer.start();
 this.oRuleModel = new ODataModel({
 serviceUrl: "/rule-service/rule_srv/",
 defaultBindingMode: sap.ui.model.BindingMode.TwoWay
 });
 var oRuleBuilder = this.byId("ruleBuilder");
 oRuleBuilder.setModel(this.oRuleModel);
 oRuleBuilder.setExpressionLanguage(this.oExpressionLanguage);
 oRuleBuilder.setBindingContextPath("/Projects(Id='<project-
id>',Version='<project-version>')/Rules(Id='<rule-id>',Version='<rule-
version>')");
 },
 handleEditButton: function () {
 var oEditButton = this.byId("editButton");
 var oRuleBuilder = this.byId("ruleBuilder");
 var bEdit = (oEditButton.getText() === "Edit");
 oRuleBuilder.setEditable(bEdit);
 oEditButton.setText(bEdit ? "Display" : "Edit");
 },
 onAfterRendering: function () {
 /**
 * Line actions are not supported in this demo as they require a
functioning Rules oData service
 * This function overwites the line actions event handlers.
 * Please do not use this code when using proper OData services.
 */
 var oRuleBuilder = this.byId("ruleBuilder");
 var oDecisionTable = oRuleBuilder.getAggregation("_rule");
 },
 loadRequests: function (mPath) {
 // The mock server does not support 1 to 1 navigation.
 // Hence we provide the responses directly by adding custom requests
to the MockServer
 var oRresponses = jQuery.sap.sjax({
 type: "GET",

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 553

 url: mPath + "localService/rule/mockdata/responses.json",
 dataType: "json"
 }).data;
 var aRequests = this.oRuleMockServer.getRequests();
 var sMethod = "GET";
 var sPath = /Projects\(Id='<project-id>',Version='<project-
version>'\)\/Rules\(Id='<rule-id>',Version='<rule-version>'\)\/TextRule\/
TextRuleConditions\/\$count/;
 var fnResponse1 = function (xhr) {
 xhr.respond(200, {
 "Content-Type": "text/plain;charset=utf-8"
 }, "3");
 };
 aRequests.push({method: sMethod, path: sPath, response:
fnResponse1});

 sPath = /Projects\(Id='<project-id>',Version='<project-version>'\)\/
Rules\(Id='<rule-id>',Version='<rule-version>'\)\?\$expand=TextRule/;
 var fnResponse2 = function (xhr) {
 xhr.respondJSON(200, {
 "Content-Type": "application/json;charset=utf-8"
 }, oRresponses.response_7);
 };
 aRequests.push({method: sMethod, path: sPath, response:
fnResponse2});

 var sPath = /Projects\(Id='<project-id>',Version='<project-
version>'\)\/Rules\(Id='<rule-id>',Version='<rule-version>'\)\/TextRule\/
TextRuleResults\/\$count/;
 var fnResponse3 = function (xhr) {
 xhr.respond(200, {
 "Content-Type": "text/plain;charset=utf-8"
 }, "2");
 };
 aRequests.push({method: sMethod, path: sPath, response:
fnResponse3});

 sPath = /Projects\(Id='<project-id>',Version='<project-version>'\)\/
Rules\(Id='<rule-id>',Version='<rule-version>'\)\/TextRule\/TextRuleResults/;
 var fnResponse4 = function (xhr) {
 xhr.respondJSON(200, {
 "Content-Type": "application/json;charset=utf-8"
 }, oRresponses.response_3);
 };
 aRequests.push({method: sMethod, path: sPath, response:
fnResponse4});

 /Projects\(Id='<project-id>',Version='<project-version>'\)\/Rules\
(Id='<rule-id>',Version='<rule-version>'\)\/TextRule\/TextRuleConditions\?\
$expand=TextRuleResultExpressions/;
 var fnResponse5 = function (xhr) {
 xhr.respondJSON(200, {
 "Content-Type": "application/json;charset=utf-8"
 }, oRresponses.response_2);
 };
 aRequests.push({method: sMethod, path: sPath, response:
fnResponse5});

 sPath = /Projects\(Id='<project-id>',Version='<project-version>'\)\/
Rules\(Id='<rule-id>',Version='<rule-version>'\)\/TextRule\/TextRuleConditions\
(RuleId='<rule-id>',RuleVersion='<rule-version>',Id='1'\)\/
TextRuleResultExpressions\$count/;
 var fnResponse6 = function (xhr) {
 xhr.respond(200, {
 "Content-Type": "text/plain;charset=utf-8"
 }, "2");
 };

554 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 aRequests.push({method: sMethod, path: sPath, response:
fnResponse6});

 sPath = /Projects\(Id='<project-id>',Version='<project-version>'\)\/
Rules\(Id='<rule-id>',Version='<rule-version>'\)\/TextRule\/TextRuleConditions\
(RuleId='<rule-id>',RuleVersion='<rule-version>',Id='1'\)\/
TextRuleResultExpressions\?\$skip=0&\$top=100/;
 var fnResponse7 = function (xhr) {
 xhr.respondJSON(200, {
 "Content-Type": "application/json;charset=utf-8"
 }, oRresponses.response_8);
 };
 aRequests.push({method: sMethod, path: sPath, response:
fnResponse7});

 sPath = /Projects\(Id='<project-id>',Version='<project-version>'\)\/
Rules\(Id='<rule-id>',Version='<rule-version>'\)\/TextRule\/TextRuleConditions\
(RuleId='<rule-id>',RuleVersion='<rule-version>',Id='2'\)\/
TextRuleResultExpressions\$count/;
 var fnResponse8 = function (xhr) {
 xhr.respond(200, {
 "Content-Type": "text/plain;charset=utf-8"
 }, "2");
 };
 aRequests.push({method: sMethod, path: sPath, response:
fnResponse8});

 sPath = /Projects\(Id='<project-id>',Version='<project-version>'\)\/
Rules\(Id='<rule-id>',Version='<rule-version>'\)\/TextRule\/TextRuleConditions\
(RuleId='<rule-id>',RuleVersion='<rule-version>',Id='2'\)\/
TextRuleResultExpressions\?\$skip=0&\$top=100/;
 var fnResponse9 = function (xhr) {
 xhr.respondJSON(200, {
 "Content-Type": "application/json;charset=utf-8"
 }, oRresponses.response_9);
 };
 aRequests.push({method: sMethod, path: sPath, response:
fnResponse9});

 return aRequests;
 }
 }); });

The following are the code modifications that you can make to include additional functionalities:

● For reading specific vocabulary content like data objects, attributes, value help, rules or vocabulary rules,
use the following code:

this.oVocabularyModel.read(sVocabularyPath, { urlParameters: {
 "$expand": "DataObjects/Associations,DataObjects/
Attributes,ValueSources,Rules"
 },

● To set the vocabulary context shown in autosuggestion, use the following code:

oExpressionLanguage.setBindingContextPath("/Vocabularies(\'" + <vocabulary
context> + "\')");

 Note
Vocabulary context is ProjectId by default and all the data objects of the given project are listed in
autosuggestion. The possible contexts include RuleserviceId, RuleId and ProjectId.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 555

Step 3: Changing the Text Rule Configuration

Text rule has a set of configurations that influence different aspects of the its functionality and the actions that
business users can perform. Part of the configuration of the text rule can be exposed to the end user via the
text rule Settings dialog box.

Text rule has a condition part (if, elseif) and the result parts (then, else). In this type of rule authoring,
the user can create a text rule which has different semantic fonts, colors for vocabulary (data), grammar
(reserved words), inline error highlighting and provides the autocomplete feature to support user input for the
rules (condition & results).

Preview

Coding

You can view and download all files at Rule Builder - Text Rule.

556 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.rules.ui.sample.TextRule/preview

Page.view.xml

<mvc:View xmlns:mvc="sap.ui.core.mvc"
 displayBlock="true"
 xmlns="sap.m"
 controllerName="sap.rules.ui.sample.TextRule.Page"
 viewName="sap.rules.ui.sample.TextRule.Page.view"
 xmlns:rules="sap.rules.ui">
 <Button id="editButton" press="handleEditButton" text="Edit"/> <rules:RuleBuilder id="ruleBuilder" types="TextRule" editable="true">
 <rules:textRuleConfiguration>
 <rules:textRuleConfiguration enableSettings="true" enableElseIf=
"false"/>
 </rules:textRuleConfiguration>
 </rules:RuleBuilder> </mvc:View>

The enableSettings option is false by default and can be set to true which enables the Settings icon, and
opens the Settings dialog box. The enableElse and enableElseIf options are true by default and can be
set to false which disables the Else and ElseIf parts in the condition.

Multiple ElseIf statements can also be configured in the condition.

Summary

We have now embedded a TextRule control in our application. We created a control that uses text input and
bound it to data.

We also added a Settings button. You can click the Settings button to change settings for the text rule.

Smart Controls

In this tutorial you learn how to work with smart controls.

Smart controls are a specific category of SAPUI5 controls that have some special features in addition to the
standard SAPUI5 features and thus make it easier to use the control in certain scenarios.

A primary example of such a feature is OData support: Typically, a smart control interprets OData metadata. In
some cases, a smart control even persists an adapted version of the user interface that the user has defined for
later usage.

In this tutorial, you see examples that should make the term “smart” even more tangible.

 Tip
You don't have to do all tutorial steps sequentially, you can also jump directly to any step you want. Just
download the code from the previous step, copy it to your workspace and make sure that the application
runs by calling the webapp/index.html file.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 557

You can view and download the files for all steps in the Samples in the Demo Kit at Smart Controls.
Depending on your development environment you might have to adjust resource paths and configuration
entries.

For more information check the following sections of the tutorials overview page (see Get Started: Setup,
Tutorials, and Demo Apps [page 38]):

● Downloading Code for a Tutorial Step [page 40]
● Adapting Code to Your Development Environment [page 40]

Prerequisites

Preparation steps for the Smart Controls tutorial

You have already gone through the following tutorials:

● Walkthrough [page 69]
● Data Binding [page 219]

In addition, you need some background knowledge about OData and annotations that you can find here: http://
www.sap.com/protocols/SAPData .

 Note
The smart controls require a default OData model, and named models are not supported.

You need a web server to host the files that are created in the tutorial steps, and you need the relevant SAPUI5
libraries, of course.

Please note that for each step there is a separate folder with its own copy of the files used.

File Structure

For each step we will create the following files:

● webapp (folder)
○ test (folder)

○ service (folder)
○ metadata.xml
○ <Entity>.json (could be more than one file)
○ server.js

○ Component.js
○ index.html
○ manifest.json
○ <ControlName>.controller.js
○ <ControlName>.view.xml

● Component.js

558 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/entity/sap.ui.comp.tutorial.smartControls/samples
http://help.sap.com/disclaimer?site=http%3A%2F%2Fwww.sap.com%2Fprotocols%2FSAPData
http://help.sap.com/disclaimer?site=http%3A%2F%2Fwww.sap.com%2Fprotocols%2FSAPData

In some steps, additional files are needed. They will be explained in those steps. Since many of these files are
almost identical from step to step, we show their content here but only briefly point to interesting points in
these files if necessary. Please refer to the Walkthrough tutorial for further details on the general setup and the
content of the outer Component.js file (the top-level file on the same level as the webapp folder) in which we
define that the index.html will be shown in an iFrame.

index.html

<!DOCTYPE html> <html>
<head>
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta charset="utf-8">
<title>SmartControls</title>
<script id="sap-ui-bootstrap"
 src="../../../../../../../../../resources/sap-ui-core.js"
 data-sap-ui-theme="sap_belize"
 data-sap-ui-libs="sap.m, sap.ui.comp"
 data-sap-ui-bindingSyntax="complex"
 data-sap-ui-compatVersion="edge"
 data-sap-ui-preload="async"
 data-sap-ui-resourceroots='{
 "sap.ui.demo.smartControls": "./"
 }'>
</script>
<script>
 sap.ui.getCore().attachInit(function() {
 sap.ui.require([
 "sap/ui/demo/smartControls/test/service/server"
], function(server) {
 server.init();
 new sap.ui.core.ComponentContainer({
 name: "sap.ui.demo.smartControls",
 height: "100%"
 }).placeAt("content");
 });
 });
</script>
</head>
<body class="sapUiBody" id="content">
</body> </html>

In this index file, you will recognize that we reference the library sap.ui.comp since this is the main library for
the smart controls. This index.html file references the Component.js (through the name:
"sap.ui.demo.smartControls") which always looks like this:

Component.js

sap.ui.define(["sap/ui/core/UIComponent"
], function(UIComponent) {
 "use strict";
 return UIComponent.extend("sap.ui.demo.smartControls.Component", {
 metadata: {

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 559

 manifest: "json"
 }
 });
});

In the Component.js file we use the manifest.json file.

manifest.json

{ "_version": "1.8.0",
 "sap.app": {
 "id": "sap.ui.demo.smartControls",
 "type": "application",
 "title": "SAPUI5 Smart Controls",
 "description": "A simple app that explains the most important concepts of
smart controls in SAPUI5",
 "applicationVersion": {
 "version": "1.0.0"
 },
 "dataSources": {
 "mainService": {
 "uri": "/here/goes/your/serviceUrl/",
 "type": "OData",
 "settings": {
 "odataVersion": "2.0"
 "localUri": "localService/metadata.xml"
 }
 }
 }
 },
 "sap.ui": {
 "technology": "UI5"
 },
 "sap.ui5": {
 "rootView": {
 "viewName": "sap.ui.demo.smartControls.SmartField",
 "type": "XML"
 "async": true
 },
 "dependencies": {
 "minUI5Version": "1.30",
 "libs": {
 "sap.m": {},
 "sap.ui.comp": {}
 }
 },
 "models": {
 "": {
 "dataSource": "mainService",
 "settings": {
 "defaultBindingMode": "TwoWay"
 }
 }
 }
 } }

In the manifest.json file we define the rootView and also the model of the application. Please note that the
TwoWay binding mode ensures that an input validation is done automatically based on the metadata.

560 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

The last file that we wish to list here is the server.js:

server.js

sap.ui.define(["sap/ui/core/util/MockServer"
], function (MockServer) {
 "use strict";
 return {
 init: function () {
 // create
 var oMockServer = new MockServer({
 rootUri: "/here/goes/your/serviceUrl/"
 });
 // configure
 MockServer.config({
 autoRespond: true,
 autoRespondAfter: 1000
 });
 // simulate
 var sPath =
jQuery.sap.getModulePath("sap.ui.demo.smartControls.test.service");
 oMockServer.simulate(sPath + "/metadata.xml", sPath);
 // start
 oMockServer.start();
 }
 }; });

In this file we define the MockServer handling the server requests.

 Note
You might notice the rather flat setup of the files that is different from the setup propagated in the
Walkthrough tutorial where the Model-View-Controller paradigm is reflected in the folder structure. We
have chosen the flat setup for this tutorial since our examples all have exactly one single file for the view
and one single file for the controller. Additional folders would add a complexity that we would like to avoid.

Step 1: Smart Field

One important building block of smart controls is the SmartField control that, depending on the OData
metadata defined, allows you to render other controls and, for example, define fields with certain attributes
based on the metadata.

So we start our journey into the world of smart controls by looking at the SmartField control and, in
particular, an example in which a price together with its currency is displayed. Later we will see more complex
examples.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 561

Preview

Figure 164: Smart Field

Coding

You can view and download all files in the Samples in the Demo Kit at Smart Controls - Step 1 - Smart Field.

SmartField.view.xml

<mvc:View controllerName="sap.ui.demo.smartControls.SmartField"
 xmlns="sap.m"
 xmlns:smartForm="sap.ui.comp.smartform"
 xmlns:mvc="sap.ui.core.mvc"
 xmlns:sap.ui.layout="sap.ui.layout"
 xmlns:smartField="sap.ui.comp.smartfield">
 <smartForm:SmartForm editable="true">
 <smartForm:layout>
 <smartForm:ColumnLayout
 emptyCellsLarge="4"
 labelCellsLarge="4"
 columnsM="1"
 columnsL="1"
 columnsXL="1"/>
 </smartForm:layout>
 <smartForm:Group>
 <smartForm:GroupElement>
 <smartField:SmartField value="{Price}" id="idPrice"/>
 </smartForm:GroupElement>
 </smartForm:Group>
 </smartForm:SmartForm> </mvc:View>

This view basically specifies a form with an appropriate layout, the content of which consists of a SmartLabel
control along with a SmartField control . The connection between SmartLabel and SmartField is essential
since metadata for SmartLabel is controlled via the binding of SmartField. SmartField and SmartLabel
are connected by id and labelFor, respectively, in this case idPrice.

SmartField.controller.js

sap.ui.define(["sap/ui/core/mvc/Controller"
], function(Controller) {
 "use strict";
 return Controller.extend("sap.ui.demo.smartControls.SmartField", {
 onInit: function() {
 this.getView().bindElement("/Products('4711')");

562 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.comp.tutorial.smartControls.01/preview

 }
 }); });

In the SmartField.controller.js file you will see that we bind the view to "/Products('4711')".

metadata.xml

<?xml version="1.0" encoding="utf-8"?> <edmx:Edmx Version="1.0"
 xmlns:edmx="http://schemas.microsoft.com/ado/2007/06/edmx"
 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/
metadata"
 xmlns:sap="http://www.sap.com/Protocols/SAPData">
 <edmx:DataServices m:DataServiceVersion="2.0">
 <Schema Namespace="com.sap.wt01"
 sap:schema-version="1" xmlns="http://schemas.microsoft.com/ado/
2008/09/edm">
 <EntityType Name="Product">
 <Key>
 <PropertyRef Name="ProductId"/>
 </Key>
 <Property Name="ProductId" Type="Edm.String"/>
 <Property Name="Price" Type="Edm.String"
 sap:unit="CurrencyCode" MaxLength="3" sap:label="Price"
 sap:updatable="true"/>
 <Property Name="CurrencyCode" Type="Edm.String"
 MaxLength="3" sap:label="Currency"
sap:semantics="currency-code"
 sap:updatable="true"/>
 </EntityType>
 <EntityContainer m:IsDefaultEntityContainer="true"
 sap:supported-formats="atom json">
 <EntitySet Name="Products" EntityType="com.sap.wt01.Product"
 sap:updatable="true"/>
 </EntityContainer>
 </Schema>
 </edmx:DataServices>
</edmx:Edmx>

The metadata document corresponds to the $metadata document of your OData service. You will find the
Price and the CurrencyCode metadata here, and, in particular, you will see that the Price property defines
CurrencyCode as its unit. The relationship is automatically picked up by SmartField, and it decides on the
particular rendering of the price along with with its currency based on additional metadata, such as Type and
MaxLength. With sap:updatable="true" we define that the field is editable; sap:updatable="false"
would indicate that the field is read-only. All Boolean-like properties default to true if not specified otherwise. To
make this clearer, however, we sometimes still include them in the metadata.xml document, like
sap:updatable="true" in this case. Later, we will see other examples of how the SmartField control shows
a “smart” behavior as to which controls are rendered on the UI.

Products.json

[{

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 563

 "ProductId": "4711",
 "Price": 856.49,
 "CurrencyCode": "EUR" }]

Finally, we include the Products.json file (as referred to in the metadata.xml as EntitySet) in our
example, which contains the data shown on the UI.

Related Information

Smart Field [page 2410]

Step 2: Smart Field with Value Help

You can use the SmartField control in combination with the ValueHelpDialog control that allow you to
carry out a complex search in order to identify the value you are looking for.

We would like to stress the importance of this feature with a dedicated example, even though you might argue
that this is just another feature of the SmartField control. In the following example, we see a value help for a
currency code. By providing a value help, the user can find the correct currency by firing a query with complex
input parameters. Surely, you can imagine that there are more complex examples in which specifying the
correct value is almost impossible without performing a query. For example, when providing a customer ID, you
would want to find this based on the last name of the customer.

We would like to emphasize here that the response to the query input (whether it is the response to the query
input for the main table, as we will see later, or whether it is related to the value help, as we will see here) heavily
depends on the server handling the request. In our case, the MockServer is not a full-fledged implementation
that handles all OData requests as the user might expect. Therefore, please bear in mind that the examples are
intended for a tutorial and not a real application.

Preview

Figure 165: Smart Field with Value Help

There is a small icon right next to the currency code. After pressing this icon you see a dialog (the
ValueHelpDialog control) on which a query can be executed.

564 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Figure 166: Value Help

Coding

You can view and download all files in the Samples in the Demo Kit at Smart Controls - Step 2 - Smart Field with
Value Help.

SmartFieldWithValueHelp.view.xml

<mvc:View controllerName="sap.ui.demo.smartControls.SmartFieldWithValueHelp"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc"
 xmlns:smartForm="sap.ui.comp.smartform"
 xmlns:sap.ui.layout="sap.ui.layout"
 xmlns:smartField="sap.ui.comp.smartfield">
 <smartForm:SmartForm editable="true">
 <smartForm:layout>
 <smartForm:ColumnLayout
 emptyCellsLarge="4"
 labelCellsLarge="4"
 columnsM="1"
 columnsL="1"
 columnsXL="1"/>
 </smartForm:layout>
 <smartForm:Group>
 <smartForm:GroupElement>
 <smartField:SmartField value="{Price}" id="idPrice"/>
 </smartForm:GroupElement>
 </smartForm:Group>
 </smartForm:SmartForm> </mvc:View>

For the view definition, we see that there is no difference to the previous example. This is an important fact
since this exemplifies the underlying idea of what we mean by “smart”: Depending on the metadata, the control
automatically adjusts its behavior.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 565

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.comp.tutorial.smartControls.02/preview
https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.comp.tutorial.smartControls.02/preview

SmartField.controller.js

sap.ui.define(["sap/ui/core/mvc/Controller"
], function(Controller) {
 "use strict";
 return
Controller.extend("sap.ui.demo.smartControls.SmartFieldWithValueHelp", {
 onInit: function() {
 this.getView().bindElement("/Products('4711')");
 }
 }); });

Again, this file is in essence identical with the controller in step 1.

metadata.xml

<?xml version="1.0" encoding="utf-8"?> <edmx:Edmx Version="1.0"
 xmlns:edmx="http://schemas.microsoft.com/ado/2007/06/edmx"
 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"
 xmlns:sap="http://www.sap.com/Protocols/SAPData">
 <edmx:DataServices m:DataServiceVersion="2.0">
 <Schema Namespace="com.sap.wt02"
 sap:schema-version="1" xmlns="http://schemas.microsoft.com/ado/
2008/09/edm">
 <EntityType Name="Product">
 <Key>
 <PropertyRef Name="ProductId" />
 </Key>
 <Property Name="ProductId" Type="Edm.String" />
 <Property Name="Price" Type="Edm.String"
 sap:unit="CurrencyCode" MaxLength="3" sap:label="Price"
 sap:updatable="true" />
 <Property Name="CurrencyCode" Type="Edm.String"
 MaxLength="3" sap:label="Currency" sap:semantics="currency-
code"
 sap:updatable="true" />
 </EntityType> <EntityType Name="Currency">
 <Key>
 <PropertyRef Name="CURR" />
 </Key>
 <Property Name="CURR" Type="Edm.String" MaxLength="4"
 sap:display-format="UpperCase" sap:text="DESCR"
sap:label="Currency Code"
 sap:filterable="false" />
 <Property Name="DESCR" Type="Edm.String" MaxLength="25"
 sap:label="Description" />
 </EntityType> <EntityContainer m:IsDefaultEntityContainer="true"
 sap:supported-formats="atom json">
 <EntitySet Name="Products" EntityType="com.sap.wt02.Product" /> <EntitySet Name="Currency" EntityType="com.sap.wt02.Currency" /> </EntityContainer> <Annotations Target="com.sap.wt02.Product/CurrencyCode"
 xmlns="http://docs.oasis-open.org/odata/ns/edm">
 <Annotation Term="com.sap.vocabularies.Common.v1.ValueList">
 <Record>

566 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 <PropertyValue Property="Label" String="Currency" />
 <PropertyValue Property="CollectionPath"
String="Currency" />
 <PropertyValue Property="SearchSupported" Bool="true" />
 <PropertyValue Property="Parameters">
 <Collection>
 <Record
Type="com.sap.vocabularies.Common.v1.ValueListParameterOut">
 <PropertyValue Property="LocalDataProperty"
 PropertyPath="CurrencyCode" />
 <PropertyValue Property="ValueListProperty"
 String="CURR" />
 </Record>
 <Record

Type="com.sap.vocabularies.Common.v1.ValueListParameterDisplayOnly">
 <PropertyValue Property="ValueListProperty"
 String="DESCR" />
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
 </Annotation>
 </Annotations> </Schema>
 </edmx:DataServices> </edmx:Edmx>

As stated above, the metadata file is the place in which the difference to step 1 can be found - we have
highlighted the changes. We will dig deeper into this file now.

First we inspect the added entity type:

<EntityType Name="Currency" sap:content-version="1"> <Key>
 <PropertyRef Name="CURR" />
 </Key>
 <Property Name="CURR" Type="Edm.String" MaxLength="4"
sap:display-format="UpperCase" sap:text="DESCR" sap:label="Currency Code" sap:filterable="false"/> <Property Name="DESCR" Type="Edm.String" MaxLength="25"
sap:label="Description"/> </EntityType>

We notice that we have set sap:filterable="false" for the CURR property. We do this, since we would
otherwise also have a currency code search field in the dialog that we wish to avoid (default of
sap:filterable is true).

Now let us look at the ValueList annotation:

<Annotations Target="com.sap.wt02.Product/CurrencyCode" xmlns="http://docs.oasis-open.org/odata/ns/edm">
<Annotation Term="com.sap.vocabularies.Common.v1.ValueList">
 <Record>
 <PropertyValue Property="Label" String="Currency"/>
 <PropertyValue Property="CollectionPath" String="Currency"/> <PropertyValue Property="SearchSupported" Bool="true"/>
 <PropertyValue Property="Parameters"> <Collection> <Record Type="com.sap.vocabularies.Common.v1.ValueListParameterOut">
 <PropertyValue Property="LocalDataProperty"
PropertyPath="CurrencyCode" />
 <PropertyValue Property="ValueListProperty" String="CURR" />
 </Record>
 <Record

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 567

Type="com.sap.vocabularies.Common.v1.ValueListParameterDisplayOnly">
 <PropertyValue Property="ValueListProperty" String="DESCR" />
 </Record> </Collection>
 </PropertyValue>
 </Record>
</Annotation> </Annotations>

With the metadata Target="com.sap.wt02.Product/CurrencyCode", we define that the CurrencyCode
of the EntityType Product will have a ValueList (or ValueHelp) associated to it. We set the property
SearchSupported to true in order to get a general search field. This is the field in the dialog that has the
Search shadow text.

<Record Type="com.sap.vocabularies.Common.v1.ValueListParameterOut"> <PropertyValue Property="LocalDataProperty"
PropertyPath="CurrencyCode" />
 <PropertyValue Property="ValueListProperty" String="CURR" /> </Record>

This specification defines that the value help will export the value of the CURR field to the CurrencyCode field
using ValueListParameterOut. This export happens, for example, by selecting an entry in the list of
currency values.

Lastly, as for the ValueList annotation, we specify with the following specification that the DESCR field is
shown in the table (but only for display purposes in the sense that no interaction with the content of this field is
possible):

<Record Type="com.sap.vocabularies.Common.v1.ValueListParameterDisplayOnly"> <PropertyValue Property="ValueListProperty" String="DESCR" /> </Record>

Products.json

[{ "ProductId": "4711",
 "Price": 856.49,
 "CurrencyCode": "EUR" }]

Since the product we show initially is the same as in step 1, there is no change to the Products.json file.

Currency.json

[{ "CURR": "EUR",
 "DESCR": "European Euro"
},
{
 "CURR": "USD",
 "DESCR": "United States Dollar"
},

568 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

{
 "CURR": "GBP",
 "DESCR": "British Pound"
},
{
 "CURR": "DKK",
 "DESCR": "Danish Krone"
},
{
 "CURR": "INR",
 "DESCR": "Indian Rupee"
},
{
 "CURR": "NOK",
 "DESCR": "Norwegian Krone"
},
{
 "CURR": "SEK",
 "DESCR": "Swedish Krona"
},
{
 "CURR": "CHF",
 "DESCR": "Swiss Franc" }]

In the newly added Currency.json file, we include the values needed for the currency entities.

Related Information

Smart Field [page 2410]

Step 3: Smart Field with Smart Link

We now show yet another but quite different feature of the SmartField control, SmartField used in
combination with SmartLink, which allow you to embed a dialog with related cross-application links.

We will learn that a SmartField control in an XML view bound to an OData model with a SemanticObject
annotation renders a special link that shows a dialog containing different cross-application links. These cross-
application links are neither configured within the XML view nor directly specified in the OData metadata. The
information about these links is extracted automatically when the view is running in the SAP Fiori launchpad or,
more generally, the unified shell.

Preview

Figure 167: Smart Field with Smart Link

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 569

When you choose the link, a dialog opens:

Figure 168: Dialog with Navigation Targets

When you choose Define Links, a dialog opens where you can select the cross-application links you want to see.

Figure 169: Link List

After your selection, the dialog looks like this:

Figure 170: Changed Links

You can choose More to go back to the link list.

Coding

You can view and download all files in the Samples in the Demo Kit at Smart Controls - Step 3 - Smart Field with
Smart Link.

To have a working example, we include the UShellCrossApplicationNavigationMock.js class. This class
basically mocks the required services, which would normally be available in the SAP Fiori launchpad. These
services provide the cross-application navigation targets along with the URL parsing, thus making it possible to
determine which link qualifies as a “fact sheet” target. As these services will be provided for in a real-world

570 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.comp.tutorial.smartControls.03/preview
https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.comp.tutorial.smartControls.03/preview

scenario, we will not analyze the mock class in more detail and also not provide a code listing of the class. The
class file can be found in the Samples.

SmartLink.view.xml

<mvc:View controllerName="sap.ui.demo.smartControls.SmartLink"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc"
 xmlns:smartForm="sap.ui.comp.smartform"
 xmlns:sap.ui.layout="sap.ui.layout"
 xmlns:smartField="sap.ui.comp.smartfield">
 <smartForm:SmartForm editable="true">
 <smartForm:layout>
 <smartForm:ColumnLayout
 emptyCellsLarge="4"
 labelCellsLarge="4"
 columnsM="1"
 columnsL="1"
 columnsXL="1"/>
 </smartForm:layout>
 <smartForm:Group>
 <smartForm:GroupElement>
 <smartField:SmartField value="{Name}" id="idName"
editable="false"/>
 </smartForm:GroupElement>
 </smartForm:Group>
 </smartForm:SmartForm> </mvc:View>

We recognize our setup of the previous two examples in the view.xml. We are referring to a different field, but
apart from this, there is no substantial change. The SmartField control is rendered as a link in the display
mode. We set editable to false to achieve the same effect in this example.

SmartLink.controller.js

sap.ui.define(['sap/ui/core/mvc/Controller', 'sap/ui/demo/smartControls/test/service/
UShellCrossApplicationNavigationMock'
], function(Controller, UShellCrossApplicationNavigationMock) {
 "use strict";
 return Controller.extend("sap.ui.demo.smartControls.SmartLink", {
 onInit: function() {
 this.getView().bindElement("/Products('4711')");
 UShellCrossApplicationNavigationMock.mockUShellServices({
 tutorial_03_Name: {
 links: [
 {
 action: "sap_se",
 intent: "http://www.sap.com",
 text: "SAP SE"
 }, {
 action: "sap_sapphire",
 intent: "http://www.sap.com/sapphire",
 text: "SAP Sapphire"
 }, {

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 571

 action: "app3",
 intent: "http://www.sap.com/hana",
 text: "App3"
 }
]
 }
 });
 },
 onExit: function() {
 UShellCrossApplicationNavigationMock.unMockUShellServices();
 }
 });
});

We notice the instantiation of the mock class UShellCrossApplicationNavigationMock mentioned above
and also the subsequent destroy.

metadata.xml

<?xml version="1.0" encoding="utf-8"?> <edmx:Edmx Version="1.0"
 xmlns:edmx="http://schemas.microsoft.com/ado/2007/06/edmx"
 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"
 xmlns:sap="http://www.sap.com/Protocols/SAPData">
 <edmx:DataServices m:DataServiceVersion="2.0">
 <Schema Namespace="com.sap.wt03"
 sap:schema-version="1" xmlns="http://schemas.microsoft.com/ado/
2008/09/edm">
 <EntityType Name="Product">
 <Key>
 <PropertyRef Name="ProductId" />
 </Key>
 <Property Name="ProductId" Type="Edm.String" />
 <Property Name="Name" Type="Edm.String" sap:label="My Favorite
Product" />
 </EntityType>
 <EntityContainer m:IsDefaultEntityContainer="true"
 sap:supported-formats="json">
 <EntitySet Name="Products" EntityType="com.sap.wt03.Product" />
 </EntityContainer>
 <Annotations Target="com.sap.wt03.Product/Name"
 xmlns="http://docs.oasis-open.org/odata/ns/edm">
 <Annotation Term="com.sap.vocabularies.Common.v1.SemanticObject"
 String="tutorial_03_Name" />
 </Annotations>
 </Schema>
 </edmx:DataServices> </edmx:Edmx>

As you would expect, one piece of configuration is found in the metadata, namely the SemanticObject
annotation. With this annotation we ensure that the SmartField embeds a special link control, the
SmartLink control. Let's assume we are running in a unified shell that provides the services
CrossApplicationNavigation and URLParsing (that we are mocking in our
UShellCrossApplicationNavigationMock class). In this case, when the link is pressed, the SmartLink
control triggers these service calls, analyzes the result, and renders the cross-application links accordingly.
Since these services deliver configuration content of the unified shell, SmartLink is controlled by more than
just OData metadata.

572 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Products.json

[{ "ProductId": "4711",
 "Name": "SAP HANA" }]

We list the content of this for reasons of completeness. We note that this JSON file only contains the data
shown for the link, nothing related to the dialog.

Related Information

Smart Field [page 2410]
Smart Link [page 2423]

Step 4: Smart Form

The SmartForm control is used to obtain a form-like layout for several controls.

SmartForm internally uses the sap.ui.layout.form.Form control. When using the SmartForm control in
combination with the SmartField controls, the view.xml file remains very compact since required
information about labels and headers is automatically extracted from the OData metadata. In addition, you can
specify in SmartForm that it is toggle-editable in which case you get the option to switch between read-only
and edit mode. In this case, the powerful features of the SmartField control really come to life, such as the
value help and the smart links.

Preview

Figure 171: Smart Form with Several Smart Fields (Initial Read-Only Mode)

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 573

When you press the pencil icon, the dialog for SmartForm becomes editable:

Figure 172: Smart Form with Several Smart Fields (Edit Mode)

When pressing the eyeglasses icon, you return to the display view of SmartForm.

Coding

You can view and download all files in the Samples in the Demo Kit at Smart Controls - Step 4 - Smart Form.

SmartForm.view.xml

<mvc:View xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc"
 controllerName="sap.ui.demo.smartControls.SmartForm"
 xmlns:smartForm="sap.ui.comp.smartform"
 xmlns:smartField="sap.ui.comp.smartfield">
 <smartForm:SmartForm
 id="smartForm"
 editTogglable="true"
 title="{Name}"
 flexEnabled="false">
 <smartForm:Group label="Product">
 <smartForm:GroupElement>
 <smartField:SmartField value="{ProductId}" />
 </smartForm:GroupElement>
 <smartForm:GroupElement>
 <smartField:SmartField value="{Name}" />
 </smartForm:GroupElement>
 <smartForm:GroupElement elementForLabel="1">
 <smartField:SmartField value="{CategoryName}" />
 <smartField:SmartField value="{Description}" />
 </smartForm:GroupElement>
 <smartForm:GroupElement>
 <smartField:SmartField value="{Price}" />
 </smartForm:GroupElement>
 </smartForm:Group>
 <smartForm:Group label="Supplier">
 <smartForm:GroupElement>
 <smartField:SmartField value="{SupplierName}" />
 </smartForm:GroupElement>
 </smartForm:Group>

574 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.comp.tutorial.smartControls.04/preview

 </smartForm:SmartForm> </mvc:View>

We see that we have several new elements here. Group instructs the SmartForm to add a container for the
child elements. In this case, we have two top-level containers of elements, one for Product and one for
Supplier. With the GroupElement added as a wrapper control for SmartFields, we instruct the
SmartForm to inspect the OData metadata and automatically add the labels found there. Within such
GroupElements, we can even define a compound field having exactly one label in front. We do this in the
example above in order to combine CategoryName with Description. With elementForLabel="1" we
define that the label Description for SmartField (found in the OData metadata) is used for both fields.
flexEnabled="false" is set to deactivate SAPUI5 flexibility, since these features are not part of this tutorial.

SmartForm.controller.js

sap.ui.define(["sap/ui/core/mvc/Controller"
], function(Controller) {
 "use strict";
 return Controller.extend("sap.ui.demo.smartControls.SmartForm", {
 onInit: function() {
 this.getView().byId("smartFormPage").bindElement("/
Products('4711')");
 }
 }); });

The controller follows the pattern that we already know.

metadata.xml

<?xml version="1.0" encoding="utf-8"?> <edmx:Edmx Version="1.0"
 xmlns:edmx="http://schemas.microsoft.com/ado/2007/06/edmx"
 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"
 xmlns:sap="http://www.sap.com/Protocols/SAPData">
 <edmx:DataServices m:DataServiceVersion="2.0">
 <Schema Namespace="com.sap.wt04"
 sap:schema-version="1" xmlns="http://schemas.microsoft.com/ado/
2008/09/edm">
 <EntityType Name="Product">
 <Key>
 <PropertyRef Name="ProductId" />
 </Key>
 <Property Name="ProductId" Type="Edm.String" Nullable="false"
 sap:updatable="false" MaxLength="20" sap:label="Product
ID" />
 <Property Name="Name" Type="Edm.String" Nullable="false"
 MaxLength="30" sap:label="Name" />
 <Property Name="CategoryName" Type="Edm.String"
sap:label="Category Description"
 sap:updatable="true" />
 <Property Name="Description" Type="Edm.String" MaxLength="256"
 sap:label="Description" sap:updatable="true" />
 <Property Name="Price" Type="Edm.String" Nullable="false"

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 575

 sap:unit="CurrencyCode" MaxLength="3" sap:label="Price"
 sap:updatable="true" />
 <Property Name="CurrencyCode" Type="Edm.String" Nullable="true"
 MaxLength="3" sap:label="Currency" sap:semantics="currency-
code"
 sap:updatable="true" />
 <Property Name="SupplierName" Type="Edm.String" Nullable="false"
 sap:label="Supplier" sap:updatable="true" />
 </EntityType>
 <EntityContainer m:IsDefaultEntityContainer="true"
 sap:supported-formats="atom json">
 <EntitySet Name="Products" EntityType="com.sap.wt04.Product" />
 </EntityContainer>
 </Schema>
 </edmx:DataServices> </edmx:Edmx>

With Nullable="false" we define that the field is mandatory and therefore cannot be null. The label for the
mandatory field is then marked with * on the UI. Other than that, there are no substantial differences in the
metadata file. We only notice that the sap:label attributes defined here appear in the final form as explained
before.

Products.json

[{ "ProductId": "4711",
 "Name": "Power Projector 4711",
 "CategoryName": "Projector",
 "SupplierName": "Titanium",
 "Description": "A very powerful projector with special features for Internet
usability, USB",
 "Price": 856.49,
 "CurrencyCode": "EUR" }]

We see that a few attributes have been changed and added to the JSON file, reflecting the fact that, in this step,
more data is shown.

Related Information

Smart Form [page 2420]

Step 5: Smart Filter Bar and Smart Table

In this step, we will look at the SmartTable control along with the SmartFilterBar control that allow you to
filter table entries.

In the context of SmartTable, there are several central features that can be activated:

● Table personalization

576 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

● View management with the VariantManagement control
● Export to Microsoft Excel

In this step, we will look at SmartTable without table personalization or view management. These will be
treated as separate steps. In addition, we will first focus on SmartTable with sap.m.Table as the underlying
table type. This table type is best suited for a responsive behavior and is even designed to be used on a smart
phone or a tablet.

Preview

Figure 173: Initial Look of the Smart Filter Bar and the Smart Table, and the Results of Firing the Query

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 577

When choosing the Filters link, you see a popup:

Figure 174: Dialog for Changing the Filter Values and Defining the Fields Displayed in the Filter Bar

Here you can press More Filters, which takes you to another dialog box.

Figure 175: Dialog for Defining Additional Fields

When selecting the currency as an additional filter field for the table query and pressing OK, you can now select
Currency as an additional field in the filter bar of the first dialog:

Figure 176: Currency Added to the Filter Bar

578 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

After selecting this additional field, we return to the table with the filter bar again and can use the value help for
the newly added Currency field to restrict the results to those with Currency = “EUR”. Firing the query with this
restriction, we see fewer results:

Figure 177: Query "EUR" Applied

Coding

You can view and download all files in the Samples in the Demo Kit at Smart Controls - Step 5 - Smart Filter Bar
and Smart Table.

SmartTable.view.xml

<mvc:View xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc"
 controllerName="sap.ui.demo.smartControls.SmartTable"
 xmlns:smartFilterBar="sap.ui.comp.smartfilterbar"
 xmlns:smartTable="sap.ui.comp.smarttable">
 <smartFilterBar:SmartFilterBar
 id="smartFilterBar"
 entitySet="Products">
 <smartFilterBar:controlConfiguration>
 <smartFilterBar:ControlConfiguration
 key="Category" visibleInAdvancedArea="true"
 preventInitialDataFetchInValueHelpDialog="false">
 </smartFilterBar:ControlConfiguration>
 </smartFilterBar:controlConfiguration>
 </smartFilterBar:SmartFilterBar>
 <smartTable:SmartTable
 id="smartTable_ResponsiveTable"
 smartFilterId="smartFilterBar"
 tableType="ResponsiveTable"
 editable="false"
 entitySet="Products"
 useVariantManagement="false"
 useTablePersonalisation="false"
 header="Products"

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 579

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.comp.tutorial.smartControls.05/preview
https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.comp.tutorial.smartControls.05/preview

 showRowCount="true"
 useExportToExcel="false"
 enableAutoBinding="true">
 </smartTable:SmartTable> </mvc:View>

We see that two new controls have been added to the view.xml. In the SmartFilterBar control we refer to
an entityType which we will see later in metadata.xml. With the ControlConfiguration element that is
added to the controlConfiguration aggregation of SmartFilterBar, we include the Category field in
what we call the Advanced area of the filter bar. This is the area that can be hidden (or shown) using the toolbar
Hide Filter Bar. We set the preventInitialDataFetchInValueHelpDialog property to false for an
automatic execution of the query and thus showing of the results as soon as you open the value help. For
SmartTable we define a few properties, some of which deserve special attention:

● smartFilterId="smartFilterBar”
Ensures that the SmartTable can consume the FilterBar and the filter values defined there

● tableType="ResponsiveTable"
Defines the underlying table as responsive (technically, it is an sap.m.Table)

● useVariantManagement="false"
We will treat the case true in a later step.

● useTablePersonalisation="false"
We will treat the case true in a later step.

● header="Products"
Specifies the title for the table to be shown

● showRowCount="true"
Specifies that the number of products appears after the title. In order for this count to work, the
SmartTable needs to do the binding internally, which will be the case if either smartFilterId is
specified or enableAutoBinding is set to true (see below).

● useExportToExcel="false"
Offers an export to Microsoft Excel. In our case, we must set this value to false since the mock server
does not support the proper format needed for such an export. The server must return a metadata
document with sap:supported-formats="xlsx" to support this.

● enableAutoBinding="true"
Defines whether the query is fired automatically initially, so false would mean the user must press Go to
see any results in the table.

SmartTable.controller.js

sap.ui.define(["sap/ui/core/mvc/Controller"
], function(Controller) {
 "use strict";
 return Controller.extend("sap.ui.demo.smartControls.SmartTable"); });

We notice that because the enableAutoBinding property has aready been set in the view.xml, we don't
have to do any binding in the controller.

580 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

metadata.xml

<?xml version="1.0" encoding="utf-8"?> <edmx:Edmx Version="1.0"
 xmlns:edmx="http://schemas.microsoft.com/ado/2007/06/edmx"
 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"
 xmlns:sap="http://www.sap.com/Protocols/SAPData">
 <edmx:DataServices m:DataServiceVersion="2.0">
 <Schema Namespace="com.sap.wt05"
 sap:schema-version="1" xmlns="http://schemas.microsoft.com/ado/
2008/09/edm">
 <EntityType Name="Product">
 <Key>
 <PropertyRef Name="ProductId" />
 </Key>
 <Property Name="ProductId" Type="Edm.String"
 sap:filterable="false" />
 <Property Name="Name" Type="Edm.String" MaxLength="30"
 sap:label="Name" sap:filterable="false" />
 <Property Name="Category" Type="Edm.String" sap:label="Category"
 sap:filterable="true" />
 <Property Name="Price" Type="Edm.String" sap:unit="CurrencyCode"
 MaxLength="3" sap:label="Price" sap:filterable="false" />
 <Property Name="CurrencyCode" Type="Edm.String" MaxLength="3"
 sap:label="Currency" sap:semantics="currency-code"
sap:filterable="true" />
 </EntityType>
 <EntityType Name="Currency">
 <Key>
 <PropertyRef Name="CURR" />
 </Key>
 <Property Name="CURR" Type="Edm.String" MaxLength="4"
 sap:display-format="UpperCase" sap:text="DESCR"
sap:label="Currency Code"
 sap:filterable="false" />
 <Property Name="DESCR" Type="Edm.String" MaxLength="25"
 sap:label="Description" />
 </EntityType>
 <EntityType Name="Category">
 <Key>
 <PropertyRef Name="CAT" />
 </Key>
 <Property Name="CAT" Type="Edm.String" MaxLength="4"
 sap:display-format="UpperCase" sap:text="DESCR"
sap:label="Category"
 sap:filterable="false" />
 <Property Name="DESCR" Type="Edm.String" MaxLength="25"
 sap:label="Description" />
 </EntityType>
 <EntityContainer m:IsDefaultEntityContainer="true"
 sap:supported-formats="atom json">
 <EntitySet Name="Products" EntityType="com.sap.wt05.Product" />
 <EntitySet Name="Currency" EntityType="com.sap.wt05.Currency" />
 <EntitySet Name="Category" EntityType="com.sap.wt05.Category" />
 </EntityContainer>
 <Annotations Target="com.sap.wt05.Product/CurrencyCode"
 xmlns="http://docs.oasis-open.org/odata/ns/edm">
 <Annotation Term="com.sap.vocabularies.Common.v1.ValueList">
 <Record>
 <PropertyValue Property="Label" String="Currency" />
 <PropertyValue Property="CollectionPath"
String="Currency" />
 <PropertyValue Property="SearchSupported" Bool="true" />
 <PropertyValue Property="Parameters">
 <Collection>
 <Record
Type="com.sap.vocabularies.Common.v1.ValueListParameterOut">

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 581

 <PropertyValue Property="LocalDataProperty"
 PropertyPath="CurrencyCode" />
 <PropertyValue Property="ValueListProperty"
 String="CURR" />
 </Record>
 <Record

Type="com.sap.vocabularies.Common.v1.ValueListParameterDisplayOnly">
 <PropertyValue Property="ValueListProperty"
 String="DESCR" />
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
 </Annotation>
 </Annotations>
 <Annotations Target="com.sap.wt05.Product/Category"
 xmlns="http://docs.oasis-open.org/odata/ns/edm">
 <Annotation Term="com.sap.vocabularies.Common.v1.ValueList">
 <Record>
 <PropertyValue Property="Label" String="Category" />
 <PropertyValue Property="CollectionPath"
String="Category" />
 <PropertyValue Property="SearchSupported" Bool="true" />
 <PropertyValue Property="Parameters">
 <Collection>
 <Record
Type="com.sap.vocabularies.Common.v1.ValueListParameterOut">
 <PropertyValue Property="LocalDataProperty"
 PropertyPath="Category" />
 <PropertyValue Property="ValueListProperty"
 String="CAT" />
 </Record>
 <Record

Type="com.sap.vocabularies.Common.v1.ValueListParameterDisplayOnly">
 <PropertyValue Property="ValueListProperty"
 String="DESCR" />
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
 </Annotation>
 </Annotations>
 <Annotations Target="com.sap.wt05.Product"
 xmlns="http://docs.oasis-open.org/odata/ns/edm">
 <Annotation Term="com.sap.vocabularies.UI.v1.LineItem">
 <Collection>
 <Record Type="com.sap.vocabularies.UI.v1.DataField">
 <PropertyValue Property="Value" Path="ProductId" />
 </Record>
 <Record Type="com.sap.vocabularies.UI.v1.DataField">
 <PropertyValue Property="Value" Path="Price" />
 </Record>
 <Record Type="com.sap.vocabularies.UI.v1.DataField">
 <PropertyValue Property="Value" Path="Name" />
 </Record>
 <Record Type="com.sap.vocabularies.UI.v1.DataField">
 <PropertyValue Property="Value" Path="Category" />
 </Record>
 </Collection>
 </Annotation>
 </Annotations>
 </Schema>
 </edmx:DataServices> </edmx:Edmx>

582 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

The LineItem annotation used here defines the columns that are created in the table. Only records defined in
this annotation are created as table columns. Apart from this annotation, we have seen the remaining part
before: We have two ValueList annotations that trigger a value help to be created for the associated fields, in
our case the CurrencyCode and the Category. For EntityType Name="Product", we have defined two
fields as filterable. These are the two fields on which you can filter (and that are then also available as filter
fields for table personalization as we will see in the next step). For EntityType Name="Currency", we have
only defined the description to be filterable to ensure that we only see the description field as search field and
not the CurrencyCode field. The same applies to EntityType Name="Category".

Category.json

[{ "CAT": "PRO",
 "DESCR": "Projector"
},
{
 "CAT": "GCD",
 "DESCR": "Graphics Card"
},
{
 "CAT": "ACC",
 "DESCR": "Accessory"
},
{
 "CAT": "PRI",
 "DESCR": "Printer"
},
{
 "CAT": "MON",
 "DESCR": "Monitor"
},
{
 "CAT": "LAP",
 "DESCR": "Laptop"
},
{
 "CAT": "KBD",
 "DESCR": "Keyboard" }]

This JSON file defines the possible value of the Category.

Currency.json

[{ "CURR": "EUR",
 "DESCR": "European Euro"
},
{
 "CURR": "USD",
 "DESCR": "United States Dollar"
},
{
 "CURR": "GBP",

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 583

 "DESCR": "British Pound"
},
{
 "CURR": "DKK",
 "DESCR": "Danish Krone"
},
{
 "CURR": "INR",
 "DESCR": "Indian Rupee"
},
{
 "CURR": "NOK",
 "DESCR": "Norwegian Krone"
},
{
 "CURR": "SEK",
 "DESCR": "Swedish Krona"
},
{
 "CURR": "CHF",
 "DESCR": "Swiss Franc" }]

This JSON file defines the possible value of the CurrencyCode, the same values we saw in step 2.

Products.json

[{
 "ProductId": "1239102",
 "Name": "Power Projector 4713",
 "Category": "Projector",
 "SupplierName": "Titanium",
 "Description": "A very powerful projector with special features for Internet
usability, USB",
 "WeightMeasure": 1467,
 "WeightUnit": "g",
 "Price": 856.49,
 "CurrencyCode": "INR",
 "Status": "Available",
 "Quantity": 3,
 "UoM": "PC",
 "Width": 51,
 "Depth": 42,
 "Height": 18,
 "DimUnit": "cm"
 },
.
.
.]

We have only listed a part of the Products.json entries since the actual values are not so relevant. Please
note that for your convenience we have included additional properties in this file to make it easier to
experiment with changes to the metadata.xml, and possibly of the view.xml, to allow for a more hands-on
experience.

584 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Related Information

Smart Filter Bar [page 2413]
Smart Table [page 2444]

Step 6: Table Personalization

Table personalization offers you a dedicated dialog to specify which columns in the table are visible and in
which order, how the data is sorted, whether grouping of the data is active, and whether table entries are
filtered.

The settings in the dialog can also be persisted as you will see in the next step. In this step, we will use the same
setup as in step 5 except that we enable table personalization in the view.xml.

Preview

Starting from the main UI, we can enter the different personalization possibilities by pressing the Settings icon
in the upper right-hand corner of the toolbar:

Figure 178: Table Personalization

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 585

After doing this, you see a popup with four different tabs:

Figure 179: Settings Dialog: Column Visibility and Order

Figure 180: Settings Dialog: Sorting

586 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Figure 181: Settings Dialog: Filtering

Figure 182: Settings Dialog: Grouping

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 587

Figure 183: Resulting View with Personalization Applied

Coding

You can view and download all files in the Samples in the Demo Kit at Smart Controls - Step 6 - Table
Personalization.

As mentioned above, we use the same content as in the previous step, so we refrain from any code listings
except for the view.xml. We should mention, however, that fields that are not specifically marked as
sap:sortable="false", sap:filterable="false" or sap:groupable="false" in the metadata will all
be sortable, filterable, or groupable, respectively, and thus be available in the tabs of the personalization dialog.

Personalization.view.xml

<mvc:View xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc"
 controllerName="sap.ui.demo.smartControls.Personalization"
 xmlns:smartFilterBar="sap.ui.comp.smartfilterbar"
 xmlns:smartTable="sap.ui.comp.smarttable">
 <smartFilterBar:SmartFilterBar
 id="smartFilterBar"
 entitySet="Products">
 <smartFilterBar:controlConfiguration>
 <smartFilterBar:ControlConfiguration
 key="Category" visibleInAdvancedArea="true"

588 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.comp.tutorial.smartControls.06/preview
https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.comp.tutorial.smartControls.06/preview

 preventInitialDataFetchInValueHelpDialog="false">
 </smartFilterBar:ControlConfiguration>
 </smartFilterBar:controlConfiguration>
 </smartFilterBar:SmartFilterBar>
 <smartTable:SmartTable
 id="smartTable_ResponsiveTable"
 smartFilterId="smartFilterBar"
 tableType="ResponsiveTable"
 editable="false"
 entitySet="Products"
 useVariantManagement="false"
 useTablePersonalisation="true"
 header="Products"
 showRowCount="true"
 useExportToExcel="false"
 enableAutoBinding="true">
 </smartTable:SmartTable> </mvc:View>

To enable table personalization, we set useTablePersonalisation to true. As will become clear in the next
section, you would typically use the table personalization together with view management since you can then
also persist any changes done to the table.

Related Information

Personalization Dialog [page 2358]

Step 7: View Management

The VariantManagement control allows you to handle views and makes it possible for the user to persist
changes carried out on the UI and then later retrieve these changes.

For the smart controls, changes that are persisted include definitions of the filter used to query the results for
the table and all changes done to the table with table personalization, visibility of columns and so on. Since we
wish to provide stand-alone examples that can run on a local Web server, we do not connect to a real server on
which the changes can be persisted so they can be retrieved later. Consequently, in our examples, changes are
only kept in the current user session.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 589

Preview

Initially, the UI looks as in the previous steps:

Figure 184: Initial UI Without Personalization

We press Filters as shown in step 5 and then Save in the related dialog.

Figure 185: Specifying the Filter

590 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

After that, the following dialog is shown:

Figure 186: Defining the View Name

In this dialog, we specify the name under which this view is persisted, in our case With Currency EUR. With
Set as Default, we can also specify whether this view is always used initially when navigating to this particular UI
(since in our example we only persist within one browser session, this setting has no effect). With Apply
Automatically we define that the query is fired automatically. The idea behind Public is that some popular but
perhaps fairly complicated query settings that are used by several users can be automatically provided to all
users. This Public option only has an effect when running on a real server and not on the mock server as in our
example. If you choose Public, additional information regarding this function is required.

We verify these settings now and return to our main UI:

Figure 187: UI with Active View

We notice that the Currency field is available in the filter bar and that we have already specified EUR as the
currency.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 591

Finally we now customize the table so that we do not see the ProductId column anymore. To do that, we press
the Settings icon in the upper right-hand corner of the table and deselect ProductId in the dialog:

Figure 188: Remove ProductId

Returning to the main UI, we see that only the three columns required are now shown:

Figure 189: Personalized Table

Figure 190:

592 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

The * right next to the Standard view indicates that a change has been made. We save this change by choosing
the down-arrow symbol and Save As in the dialog, which takes us to a second dialog:

Figure 191: Specifying the View Name

Also, here we have the possibility to set this as default and to share the view. The latter is similar to the view for
the SmartFilterBar control. After confirming the specified name, you return directly to the main UI.

Figure 192: View for the Filter Bar and View for the Table

Coding

You can view and download all files in the Samples in the Demo Kit at Smart Controls - Step 7 - Variant
Management.

Since the coding is essentially identical with step 5 and step 6, we do not make any listing apart from the
view.xml in which one property value has been changed and persistencyKeys have been specified.

VariantManagement.view.xml

<mvc:View xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc"
 controllerName="sap.ui.demo.smartControls.VariantManagement"

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 593

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.comp.tutorial.smartControls.07/preview
https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.comp.tutorial.smartControls.07/preview

 xmlns:smartFilterBar="sap.ui.comp.smartfilterbar"
 xmlns:smartTable="sap.ui.comp.smarttable">
 <smartFilterBar:SmartFilterBar
 id="smartFilterBar"
 entitySet="Products"
 persistencyKey="SmartFilterPKey">
 <smartFilterBar:controlConfiguration>
 <smartFilterBar:ControlConfiguration
 key="Category"
 visibleInAdvancedArea="true"
 preventInitialDataFetchInValueHelpDialog="false">
 </smartFilterBar:ControlConfiguration>
 </smartFilterBar:controlConfiguration>
 </smartFilterBar:SmartFilterBar>
 <smartTable:SmartTable
 id="smartTable_ResponsiveTable"
 smartFilterId="smartFilterBar"
 tableType="ResponsiveTable"
 editable="false"
 entitySet="Products"
 useVariantManagement="true"
 useTablePersonalisation="true"
 header="Products"
 showRowCount="true"
 useExportToExcel="false"
 enableAutoBinding="true"
 persistencyKey="SmartTablePKey">
 </smartTable:SmartTable> </mvc:View>

Component.js

sap.ui.define(["sap/ui/core/UIComponent",
 "sap/ui/fl/FakeLrepConnectorLocalStorage"
], function (UIComponent, FakeLrepConnectorLocalStorage) {
 "use strict";
 return UIComponent.extend("sap.ui.demo.smartControls.Component", {
 metadata: {
 manifest: "json"
 },
 init: function () {

FakeLrepConnectorLocalStorage.enableFakeConnector(sap.ui.require.toUrl("sap/ui/
demo/smartControls/lrep/component-test-changes.json"));
 UIComponent.prototype.init.apply(this, arguments);
 },
 destroy: function () {
 FakeLrepConnectorLocalStorage.disableFakeConnector();
 UIComponent.prototype.destroy.apply(this, arguments);
 }
 }); });

We add FakeLrepConnectorLocalStorage to our Component.js to enable the local storage, which is used
by the VariantManagement control to save the client-side settings.

594 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Related Information

Smart Variant Management [page 2457]

Step 8: Page Variant Management

In this step, we will look at the page variant of the VariantManagement control, an enhanced function of the
SmartVariantManagement control that can handle multiple smart controls.

Basically, the paged version of the VariantManagement control is the same as the (non-paged)
VariantManagement control. The difference is that the page variant is initialized with the persistencyKey
property and can handle the persistency of multiple smart controls. Each smart control that uses
personalization via the page variant has to provide a persistency key. The persistency itself will be stored under
the persistencyKey of the VariantManagement control, and the relevant content for each control will be
distributed accordingly based on each individual persistency key.

persistencyKey - VariantManagement control

● persistencyKey - SmartFilterBar control-relevant content
● persistencyKey SmartTable control-relevant content

Therefore, the persistent content of the page variant is the aggregated content of each registered smart
control, and the individual persistency keys of the various smart controls are used to distinguish and distribute
the relevant content.

Preview

As a page variant, the view management is now no longer part of the SmartFilterBar and SmartTable
controls, but displayed in a central location instead:

Figure 193: Central View Management

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 595

In addition, the VariantManagement control is no longer displayed in the Filter dialog of the
SmartFilterBar control:

Figure 194: Filter Dialog Without View Management

Other than that, the page variant is just the same as the VariantManagement control.

Coding

You can view and download all files in the Samples in the Demo Kit at Smart Controls - Step 8 - Page Variant
Management .

VariantManagement.view.xml

<mvc:View xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc"
 controllerName="sap.ui.demo.smartControls.VariantManagement"
 xmlns:smartFilterBar="sap.ui.comp.smartfilterbar"
 xmlns:smartTable="sap.ui.comp.smarttable">
 <smartFilterBar:SmartFilterBar
 id="smartFilterBar"
 entitySet="Products"
 persistencyKey="SmartFilterPKey">
 <smartFilterBar:controlConfiguration>
 <smartFilterBar:ControlConfiguration
 key="Category"
 visibleInAdvancedArea="true"
 preventInitialDataFetchInValueHelpDialog="false">
 </smartFilterBar:ControlConfiguration>
 </smartFilterBar:controlConfiguration>
 </smartFilterBar:SmartFilterBar>
 <smartTable:SmartTable
 id="smartTable_ResponsiveTable"
 smartFilterId="smartFilterBar"
 tableType="ResponsiveTable"
 editable="false"
 entitySet="Products"

596 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.comp.tutorial.smartControls.08/preview
https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.comp.tutorial.smartControls.08/preview

 useVariantManagement="true"
 useTablePersonalisation="true"
 header="Products"
 showRowCount="true"
 useExportToExcel="false"
 enableAutoBinding="true"
 persistencyKey="SmartTablePKey">
 </smartTable:SmartTable> </mvc:View>

The example shows the view management without a page variant.

VariantManagement.view.xml

<mvc:View controllerName="sap.ui.demo.smartControls.VariantManagement"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc"
 xmlns:html="http://www.w3.org/1999/xhtml"
 xmlns:smartVariantManagement="sap.ui.comp.smartvariants"
 xmlns:smartFilterBar="sap.ui.comp.smartfilterbar"
 xmlns:smartTable="sap.ui.comp.smarttable"> <HBox
class="exPageVariantPadding">
 <smartVariantManagement:SmartVariantManagement
 id="pageVariantId"
 persistencyKey="PageVariantPKey" />
 </HBox> <smartFilterBar:SmartFilterBar
 id="smartFilterBar"
 entitySet="Products"
 smartVariant="pageVariantId"
 persistencyKey="SmartFilterPKey"
assignedFiltersChanged="onFiltersChanged">
 <smartFilterBar:controlConfiguration>
 <smartFilterBar:ControlConfiguration
 key="Category"
 visibleInAdvancedArea="true"
 preventInitialDataFetchInValueHelpDialog="false">
 </smartFilterBar:ControlConfiguration>
 </smartFilterBar:controlConfiguration>
 </smartFilterBar:SmartFilterBar>
 <smartTable:SmartTable
 id="smartTable_ResponsiveTable"
 smartFilterId="smartFilterBar"
 smartVariant="pageVariantId"
 tableType="ResponsiveTable"
 editable="false"
 entitySet="Products"
 useVariantManagement="true"
 useTablePersonalisation="true"
 header="Products"
 showRowCount="true"
 useExportToExcel="false"
 enableAutoBinding="true"
 persistencyKey="SmartTablePKey">
 </smartTable:SmartTable> </mvc:View>

The example shows the view management with a page variant.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 597

Step 9: Smart Chart with Chart Personalization and View
Management

In this step, we will look at the SmartChart control with the chart personalization and in combination with the
VariantManagement control that allow you to use complex graphics along with other smart control features.

The SmartChart control can be used for visualizing data in a graphical manner. The SmartChart control
creates a chart based on OData metadata and the configuration data that has been specified. The entitySet
property must be specified to use the control. This property is used to fetch fields from OData metadata, from
which the chart UI is generated.

There are several features that can be enabled in SmartChart, but for this tutorial, we will have a look at the
following features:

● Chart personalization
● View management support
● Semantic object navigation using SemanticObjectController

Preview

This is what the smart chart looks like initially after firing the query:

Figure 195: Initial Look of Smart Chart after Firing Query

The toolbar of the smart chart contains the header, and next to it is the view management dialog that has been
explained in detail in one of the previous steps.

Next to the view management dialog is a button labeled Jump To. This button is disabled by default, but once a
column has been selected inside the chart, this button gets enabled. When we click this button, a popup
appears that contains details of the selected column. You can also navigate to related apps from here. This
feature is enabled using SemanticObjectController. When we hover the mouse pointer over a column, a
popup is displayed to provide additional information.

598 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Figure 196: Semantic Navigation Feature

The button at the right-hand side of the toolbar can be used for selecting the chart type:

Figure 197: Selection of Chart Type

The two buttons next to the Jump To button can be used to drill up and drill down into the chart. Using this
feature you can display even more detailed information in the chart:

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 599

Figure 198: Drillup and Drilldown Features

If we set the showDetailsButton and showDrillBreadcrumbs properties to true, we can also use an
alternative drilldown function: A button labeled Drilldown is shown. If a column is selected inside the chart, this
button changes into a Details button. When you click this button, again, a popup appears that contains details
of the selected column.

Figure 199: Drilldown by Dimensions

When you drill further down, you can see the breadcrumbs trail for the drilldown path on the left-hand side,
which you can also use to drill up within the chart.

600 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Figure 200: Further Drilldown

The next button can be used to toggle legend visibility:

Figure 201: Toggle Legend Visibility

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 601

The two buttons next to this in the toolbar are used for zooming in or out. This will help you to get a clearer
picture of a particular entity. The next button in the toolbar is the Settings icon that opens the personalization
dialog for the chart:

Figure 202: Dialog for Adding Measures and Dimensions

The button next to the settings can be used to display a chart in full screen mode. The chart will then take up
100 % width and height of the browser.

Coding

You can view and download all files in the Samples in the Demo Kit at Smart Controls - Step 9 - Smart Chart
and at Samples.

SmartChart.view.xml

<mvc:View xmlns="sap.m" xmlns:mvc="sap.ui.core.mvc" xmlns:html="http://www.w3.org/1999/xhtml"
 xmlns:app="http://schemas.sap.com/sapui5/extension/sap.ui.core.CustomData/1"
 controllerName="sap.ui.demo.smartControls.SmartChart"
xmlns:sl="sap.ui.comp.navpopover"
 xmlns:smartChart="sap.ui.comp.smartchart">
 <smartChart:SmartChart enableAutoBinding="true"
 entitySet="Products" useVariantManagement="true"
 persistencyKey="SmartChart_Explored" useChartPersonalisation="true"
 header="Products">
 <smartChart:semanticObjectController>
 <sl:SemanticObjectController
 navigationTargetsObtained="onNavigationTargetsObtained"
navigate="onNavigate" />
 </smartChart:semanticObjectController>
 </smartChart:SmartChart>
</mvc:View>

We see that a new control has been added to the view.xml. In the SmartChart control, we refer to the entity
type that we will see later in the metadata.xml. With SemanticObjectController that is added to the
semanticObjectController aggregation of SmartChart, we can enable the display of linked data for a
particular entity. We also set enableAutoBinding=”true”, which enables automatic execution of the query

602 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/sample/sap.ui.comp.tutorial.smartControls.09/preview
https://sapui5.hana.ondemand.com/#/entity/sap.ui.comp.smartchart.SmartChart

and thus shows the result as soon as the SmartChart control is loaded. We set
useVariantManagement=”true” and persistencyKey=”SmartChart_Explored” to enable the view
management. We also set useChartPersonalisation=”true”, which enables the chart personalization.

SmartChart.controller.js

sap.ui.define(["sap/ui/core/mvc/Controller",
 "sap/m/MessageBox"
], function(Controller, MessageBox) {
 "use strict";
 return Controller.extend("sap.ui.demo.smartControls.SmartChart", {
 onNavigationTargetsObtained: function(oEvent) {
 var oParameters = oEvent.getParameters();
 var oSemanticAttributes = oParameters.semanticAttributes;
 oParameters.show("Supplier", new sap.ui.comp.navpopover.LinkData({
 text: "Homepage",
 href: "http://www.sap.com",
 target: "_blank"
 }), [
 new sap.ui.comp.navpopover.LinkData({
 text: "Go to shopping cart"
 })
], new sap.ui.layout.form.SimpleForm({
 maxContainerCols: 1,
 content: [
 new sap.ui.core.Title({
 text: "Product description"
 }), new sap.m.Image({
 src: "img/HT-1052.jpg", //
oSemanticAttributes.ProductPicUrl,
 densityAware: false,
 width: "50px",
 height: "50px",
 layoutData: new sap.m.FlexItemData({
 growFactor: 1
 })
 }), new sap.m.Text({
 text: oSemanticAttributes.Description
 })
]
 }));
 },
 onNavigate: function(oEvent) {
 var oParameters = oEvent.getParameters();
 if (oParameters.text === "Homepage") {
 return;
 }
 MessageBox.show(oParameters.text + " has been pressed", {
 icon: sap.m.MessageBox.Icon.INFORMATION,
 title: "SmartChart demo",
 actions: [
 sap.m.MessageBox.Action.OK
]
 });
 }
 });
});

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 603

The following two functions are defined:

● onNavigationTargetObtained()
● onNavigate()

onNavigationTargetObtained() is called when a column is selected and you click the Jump To button.
With the click event the semantic parameters are obtained, and the function renders a navigation popover
containing a simple form that presents detailed information of the entity selected as can be seen in figure 2.

onNavigate() is called when the links in the navigation popover are clicked. This is done to demonstrate how
you add more functionality to the data in the navigation popover. In our example, we are just showing a
message box and the navigation to one other link.

metadata.xml

<?xml version="1.0" encoding="utf-8"?> <edmx:Edmx Version="1.0"
 xmlns:edmx="http://schemas.microsoft.com/ado/2007/06/edmx"
 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"
 xmlns:sap="http://www.sap.com/Protocols/SAPData">
 <edmx:Reference
 xmlns:edmx="http://docs.oasis-open.org/odata/ns/edmx">
 <edmx:Include Namespace="com.sap.vocabularies.Common.v1"
 Alias="Common" />
 </edmx:Reference>
 <edmx:Reference
 xmlns:edmx="http://docs.oasis-open.org/odata/ns/edmx">
 <edmx:Include Namespace="com.sap.vocabularies.UI.v1"
 Alias="UI" />
 </edmx:Reference>
 <edmx:DataServices m:DataServiceVersion="2.0">
 <Schema Namespace="com.sap.wt08"
 sap:schema-version="0" xmlns="http://schemas.microsoft.com/ado/
2008/09/edm">
 <EntityType Name="Product" sap:service-schema-version="1"
 sap:service-version="1" sap:semantics="aggregate"
 sap:content-version="1">
 <Key>
 <PropertyRef Name="ProductId" />
 </Key>
 <Property Name="ProductId" Type="Edm.String" Nullable="false"
 MaxLength="10" sap:aggregation-role="dimension"
sap:label="Product ID"
 sap:creatable="false" sap:updatable="false"
sap:sortable="true"
 sap:filterable="true" />
 <Property Name="Category" Type="Edm.String" Nullable="false"
 MaxLength="40" sap:aggregation-role="dimension"
sap:label="Product Category"
 sap:creatable="false" sap:updatable="false"
sap:sortable="true"
 sap:filterable="true" />
 <Property Name="Name" Type="Edm.String" Nullable="false"
 MaxLength="255" sap:aggregation-role="dimension"
sap:label="Name"
 sap:creatable="false" sap:updatable="false"
sap:sortable="true"
 sap:filterable="true" />
 <Property Name="Description" Type="Edm.String" Nullable="false"
 MaxLength="255" sap:aggregation-role="dimension"
sap:label="Description"

604 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 sap:creatable="false" sap:updatable="false"
sap:sortable="true"
 sap:filterable="true" />
 <Property Name="SupplierName" Type="Edm.String" Nullable="false"
 MaxLength="80" sap:aggregation-role="dimension"
sap:label="Company Name"
 sap:creatable="false" sap:updatable="false"
sap:sortable="true"
 sap:filterable="true" />
 <Property Name="Quantity" Type="Edm.Decimal" Nullable="false"
 MaxLength="3" sap:aggregation-role="measure"
sap:label="Quantity"
 sap:creatable="false" sap:updatable="false"
sap:sortable="true"
 sap:filterable="true" />
 <Property Name="Price" Type="Edm.Decimal" Nullable="false"
 Precision="23" Scale="4" sap:aggregation-role="measure"
sap:label="Price"
 sap:creatable="false" sap:updatable="false"
sap:sortable="true"
 sap:filterable="true" />
 <Property Name="CurrencyCode" Type="Edm.String" Nullable="false"
 MaxLength="5" sap:aggregation-role="dimension"
sap:label="Currency Code"
 sap:creatable="false" sap:updatable="false"
sap:sortable="true"
 sap:filterable="true" />
 </EntityType>
 <EntityContainer Name="com.sap.wt08"
 m:IsDefaultEntityContainer="true">
 <EntitySet Name="Products" EntityType="com.sap.wt08.Product"
 sap:creatable="false" sap:updatable="false"
sap:deletable="false"
 sap:pageable="false" sap:content-version="1" />
 </EntityContainer>
 <Annotations Target="com.sap.wt08.Product"
 xmlns="http://docs.oasis-open.org/odata/ns/edm">
 <Annotation Term="com.sap.vocabularies.UI.v1.LineItem">
 <Collection>
 <Record Type="com.sap.vocabularies.UI.v1.DataField">
 <PropertyValue Property="Value" Path="Name" />
 <Annotation
Term="com.sap.vocabularies.UI.v1.Importance"

EnumMember="com.sap.vocabularies.UI.v1.ImportanceType/High" />
 </Record>
 <Record Type="com.sap.vocabularies.UI.v1.DataField">
 <PropertyValue Property="Value" Path="Category" />
 <Annotation
Term="com.sap.vocabularies.UI.v1.Importance"

EnumMember="com.sap.vocabularies.UI.v1.ImportanceType/High" />
 </Record>
 </Collection>
 </Annotation>
 </Annotations>
 <Annotations Target="com.sap.wt08.Product"
 xmlns="http://docs.oasis-open.org/odata/ns/edm">
 <Annotation Term="com.sap.vocabularies.UI.v1.Chart">
 <Record>
 <PropertyValue Property="Title" String="Line Items" />
 <PropertyValue Property="ChartType"
 EnumMember="com.sap.vocabularies.UI.v1.ChartType/
Column" />
 <PropertyValue Property="Dimensions">
 <Collection>
 <PropertyPath>Name</PropertyPath>
 <PropertyPath>Category</PropertyPath>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 605

 </Collection>
 </PropertyValue>
 <PropertyValue Property="Measures">
 <Collection>
 <PropertyPath>Price</PropertyPath>
 <PropertyPath>Quantity</PropertyPath>
 </Collection>
 </PropertyValue>
 </Record>
 </Annotation>
 </Annotations>
 <Annotations Target="com.sap.wt08.Product/Category"
 xmlns="http://docs.oasis-open.org/odata/ns/edm">
 <Annotation Term="com.sap.vocabularies.Common.v1.SemanticObject"
 String="SemanticObjectCategory" />
 </Annotations>
 </Schema>
 </edmx:DataServices>
</edmx:Edmx>

The most important point to keep in mind is that analytical annotations along with chart annotations need to
exist in the metadata.xml. The most prominent annotations are listed below:

● sap:semantics="aggregate"
An analytical operation can be performed on the data. This has to be added to EntityType (in our case
“Product”)

● sap:aggregation-role="dimension"
Defines that a property of EntityType is treated as a dimension.

● sap:aggregation-role="measure"
Defines that a property of EntityType is treated as a measure.

● Annotation Term="com.sap.vocabularies.UI.v1.Chart
Defines the UI annotation for rendering a chart.

● EnumMember="com.sap.vocabularies.UI.v1.ChartType/Column"
Defines the default chart type.

● Annotation Term="com.sap.vocabularies.Common.v1.SemanticObject"
Defines the SemanticObject annotation for EntityType (in our case the product category).

Products.json

[{
 "ProductId": "1239102",
 "Name": "Power Projector 4713",
 "Category": "Projector",
 "SupplierName": "Titanium",
 "Description": "A very powerful projector with special features for Internet
usability, USB",
 "WeightMeasure": 1467,
 "WeightUnit": "g",
 "Price": 856.49,
 "CurrencyCode": "EUR",
 "Status": "Available",
 "Quantity": 3,
 "UoM": "PC",
 "Width": 51,
 "Depth": 42,
 "Height": 18,

606 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 "DimUnit": "cm"
 },
.
.
.
]

We have only listed a part of the Products.json entries since the actual values are not so relevant. Please
note that for your convenience we have included additional properties in this file to make it easier to
experiment with changes of the metadata.xml, and possibly of the view.xml, to allow for a more hands-on
experience.

Summary

Summary of the Smart Controls tutorial

In this tutorial we have focused on conveying the big picture of the smart controls leaving quite a few features
of the smart controls aside. For example, the SmartTable control can also be used in combination with the so-
called analytical table, a table type that has additional features, such as displaying aggregation rows to display
the sums. This information is controlled by the configuration in the metadata.xml document. In addition, the
SmartField control as a basic building block can consume more annotations than we have been able to show
here.

We would also like to mention that the OData services you have seen in this tutorial have version 2.0. With
version 4.0, the behavior might change.

In the previous steps you have seen how smart controls can use different sources of configuration to make
development easier. You may wonder, though, where exactly which configuration should be located. To answer
this question, we need to think about from where the various configuration parts are coming. You should think
of metadata.xml (that is the definition of entities, such as EntityType and annotations) as information
associated with the service or the application logic, even though we have seen that annotations are more UI-
specific than the more generic information found in the EntityTypes and the EntityContainer.
Information in the metadata.xml is therefore predetermined for a certain amount of reuse: You can build
several UIs (or parts of it) reusing this information. We have seen such a reuse several times in this document:
The reuse of the OData service metadata document for SmartFilterBar, SmartTable, and the popups
associated with the value help. In contrast to this, the configuration information that we specify in the
view.xml is more specific to one concrete UI.

3D Viewer

In this tutorial, you will learn how to work with the controls in the Visual Interaction toolkit (sap.ui.vk library)
to create applications with 3D viewing functionality.

 Caution
The controls in the sap.ui.vk library are currently flagged as experimental. For more information, see
Compatibility Rules [page 17].

The Visual Interaction toolkit provides controls for the visualization of 3D models in your application.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 607

 Tip
You do not have to do the tutorial steps sequentially. You can start the tutorial at any step you want, but you
just need to ensure that you have downloaded all the relevant code required to work through the step.

You can view and download the files for all steps at 3D Viewer.

For more information check the following sections of the tutorials overview page (see Get Started: Setup,
Tutorials, and Demo Apps [page 38]):

● Downloading Code for a Tutorial Step [page 40]
● Adapting Code to Your Development Environment [page 40]

Prerequisites

Prerequisite steps for the 3D Viewer tutorial.

 Caution
The controls in the sap.ui.vk library are currently flagged as experimental. For more information, see
Compatibility Rules [page 17].

Before proceeding with the 3D Viewer tutorial, ensure that you are familiar with the concepts introduced in the
following tutorials:

● Walkthrough [page 69]
● Data Binding [page 219]

File Structure

Please note that for each step in this tutorial, you will be creating a separate folder with its own copy of the
following files:

● <FolderName> (folder)
○ controller (folder)

○ App.controller.js
○ i18n (folder)

○ i18n.properties
○ view (folder)

○ App.view.xml
○ Component.js
○ index.html
○ manifest.json

608 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/entity/sap.ui.vk.tutorial.VIT/samples

Step 1: 3D Viewer With Single File Loading

In this step, you will be creating a 3D Viewer application that allows a user to load a single 2D image or 3D
model that is stored locally or remotely.

 Caution
The controls in the sap.ui.vk library are currently flagged as experimental. For more information, see
Compatibility Rules [page 17].

Preview

By the end of this step, you will have created a Viewer application that allows you to load a 2D or 3D resource.
The Viewer application will look as follows:

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 609

Figure 203: Viewer application with single file loading functionality

Coding

You can view and download all files at 3D Viewer - Step 1 - Single File.

index.html

In the first script element of this index.html file, we are referencing:

● the sap.ui.vk library, which contains the controls for adding 3D visualization functionality (the
sap.ui.vk value in the data-sap-ui-libs property)

● the component file called Component.js (the data-sap-ui-resourceroots property)

We specify that resources related to singleFile are located in the same folder as this index.html file.

610 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.vk.tutorial.VIT.01/preview

In the second script element, we create a function that will be called as soon as SAPUI5 is loaded and
initialized. We add our application into this function.

<!DOCTYPE HTML> <html>
 <head>
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta http-equiv="Content-Type" content="text/html;charset=UTF-8"/>
 <script id="sap-ui-bootstrap"
 src="../../../../../../../../../resources/sap-ui-core.js"
 data-sap-ui-libs="sap.ui.vk, sap.m"
 data-sap-ui-theme="sap_belize"
 data-sap-ui-bindingSyntax="complex"
 data-sap-ui-resourceroots='{
 "singleFile": "./"
 }' >
 </script>
 <script>
 sap.ui.getCore().attachInit(function(){
 new sap.m.Shell({
 app: new sap.ui.core.ComponentContainer({
 name : "singleFile"
 })
 }).placeAt("content");
 });
 </script>
 </head>
 <body id="content" class="sapUiBody">
 </body> </html>

Component.js
In the Component.js file, the only item for you to consider is to reference is the manifest.json file.

sap.ui.define(["sap/ui/core/UIComponent"
], function (UIComponent) {
 "use strict";
 return UIComponent.extend("singleFile.Component", {
 metadata: {
 manifest: "json"
 },
 init: function () {
 // call the init function of the parent
 UIComponent.prototype.init.apply(this, arguments);
 }
 }); });

i18n.properties
The i18n.properties file contains all the user interface labels for the application, which includes the labels
for he toolbar, the page title, the buttons, the text input fields, and the error message that will be displayed
when no URL is specified.

App Descriptor appTitle=App title
appDescription=This is a description coming from the i18n as specified in
manifest.json
Viewer Descriptor
viewerToolbarTitle=Single file load
Page Descriptor
pageTitle=Single File

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 611

Form Descriptor
formRemoteURL=Remote Model URL
buttonLoadModel=Load
buttonLoadImage=Load Image
formLocalFileName=Local File Name
Message Toast missingUrl=Please specify a URL

manifest.json

The manifest.json file contains information about the files that we need to use in our application.

In this file, we reference the i18n.properties file to specify what language the user interface of our
application will have. We also specify what the root view of the application is; i.e. the page that is loaded first
when the application is first started. This is set in the rootView property.

{ "_version": "1.8.0",
 "sap.app": {
 "id": "singleFile",
 "type": "application",
 "i18n": "i18n/i18n.properties",
 "title": "{{appTitle}}",
 "description": "{{appDescription}}",
 "applicationVersion": {
 "version": "1.0.0"
 },
 },
 "sap.ui": {
 "technology": "UI5",
 "deviceTypes": {
 "desktop": true,
 "tablet": true,
 "phone": true
 }
 },
 "sap.ui5": {
 "rootView": "singleFile.view.App",
 "dependencies": {
 "minUI5Version": "1.30",
 "libs": {
 "sap.m": {}
 }
 },
 "models": {
 "i18n": {
 "type": "sap.ui.model.resource.ResourceModel",
 "settings": {
 "bundleName": "singleFile.i18n.i18n"
 }
 }
 }
 } }

App.view.xml

The App.view.xml file specifies how the page in the application will be laid out. We have one form container
containing two form elements (formElement). The first formElement element contains the fields for loading
2D or 3D resources located remotely. We have specifed one input text field, and two buttons: one button for
loading 2D images, and the other button for loading 3D models.

612 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

In the second formElement, we are using the FileUploader control to generate an input text field and a
button to load 2D or 3D resources stored locally. We have specified the following file types as valid file types for
loading using this formElement.

The labels for each of the fields are specified in the text attributes.

<mvc:View controllerName="singleFile.controller.App"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc"
 xmlns:vk="sap.ui.vk"
 xmlns:l="sap.ui.layout"
 xmlns:f="sap.ui.layout.form"
 xmlns:u="sap.ui.unified"
 displayBlock="true">
 <App id="singleFile">
 <Page
 title="{i18n>pageTitle}">
 <vk:Viewer
 id="viewer"
 toolbarTitle="{i18n>viewerToolbarTitle}"
 width="100%"
 height="85%"
 />
 <f:Form
 layout="ResponsiveGridLayout"
 editable="true">
 <f:layout>
 <f:ResponsiveGridLayout/>
 </f:layout>
 <f:formContainers>
 <f:FormContainer>
 <f:formElements>
 <f:FormElement>
 <f:fields>
 <Input
 value="{source>/remoteUrl}"
 valueLiveUpdate="true"
 placeholder="{i18n>formRemoteURL}">
 <layoutData>
 <l:GridData hCells="auto" />
 </layoutData>
 </Input>
 <Button
 text="{i18n>buttonLoadModel}"
 press="onPressLoadRemoteModel">
 <layoutData>
 <l:GridData hCells="2" />
 </layoutData>
 </Button>
 <Button
 text="{i18n>buttonLoadImage}"
 press="onPressLoadRemoteImage">
 <layoutData>
 <l:GridData hCells="3" />
 </layoutData>
 </Button>
 </f:fields>
 </f:FormElement>
 <f:FormElement>
 <f:fields>
 <u:FileUploader
 fileType="vds,png,jpg,jpeg,gif"
 placeholder="{i18n>formLocalFileName}"
 width="100%"
 change="onChangeFileUploader">
 </u:FileUploader>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 613

 </f:fields>
 </f:FormElement>
 </f:formElements>
 </f:FormContainer>
 </f:formContainers>
 </f:Form>
 </Page>
 </App> </mvc:View>

App.controller.js

This file contains the logic for loading files into the Viewer application.

● The handleEmptyUrl function specifies what should occur if a user clicks on any of the buttons for
loading, without having specified a URL to a resource first.

● The loadModelIntoViewer function specifies how the resource will be loaded into the Viewer application
for viewing.

● The following event functions specify how the form elements should behave during certain events. The
following list outlines what each of the functions do:
○ onInit - declares an empty structure when the controller is initialized. The empty structure is set as

the model for the URLs.
○ onPressLoadRemoteModel - the logic for the button that loads 3D resources stored remotely.
○ onPressLoadRemoteImage - the logic for the button that loads 2D resources stored remotely.
○ onChangeFileUploader - the logic for the fields that load 2D or 3D resources stored locally.

sap.ui.define(["sap/ui/core/mvc/Controller",
 "sap/ui/model/json/JSONModel",
 "sap/ui/vk/ContentResource",
 "sap/m/MessageToast"
], function(Controller, JSONModel, ContentResource, MessageToast) {
 "use strict";
 var handleEmptyUrl = function(view) {
 var oBundle = view.getModel("i18n").getResourceBundle();
 var msg = oBundle.getText("missingUrl");
 MessageToast.show(msg);
 };
 var loadModelIntoViewer = function(viewer, remoteUrl, sourceType, localFile)
{
 //what is currently loaded in the view is destroyed
 viewer.destroyContentResources();
 var source = remoteUrl || localFile;
 if (source) {

 //content of viewer is replaced with new data
 var contentResource = new ContentResource({
 source: remoteUrl,
 sourceType: sourceType,
 sourceId: "abc"
 });
 //content: chosen path. content added to the view
 viewer.addContentResource(contentResource);
 }
 };
 return Controller.extend("singleFile.controller.App", {
 onInit: function() {
 var sourceData = {
 localFile: undefined,
 remoteUrl: undefined
 };
 var model = new JSONModel();

614 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 model.setData(sourceData);
 this.getView().setModel(model, "source");
 },
 onPressLoadRemoteModel: function(event) {
 var view = this.getView();
 var sourceData = view.getModel("source").oData;
 var viewer = view.byId("viewer");
 if (sourceData.remoteUrl) {
 loadModelIntoViewer(viewer, sourceData.remoteUrl, "vds");
 } else {
 handleEmptyUrl(view);
 }
 },
 onPressLoadRemoteImage: function(event) {
 var view = this.getView();
 var sourceData = view.getModel("source").oData;
 var viewer = view.byId("viewer");
 if (sourceData.remoteUrl) {
 loadModelIntoViewer(viewer, sourceData.remoteUrl, "jpg");
 } else {
 handleEmptyUrl(view);
 }
 },
 onChangeFileUploader: function(event) {
 var view = this.getView();
 var viewer = view.byId("viewer");
 var localFile = event.getParameter("files")[0];
 //if user selects a local file
 if (localFile) {
 var fileName = localFile.name;
 var index = fileName.lastIndexOf(".");
 if (index >= 0 && index < fileName.length - 1) {
 var sourceType = fileName.substr(index + 1);
 loadModelIntoViewer(viewer, null, sourceType, localFile);
 }
 }
 }
 }); });

Testing the Application
To test that the application works, we will load a local 3D resource into the Viewer application.

Download the boxTestModel.vds file from the Samples. Click the Browse... button, navigate to the folder
where the 3D resource is located, and load the model. Your screen should look like the following screenshot:

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 615

Figure 204: Viewer application loaded with a single VDS file

API Reference

● sap.ui.vk.Viewer
● sap.ui.vk.ContentResource

616 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.vk.Viewer.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.vk.ContentResource.html

Step 2: 3D Viewer With Multiple File Loading

In this step, you will be creating a Viewer application that allows a user to load multiple 3D resources stored
locally.

 Caution
The controls in the sap.ui.vk library are currently flagged as experimental. For more information, see
Compatibility Rules [page 17].

The content in this tutorial step references Step 1: 3D Viewer With Single File Loading [page 609] for
comparative purposes.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 617

Preview

Figure 205: Viewer application with multiple file loading capability

Coding

You can view and download all files at 3D Viewer - Step 2 - Multiple File Loading .

618 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.vk.tutorial.VIT.02/preview

index.html
Update the index.html file to reference the multipleFiles namespace, which will be the namespace we'll
use for the sample application in this step.

<!DOCTYPE HTML> <html>
 <head>
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta http-equiv="Content-Type" content="text/html;charset=UTF-8"/>
 <script id="sap-ui-bootstrap"
 src="../../../../../../../../../resources/sap-ui-core.js"
 data-sap-ui-libs="sap.ui.vk, sap.m"
 data-sap-ui-theme="sap_belize"
 data-sap-ui-bindingSyntax="complex"
 data-sap-ui-resourceroots='{ "multipleFiles": "./" }'>
 </script>
 <script>
 sap.ui.getCore().attachInit(function(){
 new sap.m.Shell({
 app: new sap.ui.core.ComponentContainer({ name : "multipleFiles" })
 }).placeAt("content");
 });
 </script>
 </head>
 <body id="content" class="sapUiBody">
 </body> </html>

Component.js
Update the Component.js file to reference the namespace specified for this application.

sap.ui.define(["sap/ui/core/UIComponent"
], function (UIComponent) {
 "use strict"; return UIComponent.extend("multipleFiles.Component", { metadata: {
 manifest: "json"
 },
 init: function () {
 // call the init function of the parent
 UIComponent.prototype.init.apply(this, arguments);
 }
 }); });

i18n.properties
In the i18n.properties file, we have labels for the toolbar, the page title, the three input fields, the Load
button, and the error message that is displayed when the user attempts to load a model without specifying one
to load.

 # App Descriptor
appTitle=App title
appDescription=This is a description coming from the i18n as specified in
manifest.json

Viewer Descriptor

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 619

viewerToolbarTitle=Upload multiple files

Page Descriptor
pageTitle=Multiple File

Form Descriptor
formRemoteURL1=Remote Model URL 1
formRemoteURL2=Remote Model URL 2
formRemoteURL3=Remote Model URL 3
buttonLoadModel=Load

Message Toast
missingUrl=Please specify at least one URL

manifest.json
Update the manifest.json file so that it references the correct files.

{ "_version": "1.8.0",
 "sap.app": { "id": "multipleFiles", "type": "application",
 "i18n": "i18n/i18n.properties",
 "title": "{{appTitle}}",
 "description": "{{appDescription}}",
 "applicationVersion": {
 "version": "1.0.0"
 },
 },
 "sap.ui": {
 "technology": "UI5",
 "deviceTypes": {
 "desktop": true,
 "tablet": true,
 "phone": true
 }
 },
 "sap.ui5": { "rootView": "multipleFiles.view.App", "dependencies": {
 "minUI5Version": "1.30",
 "libs": {
 "sap.m": {}
 }
 },
 "models": {
 "i18n": {
 "type": "sap.ui.model.resource.ResourceModel",
 "settings": { "bundleName": "multipleFiles.i18n.i18n" }
 }
 }
 } }

App.view.xml
This file specifies how the page in the application will be laid out. We only have one formElement in the form
container, which contains the fields for loading 3D resources that are stored locally. In the element, we have
specified three input text fields and one button for loading. The labels to use for each of the fields are specified
in the text attributes.

<mvc:View

620 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 controllerName="multipleFiles.controller.App"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc"
 xmlns:vk="sap.ui.vk"
 xmlns:l="sap.ui.layout"
 xmlns:f="sap.ui.layout.form"
 xmlns:u="sap.ui.unified"
 displayBlock="true">
 <App id="multipleFiles">
 <Page
 title="{i18n>pageTitle}">
 <vk:Viewer
 id="viewer"
 toolbarTitle="{i18n>viewerToolbarTitle}"
 width="100%"
 height="85%"
 />
 <f:Form editable="true"> <f:layout>
 <f:ResponsiveGridLayout/>
 </f:layout>
 <f:formContainers>
 <f:FormContainer>
 <f:formElements>
 <f:FormElement>
 <f:fields>
 <Input
 value="{source>/url1}"
 valueLiveUpdate="true"
 placeholder="{i18n>formRemoteURL1}">
 <layoutData>
 <l:GridData span="L12 M12 S12" />
 </layoutData>
 </Input>
 <Input
 value="{source>/url2}"
 valueLiveUpdate="true"
 placeholder="{i18n>formRemoteURL2}">
 <layoutData>
 <l:GridData span="L12 M12 S12" />
 </layoutData>
 </Input>
 <Input
 value="{source>/url3}"
 valueLiveUpdate="true"
 placeholder="{i18n>formRemoteURL3}">
 <layoutData>
 <l:GridData span="L12 M12 S12" />
 </layoutData>b
 </Input>
 <Button
 text="{i18n>buttonLoadModel}"
 press="onPressLoadRemoteModels">
 <layoutData>
 <l:GridData span="L2 M2 S2" />
 </layoutData>
 </Button>
 </f:fields>
 </f:FormElement>
 </f:formElements>
 </f:FormContainer>
 </f:formContainers> </f:Form>
 </Page>
 </App> </mvc:View>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 621

App.controller.js

Since we now have a different layout for the Viewer application compared to the sample Viewer application in
Step 1: 3D Viewer With Single File Loading [page 609], we will need to change the logic for the application to
accommodate for multiple file loading.

Add the checkIfAllInputsEmpty function to check whether the user has entered text into any of the input
fields in the application. The checkIfAllInputsEmpty function returns the value true if the user hasn't
entered any input at all, and the existing handleEmptyUrl function is called to display a message on the
screen.

Update the onInit function so that we are specifying an empty data structure with three properties (url1,
url2, and url3).

Replace the loadModelIntoViewer and onPressLoadRemoteModel functions with the following functions:

● loadModelsIntoViewer - loads the models into Viewer
● onPressLoadRemoteModels - handles the click event on the Load button

Remove the following functions:

● onPressLoadRemoteImage (since we are only loading 3D resources)
● onChangeFileUploader (since we are not using the FileUploader control for this application)

sap.ui.define(["sap/ui/core/mvc/Controller",
 "sap/ui/model/json/JSONModel",
 "sap/ui/vk/ContentResource",
 "sap/m/MessageToast"
], function (Controller, JSONModel, ContentResource, MessageToast) {
 "use strict";

 //throws a Message Toast alert on the screen
 //when the user tries to load a model but there's no url specified
 var handleEmptyUrl = function (view) {
 var oBundle = view.getModel("i18n").getResourceBundle();
 var msg = oBundle.getText("missingUrl");
 MessageToast.show(msg);
 };
 //checks if all URL input fields are empty or not
 var checkIfAllInputsEmpty = function (urls) {
 var allEmpty = true;
 for (var i = 0; i < urls.length; i++) {
 if (urls[i]) {
 allEmpty = false;
 break;
 }
 }
 return allEmpty;
 }

 //loads the models from the URLs into the viewer
 var loadModelsIntoViewer = function (viewer, urls, sourceType) {
 //clears all the models currently loaded in the viewer
 viewer.destroyContentResources();

 //iterates through all URLs
 //and loads all models into the viewer
 for (var i = 0; i < urls.length; i++) {
 if (urls[i]) {
 var contentResource = new ContentResource({
 source: urls[i],
 sourceType: sourceType,

622 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 sourceId: "abc"
 name: urls[i].split("/")[2]
 });
 //add current model to the viewer
 viewer.addContentResource(contentResource);
 }
 }
 };
 return Controller.extend("multipleFiles.controller.App", {
 //when the controller is initialized,
 //we declare an empty structure and
 //we set this as model for the URLs
 onInit: function () {
 var sourceData = {
 url1: "",
 url2: "",
 url3: ""
 };
 var model = new JSONModel();
 model.setData(sourceData);
 this.getView().setModel(model, "source");
 },

 //onPressLoadRemoteModels handles the click event on the LOAD button
 onPressLoadRemoteModels: function (event) {
 var view = this.getView();
 //set the source model to a variable
 var sourceData = view.getModel("source").getData;

 //get the current viewer control
 var viewer = view.byId("viewer");

 //create the list of URLs from the input fields
 var urls = [sourceData.url1, sourceData.url2, sourceData.url3];

 //if all URL inputs are empty show an alert on the screen
 //if at least one URL is specified, then take the URL list
 //and load all existing ones into the viewer
 if (checkIfAllInputsEmpty(urls)) {
 handleEmptyUrl(view);
 } else {
 loadModelsIntoViewer(viewer, urls, "vds");
 }
 }
 }); });

Testing the Application
To test that the application works, we will load three 3D resources into the Viewer application.

Download the following VDS files from the Samples in the Demo Kit:

● boxTestModel.vds
● coneTestModel.vds
● cylinderTestModel.vds

Type in the file path of the VDS files into each of the input text fields, and click on the Load button to load the 3D
models. Your screen should look like the following screenshot:

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 623

Figure 206: Viewer application loaded with three VDS files

API Reference

● sap.ui.vk.GraphicsCore

Step 3: 3D Viewer Using the Viewport Control

In this step, you will be creating a 3D Viewer application using the sap.ui.vk.Viewport control.

 Caution
The controls in the sap.ui.vk library are currently flagged as experimental. For more information, see
Compatibility Rules [page 17].

624 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.vk.GraphicsCore.html

In previous steps, we utilized the sap.ui.vk.Viewer composite control to create a Viewer application
capable of loading a 2D or 3D resource. Now, we will create a Viewer application with a pre-loaded resource
without using the composite sap.ui.vk.Viewer control. Instead, we will use the following controls and
library in sap.ui.vk, which are what you'll need at a minimum to display a 3D model in your application.

● Viewport control
● ContentResource control
● GraphicsCore library

We will build on this sample application in later steps of the 3D Viewer tutorial by introducing the other non-
composite sap.ui.vk controls to create more complex Viewer applications.

Preview

Figure 207: Viewer application that consists solely of a Viewport

Coding

You can view and download all files at 3D Viewer - Step 3 - Standalone Viewport.

index.html
Update the index.html file to reference the standaloneViewport namespace, which will be the namespace
we'll use for the sample application in this step.

<!DOCTYPE HTML> <html>
 <head>
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta http-equiv="Content-Type" content="text/html;charset=UTF-8"/>
 <script id="sap-ui-bootstrap"
 src="../../../../../../../../../resources/sap-ui-core.js"
 data-sap-ui-libs="sap.ui.vk"

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 625

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.vk.tutorial.VIT.03/preview

 data-sap-ui-theme="sap_belize"
 data-sap-ui-bindingSyntax="complex"
 data-sap-ui-resourceroots='{ "standaloneViewport": "./" }'>
 </script>
 <script>
 sap.ui.getCore().attachInit(function(){
 new sap.m.Shell({
 app: new sap.ui.core.ComponentContainer({ name : "standaloneViewport" })
 }).placeAt("content");
 });
 </script>
 </head>
 <body id="content" class="sapUiBody">
 </body> </html>

Component.js
Update the Component.js file to reference the namespace specified for this application.

sap.ui.define(["sap/ui/core/UIComponent"
], function (UIComponent) {
 "use strict"; return UIComponent.extend("standaloneViewport.Component", { metadata: {
 manifest: "json"
 },
 init: function () {
 // call the init function of the parent
 UIComponent.prototype.init.apply(this, arguments);
 }
 }); });

i18n.properties
Because we are not creating any fields that a user can interact with, we only have one line of code which
specifies what the label for the page title is.

Page Descriptor pageTitle=Standalone Viewport

manifest.json
Update the manifest.json file so that it references the correct files.

{ "_version": "1.8.0",
 "sap.app": { "id": "standaloneViewport", "type": "application",
 "i18n": "i18n/i18n.properties",
 "title": "{{appTitle}}",
 "description": "{{appDescription}}",
 "applicationVersion": {
 "version": "1.0.0"
 }
 },
 "sap.ui": {

626 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 "technology": "UI5",
 "deviceTypes": {
 "desktop": true,
 "tablet": true,
 "phone": true
 }
 },
 "sap.ui5": { "rootView": "standaloneViewport.view.App", "dependencies": {
 "minUI5Version": "1.30",
 "libs": {
 "sap.m": {}
 }
 },
 "models": {
 "i18n": {
 "type": "sap.ui.model.resource.ResourceModel",
 "settings": { "bundleName": "standaloneViewport.i18n.i18n" }
 }
 }
 } }

App.view.xml
Because the Viewport is the only item that we need to display on the application screen, we only need to have
the <vk:Viewport> element added to this file. In the element's attributes, we specify the Viewport's width
and height on the screen, and also give it an arbitrary identifier value.

<mvc:View controllerName="standaloneViewport.controller.App" xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc"
 xmlns:vk="sap.ui.vk"
 xmlns:l="sap.ui.layout"
 xmlns:f="sap.ui.layout.form"
 xmlns:u="sap.ui.unified"
 displayBlock="true"> <App id="standaloneViewport">
 <Page
 title="{i18n>pageTitle}">
 <vk:Viewport
 id="viewport"
 width="100%"
 height="50%"/>
 </Page>
 </App> </mvc:View>

App.controller.js
The logic in this App.controller.js file can be summarized as follows:

1. Create a Content Resource that stores a pre-specified model
2. Initiate a scene in our application in the following order:

1. Create a Graphics Core instance
2. Create a Viewport that is bound to the Graphics Core instance
3. Load the Content Resource to the Graphics Core for rendering on the Viewport

sap.ui.define([

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 627

 "sap/ui/core/mvc/Controller",
 "sap/ui/model/json/JSONModel",
 "sap/ui/vk/ContentResource",], function (Controller, JSONModel, ContentResource) {
 "use strict";

 var contentResource = new sap.ui.vk.ContentResource({
 source: "/models/boxTestModel.vds",
 sourceType: "vds",
 id: "abc123"
 });

 return Controller.extend("standaloneViewport.controller.App",{
 onInit: function() {

 var mainScene;

 jQuery.sap.require("sap.ui.vk.GraphicsCore");
 var graphicsCore = new sap.ui.vk.GraphicsCore({},{
 antialias: true,
 alpha: true,
 premultipliedAlpha: false
 });

 var view = this.getView();
 var viewport = view.byId("viewport");

 viewport.setGraphicsCore(graphicsCore);
 graphicsCore.loadContentResourcesAsync([contentResource],
function(sourcesFailedToLoad){
 if (sourcesFailedToLoad){
 jQuery.sap.log.error("Some of content resources cannot be
loaded.");
 } else {
 var scene = graphicsCore.buildSceneTree([contentResource]);
 if (scene){
 mainScene = scene;
 viewport.setScene(mainScene);
 } else {
 jQuery.sap.log.error("Failed to load viewport");
 }
 }
 });
 }
 }); });

We'll now break the code down to look at each part in more detail.

Create a New Content Resource

Create a contentResource object that specifies the resource to load. In this case, we're pre-loading the
boxTestModel.vds model into the application. This occurs before the scene in our Viewer application is
initiated.

sap.ui.define(["sap/ui/core/mvc/Controller",
 "sap/ui/model/json/JSONModel",
 "sap/ui/vk/ContentResource",
], function (Controller, JSONModel, ContentResource) {
 "use strict";
 var contentResource = new sap.ui.vk.ContentResource({
 source: "/models/boxTestModel.vds",
 sourceType: "vds",
 id: "abc123"

628 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Create a New Graphics Core Instance

Create a new Graphics Core instance. We're only specifying one input parameter, which is for the WebGL
context attributes. We then get the current viewport, and attach it to the Graphics Core instance so the model
we've loaded can be rendered.

return Controller.extend("standaloneViewport.controller.App",{ onInit: function() {

 var mainScene;
 jQuery.sap.require("sap.ui.vk.GraphicsCore");
 var graphicsCore = new sap.ui.vk.GraphicsCore({},{
 antialias: true,
 alpha: true,
 premultipliedAlpha: false
 });
 var view = this.getView();
 var viewport = view.byId("viewport");
 viewport.setGraphicsCore(graphicsCore);

Load the Content Resource for Rendering

Now that we've associated the viewport with the Graphics Core, we can load our model to be displayed on the
Viewport. In the following code block, we have specified some checks to make sure that the model loads
correctly. If no resource is loaded, or if there is an error loading the resource, we throw the following error on
the screen "Some of content resources cannot be loaded". Otherwise, we build a scene with the loaded
resource, and then display this scene on the viewport. If the scene itself does not load into the Viewport, we
throw an error saying the scene could not be built "Failed to build the scene."

graphicsCore.loadContentResourcesAsync([contentResource],
function(sourcesFailedToLoad){ if (sourcesFailedToLoad){
 jQuery.sap.log.error("Some of content resources cannot be loaded.");
 } else {
 var scene = graphicsCore.buildSceneTree([contentResource]);
 if (scene){
 mainScene = scene;
 viewport.setScene(mainScene);
 } else {
 jQuery.sap.log.error("Failed to load viewport");
 }
 }
});
} });

API Reference

● sap.ui.vk.Viewport

Related Information

Viewport [page 2480]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 629

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.vk.Viewport.html

Step 4: Adding a Scene Tree

In this step, you will be adding an sap.ui.vk.SceneTree control to your 3D Viewer application.

 Caution
The controls in the sap.ui.vk library are currently flagged as experimental. For more information, see
Compatibility Rules [page 17].

The following sap.ui.vk controls are introduced in this step:

● SceneTree control
● ViewStateManager control

We will use the SceneTree control to create a tree structure that displays the hierarchy of the nodes for the
loaded model. We will then use the ViewStateManager control to link the Scene Tree with the model loaded
into the Viewport, so that we can visually associate a selection in the scene with its corresponding node as
displayed in the Scene Tree.

The content in this step builds on the code from Step 3: 3D Viewer Using the Viewport Control [page 624], and
code changes performed in this step of the tutorial are done in relation to the files in Step 3: 3D Viewer Using
the Viewport Control [page 624].

630 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Preview

Figure 208: Viewer application with a Viewport and a Scene Tree

Coding

You can view and download all files at 3D Viewer - Step 4 - Viewport with Scene Tree.

index.html
Update the index.html file to reference the viewportScenetree namespace, which will be the namespace
we'll use for the sample application in this step.

<!DOCTYPE HTML>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 631

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.vk.tutorial.VIT.04/preview

 <html>
 <head>
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta http-equiv="Content-Type" content="text/html;charset=UTF-8"/>
 <script id="sap-ui-bootstrap"
 src="../../../../../../../../../resources/sap-ui-core.js"
 data-sap-ui-libs="sap.ui.vk, sap.m"
 data-sap-ui-theme="sap_belize"
 data-sap-ui-bindingSyntax="complex"
 data-sap-ui-resourceroots='{ "viewportScenetree": "./" }'>
 </script>
 <script>
 sap.ui.getCore().attachInit(function(){
 new sap.m.Shell({
 app: new sap.ui.core.ComponentContainer({ name : "viewportScenetree" })
 }).placeAt("content");
 });
 </script>
 </head>
 <body id="content" class="sapUiBody">
 </body> </html>

Component.js
Update the Component.js file to reference the namespace specified for this application.

sap.ui.define(["sap/ui/core/UIComponent"
], function (UIComponent) {
 "use strict"; return UIComponent.extend("viewportScenetree.Component", { metadata: {
 manifest: "json"
 },
 init: function () {
 // call the init function of the parent
 UIComponent.prototype.init.apply(this, arguments);
 }
 }); });

i18n.properties
Update the page title to say "Viewport with Scene Tree".

Page Descriptor pageTitle=Viewport with Scene Tree

manifest.json
Update the manifest.json file so that it references the correct files.

{ "_version": "1.8.0",
 "sap.app": { "id": "viewportScenetree", "type": "application",
 "i18n": "i18n/i18n.properties",
 "title": "{{appTitle}}",

632 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 "description": "{{appDescription}}",
 "applicationVersion": {
 "version": "1.0.0"
 }
 },
 "sap.ui": {
 "technology": "UI5",
 "deviceTypes": {
 "desktop": true,
 "tablet": true,
 "phone": true
 }
 },
 "sap.ui5": { "rootView": "viewportScenetree.view.App", "dependencies": {
 "minUI5Version": "1.30",
 "libs": {
 "sap.m": {}
 }
 },
 "models": {
 "i18n": {
 "type": "sap.ui.model.resource.ResourceModel",
 "settings": { "bundleName": "viewportScenetree.i18n.i18n" }
 }
 }
 } }

App.view.xml
To display the Scene Tree in your application, add the <vk:SceneTree> element. In the element's attribute's,
specify the Scene Tree control's width and height on the screen, and give it an arbitrary identifier value.

<mvc:View controllerName="viewportScenetree.controller.App" xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc"
 xmlns:vk="sap.ui.vk"
 xmlns:l="sap.ui.layout"
 xmlns:f="sap.ui.layout.form"
 xmlns:u="sap.ui.unified"
 displayBlock="true"> <App id="viewportScenetree"> <Page
 title="{i18n>pageTitle}">
 <vk:Viewport
 id="viewport"
 width="100%"
 height="25%"/> <vk:SceneTree
 id="scenetree"
 width="100%"
 height="25%"/> </Page>
 </App> </mvc:View>

App.controller.js
For the most part, the code in the App.controller.js file will be the same as the content of the
App.controller.js file for the application in Step 3: 3D Viewer Using the Viewport Control [page 624]. The

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 633

highlighted sections in the following code block indicate the additions and changes made in the code to
incorporate a Scene Tree in the 3D Viewer application.

sap.ui.define(["sap/ui/core/mvc/Controller",
 "sap/ui/model/json/JSONModel",
 "sap/ui/vk/ContentResource",
], function (Controller, JSONModel, ContentResource) {
 "use strict";
 var contentResource = new sap.ui.vk.ContentResource({
 source: "/models/boxTestModel.vds",
 sourceType: "vds",
 id: "abc123"
 }); return Controller.extend("viewportScenetree.controller.App",{ onInit: function() {
 var mainScene;
 jQuery.sap.require("sap.ui.vk.GraphicsCore");
 var graphicsCore = new sap.ui.vk.GraphicsCore({},{
 antialias: true,
 alpha: true,
 premultipliedAlpha: false
 });
 var view = this.getView();
 var viewport = view.byId("viewport"); var sceneTree = view.byId("scenetree"); viewport.setGraphicsCore(graphicsCore);
 graphicsCore.loadContentResourcesAsync([contentResource],
function(sourcesFailedToLoad){
 if (sourcesFailedToLoad){
 jQuery.sap.log.error("Some of content resources cannot be
loaded.");
 } else {
 var scene = graphicsCore.buildSceneTree([contentResource]);
 if (scene){
 mainScene = scene;
 viewport.setScene(mainScene); var viewStateManager =
graphicsCore.createViewStateManager(mainScene.getDefaultNodeHierarchy());
 viewport.setViewStateManager(viewStateManager);
 sceneTree.setScene(mainScene, viewStateManager); } else { jQuery.sap.log.error("Failed to build the scene tree."); }
 }
 });
 }
 }); });

Let us look at the changes in more detail.

The following code line adds a new Scene Tree object.

var sceneTree = view.byId("scenetree");

We create a new object called viewStateManager that gets the node hierarchy of the resource that's loaded
into the scene. Then, we associate the created viewStateManager object with our viewport. We also
associate the nodes in the viewStateManager object, as well as the resource loaded into the main scene with
the Scene Tree.

var viewStateManager =
graphicsCore.createViewStateManager(mainScene.getDefaultNodeHierarchy()); viewport.setViewStateManager(viewStateManager);

634 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

sceneTree.setScene(mainScene, viewStateManager);

Finally, we changed the message for the condition that determines whether the viewport and the scene tree
loaded successfully or not.

jQuery.sap.log.error("Failed to build the scene tree.");

API Reference

● sap.ui.vk.SceneTree

Related Information

Scene Tree [page 2470]

Step 5: Adding Step Navigation

In this step, you will be adding the sap.ui.vk.StepNavigation control to a 3D Viewer application.

 Caution
The controls in the sap.ui.vk library are currently flagged as experimental. For more information, see
Compatibility Rules [page 17].

Sometimes, you may encounter a 3D model that has a sequence of animations associated with it. The
StepNavigation control allows you to display the steps in the animation sequence, navigate to the individual
steps in the animation sequence, and play the animation in a single step or in all of the steps.

The content in this step builds on the code from Step 4: Adding a Scene Tree [page 630], and code changes
performed in this step of the tutorial are done in relation to the files in Step 4: Adding a Scene Tree [page 630].

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 635

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.vk.SceneTree.html

Preview

Figure 209: Viewer application with a Step Navigation, Viewport, and Scene Tree

Coding

You can view and download all files at 3D Viewer - Step 5 - Viewport with Scene Tree and Step Navigation.

index.html
Update the index.html file to reference the viewportScenetreeStepnav namespace, which will be the
namespace we'll use for the sample application in this step.

<!DOCTYPE HTML> <html>
 <head>
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta http-equiv="Content-Type" content="text/html;charset=UTF-8"/>
 <script id="sap-ui-bootstrap"
 src="../../../../../../../../../resources/sap-ui-core.js"
 data-sap-ui-libs="sap.ui.vk, sap.m, sap.ui.core"
 data-sap-ui-theme="sap_belize"
 data-sap-ui-bindingSyntax="complex"
 data-sap-ui-resourceroots='{ "viewportScenetreeStepnav": "./" }'>
 </script>
 <script>
 sap.ui.getCore().attachInit(function(){
 new sap.m.Shell({
 app: new sap.ui.core.ComponentContainer({ name : "viewportScenetreeStepnav"

636 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.vk.tutorial.VIT.05/preview

 })
 }).placeAt("content");
 });
 </script>
 </head>
 <body id="content" class="sapUiBody">
 </body> </html>

Component.js
Update the Component.js file to reference the namespace specified for this application.

sap.ui.define(["sap/ui/core/UIComponent"
], function (UIComponent) {
 "use strict"; return UIComponent.extend("viewportScenetreeStepnav.Component", { metadata: {
 manifest: "json"
 },
 init: function () {
 // call the init function of the parent
 UIComponent.prototype.init.apply(this, arguments);
 }
 }); });

i18n.properties
Because we are not creating any fields that a user can interact with, we only have one line of code which
specifies what the label for the page title is.

Page Descriptor pageTitle=Viewport with Scene Tree and Step Navigation

manifest.json
Update the manifest.json file so that it references the correct files.

{ "_version": "1.8.0",
 "sap.app": { "id": "viewportScenetreeStepnav", "type": "application",
 "i18n": "i18n/i18n.properties",
 "title": "{{appTitle}}",
 "description": "{{appDescription}}",
 "applicationVersion": {
 "version": "1.0.0"
 }
 },
 "sap.ui": {
 "technology": "UI5",
 "deviceTypes": {
 "desktop": true,
 "tablet": true,
 "phone": true
 }
 },
 "sap.ui5": { "rootView": "viewportScenetreeStepnav.view.App", "dependencies": {
 "minUI5Version": "1.30",

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 637

 "libs": {
 "sap.m": {}
 }
 },
 "models": {
 "i18n": {
 "type": "sap.ui.model.resource.ResourceModel",
 "settings": { "bundleName": "viewportScenetreeStepnav.i18n.i18n" }
 }
 }
 } }<vk:StepNavigation>

App.view.xml
In this file, we have added a <vk:StepNavigation> element to this file. We have specified the width and
height of the StepNavigation control on the screen.

<mvc:View controllerName="viewportScenetreeStepnav.controller.App" xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc"
 xmlns:vk="sap.ui.vk"
 xmlns:l="sap.ui.layout"
 xmlns:f="sap.ui.layout.form"
 xmlns:u="sap.ui.unified"
 displayBlock="true">
 <App id="viewportScenetreeStepnav">
 <Page
 title="{i18n>pageTitle}"> <vk:StepNavigation
 id="StepNavigation"
 width="100%"
 height="17.5%"/> <vk:Viewport
 id="viewport"
 width="100%"
 height="50%"/>
 <vk:SceneTree
 id="scenetree"
 width="100%"
 height="50%"/>
 </Page>
 </App> </mvc:View>

App.controller.js
The highlighted sections in the following code block indicate the additions and changes made in the code to
incorporate step navigation in the 3D Viewer application.

sap.ui.define(["sap/ui/core/mvc/Controller",
 "sap/ui/model/json/JSONModel",
 "sap/ui/vk/ContentResource",
], function (Controller, JSONModel, ContentResource) {
 "use strict";
 var contentResource = new sap.ui.vk.ContentResource({
 source: "/models/boxTestModel.vds",
 sourceType: "vds",
 id: "abc123"
 }); return Controller.extend("viewportScenetreeStepnav.controller.App",{

638 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 onInit: function() {
 var mainScene;
 jQuery.sap.require("sap.ui.vk.GraphicsCore");
 var graphicsCore = new sap.ui.vk.GraphicsCore({},{
 antialias: true,
 alpha: true,
 premultipliedAlpha: false
 });
 var view = this.getView();
 var viewport = view.byId("viewport");
 var sceneTree = view.byId("scenetree"); var stepNavigation = view.byId ("StepNavigation"); viewport.setGraphicsCore(graphicsCore);
 graphicsCore.loadContentResourcesAsync([contentResource],
function(sourcesFailedToLoad){
 if (sourcesFailedToLoad){
 jQuery.sap.log.error("Some of content resources cannot be
loaded.");
 } else {
 var scene = graphicsCore.buildSceneTree([contentResource]);
 if (scene){
 mainScene = scene;
 viewport.setScene(mainScene);
 var viewStateManager =
graphicsCore.createViewStateManager(mainScene.getDefaultNodeHierarchy());
 viewport.setViewStateManager(viewStateManager);
 sceneTree.setScene(mainScene, viewStateManager); stepNavigation.setScene(mainScene); } else { jQuery.sap.log.error("Failed to build the viewport, the
scene tree, and the step navigation."); }
 }
 });
 }
 }); });

Let us look at the changes in more detail.

The following line of code adds a new Step Navigation object.

var stepNavigation = view.byId ("StepNavigation");

We then associate the scene with the Step Navigation object, so that the animation sequences in the model are
displayed in the StepNavigation control.

stepNavigation.setScene(mainScene);

Finally, we changed the message for the condition that determines whether the Viewport, the Scene Tree, and
the Step Navigation controls loaded successfully or not:

jQuery.sap.log.error("Failed to build the Viewport, the Scene Tree, and the Step
Navigation.");

API Reference

● sap.ui.vk.StepNavigation

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 639

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.vk.StepNavigation.html

Related Information

Step Navigation [page 2474]

Ice Cream Machine

In this tutorial, we will show you how to use SAPUI5 controls like Generic Tiles, Micro Charts, and Process Flow.

Welcome to our Ice Cream Machine tutorial.

To get all of the important information about the production process at a glance, we will create a new start
page. We will use the GenericTile control in different scenarios, the NumericContent, and several micro
charts. The ProcessFlow will be used in a further view to display detailed data in the production process. We
will create micro charts that show more specific information as in the ProcessFlow. In another view, the
ChartContainer will be used to display the test results of the newly built ice cream machine. Finally, we will
create an additional view with a Timeline control that will display our customer reviews.

Preview

640 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Step 1: Initial Application

In the first step, we will explain how to get started with a development environment.

Choose your development environment

In this tutorial, you don't have to worry about creating any test data. Everything is already included in the initial
app and you can reference the data in every step. You can view and download the samples for all steps in the
Demo Kit at Ice Cream Machine.

 Note
Please keep in mind that we will not explain every single step of SAPUI5 application development, as we are
focusing on selected controls. We will not cover topics like data binding, navigation, or the MVC pattern. For
more information about these topics, see Essentials [page 691].

Creating an app

You can do this tutorial with SAP Web IDE (from SAPUI5 version 1.50) or with your own development
environment. Just download the initial version of the final app from the sample here, extract the archive, and
start coding.

For more information, check the following sections of the tutorials overview page (see Get Started: Setup,
Tutorials, and Demo Apps [page 38]):

● Downloading Code for a Tutorial Step [page 40]
● Adapting Code to Your Development Environment [page 40]
● App Development Using SAP Web IDE [page 44]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 641

https://sapui5.hana.ondemand.com/explored.html#/entity/sap.suite.ui.commons.tutorial.icecream/samples
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.suite.ui.commons.tutorial.icecream/samples

Step 2: KPI Tile and Chart Tile on the Start Page

In this step, we will create our start page with the KPI Tile (GenericTile with NumericContent) and Chart
Tile (GenericTile with MicroChart).

Preview

When you have completed this step, your start page will include the following tiles:

GenericTile with NumericContent

Let's start by creating the first GenericTile that shows the progress of the production process as percentage
data (compared to all production steps). By selecting the Production Process tile, the user can navigate to
another view to see the complete production process. We will implement this navigation in step 5.

You can view and download this step in the Demo Kit at Ice Cream Machine - Step 2 - KPI Tile and Chart Tile in
Start Page.

Startpage.view.xml

<mvc:View controllerName="sap.suite.ui.commons.demokit.tutorial.icecream.
02.controller.Startpage"
 xmlns:mvc="sap.ui.core.mvc"
 xmlns="sap.m"
 xmlns:layout="sap.ui.layout">
 <Page title="{i18n>title}">
 <layout:VerticalLayout class="sapUiResponsiveMargin">
 <Title
 titleStyle="H2"
 text="{i18n>startpageTilesGroupTitle}"
 class="sapUiTinyMarginBegin" />
 <layout:HorizontalLayout allowWrapping="true"> <GenericTile
 class="sapUiTinyMarginBegin sapUiTinyMarginTop"

642 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://sapui5.hana.ondemand.com/explored.html#/sample/sap.suite.ui.commons.tutorial.icecream.02/preview
http://sapui5.hana.ondemand.com/explored.html#/sample/sap.suite.ui.commons.tutorial.icecream.02/preview

 header="{i18n>startpagePFTileTitle}"
 subheader="{i18n>startpagePFTileSubTitle}">
 <tileContent>
 <TileContent>
 <content>
 <NumericContent
 scale="%"
 value="{
 path: 'process>/Nodes',
 formatter: '.getProgress'
 }"
 icon="sap-icon://factory" />
 </content>
 </TileContent>
 </tileContent>
 </GenericTile> </layout:HorizontalLayout>
 </layout:VerticalLayout>
 </Page> </mvc:View>

First, we are going to add a GenericTile with the header and subheader properties in order to display the
header and subheader . In the TileContent aggregation, the TileContent is added with a
NumericContent. This lets you display a scale or unit with the scale property. The value property of the
NumericContent displays the percentage value of the production progress by using a custom formatter. In
our case, it is .getProgress. You can use any icon from the SAPUI5 icon poolas the icon property.

We will create another GenericTile with NumericContent in a similar way, which will navigate to another
view. You can see customer reviews there. The number of reviews is displayed in this GenericTile. Navigation
to the reviews view is implemented in step 5.

Startpage.view.xml

mvc:View controllerName="sap.suite.ui.commons.demokit.tutorial.icecream.
02.controller.Startpage"
 xmlns:mvc="sap.ui.core.mvc"
 xmlns="sap.m"
 xmlns:layout="sap.ui.layout">
 <Page title="{i18n>title}">
 <layout:VerticalLayout class="sapUiResponsiveMargin">
 <Title
 titleStyle="H2"
 text="{i18n>startpageTilesGroupTitle}"
 class="sapUiTinyMarginBegin" />
 <layout:HorizontalLayout allowWrapping="true">
 ... <GenericTile
 class="sapUiTinyMarginBegin sapUiTinyMarginTop"
 header="{i18n>startpageUserReviewsTileTitle}">
 <tileContent>
 <TileContent>
 <content>
 <NumericContent
 value="{
 path: 'reviews>/UserReviews',
 formatter: '.getEntityCount'
 }"
 indicator="None"
 valueColor="Neutral" />
 </content>
 </TileContent>
 </tileContent>
 </GenericTile>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 643

https://sapui5.hana.ondemand.com/iconExplorer.html

 </layout:HorizontalLayout>
 </layout:VerticalLayout>
 </Page> </mvc:View>

In the NumericContent, we only want to display the number of user reviews. Since we don't want to show
indicators, we set the indicator property to None. We are choosing Neutral as a value for the valueColor
property to display a neutral semantic color.

Startpage.controller.js

sap.ui.define(["sap/ui/core/mvc/Controller"
], function(Controller) {
 "use strict";
 return Controller.extend("sap.suite.ui.commons.demokit.tutorial.icecream.
02.controller.Startpage", {
 ... getProgress: function(aNodes) {
 if (!aNodes || aNodes.length === 0) {
 return 0;
 }
 var iSum = 0;
 for (var i = 0; i < aNodes.length; i++) {
 iSum += aNodes[i].state === "Positive";
 }
 var fPercent = (iSum / aNodes.length) * 100;
 return fPercent.toFixed(0);
 },
 getEntityCount: function(entities) {
 return entities && entities.length || 0;
 } }); });

The getProgress function is the formatter function that belongs to the value binding of the NumericContent in
the first GenericTile. It is used to return the ratio of positive process steps as compared to the complete
number of process steps.

To get the number of user reviews in another GenericTile, we will add a new formatter called .getEntityCount.
This formatter returns the number of entities found in the reviews JSON model.

GenericTile with BulletMicroChart

In the second tile on the start page, you can find an overview of the project expenses. We will use the
BulletMicroChart control for this overview.

Startpage.view.xml

mvc:View controllerName="sap.suite.ui.commons.demokit.tutorial.icecream.
02.controller.Startpage"
 xmlns:mvc="sap.ui.core.mvc"
 xmlns="sap.m"
 xmlns:layout="sap.ui.layout" xmlns:microchart="sap.suite.ui.microchart"> <Page title="{i18n>title}">
 <layout:VerticalLayout class="sapUiResponsiveMargin">

644 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 <Title
 titleStyle="H2"
 text="{i18n>startpageTilesGroupTitle}"
 class="sapUiTinyMarginBegin" />
 <layout:HorizontalLayout allowWrapping="true">
 ... <GenericTile
 class="sapUiTinyMarginBegin sapUiTinyMarginTop"
 header="{
 parts: [
 'i18n>startpageCCTileTitle',
 'business>/year',
 'business>/currency'
],
 formatter: '.formatMessage'
 }">
 <tileContent>
 <TileContent>
 <content>
 <microchart:BulletMicroChart
 size="Responsive"
 targetValue="{business>/plannedExpenses}"
 targetValueLabel="{
 path: 'business>/plannedExpenses',
 formatter: '.formatNumber'
 }"
 actualValueLabel="{
 path: 'business>/expenses',
 formatter: '.formatNumber'
 }"
 minValue="0">
 <microchart:actual>
 <microchart:BulletMicroChartData
 value="{business>/expenses}"
 color="Critical" />
 </microchart:actual>
 <microchart:thresholds>
 <microchart:BulletMicroChartData
 value="{business>/expensesCritical}"
 color="Critical" />
 <microchart:BulletMicroChartData
 value="{business>/budget}"
 color="Error" />
 </microchart:thresholds>
 </microchart:BulletMicroChart>
 </content>
 </TileContent>
 </tileContent>
 </GenericTile> </layout:HorizontalLayout>
 </VBox>
 </Page> </mvc:View>

We are adding a new GenericTile. Here, we are setting only the header property of the tile because we don't
need a subheader. We want to display only the Expenses overview. The BulletMicroChart is in the
TileContent. Do not forget to add a namespace for the sap.suite.ui.microchart library in the *.view.xml.

We want to show our business data in the BulletMicroChart. To do so, we are adding the
BulletMicroChartData element to the actual aggregation of the chart control. This data element has two
properties:

1. The value property that is bound to a property in the data model
2. The color property that is set to Critical to show when the expenses are about to exceed the limit. This

property shows the amount of money already spent on this project.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 645

Similarly, we can add thresholds to the chart to show when our expenses become critical but still manageable.
For expenses that are too high for the company, the Error color applies. This time, the value properties are
directly bound to the properties in the data model. No formatting is needed as the values are used only by the
chart and are not displayed directly.

Finally, we will add a targetValue to our chart to display an indicator that shows the planned spending.

Startpage.controller.js

sap.ui.define(["sap/ui/core/mvc/Controller", "sap/ui/core/format/NumberFormat", "sap/base/strings/formatMessage"], function(Controller, NumberFormat) { "use strict";
 return Controller.extend("sap.suite.ui.commons.demokit.tutorial.icecream.
02.controller.Startpage", {
 ... formatNumber: function(value) {
 var oFloatFormatter = NumberFormat.getFloatInstance({
 style: "short",
 decimals: 1
 });
 return oFloatFormatter.format(value);
 } });
});

Since the production of our ice cream has already cost us a lot of money and the monetary values are very
high, we need to provide custom data labels in order to have a neat chart design. The custom data labels can
be added via the actualValueLabel and targetValueLabel properties that are set on the BulletMicroChart. In
both instances, we use data binding with a custom formatter function from the Startpage.controller.js file to
format the values using a standard SAPUI5 number formatter.

Step 3: Launch Tile and Slide Tile

In this step, we will create a new Launch Tile (GenericTile with ImageContent) and a SlideTile.

Preview

646 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Initializing the models

To configure the next GenericTiles, you need to create models that contain news data. You can find the
source code of the model data in /model/data/News.json.

You can view and download this step in the Demo Kit at Ice Cream Machine - Step 3 - Launch Tile and Slide Tile.

Startpage.controller.js

sap.ui.define(["sap/ui/core/mvc/Controller", "sap/ui/model/json/JSONModel", "sap/ui/core/format/NumberFormat",
 "sap/base/strings/formatMessage"], function(jQuery, Controller, JSONModel, NumberFormat) { "use strict";
 return Controller.extend("sap.suite.ui.commons.demokit.tutorial.icecream.
03.controller.Startpage", { onInit: function() {
 var sDataPath = sap.ui.require.toUrl("sap/suite/ui/commons/
demokit/tutorial/icecream/03/model/data") + "/News.json";
 var oModel = new JSONModel(sDataPath);
 this.getView().setModel(oModel, "news");
 } ...
 }); });

You instantiate the models in the onInit hook function. They are then available when needed. If you choose a
different resource root in your index.html file, keep in mind that you have to adapt the module path to the *.json
files whenever you load the file into a controller.

GenericTile with ImageContent

With the ImageContent control, you can create the second tile that contains only one image. With that tile, you
can also navigate to another view (we will explain this implementation later).

Startpage.view.xml

<mvc:View controllerName="sap.suite.ui.commons.demokit.tutorial.icecream.
03.controller.Startpage"
 xmlns:mvc="sap.ui.core.mvc"
 xmlns="sap.m"
 xmlns:layout="sap.ui.layout"
 xmlns:microchart="sap.suite.ui.microchart">
 <Page title="{i18n>title}">
 <layout:VerticalLayout class="sapUiResponsiveMargin">
 <Title
 titleStyle="H2"
 text="{i18n>startpageTilesGroupTitle}"
 class="sapUiTinyMarginBegin" />
 <layout:HorizontalLayout allowWrapping="true">
 ... <GenericTile
 class="sapUiTinyMarginBegin sapUiTinyMarginTop"
 header="{i18n>startpageTestResultsTileTitle}"
 subheader="{i18n>startpageTestResultsTileSubTitle}">

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 647

http://sapui5.hana.ondemand.com/explored.html#/sample/sap.suite.ui.commons.tutorial.icecream.03/preview

 <tileContent>
 <TileContent>
 <content>
 <ImageContent src="sap-icon://temperature" />
 </content>
 </TileContent>
 </tileContent>
 </GenericTile>
 </layout:HorizontalLayout>
 </layout:VerticalLayout>
 </Page> </mvc:View>

Here, the TileContent has only one ImageContent with an icon set in the src property. If you like, you can
choose another icon or image.

SlideTile with Two GenericTiles

With the SlideTile, we want to display news about the ice cream machine as well as the user reviews.

Startpage.view.xml
 <mvc:View
 controllerName="sap.suite.ui.commons.demokit.tutorial.icecream.
03.controller.Startpage"
 xmlns:mvc="sap.ui.core.mvc"
 xmlns="sap.m"
 xmlns:layout="sap.ui.layout"
 xmlns:microchart="sap.suite.ui.microchart">
 <Page title="{i18n>title}">
 <layout:VerticalLayout class="sapUiResponsiveMargin">
 <Title
 titleStyle="H2"
 text="{i18n>startpageTilesGroupTitle}"
 class="sapUiTinyMarginBegin" />
 <layout:HorizontalLayout allowWrapping="true">
 .. <SlideTile
 class="sapUiTinyMarginBegin sapUiTinyMarginTop"
 tiles="{news>/News}">
 <GenericTile
 backgroundImage="{news>image}"
 state="{news>state}"
 frameType="TwoByOne">
 <tileContent>
 <TileContent
 footer="{
 path: 'news>date',
 formatter: '.formatJSONDate'
 }">
 <content>
 <NewsContent
 contentText="{news>content}"
 subheader="{news>subheader}">
 </NewsContent>
 </content>
 </TileContent>
 </tileContent>
 </GenericTile>
 </SlideTile> </layout:HorizontalLayout>

648 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 </layout:VerticalLayout>
 </Page> </mvc:View>

First of all, the SlideTile has a wider frame type than the standard GenericTile. The default value for the
frameType property of GenericTile is OneByOne. This means that it has the standard width and height. The
standard frame type of the SlideTile is TwoByOne which means that the tile is twice as wide as the default
one. The data of the news model is bound via the tiles aggregation and uses the provided GenericTile
template. All properties in the GenericTile are bound to the news model. The image you've chosen for the
backgroundImage property should already have the proper size. As you have all the images you need as part of
this tutorial, you only need to refer to the respective image in the model.

With the NewsContent, we can put text on top of the background image in the correct layout. In the
NewsContent, you set the title with the contentText property. You set the subtitle using the subheader property.

The date field in the news model is not in a user-friendly format. This is why we are adding a new formatter that
converts the date value.

Startpage.controller.js
 sap.ui.define([
 "sap/ui/core/mvc/Controller",
 "sap/ui/model/json/JSONModel",
 "sap/ui/core/format/NumberFormat",
 "sap/base/strings/formatMessage"
], function(Controller, JSONModel, NumberFormat) {
 "use strict";
 return Controller.extend("sap.suite.ui.commons.demokit.tutorial.icecream.
03.controller.Startpage", {
 ... formatJSONDate: function(date) {
 var oDate = new Date(Date.parse(date));
 return oDate.toLocaleDateString();
 }
 ...
 }); });

In the controller, we need to add the implementation of the formatJSONDate formatter function. Based on the
language settings of your browser or local machine, the JSON date string is converted to a string that
corresponds to the time and date settings.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 649

Step 4: Generic Tiles in Line Mode

In this step, we will create two GenericTiles in line mode.

Preview

Two GenericTiles in LineMode

There are tiles that you don't use as often as other tiles. To save space, you can reduce the tiles and only show
the header and subheader. Use LineMode as the mode property of the GenericTile.

You can view and download this step in the Demo Kit at Ice Cream Machine - Step 4 - Generic Tiles in Line
Mode.

Startpage.view.xml
 <mvc:View
 controllerName="sap.suite.ui.commons.demokit.tutorial.icecream.
04.controller.Startpage"
 xmlns:mvc="sap.ui.core.mvc"
 xmlns="sap.m"
 xmlns:layout="sap.ui.layout"
 xmlns:microchart="sap.suite.ui.microchart">
 <Page title="{i18n>title}">
 <layout:VerticalLayout class="sapUiResponsiveMargin">
 ... <Title
 titleStyle="H2"
 text="{i18n>startpageLinksGroupTitle}"
 class="sapUiTinyMarginBegin sapUiMediumMarginTop" />
 <layout:HorizontalLayout allowWrapping="true">
 <GenericTile
 header="{i18n>startpageLineTile1Title}"
 subheader="{i18n>startpageLineTile1SubTitle}"
 mode="LineMode"
 class="sapUiTinyMarginBegin" />
 <GenericTile
 header="{i18n>startpageLineTile2Title}"
 mode="LineMode"
 class="sapUiTinyMarginBegin" />
 </layout:HorizontalLayout> </layout:VerticalLayout>
 </Page> </mvc:View>

650 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://sapui5.hana.ondemand.com/explored.html#/sample/sap.suite.ui.commons.tutorial.icecream.04/preview
http://sapui5.hana.ondemand.com/explored.html#/sample/sap.suite.ui.commons.tutorial.icecream.04/preview

We need to create a new layout container for the tiles that we want to show. You do this to separate the two tile
types and their alignment. These two tiles can be created in a similar way as theGenericTiles, except that
the mode property must be set to LineMode.

Step 5: Navigating from the Start Page to Other Pages

In this step, we will show how to set up navigation using the standard routing pattern.

First, please create three empty views and the corresponding controllers:

● ProcessFlow.view.xml
● ChartContainer.view.xml
● Reviews.view.xml

Startpage.view.xml

You can view and download this step in the Demo Kit at Ice Cream Machine - Step 5 - Navigating from the Start
Page to Other Pages.

 <mvc:View
 ...
 <Page title="{i18n>title}">
 <layout:VerticalLayout class="sapUiResponsiveMargin">
 ...
 <layout:HorizontalLayout allowWrapping="true">
 <GenericTile
 class="sapUiTinyMarginBegin sapUiTinyMarginTop"
 header="{i18n>startpagePFTileTitle}"
 subheader="{i18n>startpagePFTileSubTitle}" press=".onNavToProcessFlow"> <tileContent>
 ...
 </tileContent>
 </GenericTile>
 ...
 <GenericTile
 class="sapUiTinyMarginBegin sapUiTinyMarginTop"
 header="{i18n>startpageUserReviewsTileTitle}" press=".onNavToReviews"> <tileContent>
 ...
 </tileContent>
 </GenericTile>
 <GenericTile
 class="sapUiTinyMarginBegin sapUiTinyMarginTop"
 header="{i18n>startpageTestResultsTileTitle}"
 subheader="{i18n>startpageTestResultsTileSubTitle}" press=".onNavToChartContainer"> <tileContent>
 ...
 </tileContent>
 </GenericTile>
 ...
 </layout:HorizontalLayout>
 ...
 </layout:VerticalLayout>
 </Page> </mvc:View>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 651

https://help.sap.com/viewer/b4b7cba328bc480d9b373c7da9335537/2.08/en-US/727bc3f650e24af7932d4fc9a6695a16.html
http://sapui5.hana.ondemand.com/explored.html#/sample/sap.suite.ui.commons.tutorial.icecream.05/preview
http://sapui5.hana.ondemand.com/explored.html#/sample/sap.suite.ui.commons.tutorial.icecream.05/preview

We will add the press event to the GenericTiles with the Production Process, User Reviews, and Quality
Control titles. This is to trigger navigation with a function. The press event function will be implemented in the
controller file.

Startpage.controller.js

 sap.ui.define([
 "sap/ui/core/mvc/Controller",
 "sap/ui/model/json/JSONModel",
 "sap/ui/core/format/NumberFormat",
 "sap/base/strings/formatMessage"
], function(Controller, JSONModel, NumberFormat) {
 "use strict";
 return Controller.extend("sap.suite.ui.commons.demokit.tutorial.icecream.
05.controller.Startpage", {
 ... onNavToProcessFlow: function() {
 this.getRouter().navTo("processFlow");
 },

 onNavToChartContainer: function() {
 this.getRouter().navTo("chartContainer");
 },
 onNavToReviews: function() {
 this.getRouter().navTo("reviews");
 },

 getRouter: function() {
 return this.getOwnerComponent().getRouter();
 } });

getRouter returns the router instance of the component.

onNavToProcessFlow is called when the user clicks on the first tile. It triggers the navigation to the view with
the ProcessFlow.

onNavToChartContainer is called when the user clicks on the fourth tile. It triggers the navigation to the view
with the ChartContainer.

onNavToReviews is called when the user clicks the third tile. It triggers the navigation to the view with the
Timeline.

Step 6: Chart Container

In this step, we will use the ChartContainer control to display information in a detailed view.

In the previous steps, we created a start page with embedded tiles. We prepared the routing configuration for
navigation from the Quality Control tile to another view.

In the Quality Control view, we want to display the temperatures needed for different flavors and the ideal
temperature for getting the best ice cream with a smooth consistency. We will use a chart to visualize the data
and a table to get a detailed view with the help of the ChartContainer control.

652 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Preview

Chart Content

Table Content

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 653

ChartContainer

The ChartContainer control manages various data views in one container. The single controls (for example,
VizFrame and Tables) are embedded in the ChartContainerContent controls that were added to the content
aggregation of the ChartContainer.

You can view and download this step in the Demo Kit at Ice Cream Machine - Step 6 - Chart Container.

ChartContainer.view.xml

mvc:View xmlns:mvc="sap.ui.core.mvc"
 xmlns:suite="sap.suite.ui.commons"
 xmlns:core="sap.ui.core"
 xmlns="sap.m"
 xmlns:l="sap.ui.layout"
 controllerName="sap.suite.ui.commons.demokit.tutorial.icecream.
06.controller.ChartContainer">
 <Page
 title="{i18n>chartContainerPageTitle}" showNavButton="true" navButtonPress=".onNavButtonPressed" backgroundDesign="Solid">
 <content>
 <l:Grid defaultSpan="L12 M12 S12" class="sapUiResponsiveMargin"
vSpacing="0" hSpacing="0"> <suite:ChartContainer
 title="{
 parts: [
 'i18n>chartContainerBulletChartTitle',
 'business>/temperatureUnit'
],
 formatter: '.formatMessage'
 }">
 <suite:ChartContainerContent
 icon="sap-icon://vertical-bullet-chart"
 title="{i18n>chartContainerBulletChartContentTitle}">
 <suite:content>
 <core:Fragment

fragmentName="sap.suite.ui.commons.demokit.tutorial.icecream.
06.fragment.VizChart"
 type="JS" />
 </suite:content>
 </suite:ChartContainerContent>
 </suite:ChartContainer> </l:Grid>
 </content>
 </Page> </mvc:View>

In the toolbar, there is a corresponding button for each ChartContainerContent from which you can select
the content. You can have an icon on the button if you set the icon property of the ChartContainerContent
to the respective SAPUI5 icon URI. The title property of the ChartContainerContent determines the tooltip
text for the button.

Since VizFrame is not part of this tutorial, we have provided the VizChart.fragment.js JavaScript file in
the folder fragment that can be used without modifications.

ChartContainer.controller.js

654 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://sapui5.hana.ondemand.com/explored.html#/sample/sap.suite.ui.commons.tutorial.icecream.06/preview

sap.ui.define([
 "sap/ui/core/mvc/Controller"
], function(Controller) {
 "use strict";
 return Controller.extend("sap.suite.ui.commons.demokit.tutorial.icecream.
06.controller.ChartContainer", { onNavButtonPressed: function() {
 var oRouter = this.getOwnerComponent().getRouter();
 oRouter.navTo("home");
 } }); });

In the ChartContainer.view.xml, we will add the backward navigation with the showNavButton and
navButtonPress properties. The function that is referenced by the navButtonPress event retrieves the
router of the component and navigates to the home route as specified in manifest.json.

Table with details

In the next step, we are going to display detailed information about the data shown in the chart. We will be using
a table in which each value is displayed, so that no information is lost.

ChartContainer.view.xml
 mvc:View
 xmlns:mvc="sap.ui.core.mvc"
 xmlns:suite="sap.suite.ui.commons"
 xmlns:core="sap.ui.core"
 xmlns="sap.m"
 xmlns:l="sap.ui.layout"
 controllerName="sap.suite.ui.commons.demokit.tutorial.icecream.
06.controller.ChartContainer">
 <Page
 title="{i18n>chartContainerPageTitle}"
 showNavButton="true"
 navButtonPress=".onNavButtonPressed"
 backgroundDesign="Solid">
 <content>
 <l:Grid defaultSpan="L12 M12 S12" class="sapUiResponsiveMargin"
vSpacing="0" hSpacing="0">
 <suite:ChartContainer
 title="{
 parts: [
 'i18n>chartContainerBulletChartTitle',
 'business>/temperatureUnit'
],
 formatter: '.formatMessage'
 }">
 ... <suite:ChartContainerContent
 icon="sap-icon://table-chart"
 title="{i18n>chartContainerTableContentTitle}">
 <suite:content>
 <Table items="{/Temperatures}">
 <columns>
 <Column>
 <Text
text="{i18n>chartContainerIceCreamId}" />
 </Column>
 <Column>
 <Text

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 655

text="{i18n>chartContainerTemperature}" />
 </Column>
 <Column>
 <Text
text="{i18n>chartContainerTargetTemperature}" />
 </Column>
 </columns>
 <items>
 <ColumnListItem>
 <cells>
 <Text text="{id}" />
 <Text text="{temperature}" />
 <Text text="{target}" />
 </cells>
 </ColumnListItem>
 </items>
 </Table>
 </suite:content>
 </suite:ChartContainerContent> </suite:ChartContainer>
 </l:Grid>
 </content>
 </Page> </mvc:View>

We are going to create another ChartContainerContent with a table. This table contains three columns that
were created with the Column element with a text that will be shown in the header. The values were created
with the ColumnListItem that has a text control with a bound text property for each cell.

Step 7: Header Container and Radial Micro Chart

In this step, we use the HeaderContainer and RadialMicroChart.

In the last steps, we have implemented the user interaction handling to allow navigation from the Production
Process tile to the ProcessFlow view. With the Production Process tile, we only have an aggregated view of
the progress of the production process. Therefore, we want to provide a detailed overview of the current
production status in this step. We will add the production flow, the states of the manufacturing steps, their
dependencies, and critical steps if necessary.

First, we add the ProcessFlow control to this view, so that we see the current status of the production
process. The production process consists of six steps represented by the following
ProcessFlowLaneHeaders:

● Order
● Manufacturing
● Assembly
● Marketing
● Delivery
● Payment

The ProcessFlowLaneHeaders use icons that stand for the meaning of the lanes. The lane headers
aggregate the status of the nodes that are assigned to a particular lane. Each lane consists of
ProcessFlowNodes that describe an activity in this production step. The structure of the nodes and their
relationships for ProcessFlow are defined in the ProcessFlowData.json file.

656 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

The header area of the ProcessFlow should contain a HeaderContainer with four micro charts that provide
the following information:

● Share of Own Production (your own production rate)
● Delivery Time Comparison in h (comparison of suppliers' delivery time)
● Production Time in h (comparison of expected and current production times)
● Fill Level in lb (displays the fill level changes over time)

Preview of the final ProcessFlow

This is the final view of this page:

Preview of this step

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 657

HeaderContainer with RadialMicroChart

In the header area, we can display additional values for the business logic of the production process. We can
use charts to visualize the information. To distinguish this part from the ProcessFlow, we use the ObjectHeader
in the header area. We want to add further charts in the following steps and therefore, we create an instance of
the HeaderContainer that contains our charts.

The first chart contains the share of the parts being produced by us that should be included in the final
product. This value is already available in the data model. You can visualize the percentage value by using a
RadialMicroChart. We first create a HeaderContainer with a single RadialMicroChart.

ProcessFlow.view.xml
You can view and download this step in the Demo Kit at Ice Cream Machine - Step 7 - Header Container and
Radial Micro Chart.

<mvc:View xmlns:mvc="sap.ui.core.mvc"
 xmlns="sap.suite.ui.commons"
 xmlns:m="sap.m"
 xmlns:mc="sap.suite.ui.microchart"
 controllerName="sap.suite.ui.commons.demokit.tutorial.icecream.
07.controller.ProcessFlow">
 <m:Page
 title="{i18n>processFlowTitle}" showNavButton="true"
 navButtonPress=".onNavButtonPressed" backgroundDesign="Solid">
 <m:content>
 <m:ObjectHeader
 responsive="true"
 title="{
 parts: [
 'i18n>processFlowChartsTitle',
 'business>/year'
],
 formatter: '.formatMessage'
 }"> <m:headerContainer>
 <m:HeaderContainer
 scrollStep="200"
 scrollTime="500"
 showDividers="true"
 class="sapUiSmallMargin">
 <m:FlexBox
 width="12rem"
 height="10rem"
 alignItems="Center"
 justifyContent="Center"
 direction="Column">
 <m:Title
 text="{i18n>processFlowChartsShareOwnProduction}"
 class="sapUiSmallMargin"/>
 <m:FlexBox width="6rem" height="6rem">
 <mc:RadialMicroChart percentage="{business>/
shareOwnProduction}"/>
 </m:FlexBox>
 </m:FlexBox>
 </m:HeaderContainer> </m:headerContainer>
 </m:ObjectHeader>
 </m:content>
 </m:Page>

658 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://sapui5.hana.ondemand.com/explored.html#/sample/sap.suite.ui.commons.tutorial.icecream.07/preview
http://sapui5.hana.ondemand.com/explored.html#/sample/sap.suite.ui.commons.tutorial.icecream.07/preview

</mvc:View>

The HeaderContainer has scrollStep and scrollTime properties that will be used to change the scroll step and
the animation speed of the HeaderContainer. We keep the showDividers default value as we want to split
each chart in the HeaderContainer.

The FlexBox is used as a container for the Title and the inner FlexBox for the RadialMicroChart and this
leads to the correct sizing. To visualize the share of your own production, the value should be set in the
percentage property of the RadialMicroChart. With the Size enumeration, you can use the chart in one of
the fixed sizes. If not set, the default Responsive size is used and the width and height will adapt to the
surrounding container. We set the width and height of the FlexBox instance.

ProcessFlow.controller.js

 sap.ui.define([
 "sap/ui/core/mvc/Controller",
 "sap/base/strings/formatMessage"
], function (Controller, formatMessage) {
 "use strict";
 return Controller.extend("sap.suite.ui.commons.demokit.tutorial.icecream.
07.controller.ProcessFlow", {
 formatMessage: formatMessage, onNavButtonPressed: function () {
 this.getOwnerComponent().getRouter().navTo("home");
 } }); });

When the user clicks on the Back button, onNavButtonPressed is called and this triggers the navigation back to
the start page view.

Step 8: Comparison Micro Chart

In this step, we will create the ComparisonMicroChart on the Production Process page.

Preview

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 659

ComparisonMicroChart

We would like to include information about our suppliers' delivery times in order to compare them. We are
going to use the ComparisonMicroChart to visualize the comparison of several values.

ProcessFlow.view.xml
You can view and download this step in the Demo Kit at Ice Cream Machine - Step 8 - Comparison Micro Chart.

mvc:View ...
 <m:headerContainer>
 <m:HeaderContainer
 scrollStep="200"
 scrollTime="500"
 showDividers="true"
 class="sapUiSmallMargin">
 ... <m:FlexBox
 width="16rem"
 height="10rem"
 alignItems="Center"
 justifyContent="Center"
 direction="Column">
 <m:Title
 text="{
 parts: [
 'i18n>processFlowChartsDeliveryTimeComparison',
 'suppliers>/timeMeasure'
],
 formatter: '.formatMessage'
 }"
 class="sapUiSmallMargin" />
 <m:FlexBox width="16rem" height="6rem" renderType="Bare">
 <mc:ComparisonMicroChart
 size="Responsive"
 press=".press"
 data="{suppliers>/Suppliers}">
 <mc:data>
 <mc:ComparisonMicroChartData
 title="{suppliers>id}"
 value="{suppliers>deliveryTime}"
 displayValue="{suppliers>deliveryTime}"
 color="{suppliers>deliveryTimeSemantics}" />
 </mc:data>
 </mc:ComparisonMicroChart>
 </m:FlexBox>
 </m:FlexBox> </m:HeaderContainer>
 </m:headerContainer> </mvc:View>

The structure that surrounds the ComparisonMicroChart is similar to the structure we used for the
RadialMicroChart. The chart dimensions are inherited from FlexBox because the isResponsible property is
being used. The internal structure is different because the ComparisonMicroChart contains an aggregation
of the ComparisonMicroChartData items. Each item is responsible for a particular line in the chart.

660 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://sapui5.hana.ondemand.com/explored.html#/sample/sap.suite.ui.commons.tutorial.icecream.08/preview

Step 9: Delta Micro Chart

In this step, we will create the DeltaMicroChart on the Production Process page.

Preview

DeltaMicroChart

We are going to add a chart to visualize the difference between the time required for production compared with
the estimated time. You use the DeltaMicroChart to compare two separate values.

ProcessFlow.view.xml
You can view and download this step in the Demo Kit at Ice Cream Machine - Step 9 - Delta Micro Chart.

mvc:View ...
 <m:headerContainer>
 <m:HeaderContainer
 scrollStep="200"
 scrollTime="500"
 showDividers="true"
 class="sapUiSmallMargin">
 ... <m:FlexBox
 width="12rem"
 height="10rem"
 alignItems="Center"
 justifyContent="Center"
 direction="Column">
 <m:Title
 text="{
 parts: [
 'i18n>processFlowChartsProductionTime',
 'business>/timeMeasure'
],
 formatter: '.formatMessage'
 }"
 class="sapUiSmallMargin" />
 <m:FlexBox width="12rem" height="6rem" renderType="Bare">
 <mc:DeltaMicroChart
 size="Responsive"
 color="{business>/
productionTimeComparisonCriticality}"
 value1="{business>/expectedProductionTime}"

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 661

http://sapui5.hana.ondemand.com/explored.html#/sample/sap.suite.ui.commons.tutorial.icecream.09/preview

 value2="{business>/currentProductionTime}"
 title1="{i18n>processFlowChartsExpected}"
 title2="{i18n>processFlowChartsCurrent}"
 displayValue1="{business>/expectedProductionTime}"
 displayValue2="{business>/currentProductionTime}"
 deltaDisplayValue="{
 parts: [
 'business>/expectedProductionTime',
 'business>/currentProductionTime'
],
 formatter: '.getValuesDelta'
 }" />
 </m:FlexBox>
 </m:FlexBox> </m:HeaderContainer>
 </m:headerContainer>
 ... </mvc:View>

The DeltaMicroChart is used in the responsive mode embedded in the Flexbox that sets the dimensions. We
are simply using the respective values from the data model for binding the displayValue1 and displayValue2
properties. For the deltaDisplayValue, we need to perform an advanced calculation based on the values before
we can set them as a property. This is why we will be using the .getValuesDelta formatter function.

ProcessFlow.controller.js
 sap.ui.define([
 "sap/ui/core/mvc/Controller",
 "sap/base/strings/formatMessage"
], function(Controller) {
 "use strict";
 return Controller.extend("sap.suite.ui.commons.demokit.tutorial.icecream.
09.controller.ProcessFlow", {
 ... getValuesDelta: function(fFirstValue, fSecondValue) {
 return fSecondValue - fFirstValue;
 } }); });

This formatter takes the respective values and returns a string that will then be set as a property of the
DeltaMicroChart.

Step 10: Line Micro Chart
In this step, we will create the LineMicroChart on the Production Process page.

Preview

662 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

LineMicroChart

With the LineMicroChart, we want to visualize how the fill level is going to change during the course of the
production process and we want to determine the threshold values that fall below a specified level.

ProcessFlow.view.xml
You can view and download this step in the Demo Kit at Ice Cream Machine - Step 10 - Line Micro Chart.

mvc:View ...
 <m:headerContainer>
 <m:HeaderContainer
 scrollStep="200"
 scrollTime="500"
 showDividers="true"
 class="sapUiSmallMargin">
 ... <m:FlexBox
 width="12rem"
 height="10rem"
 alignItems="Center"
 justifyContent="Center"
 direction="Column">
 <m:Title
 text="{
 parts: [
 'i18n>processFlowChartsFillLevel',
 'business>/fillLevel/measure'
],
 formatter: '.formatMessage'
 }"
 class="sapUiSmallMargin" />
 <m:FlexBox width="12rem" height="6rem" renderType="Bare">
 <mc:LineMicroChart
 size="Responsive"
 threshold="{business>/fillLevel/threshold}"
 leftTopLabel="{business>/fillLevel/valueBegin}"
 leftBottomLabel="{business>/fillLevel/timeBegin}"
 rightTopLabel="{business>/fillLevel/valueEnd}"
 rightBottomLabel="{business>/fillLevel/timeEnd}"
 color="{business>/fillLevel/color}"
 showPoints="true"
 points="{
 path: 'business>/fillLevel/timeSeries',
 templateShareable: true
 }">
 <mc:LineMicroChartPoint
 x="{business>time}"
 y="{business>level}" />
 </mc:LineMicroChart>
 </m:FlexBox>
 </m:FlexBox> </m:HeaderContainer>
 </m:headerContainer>
 ... </mvc:View>

You can find the information about the fill levels in the points aggregation of the LineMicroChart control.
Property x of the LineMicroChartPoint contains the dimension of the chart and the time. Property y
contains the fill level during the production process. The threshold property separates the records by their fill
level into an upper and a lower layer. With the color property, we can apply a different color to each layer,
depending on the specified threshold.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 663

http://sapui5.hana.ondemand.com/explored.html#/sample/sap.suite.ui.commons.tutorial.icecream.10/preview

Step 11: Process Flow

In this step, we will create the ProcessFlow on the Production Process page.

Preview

ProcessFlow

The ProcessFlow in the center of the page will be used to visualize the current state of the production
process. Each production step is represented by a lane. The colors of the state segments of
ProcessFlowHeader are calculated internally according to a ProcessFlowNode of a lane. The following
semantic colors are used:

● Grey for Neutral
● Green for Good
● Orange for Critical
● Red for Error.

The Assembly lane in the middle is a merged lane that consists of nodes that are bound together by a parent-
child relation. As a result, the usual width will be doubled.

664 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

The ProcessFlowNode elements Spare parts: Purchased and Delivery are highlighted (refer to the focused
property on the API). They are of high interest because their states are critical.

ProcessFlow.view.xml

You can view and download this step in the Demo Kit at Process Flow.

<mvc:View ...
 <m:ObjectHeader
 ...
 <m:headerContainer>
 <m:HeaderContainer
 ...
 </m:HeaderContainer>
 </m:headerContainer>
 </m:ObjectHeader> <m:Panel headerText="{i18n>processFlowProcessTitle}">
 <ProcessFlow
 id="processflow1"
 scrollable="false"
 nodes="{process>/Nodes}"
 lanes="{process>/Lanes}"
 nodePress=".onNodePressed">
 <nodes>
 <ProcessFlowNode
 laneId="{process>lane}"
 nodeId="{process>id}"
 title="{process>title}"
 titleAbbreviation="{process>titleAbbreviation}"
 isTitleClickable="{process>isTitleClickable}"
 children="{process>children}"
 state="{process>state}"
 stateText="{process>stateText}"
 texts="{process>texts}"
 highlighted="{process>highlighted}"
 focused="{process>focused}" />
 </nodes>
 <lanes>
 <ProcessFlowLaneHeader
 laneId="{process>id}"
 iconSrc="{process>icon}"
 text="{process>label}"
 position="{process>position}" />
 </lanes>
 </ProcessFlow>
 </m:Panel> ... </mvc:View>

First, we are going to add a ProcessFlow control to our view. By setting the scrollable property to false, the
ProcessFlow will use the default browser scrolling.

Next, we will bind the nodes and lanes aggregations. Templates will be added to the corresponding
aggregations (nodes and lanes).

The template for ProcessFlowNodes is created using the following properties:

● The laneId that is a unique identifier for the lane the node belongs to.
● The nodeId that is the current node identifier.
● The child property that defines the parent-child relation to other nodes using their nodeIds.
● The state property that determines the property of the node and influences the aggregated state of the

lane directly.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 665

http://sapui5.hana.ondemand.com/explored.html#/sample/sap.suite.ui.commons.tutorial.icecream.11/preview

The next template for the lanes will be created using a ProcessFlowLaneHeader with a laneId that we already
know from the ProcessFlowNode. The iconSrc property of the ProcessFlowLaneHeader accepts any icon.
The text below the state of the ProcessFlowLaneHeader is set with the text property of the lane header. The
order of the lanes is defined by the position property of the lane header.

ProcessFlow.controller.js

sap.ui.define(["sap/ui/core/mvc/Controller", "sap/m/MessageToast", "sap/base/strings/formatMessage"
], function(Controller, MessageToast) {
 "use strict";
 return Controller.extend("sap.suite.ui.commons.demokit.tutorial.icecream.
11.controller.ProcessFlow", {
 ... onNodePressed: function(oEvent) {
 var sItemTitle = oEvent.getParameters().getTitle();

MessageToast.show(this.getResourceBundle().getText("processFlowNodeClickedMessage
", [sItemTitle]));
 },

 getResourceBundle: function() {
 return this.getOwnerComponent().getModel("i18n").getResourceBundle();
 }
 }); });

The onNodePressed event listener is set on the onNode event of the ProcessFlow. It is called when the user
clicks on the node. The title text of the node will be displayed in the message toast.

Step 12: Timeline

Use this step to learn how to set up a page where your customers can post their reviews of the ice cream
machine.

In this step, we will use the Timeline control that allows the users to write and submit reviews. The reviews are
arranged in chronological order along the timeline axis.

You can view and download this step in the Demo Kit at Ice Cream Machine - Step 12 - Timeline.

666 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://sapui5.hana.ondemand.com/explored.html#/sample/sap.suite.ui.commons.tutorial.icecream.12/preview

Preview

Setting Up a Reviews Page with a Timeline

To perform this step, you need one of the views you created in step 5, Reviews.view.xml, as well as the
controller you defined for this view, Reviews.controller.js.

Reviews.view.xml

In the Reviews.view.xml view, add a Timeline element that will display a timeline with customer reviews.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 667

You may also need to add a page and a toolbar if the view does not include them yet.

<mvc:View xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc"
 xmlns:suite="sap.suite.ui.commons"
 controllerName="sap.suite.ui.commons.demokit.tutorial.icecream.
12.controller.Reviews"> <Page
 title="{i18n>timelineTitle}"
 showNavButton="true"
 navButtonPress=".onNavButtonPressed"
 backgroundDesign="Solid">
 <Toolbar>
 <Label text="{i18n>layoutSwitchLabel}"/>
 <Switch change=".onHorizontalSwitchChange"/>
 </Toolbar>
 <suite:Timeline
 id="timeline"
 enableDoubleSided="true"
 growing="false"
 groupBy="dateTime"
 lazyLoading="true"
 content="{reviews>/UserReviews}"
 textHeight="automatic"
 showHeaderBar="false">
 <suite:TimelineItem
 dateTime="{
 path: 'reviews>date',
 formatter: '.formatDateTime'
 }"
 userPicture="{=!${reviews>template} ? ${reviews>userPic} : null}"
 title="{=!${reviews>template} ? ${reviews>user} : null}"
 text="{=!${reviews>template} ? ${reviews>quote} : null}"
 filterValue="{=!${reviews>template} ? ${reviews>rating} : null}">
 <suite:embeddedControl>
 <VBox>
 <Input
 value="{reviews>user}"
 visible="{reviews>template}"
 placeholder="{i18n>newReviewUserNameHint}"/>
 <RatingIndicator
 enabled="{reviews>template}"
 value="{reviews>rating}"
 maxValue="10"
 iconSize="1rem"
 class="sapUiTinyMargin"/>
 <Text
 text="{reviews>quote}"
 visible="{=!${reviews>template}}"
 class="sapUiTinyMargin"/>
 <TextArea
 value="{reviews>quote}"
 growing="false"
 height="150px"
 width="100%"
 visible="{reviews>template}"
 placeholder="{i18n>newReviewUserCommentHint}"
 valueLiveUpdate="true"/>
 <Button
 visible="{reviews>template}"
 text="{i18n>newReviewButtonText}"
 press=".addReview"/>
 </VBox>
 </suite:embeddedControl>
 </suite:TimelineItem>
 </suite:Timeline>
 </Page>

668 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

</mvc:View>

Reviews.controller.js
In the reviews controller, define a function for adding a review, addReview, along with the functions for
adjusting date and time format, formatDateTime, dynamically updating the rating, onRatingChange, layout
switching, onHorizontalSwitchChange, and navigating back to the start page, onNavButtonPressed.

sap.ui.define(["sap/ui/core/mvc/Controller",
 "sap/ui/core/format/DateFormat"
], function(Controller, DateFormat) {
 "use strict";
 return Controller.extend("sap.suite.ui.commons.demokit.tutorial.icecream.
12.controller.Reviews", {
 onInit: function() {
 this.oTimeline = this.byId("timeline");
 }, addReview: function() {
 var oModel = this.getView().getModel("reviews"),
 oData = oModel.getData(),
 oTemplateEntry = oData.UserReviews[0];
 oTemplateEntry.template = false;
 // Add new template entry to the beginning
 oData.UserReviews.unshift({
 "user": "",
 "userPic": "",
 "rating": 10,
 "quote": "",
 "dateTime": "now",
 "template": true
 });
 oModel.setData(oData);
 },
 formatDateTime: function(dateTime) {
 var oDateInstance = DateFormat.getDateInstance();
 return oDateInstance.format(oDateInstance.parse(dateTime));
 },
 onNavButtonPressed: function() {
 var oRouter = this.getOwnerComponent().getRouter();
 oRouter.navTo("home");
 },
 onHorizontalSwitchChange: function(event) {
 if (event.getParameter("state")) {
 this.oTimeline.setAxisOrientation("Horizontal");
 } else {
 this.oTimeline.setAxisOrientation("Vertical");
 }
 } }); });

The initial reviews data is pulled from the model data in the /model/data/Reviews.json file that is included in
the download materials for this tutorial.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 669

Step 13: Optimizing the Process Flow Layout

In the last step, we will optimize the ProcessFlow layout.

When you have completed the previous steps, your Production Process page will look like this:

You may have seen that some ProcessFlow nodes are not placed in a perfect way. For example, there is too
much space for the Marketing node and available space is not used. To optimize the position of the nodes, the

670 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

ProcessFlow control provides the optimizeLayout API method. With this method, you can rearrange the
nodes. Check it out and see the results:

Please keep in mind that this optimization has an influence on the app performance as rendering times will
increase.

For more information, see the API Reference in the Demo Kit.

Demo Apps

With the Demo Kit, we deliver some demo apps that show you how you can use the various features and
controls of SAPUI5.

You can open the apps directly at Demo Apps. You can also download the source files there to have a look at the
code.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 671

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.commons.ProcessFlow.html
https://sapui5.hana.ondemand.com/#demoapps.html

We have the following categories of demo apps:

● Showcase apps that show you how to use specific controls or features
● Apps that are created with our tutorials (see Get Started: Setup, Tutorials, and Demo Apps [page 38])
● Template apps (see App Templates: Kick Start Your App Development [page 1399])
● Other demo apps for Key User Adaptation, Application Path Framework (APF), and Charts

The following tables give an overview of what each demo app shows.

Features, Layouts, and Specific Topics

Demo App Feature Layouts Specific Topic

Shopping Cart XML View [page 787]

Busy Indicators [page 2253]

Device Adaptation [page
1433]

Expression Binding [page
845]

Input validation (see Valida
tion Messages [page 1065])

sap.ui.layout.Block
Layout

sap.ui.layout.Verti
calLayout

sap.ui.layout.form.
SimpleForm

Filtering, custom filter

Sorting

Formatting

Behavior-driven Develop
ment with Gherkin [page
1233]

Mock Server [page 1222]

Local storage

Browse Orders XML View [page 787]

Busy Indicators [page 2253]

Device Adaptation [page
1433]

Expression Binding [page
845]

sap.ui.layout.Respo
nsiveGridLayout

sap.ui.layout.form.
SimpleForm

sap.f.FlexibleColum
nLayout

Sorting

Grouping

Formatting

Mock Server [page 1222]

Shop Administration Tool XML View [page 787]

Busy Indicators [page 2253]

Device Adaptation [page
1433]

Expression Binding [page
845]

Custom Controls [page 2158]

sap.ui.layout.Block
Layout

sap.ui.layout.Respo
nsiveGridLayout

sap.uxap.ObjectPage
Layout

Formatting

Employee Directory XML View [page 787] sap.ui.layout.form.
SimpleForm

Mock Server [page 1222]

Routing and Navigation
[page 1072]

Hello World JS View [page 803]

672 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Demo App Feature Layouts Specific Topic

Bulletin Board XML View [page 787]

Busy Indicators [page 2253]

sap.ui.layout.form.
SimpleForm

Sorting

Formatting

Mock Server [page 1222]

Custom type

Manage Products
XML View [page 787]

Busy Indicators [page 2253]

Sorting

Formatting

Mock Server [page 1222]

Worklist Template XML View [page 787]

Busy Indicators [page 2253]

Filtering

Formatting

Mock Server [page 1222]

Sorting

Worklist (FLP) Template XML View [page 787]

JS View [page 803]

Busy Indicators [page 2253]

sap.ushell.ui.shell
.RightFloatingConta
iner

sap.ushell.ui.shell
.ShellAppTitle

sap.ushell.ui.shell
.ShellHeader

sap.ushell.ui.shell
.ShellHeadItem

sap.ushell.ui.shell
.ShellId

sap.ushell.ui.shell
.ShellLayout

sap.ushell.ui.shell
.SplitContainer

Filtering

Formatting

Mock Server [page 1222]

Sorting

Integration with SAP Fiori
launchpad

SAP Fiori launchpad sandbox

Master-Detail Template XML Fragments [page 1005]

XML View [page 787]

Busy Indicators [page 2253]

Device Adaptation [page
1433]

Expression Binding [page
845]

sap.f.FlexibleColum
nLayout

Formatting

List selector

Mock Server [page 1222]

Sorting

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 673

Demo App Feature Layouts Specific Topic

Master-Detail (FLP) Template XML Fragments [page 1005]

XML View [page 787]

JS View [page 803]

Busy Indicators [page 2253]

Device Adaptation [page
1433]

Expression Binding [page
845]

sap.ushell.ui.shell
.ShellHeadItem

sap.ushell.ui.shell
.ShellAppTitle

sap.ushell.ui.shell
.ShellLayout

Formatting

Mock Server [page 1222]

Sorting

Integration with SAP Fiori
launchpad

SAP Fiori launchpad sandbox

UI Adaptation at Runtime SAPUI5 Flexibility: Enable
Your App for UI Adaptation
[page 1450]

UI Adaptation at Runtime

for SAP Fiori Elements

SAPUI5 Flexibility: Enable
Your App for UI Adaptation
[page 1450]

APF Demo Application XML View [page 787]

JS View [page 803]

sap.ui.layout.Verti
calLayout

Developing Apps with Analy
sis Path Framework (APF)
[page 2040]

Component Container

APF Configuration Modeler XML View [page 787]

JS View [page 803]

sap.ushell.ui.shell
.ShellHeader

APF Configuration Modeler
[page 2054]

Component Container

Chart Demo App XML View [page 787]

674 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Controls

Demo App sap.m sap.m.semantic Other Libraries

Shopping Cart Carousel

ColumnListItem

DatePicker

FormattedText

LightBox

List

MessagePage

MessagePopover

NavContainer

NotificationListIte
m

ObjectListItem

PullToRefresh

RangeSlider

SearchField

SegmentedButton

StandardListItem

Toolbar

Wizard

Browse Orders IconTabBar

List

ObjectHeader

PullToRefresh

SearchField

SegmentedButton

SplitApp

Table

DetailPage

GroupSelect

MasterPage

SendEmailAction

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 675

Demo App sap.m sap.m.semantic Other Libraries

Shop Administration Tool App

ColumnListItem

List

MessagePopover

ResponsivePopover

SearchField

StandardListItem

Table

Toolbar

sap.tnt.NavigationL
istItem

sap.tnt.ToolHeader

sap.tnt.ToolPage

Micro charts of
sap.ui.comp.smartmi
crochart

Employee Directory App

IconTabBar

List

Toolbar

Hello World App

Bulletin Board App

ColumnListItem

IconTabBar

Toolbar

FullscreenPage

SendEmailAction

Manage Products App

Toolbar

FullscreenPage

SendEmailAction

Worklist Template App

ColumnListItem

MessagePage

SearchField

Table

Toolbar

SemanticPage

SendEmailAction

676 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Demo App sap.m sap.m.semantic Other Libraries

Worklist (FLP) Template App

ColumnListItem

FormattedText

HBox

List

MessagePage

OverflowToolbar

Page

ScrollContainer

SearchField

Table

Toolbar

ToggleButton

Vbox

FullscreenPage

SendEmailAction

Master-Detail Template ColumnListItem

OverflowToolbar

List

MessagePage

ObjectHeader

Page

SearchField

Table

Toolbar

ViewSettingsDialog

titleHeading

SemanticPage

FilterAction

SendEmailAction

sap.f.FlexibleColum
nLayout (2 columns)

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 677

Demo App sap.m sap.m.semantic Other Libraries

Master-Detail (FLP) Template App

Button

ColumnListItem

FormattedText

IconTabBar

HBox

List

MessagePage

ObjectListItem

ObjectNumber

ObjectHeader

PullToRefresh

ScrollContainer

SearchField

SplitApp

Table

Toolbar

ToolSpacer

ViewSettingsDialog

DetailPage

FilterAction

GroupSelect

MasterPage

SendEmailAction

SortSelect

678 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Demo App sap.m sap.m.semantic Other Libraries

APF Demo Application App

Bar

Button

CheckBox

FacetFilter

FacetFilterItem

FormattedText

Label

MessagePopover

NavContainer

OverflowToolbarButt
on

Page

ScrollContainer

SearchField

Title

ToggleButton

Toolbar

ToolSpacer

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 679

Demo App sap.m sap.m.semantic Other Libraries

APF Configuration Modeler App

Bar

Button

Column

ColumnListItem

Input

Label

Page

ScrollContainer

Title

Toolbar

ToolSpacer

Vbox

Chart Demo App List

SplitApp

Toolbar

sap.viz.ui5.4contro
ls.Popover

sap.viz.ui5.control
s.VizFrame

D3 charts (https://d3js.org
)

Best Practices for App Developers

In this section, we have compiled a set of best practice recommendations to help you develop high-quality
SAPUI5 apps.

The best practices articles are built around the key concepts below. Where applicable, we show hands-on
examples and refer you to our tutorials as well as to our the detailed documentation.

Key Concepts

Hover over the shapes to find out more about some key benefits of SAPUI5.

680 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/disclaimer?site=https%3A%2F%2Fd3js.org
http://help.sap.com/disclaimer?site=https%3A%2F%2Fd3js.org

● Best Practices for App Developers [page 680]
● Best Practices for App Developers [page 680]
● Best Practices for App Developers [page 680]
● Best Practices for App Developers [page 680]
● Best Practices for App Developers [page 680]
● Best Practices for App Developers [page 680]

 Tip
All demo apps, templates, and tutorials in the SAPUI5 Demo Kit follow these recommendations.

Load Only What You Really Need

The amount of resources and data that your app loads will directly affect the performance of your app. You
should declare all dependencies and remove unused libraries and classes from your code.

Keep Your Library Dependencies Up To Date

A library preload file, the library styles and text translations are loaded for every library you define in the
application descriptor or the SAPUI5 bootstrap. Always define libraries in the manifest and remove all libraries
that you do not intend to use in your code.

"sap.ui5": { "dependencies": {
 "minUI5Version": "1.60.0",
 "libs": {
 "sap.ui.core": {},
 "sap.m": {},

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 681

 "sap.ui.layout": {}
 }
 }
 ... }

● Learn how: Walkthrough Tutorial Step 10: Descriptor for Applications [page 91]
● Find out more: Descriptor for Applications, Components, and Libraries [page 734]

Declare Local Dependencies

In the JavaScript files of your app, define all dependencies to SAPUI5 framework classes and app resources via
sap.ui.define. If you have unused dependencies, you should remove them right away.

The UI5 Build and Development tooling can then create a "cleaned-up" version of your app that only contains
the resources you really need. The so-called application preload will greatly speed up the initial load time of
your app.

sap.ui.define(["sap/ui/core/mvc/Controller",
 "sap/m/MessageToast",
 "sap/base/Log"
], function (Controller, MessageToast, Log) { ...

● Learn how: Walkthrough Tutorial Step 10: Descriptor for Applications [page 91]
● Find out more:

○ Modules and Dependencies [page 1094]
○ https://help.sap.com/viewer/825270ffffe74d9f988a0f0066ad59f0/Cloud/en-US/

dfb26ef028624cf486a8bbb0bfd459ff.html
○ https://github.com/SAP/ui5-tooling

Use Lazy Loading

Use controls like sap.m.List or UI patterns that support displaying data selectively or with pagination. Make
sure that your backend service is designed to deliver small chunks of data as well.

<List growing="true"
 growingThreshold="20" ...>

● Learn how: Testing Tutorial Step 7: Changing the Table to a Growing Table [page 399]
● Find out more: Growing Feature for Table and List [page 2342]

682 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://help.sap.com/viewer/825270ffffe74d9f988a0f0066ad59f0/Cloud/en-US/dfb26ef028624cf486a8bbb0bfd459ff.html
https://help.sap.com/viewer/825270ffffe74d9f988a0f0066ad59f0/Cloud/en-US/dfb26ef028624cf486a8bbb0bfd459ff.html
http://help.sap.com/disclaimer?site=https%3A%2F%2Fgithub.com%2FSAP%2Fui5-tooling

Use the MVC Concept

MVC (Model-View-Controller) is a concept for structuring your software. It makes it easier to maintain and to
extend your apps.

The MVC pattern divides your application into three individual parts that interact with each other: the model,
the views, and the controllers. There are some best practices for each of these parts:

Model: Keep Everything Organized

It's simple: Use the right folder structure! If you arrange and structure your files and folders in a smart way, this
makes coding much easier and also makes for sound performance when you load your application.

● Find out more: Folder Structure: Where to Put Your Files [page 1428]

View: Use XML Views

There are many view types, for example JavaScript, JSON, or HTML. However, we strongly recommend that
you use XML views and fragments. XML clearly separates the view and the application logic, is easy to
manipulate and can be parsed by tools like the layout editor in SAP Web IDE. That's why we also used XML
views in all our tutorials, demo apps, and guides.

● Learn how: Walkthrough Tutorial Step 4: XML Views [page 76]
● Find out more: XML View [page 787]

Controller: Find the Best Location for Your Controllers

Every view you create should have its own controller with a corresponding file name. For example: If your view is
called App.view.xml, then the matching controller should be named App.controller.js.

There is one special case: The so called BaseController is not directly related to a view. It is quite common
that several controllers use the same functions. You can place these shared functions in the BaseController
from which all other instantiated controllers will inherit. In other words: Every function you place in the
BaseController is available for all your controllers. This makes your app code definitely easier to maintain,
and you save some lines of code!

The controllers are written in JavaScript and contain all the app logic. They should be placed in the
controller folder. However, not all JavaScript code belongs in the controller folder. For example,
formatter logic. The main function of this type of JavaScript file is to format data. That's why you should place
it in the models folder of your application.

● Learn how: Walkthrough Tutorial Step 5: Controllers [page 79]
● Find our more: Controller [page 807]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 683

Keep Your Views Short and Simple

The view part of your app reflects what users can see and interact with. You should use a suitable set of UI
controls that match your scenario and keep things simple.

Use sap.m as the Default Namespace

Most bread-and-butter controls are located in the sap.m namespace, which makes it the perfect default
namespace. If you want to add other controls and layouts, you can define an additional namespace. For your
own namespaces, you should keep the alias short and simple as well. You will typically use it in many places,
and a short alias keeps your code tidy.

<mvc:View xmlns="sap.m"
 xmls:l="sap.ui.layout"
 xmlns:mvc="sap.ui.core.mvc">
 <App>
 <Page>
 <l:HorizontalLayout> ...

● Find out more: Namespaces in XML Views [page 788]

Remove Clutter From Your Views

It's easy to save a few bytes and make your code a lot cleaner:

● Don't define properties that are set to their default values.
● Remove unused namespace aliases.
● Omit the content or items tag for controls that define default aggregations.
● Use self-closing XML tags for controls that don't define any aggregations.

 Tip
Samples may contain more code that you actually need. When you copy code from a sample, it's best to
remove all properties that won't be used in your views.

<SearchField change=".onSearch"/> <List items="{/Products}" headerText="Search Results">
 <StandardListItem title="{Name}"/>
</List> </Panel>

684 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Clean Up Your Aggregation Templates

If you have bound aggregations, Avoid using complex or nested controls. Remember: The template below will
be repeated for every entity in your data. If the template is more complex than necessary, this may lead to
performance issues at runtime and slow down your app.

<List items={/Products}>
 <StandardListItem
 title="{Name}" description="{Text}"/>

● Learn how: Data Binding Tutorial Step 12: Aggregation Binding Using Templates [page 244]
● Find out more: Aggregation Handling in XML Views [page 788]

Think About View Modularization Early On

Things may get a little messy as your app is growing with your requirements. Therefore, name your views
semantically. If a view is getting too "heavy", you should outsource parts of it to a separate view. With XML
fragments and XML composites, you can flexibly reuse parts of yor UI elsewhere.

<App> <Page>
 <myXMLComposites:SearchPanel title="Find employees"/>
 <mvc:XMLView viewName="EmployeList"/>
 </Page> </App>

● Learn how: Walkthrough Tutorial Step 15: Nested Views [page 104]
● Find out more:

○ XML Composite Controls [page 2229]
○ Reusing UI Parts: Fragments [page 1004]

Choose Clever UI Patterns

SAPUI5 offers a huge collection of feature-rich UI controls, often giving you multiple implementation choices.

Aim for the simplest possible pattern to implement your use case. For more information, see the Samples, and
filter for "layout".

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 685

https://sapui5.hana.ondemand.com/#/controls/

Use Stable IDs

If you keep the IDs of controls, elements, and components stable, you can be sure that other SAPUI5 features
will be able to identify them correctly during processing.

Background

SAPUI5generates IDs for controls, elements, or components dynamically if you don't set them yourself. This
sounds convenient, but might lead to problems when the corresponding elements are processed later on by
other SAPUI5 features. So it's a good idea to use stable IDs instead of dynamic IDs.

How to Make IDs Stable

For this, you use the id property or attribute of the respective element. For a list of the elements for which you
can set stable ID, see the related link below.

Here's an example of an XML view without stable IDs:

<mvc:View xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <Page>
 <content>
 <Table>
 </Table>
 </content>
 </Page>
</mvc:View>

At runtime, the Page and the Table would get dynamically generated IDs like __page0 and __table0.
However, these generated IDs can change whenever the control structure of the app changes.

If you define stable IDs for the two controls in the example above, it could look like this:

<mvc:View xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc"> <Page id="page"> <content> <Table id="table"> </Table>
 </content>
 </Page>
</mvc:View>

The controls will now always be identified by these IDs.

In the case of views, the sequence of instantiation also plays a role: If there are two views with unstable IDs in
the app, they get the generated IDs __view0 and __view1 depending on the order the views are opened. This
makes it impossible to correctly identify them when they are processed by other features.

686 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Tip
You should choose a semantic name for your IDs that makes it easier for you to identify them later.

For more information about naming restrictions, some testing options to check for unstable IDs, as well as the
features that require stable IDs, see the related link below.

Related Information

Stable IDs: All You Need to Know [page 1442]

Make Your App CSP Compliant

CSP stands for Content Security Policy and is a security standard to prevent cross-site scripting or other code
injection attacks.

It's strongly recommended that you make your SAPUI5 applications CSP compliant - after all, you want your
apps to be secure. The main thing you have to do is to remove all scripts that directly execute code from your
HTML pages.

Define Initial Components in a Declarative Way

Don't use directly executable code in your HTML files, because this makes them vulnerable. Instead, enable the
ComponentSupport module in the bootstrapping script. Then, declare your desired component in the body
via a div tag. This will instantiate the component when the onInit is executed.

... <script id="sap-ui-bootstrap"
 src="resources/sap-ui-core.js"
 data-sap-ui-preload="async"
 data-sap-ui-theme="sap_belize"
 data-sap-ui-oninit="module:sap/ui/core/ComponentSupport">
</script>
<body class="sapUiBody" id="content">
 <div data-sap-ui-component data-name="sap.ui.demo.walkthrough" data-
id="container" data-settings='{"id" : "walkthrough"}'></div> </body>

● Learn how: Walkthrough Tutorial Step 9: Component Configuration [page 88]
● Find our more: Declarative API for Initial Components [page 731]

Separate Scripts From HTML Files in Your Test Folder

Because the HTML files in your test folder do not directly open your application, you can't use the new
ComponentSupport feature here. To make them CSP compliant, you need to put the executable script code in

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 687

a separate file on the same level as the HTML file. You can then refer to this file in your HTML file inside a
script tag in the head:

New script file:

window.suite = function() { "use strict";
 var oSuite = new parent.jsUnitTestSuite(),
 sContextPath = location.pathname.substring(0,
location.pathname.lastIndexOf("/") + 1);
 oSuite.addTestPage(sContextPath + "unit/unitTests.qunit.html");
 oSuite.addTestPage(sContextPath + "integration/opaTests.qunit.html");
 return oSuite;
};

HTML file:

<head> ...
 <script src="testsuite.qunit.js" data-sap-ui-testsuite></script>
</head>
</html>

● Learn how: Testing Tutorial Step 10: Test Suite and Automated Testing [page 411]
● Find out more: Content Security Policy [page 1481]

Use Asynchronous Loading

Asynchronous loading is the way to go: It makes your applications a lot faster and, through that, better to use.

As OpenUI5 is evolving, the loading processes in the background were significantly improved. To get the best
out of these changes in the core and to speed up your app, we recommend that you switch on asynchronous
loading. With asynchronous loading, files are retrieved in parallel. This is much quicker than with synchronous
loading, where files are retrieved sequentially. There are a few possibilities to do that:

Use a Bootstrapping Tag in HTML Files

Add the bootstrapping tag data-sap-ui-async="true" to your index.html file. This loads the modules for
all declared libraries asynchronously. If you have other HTML files in your app, you should do this there as well.

<!DOCTYPE html> <html>
<head>
 <meta charset="utf-8">
 <title>My App</title>
 <script
 id="sap-ui-bootstrap"
 ...
 data-sap-ui-async="true">
 </script> ...

● Learn how: Walkthrough Tutorial Step 2: Bootstrap [page 72]

688 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

● Find out more: Bootstrapping: Loading and Initializing [page 692]

Add the async Property to the manifest.json

To also load all application-specific configuration settings asynchronously, set the async property in the
metadata of the manifest.json file to true.

"sap.ui5": { "rootView": {
 "viewName": "sap.ui.demo.worklist.view.App",
 "type": "XML",
 "async": true,
 "id": "app" },

● Learn how: Walkthrough Tutorial Step 10: Descriptor for Applications [page 91]
● Find out more: Descriptor for Applications, Components, and Libraries [page 734]

Is Your Application Ready for Asynchronous Loading?

Find a collection of information that helps you to find out if your application is ready for asynchronous loading.

Applications benefit from the configuration of the SAPUI5 module loader to work asynchronously. However, if
an application or library is not yet fully compatible with asynchronous loading, you may encounter issues. To
avoid running into these issues, the following list provides information that helps you to find out whether your
application needs to be adapted to enable asynchronous loading. The list is not exhaustive, but points to
additional information and should give you a good start in getting your applications ready for asynchronous
loading.

● For asynchronous loading, your application modules have to facilitate the concept for defining and
handling of modules in SAPUI5 that is aligned with the asynchronous module definition (AMD) standard.
For an overview, see Best Practices for Loading Modules [page 1100].

● Existing applications may still use synchronous variants of factory methods. To make your application
ready for asynchronous loading, you need to use asynchronous variants of factory methods instead. For
information how you can replace the synchronous variants with asynchronous variants, see Legacy
Factories Replacement [page 1124].

● The global access to legacy APIs triggers a compatibility layer to load such modules synchronously and
needs to be replaced to enable your application for asynchronous loading. For information how you replace
the global access, see Legacy jQuery.sap Replacement [page 1109].

● The Support Assistant also helps you to identify issues in your application, especially issues related to
synchronous or asynchronous loading. For information about the Support Assistant, see Support Assistant
[page 1339].

● If your application relies on certain points in time, you may run into runtime issues when you switch from
synchronous to asynchronous module loading and the points in time on which your application relies are
different due to this change. Here are two examples of such issues:
An event gets triggered before potential listeners had the chance to attach themselves. Whereas this may
have worked for synchronous loading where the timing of module loading and initializing is different, this
causes issues for asynchronous loading. To resolve this and to ensure that all modules are properly loaded

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 689

and exectued, all necessary module dependencies for the module that actually triggers the event need to
be handled by sap.ui.require or sap.ui.define.
A controller listens on the EventBus for a certain event that is triggered by another controller. Depending
on the loading time of the corresponding views, the init controller methods may be called at a different
point in time. For information how to resolve this, see Best Practices for Loading Modules [page 1100].

● Issues with asynchronous loading can also occur, if your application uses XML views that are configured to
be loaded asynchronously via the manifest property, for example for the root view sap.ui5/rootView/
async=true. To detect such issues, we recommend to do extensive (automatic) testing to ensure the
application continues to work as expected.

Known Incompatibilities

The sap.viz library uses another module loader in addition to the SAPUI5 module loader in some scenarios.
In combination with the async=true configuration parameter, this currently leads to issues and may break
your application.

Performance Checklist

Follow these steps to apply performance best practices to your application.

In addition to applying best practices, always stay up to date with the framework, for instance via the SAPUI5
Release Notes and the What's New in SAPUI5 [page 6].

1. Use the UI5 Support Assistant to Check for Known Issues [page 1339]
2. Enable Asynchronous Loading in the Bootstrap [page 1434]
3. Ensure the Root View and Routing are Configured to Load Targets Asynchronously [page 1435]
4. Make Use of Asynchronous Module Loading (AMD Style) [page 1436]
5. Use manifest.json instead of the Bootstrap to define Dependencies [page 1436]
6. Load SAPUI5 from the Content Delivery Network (CDN) [page 1437]
7. Ensure that all Resources are Available to Avoid 404 Errors [page 1438]
8. Use "manifest first" to load the Component [page 1438]
9. Ensure that Library Preloads are Enabled [page 1438]
10. Ensure that Application Resources are Loaded as Component Preload [page 1438]
11. Check Network Requests [page 1439]
12. Migrate jquery.sap.* Modules to their Modularised Variants [page 1439]
13. Migrate Synchronous Variants of UI5 Factories to Asynchronous Variants [page 1440]
14. Use the OData V2 Model Preload [page 1440]
15. Use OData V2 Metadata Caching [page 1440]
16. Check Lists and Tables [page 1440]
17. Further Optimize your Code [page 1441]

690 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/releasenotes.html

Essentials

This chapter and its sections describe the development concepts of SAPUI5, such as the Model View
Controller, data binding, and components. Use this section as a reference.

SAPUI5 Architecture

SAPUI5 is a client UI technology based on JavaScript, CSS and HTML5.

Apps developed with SAPUI5 run in a browser on any device (mobile, tablet or desktop PC).

When users access an SAPUI5 app, a request is sent to the respective server to load the application into the
browser. The view accesses the relevant libraries. Usually the model is also instantiated and business data is
fetched from the database.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 691

Depending on the environment in which SAPUI5 is used, the libraries or your applications can be stored, for
example, on an SAP NetWeaver Application Server or an SAP Cloud Platform, and business data can be
accessed, for example, using the OData model through a SAP Gateway.

Artifacts in the Framework

The top-level structural unit is called a library. Libraries are the master artifacts in the extensibility concept.
They bundle a set of controls and related types and make them consumable by Web applications. There are
predefined and standard libraries, like sap.m, with many commonly used controls. At the same time, it treats
custom UI libraries as first-class citizens, making it easy for you to write and use your own controls alongside
the predefined ones.

A UI element is the basic building block of our user interfaces; it is a reusable entity with properties, events,
methods, and relations. The most important relations are aggregations to other UI elements, and in this way a
tree structure of elements can be created.

From a developer's point of view, a control (e.g. Button, Label, TextField, or Table) is the most important
artifact. It is an object which controls the appearance and user interaction of a rectangular screen region. It is a
special kind of user interface element which can be used as the root of such a tree structure. In this way, it
serves as an entry point, especially for rendering. Besides controls, there are also other non-control elements,
which cannot be used as the root of such a tree structure, but only as a dependent part within it (e.g.
TableRow, TableCell).

Data types are first-class entities in the meta model. This allows reuse of types across libraries and
extensibility of the type system. The core library (technically, this is the sap.ui.core library) already defines a
core set of types that can be used in other libraries.

Bootstrapping: Loading and Initializing

To use SAPUI5 features in your HTML page, you have to load and initialize the SAPUI5 library.

You can use the SAPUI5 bootstrap script in your page to initialize SAPUI5 runtime automatically as soon as the
script is loaded and executed by the browser. For simple use cases as well as the default SAPUI5 installation,
this is sufficient to build and run UIs. In addition to this, you can specify the set of SAPUI5 libraries and the
theme used for your application in the configuration settings.

 Note
If you run your app standalone, the bootstrap is added to your HTML page. In an SAP Fiori launchpad
environment, the launchpad executes the bootstrap and no additional HTML page is needed to display the
app.

The following code snippet shows a typical bootstrap script tag:

<script id="sap-ui-bootstrap" type="text/javascript"
 src="resources/sap-ui-core.js"
 data-sap-ui-theme="sap_belize"
 data-sap-ui-libs="sap.m"

692 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 data-sap-ui-compatVersion="edge"> </script>

The attributes data-sap-ui-theme="sap_belize" and data-sap-ui-libs="sap.m" already provide
examples of how SAPUI5 runtime can be configured to the needs of an application.

Overview of Bootstrap Files

SAPUI5 provides several bootstrap files for different use cases. The following table gives an overview of the
most important resources and the respective use cases. The resource names refer to the resources/ folder in
the SAPUI5 installation. The actual base URL depends on your platform and administrative setup.

Resource Description

sap-ui-core.js This is the standard bootstrap file, which we recommend to
use for typical use cases. It already contains jQuery,
jquery-ui-position and only the minimum required
parts of the core library (sap.ui.core). Required files
are loaded dynamically using XMLHttpRequest (XHR).

For more information, see Standard Variant for
Bootstrapping [page 694].

Content Delivery Network (CDN) You can access the libraries externally from a CDN. For
more information see Variant for Bootstrapping from
Content Delivery Network [page 696].

sap-ui-core-nojQuery.js You use this bootstrap file for applications with their own
jQuery version. It also contains the minimum required parts
of the core library, but not jQuery and jquery-ui-
position.

For more information, see noJQuery Variant for
Bootstrapping [page 698].

sap/ui/core/library-preload.js This file contains most of the modules that are contained in
the sap.ui.core library, but the modules are parsed and
executed only on demand, and not immediately.

 Caution
An application must not reference this file. If the
configuration option is set to preload, SAPUI5
automatically loads the file.

For more information, see Standard Variant for
Bootstrapping [page 694].

sap-ui-core-lean.js This bootstrap file is similar to the sap-ui-core.js file,
but in this use case only the jQuery and one SAPUI5 file are

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 693

Resource Description

loaded immediately and the other files are loaded
dynamically.

 Caution
This use case is usually not used and may be removed
in future.

sap-ui-custom*.js File names that match this pattern are reserved for custom
merged files used by the application.

 Note
The proposed naming scheme for these files needs to
be adapted in future versions for the same
encapsulation reasons as mentioned above.

Standard Variant for Bootstrapping

The standard variant for bootstrapping loads all JavaScript modules of a library in advance with one single
request for performance reasons.

The library preload file library-preload.js contains all modules of a certain library. These modules will
only be executed on demand, if the application requires them. Using preloads significantly reduces the number
of roundtrips since the single modules are bundled in one file.

 Note
An application must not reference the library-preload.js. If preload files exist, SAPUI5 automatically
loads them. The dependencies to libraries are defined as part of the manifest namespace sap.ui5/
dependencies/libs. For further information, see Descriptor for Applications, Components, and Libraries
[page 734].

Option 1 (Recommended)

By setting the async=true configuration parameter, the module loader loads the modules and preload files
asynchronously. You can enable it in an existing application by specifying the sap-ui-async configuration
parameter in the start URL, or by adding the data-sap-ui-async attribute to the bootstrap tag:

<script id="sap-ui-bootstrap"
 src="resources/sap-ui-core.js"
 data-sap-ui-theme="sap_belize"
 data-sap-ui-async="true"
 data-sap-ui-onInit="module:my/app/main"

694 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 data-sap-ui-resourceRoots='{"my.app": "./"}' ></script>

 Note
Before you use the async configuration parameter, make sure your app is ready for asynchronous loading,
see Best Practices for Loading Modules [page 1100] and Is Your Application Ready for Asynchronous
Loading? [page 689].

Option 2

Alternatively, you can influence the loading behavior of the preload files without affecting other single modules
by setting the preload configuration parameter to one of the following values:

● async (recommended)
If you set the preload configuration option to async, the runtime loads the modules for all declared
libraries asynchronously. Thus, for any code that follows the SAPUI5 bootstrap tag, the framework cannot
make sure that the classes are already available. Therefore, the application must delay the access to the
SAPUI5 APIs by using the Core.attachInitEvent method. SAPUI5 supports the async mode only for
libraries that are loaded by the SAPUI5 core. Libraries that are loaded dynamically by using the
sap.ui.getCore().loadLibrary() API will be loaded synchronously by default for compatibility
reasons. Only when a configuration object with a property of async:true is passed, the bundle is loaded
asynchronously.

● sync
If you set the preload configuration parameter to sync, the runtime loads the modules for all declared
libraries synchronously. After processing the bootstrap tag, all preload files of all libraries are loaded and
the libraries are initialized as usual. The preload=sync mode should be transparent for most applications.

● auto
The preload=auto configuration parameter is the default value. This mode checks whether SAPUI5
runtime uses optimized sources. If optimized sources are used, it enables the preload=sync option to
further optimize the runtime. For normal or debug sources, the preload is deactivated.

You can easily check this with an existing application by specifying the sap-ui-preload=<mode> parameter
in the start URL or by adding the data-sap-ui-preload attribute to the bootstrap tag:

<script id="sap-ui-bootstrap"
 src="resources/sap-ui-core.js"
 data-sap-ui-theme="sap_belize"
 data-sap-ui-preload="async"
 data-sap-ui-onInit="module:my/app/main"
 data-sap-ui-resourceRoots='{"my.app": "./"}' ></script>

 Note
Using the async=true or preload=async configuration parameters requires extensive testing and
cooperation on application side to ensure a stable and fully working application. It is, therefore, not
activated automatically, but only by configuration. If you encounter issues, or if you want to prepare your
application in advance, see Is Your Application Ready for Asynchronous Loading? [page 689].

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 695

 Note
Preload sources are always optimized. However, using the debug=true configuration parameter always
disables the loading of preload files.

 Note
You can combine the async or preload configuration parameters with other bootstrap variants such as
sap-ui-core-noJQuery.

Related Information

noJQuery Variant for Bootstrapping [page 698]
Configuration of the SAPUI5 Runtime [page 699]
Is Your Application Ready for Asynchronous Loading? [page 689]

Variant for Bootstrapping from Content Delivery Network

SAPUI5 can either be loaded locally with a relative path from an SAP Web server or externally from a Content
Delivery Network (CDN).

 Note
Loading SAPUI5 from a CDN improves your app performance: You can load from a server that (in most
cases) is much closer to your location, and you can benefit from the caching mechanism and the language
fallback logic.

Bootstrapping From SAPUI5 CDN

SAPUI5 application hosted on SAP Cloud Platform are allowed to leverage the SAPUI5 CDN to retrieve the
SAPUI5 distribution layer artifacts.

Specific Version
Check the available versions with the respective maintenance status at https://ui5.sap.com/
versionoverview.html.

You can refer to a specific version by using a versioned URL as in the following example:

<script id="sap-ui-bootstrap" type="text/javascript" src="https://sapui5.hana.ondemand.com/1.42.6/resources/sap-ui-core.js" data-sap-ui-theme="sap_belize"
 data-sap-ui-libs="sap.m"></script>

696 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://ui5.sap.com/versionoverview.html
https://ui5.sap.com/versionoverview.html

The first segment of the URL after the host name is used to specify a concrete version.

Default Version

The default version of our libraries has the generic URL https://sapui5.hana.ondemand.com/resources/sap-ui-
core.js (SAPUI5).

 Caution
The default version is constantly being upgraded and this might have an impact on the stability of your
application. Use this version for testing purposes only.

If you want to use the default version, you can use the following bootstrap scripts:

<script id="sap-ui-bootstrap" type="text/javascript"
 src="https://sapui5.hana.ondemand.com/resources/sap-ui-core.js"
 data-sap-ui-theme="sap_belize"
 data-sap-ui-libs="sap.m"></script>

Cache Control

The cache control is different for dynamic and static resources. If you refer to the latest maintenance version
(dynamic), you have a maximum cache age of one week, if you refer to a specific (static) version, you have a
maximum cache age of 10 years. In both cases, cross-origin resource sharing (CORS) headers are set, so that
you can consume resources from the central location without any proxy in between.

 Note
The Cache Buster is only needed if you consume SAPUI5 without a concrete version in the URL. When you
consume SAPUI5 with the concrete version in the URL, this is not needed, as the content served by that
unique URLs will never change and can be cached forever.

Bootstrapping from Custom CDN

SAPUI5 applications hosted on platforms other than SAP Cloud Platform can leverage a custom CDN to
retrieve the SAPUI5 distribution layer artifacts. For this, the SAPUI5 distribution layer artifacts must be
deployed on an SAP web server.

To use your custom CDN with the SAPUI5 ABAP repository, you need to configure this CDN as an external
location in the customizing. For more information, see the documentation for the Customizing activity
Configure SAPUI5 Bootstrapping in Customizing under SAP NetWeaver UI Technologies SAPUI5 .

Related Information

Multi-Version Availability of SAPUI5
Versioning of SAPUI5 [page 29]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 697

https://sapui5.hana.ondemand.com/resources/sap-ui-core.js
https://sapui5.hana.ondemand.com/resources/sap-ui-core.js
http://help.sap.com/disclaimer?site=https%3A%2F%2Fblogs.sap.com%2F2015%2F07%2F30%2Fmulti-version-availability-of-sapui5

noJQuery Variant for Bootstrapping

The noJQuery variant supports bootstrapping for an application that already integrates jQuery or uses a
different jQuery version than SAPUI5.

In this variant, you include the resources/sap-ui-core-noJQuery.js file in your HTML page. Make sure
that jQuery and jquery-ui-position have been loaded beforehand. The following code snippet shows an
example:

 <!-- include some jQuery version -->
 <script src="my-jQuery-min.js" ></script>
 <!-- application does not have its own jquery-ui-position, so it might use
the one from SAPUI5 -->
 <script src="resources/sap/ui/thirdparty/jqueryui/jquery-ui-position.js" ></
script>
 <!-- now booting SAPUI5 -->
 <script
 id="sap-ui-bootstrap"
 src="resources/sap-ui-core-nojQuery.js"
 data-sap-ui-libs="sap.m"
 data-sap-ui-theme="sap_belize" > </script>

Initialization Process

The initialization process starts after SAPUI5 runtime is loaded.

The initialization of the SAPUI5 runtime comprises the following steps:

1. The jQuery plugins, which are mainly located in the jQuery.sap namespace, provide fundamental
functionality of SAPUI5, such as the modularization concept, a logging framework, performance
measurement, and so on.

2. The global object sap is defined.
3. The sap.ui.core.Core class is executed with all its dependencies.
4. The runtime configuration is determined from different sources.
5. All libraries and modules declared in the configuration as well as their dependencies are loaded.
6. For each loaded library, the CSS file of the configured theme is loaded.
7. When all libraries are loaded and the document is ready, the initEvent of the core is fired and all

registered handlers are executed.

Initialization Readiness

The optimal point in time to execute or start an application is after the framework has been initialized. You can
use the attachInit function to determine this point in time: The callback of the attachInit function is
executed directly after the framework has been initialized.

sap.ui.getCore().attachInit(function(){ // application can be started });

698 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.core.Core/methods/attachInit

As an alternative, you can also use a bootstrap module, see Standard Variant for Bootstrapping [page 694].

Loading of Additional Resources During Bootstrap

The SAPUI5 runtime loads and interprets additional resources for the control libraries during bootstrap.

The files are loaded in the following sequence:

1. Library bootstrap file /<context-path>/resources/<library-name>/library.js
A JavaScript file that contains the JavaScript code for all enumeration types provided by the library as well
as library-specific initialization code that is independent from the controls in the library. The file calls the
sap.ui.getCore().initLibrary method with an object that describes the content of the library (list of
contained controls, elements etc.). For libraries that have been developed with SAPUI5 application
development tools or the SAPUI5 offline build tools, this file is generated automatically during the build

2. Library style sheet file /<context-path>/resources/<library-name>/themes/<theme-name>/
library.css
SAPUI5A standard CSS file that contains all styles relevant for this library. For application development
tools, this file is generated automatically during the build.

Dynamic Loading of Libraries

SAPUI5 provides the sap.ui.getCore().loadLibary() method to load libraries at runtime in addition to
the libraries declared in the runtime configuration.

After loading, you can use all controls from the library. For these additional libraries, the same restriction apply
as for the declared libraries: Accessing the document object model (DOM) is only possible after the
document.ready event of the HTML page. Also, rendering applies for these libraries in the same way as for
the declared libraries.

Configuration of the SAPUI5 Runtime

SAPUI5 provides several options for the configuration of the SAPUI5 runtime, such as runtime default values
and script tag attributes.

When the SAPUI5 bootstrap script is included in a page, the SAPUI5 runtime will automatically be initialized as
soon as the script is loaded and executed by the browser. For simple use cases and for a default SAPUI5
installation, this should already be sufficient to build and run UIs. The only additional information that usually is
specified, is the set of libraries and the theme that is used.

So a typical bootstrap script looks like this:

<script id="sap-ui-bootstrap" type="text/javascript"
 src="resources/sap-ui-core.js"
 data-sap-ui-theme="sap_belize"
 data-sap-ui-libs="sap.m"
 data-sap-ui-compatVersion="edge">

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 699

 </script>

For more information see Bootstrapping: Loading and Initializing [page 692].

You can use the following ways to provide configuration information.

Default Values

The easiest way to specify a configuration value is not to specify it. The SAPUI5 runtime contains a default
value for each configuration option. As long as you don't have to change the value, you don't specify it.

Individual Script Tag Attributes

For each configuration option, you can have one attribute in the bootstrap script tag.

The attributes have to provide the following information:

● Attribute name
The attribute name is composed of the name of the configuration option and the data-sap-ui- prefix.
The first part of the prefix (data-) is necessary to comply with the W3C recommendations for custom
attributes in HTML. The second part (-sap-ui-) separates SAPUI5 attributes from custom attributes
defined by any other framework.

 Note
Attribute names in HTML are case-insensitive and this also applies to the configuration attribute
names. However, SAPUI5 has defined some configuration options names in camel case, for example
originInfo. SAPUI5 converts these names automatically to lower case when accessing the
configuration.

● Value
Element attributes in HTML have a string value by definition. For configuration options of type string,
the attribute value is equivalent to the value of the option.

 Note
If the value contains specific HTML characters, such as '<' or '>', or if the value contains the same
quote character that is used to wrap the attribute value, the usual HTML escape mechanisms must be
used: Use entities for the specific HTML characters, for example < instead of <, and switch the type
of quotes from single to double or vice versa.

For configuration options that are not of type string, the format of the allowed values has to be defined
as follows:

Type Notation/Values

string String; escaped according to the HTML conventions

700 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Type Notation/Values

boolean true and x are both accepted as true values (case-
insensitive), all others are false. We recommend to use
false for false values

int Any integer value

string array Comma-separated list of values; comma is not supported
in the values (no escaping)

map from string to string JavaScript object literal (preferably JSON syntax)

Single and Complex Configuration Attributes

The attribute data-sap-ui-config makes it possible to provide a single attribute with the configuration
information for the SAPUI5 runtime.

You can use this attribute instead of attaching individual options with individual configuration attributes to the
script tag. Its content is similar to the global configuration object, but without the enclosing parenthesis: It is a
comma separated list of key-value pairs.

 Note
The usual HTML escape mechanisms must be used if the value contains specific HTML characters (<, >, &)
or the quote character that is used to enclose the attribute value.

<script id="sap-ui-bootstrap" type="text/javascript"
 src="resources/sap-ui-core.js"
 data-sap-ui-config="theme:'sap_belize',
 libs:'sap.m'"
 > </script>

Global Configuration Objects

The global configuration object is a property in the global window object with property name sap-ui-config.
The property must be a simple object, where each property represents the configuration option of the
corresponding name.

To avoid conflicts with typical JavaScript coding, the name of the window property is not a valid JavaScript
identifier. The name structure is chosen to avoid conflicts with SAP objects. To define the object, quotes must
be used. If a configuration option has a name that is not a valid JavaScript identifier or that is a reserved token
in JavaScript, the property name in the configuration object must be quoted. Currently, such a configuration
option does not exist.

As the configuration is evaluated during bootstrap, the configuration object must be created before SAPUI5 is
bootstrapped. Otherwise, the contained configuration cannot be evaluated. As a consequence, using the global
configuration object requires another script tag in front of the bootstrap script tag. It is up to the application

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 701

whether it uses an inline script tag or a separate JavaScript file, which is loaded via a script tag, for this
purpose. If you use a dedicated file, it may require more work initially, but offers the following advantages:

● Several pages can share the file and, thus, use the same configuration.
● The Content Security Policy (CSP) mechanism as introduced, for example, by Firefox 4.0 and others

requires the use of a file.

The following code snippet shows an example for an inline script tag:

<script type="text/javascript"> window["sap-ui-config"] = {
 theme : "sap_belize",
 libs : "sap.m",
 };
</script>
<script id="sap-ui-bootstrap"
 src="resources/sap-ui-core.js"
 > </script>

This option requires an additional script or script tag, but it offers the following advantages:

● Possibility to share configuration between pages
● Can be used in environments where the scrip tag cannot be influenced, for example, because it is created

out of some configuration, like in some mashup frameworks
● Allows to provide configuration before the core boots

URL Parameters

Configuration parameters can be added to the URL of an app.

The URL parameter name is composed of the name of the configuration option and the sap-ui- prefix, for
example like index.html?sap-ui-debug=true.

 Note
The W3C proposed that the data- prefix is not needed and not even allowed here as all URL parameters
are kind of custom parameters.

The value of a URL parameter is of type string and the same type mapping as for HTML attributes applies.
However, URLs require a different encoding than HTML; they use, for example % encoding instead of entity
encoding.

For security reasons, only some configuration options can be set via URL parameters. An application can set
the ignoreUrlParameters option to true to disable URL configuration parameters completely.

Runtime Configuration Object

The runtime configuration object enables you to modify a limited set of configuration options at runtime.

702 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

The configuration options above are evaluated during the SAPUI5 runtime boots. After that, all changes to
these parameters are ignored. To read the final configuration result, you can use the
sap.ui.getCore().getConfiguration() method.

The same object also provides set methods for a very limited set of configuration options that can be modified
at runtime. The runtime and/or the controls can react on these configuration changes. The most prominent
(and so far only) example for such a configuration option is the theme.

Order of Significance

1. Attributes of the DOM reference override the system defaults.
2. URL parameters override the DOM attributes; empty URL parameters reset the parameter to its system

default.
3. If you call setters at runtime, any previous settings calculated during object creation are overwritten with

the new value.

Configuration Options and URL Parameters

The complete list of configuration options available in SAPUI5 can be found in the API Reference under
sap.ui.core.Configuration. The following table shows a subset of the available configuration options.

 Note
A subset of these configuration parameters can also be used as URL parameter ("URL: Yes"). The URL
parameter name is composed of the name of the configuration option and the sap-ui- prefix, for example
like sap-ui-debug=true.

Option Type

accessibility Type: boolean

Default value: true

URL: Yes

Modifiable at runtime: No

If set to true, the SAPUI5 controls are rendered for or
running in accessibility mode.

animationMode Type: string

Default value: full

URL: Yes

Modifiable at runtime: Yes

The following animation modes are available:

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 703

Option Type

● full: all animations are shown

● basic: a reduced, more light-weight set of animations

● minimal: no animations are shown, except
animations of fundamental functionality

● none: deactivates the animation completely

This parameter replaces the deprecated Boolean
animation parameter.

For all controls that implement the animation parameter,
the animationMode is set as follows:

● If animation is set to true, this is interpreted as
animationMode full

● If animation is set to false, this is interpreted as
animationMode minimal

appCacheBuster Type: true | string[]

Default value: []

URL: Yes

Modifiable at runtime: Yes, with AppCacheBuster API
(see Application Cache Buster: Enhanced Concept [page
1136])

If set to a non empty list of URLs, the AppCacheBuster
will be activated and will load component version info files
from the configured set of URLs (see Application Cache
Buster [page 1134]).

areas Type: string[]

Default value: null

URL: No

This configuration parameter defines UI areas that shall be
created in advance; use to create new UI areas and
sap.ui.getCore().getUIArea(id).destroy()
to delete existing UI areas at runtime.

autoAriaBodyRole Type: boolean

Default value: true

URL: No

Modifiable at runtime: No

Determines whether the framework automatically adds the
ARIA role application to the HTML body.

704 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Option Type

bindingSyntax Type: string

Default value:

● As of SAPUI5 1.28, in combination with data-sap-
ui-compatVersion="edge": complex

● default
The meaning of the default value 'default'
depends on the compatibility version
sapCoreBindingSyntax. If the compatibility
version is at least 1.28, the 'complex' binding syntax is
assumed, otherwise the 'simple' binding type. In other
words: applications that configured a general
compatibility version of 1.28 (or higher or 'edge'), will
automatically run with the 'complex' binding syntax.

URL: No

Modifiable at runtime: No

This configuration parameter defines whether the simple or
the complex binding syntax is used. The parameter only
affects bindings that are defined as strings, for example in
the constructor of a control, or when specifying a binding in
a declarative view, such as XML view or HTML view.

calendarType Type: gregorian | islamic | japanese |
persian (case-sentitive)

Default value: If there is no value defined, the actual value is
determined from the locale data for the configured locale.

URL: Yes

Modifiable at runtime: See API Reference:
sap.ui.core.Configuration.setCalendarTyp
e.

Defines the calendar type that is used for locale-dependent,
date-related features (for example, formatting or parsing
date and time).

debug Type: boolean or string

Default value: false

URL: Yes

Modifiable at runtime: No

If set to true, the debug sources are loaded; if the
bootstrap code is loaded from an optimized source, the

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 705

https://sapui5.hana.ondemand.com/#/api/sap.ui.core.Configuration/methods/setCalendarType
https://sapui5.hana.ondemand.com/#/api/sap.ui.core.Configuration/methods/setCalendarType
https://sapui5.hana.ondemand.com/#/api/sap.ui.core.Configuration/methods/setCalendarType

Option Type

bootstrap will be aborted and start anew from a debug
source.

You can also specify a comma-separated list as string
that contains all modules that should be loaded as debug
source.

Example: index.html?sap-ui-debug=sap/ui/
model/odata/v2/ will load all debug sources for all
modules of the OData V2 model. All others modules will be
taken from the preload (if preload is active).

You can use the following patterns:

● A trailing slash (/) means that the complete package
should be included (shortcut for /**/*)
Example: sap/ui/model/odata/v2/ loads
everything from the sap/ui/model/odata/v2/
package as debug source (also nested packages
sap/ui/model/odata/v2/**/*).

● **/ matches any package or sequence of packages
Example: **/v2/ loads any package named v2 as
debug sources like odata/v2, json/v2/ etc.

● * matches any part of a simple name
Example: sap/ui/model/* matches all files directly
contained in the model package, but not in nested
packages (for example, not v2 or v4)

 Note
You can also select the debug sources in the technical
information dialog. For more information, see Technical
Information Dialog [page 1322].

formatLocale Type: string

Default value: undefined

URL: Yes

Modifiable at runtime: No

This configuration parameter defines the locale used for
formatting purposes; the default values for the locale are
derived from the language.

frameOptions Type: string

Default value: default

URL: No

706 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Option Type

Modifiable at runtime: No

Frame options mode; for more information, see Frame
Options [page 1478]

frameOptionsConfig Type: object

Default value: undefined

URL: No

Modifiable at runtime: No

Advanced frame options configuration; for more
information, see Frame Options [page 1478]

ignoreUrlParams Type: boolean

Default value: false

URL: No

Modifiable at runtime: No

Security-relevant parameter that allows applications to
disable configuration modifications via URL parameters.

inspect Type: boolean

Default value: false

URL: Yes

Modifiable at runtime: No

If set to true, the sap-ui-debug.js module is
included and provides some supportability features

language Type: string

Default value: user language

URL: Yes

Modifiable at runtime: Yes, with restrictions.

This configuration parameter defines the language that
shall be used for localized texts, formatting, and so on. For
more information, see API Reference:
sap.ui.core.Configuration.setLanguage and
Identifying the Language Code / Locale [page 1269].

libs Type: string[]

Default value: []

URL: No

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 707

https://sapui5.hana.ondemand.com/#/api/sap.ui.core.Configuration/methods/setLanguage
https://sapui5.hana.ondemand.com/#/api/sap.ui.core.Configuration/methods/setLanguage

Option Type

Modifiable at runtime: Yes

This configuration parameter defines a list of libraries that
shall be loaded initially; use the loadLibrary() method
to load further libraries.

For more information, see: loadLibrary

logLevel Type: 0|1|2|3|4|5|6|NONE|FATAL|ERROR|
WARNING|INFO|DEBUG|ALL

Default value: ERROR

URL: Yes

Modifiable at runtime: Yes

This configuration parameter sets the log level to the given
value; for minified (productive) sources, the default level is
ERROR, for debug sources it is DEBUG. At runtime, you can
modify the log level by using the sap/base/
Log.setLevel method.

manifestFirst Type: boolean

Default value: false

URL: Yes

Modifiable at runtime: Yes, by using option with same name
in the sap.ui.component API

If set to true, the descriptor for a component is read and
evaluated first, before loading the component code
(Component.js).

modules Type: string[]

Default value: []

URL: No

This configuration parameter defines a list of JavaScript
modules that shall be loaded after the core has been
initialized.

noConflict Type: boolean

Default value: false

URL: No

Modifiable at runtime: No

708 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.core.Core/methods/loadLibrary

Option Type

If set to true, SAPUI5 forces jQuery into noConflict
mode.

noDuplicateIds Type: boolean

Default value: true

URL: Yes

Modifiable at runtime: No

If set to true, this configuration parameter enforces that
the same IDs are not used for multiple controls; we highly
recommend this check as duplicate IDs may cause
unforeseeable issues and side effects.

onInit Type: code or string

Default value: undefined

URL: No

Modifiable at runtime: No

This configuration setting defines code that has to be
executed after the initialization. The use of this parameter
with string value as (like "myinitfunction();") code
is no longer recommended as it requires eval and
therefore might conflict with stronger content security
policies. Either use it only in the form window["sap-ui-
config"].onInit = function() { ... } or use
the runtime API sap.ui.getCore().attachInit()
instead.

If you define a string, this can be a reference to a function
or a name of a module. Functions are resolved from the
global namespace (like "myapp.initFunction").
Modules are indicated by the prefix module: (like
"module:myapp/main/Module"). The module will
be loaded and executed after the initialization.

originInfo Type: boolean

Default value: false

URL: Yes

Modifiable at runtime: No

If set to true, additional information for text resources is
provided that allows to determine the origin of a translated
text on the UI

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 709

Option Type

preload Type: not specified, auto, sync, or async

Default value: auto

URL: No

Modifiable at runtime: No

This configuration parameter defines the loading behaviour
of the so-called preload files. They contain all modules of a
library. The contained modules are only loaded, but not
executed until they are used by the application.

The values are used as follows:

● When set to auto, SAPUI5 runtime automatically uses
preload=sync when the async bootstrap
configuration parameter is set to false
(async=false) or not set at all. The preload files
are loaded asynchronously in case async=true is
set.

● When set to sync, the preload files for the declared
libraries are loaded synchronously.

● When set to async, the preload files are loaded
asynchronously. However, we recommend to use the
async=true configuration parameter in the
bootstrap instead, because it switches more module/
related APIs to async including the loading behaviour
of the preload files.

● For any other value (for example blank), the preload
feature is deactivated and modules are loaded on
demand.

async Type: boolean

Default value: false

URL: Yes

Modifiable at runtime: No

This configuration setting enables the module loader to
load both, modules and library-preload files
asynchronously. Activating this feature requires intensive
testing and cooperation on application side to ensure a
stable and fully working application. In case you encounter
issues, or if you want to prepare your application in
advance, see Is Your Application Ready for Asynchronous
Loading? [page 689].

preloadLibCss Type: string[]

Default value: []

710 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Option Type

URL: Yes

Modifiable at runtime: No

This configuration setting specifies a list of UI libraries using
the same syntax as the libs property, for which the
SAPUI5 core does not include the library.css
stylesheet in the head of the page. If the list starts with an
exclamation mark (!), no stylesheet is loaded at all for the
specified libs. In this case, it is assumed that the application
takes care of loading CSS, for example, a manually merged,
single CSS file. Otherwise, the Core instructs the backend to
create a merged CSS for the specified libs. In both cases, if
the first libraries name is an asterisk (*), it will be expanded
to the list of already configured libraries.

 Note
The merge feature is currently only available for Java
and only for apps that include the additional backend
component resource-ext. Without the merge,
applications can include their own merged CSS file and
suppress the loading of the standard library.css.

resourceRoots Type: object

Default value: undefined

URL: No

Modifiable at runtime: With
sap.ui.loader.config({paths: ...}) , a map
can be used to define locations for resources, see
sap.ui.loader in the API reference.

To provide a URL location that is not overwritten by a
component later on, final can be set to true, for
example: {'url' : '/that/is/the/prefix/',
'final' : true}

For more information, see jQuery.sap.registerModulePath

rtl Type: boolean

Default value: false

URL: Yes

Modifiable at runtime: Yes, with restrictions. For more
information, see API Reference:
sap.ui.core.Configuration.setLanguage and

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 711

https://sapui5.hana.ondemand.com/#/api/jQuery.sap/methods/jQuery.sap.registerModulePath
https://sapui5.hana.ondemand.com/#/api/sap.ui.core.Configuration/methods/setLanguage
https://sapui5.hana.ondemand.com/#/api/sap.ui.core.Configuration/methods/setLanguage

Option Type

API Reference:
sap.ui.core.Configuration.setRTL.

If set to true, all controls are rendered in right-to-left (RTL)
mode; not yet determined automatically.

statistics Type: boolean

Default value: false

URL: Yes

Modifiable at runtime: No

Activates end-to-end traces and measurement of response
times For more information, see Interaction Tracking for
Performance Measurement [page 1382]

theme Type: string

Default value: base

URL: Yes

Modifiable at runtime: Yes

This configuration parameter defines the theme that shall
be used for the current page; you can change the theme at
runtime by calling
sap.ui.getCore().applyTheme().

Theme Root:

When the theme string contains an at-sign (@), anything
before the @ is assumed to denote the ID of the theme while
anything after the @ is assumed to represent the URL
location of the theme. To defend against XSS attacks, only
tthe server-relative part of the URL is used, any host or port
prefix will be ignored.

themeRoots Type: object

Default value: undefined

URL: No

Modifiable at runtime:
sap.ui.getCore().setThemeRoot()

This configuration parameter defines the location of
themes.

trace Type: boolean

Default value: false

712 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.core.Configuration/methods/setRTL
https://sapui5.hana.ondemand.com/#/api/sap.ui.core.Configuration/methods/setRTL

Option Type

URL: No

Modifiable at runtime: No

If set to true, this configuration parameter activates an
overlay div that contains a trace.

trailingCurrencyCode Type: boolean

Default value: true

URL: Yes

Modifiable at runtime: No

By default the currency codes are shown after the amount.
If set to false, the currency code will be shown as
configured by the locale-specific patterns of the Common
Locale Data Repository (CLDR).

uidPrefix Type: string

Default value: '--'

URL: No

Modifiable at runtime: No

Prefix to be used for automatically generated control IDs;
must be chosen carefully to avoid conflicts with IDs defined
by the application or DOM IDs.

versionedLibCss Type: boolean

Default value: false

URL: Yes

Modifiable at runtime: No

If set to true, the version parameters are included in
requests to the library theme resource (for example, the
parameter library.css?version=1.0.1&sap-ui-
dist-version=1.0.2 is added. version contains the
library version and sap-ui-dist-version the version
of the SAPUI5 distribution .

This applies to the following resources:

● library(-RTL).css (or any other variation)

● library-parameters.json

URLs within the CSS or parameters are not modified.

weinreId Type: string

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 713

Option Type

Default value:

URL: Yes

Modifiable at runtime: No

weinreServer Type: string

Default value:

URL: No

Modifiable at runtime: No

URL to a WEINRE server to be used for debugging
purposes; if set, SAPUI5 automatically includes the WEINRE
target modules.

whitelistService Type: string

Default value:

URL: No

Modifiable at runtime: No

URL to a whitelist service; see Whitelist Service [page 1478]

Experimental Options

The options listed in the table below are 'experimental'. They may be removed in future versions, or their
definition or behavior may change in an incompatible way. Experimental options are identified by the name
prefix xx-. Experimental configuration options are used for support scenarios where SAPUI5 development
needs the freedom to evolve supportability features over time. Others are related to experimental features
where the underlying feature still may change. When an experimental configuration option becomes mature,
the xx- prefix is removed from the definition. For compatibility reasons, the old name with the xx- prefix will
still be supported.

Option Type

xx-
component
Preload

 Note
This is an experimental feature and may be modified or removed in future versions.

Type: sync | async |off

Default value: same as preload

URL: Yes

Modifiable at runtime: No

714 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Option Type

Allows to suppress the preload of component resources (Component-preload.js). By default, the
component resources are automatically preloaded when preloads are active in general (e.g. when running
against the optimized SAPUI5 runtime and not running in debug mode). With this parameter, the preload
can be switched off without affecting the library preload. sync or async has no meaning, both are
accepted to be compatible with the library preload, but the code that creates a component decides
whether this happens synchronously or asynchronously. .

xx-
debugModu
leLoading

 Note
This is an experimental feature and may be modified or removed in future versions.

Type: boolean

Default value: false

URL: Yes

Modifiable at runtime: No

When set to true, the SAPUI5 module loading feature produces DEBUG output for every required,
executed, or required but already loaded module. This can help to analyse issues with dependency order,
and so on.

xx-
debugRend
ering

 Note
This is an experimental feature and may be modified or removed in future versions.

Type: boolean

Default value: false

URL: Yes

Modifiable at runtime: No

When set to true, some components of the SAPUI5 rendering system (RenderManager, UIArea)
create a far more verbose debug output for rendering steps, for example:

● Which controls have to be rendered?
● Who invalidated the control? (stacktrace)
● Was one rendering run sufficient, or have there been multiple runs?

xx-
libraryPr
eloadFile
s

 Note
This is an experimental feature and may be modified or removed in future versions.

Type: string[]

Default value: both

URL: Yes

Modifiable at runtime: No

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 715

Option Type

Allows to enforce the use of a specific preload file type:

● for all libraries: ?sap-ui-xx-libraryPreloadFiles=json
● for individual libraries (might be a comma separated list): ?sap-ui-xx-

libraryPreloadFiles=sap.m:none,sap.ui.layout:json
● for a combination of both: ?sap-ui-xx-

libraryPreloadFiles=both,sap.m:none,sap.ui.layout:js

Possible values for the file types are

● none (no preload at all)

● json (only try to load library-preload.json)

● js (only try to load library-preload.js)

● both (first try js, then json).

Any other value will be ignored. The default is both for all libraries.

xx-noless
 Note
This is an experimental feature and may be modified or removed in future versions.

Type: boolean

Default value: false

URL: Yes (only!)

Modifiable at runtime: No

Only useful at development time: when set to true, the browser-based compilation of LESS theming files
is suppressed, only the CSS that is created at built-time will be loaded.

xx-nosync
 Note
This is an experimental feature and may be modified or removed in future versions.

Type: boolean | warn

Default value: false

URL: Yes

Modifiable at runtime: No

When set to warn, any use of synchronous XHRs will be reported with a warning in the console. When set
to true, such calls will cause an error.

xx-
showLoadE
rrors

 Note
This is an experimental feature and may be modified or removed in future versions.

When executing a loaded module synchronously, some browsers do not provide a proper error location. By
setting this configuration parameter to true, SAPUI5 can be advised to load a failed script a second time,

716 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Option Type

but asynchronously with a script tag. This usually results in an easier to understand syntax error message
and a code location.

xx-
supported
Languages

 Note
This is an experimental feature and may be modified or removed in future versions.

Type: string[]

Default value: []

URL: Yes

Modifiable at runtime: No

With this option the client can be instructed to limit its backend requests for translatable texts to the
configured set of languages. An empty value or the value * allows any language, the value default limits
the requests to the set of languages that are delivered with SAPUI5.

xx-test-
mobile Note

This is an experimental feature and may be modified or removed in future versions.

Type: boolean

Default value: false

Modifiable at runtime: No

This configuration parameter activates support for mobile device-specific events, such as touch events.
This enables you to test standard SAPUI5 controls on mobile devices.

xx-
viewCache Note

This is an experimental feature and may be modified or removed in future versions.

Type: boolean

Default value: true

URL: Yes

Modifiable at runtime: No

Allows to disable the view caching, for example, during development. (See XML View Cache [page 797].)

xx-
waitForTh
eme

 Note
This is an experimental feature and may be modified or removed in future versions.

Type: boolean

Default value: false

URL: Yes

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 717

Option Type

Modifiable at runtime: No

If set to true, the first (initial) rendering of the application will be delayed until the theme has been loaded
and applied (until Core.isThemeApplied()). Helps to avoid FOUC (flash of unstyled content).

Compatibility Version Information

Compatibility version flags allow applications to react to incompatible changes in SAPUI5.

 Caution
The concept of compatibility versions has been abandoned as of version 1.28. Therefore, there will be no
new compatibility version flags in the future. If you start building a new application please set data-sap-
ui-compatVersion="edge" on your SAPUI5 bootstrap tag.

As described in the compatibility rules, changes to SAPUI5 features are compatible, see Compatibility Rules
[page 17]. In some cases, however, it may make sense to change the behavior of a feature, for example, to
change the default values or to use an optimized implementation and these changes may lead to
incompatibilities.

 Note
We recommend to adapt to new feature versions as soon as possible.

The compatibility version configuration works as follows:

● A version flag is introduced if a feature change is incompatible.
● The version flag has to be defined in the SAPUI5 bootstrap tag either globally (data-sap-ui-

compatVersion or individually for each feature (for example data-sap-ui-compatVersion-xyz).
Example with compatVersion "1.18"

<script id="sap-ui-bootstrap" type="text/javascript"
 src="resources/sap-ui-core.js"
 data-sap-ui-theme="sap_belize"
 data-sap-ui-libs="sap.m"
 data-sap-ui-compatVersion="1.18"
 data-sap-ui-compatVersion-xyz="1.16"
 > </script>

● If no version is defined, the default behavior of the feature applies.
● If an explicit version is specified, the behavior of the specified version is applied.
● If a version edge is specified, the newest behavior of the feature is applied.

718 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

● A fallback mechanism is implemented. The following table is an example of possible configuration options
for feature "xyz":

data-sap-ui-compatVersion
data-sap-ui-compatVersion-
xyz Default feature xyz

Resulting compatibility
version

-- -- 1.14 1.14

1.16 -- 1.14 1.16

-- 1.16 1.14 1.16

1.18 1.16 1.14 1.16

edge .. 1.14 1.18

SAPUI5 supports the following compatibility version flags:

Flag Description

data-sap-ui-compatVersion-
flexBoxPolyfill

The flexBoxPolyfill for Internet Explorer 9 was
deprecated in 1.16 due to functional deficiencies. When the
compatibility version is 1.16 or higher, the polyfill is not
active at all. Otherwise, the buggy implementation behaves
as before, so that it still works in existing applications.

Default value: 1.14

data-sap-ui-compatVersion-
sapMeTabContainer

The TabContainer was deprecated in 1.15. When the
compatibility version is 1.16 or higher, an error is logged to
the console indicating that sap.m.IconTabBar should
be used instead.

Default value: 1.14

data-sap-ui-compatVersion-
sapMeProgessIndicator

--

data-sap-ui-compatVersion-
sapMGrowingList

--

data-sap-ui-compatVersion-
sapMListAsTable

--

data-sap-ui-compatVersion-
sapMDialogWithPadding

By default, the content area of Dialog had paddings. To
make the padding consistent with other popups, the
padding is removed for compatibility versions 1.16 or higher.
If the padding is still needed inside the content area of
Dialog, add the CSS style class
sapUiPopupWithPadding to Dialog by calling the
addStyleClass function.

Default value: 1.14

data-sap-ui-bindingSyntax This configuration parameter defines whether the simple or
the complex binding syntax is used. The parameter only

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 719

Flag Description

affects bindings that are defined as strings, for example in
the constructor of a control, or when specifying a binding in
a declarative view, such as XML view or HTML view.

For versions lower than 1.28, the default value is default
which only has very limited features. As of version 1.28, the
default is complex.

Related Information

Compatibility Rules [page 17]

Structuring: Components and Descriptor

SAPUI5 provides faceless components for services that deliver data from the back end system, and UI
components that extend components and add rendering functionality. The descriptor provides a central,
machine-readable and easy-to-access location for storing metadata associated with an application, an
application component, or a library.

Components

Components are independent and reusable parts used in SAPUI5 applications.

An application can use components from different locations from where the application is running. Thus,
components can be developed by different development teams and be used in different projects. Components
also support the encapsulation of closely related parts of an application into a particular component. This
makes the structure of an application and its code easier to understand and to maintain.

 Note
Constraints due to cross-origin issues also apply to components.

SAPUI5 provides the following two types of components:

● Faceless components (class: sap.ui.core.Component)
Faceless components do not have a user interface and are used, for example, for a service that delivers
data from a back-end system.

● UI components (class: sap.ui.core.UIComponent)
UI components extend components and add rendering functionality to the component. They represent a
screen area or element on the user interface, for example, a button or a shell, along with the respective
settings and metadata. sap.ui.core.UIComponent extends sap.ui.core.Component and adds
rendering functionality to the component.

720 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

The sap.ui.core.Component class is the base class for UI and faceless components and provides the
metadata for both types of components. To extend the functionality, components can inherit from their base
class or from another component.

Components are loaded and created via the component factory function sap.ui.component. You can either
pass the name of the component or the URL of the descriptor file (manifest.json) to load it via the
descriptor, see Manifest First Function [page 735]. We recommend loading the component using the
descriptor (if available) - it improves performance during the initial load since the loading process can be
parallelized and optimized.

After loading the descriptor, the component factory can load the dependencies (SAPUI5 libraries and other
dependent components) in parallel next to the component preload, and also models can be preloaded.

Structure of a Component

A component is organized in a unique namespace, the namespace of the component equals the component
name.

Basically, a component consists of the component controller (Component.js) and a descriptor
(manifest.json). Only the component controller is mandatory, but we recommend to also use the descriptor
file. The descriptor then contains the component metadata, and also expresses the component dependencies
and configuration (see Descriptor for Applications, Components, and Libraries [page 734]). All required and
optional resources of the component have to be organized in the namespace of the component.

 Note
Optional resources are, for example, CSS, js, or i18n files, views, and controllers.

The following figure gives an example of a component folder structure.

The ComponentContainer control wraps a UI component. You use the ComponentContainer control in the
SAPUI5 control tree in the same way as any other control.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 721

Differentiation to Other Concepts in SAPUI5

The following list explains how other concepts used in SAPUI5 are distinguished from the SAPUI5 components
concept:

● Composite controls
Both concepts provide a set of controls behind a single interface. Composite controls are intended for
reuse within control development and allow to include existing controls in a complex control whereas
components are intended for reuse in application development.

● UI library
The UI library is the deployable unit around controls: Controls are never deployed standalone, but as part of
a control library. Components, however, are self-contained and should not be used to deploy controls.

● Notepad control
A notepad control is another way to define a control. Notepad controls have all the characteristics of a
control.

● MVC
The MVC concept allows to define views and controllers and, thus, to structure and reuse parts within an
application. As MVC can only be deployed separately and has no means to define dependent styles or
scripts that are loaded together with a view, this concept is of limited use across different applications.

Related Information

Descriptor for Applications, Components, and Libraries [page 734]
API Reference: sap.ui.core.Component

Component.js File

The Component.js file is the component controller and provides the runtime metadata and the component
methods.

A component controller is defined with the asynchronous module definition (AMD) syntax. In the
sap.ui.define statement; the required dependencies can be declared which can be used in the controller.

To create an SAPUI5 component, you extend either the Component or UIComponent base class and pass the
name of the module (namespace + .Component).

sap.ui.define(['jquery.sap.global', 'sap/ui/core/UIComponent'], function(jQuery, UIComponent) {
 "use strict"; var Component = UIComponent.extend("samples.components.sample.Component", { metadata : {
 manifest : "json"
 }
 });
 return Component; });

The metadata of the component controller should be used to declare the runtime metadata only (which are the
properties, aggregations, associations and events).

722 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.Component.html

We recommend to define the component metadata externally in the descriptor (manifest.json), because
the descriptor for components is mandatory for modern components and allows performance optimizations.

Related Information

Using and Nesting Components [page 726]

Component Metadata

The component class provides specific metadata for components by extending the ManagedObject class. The
UIComponent class provides additional metadata for the configuration of user interfaces or the navigation
between views.

 Note
With the introduction of the descriptor for applications, components, and libraries, we recommend to
migrate the component metadata to the descriptor. The descriptor is inspired by W3C’s Web Application
Manifest and provides comprehensive information for applications, components and libraries. For more
information, see Descriptor for Applications, Components, and Libraries [page 734]. The metadata
property manifest must be set to json to indicate that the manifest.json file should be loaded and
used:

 sap.ui.core.Component.extend("some.sample.Component", {
 "metadata": {
 "manifest": "json"
 } });

You can also define the descriptor inline by just providing an object. However, we do not recommend this
because this would prevent that the descriptor can be analyzed by tools.

The metadata defined in Component.js is common for faceless components and UI components. The
following parameters are available:

● manifest: Specifies if your component uses the descriptor
● abstract: Specifies if your component class is an abstract class that serves as a base for other

components
● version: Version of your component; this parameter belongs to the design time metadata and is currently

not used; it may be used in the future in the design time repository
● properties, aggregations, associations, and events: Define these for your component in the same

way as for a control. For more information, see Defining the Control Metadata [page 2188].
● library: Specifies the library to which your component belongs to

The following properties are deprecated and no longer needed if you use the descriptor:

● includes: Array of strings containing the paths to CSS and JavaScript resources for your component; will
be added to the header of the HTML page and loaded by the browser. The resources will be resolved
relative to the location of Component.js.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 723

● dependencies: Used to specify all external dependencies, such as libraries or components. Like the
includes for resources that are added to the application’s HTML, the dependencies are loaded by SAPUI5
core before the component is initialized. Everything that is referenced here can be used in your component
code right from the start. Specify here external dependences such as libraries or components, that will be
loaded by SAPUI5 core in the initialization phase of your Component and can be used after it.
○ libs: Path to the libraries that should be loaded by SAPUI5 core to be used in your component
○ components: Full path to the components that should be loaded by SAPUI5 core to be used in your

component
○ ui5version: Minimum version of SAPUI5 that the component requires; it helps to be ensure that the

features of SAPUI5 runtime used in this component are available. As SAPUI5 currently does not
enforce the use of the correct version, it is only used for information purposes.

● config: Static configuration; specify the name-value pairs that you need in the component
● extensions: Extensions for components and views, see Extending Apps [page 2143]

○ sap.ui.viewExtensions: Used for providing custom view content in a specified extension point in
the standard application

○ sap.ui.viewModifications: Used for overriding control properties in the standard application
○ sap.ui.viewReplacements: Used for replacing a standard view with a custom view
○ sap.ui.controllerExtensions: Used for extending a controller in a delivered standard application

with a custom controller
○ sap.ui.controllerReplacements: Used for replacing a controller in a delivered standard

application with a custom controller

Example for metadata in Component.js:

 sap.ui.core.Component.extend("some.sample.Component", {
 "metadata": {
 "manifest": "json", // Specifies that your Component class uses the
descriptor via the manifest.json file
 "abstract": true, // Specifies if your Component class is an abstract
one that serves as a base for your other components
 "library": "sap.ui.core", // Specifies the library the component belongs
to
 "version": "1.0", // Version of your Component
 "properties": { // Defined for components in the same way as for a
control or view
 "config": "any"
 }
 } });

In addition to the common metadata for components, the UIComponent class provides the following metadata
for UI compnents:

● publicMethods: Definition of public methods for your component
● aggregations: Defines aggregations for your component

The following properties are deprecated and no longer needed if you use the descriptor:

● rootView: Can be the view name as string or the view configuration object
● routing: Provides the default values for all views

○ config: Default values for routing that are applied, if no setting is specified by a route
○ viewType: View type of the view that is created, for example XML, JS or HTML
○ viewPath: Prefix that is preceding the view

724 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

○ targetParent: ID of the view in which the targetControl is searched
○ targetControl: ID of the control that contains the views
○ targetAggregation: Name of the aggregation of the targetControl that contains views
○ clearTarget: Boolean; if set to true, the aggregation should be cleared before adding the View

to it
○ routes: Contains the configuration objects

○ name: Mandatory parameter used for listening or navigating to the route
○ pattern: String that is matched against the hash. The {} means this segment of the URL is passed

to a handler with the value it contains
○ view: Name of the view that is created

Example for UI component metadata:

 sap.ui.core.UIComponent.extend("some.sample.UIComponent", {
 "metadata": {
 "publicMethods": ["render"],
 "aggregations": {
 "rootControl": {
 "type": "sap.ui.core.Control", multiple: false, visibility:
"hidden"
 }
 }
 } }),

Properties Section in Component Metadata

You can add a properties section to the metadata for all properties that can adopt different values during
runtime. The getters and setters for these properties are generated automatically, but you can overwrite them
if you require additional functionality. The following example contains two properties at the end of the
metadata section.

 sap.ui.core.UIComponent.extend("samples.components.shell.Component", {
 "metadata": {
 "abstract": true,
 "version": "1.0",
[… omitting some lines to make the example shorter]
 "properties": {
 "appTitle": {
 "name":"appTitle",
 "type":"string",
 "defaultValue":"Default Value that will be replaced with
something meaningful through the setter for this property"
 },
 "someOtherProp": {
 "name":"myProperty",
 "type":"string",
 "defaultValue":"Some text"
 }
 }
 } });

The getters and setters for these properties are generated automatically and can be overwritten if additional
functionality is required.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 725

Methods Controlling the Initial Instantiation

SAPUI5 provides two methods for the initial instantiation of the component.

You can use the following methods:

● init
Overwrite this method for example to connect the model between the control and the component. This
method is not called by the application directly, but called automatically when you create the instance of
the component. The routing instance needs to be initialized here, see Initializing and Accessing a Routing
Instance [page 1081].

● createContent
By default, the UI component creates the sap.ui5/rootView declared in the manifest as the root control,
see Descriptor Dependencies to Libraries and Components [page 778].
Alternatively, you can overwrite this method and programmatically create the root control:

sap.ui.define(["sap/ui/core/UIComponent", "sap/m/Label"],
function(UIComponent, Label) { return UIComponent.extend("my.app.Component", {
 metadata: {
 manifest: "json"
 },
 createContent: function () {
 return new Label({ text: "Hello!" });
 }
 }); });

 Note
The configuration properties for a component, that is, the settings given in the constructor or the
sap.ui.core.Component.create or sap.ui.component call, are not available in the Init and
createContent methods. Use componentData instead. For more information, see
sap.ui.core.Component.create.

You can also overwrite the getters and setters for component properties in the Component.js file.

Using and Nesting Components

You can use a ComponentContainer to wrap a UIComponent and reuse it anywhere within the SAPUI5
control tree. With the ComponentContainer you can nest components inside other components.

Component Containers

To render UI components, you must wrap them in a sap/ui/core/ComponentContainer. You cannot use
the placeAt method to place UI components directly in a page. A ComponentContainer carries specific
settings and also contains the lifecycle methods of a regular control, such as the onBeforeRendering and

726 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.core.Component/methods/sap.ui.core.Component.create

onAfterRendering methods. The lifecycle methods of the ComponentContainer are forwarded to the
corresponding methods of the nested component.

The ComponentContainer separates the application and the nested component. The control tree and data
binding of the inner component are decoupled from the outer component.

If you want to share data with the inner component, you can use the propagateModel property on the
ComponentContainer to forward models and binding contexts to the inner component.

You load and create a UIComponent in one of the following ways:

● Load the component asynchronously in "manifest first" mode by specifying the component name:

 // "ComponentContainer" required from module "sap/ui/core/
ComponentContainer"
 var oContainer = new sap.ui.core.ComponentContainer({
 name: "samples.components.sample",
 manifest: true,
 async: true
 });
 oContainer.placeAt("target");

● Load the component asynchronously before creating the container:

 // "Component" required from module "sap/ui/core/Component" // "ComponentContainer" required from module "sap/ui/core/
ComponentContainer"
 Component.load({
 name: "samples.components.sample",
 }).then(function(oComponent) {
 var oContainer = new ComponentContainer({
 component: oComponent
 });
 oContainer.placeAt("target"); });

● Load the component asynchronously with "manifest first" mode by specifying the URL of the descriptor
(manifest.json):

 // "Component" required from module "sap/ui/core/Component" // "ComponentContainer" required from module "sap/ui/core/
ComponentContainer"
 Component.load({
 manifest: "samples/components/sample/manifest.json",
 }).then(function(oComponent) {
 var oContainer = new ComponentContainer({
 component: oComponent
 });
 oContainer.placeAt("target"); });

 Note
You can use the lifecycle property to determine whether the container or your application code will take
care of destroying the component.

See ComponentContainer for a detailed explanation of the lifecycle property and its possible values.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 727

https://sapui5.hana.ondemand.com/#/api/sap.ui.core.ComponentContainer%23controlProperties

Using a Component Container to Load Components from a Different Location

You may want to load components from a location that is different from the location where the SAPUI5 libraries
are located or a location that is not registered as a resource root in the SAPUI5 bootstrap.

You can do so by defining the URL of the additional components as a setting for the component factory or the
component container.

● Loading the component asynchronously before creating the container:

 // "Component" required from module "sap/ui/core/Component" // "ComponentLifecycle" required from module "sap/ui/core/
ComponentLifecycle"
 Component.load({
 name: "samples.components.sample",
 url: "./myComponents"
 }).then(function(oComponent) {
 var oContainer = new ComponentContainer({
 component: oComponent
 });
 oContainer.placeAt("target"); });

● Loading the component asynchronously when creating the container:

 // "ComponentContainer" required from module "sap/ui/core/
ComponentContainer" // "coreLibrary" required from module "sap/ui/core/library"
 var oContainer = new ComponentContainer({
 name: "samples.components.sample",
 lifecycle: coreLibrary.ComponentLifecycle.Container,
 async: true,
 url: "./myComponents"
 }); oContainer.placeAt("target");

Here you use the lifecycle property to make sure that the component is destroyed when the container
is destroyed.

Reuse Components

To be able to reuse a component, the component has to be declared in the componentUsages section of the
manifest.json descriptor file as follows:

"sap.ui5": { "componentUsages": {
 "myreuse": {
 "name": "sap.reuse.component",
 "settings": {},
 "componentData": {},
 "lazy": false
 }
 } }

The reuse component is declared via its componentUsage ID as the key and the supported values are name
(name of the component), settings, componentData and lazy. The values defined in the manifest.json
file will be merged with the values specified in the instance-specific component factory function An exception

728 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

to this is the lazy flag which is an indicator for the Component factory function how to handle the dependency.
Allowed values in the instance-specific factory function are settings, componentData, async, and id.

The lazy flag is used to indicate whether the Component should be already preloaded or not. By default, the
Components defined in the usage are lazy. A Component preloaded with the flag lazy: false has to be
explicitly maintained in the manifest.json.

For more information, see Descriptor for Applications, Components, and Libraries [page 734].

If you want to exchange the reuse component, for example, to extend an app, you simple exchange the reuse
component in the manifest.json descriptor file.

The application index can also access the information in the manifest.json file and optimize the
determination of dependencies when loading components.

Reuse components that are embedded by a library must have an explicit entry in the manifest.json in the
sap.app/embeddedBy section:

"sap.app": { "embeddedBy": "../" }

Under embeddedBy, you specify the relative path to the namespace root of the library. This ensures that tools
like the application index can discover embedded libraries and won't include them in the transitive scope
(otherwise you would get unwanted 404 requests). Additionally tools should declare a library dependency to
the embedding library. This will ensure that the library containing the component preload will be loaded
automatically instead of the trying to load the component preload by itself.

Instantiation
To instantiate the reuse component in the current component, you use an instance-specific factory function.
The factory function requires at least the componentUsage ID as a parameter (simplified usage) or a
configuration object that contains the usage and optionally settings and componentData (extended
usage).

● Example for simplified usage (Async):

this.createComponent("myreuse").then(function(oComponent) { // ... });

● Example for extended usage (Async):

var oComponentPromise = this.createComponent({ usage: "myreuse"
 settings: {},
 componentData: {},
 async: true });

Declarative Usage
You can also declare a reuse component directly, for example, in your JavaScript or XML code. In an XML view,
the local service factory can only be used via the ComponentContainer that has a superordinate component.

<View ...> <ComponentContainer usage="myreuse" async="true"></ComponentContainer> </View>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 729

Migration
If you have been reusing components before we introduced the reuse feature described above, we recommend
that you refactor your code and implement the new logic.

If you use a component that is embedded in a library, and the application declares a dependency to that library,
remove the dependency to the library from the embedding application. Make sure that the application code
does not contain any direct references to the component or the embedding application.

Old Code Recommended Code

manifest.json with dependency declaration only:

{ "sap.ui5": {
 "dependencies": {
 "components": {
 "sap.reuse.component": {}
 }
 }
 } }

manifest.json with declaration of reuse components:

{ "sap.ui5": {
 "dependencies": {
 "components": {
 "sap.reuse.component": {}
 }
 }, "componentUsages": {
 "reuse": {
 "name": "sap.reuse.component",
 "lazy": false
 }
 } } }

 Note
As of version 1.56 it is sufficient to declare the compo
nent usage and to indicate whether the component
should be lazy loaded or not. The declaration of the
component dependencies can and should be avoided in
this case.

Component.js with nested reuse component:

createContent: function() {
 var oReuseComponent =
sap.ui.component({
 "name": "sap.reuse.component"
 });
 }

Component.js that loads the reuse component

createContent: function() { var oReuseComponentPromise =
this.createComponent({ /* this =
Component instance */
 "usage": "reuse"
 }); }

Related Information

Enabling Routing in Nested Components [page 1086]
API Reference: sap.ui.core.ComponentContainer
API Reference: sap.ui.core.ComponentContainer.setLifecycle

730 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.ComponentContainer.html
https://sapui5.hana.ondemand.com/#/api/sap.ui.core.ComponentContainer/methods/setLifecycle

Descriptor for Applications, Components, and Libraries [page 734]

Declarative API for Initial Components

The declarative API enables you to define the initially started component directly in the HTML markup.

Using the ComponentSupportModule

With the declarative sap/ui/core/ComponentSupport API it is possible to define the initially started
component directly in the HTML markup instead of the imperative way using JavaScript. The declarative
ComponentSupport is not activated by default, but must be enabled via the bootstrap:

<!-- index.html --> <script id="sap-ui-bootstrap"
 src="/resources/sap-ui-core.js"
 ...
 data-sap-ui-oninit="module:sap/ui/core/ComponentSupport"
 ...> </script>

This module scans the DOM for HTML elements containing a special data attribute named data-sap-ui-
component. All DOM elements marked with this data attribute will be regarded as container elements into
which a sap/ui/core/ComponentContainer is inserted. Additional data attributes are then used to define
the constructor arguments of the created ComponentContainer instance, e.g. data-name for the name of
the component which should be instantiated:

<!-- index.html --> <body id="content" class="sapUiBody sapUiSizeCompact" role="application">
 ...
 <div data-sap-ui-component
 data-id="container"
 data-name="sap.ui.core.samples.formatting"
 ...
 data-handle-validation="true"
 ...>
 </div>
 ... </body>

Declarative Configuration of ComponentContainer

As HTML is case-insensitive, in order to define a property with upper-case characters, you have to "escape"
them with the hyphen character. This is similar to CSS attributes. In the following sample the
handleValidation argument of the ComponentContainer constructor is used:

 <div data-sap-ui-component ... data-handle-validation="true" ...></div>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 731

Asynchronouos loading with ComponentSupport
The ComponentSupport module enforces asynchronous module loading of the component with "manifest
first". This means, that the manifest.json file is loaded before evaluating the component to optimize loading
behavior. In this way libraries and other dependencies can be loaded asynchronously and in parallel. To achieve
this, the following settings for the ComponentContainer are applied by default:

● async {*boolean*} (forced to true)
● manifest {*boolean|string*} (forced to true if no string is provided to ensure manifest first)
● lifecycle {*sap.ui.core.ComponentLifecycle*} (defaults to Container)
● autoPrefixId {*boolean*} (defaults to true)

For details on the manifest, see Descriptor for Applications, Components, and Libraries [page 734].

See also ComponentSupport and ComponentContainer for more information.

Delay the Initial Component Instantiation

In some cases, the component initialisation must wait until all pre-required modules have been loaded. If this is
the case, the ComponentSupport module needs to be executed later, and you have to replace the onInit
module execution in the bootstrap with a custom module:

<!-- index.html --> <script id="sap-ui-bootstrap"
 src="resources/sap-ui-core.js"
 data-sap-ui-onInit="module:sap/ui/demo/myBootstrap"> <!-- Execute custom
module on init --> </script>

The custom module can load dependencies and execute code before activating the ComponentSupport
module:

 // sap/ui/demo/myBootstrap.js
sap.ui.define(["sap/ui/demo/MyModule"], function(MyModule) {
 // Execute code which needs to be executed before component initialization
 MyModule.init().then(function() {
 // Requiring the ComponentSupport module automatically executes the
component initialisation for all declaratively defined components
 sap.ui.require(["sap/ui/core/ComponentSupport"]);
 }); });

732 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/module:sap/ui/core/ComponentSupport
https://sapui5.hana.ondemand.com/#/api/sap.ui.core.ComponentContainer

Handling IDs in UI Components

Components are usually used with a root view and in this case, the component handles the prefixing of IDs of
views, elements, or controls, with the component ID.

This works similar to the prefixing of control IDs in XML views, see Support for Unique IDs [page 814].
However, if you implement your own createContent function, you need to handle this yourself. The following
two options exist:

● Set the sap.ui5/autoPrefixId attribute in the manifest.json file to true. This is the easiest option.
● Use the createId function of the UI component to prefix the respective ID of a view, element, or control

yourself.

Use the byId function of the UI component to retrieve the views, controls, and elements that have been
created in a UI component.

Advanced Concepts for SAPUI5 Components

Advanced concepts for components include routing and navigation and component data as well as the event
bus.

The following advanced concepts for components exist.

● Routing and navigation
UI components support the routing and navigation concept, see Initializing and Accessing a Routing
Instance [page 1081].

● Extensibility and customizing
The extensibility and customizing concept allows you to extend and modify components in order to replace
and extend the views and controllers as well as to modify the views. A customization can be performed, for
example, on a custom application that extends a delivered standard application.
For more information, see Extending Apps [page 2143]

● Component data
The JSON object ComponentData contains any initial values of parameters that can be used in the
createComponent() method. Component data are already available for use in the createComponent()
method, but not the parameters. The parameters are available in the onBefore, the onAfterRendering
and the setter methods of the parameters.
Component data is provided from outside and can be configured as desired. Configuration data is static
and defined in the component. To change or extend the configuration, the component needs to be
extended and a new configuration has to be created and merged with the configuration in the parent
component.

● Event bus of the component
The local event bus belongs to the component and can be used by all children of this component. Once a
component instance is destroyed, the listeners registered in the event bus are destroyed automatically. For
more information, see API Reference for the getEventBus method of sap.ui.core.Component.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 733

https://sapui5.hana.ondemand.com/#/api/sap.ui.core.Component/methods/getEventBus

Descriptor for Applications, Components, and Libraries

The descriptor for applications, components, and libraries is inspired by the Web Application Manifest concept
introduced by the W3C. The descriptor provides a central, machine-readable and easy-to-access location for
storing metadata associated with an application, an application component, or a library.

The data is stored in json format in the manifest.json file. The developer creates the file with attributes in
different namespaces. It contains, for example, the app ID, the version, the data sources used, along with the
required components and libraries. The existence of the manifest.json file must be declared in the
component metadata, which is then delivered as part of the application archive. After delivery, the file is read-
only.

General Information

Every new version of SAPUI5 implies a new version of the app descriptor. In the following table you can see how
the SAPUI5 version is related to the descriptor version and the value of _version.

Table 11: AppDescriptor Release and SAPUI5 Version

AppDescriptor Release SAPUI5 Version _version

Version 2 >=1.30 1.1.0

Version 3 >=1.32 1.2.0

Version 4 >=1.34 1.3.0

Version 5 >=1.38 1.4.0

Version 6 >=1.42 1.5.0

Version 7 >=1.46 1.6.0

Version 8 >=1.48 1.7.0

Version 9 >=1.50 1.8.0

Version 10 >=1.52 1.9.0

Version 11 >=1.54 1.10.0

Version 12 >=1.56 1.11.0

Version 13 >=1.58 1.12.0

Version 14 >=1.61 1.13.0

Version 15 >=1.62 1.14.0

Version 16 >=1.66 1.15.0

734 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

AppDescriptor Release SAPUI5 Version _version

Version 17 >=1.70 1.16.0

Version 18 >=1.71 1.17.0

For more information on the new fields introduced in each version, check out Migration Information for
Upgrading the Descriptor File [page 775]

Manifest First Function

The component factory function Component.create, as introduced with 1.58, loads the manifest.json by
default before the component instance is created. With this, you can preload the dependencies (libraries and
components) and, thus, improve the performance for loading the component. The preload is also available for
models, which can be flagged for preload during component loading.

The manifest option allows to configure when and from where the descriptor is loaded:

● Default, equivalent to setting manifest to true.

// "Component" required from module "sap/ui/core/Component" // load manifest.json from default location and evaluate it before creating
an instance of the component
Component.create({
 name: "sap.my.component", });

● Specify an alternative URL as parameter for manifest for the component factory function:

// "Component" required from module "sap/ui/core/Component" // load via manifest URL
Component.create({
 name: "sap.my.component",
 manifest: "any/location/sap/my/component/manifest.json" });

● Suppress loading the manifest by setting the manifest flag to false, for example, when a legacy
component does not have one:

// "Component" required from module "sap/ui/core/Component" // load component without loading a manifest first
Component.create({
 name: "sap.my.component",
 manifest: false });

 Note
When you enable manifest, all legacy component metadata needs to be migrated into the descriptor for
applications/components. Only those entries in the descriptor for components will be respected by the
component and all other entries will be ignored.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 735

https://sapui5.hana.ondemand.com/1.62.0/#/api/sap.ui.core.Component/methods/sap.ui.core.Component.create

Descriptor Content

 Note
You can find an example manifest.json file with sample code for the descriptor content here [page
749].

The content for the descriptor is contained in the following namespaces: without, sap.app, sap.ui,
sap.ui5, sap.platform.abap, sap.platform.hcp and sap.fiori. The following tables show the
application-specific attributes provided by the respective namespaces:

No Namespace
Table 12: Attributes in the without namespace

Attribute Description

start_url Start page of your app, if available

sap.app
Table 13: Attributes in the mandatory sap.app namespace

Attribute Description

id Mandatory attribute: Unique identifier of the app, which
must correspond to the component name

 Note
The ID must not exceed 70 characters. It must be
unique and must correspond to the component name.
This is checked in consistency check reports, for exam
ple, for the SAPUI5 application index which returns an
error in case of duplicate IDs, see SAPUI5 Application In
dex [page 1525].

type Possible values:

● application
● component
● library
● card

736 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Attribute Description

i18n Relative URL to the properties file that contains the text
symbols for the descriptor; default: "i18n/
i18n.properties"

 Note
The path to the i18n file must not exceed 100 charac
ters.

applicationVersion Mandatory version of the app (semantic version with the fol
lowing format major.minor.patch)

embeds Array of relative paths to the nested manifest.json files;
attribute is mandatory if a nested manifest.json exists

embeddedBy Relative path back to the manifest.json file of an em
bedding component or library; attribute is mandatory for a
nested manifest.json

title Mandatory attribute: The entry is language-dependent and
specified via {{…}} syntax

subTitle Language-dependent entry for a subtitle; specified via
{{...}} syntax

shortTitle Short version of the title. Language-dependent entry has to
be specified via {{...}} syntax

info Needed for CDM (Common Data Model) conversion of tiles.
Language-dependent entry has to be specified via
{{...}} syntax

description Description; language-dependent entry that is specified via
{{…}} syntax

tags Contains the following:

● An array of language-dependent keywords that are
specified via {{…}} syntax, for example
"keywords":
["{{keyWord1}}","{{keyWord2}}"].

● An array of technicalAttributes (general techni
cal attributes, for example, technical catalog, upper
case and language-independent attributes).

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 737

Attribute Description

ach Application component hierarchy (SAP's component names
for bug reports); attribute is mandatory for SAP apps, but is
not used so far for apps developed outside SAP

dataSources Unique key/alias for specifying the used data sources; con
tains the following information:

● uri: Mandatory relative URL in the component; takes
embeddedBy into account, if filled, or the server abso
lute of the data source, for example "/sap/opu/
odata/snce/PO_S_SRV;v=2/"

● type: OData (default)or ODataAnnotation
or INA or XML or JSON

● settings: Data source type-specific attributes (key,
value pairs), which are:

○ odataVersion: 2.0 (default), 4.0

○ localUri: Relative URL to local metadata docu
ment or annotation uri

○ annotations: Array of annotations which refer
ences an existing data source of type "ODataAnno
tation" under sap.app/dataSources

○ maxAge: Indicates the number of seconds the cli
ent is willing to accept with regard to the age of the
data that is requested

cdsViews Array of directly used CDS views

This attribute is optional and only added if used via INA pro
tocol directly, not if used via OData service.

offline Indicates whether the app is running offline; default is
false (online)

sourceTemplate If an app has been generated from a template, this attribute
is filled automatically by the generation tool (SAP Web IDE):

● id: Mandatory ID of the template from which the app
was generated

● version: Mandatory version of the template from
which the app was generated

738 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Attribute Description

openSourceComponents Array of directly used open source libraries for documenta
tion purposes; not used when open source libraries are used
via SAPUI5 capsulation

● name: Mandatory name of the open source component

● version: Required if the open source component is
part of the app; not required if the open source compo
nent is part of the SAPUI5 dist layer

● packagedWithMySelf: Indicates if the open source
component is part of the app (true) or not (false)

provider Name of the provider that owns the application. Current
supported enum value is sfsf.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 739

Attribute Description

crossNavigation Cross-navigation for specifying inbounds and outbounds

● scopes: Scope of a site
sapSite

● inbounds: Unique key or alias to specify inbounds
(mandatory); contains:

○ semanticObject (mandatory)

○ action (mandatory)

○ icon: Used to overwrite sap.ui/icons/icon
○ title: Used to overwrite sap.app/title (lan

guage-dependent entry to be specified via {{...}}
syntax)

○ subTitle: Used to overwrite sap.app/
subTitle (language-dependent entry to be
specified via {{...}} syntax)

○ shortTitle: Used to overwrite sap.app/
shortTitle (language-dependent entry to be
specified via {{...}} syntax)

○ info: Language-dependent entry to be specified
via {{...}} syntax

○ displayMode: <ContentMode or
HeaderMode> Display mode for an inbound
which specifies what kind of tile is displayed. A
static tile can be displayed in content mode or
header mode. The tile in header mode is a text only
tile without an icon which allows longer title and
subtitle.

○ hideLauncher (true/false): Indicates that
an inbound must not be represented as a tile/link

○ indicatorDataSource; specifies the data
source; contains:

○ dataSource: reference to sap.app/
dataSources (mandatory)

○ path: Relative path to sap.app/
dataSources uri (mandatory)

○ refresh: Defines the refresh interval

○ deviceTypes: Contains objects with device
types on which the app is running; if empty, use the
default from sap.ui/deviceTypes; the follow
ing device types can be defined (true/false):

○ desktop
○ tablet

740 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Attribute Description

○ phone
○ signature: Specifies the signature; contains:

○ parameters (mandatory): Contains param
eter names with the following information:

○ required (true/false)

○ filter: Represents the filter only if the
input parameter matches the filter; with a
mandatory value and format attribute
("plain", "regexp", "reference")

○ defaultValue: Specifies the default
value; has mandatory attributes value
(depending on the format this is a verba
tim default value) and format ("plain",
"reference"). If the format is "refer
ence", the syntax for the value is as fol
lows:
"UserDefault.<parameterName>
" for single-value parameters,
"UserDefault.extended.<param
eterName>" for sets of values and
value ranges, or
"User.env.<parameterName>" for
supported user-specific settings.

○ renameTo: Used for parameter mapping
to specify the parameter name in legacy
ABAP applications, for example,
RF05L_BUKRS for the CompanyCode
parameter

○ launcherValue: Represents a value to
be used when creating an tile intent for
this inbound with value and format
("plain", "array")

○ additionalParameters (mandatory):
Indicates how additional parameters to the de
clared signature are handled; values can be,
for example, "ignored", "notallowed", "allowed"

● outbounds: Specifies outbounds with a unique key or
alias containing:

○ semanticObject (mandatory)

○ action (mandatory)

○ parameters: Specifies the parameter name

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 741

Attribute Description

○ value: Represents a value to be used in the
outbound; with value (verbatim value for for
mat "plain", or not supplied, or a binding refer
ence for format "binding") and format (indi
cates how value is to be interpreted, "plain",
"binding")

○ required: Indicator whether paramter is re
quired (true, false)

○ additionalParameters: Indicates whether
additional context parameters are to be used:

○ ignored: Parameters are not used

○ allowed: Parameters are passed on to appli
cation

sap.ui
Table 14: Attributes in the mandatory sap.ui namespace

Attribute Description

technology Specifies the UI technology; value is UI5

icons Contains object with app-specific icons, which are:

● icon: Icon of the app, can be chosen from Icon Ex
plorer .

● favIcon: ICO file to be used inside the browser and
for desktop shortcuts

 Note
favIcon is not set automatically by the frame
work. The icons can be set manually using the
sap/ui/util/Mobile module and the
setIcons function.

● phone: 57x57 pixel version for non-retina iPhones

● phone@2: 114x114 pixel version for retina iPhones

● tablet: 72x72 pixel version for non-retina iPads

● tablet@2: 144x144 pixel version for retina iPads

742 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/test-resources/sap/m/demokit/iconExplorer/webapp/index.html
https://sapui5.hana.ondemand.com/test-resources/sap/m/demokit/iconExplorer/webapp/index.html

Attribute Description

deviceTypes Mandatory; contains objects with device types on which the
app is running, such as:

● desktop: Indicator for whether desktop devices are
supported, true (default), false

● tablet: Indicator for whether tablet devices are sup
ported, true (default),false

● phone: Indicator for whether phone devices are sup
ported, true (default),false

supportedThemes Optional; array of supported SAP themes, such as
sap_hcb, sap_belize

fullWidth Indicates whether an app shall run in full screen mode
(true), or not (false)

sap.ui5
The sap.ui5 namespace is aligned with the previous component metadata and contributes the following
SAPUI5-specific attributes for the application descriptor, see Migrating from Component Metadata to
Descriptor [page 756] for more details.

Table 15: Attributes in the sap.ui5 namespace

Attribute Description

resources Relative URLs in the component, taking embeddedBy into
account if filled, pointing to js (JavaScript) and css resour
ces that are needed by the app for specifying the mandatory
uri and an id (optional) for CSS. The JavaScript files are
loaded by the require mechanism. The CSS files are
added to the head of the HTML page as a link tag. The re
sources are resolved relative to the location of the
manifest.json file.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 743

Attribute Description

dependencies Mandatory; specifies the external dependencies that are
loaded by the SAPUI5 core during the initialization phase of
the component and used afterwards. These are the following
libraries or components:

● minUI5Version: Mandatory; Minimum version of
SAPUI5 that your component requires; this information
ensures that the features of the SAPUI5 runtime version
of the component are available. As SAPUI5 does not
currently enforce use of the correct version, the
minUI5Version is used for information purposes
only. If the minimum SAPUI5 version criteria is not fulfil-
led, a warning is issued in the console log.

● libs: ID (namespace) of the libraries that the SAPUI5
core should load for use in the component. If your app
requires a minimum version of the lib, specify the
minVersion for information purposes. Specify lazy
to indicate that the lib shall be lazy loaded.

● components: ID (namespace) of the components that
the SAPUI5 core should load for use in your component.
If your app requires a minimum version of the compo
nent, specify the minVersion for information pur
poses. Specify lazy to indicate that the component
shall be lazy loaded.

For more information, see Descriptor Dependencies to Libra
ries and Components [page 778].

componentUsages Specifies the used components with the a unique key/alias.
Contains the following:

● name: Mandatory name of the reuse component

● settings: Settings of the component

● componentData: Component data of the component

● lazy: Indicates whether the component usage should
be lazily loaded. Default value: true

For more information see:Using and Nesting Components
[page 726]

744 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Attribute Description

models Defines models that should be created or destroyed along
the component's lifecycle. The key represents the model
name. Use an empty string ("") for the default model.

● type: Model class name

● uri: Relative URL in the component, taking
embeddedBy into account if filled, or server for abso
lute model

● settings: Object that is passed to the model con
structor.

 Example
You can overwrite the default binding mode with the
defaultBindingMode attribute (enumeration
of type sap.ui.model.BindingMode, with
values. Default, OneTime, OneWay, TwoWay).
For OData models constructor see the following:
○ sap.ui.model.odata.ODataModel
○ sap.ui.model.odata.v2.ODataModel
○ sap.ui.model.odata.v4.ODataModel

For ResourceModel constructor see:
○ sap.ui.model.resource.ResourceModel

The attribute enhanceWith can be specified with
bundleUrl, bundleUrlRelativeTo (default:
component or manifest) or bundleName to
provide a list of additional resource bundle configu-
rations to enhance the ResourceModel with.

● dataSource: String of key or alias from sap.app
dataSources to reference an existing data source;
the type, uri and settings properties are set ac
cording to the data source's type, uri and
settings (if not already defined). If the type under
sap.app dataSources is OData, an OData Model
V2 is created automatically. If you need an OData Model
V1, specify the type as well.

● preload: Optional; Boolean with true, false (de
fault)
Defines whether or not the model is initialized (pre
loaded) before the component instance is created and
while loading the component preload and its dependen
cies.
For more information, see Manifest Model Preload
[page 781].

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 745

https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.ODataModel/constructor
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v2.ODataModel/constructor
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataModel/constructor
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.resource.ResourceModel/constructor

Attribute Description

rootView Specifies the root view that shall be opened; can be the view
name as a string for XML views, or the view configuration ob
ject with viewName for the view name as a string and type
for the type (enumeration of sap.ui.core.mvc.ViewType), id,
async and other properties of sap.ui.core.mvc.view.

autoPrefixId true, false (default), Enables the auto prefixing for the UI
Component for IDs of ManagedObjects (controls or ele
ments) which are created in the context of the
createContent function, or any other invocation of the
Component.prototype.runAsOwner() function (for
example a component’s router uses this method when creat
ing new views).

In former SAPUI5 releases this prefixing of the ID needed to
be done with oComponent.createId by overwriting the
method getAutoPrefixId. The same can now be ach
ieved declaratively by setting autoPrefixId to true.

handleValidation Possible values: true or false (default); used to enable or
disable validation handling by the message manager for this
component, see Error, Warning, and Info Messages [page
1063]

config Static configuration; specify the name-value pairs that you
need in your component.

routing Provides configuration parameters for route and router, see
Routing and Navigation [page 1072]

extends Used to extend another component.

● component: ID (namespace) of the component being
extended

● minVersion: Specifies the minimum version of the
component being extended, for information purposes if
your app requires a minimum version of the component

● extensions: Component or view extensions, which
enable you to replace and extend views and controllers
and also to modify the views, see Extending Apps [page
2143]

746 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.mvc.ViewType.html

Attribute Description

contentDensities Mandatory; contains an object with the content density
modes that the app supports, see Content Densities [page
1142]

● compact: Mandatory; indicates whether compact
mode is supported (true, false)

● cozy: Mandatory; indicates whether cozy mode is sup
ported (true, false)

resourceRoots Map of URL locations keyed by a resource name prefix; only
relative paths inside the component are allowed and no ".."
characters

This attribute is intended for actual sub-packages of the
component only, meaning that it must not be used for the
component namespace itself.

 Note
When loading with manifest first (by using the property
manifest), the resourceRoots are evaluated be
fore the component controller is loaded. Otherwise, the
defined resource roots will be registered after the com
ponent controller is loaded and do not affect the mod
ules being declared as dependencies in the component
controller.

componentName Name of the SAPUI5 component

appVariantIdHierarchy Needed for an app variant scenario to reference UI flex
changes from layers below. An array of appVariantId hi
erarchy with origin layer and version, calculated attribute
and filled automatically during variant merge.

i18n Determines if the library contains a i18n resource or not. If
using a string instead of a boolean value, an alternative name
for the i18n resource could be defined.

 Note
If your SAP Fiori library benefits from the new attribute
sap.ui5/library/i18n, adoption is recom
mended. This is only the case if the main resource bun
dle (properties file) used by the SAP Fiori Library is dif
ferent than the default name
messagebundle.properties

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 747

Attribute Description

flexEnabled Determines whether the app is enabled for adaptation flex
enabled (for example, using stable IDs); possible values are
true, false or undefined (default)

For more information, see SAPUI5 Flexibility: Enable Your
App for UI Adaptation [page 1450].

commands Specifies provided commands with a unique key/alias. Con
tains:

● shortcut: String that describes a key combination.
When the user presses the key combination, the com
mand is triggered.

sap.platform.abap

Table 16: Attributes in the sap.platform.abap namespace

Attribute Description

uri Specifies the app's URI in the ABAP system, for exam
ple /sap/bc/ui5_ui5/sap/appName; filled during de
ployment.

sap.platform.hcp

Table 17: Attributes in the sap.platform.hcp namespace

Attribute Description

uri Specifies the URI inside the SAP Cloud Platform HTML5 ap
plication; filled during deployment, default is ""

providerAccount Specifies the name of the provider account; filled during de
ployment

appName Specifies the name of the deployed HTML5 application; filled
during deployment

appVersion Specifies the version of the deployed HTML5 application; fil-
led during deployment

sap.fiori

Table 18: Attributes in the sap.fiori namespace

Attribute Description

registrationIds Array of registration IDs, for example, the Fiori IDs for SAP
Fiori apps

748 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Attribute Description

archeType Mandatory archetype of the app, possible values
transactional, analytical, factsheet,
reusecomponent, fpmwebdynpro, designstudio

sap.card
Table 19: Attributes in the sap.card namespace

Attribute Description

type Describes the card type; possible values are list and
analytical

header Specifies the card’s header area

content Specifies the type-dependent card content

_version
● On root level (no namespace) Describes the descriptor format version (mandatory). Needs to be updated

when migrating to a new descriptor format version, see Migrating from Component Metadata to Descriptor
[page 756]

● Inside namespace: Describes the namespace format version (optional from version 1.38 on)

Example

Current version of the manifest.json
 {
 "_version": "1.19.0",

 "start_url": "index.html",

 "sap.app": {
 "id": "sap.fiori.appName",
 "type": "application",
 "i18n": "",
 "applicationVersion": {
 "version": "1.2.2"
 },
 "embeds": ["mycomponent1", "subpath/mycomponent2"],
 "embeddedBy": "../../",
 "title": "{{title}}",
 "subTitle": "{{subtitle}}",
 "shortTitle": "{{shorttitle}}",
 "description": "{{description}}",
 "info": "{{info}}",
 "tags": {
 "keywords": ["{{keyWord1}}", "{{keyWord2}}"],
 "technicalAttributes": ["ATTRIBUTE1", "ATTRIBUTE2"]
 },
 "ach": "PA-FIO",
 "dataSources": {

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 749

 "equipment": {
 "uri": "/sap/opu/odata/snce/PO_S_SRV;v=2/",
 "type": "OData",
 "settings": {
 "odataVersion": "2.0",
 "annotations": ["equipmentanno"],
 "localUri": "model/metadata.xml",
 "maxAge": 360
 }
 },
 "equipmentanno": {
 "uri": "/sap/bc/bsp/sap/BSCBN_ANF_EAM/
BSCBN_EQUIPMENT_SRV.anno.XML",
 "type": "ODataAnnotation",
 "settings": {
 "localUri": "model/annotations.xml"
 }
 }
 },
 "cdsViews": [
 "VIEW1", "VIEW2"
],
 "resources": "resources.json",
 "offline": true,
 "sourceTemplate": {
 "id": "sap.ui.ui5-template-plugin.1worklist",
 "version": "1.0.0"
 },
 "destination": {
 "name": "SAP_ERP_FIN"
 },
 "openSourceComponents": [{
 "name": "D3.js",
 "packagedWithMySelf": false
 }],
 "crossNavigation": {
 "scopes": {
 "sapSite": {
 "value": "123"
 }
 },
 "inbounds": {
 "contactCreate": {
 "semanticObject": "Contact",
 "action": "create",
 "icon": "sap-icon://add-contact",
 "title": "{{title}}",
 "subTitle": "{{subtitle}}",
 "shortTitle": "{{shorttitle}}",
 "info": "{{info}}",
 "displayMode": "HeaderMode",
 "indicatorDataSource": {
 "dataSource": "equipment",
 "path": "TaskListSet/$count",
 "refresh": 5
 },
 "deviceTypes": {
 "desktop": true,
 "tablet": true,
 "phone": false
 },
 "signature": {
 "parameters": {
 "id": {
 "required": true
 },
 "ContactName": {
 "defaultValue": {

750 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 "value": "anonymous"
 },
 "required": false,
 "renameTo": "NAME2"
 },
 "Gender": {
 "filter": {
 "value": "(male)|(female)",
 "format": "regexp"
 },
 "required": true,
 "renameTo": "SEX",
 "launcherValue": {
 "value": "female",
 "format": "plain"
 }
 }
 },
 "additionalParameters": "ignored"
 }
 },
 "contactDisplay": {
 "semanticObject": "Contact",
 "action": "display",
 "signature": {
 "parameters": {
 "id": {
 "required": true
 },
 "Language": {
 "filter": {
 "value": "EN"
 },
 "required": true
 },
 "SomeValue": {
 "filter": {
 "value": "4711"
 }
 },
 "GLAccount": {
 "defaultValue": {
 "value": "1000"
 },
 "filter": {
 "value": "(1000)|(2000)",
 "format": "regexp"
 }
 }
 }
 }
 },
 "contactDisplayAlt": {
 "semanticObject": "Contact",
 "action": "display",
 "hideLauncher": true,
 "signature": {
 "parameters": {
 "GLAccount": {
 "defaultValue": {
 "value": "UserDefault.GLAccount",
 "format": "reference"
 },
 "filter": {
 "value": "\\d+",
 "format": "regexp"
 },
 "required": true

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 751

 },
 "SomePar": {
 "filter": {
 "value": "UserDefault.CostCenter",
 "format": "reference"
 },
 "required": true
 }
 }
 }
 }
 },
 "outbounds": {
 "addressDisplay": {
 "semanticObject": "Address",
 "action": "display",
 "additionalParameters": "ignored",
 "parameters": {
 "CompanyName": {
 "value": {
 "value": "companyName",
 "format": "plain"
 },
 "required": true
 }
 }
 },
 "companyDisplay": {
 "semanticObject": "Company",
 "action": "display",
 "additionalParameters": "allowed",
 "parameters": {
 "CompanyName": {
 "value": {
 "value": "companyName",
 "format": "plain"
 },
 "required": true
 }
 }
 }
 }
 }
 },

 "sap.ui": {
 "technology": "UI5",
 "icons": {
 "icon": "sap-icon://add-contact",
 "favIcon": "icon/F1373_Approve_Purchase_Orders.ico",
 "phone": "icon/launchicon/57_iPhone_Desktop_Launch.png",
 "phone@2": "icon/launchicon/114_iPhone-Retina_Web_Clip.png",
 "tablet": "icon/launchicon/72_iPad_Desktop_Launch.png",
 "tablet@2": "icon/launchicon/144_iPad_Retina_Web_Clip.png"
 },
 "deviceTypes": {
 "desktop": true,
 "tablet": true,
 "phone": false
 },
 "fullWidth": true
 },

 "sap.ui5": {
 "resources": {
 "js": [{
 "uri": "component.js"
 }],

752 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 "css": [{
 "uri": "component.css",
 "id": "componentcss"
 }]
 },
 "dependencies": {
 "minUI5Version": "1.66.0",
 "libs": {
 "sap.m": {
 "minVersion": "1.34.0"
 },
 "sap.ui.commons": {
 "minVersion": "1.34.0",
 "lazy": true
 }
 },
 "components": {
 "sap.ui.app.other": {
 "minVersion": "1.1.0",
 "lazy": true
 }
 }
 },
 "componentUsages": {
 "myusage": {
 "name": "my.used",
 "lazy": false,
 "settings": {},
 "componentData": {}
 }
 },
 "models": {
 "i18n": {
 "type": "sap.ui.model.resource.ResourceModel",
 "uri": "i18n/i18n.properties",
 "settings": {
 "enhanceWith": [{
 "bundleUrl": "i18n/i18n.properties",
 "bundleUrlRelativeTo": "manifest"
 }]
 }
 },
 "equipment": {
 "preload": true,
 "dataSource": "equipment",
 "settings": {}
 }
 },
 "rootView": {
 "viewName": "sap.ui.test.view.Main",
 "id" : "rootView",
 "async": true,
 "type": "XML"
 },
 "handleValidation": true,
 "config": {

 },
 "routing": {

 },
 "extends": {
 "component": "sap.fiori.otherApp",
 "minVersion": "0.8.15",
 "extensions": {}
 },
 "contentDensities": {
 "compact": true,

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 753

 "cozy": false
 },
 "resourceRoots": {
 ".myname": "./myname"
 },
 "componentName": "sap.fiori.appName",
 "autoPrefixId": true,
 "appVariantId": "hcm.leaverequest.oil",
 "appVariantIdHierarchy": [
 {"layer": "VENDOR", "appVariantId": "abc", "version": "1.0.0"}
],
 "services": {
 "myLocalServiceAlias": {
 "factoryName": "sap.ushell.LaunchPadService",
 "optional": true
 }
 },
 "library": {
 "i18n": true
 },
 "flexEnabled": true,
 "commands": {
 "Save": {
 "shortcut": "Ctrl+S"
 }
 }
 },

 "sap.platform.abap": {
 "uri": "/sap/bc/ui5_ui5/sap/appName",
 "uriNwbc": ""
 },

 "sap.platform.hcp": {
 "uri": "",
 "uriNwbc": "",
 "providerAccount": "fiori",
 "appName": "sapfioriappName",
 "appVersion": "1.0.0",
 "multiVersionApp": true
 },

 "sap.fiori": {
 "registrationIds": [
 "F1234"
],
 "archeType": "transactional"
 },

 "sap.mobile": {},
 "sap.flp": {},
 "sap.ui.generic.app": {},
 "sap.ovp": {},
 "sap.ui.smartbusiness.app": {},
 "sap.wda": {},
 "sap.gui": {},
 "sap.cloud.portal": {},
 "sap.apf": {},
 "sap.platform.cf": {},
 "sap.copilot": {},
 "sap.map": {},
 "sap.fe": {},
 "sap.url": {},
 "sap.platform.sfsf": {},
 "sap.wcf": {},
 "sap.cloud": {},
 "sap.integration": {},
 "sap.card": {},

754 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 "sap.platform.mobilecards": {} }

For the following namespaces, the indicated teams are responsible:

● sap.mobile - in Mobile responsibility
● sap.flp - in SAP Fiori Launchpad responsibility
● sap.ui.generic.app - in SAP Fiori Elements responsibility
● sap.ovp - in Overview Page responsibility
● sap.ui.smartbusiness.app - in Smart Business responsibility
● sap.wda - in Web Dypro ABAP responsibility
● sap.gui - in SAP GUI responsibility
● sap.cloud.portal - in SAP Cloud Portal responsibility
● sap.apf - in Analysis Path Framework responsibility
● sap.platform.cf - in Cloud Foundry/XSA responsibility
● sap.map - in SAP Visual Business responsibility
● sap.fe - in SAP Fiori Elements responsibility
● sap.url - in SAP Fiori Launchpad responsibility
● sap.platform.sfsf - for SAP SuccessFactors specific attributes
● sap.wcf - for WCF Application specific attributes
● sap.cloud - for SAP Cloud Platform specific attributes
● sap.card - in SAPUI5 responsibility
● sap.platform.mobilecards - in Mobile Cards responsibility

Declaration in Component Metadata

The component declares the existence of the application descriptor by specifying manifest: "json" in the
component metadata. Setting this flag makes the component load the manifest.json file and read the
relevant entries for SAPUI5. This metadata is used to define the dependencies that need to be loaded in order
to start the component. The following code snippet shows how to add the manifest link:

sap.ui.define(['sap/ui/core/UIComponent'], function(UIComponent) {
 return UIComponent.extend("sap.samples.Component", {
 metadata : {
 manifest: "json"
 }
 }); });

SAPUI5 API

At runtime, the manifest.json content can be accessed from the component via the component metadata:

// get the component class sap.ui.require(['sap/samples/Component'], function(SampleComponent) {
 // getting complete manifest from component metadata

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 755

 SampleComponent.getMetadata().getManifest();
 //or getting a namespace
 SampleComponent.getMetadata().getManifestEntry("sap.app");
 });

Related Information

sap.ui.core.UIComponent
Component Metadata [page 723]

Migrating from Component Metadata to Descriptor

Overview, how the component metadata are mapped to the descriptor.

For compatibility reasons, the mapping to the manifest.json file is done automatically. If a metadata
property has been defined, it can also be consumed via the corresponding property of the manifest.json
file. For a detailed step-by-step guide, see Creating a Descriptor File for Existing Apps [page 764].

 Note
To benefit from the performance improvements that can be achieved by using “manifest first”, we
recommend to migrate the component metadata to the descriptor (manifest.json). For more
information about manifest first, see the Manifest First Function section in Descriptor for Applications,
Components, and Libraries [page 734].

Table 20: Mapping Table

Metadata Descriptor Comment

Component namespace sap.app/id -

version sap.app/
applicationVersion/version

-

config sap.ui5/config -

dependencies sap.ui5/depedencies Different format, see Dependencies
section below

customizing sap.ui5/extends/extensions -

handleValidation sap.ui5/handleValidation -

includes sap.ui5/resources Different format, see Resources section
below

756 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.UIComponent.html

Metadata Descriptor Comment

rootView sap.ui5/rootView -

routing sap.ui5/routing -

Dependencies

Libraries and components are objects and not arrays. For the descriptor part, we use ui5version instead of
minUI5Version.

Metadata

 "dependencies": {
 "ui5version": "1.30.0",
 "libs": [
 "sap.m",
 "sap.ui.unified"
],
 "components": ["sap.app.otherComponent"] }

Descriptor

 "dependencies": {
 "minUI5Version": "1.30.0",
 "libs": {
 "sap.m": {},
 "sap.ui.unified": {}
 },
 "components": {
 "sap.app.otherComponent": {}
 } }

Resources

Includes are renamed to resources and are objects and not an array.

Metadata

 "includes": ["script.js", "style.css"]

Descriptor

 "resources": {
 "js": [
 {
 "uri": "script.js"
 }
],
 "css": [

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 757

 {
 "uri": "style.css"
 }
] }

Descriptor for Libraries

The descriptor for libraries contains a subset of the attributes in the descriptor for applications and
components.

manifest.json .library
Available for SAPUI5 dist
libraries? Comment

sap.app/id name x

sap.app/type - x Generated with value
library

sap.app/embeds - x Generated

sap.app/i18n appData/manifest/
i18n

New in .library

sap.app/
applicationVersion/
version

version x

sap.app/title title x Text symbol syntax with
leading curly brackets ({{)
and trailing curly brackets
(}}); new in .library

sap.app/description documentation x Text symbol syntax with
leading curly brackets ({{)
and trailing curly brackets
(}})

sap.app/ach appData/ownership/
component

x

sap.app/
openSourceComponent
s

appData/manifest/
openSourceComponent
s

New in .library

sap.app/resources - x Generated with value
resources.json

758 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

manifest.json .library
Available for SAPUI5 dist
libraries? Comment

sap.app/offline appData/manifest/
offline

x New in .library

sap.app/
sourceTemplate

appData/manifest/
sourceTemplate

New in .library, to be
filled by SAP Web IDE only

sap.ui/technology - x Generated with value UI5

sap.ui/deviceTypes appData/manifest/
deviceTypes

New in .library

sap.ui/
supportedThemes

- x Generated and merged

sap.ui5/
dependencies/
minUI5Version

- x Generated

sap.ui5/
dependencies/libs

dependencies x

sap.ui5/
contentDensities

appData/manifest/
contentDensities

New in .library

sap.platform.abap/u
ri

appData/manifest/
sap.platform.abap/u
ri

New in .library

sap.platform.hcp/ur
i

appData/manifest/
sap.platform.hcp/ur
i

New in .library

sap.fiori/
registrationIds

appData/manifest/
sap.fiori/
registrationId

New in .library

sap.fiori/archeType appData/manifest/
sap.fiori/archeType

New in .library

Related Information

Creating a Descriptor File for Existing Apps [page 764]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 759

Descriptor for Components (Inside Libraries)

The descriptor for components contains a subset of the attributes in the descriptor for applications

Table 21: Attributes in the sap.app namespace

Attribute Comment

id Mandatory

type With value component; mandatory

i18n Path relative to component; default is "i18n/
i18n.properties"

Path back to library is also possible, for example via "../
i18n/i18n.properties"

embeddedBy Mandatory, for example, "../"

title Mandatory

subTitle

description

ach

dataSources

cdsViews

resources Mandatory; must have value resources.json as file; it is
generated by the library build with this name

offline

sourceTemplate

Table 22: Attributes in the sap.ui namespace

Attribute Comment

technology With value UI5; mandatory

deviceTypes

supportedThemes

760 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Table 23: Attributes in the sap.ui5 namespace

Attribute Comment

resources

dependencies libs

components

models

rootView

handleValidation

config

routing

extends component

minVersion

contentDensities

componentName

Table 24: Attributes in the sap.mobile namespace

Attribute Comment

definingRequests

Library Name Determination

SAPUI5 determines the library name by analyzing the component namespace (package) up to the part where
the segment starts with a capitalized letter. If the library name that has been determined, does not fit your
component, an additional library attribute needs to be filled in the component metadata in Component.js to
specify the library your component belongs to.

Example:

 sap.ui.core.UIComponent.extend("com.sap.fancylibrary.sub.CompLib.Component", {
 metadata : {
 "manifest" : "json",
 "library" : "com.sap.fancylibrary",
 ... }

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 761

Resources.json File

The Resources.json file lists all resources in a component or library folder. It resides next to each
manifest.json in the generated results.

The file is generated during build time and its main purpose is for mobile packaging, as resources.json
mentions all files inside the application. If an app has a resources.json file, it is mentioned in the
manifest.json under sap.app/resources.

 Note
This file is used by SAP Tools like the SAP Fiori Client Packager. It will be generated automatically when
using SAP WebIDE.

The list of resources is stored in an array in the resources property of the top level JSON object. The top level
object can also contain the _version property, which can be omitted if the value is 1.0.0. For each resource,
the following entries are possible:

Property Type Description

name string Relative path of the resource as
accessible in a server; starts with the
first name segment, for example
Component.js (mandatory)

isDebug Boolean When set to true, the resource is a
debug source, the SAPUI5 build derives
the flag from the naming convention (-
dbg(.controller .view .fra
gment).js) (optional)

locale string Locale of the resource for known i18n
resources; the SAPUI5 build derives the
locale from the naming convention
(*_[locale].properties)
(optional)

raw string Name of the corresponding resource in
the raw (developer) language for
known i18n resources; for
messagebundle.en.propertie
s, for example, the corresponding raw
file is
messagebundle.properties
(optional)

merged boolean Indicates whether the resource is a
merged resource (optional)

762 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Property Type Description

By default, the SAPUI5 build
determines this from naming
conventions (library-
preload.json, library-
all.js, Component-
preload.js), but it also allows to
add more merged files by manual
configuration of the build step. SAP
Web IDE may use other knowledge for
this; it knows, for example, that it
merges the Component-
preload.js.

theme string Indicates a theme-dependant resource
(optional)

The SAPUI5 build determines this from
the naming convention
**themes<theme>/ **

Example

 {
 "resources":[
 {
 "name": ".library"
 },
 {
 "name": ".theming"
 },
 {
 "name": "DynamicSideContent-dbg.js",
 "isDebug":true
 },
 {
 "name": "DynamicSideContent.js"
 },
 {
 "name": "DynamicSideContentRenderer-dbg.js",
 "isDebug":true
 },

 ...

 {
 "name": "library-preload.json",
 "merged":true
 },

 ...

 {
 "name": "messagebundle_de.properties",

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 763

 "raw":"messagebundle.properties",
 "locale":"de"
 },

 ...

 {
 "name": "themes/sap_belize/library.less",
 "theme":"sap_belize"
 }

 ...

] }

Creating a Descriptor File for Existing Apps

Detailed description of the steps needed to create a descriptor V2 for applications file for an existing
transactional app created by the customer based on SAP Fiori.

1. Create the manifest.json file.
You create the file in the web context root of your app on the same level as the Component.js file, using
the content according to the instructions described from step 2 onwards. You can use the following code
sample as a template. Make sure that you exchange or remove all placeholders (<...>) according to the
instructions below.

 {
 "_version": "1.1.0",

 "start_url": "<startUrl>",

 "sap.app": {
 "_version": "1.1.0",
 "id": "<id>",
 "type": "application",
 "i18n": "<i18nPathRelativeToManifest>",
 "applicationVersion": {
 "version": "<version>"
 },
 "title": "{{<title>}}",
 "tags": {
 "keywords": [
 "{{<keyword1>}}", "{{<keyword2>}}"
]
 },
 "dataSources": {
 "<dataSourceAlias>": {
 "uri": "<uri>",
 "settings": {
 "localUri": "<localUri>"
 }
 }
 }
 },
 "sap.ui": {
 "_version": "1.1.0",
 "icons": {
 "icon": "<icon>",
 "favIcon": "<favIcon>",
 "phone": "<phone>",

764 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 "phone@2": "<phone@2>",
 "tablet": "<tablet>",
 "tablet@2": "<tablet@2>"
 },
 "deviceTypes": {
 "desktop": true,
 "tablet": true,
 "phone": true
 },
 "supportedThemes": [
 "sap_hcb",
 "sap_belize"
]
 },
 "sap.ui5": {
 "_version": "1.1.0",
 "resources": {
 "js": [
 {
 "uri": "<uri>"
 }
],
 "css": [
 {
 "uri": "<uri>",
 "id": "<id>"
 }
]
 },
 "dependencies": {
 "minUI5Version": "<minUI5Version>",
 "libs": {
 "<ui5lib1>": {
 "minVersion": "<minVersion1>"
 },
 "<ui5lib2>": {
 "minVersion": "<minVersion2>"
 }
 },
 "components": {
 "<ui5component1>": {
 "minVersion": "<minComp1Version>"
 }
 }
 },
 "models": {
 "i18n": {
 "type": "sap.ui.model.resource.ResourceModel",
 "uri": "<uriRelativeToManifest>"
 },
 "": {
 "dataSource": "<dataSourceAlias>",
 "settings": {}
 }
 },
 "rootView": "<rootView>",
 "handleValidation": <true|false>,
 "config": {

 },
 "routing": {

 },
 "extends": {
 "component" : "<extendedComponentId>",
 "minVersion": "<minComp1Version>",
 "extensions": {}
 }

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 765

 "contentDensities": {
 "compact": <true|false>,
 "cozy": <true|false>
 }
 },
 "sap.platform.abap": {
 "_version": "1.1.0",
 "uri": "<uri>"
 },
 "sap.platform.hcp": {
 "_version": "1.1.0",
 "uri": "<uri>"
 }
}

2. Fill the start_url (W3C namespace).
If applicable, replace the <start_url> placeholder with the start URL of your app, for example
index.html. If no start URL is shipped, remove the "start_url" section in the manifest.json file.

{ "start_url": "index.html",
 ... }

3. Fill the id and applicationVersion/version attributes of the sap.app namespace.

 Caution
id in the sap.app namespace must correspond to the component name in the Component.js file, for
example jQuery.sap.declare("cust.emp.myleaverequests.Component");.

To fill the ID and version information, open the Component.js file of your app and add the ID / namespace
and version information:

 jQuery.sap.declare("cust.emp.myleaverequests.Component"); ...
 metadata : {
 "name" : "My Leave Requests",
 "version" : "1.2.6"

Open the manifest.json file and enter the values from the Component.js file as follows:
○ Replace the <id> placeholder with the the id / namespace value from jQuery.sap.declare

("cust.emp.myleaverequests.Component" in the example above).
○ Replace the <version> placeholder with the version value ("1.2.6" in the example above).

Example: sap.app/id and sap.app/applicationVersion/version in the manifest.json file:

"sap.app": { "_version": "1.1.0",
 ... "id": "cust.emp.myleaverequests", ...
 "applicationVersion": {
 "version": "1.2.6"
 },

4. Fill the i18n and title attributes of the sap.app namespace.
You find the respective information in the Component.js file under resourceBundle for the i18n
attribute, and under titleResource for the title attribute:

"config" : {

766 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 "titleResource": "app.Identity",
 "resourceBundle": "i18n/i18n.properties",

Open the manifest.json file and enter the values from the Component.js file as follows:
○ Replace the <title> placeholder with the titleResource value ("app.Identity" in the example

above)
○ Replace the <i18nPathRelativeToManifest> placeholder with the resourceBundle value

("i18n/i18n.properties" in the example above).
Example: sap.app/i18n and sap.app/title in the manifest.json file

"sap.app": { "_version": "1.1.0",
 ...
 "i18n": "i18n/i18n.properties",
 ...
 "title": "{{app.Identity}}",

5. Fill the tags/keywords attribute of the sap.app namespace.
If you maintain keywords for the SAP Fiori launchpad tile configuration (optional), enter one or more text
symbols from the sap.app/i18n file in the keywords attribute of the manifest.json file. If not, remove
the tags/keywords section from the manifest.json file.
Example: sap.app/tags/keywords in the manifest.json file

"sap.app": { "_version": "1.1.0",
 ...
 "tags": {
 "keywords": [
 "{{Leave}}"
]
 },

6. Fill the dataSource attribute of the sap.app namespace with the data source you use for your app.
For this, open the location where the service URL and the mock data source is defined.
○ Open the Component.js file of your app to see the data source under serviceUrl, see the following

example for name, serviceUrl and mock data URL in Component.js:

metadata : { ...
 "config" : {
 ...
 "serviceConfig" : {
 name: "LEAVEREQUEST",
 serviceUrl: "/sap/opu/odata/GBHCM/LEAVEREQUEST;v=2/"
 }
 },
...

init : function() {
 ... oMockServer.simulate(rootPath + "/model/metadata.xml", rootPath +
"/model/");

Return to the manifest.json file and do the following:
○ Enter the name value in the placeholder for <dataSourceAlias>.
○ Enter the value from the serviceUrl in the placeholder for <uri> to fill the value for the URI

attribute.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 767

○ Enter the value from the URI of oMockServer.simulate... in the Component.js file in the
placeholder for <localUri> to fill the value for the localUri attribute.

Example: dataSources with alias and URI in the sap.app namespace of the manifest.json file

"sap.app": { "_version": "1.1.0",
 ...
 "dataSources": {
 "LEAVEREQUEST": {
 "uri": "/sap/opu/odata/GBHCM/LEAVEREQUEST;v=2/",
 "settings": {
 "localUri": "model/metadata.xml"
 }
 } }

7. Fill the icons attribute of the sap.ui namespace.
Open the Component.js file of your app to see the icons in the config section.
Example: icons in the Component.js file:

"config" : { ...
 "icon": "sap-icon://Fiori2/F0394",
 "favIcon": "./resources/sap/ca/ui/themes/base/img/favicon/
My_Leave_Requests.ico",
 "homeScreenIconPhone": "./resources/sap/ca/ui/themes/base/img/launchicon/
My_Leave_Requests/57_iPhone_Desktop_Launch.png",
 "homeScreenIconPhone@2": "./resources/sap/ca/ui/themes/base/img/
launchicon/My_Leave_Requests/114_iPhone-Retina_Web_Clip.png",
 "homeScreenIconTablet": "./resources/sap/ca/ui/themes/base/img/launchicon/
My_Leave_Requests/72_iPad_Desktop_Launch.png",
 "homeScreenIconTablet@2": "./resources/sap/ca/ui/themes/base/img/
launchicon/My_Leave_Requests/144_iPad_Retina_Web_Clip.png" },

Return to the manifest.json file:
○ Enter the icon value in the <icon> placeholder.
○ Enter the favIcon value in the <favIcon> placeholder.
○ Enter the homeScreenIconPhone value in the <phone> placeholder. Do the same for the <phone@2>,

<tablet> and <tablet@2> placeholders.
Example: icons in the sap.ui namespace of the manifest.json file

"sap.ui": { "_version": "1.1.0",
 ...
 "icons": {
 "icon": "sap-icon://Fiori2/F0394",
 "favIcon": "./resources/sap/ca/ui/themes/base/img/favicon/
My_Leave_Requests.ico",
 "phone": "./resources/sap/ca/ui/themes/base/img/launchicon/
My_Leave_Requests/57_iPhone_Desktop_Launch.png",
 "phone@2": "./resources/sap/ca/ui/themes/base/img/launchicon/
My_Leave_Requests/114_iPhone-Retina_Web_Clip.png",
 "tablet": "./resources/sap/ca/ui/themes/base/img/launchicon/
My_Leave_Requests/72_iPad_Desktop_Launch.png",
 "tablet@2": "./resources/sap/ca/ui/themes/base/img/launchicon/
My_Leave_Requests/144_iPad_Retina_Web_Clip.png" },

If your app does not have icons, remove the icons section or the corresponding icon attributes from the
manifest.json file.

768 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

8. Fill the deviceTypes and supportedThemes attributes in the sap.ui namespace in the
manifest.json file.
Return to the manifest.json file and ensure that the deviceTypes and supportedThemes attributes in
the manifest.json are correct for your application. If not, adapt the entries accordingly.
Example: deviceTypes and supportedThemes in the sap.ui namespace in the manifest.json file

"sap.ui": { "_version": "1.1.0",
 ...
 "deviceTypes": {
 "desktop": true,
 "tablet": true,
 "phone": true
 },
 "supportedThemes": [
 "sap_hcb",
 "sap_belize"]

9. Fill the resources attribute in the sap.ui5 namespace.
Open the Component.js file of your app to see the js and CSS resources under includes.
Example: includes in the Component.js file

"includes": ["css/shopStyles.css", "myfile.js"],

Return to the manifest.json file:
○ Enter the js resource value under "js" in the <uri> placeholder.
○ Enter the CSS resource value under "css" in the <uri> placeholder.

 Caution
The format in the Component.js file is an array, whereas the format in the manifest.json file is a
map.

Example: resources attribute in the sap.ui namespace in the manifest.json file

"sap.ui5": { "_version": "1.1.0",
 ...
 "resources": {
 "js": [
 {
 "uri": "myfile.js"
 }
],
 "css": [
 {
 "uri": "css/shopStyles.css"
 }
] },

If your app does not include resources, remove the resources section from the manifest.json file.
10. Fill the dependecies attribute of the sap.ui5 namespace with the SAPUI5 dependencies that are used.

Open the Component.js file of your app to see the dependencies for the ui5 libs and components.
Example: dependencies in the Component.js file

"dependencies": { "libs": [

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 769

 "sap.m",
 "sap.me"
],
 "components": ["sap.app.otherComponent"] }

Return to the manifest.json file and fill the corresponding entries in the manifest.json. Enter a value
for the minimum SAPUI5 version in the <ui5Version> placeholder.

 Caution
The format in the Component.js file is an array, whereas the format in the manifest.json file is a
map. Ensure that all of the SAPUI5 libraries used by your app are mentioned under libs. Also make sure
that all of the SAPUI5 components used by your app are mentioned under components. If there are no
dependent components, remove the components entry.

Example: dependencies in the sap.ui5 namespace in the manifest.json file

"sap.ui5": { "_version": "1.1.0",
 ...
 "dependencies": {
 "minUI5Version": "1.30",
 "libs": {
 "sap.m": {
 "minVersion": "1.30"
 },
 "sap.me": {
 "minVersion": "1.30"
 }
 },
 "components": {
 "sap.app.otherComponent": {
 "minVersion": "1.2.0"
 }
 } },

If your app requires a minimum version of a lib or component, specify the version under minVersion for
information purposes. If not, remove the minVersion attribute.

11. Fill the models attribute of the sap.ui5 namespace.
If a model is entered in sap.ui5/models in the manifest.json file, SAPUI5 creates the model
automatically and the coding for model creation inside the app can be removed.
Example: model creation in Component.js:

init : function() { ...
 // set i18n model
 var i18nModel = new sap.ui.model.resource.ResourceModel({
 bundleUrl : rootPath + "/i18n/i18n.properties"
 });
 this.setModel(i18nModel, "i18n");

 // set data model
 var m = new sap.ui.model.odata.v2.ODataModel(sServiceUrl); this.setModel(m);

Return to the manifest.json file:
○ i18n model

770 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Use the same model name as in the Component.js file, for example "i18n", and the type
sap.ui.model.resource.ResourceModel. Enter the URI from the Component.js file in the
<uriRelativeToManifest> placeholder relative to manifest.json, for example, i18n/
i18n.properties

○ OData model
Use the same model name as in the Component.js file, for example "leave" or "" for the default model.
Enter a reference to a data source from sap.app/dataSource in the <dataSourceAlias>
placeholder; if needed, enhance it with more settings for SAPUI5.

Example: Models in the sap.ui5 namespace in the manifest.json file

"sap.ui5": { "_version": "1.1.0",
 ...
 "models": {
 "i18n": {
 "type": "sap.ui.model.resource.ResourceModel",
 "uri": "i18n/i18n.properties"
 },
 "": {
 "dataSource": "LEAVEREQUEST",
 "settings": {
 }
 } },

12. Fill the rootView, handleValidation, config and routing attributes in the sap.ui5 namespace.
Open the Component.js file of your app to see the rootView, handleValidation, routing, config in
the component metadata section.
Example: rootView, handleValidation, config, routing in sap.ui5 namespace of the
manifest.json file:

 ... "rootView": "myRootView",
 "handleValidation": true,
 "config": {
 ...
 },
 "routing": {
 ... }

Return to the manifest.json file and copy this metadata from the Component.js file to the sap.ui5
namespace in the manifest.json file.
Only transfer those config parameters in the config section to the manifest.json file that have not yet
been transferred in the steps before. In other words, do not transfer resourceBundle, titleResource,
icon, favicon, homeScreenIconPhone, homeScreenIconPhone2, homeScreenIconTablet and
homeScreenIconTablet2.
Example: rootView, handleValidation, config and routing in the sap.ui5 namespace of the
manifest.json file

"sap.ui5": { "_version": "1.1.0",
 ...
 "rootView": "myRootView",
 "handleValidation": true,
 "config": {
 ...
 },

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 771

 "routing": {
 ... },

If there is no corresponding entry in the Component.js file, remove the section in the manifest.json
file.

13. Fill the extends attribute of the sap.ui5 namespace.
Open the Component.js file of your app to see the component which your app extends:

 hcm.emp.myleaverequests.Component.extend("cust.emp.myleaverequests.Component",
 {

Return to the manifest.json file and enter the value from the component namespace in the
<extendedComponentId> placeholder, for example hcm.emp.myleaverequests.
Example: extends/component in sap.ui5 namespace in manifest.json file

"sap.ui5": { "_version": "1.1.0",
 ...
 "extends": { "component": "hcm.emp.myleaverequests", "minVersion": "1.1.0" }

If your app requires a minimum version of a component, specify the version under minVersion for
information purposes, otherwise remove the attribute. If your app uses the SAPUI5 extension concept with
a customizing entry under component metadata in the Component.js file, move the content of that
entry to sap.ui5/extends/extensions in the manifest.json file, or remove the customizing entry.
If your app does not extend another component, remove the extends section from the manifest.json
file.

14. Fill the contentDensities attribute of the sap.ui5 namespace.
Enter the correct values for the compact and cozy attributes (true or false) under contentDensities
in the manifest.json file. The attributes specify the content density modes that your app supports, see
Content Densities [page 1142].
Example: contentDensities in sap.ui5 namespace of the manifest.json file:

"sap.ui5": { "_version": "1.1.0",
 ...
 "contentDensities": {
 "compact": true,
 "cozy": true }

15. Verify that no placeholders exist.
Return to the manifest.json file and make sure there are no more placeholders within it (<...>). If the
file still contains placeholders, remove the corresponding sections.

Code Changes

1. Adapt the Component.js file.
Example: Component.js before making changes

772 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

jQuery.sap.declare("cust.emp.myleaverequests.Component"); jQuery.sap.require("cust.emp.myleaverequests.Configuration"); hcm.emp.myleaverequests.Component.extend("cust.emp.myleaverequests.Component",
 { metadata : {
 "name" : "My Leave Requests",
 "version" : "...", "library" : "cust.emp.myleaverequests", "includes" : [],
 "dependencies" : {
 "libs" : ["sap.m", "sap.me"],
 "components" : ["sap.app.otherComponent"]
 },
 "rootView": ...,
 "handleValidation": ...,
 "config": {
 ...
 },
 "routing": {
 ...
 },
 "config" : {
 "titleResource": "app.Identity",
 "resourceBundle": "i18n/i18n.properties",
 "icon": "sap-icon://Fiori2/F0394",
 "favIcon": "./resources/sap/ca/ui/themes/base/img/favicon/
My_Leave_Requests.ico",
 "homeScreenIconPhone": "./resources/sap/ca/ui/themes/base/img/
launchicon/My_Leave_Requests/57_iPhone_Desktop_Launch.png",
 "homeScreenIconPhone@2": "./resources/sap/ca/ui/themes/base/img/
launchicon/My_Leave_Requests/114_iPhone-Retina_Web_Clip.png",
 "homeScreenIconTablet": "./resources/sap/ca/ui/themes/base/img/
launchicon/My_Leave_Requests/72_iPad_Desktop_Launch.png",
 "homeScreenIconTablet@2": "./resources/sap/ca/ui/themes/base/img/
launchicon/My_Leave_Requests/144_iPad_Retina_Web_Clip.png"
 }); });

Apply the following changes:
○ Comment or remove the line for the require statement for configuration (if available)

sap.ui.require("cust.emp.myleaverequests.Configuration");
○ Add the manifest reference to the metadata: "manifest": "json".
○ Remove the name section.
○ Remove the library section.
○ Remove the version section.
○ Remove the includes section.
○ Remove the dependencies section.
○ Remove the rootView section.
○ Remove the handleValidation section.
○ Remove the routing section.
○ Remove the config section.

Example: Component.js after making changes

 jQuery.sap.declare("cust.emp.myleaverequests.Component");
//jQuery.sap.require("cust.emp.myleaverequests.Configuration"); hcm.emp.myleaverequests.Component.extend("cust.emp.myleaverequests.Component",
 {
 metadata : {

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 773

 "manifest": "json",
 ... });

2. Adapt the data source reference in the Component.js file.
Example: Data source reference in Component.js file before making changes

metadata : { ...
 "config" : {
 ...
 "serviceConfig" : {
 name: "LEAVEREQUEST",
 serviceUrl: "/sap/opu/odata/GBHCM/LEAVEREQUEST;v=2/"
 }
 },
...

init : function() {
 ...
 var oServiceConfig = this.getMetadata().getConfig()["serviceConfig"];
 var sServiceUrl = oServiceConfig.serviceUrl;
 ... oMockServer.simulate(rootPath + "/model/metadata.xml", rootPath + "/
model/");

Apply the following changes:
○ Remove serviceConfig under config in the component metadata.
○ If you are still using the service URL in your coding for purposes other than model creation, change the

lines for getting the service config / url and read the URI from the manifest via your component
metadata, for example, this.getMetadata().getManifestEntry("sap.app")...; otherwise,
remove that coding.

○ Change the line for oMockServer.simulate... and read the URI from the manifest via your
component metadata, for example, this.getMetadata().getManifestEntry("sap.app")...

Example: Data source reference in Component.js file after making changes

metadata : { "manifest": "json",
 ...

init : function() {
 ...
 var sServiceUrl =
this.getMetadata().getManifestEntry("sap.app").dataSources["LEAVEREQUEST"].uri
;
 ... oMockServer.simulate(rootPath + "/" +
this.getMetadata().getManifestEntry("sap.app").dataSources["LEAVEREQUEST"].set
tings.localUri, rootPath + "/model/");

3. Remove the SAPUI5 model creation in the Component.js file.
Example: Component.js file before making changes

init : function() { ...
 // set i18n model
 var i18nModel = new sap.ui.model.resource.ResourceModel({
 bundleUrl : rootPath + "/i18n/i18n.properties"
 });
 this.setModel(i18nModel, "i18n");

 // set data model

774 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 var m = new sap.ui.model.odata.v2.ODataModel(sServiceUrl); this.setModel(m);

Apply the following changes:
○ Delete the lines for the i18n model creation and model setting.
○ Delete the lines for the data model creation and model setting.

Smoke Test

To verify that your app works as before, perform checks to make sure the following is true:

● OData service works as before
● Mock data works as before
● Title, icons in SAP Fiori launchpad work as before
● Navigation works as before

Migration Information for Upgrading the Descriptor File

Information how to add new attributes of descriptor versions higher than V2 (SAPUI5 1.30) to the descriptor
file.

Attribute Version* Description Example

_version V3 (1.32) Needs to be updated in the
manifest.json file when
migrating to a new
descriptor version:

● _version for V3 is
1.2.0

● _version for V4 is
1.3.0

● _version for V5 is
1.4.0 (see example)

{ "_version":
"1.4.0",
 "sap.app": { ...

sap.app/
crossNavigation

V3 (1.32) Contains navigation
information and is a
mandatory attribute in the
manifest.json file for
SAP Fiori apps; the attribute
contains two sections:

● sap.app/
crossNavigation/
inbounds - Contains

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 775

Attribute Version* Description Example

inbound intents and
signature information

● sap.app/
crossNavigation/
outbounds - Contains
required intents that are
called explicitely by the
app, for example, if a
business process is split
among different apps A
and B. If A calls B, A has
outbound the intent to
address B.

sap.app/subTitle V4 (1.34) Added to the
manifest.json file by
using the {{...}} syntax

 Note
Text symbols must be
part of the properties file
which is defined in
sap.app/i18n
(default "i18n/
i18n.properties")
.

"sap.app": { "_version":
"1.3.0",
 ...
 "title":
"{{title}}", "subTitle":
"{{subtitle}}",

sap.app/
crossNavigation/
inbounds/
<inboundname>/
subTitle

V4 (1.34) Used to overwrite the
subTitle attribute per
inbound; use the {{...}}
syntax to add the attribute to
the manifest.json file

 Note
Text symbols must be
part of the properties file
which is defined in
sap.app/i18n
(default "i18n/
i18n.properties")
.

"sap.app": { "_version":
"1.3.0",
 ...

"crossNavigation"
: {

"inbounds": {

"contactCreate":
 {

"semanticObject":
 "Contact",

 "action":
"create",

 "icon": "sap-
icon://add-
contact",

776 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Attribute Version* Description Example

 "title":
"{{title}}",
 "subTitle":
"{{subtitleOther}
}",

sap.ui/fullWidth V4 (1.34) Indicates whether an app
shall run in full screen mode
(true)

"sap.ui": { "_version":
"1.3.0",

"technology":
"UI5",
 ... "fullWidth":
true

sap.ui5/
dependencies/
components/
<componentname>/
lazy and
dependencies/libs/
<libname>/lazy

V4 (1.34) If dependencies/
components/
<componentname>/
lazy and
dependencies/libs/
<libname>/lazy are set
to true, the attribute
indicates in an SAP Fiori app
that a dependency shall be
lazy loaded (default is
false), see the example for
manifest.json for the
SAP Fiori app.

Example for
manifest.json for the
SAP Fiori app:

"sap.ui5": { "_version":
"1.2.0",
 ...

"dependencies": {

"minUI5Version":
"1.34.0",
 "libs": {

"sap.m": {

"minVersion":
"1.34.0"
 },

"sap.ui.commons":
 {

"minVersion":
"1.34.0",

"lazy": true
 }
 },

"components": {

"sap.ui.app.other
": {

"minVersion":
"1.1.0"

"lazy": true
 }

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 777

Attribute Version* Description Example

 } },

sapui5/routing/
config/async

V4 (1.34) General setting for routing
that indicates how the views
are loaded; if set to true,
the views are loaded
asynchronously (default is
false)

For performance reasons, we
recommend to always use
the async setting. This
recommendation implies
that you have followed the
SAPUI5 programming model
in general and do not rely on
any sync-execution
depending event-orders.

"sap.ui5": { "_version":
"1.2.0",
 ...
 "routing": {

"config": {

"viewType":
"XML",

"async": true
 ...
 }, ...

sap.ui5/models/
preload

V5 (1.38) Defines whether or not the
model is initialized
(preloaded) before the
component instance is
created and while loading
the component preload and
its dependencies

"equipment": { "preload":
true,

"dataSource":
"equipment",
 ...
}

* Available as of descriptor version (SAPUI5 version)

Descriptor Dependencies to Libraries and Components

Description of the performance-relevant attributes that are available for the descriptor for applications,
components and libraries

The performance-relevant attributes have been introduced with the version 3 of the descriptor for applications,
components, and libraries.

Dependencies to Libraries

The following dependencies to libraries can be implemented:

● To benefit from the asynchronous library preload, add the mandatory libraries to sap.ui5/
dependencies/libs.

778 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

● To expose the necessary dependencies for offline packages for mobile devices, add optional libraries to
sap.ui5/dependencies/libs and flag them as lazy.

For applications and components, modify the manifest.json as follows:

"sap.ui5": { ...
 "dependencies": {
 ...
 "libs": {
 "sap.m": {},
 "sap.suite.ui.commons": {
 "lazy": true
 }
 }
 ...
 },
 ...

For libraries, modify the .library file as shown in the follown code sample. This file is available because the
manifest.json for libraries is generated based on this metadata.

<dependencies> <dependency>
 <libraryName>sap.m</libraryName>
 </dependency>
 <dependency>
 <libraryName>sap.suite.ui.commons</libraryName>
 <lazy>true</lazy>
 </dependency> ...

In a second step, modify the library.js file as follows:

sap.ui.getCore().initLibrary({ ... dependencies : ["sap.ui.core","sap.m"], // lazy libs are not declared here

 Note
In all cases, the lazy libraries need to be loaded manually in the application or library via the loadLibrary
API:

// lazy lib loaded synchronously (avoid if possible!) sap.ui.getCore().loadLibrary("sap.suite.ui.commons");
// lazy lib loaded asynchronously (the preferred way!) sap.ui.getCore().loadLibrary("sap.suite.ui.commons", { async:
true }).then(...);

 Tip
Execute the loadLibrary before any resource of the library is required to preload the complete library
instead of loading each resource individually.

Always use the async API as this is the preferred and performant way. Only use the sync API as an
exception if your coding relies on synchronous loading.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 779

Dependencies to Components

Scenario 1: UI library contains multiple components

In this scenario, the library is the leading container and no component preload is available. This means, that
you maintain the library dependency as described above. This is true for all kinds of component dependencies,
also for sap.ui5/extends/component. If the extended component originates in a library, do not use
sap.ui5.extends/component, but only declare the library dependency. Otherwise, the component
dependency causes a 404 request.

For loading lazy components inside a library, proceed with the library mechanisms as described above:

// lazy lib loaded synchronously (avoid if possible!) sap.ui.getCore().loadLibrary("sap.suite.ui.commons");
// lazy lib loaded asynchronously (the preferred way!!!) sap.ui.getCore().loadLibrary("sap.suite.ui.commons", { async: true }).then(...);

Scenario 2: Standalone component

In this scenario, you only maintain a dependency to the component. The component preload is available for
this scenario:

● To benefit from the asynchronous components preload, add the mandatory components to sap.ui5/
dependencies/components

● Add the optional components to sap.ui5/dependencies/components and flag them as lazy.

For applications and components, modify the manifest.json as follows:

"sap.ui5": { ...
 "dependencies": {
 ...
 "libs": {
 ...
 },
 "components": {
 "samples.components.sample": {},
 "samples.components.samplelazy": {
 "lazy": true
 }
 ...
 }
 },
 ...

For loading/instantiating the lazy standalone components, use the component factory functions:

// "Component" required from module "sap/ui/core/Component" // Asynchronously loads a component class without instantiating it.
Component.load({
 name: "..."
}).then(function(ComponentClass) {
 ...
});
// Asynchronously creates a new component instance from the given configuration.
// If necessary the component class is loaded.
Component.create({
 name: "..."
}).then(function(oComponentInstance) {
 ... });

780 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Related Information

loadLibrary
Component

Manifest Model Preload

The preload flag enables a preload mode for a model, thus improving the startup performance of an app or
component.

The preload flag is located in manifest.json under sap.ui5/models:

"sap.ui5": { ...
 "models": {
 "mymodel": {
 "preload": true, ...

The flag is not active by default, as there are some prerequisites:

● sap.ui.component is set to "async=true" and manifest (API parameter name of
sap.ui.component).

● Model implementation class is loaded before sap.ui.component is called; otherwise the model will not
be created.

● As model events (for example attachMetadataLoaded) may be missed because they are fired before the
component coding runs, we recommend using the Promise API (e.g. metadataLoaded) instead,
depending on the model type.

● Use the model preload flag for sap.ui.model.resource.ResourceModel if one of the following applies:
○ There is no component preload.
○ The corresponding resource files are not part of the component preload.

This means: The preload flag only makes sense for models which load their data from other locations than the
component itself. Local JSON, XML or resource model does not make sense as it interferes with the
component preload which will result in loading the model data twice and should be omitted. But for the V2
OData model, for example, using preload speeds up the performance as the OData metadata can already be
loaded in parallel to the component preload.

Before enabling the preload for the V2 ODataModel, make sure that you listen properly to metadata loaded by
using the Promise API instead of the Event API (metadataLoaded) since the preload could have loaded the
metadata already before the application code is executed. The Promise will be executed even if the metadata
loaded event has been raised already.

Listen properly to metadata loaded by using the Promise:

oModel.metadataLoaded().then(function() { /* TODO: add the event handling here!
*/ });

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 781

https://sapui5.hana.ondemand.com/#/api/sap.ui.core.Core/methods/loadLibrary.html
https://sapui5.hana.ondemand.com/#/api/sap.ui.core.Component/overview.html

Enabling the Automatic SAP Fiori 2.0 Header Adaptation in
the Descriptor

Application developers can enable automatic adaptation of their existing applications from the manifest.json
app descriptor. This helps to easily convert applications to the new look-and-feel of SAP Fiori 2.0.

SAP Fiori 2.0

SAP Fiori 2.0 is the next evolution step of the SAP Fiori UX. SAP Fiori 2.0 features new themes, a more unified
user experience, and smoother, more intuitive application interactions.

Application headers, written based on older SAP Fiori design guidelines, can now be easily adapted to the new
SAP Fiori 2.0 look-and-feel by using the automatic adaptation mechanism in the app descriptor.

The SAP Fiori 2.0 Header

The SAP Fiori 2.0 design concept requires changes with regards to the headers of applications and the SAP
Fiori launchpad (FLP). If your application has a header, it needs to be merged into the standardized SAP Fiori
2.0 header. SAPUI5 offers an adapter mechanism to let existing apps automatically adjust their header layout
according to the SAP Fiori 2.0 guidelines.

 Note
The screenshots in this topic are mockups and are used to visually outline the adaptations. The final apps
will look somewhat different.

Figure 210: SAP Fiori 2.0 header of a fullscreen application

The complete adaptation of a fullscreen app to SAP Fiori 2.0 consists of five main steps:

1. Remove the app-specific header bar. The header is made transparent and collapsed if there is no content in
it after the adaptation.

2. Display the title in the center of the FLP header
3. Move the action buttons from the app header to the header content area below the FLP header.
4. Move the Back button from the app-specific header to the FLP header.
5. Drill-down hierarchy levels can be added to the dropdown menu adjacent to the FLP title.

You can see how the elements are moved and transformed from the old SAP Fiori version (below) to the new
SAP Fiori 2.0 design in the screenshot below.

782 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Figure 211: SAP Fiori 2.0 header adaptation

 Note
These adaptations are primarily valid only for fullscreen apps. Other floorplans, like Master-Detail, are
affected differently and the adaptation there will not be the same.

Enabling the Adaptation in the App Descriptor

You can override the adapter default behavior for a single application by adding an entry in the app descriptor
in the sap.ui5/config section. Setting sapFiori2Adaptation to true enables the full functionality of the
SAP Fiori 2.0 Adapter.

"config": { ...
 "sapFiori2Adaptation": true,
 ...
}

Alternatively, you can use five fine-grained settings to enable only some of the adaptations. In the following
example, you can see how to trigger transparent headers (style attribute) and title propagation to FLP
(title attribute). The other adaptations are not applied.

"config": { ...
 "sapFiori2Adaptation": {
 "style": true,
 "collapse": false,
 "title": true,
 "back": false,
 "hierarchy": false
 },
 ...
}

In the list below, you can see what each of the settings enables.

● style - Triggers header transparency

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 783

● collapse - Triggers collapsing of the header when empty
● title - Triggers moving the header to FLP
● back - Triggers the Back button visibility in the app
● hierarchy - Triggers propagation of the hierarchy to FLP

 Note
In rare cases this automatic adaptation of the header area may not work, due to the application structure or
other reasons. In this case the headers will still appear in the old design, but the apps will continue to be
usable.

Some old SAP Fiori applications do not have an app descriptor yet. If you consider the effort to provide proper
app descriptors for all applications as too high, there is a second way to do this configuration. This alternative
configuration is done in the metadata section of Component.js (the app’s root component), which also has a
config section. The configuration options can be done there in the same manner.

 Note
If both the metadata and manifest are configured, and contradict each other, the configuration in
manifest.json is applied.

Model View Controller (MVC)

The Model View Controller (MVC) concept is used in SAPUI5 to separate the representation of information
from the user interaction. This separation facilitates development and the changing of parts independently.

Model, view, and controller are assigned the following roles:

● The view is responsible for defining and rendering the UI.
● The model manages the application data.
● The controller reacts to view events and user interaction by modifying the view and model.

● Models [page 882]

784 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

● Controller [page 807]
● Views [page 787]

The purpose of data binding in the UI is to separate the definition of the user interface (view), the data
visualized by the application (model), and the code for the business logic for processing the data (controller).
The separation has the following advantages: It provides better readability, maintainability, and extensibility
and it allows you to change the view without touching the underlying business logic and to define several views
of the same data.

Views and controllers often form a 1:1 relationship, but it is also possible to have controllers without a UI, these
controllers are called application controllers. It is also possible to create views without controllers. From a
technical position, a view is a SAPUI5 control and can have or inherit a SAPUI5 model.

View and controller represent reusable units, and distributed development is highly supported.

Models

A model in the Model View Controller concept holds the data and provides methods to retrieve the data from
the database and to set and update data.

● JSON Model [page 991]
● XML Model [page 993]
● Resource Model [page 995]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 785

● OData V2 Model [page 883]
● OData V4 Model [page 918]

SAPUI5 provides the following predefined models:

● OData model: Enables binding of controls to data from OData services. The OData model supports two-
way, one-way and one-time binding modes. However, two-way binding is currently only supported for
properties, and not for aggregations.

 Note
The OData model currently supports the following OData versions:

○ OData V2
○ OData V4 (limited feature scope)

● JSON model: Can be used to bind controls to JavaScript object data, which is usually serialized in the
JSON format. The JSON model is a client-side model and, therefore, intended for small data sets, which
are completely available on the client. The JSON model supports two-way (default), one-way and one-time
binding modes.

● XML model: A client-side model intended for small data sets, which are completely available on the client.
The XML model does not contain mechanisms for server-based paging or loading of deltas. The XML
model supports two-way (default), one-way and one-time binding modes.

● Resource model: Designed to handle data in resource bundles, mainly to provide texts in different
languages. The resource model only supports one-time binding mode because it deals with static texts
only.

The JSON model, XML model, and the resource model are client-side models, meaning that the model data is
loaded completely and is available on the client. Operations such as sorting and filtering are executed on the
client without further server requests.

The OData (V2 or V4) model is a server-side model and only loads the data requested by the user interface
from the server.

You can not only define one model for your applications, but define different areas in your application with
different models and assign single controls to a model. You can also define nested models, for example, a JSON
model defined for the application and an OData model for a table control contained in the application.

A Web application should support several data sources, such as JSON, XML, Atom, or OData. However, the way
in which data binding is defined and implemented within the UI controls should be independent of the
respective data source. It is also possible to create a custom model implementation for data sources that are
not yet covered by the framework or are domain-specific.

Related Information

API Reference: sap.ui.model

786 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.html

Views

The view in the Model View Controller concept is responsible for defining and rendering the UI. SAPUI5
supports predefined view types.

The following predefined view types are available:

● XML view (file or string in XML format); the XMLView type supports a mix of XML and plain HTML.
● JSON view (file or string in JSON format)
● JS view, constructed in a traditional manner
● HTML view (file or string in HTML format)

 Note
We recommend to use XML views, because XML views force a clear separation of the UI definition from the
application logic (which has to be implemented in the controller). This makes the code more readable and
easier to support.

Therefore, we concentrate on XML views and only provide examples for XML views throughout this
documentation.

Related Information

API Reference

XML View

The XML view type is defined in an XML file. The file name either ends with .view.xml or as an XML string.
The file name and the folder structure together specify the name of the view that equals the SAPUI5 module
name.

 Example
For resources/sap/hcm/Address.view.xml, the view name is sap.hcm.Address. The application
uses this view name for displaying an instance of this view. If you define the XML view by means of an XML
string, no file or define/require is needed.

The file looks as follows:

 <mvc:View controllerName="sap.hcm.Address" xmlns="sap.m"
xmlns:mvc="sap.ui.core.mvc">
 <Panel>
 <Image src="http://www.sap.com/global/ui/images/global/sap-logo.png"/>
 <Button text="Press Me!"/>
 </Panel> </mvc:View>

Nest the XML tags analogous to the nesting sequence of SAPUI5 controls and add the property values as
attributes (see Namespaces in XML Views [page 788]).

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 787

https://sapui5.hana.ondemand.com/#/api/sap.ui.core.mvc.View

Each control or element is represented by an XML tag with the name the control. If you, for example, want to
create an instance of a sap.m.Button, you use tag <Button> with namespace sap.m. You can create a
context binding for the control by using attribute obejctBinding or Binding. For more information, see
Context Binding (Element Binding) [page 824].

Related Information

API Reference: sap.ui.html.xmlview

Namespaces in XML Views

The names of the SAPUI5 control libraries and the related subpackages are mapped to XML namespaces.

One of the required namespaces can be defined as the default namespace (xmlns="..."). The control tags
for this namespace do not need a prefix.

The View tag is required and in the example below, the sap.ui.core.mvc namespace is defined with alias
mvc. Technically, you can define any alias for namespaces. However, the convention is to use the last part of the
full package name.

A control can be located in a subpackage of a control library, for example sap.ui.layout.form.Form is
located in the sap.ui.layout library, but the full package name is sap.ui.layout.form. You have to
specify this subpackage as a separate XML namespace, even if sap.ui.layout is already defined as
namespace.

<mvc:View xmlns:mvc="sap.ui.core.mvc"
 xmlns:layout="sap.ui.layout"
 xmlns:form="sap.ui.layout.form"
 xmlns="sap.m"> </mvc:View>

Aggregation Handling in XML Views

In XML views, aggregated child controls can be added as child tags.

Aggregations of XML Views

On root level, you can only define content for the default aggregation, e.g. without adding the content tag. If
you want to specify content for another aggregation of a view like dependents, place it in a child control´s
dependents aggregation or add it by using the addDependent method.

788 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui/methods/sap.ui.xmlview

Aggregations of Controls Inside the View

Some controls have more than one content area, for example the shell control that has the main content area,
a menu bar, a headerItems aggregation, a worksetItems aggregation, and so on. An aggregation tag usually
serves as a direct child of a container and contains children. You can only add children directly if the container
control has marked one of the child aggregations as default.

 Note
Some containers may not have default content, for example, the splitter container has two equally
important content areas.

The framework supports you by issuing error message in case of errors in the aggregation handling in XML
views.

You fill aggregations as shown in the following example. The namespace of the parent control tag and the
aggregation tag must be the same.

 <mvc:View controllerName="sap.hcm.Address" xmlns="sap.m"
xmlns:mvc="sap.ui.core.mvc">
 <Panel>
 <content> <!-- this is the general way of adding children: use the
aggregation name -->
 <Image src="http://www.sap.com/global/ui/images/global/sap-logo.png"/>
 <Button text="Press Me"/>
 </content>
 </Panel> </mvc:View>

If an aggregation of cardinality 0..1 has an alternative type and if you want to specify a value of that
alternative type, you have to do this as an attributes, not as a nested element.

 Example
For the noData aggregation of the sap.ui.comp.smarttable.SmartTable control, you can either
define a string or a nested text control.

String Nested text control

<SmartTable noData="No data
available"> ...
</SmartTable>

<SmartTable> <noData>
 <Text text="No data
available" icon="sap-icon://..." />
 </noData>
 ...
</SmartTable>

You can also use attributes to define binding information for aggregations with cardinality 0..n. For more
information, see Declarative List Binding in XML Views under List Binding (Aggregation Binding) [page 828].

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 789

Control Properties and Associations in XML Views

Properties

Property values for controls in XML views are specified as attributes of the XML element tag of the control. The
name of the attribute corresponds to the name of the property in the API reference, for example, the property
text of a the sap.m.Button control is specified as text=”value”.

 Note
Escape characters that have a special meaning in XML (like <, or &) when they occur in a property value.
Use XML entities instead (like < instead of a <, or & instead of &).

Attributes in XML views use the same binding syntax as constructors of controls. For example,
“{customerName}” is used to bind a property against the model property with name “customerName”.

Associations

● Associations of cardinality 1: Define the ID of the associated element in an attribute that has the same
name as the association in the XML view.

● Associations of cardinality 0..n: You can define multiple IDs separated by a blank.

Using Native HTML in XML Views

The use of native HTML in XML views depends on the XHTML feature set.

Context

When mixing XHTML and SAPUI5 controls, observe the following rules:

● XHTML elements can be used instead of the SAPUI5 type control, for example, in the root of an XML view
or in the content aggregation of a layout container.

● When embedding XHTML in an aggregation of a SAPUI5 control, the XHTML must not consist of a single
text node. The topmost node of an embedded XHTML tree must be an XHTML element. Embedding pure
text into an aggregation is not supported.

● The XHTML nodes are converted 1:1 to HTML, the XML view does not deal with any differences between
XHTML and HTML (for example rewriting and auto-closing tags)

● The created HTML DOM nodes are preserved during re-rendering of an XML view: Modifications to the
DOM are not lost.

790 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Note
As an alternative to embedding XHTML, you can use the sap.ui.core.HTML control. As this requires
content encoding it is, however, less convenient.

Procedure

To mix SAPUI5 controls with native XHTML, you only need the XHTML namespace to use (X)HTML:

<mvc:View controllerName="sap.hcm.Address" xmlns="sap.m"
xmlns:mvc="sap.ui.core.mvc" xmlns:html="http://www.w3.org/1999/xhtml">
 <Panel>
 <Button text="Press Me. I am an SAPUI5 Button"/>
 <html:button>No, press me. I am native HTML Button.</html:button>
 </Panel> </mvc:View>

Using CSS Style Sheets in XML Views

Style sheets are included in XML views in the same way as plain HTML. To add further CSS classes to SAPUI5
controls, use the class attribute.

Context

The effect is the same as calling myButton.addStyleClass(...).

 Tip
We recommend to carefully choose the elements that you style as the CSS always affects the whole page
and is not restricted to the view.

Procedure

To add a style sheet, add the style definition.
To add a style class and define a button that uses it, add the following coding:

 <mvc:View controllerName="sap.hcm.Address" xmlns="sap.m"
xmlns:mvc="sap.ui.core.mvc"
 xmlns:html="http://www.w3.org/1999/xhtml">
 <html:style>
 .mySuperRedButton {
 color: red;

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 791

 }
 </html:style>
 <Panel>
 <Button class="mySuperRedButton" text="Press Me"/>
 </Panel> </mvc:View>

Handling Events in XML Views

XML views use event handlers as attributes: The attribute name is the event name, such as "press" for a
button, and the attribute value is the event handler name.

Addressing the Event Handler

Depending on the syntax of its name, the event handler will be looked up by this name in different locations:

● Names starting with a dot ('.') are always assumed to represent a method in the controller. They are
resolved by removing the leading dot and reading the property with the resulting name from the controller
instance. These names are relative to the view/controller. For example, press=".myLocalHandler" is
resolved by attachPress(oController["myLocalHandler"], oController);

 Note
This syntax is by intention consistent to the complex binding syntax for formatter functions.

● Names defined in a core:require statement can be used to access static functions of the required
modules. For example, press= "Util.handler" sets the static handler function of the required Util
module as press handler for the respective control. For more information, see Require Modules in XML
View and Fragment [page 799].

● Names containing a dot at a later position are assumed to represent:
○ Static functions from the modules which are loaded through the XML view required modules (See

Require Modules in XML View and Fragment [page 799])
○ Global functions if the function cannot be resolved within the XML view require modules and are

resolved by calling ObjectPath.get with the full name. For example, name press=
"some.global.handler" is resolved by calling
attachPress(ObjectPath.get("some.global.handler"), oController);.

 Note
The use of globals is not recommended and they should be replaced, see Require Modules in XML
View and Fragment [page 799].

● Names without dot are interpreted as a relative name; if nothing is found, they are interpreted as an
absolute name. This variant is only supported for backward compatibility.

792 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Note
When specified without parameters, the event handler will be called with one argument, the event object.
This object can be used to retrieve the event parameters documented by the control’s respective event
documentation.

The "this" Context

As long as no event handler parameters are specified and regardless of where the function was looked up, it will
be executed with the controller as the context object (this). This is also true for global event handlers and
makes the implementation of generic global handlers easier that may need an easy way back to the controller/
view in which they are actually used, for example, to call createId or byId. This should make the
development of global event handlers more consistent with controller local event handlers.

Therefore, the following declaration is equivalent to a call of controller.doSomething() when the button is
pressed:

 <Button text="Press Me" press=".doSomething"/>

However, once event parameters are specified using the syntax described below, the this context is always
the object on which the handler function is defined. For controller methods, the controller remains the this
context, but for methods defined in the XML view required modules or on global objects, that owner object is
used as this context. In case the controller is still required in such global handler functions, it can be explicitly
passed as $controller parameter (see the Passing Parameters section below). Functions defined directly on
the XML view required modules or on the window object have an undefined this context.

By invoking the special JavaScript function .call(...) on your event handler function, you can also provide a
different this context. For example, you can still have the controller as this in an event handler in a global
helper object, even when you pass parameters, by doing:

<Button core:require="{Helper:'path/to/Helper'}" text="Press Me"
press="Helper.doSomething.call($controller, 'Hello World')"/>

Passing Parameters

In XMLViews and JSONViews it is also possible to directly specify the parameters that should be passed into
the event handler function. These parameters then are passed instead of the event object. The syntax mimics
the JavaScript syntax for function calls:

<Button text="Press Me" press=".doSomething('Hello World')"/>

Any JavaScript literals including objects and arrays can be passed:

<Button text="Press Me" press=".doSomething('string', 0, 5.5, {key1: 'value1',
key2: 'value2'}, ['value1', 'value2'])"/>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 793

It is also possible to access model properties. The syntax to be used is the one used within Expression Binding
– binding paths are enclosed in ${…} :

<Button text="Press Me" press=".doSomething(${products>unitPrice})"/>

The binding context from which relative binding paths are resolved is the context of the control which triggers
the event. This means that for a control in a table row, relative binding paths like the one above, always pass the
data from the table row where the event occurred. This is very convenient, because it is no longer required to
find out the data element to which the table row is bound.

Complex binding syntax can also be used (to add formatters, types etc.), as well as all expressions allowed by
Expression Binding [page 845]:

<Button text="Press Me" press=".doSomething(${path: 'products>unitPrice',
formatter: '.formatPrice'})" /> <Button text="Press Me" press=".doSomething(10 * ${products>unitPrice})" /> <Button text="Press Me" press=".doSomething(${products>type} === 'Laptop')" />

 Restriction
Even though complex bindings can have multiple parts (use multiple data properties) instead of just one
data property path, this is not possible for the event parameters. Therefore, you cannot use parts in
bindings.

Formatters are resolved the same way as the event handlers: a leading dot means the formatter is member of
the controller.

 Note
While it seems like regular JavaScript can be written directly in the event handler specification, this is not
the case. The entire expression is evaluated as expression binding and only the syntax elements allowed
there can be used.

There are two special named models available in event handlers to make accessing certain values easier:

The first one is named $parameters and contains the event parameters:

<Select change=".doSomething(${$parameters>/selectedItem})" />

Here the event parameter selectedItem is passed into the event handler.

The other one is named $source and is a ManagedObjectModel which wraps the control firing the event:

<Button text="Press Me" press=".doSomething(${$source>/text})" />

Here the text of the pressed button is passed into the event handler.

There are also two special values which can be used as parameters.

The first special value is named $event and represents the original event object. This event object is no longer
passed to event handlers, once parameters are specified. This is because of the $parameters model, which
provides access to the event parameters, and it is not needed in most cases. However, when access to the
event object is still needed in the event handler, it can be explicitly passed:

<Button text="Press Me" press=".doSomething($event)" />

794 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

This leads to the same result as specifying .doSomething without any parameters, but further parameters
can of course be given.

The second special value is $controller. As described above, as soon as parameters are specified, the this
context inside the event handler function is always the object on which this function is defined. However,
sometimes it is still required to access the controller even in a handler function which is NOT defined in the
controller, but on some other helper object. In this case, the controller can be explicitly passed as one of the
parameters:

<Button text="Press Me" press=".doSomething($controller)" />

Preprocessing XML Views

Applying preprocessing to views enables you to use features like XML templating. This feature is currently only
enabled for XML views. On an abstract level, preprocessing means that a view can be modified during runtime
before it is rendered. This makes it possible to use the templating syntax, as it is interpreted by the
preprocessor. It also makes it possible to apply user customization.

The following figure shows the different stages of view initialization. There are three hooks, XML, ViewXML and
controls, which differ mainly in the source that is passed to the preprocessor.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 795

● XML
The raw view source in the XML format is passed to the preprocessor. This enables example templating on
XML level.

● ViewXML
The raw view source with all XML preprocessing results gets enhanced with its full IDs for the controls and
passed on to the preprocessor. Adaptions on a valid view source can now be made before the XML is being
parsed into a control tree.

● Controls
The view source is already processed to the JavaScript object and the control tree is available. This enables
you to make changes to the view after design time, like special customizations, stored at some persistence
layer or similar, the user has made previously. Or customizations depending on the user role which are not
applicable during design time.

For preprocessor for view sources of type XML or ViewXML which create cacheable results, see VML View
Cache: Preprocessor Integration [page 798].

Using the Preprocessor

First, you need a preprocessor implementation. SAPUI5 provides a default preprocessor for XML templating
which can be enabled by default. You can also build your own preprocessor based on the Preprocessor
interface. For more information, see the API Reference and the sample in the Demo Kit.

To use the preprocessor, you can choose one of the following options:

● Global availability
Makes the preprocessor available to all XML views and processes it every time a View is initialized. This
maybe the right case for essential operations you want to apply to every view in your application. Therefore
you can make use of the registerPreprocessor method:

// "XMLView" required from module "sap/ui/core/mvc/XMLView" XMLView.registerPreprocessor("xml", "sap.ui.sample.samplepreprocessor",
/* bSyncSupport = */ false, {sampleInfo: "this is a global preprocessor", moreInfo: "…"});

For more information, see API Reference: sap.ui.core.mvc.XMLView.registerPreprocessor.
● Local availability

Make a preprocessor available to one instance. This can be achieved by passing the preprocessor to the
view factory function, which then processes it for this special instance. This would be the choice for smaller
tasks the preprocessor should perform.

// "XMLView" required from module "sap/ui/core/mvc/XMLView" XMLView.create({
 viewName: "sap.ui.core.sample.View.preprocessor.Sample",
 preprocessors: {
 xml: [{
 preprocessor: "sap.ui.sample.samplepreprocessor",
 sampleInfo: "this is a local preprocessor",
 moreInfo: "…"
 },
 {
 preprocessor: “another.preprocessor”
 }]
 }
}).then(function(oView) {

796 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.mvc.View.Preprocessor.html
https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.sample.View.preprocessor/preview
https://sapui5.hana.ondemand.com/#/api/sap.ui.core.mvc.XMLView/methods/sap.ui.core.mvc.XMLView.registerPreprocessor

 oView.doSomething(); });

● On demand availability
This enables the developer to activate a preprocessor for a view instance, without the need to provide an
implementation, by just specifying a preprocessor, which has been registered globally earlier. This is
currently used by the XML templating.

 Note
Preprocessors are per default only available for async views. Although it is possible to enable the
preprocessor for sync views, we strongly recommend to only use them with async views.

 Note
The information that is provided when using a preprocessor locally will be passed to the preprocessor
according to the mSettings of the register method.

Related Information

XML View Cache [page 797]

XML View Cache

To be able to speed up processing times of XML views that make heavy use of the preprocessor feature, you
can use the view cache to store its processed XML source. Then according network requests for the source and
all preprocessor runs that modify the XML source are skipped and the source is taken from the cache.

To make sure that the cache always contains the latest view data, the cache has to be invalidated whenever the
data changes that is needed for preprocessing. When the cache is invalidated, all resources are processed
again and the cache gets filled with new data.

 Caution
Parts of this feature are currently still experimental. For more information, see API Reference:
sap.ui.xmlview.

The following data changes are handled automatically by SAPUI5:

● SAPUI5 version changes
● Descriptor file (manifest.json)
● Locale (for each locale one cached resource is being created)

 Note
For each additional component that may have an influence on the preprocessing results of the view source,
like OData metadata, you have to implement the invalidation by adding additional keys to the cache
configuration.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 797

https://sapui5.hana.ondemand.com/#/api/sap.ui/methods/sap.ui.xmlview
https://sapui5.hana.ondemand.com/#/api/sap.ui/methods/sap.ui.xmlview

Prerequisites

This feature is only enabled for the following browsers:

● Google Chrome as of version 49 for desktop
● Internet Explorer as of version 11 for desktop

The XML view has to be loaded asynchronously.

Cache Configuration

If you want to keep things simple, you can use the following cache configuration:

var sCalculatedCacheKey = oKeyProvider.getCacheKey(); sap.ui.xmlview({
 async: true,
 id: "cacheableView",
 viewName: "my.cacheableView",
 cache: {
 // one key is mandatory
 keys:[sCalculatedCacheKey]
 } });

If you want to pass on multiple keys, for example strings or promises that resolve with a string, you use the
following syntax:

var pCalculatedCacheKey = oKeyProvider1.getCacheKeyPromise(); var sAnotherKey = oKeyProvider2.getCacheKey();
sap.ui.xmlview({
 async: true,
 id: "cacheableView",
 viewName: "my.cacheableView",
 cache: {
 keys: [
 // several key providers, at least one
 pCalculatedCacheKeyPromise,
 sAnotherKey
]
 } });

Preprocessor Integration

If you want to implement a preprocessor that has influence on the creation of views, for example, by changing
the XML code, you can use function getCacheKey. With this function, the view can find out whether the
preprocessor triggers changes that invalidate the cache. The function returns a cache key or a promise that
resolves a cache key. For more information, see API Reference: sap.ui.core.mvc.View.Preprocessor.

// Example preprocessor implementation sap.ui.define(['jquery.sap.global', 'sap/ui/base/Object'],
 function(jQuery, BaseObject) {
 'use strict';

798 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.mvc.View.Preprocessor.html

 var TestPreprocessor = BaseObject.extend("smy.TestPreprocessor", {});
 TestPreprocessor.process = function(vSource, sCaller, mSettings) {
 return doSomething(vSource));
 };
 TestPreprocessor.getCacheKey = function(oViewInfo) {
 return sCacheKey;
 };
 return TestPreprocessor; }, /* bExport= */ true);

Related Information

API Reference: sap.ui.xmlview
Preprocessing XML Views [page 795]

Require Modules in XML View and Fragment

Modules can be required in XML views and fragments and assigned to aliases which can be used as variables in
properties, event handlers, and bindings.

The require attribute with namespace URI sap.ui.core can be used to define the module aliases and
paths. In the following sections we assume that the namespace prefix core is used to define the URI
sap.ui.core which makes the attribute to be written as core:require. This attribute can be used at every
element of an XML view or fragment. You can specify a list of required modules as Unified Resource Names,
similar to sap.ui.require, and assign aliases to them using a JSON-like syntax.

<mvc:View xmlns:core="sap.ui.core" xmlns:mvc="sap.ui.core.mvc" core:require="{
 Box: 'sap/m/MessageBox',
 Toast: 'sap/m/MessageToast'
 }"> ... </mvc:View>

 Note
The modules defined in the core:require attribute are loaded first before any other attributes of the
element with core:require are processed. Therefore, they can be used in the same element for bindings,
event handlers, and so on.

core:require can only handle static imports which require the module path to be defined by using a string
literal. It is not possible to use a binding or an expression for defining the module path. As core:require is
not interpreted as a binding expression, it is not necessary to escape the curly braces in core:require which
is different than in the other attributes.

The aliases can then be used to access the modules' static functions. The alias is valid for the element where
the alias is defined and the subtree of that element.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 799

https://sapui5.hana.ondemand.com/#/api/sap.ui/methods/sap.ui.xmlview

 Note
When you use the view in combination with fragments, keep in mind that the alias does not work in
embedded fragments. In this case, define a separate core:require inside the fragments.

Example With Event Handler

You can use the XML require to reference static functions of a module which can serve as event handlers.
This works with static strings as well as with any model data. For a description how this is done, see Handling
Events in XML Views [page 792]. As the Box module is defined on the root element, it can be used in the whole
view.

<mvc:View controllerName="some.Controller" xmlns="sap.m" xmlns:core="sap.ui.core" xmlns:mvc="sap.ui.core.mvc"
 core:require="{Box:'sap/m/MessageBox'}">
 <Panel>
 <Image src="http://www.sap.com/global/ui/images/global/sap-logo.png"/>
 <Button text="Press Me!" press="Box.show('Hello!')"/>
 </Panel> </mvc:View>

 Note
$controller, $event, $parameters, and $source are reserved keywords for resolving an event
handler. Avoid using these keywords as aliases for the required modules with core:require.

Example With Data Binding

You can also use the require module with data binding. Formatters and factory functions can be defined with
the require modules, as well as expression bindings. The following code extract also shows, that the Factory
module, which is defined on the List element, can only be used there, and not in sibling or parent controls:

<mvc:View controllerName="some.Controller" xmlns="sap.m" xmlns:core="sap.ui.core" xmlns:mvc="sap.ui.core.mvc"
 core:require="{Util:'some/Util'}">
 <Panel>
 <Image src="http://www.sap.com/global/ui/images/global/sap-logo.png"/>
 <Text text="{formatter: 'Util.format', path: '/text'}"/>
 <List core:require="{
 Factory:'some/Factory'
 }" id="list" items="{path:'/items', factory:'Factory.createItem'}">
 </List>
 </Panel> </mvc:View>

800 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

core:require in Fragments

core:require can be used in fragments and set on every element, including FragmentDefinition.
However, core:require on FragmentDefinition node does not have any effect in the following use cases:

● The view where a fragment is used is preprocessed. For more information about preprocessing, see
Preprocessing XML Views [page 795].

● A fragment is defined inline within a View.

<mvc:View controllerName="some.Controller" xmlns="sap.m" xmlns:core="sap.ui.core" xmlns:mvc="sap.ui.core.mvc">
 <FragmentDefinition>
 <!-- core:require can't be defined on the above FragmentDefinition -->
 ...
 </FragmentDefinition>
 ... </mvc:View>

core:require does not work as expected in both of the above use cases because the FragmentDefinition
node is not part of the resulting view. Therefore, the module information which is defined in the core:require
on FragmentDefinition node is not available for its child nodes.

JSON View

The JSON view type is defined in a file. The file name has to either end with .view.json or as a JSON string.
The file name and the folder structure together specify the name of the view that equals the SAPUI5 module
name within the modularization concept.

For the file resources/sap/hcm/Address.view.json, the view name is sap.hcm.Address. The
application uses this view name for displaying an instance of this view.

The file looks as follows:

{ "Type":"sap.ui.core.mvc.JSONView",
 "controllerName":"sap.hcm.Address",
 "content": [{
 "Type":"sap.m.Image",
 "id":"MyImage",
 "src":"http://www.sap.com/global/ui/images/global/sap-logo.png"
 },
 {
 "Type":"sap.m.Button",
 "id":"MyButton",
 "text":"Press Me"
 }] }

Nest the JSON objects analogous to the nesting of SAPUI5 controls and add the property values as attributes.
The syntax is the same as the syntax of a JSON constructor for any control.

 Note
You can use strings, Boolean values, and null in your JSON view.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 801

Aggregation Handling

You add child controls as arrays. This is shown in the example above where an image and a button have been
added to the view content aggregation.

Event Handling

In JSON views, event handlers are bound as attributes with the attribute name as event name like press for a
button and the attribute value as event handler name.

The following declaration causes controller.doSomething() to be executed when the button is pressed:

... {
 "Type":"sap.m.Button",
 "id":"MyButton",
 "text":"Press Me",
 "press":"doSomething"
 } ...

The location in which an event handler is looked up, are similar to XML views (see Handling Events in XML
Views [page 792]).

Data Binding

You can bind data in JSON views. To bind the texts of a control to a language-dependent resource bundle,
define the resource bundle via name (resourceBundleName property) or a URL (resourceBundleUrl
property) and assign an alias (resourceBundleAlias property) for the bundle within the view definition. The
binding path is the same for all other SAPUI5 data bindings.

Resource bundle content:

MY_TEXT=Hello World

 Example

{ "Type": "sap.ui.core.JSONView", "controllerName":"my.own.views.test",
 "resourceBundleName":"myBundle",
 "resourceBundleAlias":"i18n",
 "content": [{
 "Type":"sap.m.Panel",
 "id":"myPanel",
 "content":[{
 "Type":"sap.m.Button",
 "id":"Button1",
 "text":"{i18n>MY_TEXT}",
 "press": "doIt"
 }]
 }]
}

802 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

The ResourceModel for binding this texts is created during view instantiation. The model is set as secondary
model with the given alias to the view instance. To bind other properties to another model, create the model in
the corresponding controller or HTML page and attach it to the view with another alias.

JS View

You create a JS (JavaScript) view in the same way as a controller and use the suffix .view.js for the file.

SAPUI5 provides the following two default methods for implementation:

● getControllerName(): Specifies the controller belonging to this view
If this method is not implemented or returns NULL, the view has no controller.

● createContent(): Called initially once after the controller has been instantiated
This method is used to create the UI. As the method knows the controller, it can directly attach the event
handlers.

 Example

 sap.ui.jsview("sap.hcm.Address", { // this View file is called
Address.view.js
 getControllerName: function() {
 return "sap.hcm.Address"; // the Controller lives in
Address.controller.js
 },
 createContent: function(oController) {
 var oButton = new sap.m.Button({text:"Hello JS View"});
 oButton.attachPress(oController.handleButtonClicked);
 return oButton;
 } });

The string in quotes denotes the view name that equals the SAPUI5 module name within the define/require
concept.

 Caution
In event handlers for controls "this" usually denotes the control itself. This is unexpected when it happens
in event handlers that are implemented inside controllers: The controller would usually expected to be
denoted as "this". This is no issue for declarative view types, but for JSViews the view developer may need
to modify the "this" context as follows:

 ... oButton.attachPress(jQuery.proxy(oController.handleButtonClicked,
oController));
 ...

Alternatively, the view developer can give the event handler method in an array where the second element
is the "this" object:

 ... var oButton = new sap.m.Button({
 text: "Hello JS View",

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 803

 press: [oController.handleButtonClicked, oController]
 });
 ...

 Caution
If you want to define IDs for controls inside a JSView to guarantee their uniqueness when reusing views, you
can not give hardcoded IDs, but have to give the view the opportunity to add its own instance ID as a prefix.
This is done by using the View.createId(...) method. For the example above, this is done as follows:

var oButton = new sap.m.Button(this.createId("myButton"), {text:"Hello JS
View"});

This is not required for declarative view types as the view parser can manage this automatically, see
Support for Unique IDs [page 814].

HTML View

An HTML View is defined by declarative HTML. Like the declarative support, the HTML view supports
embedded HTML. The view file ends with view.html, for example myview.view.html.

 Example

 <template data-controller-name="example.mvc.test"> Hello
 <h1>Title</h1>
 <div>Embedded HTML</div>
 <div class="test test2 test3" data-sap-ui-type="sap.m.Panel" id="myPanel">
 <div class="test test2 test3" data-sap-ui-type="sap.m.Button" id="Button1"
data-text="Hello World" data-press="doIt"></div>
 <div data-sap-ui-type="sap.m.Button" id="Button2" data-text="Hello"></div>
 <div data-sap-ui-type="sap.ui.core.mvc.HTMLView" id="MyHTMLView" data-view-
name="example.mvc.test2"></div>
 <div data-sap-ui-type="sap.ui.core.mvc.JSView" id="MyJSView" data-view-
name="example.mvc.test2"></div>
 <div data-sap-ui-type="sap.ui.core.mvc.JSONView" id="MyJSONView" data-view-
name="example.mvc.test2"></div>
 <div data-sap-ui-type="sap.ui.core.mvc.XMLView" id="MyXMLView" data-view-
name="example.mvc.test2"></div>
 </div> </template>

All view-specific properties can be added to the <template> tag as data-* attributes.

Related Information

Declarative Support [page 1057]

804 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Instantiating Views
To instantiate views asychronously, SAPUI5 provides the factory method View.create defined in module
sap/ui/core/mvc/View.

To pass the required information for the instantiation, use an object with the following properties:

● type: The type can be JSON, JS, XML or HTML. All possible types are declared in the enumeration
sap.ui.core.mvc.ViewType.

● viewName: View name corresponding to the module concept
● viewContent: Only relevant for XML views and JSON views. Defines the XML or JSON string

representation of the view definition. If viewName and viewContent are given, the viewName property is
used to load the view definition.

● Controller: Any controller instance; the given controller instance overrides the controller defined in the
view definition

● viewData: Only used for JS views; this property contains user-specific data that is available during the
whole lifecycle of the view and the controller

All regular properties of a view (control) can be passed to the object as usual.

Loading Views

The default mode is the asynchronous loading of a view: The advantage of asynchronous loading compared to
synchronous loading is that the UI does not freeze for the duration of the loading process and there is no
blockage of functionalities during view initialization.

With the asynchronous loading of views, the instance is not fully available at the moment of creation, instead
you may receive a Promise via the View.prototype.loaded method. The following code snippet shows how
the view instance is available in the resolve function of the promise.

 Note
If you access the view in the controller's onInit callback, the view instance is available in any case. The
behavior does not change.

// "View" required from "sap/ui/core/mvc/View" // "coreLibrary" required from "sap/ui/core/library"
// "my.own.controller" was defined earlier
View.create({
 viewName: "my.own.view",
 controller: "my.own.controller",
 type: coreLibrary.mvc.ViewType.XML
}).then(function(oView) {
 // the instance is available in the callback function
 oView.placeAt("uiArea"); });

Synchronous Mode

 Note
We do not recommend this mode. Use the asynchronous mode instead.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 805

The following code snippet creates a view instance, loads the view source, places the instance to the uiArea,
and renders it later on.

var oController = sap.ui.controller("my.own.controller"); var oView = sap.ui.view({
 viewName: "my.own.view",
 controller: " my.own.controller",
 type: sap.ui.core.mvc.ViewType.XML
});
// the instance is available now
 oView.placeAt("uiArea"); ...

Lazy Loading for XML Views

The following code snippet shows how to do a lazy loading for XML views:

<!-- File: view/CustomView.view.xml --> <mvc:View xmlns="sap.m" xmlns:mvc="sap.ui.core.mvc">
 <Text text="Custom View loaded ..."/> </mvc:View>

// File: controller/MainController.controller.js sap.ui.require(["sap/ui/core/mvc/XMLView", "sap/ui/core/mvc/Controller"],
function(XMLView, Controller) {
 return Controller.extend("samples.controller.MainController", {
 // ...
 onSomeEventTriggered: function() {
 // instantiate view using create-factory
 XMLView.create({
 viewName: "samples.view.CustomView"
 })
 .then(function(oCustomView) {
 // View loaded ...
 })
 }
 }); });

For an example, see the sap.ui.core.sample.View.async/preview sample in the Demo Kit.

View Cloning

For normal controls, view cloning bases on control settings that are described by SAPUI5 metadata, such as
properties, aggregations, associations, and event handlers. The clone operation collects these settings and
creates a new instance.

Another important aspect of SAPUI5 views is their cloning behavior. As you might know, SAPUI5 aggregation
bindings can use template control to create a series of similar controls based on a collection of data, for
example, items in a RowRepeater for each entry in a model array. The data binding uses a
ManagedObject.clone operation to create multiple controls out of a single template.

For views there is a conflict between this basic, generic approach and the way how views usually define their
content: via hooks (JSView) or via persisted XML or JSON files. Furthermore, it is allowed and documented

806 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.sample.View.async/preview

best practice to modify the view in the onInit hook of its controller. To avoid conflicts between the generic
cloning and the MVC concepts, views implement a slightly modified clone operation: only a subset of the view
settings are cloned, the remainder is re-created by calling the hook (JSView) or applying the external view
description (XML or JSON file), depending on the view type.

Cloned in a generic way are the following settings:

● any models that have been set (setModel())
● registered control event listeners (attachSomeEvent)
● registered browser event listeners (attachBrowserEvent)
● bindings (bindProperty, bindAggregation)

Not cloned, but recreated are all aggregations, namely the content.

In scenarios where the above clone approach still leads to undesirable behavior, factory functions can be used
for the aggregation binding instead.

Related Information

List Binding (Aggregation Binding) [page 828]

Controller

A controller contains methods that define how models and views interact.

You define a simple controller as follows:

sap.ui.controller("sap.hcm.Address", { // controller logic goes here });

The string in quotes specifies the controller name. The controller file's name should be named as the string in
the quotes, Address.controller.js.

 Note
The suffix .controller.js is mandatory for controllers.

Lifecycle Hooks

SAPUI5 provides predefined lifecycle hooks for implementation. You can add event handlers or other functions
to the controller and the controller can fire events, for which other controllers or entities can register.

SAPUI5 provides the following lifecycle hooks:

● onInit(): Called when a view is instantiated and its controls (if available) have already been created; used
to modify the view before it is displayed to bind event handlers and do other one-time initialization

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 807

● onExit(): Called when the view is destroyed; used to free resources and finalize activities
● onAfterRendering(): Called when the view has been rendered, and therefore, its HTML is part of the

document; used to do post-rendering manipulations of the HTML. SAPUI5 controls get this hook after
being rendered.

● onBeforeRendering(): Called every time the view is rendered, before the renderer is called and the
HTML is placed in the DOM tree.

 Note
For controllers without a view, no lifecycle hooks are called.

 Example
 sap.ui.controller("sap.hcm.Address", {
 onInit: function() {
 this.counter = 0;
 } });

Event Handlers and Other Functions

In addition to lifecycle hooks, a controller can define additional methods that serve as event handlers or
additional functionality offered by the controller.

 Example
 sap.ui.controller("sap.hcm.Address", {
 increaseCounter: function() {
 this.counter++;
 } });

Methods Section in the Controller Metadata

By default, all methods that do not start with an underscore or with prefix "on", "init" or "exit" are public. You
can get all public methods of a controller by using the
oController.getMetadata().getPublicMethods() API.

When you use the new methods section in the controller metadata, only functions prefixed by "_" become
private by default. In addition, you get the possibility to control the visibility, flag methods as final, or define an
overrideExecution strategy. The same applies for the new controller extension metadata. This makes the
definition of a public interface more flexible.

Only public methods and methods that are not flagged as final could be overridden by a controller extension.

808 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Note
If you don't use the new methods definition for controllers, you could override the onInit, onExit,
onAfterRendering and onBeforeRendering methods of the controller even if they are private by
default.

The following sample code shows how to define an extension to an existing controller.

 Example
Sample controller extension:

sap.ui.define(['sap/ui/core/mvc/Controller', 'sap/ui/core/mvc/
OverrideExecution'], function (Controller, OverrideExecution) { "use strict";
 return Controller.extend("sap.hcm.Address", {
 metadata: {
 // extension can declare the public methods
 // in general methods that start with "_" are private
 methods:{
 publicMethod: {public: true /*default*/, final: false /
default/, overrideExecution: OverrideExecution.Instead /*default*/},
 finalMethod: {final: true},
 onMyHook: {public: true /*default*/, final: false /
default/, overrideExecution: OverrideExecution.After},
 couldBePrivate: {public: false}
 }
 },
 // adding a private method, only accessible from this controller
 _privateMethod: function() {
 },
 // adding a public method, might be called from, but not overridden
by other controllers or controller extensions as well
 publicMethod: function() {
 },
 // adding a final method, might be called from, but not overridden by
other controllers or controller extensions as well
 finalMethod: function() {
 },
 // adding a hook method, might be called from, but not overridden by
a controller extension
 // override these method does not replace the implementation, but
executes after the original method
 onMyHook: function() {
 },
 // method public by default, but made private via metadata
 couldBePrivate: function() {
 }

 });
});

Controller Extensions Implementation Guidelines

All public methods need to stay compatible:

● Parameters of the method can be enhanced only with new optional parameters.
● It is recommended to use a JS object to pass the parameters. Extension can be done by adding an optional

key, while working with parameters needs to stick to the sequence.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 809

● Documentation should be maintained for all public methods.
● Use the @since version to tell the consumer on which version this method was introduced.

 Note
Within the methods of a controller extension, the reserved base member allows access to the public
functions of the extended controller.

Functionality can be called by using this.base.basePublicMethod().

For more information on how to use controller extensions, see Using Controller Extension [page 810].

API Reference

sap.ui.core.mvc.Controller

Using Controller Extension

Controller extensions allow you to add functionality to existing applications. This can be used for extensibility
purposes, for example a customer extending SAP-delivered applications, or as a reusable part that is added to
the original application.

Overview

The following sample code shows how to define an extension for an existing controller.

sap.ui.define(['sap/ui/core/mvc/ControllerExtension', 'sap/ui/core/mvc/
OverrideExecution'], function(ControllerExtension, OverrideExecution) { "use strict";
 return ControllerExtension.extend("my.extension.SampleExtension", {
 metadata: {
 // extension can declare the public methods
 // in general methods that start with "_" are private
 methods: {
 publicMethod: {
 public: true /*default*/ ,
 final: false /*default*/ ,
 overrideExecution: OverrideExecution.Instead /*default*/
 },
 finalMethod: {
 final: true
 },
 onMyHook: {
 public: true /*default*/ ,
 final: false /*default*/ ,
 overrideExecution: OverrideExecution.After
 },
 couldBePrivate: {
 public: false
 }

810 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.mvc.Controller.html

 }
 },
 // adding a private method, only accessible from this controller extension
 _privateMethod: function() {},
 // adding a public method, might be called from or overridden by other
controller extensions as well
 publicMethod: function() {},
 // adding final public method, might be called from, but not overridden by
other controller extensions as well
 finalMethod: function() {},
 // adding a hook method, might be called from but not overridden by other
controller extensions
 // overriding these method does not replace the implementation, but executes
after the original method
 onMyHook: function() {},
 // method public by default, but made private via metadata
 couldBePrivate: function() {},
 // this section allows to extend lifecycle hooks or override public methods
of the base controller
 override: {
 // override onInit of base controller
 onInit: function() {},
 // override public method of the base controller
 basePublicMethod: function() {}
 }
 });
});

For more detailed information on lifecycle hooks and controller metadata, see Controller [page 807].

Custom Lifecycle Events
If you want to have additional lifecycle events like the standard onInit or onExit for developers extending the
controller, you can define them as described in this section.

Controller extensions allow you to define custom lifecycle hooks. In the Sample, the ReuseExtension.js
defines a custom lifecycle hook by specifying an overrideExecution function:

return ControllerExtension.extend("sap.my.ReuseExtension", { metadata: {
 methods: {
 "onFilterHook": {"public": true, "final": false,
overrideExecution: OverrideExecution.After}
 }
 },
 //...
 /**
 * @abstract
 */
 onFilterHook: function(aFilter) {
 }
 });

With OverrideExecution.After, the extensions are called in the order they are provided, with
OverrideExecution.Before the order is reversed and the last extension is called first.

Final Methods in Controller Extensions
Adding “final”: true metadata to the public method makes it available for execution (call) but not for
overriding in the next controller extension.

return ControllerExtension.extend("sap.my.ReuseExtension", { metadata: {
 methods: {

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 811

https://sapui5.hana.ondemand.com/#/sample/sap.ui.core.sample.ControllerExtension/preview

 "myPublicMethod": {"public": true, "final": true}
 }
 },
 myPublicMethod: function() {
 }
 });

Accessing Controls in Controller Extensions
Only controls that belong to an extension are accessible by the byId function in a controller extension. These
controls must be prefixed by the namespace of the controller extension. The namespace can be retrieved by
calling getMetadata().getNamespace(). Here is an example of a valid ID:
my.controller.extension.MyControlId.

Using the byId of the base controller allows the accessing of all controls of the corresponding view by calling
this.base.byId(myControlId).

Integrating Controller Extensions into Controllers

Controller extensions can serve for reuse purposes. You can achieve this by including a controller extension to
your controller as a member.

sap.ui.define(['sap/ui/core/mvc/Controller', 'my/extension/SampleExtension'],
function(Controller, SampleExtension) { "use strict";
 return Controller.extend("sample.Main", {
 //include the extension
 sample: SampleExtension,

 _basePrivateMethod: function() {
 ...
 },
 basePublicMethod: function() {
 ...
 });
});

If the controller is instantiated, all members that have a ControllerExtension associated will create an
instance of these controller extensions.

You can also override an extension directly in a controller.

 Sample Code

sap.ui.define(['sap/ui/core/mvc/Controller', 'my/extension/SampleExtension'], function(Controller, SampleExtension) {
 "use strict";
 return MainController = Controller.extend("sample.Main", {
 //inline override of an extension. E.g. to provide a hook
implementation
 sample: SampleExtension.override({
 someHook: function() {},
 someOtherMethod: function() {}
 }),
 onLifecycleHook: function() {
 }
 });
});

812 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

File Names and Locations (View and Controller)

In SAPUI5, controllers and views are defined and instantiated via a name that equals an SAPUI5 module name
within the define/require concept.

By default, all files have to be located in a subfolder of the resources folder of the Web application. If this
location is not appropriate, deviations can be configured as described in the following example:

The following example assumes that your views and controllers are located on your local machine where the
SAPUI5 runtime is loaded from another machine. When you instantiate a view or a controller, SAPUI5 runtime
loads them in relation to the resources folder of the machine where SAPUI5 runtime was loaded. To inform
SAPUI5 runtime that your views and controllers are located on your local machine, use the following code:

sap.ui.loader.config({ paths: {
 "<moduleNamePrefix>": sUrl
 } });

If your files are located at http://<localhost:8080>/<myapp>/, for example, you can use
sap.ui.loader.config as follows:

sap.ui.loader.config({ paths: {
 "my/app": "./myapp"
 } });

All views and controllers with a name starting with my.app, for example my.app.MyView, will then be loaded
from your local machine.

Related Information

Folder Structure: Where to Put Your Files [page 1428]

Typed Views and Controllers

More complex use cases may require a more formal way to define views and controllers. For this, typed views
and controllers are used.

To create a controller that is a new type of its own, you need to write a boilerplate code and declare the
functions of the new prototype:

 /* boilerplate code for typed Controller */
jQuery.sap.declare({modName:"sap.hcm.AddressController", type:"controller"}); //
declaring a special type of module

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 813

sap.hcm.AddressController = function () { // the constructor
 sap.ui.core.mvc.Controller.apply(this, arguments);
};
jQuery.sap.require("sap.ui.core.mvc.Controller"); // this is currently required,
as the Controller is not loaded by default
sap.hcm.AddressController.prototype =
jQuery.sap.newObject(sap.ui.core.mvc.Controller.prototype); // chain the
prototypes
/* end of boilerplate code for typed Controller */

// to avoid the above we could in the future offer it behind a simple call to:
// sap.ui.defineController("sap.hcm.Address");

sap.hcm.AddressController.prototype.onInit = function() {
 // modify control tree - this is the regular lifecycle hook
};

// implement an event handler in the Controller
sap.hcm.AddressController.prototype.doSomething = function() {
 alert("Hello World"); };

Support for Unique IDs

Stable IDs are used to identify and modify the controls within the controller during runtime. However, if you
reuse or nest these views, these stable IDs are no longer unique. To avoid ambiguity, each view adds its own ID
as prefix to all its child controls.

If the ID is created during instantiation of the control, it is unique by default. If you create further controls
during runtime, the controller creates a unique ID by calling the oController.createId("ID") method.
These methods add the necessary prefix to the ID.

If you want to modify the control with the ID <ID>, you can call the byId(<ID>) method on your view to get
the correct control directly. You do not have to handle all the prefix stuff on your own.

The following view defines a button with the stable ID aButton (in the ButtonView):

<mvc:View viewName="sap.hcm.ButtonView" controllerName="sap.hcm.myController"
xmlns="sap.m" xmlns:mvc="sap.ui.core.mvc"> <Button id="aButton" text="Click me"/><mvc:View>

The following view defines a view embedding the same view several times (ContainerView):

<mvc:View viewName="sap.hcm.ContainerView" controllerName="sap.hcm.Address"
xmlns="sap.ui.commons" xmlns:core="sap.ui.core" xmlns:html="http://www.w3.org/1999/xhtml">
 <mvc:View id="ButtonView1" viewName="sap.hcm.ButtonView"/>
 <mvc:View id="ButtonView2" viewName="sap.hcm.ButtonView"/> <mvc:View>

The view is created as follows:

... // "View" required from module "sap/ui/core/mvc/View"
 View.create().then(function(oView) {/* code */}); ...

The container view has the following IDs:

814 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Both child view IDs have the prefix myContainerView--:

myContainerView--ButtonView1

myContainerView--ButtonView2

To get one of the child views, use the following code: Essentials [page 691]

... var oButtonView1 = oView.byId("ButtonView1"); ...

The button view has the following IDs:

ButtonView1--aButton

ButtonView2--aButton

To get the button control, use the following code:

... var oButton = oButtonView1.byId("aButton"); ...

Data Binding

You use data binding to bind UI elements to data sources to keep the data in sync and allow data editing on the
UI.

● Views [page 787]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 815

● Models [page 882]
● Resource Bundles [page 1272]

SAPUI5 follows the "Model View Controller" (MVC) paradigm, which means that we clearly separate data
sources (model), UI (view), and application logic (controller) from each other. Data binding defines how models
and views communicate with each other.

Depending on which external data source you use, you can choose between different model types to represent
it. SAPUI5 supports OData V4 (with restrictions), OData V2, JSON, and XML models.

There are also internal data sources that are defined in the app for specific purposes. For those, an app
contains the following models:

● The resource model is used to communication with the resource bundle that contains translatable texts in
multiple languages

● The device model is provided by the framework and defines device-specific settings
● View models can be, for example, JSON models that communicate with a corresponding JSON object.

JSON data can also be edited in the app, but they are not stored - as soon as you refresh the browser or
restart the app, the changes are reset.

Most of the models are client-side models. This means that all data is initially loaded to the model when the app
is started. All actions performed on the data are only executed on the client, and only sent back to the data
source when this is triggered by the app. Client-side models are therefore only recommended for small data
sets.

The OData models (V2 and V4) are server-side models, which means that data is only requested on demand
from the back end. Filtering, sorting, and paging actions are performed on the server. This means, for example,
that you don't have to load a complete table on the UI to be able to sort the entries.

In the view, you bind data by specifying the binding path for a control. You can use data types and formatters
to validate and format the data on the UI.

 Note
To learn more about data binding use the tutorial: Data Binding [page 219]

Binding Modes: One-time Binding, One-way Binding, and Two-way Binding

The binding mode defines how the data sources are bound. SAPUI5 provides the following binding modes:

● One-way binding means a binding from the model to the view; value changes in the model update all
corresponding bindings and the view

● Two-way binding means a binding from the model to the view and from the view to the model, changes in
the model and in the view fire events that automatically trigger updates all corresponding bindings and the
view and model

● One-time binding means from model to view once.

The following table shows which binding modes the respective binding models support:

816 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Model One-time One-way Two-way

OData V4 model (default)

OData V2 model
 (default)

ODataMetaModel V4
 (default)

ODataMetaModel
 (default)

JSON model
 (default)

XML model
 (default)

Resource model
 (default)

For more information, see API Reference: sap.ui.model.BindingMode.

Binding Types

Depending on the different use cases, you can use different binding types: Propety binding, context binding,
and list binding.

● Property Binding [page 818]
● List Binding (Aggregation Binding) [page 828]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 817

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.BindingMode.html

● Context Binding (Element Binding) [page 824]

● Property binding allows properties of the control to get automatically initialized and updated from model
data. You can only bind control properties to model properties of a matching type, or you use a formatter or
a data type to parse and convert the data as needed For more information, see Formatting, Parsing, and
Validating Data [page 854].

● Context binding (or "element binding") allows to bind elements to a specific object in the model that
creates a binding context and allows relative binding within the control and all of its children. This is
especially helpful in master-detail scenarios.

● List binding (or "aggregation binding") can be used to automatically create child controls according to
model. This can be done either by cloning a template control, or by using a factory function. Aggregations
can only be bound to lists defined in the model, that is, to arrays in a JSON model or a collection in the
OData model.

 Note
The model has a default size limit to avoid too much data being rendered on the UI. This size limit
determines the number of entries used for the list bindings. The default size limit is 100 entries.

This means that controls that don't support paging or don't request data in chunks (e.g.
sap.m.ComboBox) only show 100 entries even though the model contains more items.

To change this behavior, you can set a size limit in the model by using oModel.setSizeLimit.

Property Binding

With property binding, you can initialize properties of a control automatically and update them based on the
data of the model.

To define property binding on a control, you have the following options:

● As part of the control’s declaration in an XML view
● Using JavaScript, in the settings object in the constructor of a control, or in special cases, using the

bindProperty method of a control

Once you have defined the property binding, the property is updated automatically every time the property
value of the bound model is changed, and vice versa.

Let’s say, we have the following JSON data:

{ "company" : {
 "name" : "Acme Inc."
 "street": "23 Franklin St."
 "city" : "Claremont"
 "state" : "New Hampshire"
 "zip" : "03301"
 "revenue": "1833990"
 } }

818 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

To define property binding in the control declaration in the XML view, just include the binding path within curly
brackets (see also Binding Path [page 842]):

<mvc:View controllerName="sap.ui.sample.App"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <Input
 value="{/company/name}"
 /> </mvc:View>

In JavaScript, you can include the binding path within curly brackets as a string literal in the settings object:

// "Input" required from module "sap/m/Input" var oInput = new sap.m.Input({
 value: "{/company/name}" });

You can also use a complex syntax for property bindings. This complex syntax allows you to define additional
binding information to be contained in the settings object, such as a formatter function.

If you are working with XML views, make sure that you've turned on complex binding syntax in your bootstrap
script, as shown here:

 <script
 id="sap-ui-bootstrap"
 src="https://openui5.hana.ondemand.com/resources/sap-ui-core.js"
 data-sap-ui-theme="sap_belize" data-sap-ui-bindingSyntax="complex" data-sap-ui-async="true"
 data-sap-ui-onInit="module:sap/ui/sample/main"
 data-sap-ui-resourceRoots='{"sap.ui.sample": "./"}' ></script>

You can also use data-sap-ui-compatVersion="edge" to enable complex bindings.

You can then set the bindingMode or other additional properties like this:

<mvc:View controllerName="sap.ui.sample.App"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <Input
 value="{
 path:'/company/name',
 mode: 'sap.ui.model.BindingMode.OneWay'
 }"
 /> </mvc:View>

In JavaScript views or controllers, you use a JS object instead of a string literal. This must contain a path
property containing the binding path, and can contain additional properties:

// "Input" required from module "sap/m/Input" // "BindingMode" required from module "sap/ui/model/BindingMode"
var oInput = new Input ({
 value: {
 path: "/company/name",
 mode: BindingMode.OneWay
 } });

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 819

Depending on the use case, it may be useful to define the binding at a later time, using the bindProperty
method:

oInput.bindProperty("value", "/company/name");

This option also allows you to use the same object literal that you used in the constructor to define the binding:

// "TypeInteger" required from module "sap/ui/model/type/Integer" oInput.bindProperty("value", {
 path: "/company/name",
 type: new TypeInteger() });

 Note
Some controls offer convenience methods for their main properties that are most likely to be bound by an
application:

oTextField.bindValue("/company/name");

To remove a property binding, you can use the unbindProperty method. The property binding is removed
automatically whenever a control is destroyed:

oTextField.unbindProperty("value");

Formatting Property Values

Values in data are often represented in an internal format and need to be converted to an external format for
visual representation, especially numbers, dates, and times with locale-dependent external formats. SAPUI5
provides two different options for converting data. You can use both options for each binding, you don't have to
use one option consistently throughout your app:

● Formatter functions for one-way conversion
● Data types in two-way binding

Data types can be used to parse user input in addition to formatting values.

Using a Formatter Function
If you define the property binding in the XML view, you need to define a formatter function (roundToMillion)
in the view controller:

sap.ui.define(["sap/ui/core/mvc/Controller",
 "sap/ui/model/json/JSONModel"
], function (Controller, JSONModel) {
 "use strict";
 return Controller.extend("sap.ui.sample.App", {
 ……………
 roundToMillion: function(fValue) {
 if (fValue) {
 return "> " + Math.floor(fValue/1000000) + "M";
 }
 return "0";
 }

820 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 }); });

The this context of a formatter function is generally set to the control (or managed object) that owns the
binding. However, in XML views, the reference to the formatter is done in the view controller by putting a dot (.)
in front of the name of the formatter function ({ formatter: '.myformatter' }). In this case, the
formatter's this context is bound to the controller.

<mvc:View controllerName="sap.ui.sample.App"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <Input
 value="{ path:'/company/revenue', formatter: '.roundToMillion'}" /> </mvc:View>

If you use JavaScript, you can pass the formatter function as a third parameter to the bindProperty method,
or you can add the binding info with the formatter key. The formatter has a single parameter value, which
is the value that is to be formatted, and is executed as a member of the control, meaning it can access
additional control properties or model data.

//"Input" required from module sap/m/Input oTextField.bindProperty("value", "/company/title", function(sValue) {
 return sValue && sValue.toUpperCase();
});
oControl = new Input({
 value: {
 path:"/company/revenue",
 formatter: function(fValue) {
 if (fValue) {
 return "> " + Math.floor(fValue/1000000) + "M";
 }
 return "0";
 }
 } })

Because it can contain any JavaScript, the formatter function can be used for formatting a value and also for
performing type conversions or calculating results, for example, to show a special traffic light image depending
on a Boolean value:

oImage.bindProperty("src", "/company/trusted", function(bValue) { return bValue ? "green.png" : "red.png"; });

 Caution
The framework only updates a binding when one of the properties included in the binding changes. If the
formatter uses another property value that is not part of the binding definition, the framework won't know
that the result depends on that additional property and could miss necessary updates. Therefore, make
sure that you declare a composite binding referencing all necessary properties (maybe even from different
models).

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 821

Using Data Types

The data type system enables you to format and parse data, as well as to validate whether the entered data lies
within any defined constraints. SAPUI5 comes with several predefined and ready-to-use types, referred to as
simple types. For more information, see Formatting, Parsing, and Validating Data [page 854].

Here’s how you can use these types in an XML view:

<mvc:View controllerName="sap.ui.sample.App"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <Input
 value="{ path:'/company/revenue',
 type: 'sap.ui.model.type.Integer'}"/>
</mvc:View>

You can also provide parameter values for some of the simple types in your XML view. These are declared as
formatOptions, as you can see in the Float type sample below. Permitted formatOptions are properties of
the corresponding data type. For more information, see the API Reference in the Demo Kit.

<mvc:View controllerName="sap.ui.sample.App"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <Input
 value="{ path:'/company/revenue',
 type: 'sap.ui.model.type.Float',
 formatOptions: {
 minFractionDigits: 2,
 maxFractionDigits: 2
 }
 }"/> </mvc:View>

Using JavaScript, you can define a type to be used for a property binding by passing it as a third parameter in
bindProperty or by adding it to the binding information by using the key type, as shown here:

// "TypeString" required from module "sap/ui/model/type/String" // "Input" required from module "sap/m/Input"
// "TypeFloat" required from module "sap/ui/model/type/Float"
oTextField.bindProperty("value", "/company/name", new
sap.ui.model.type.String());
oControl = new sap.m.Input({
 value: {
 path:"/company/revenue",
 type: new TypeFloat({
 minFractionDigits: 2,
 maxFractionDigits: 2
 })
 } })

Predefined data types also offer visual feedback for erroneous user input. To turn this feature on, add the
following line to your controller's init function:

sap.ui.getCore().getMessageManager().registerObject(this.getView(), true);

You can define custom types by inheriting from sap.ui.model.SimpleType and implementing the three
methods formatValue, parseValue, and validateValue. formatValue is called whenever the value in the
model is changed to convert it to the type of the control property it is bound to, and may throw a

822 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

FormatException. parseValue is called whenever the user has modified a value in the UI and the change is
transported back into the model. It may throw a ParseException if the value cannot be converted. If parsing
is successful, validateValue is called to check additional constraints, such as minimum or maximum value,
and throws a ValidateException if any constraints are violated.

// "SimpleType" required from module "sap/ui/model/SimpleType" // "ValidateException" required from module "sap/ui/model/ValidateException"
var Zipcode = SimpleType.extend("sap.ui.sample.Zipcode", {
 formatValue: function(oValue) {
 return oValue;
 },
 parseValue: function(oValue) {
 return oValue;
 },
 validateValue: function(oValue) {
 if (!/^(\d{5})?$/.test(oValue)) {
 throw new ValidateException("Zip code must have 5 digits!");
 }
 } });

You can use your custom types in XML views or JavaScript in the same way as you would apply predefined
types:

<mvc:View controllerName="sap.ui.sample.App"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">

 <Input
 value="{ path:'/company/zip',
 type: 'sap.ui.sample.Zipcode'
 }"/> </mvc:View>

Changing the Binding Mode

By default, all bindings of a model instance have the default binding mode of the model, but you can change
this behavior if needed. When creating a PropertyBinding, you can specify a different binding mode, which
is then used exclusively for this specific binding. Of course, a binding can only have a binding mode that is
supported by the model in question.

// "JSONModel" required from module "sap/ui/model/json/JSONModel" // "Input" required from module "sap/m/Input"
// "BindingMode" required from module "sap/ui/model/BindingMode"
 var oModel = new JSONModel();
 // default binding mode is two way
 oModel.setData(myData);
 sap.ui.getCore().setModel(oModel);
 var oInputFirstName = new Input ();

 // bind value property one way only
 // propertyname, formatter function, binding mode
 oInputFirstName.bindValue("/firstName", null, BindingMode.OneWay);
 oInputFirstName.placeAt("target1");
 oInputLastName = new Input();
 // bind value property two way (default)
 oInputLastName.bindValue("/lastName");

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 823

 oInputLastName.placeAt("target2");

In the example above, two Input fields are created and their value property is bound to the same property in
the model. The first Input binding has a one-way binding mode, whereas the second Input has the default
binding mode of the model instance, which is two-way. For this reason, when text is entered in the first Input,
the value will not be changed in the model. This only happens if text is entered in the second Input. Then, of
course, the value of the first Input will be updated as it has a one-way binding, that is, from model to view.

Related Information

Data Binding Tutorial Step 3: Create Property Binding [page 225]
API Reference: sap.ui.base.ManagedObject.bindProperty
Binding Syntax [page 840]
Formatting, Parsing, and Validating Data [page 854]

Context Binding (Element Binding)

Context binding (or element binding) allows you to bind elements to a specific object in the model data, which
will create a binding context and allow relative binding within the control and all of its children. This is especially
helpful in master-detail scenarios.

Let’s assume we have the following JSON data:

{ "company" : {
 "name" : "Acme Inc."
 "street": "23 Franklin St."
 "city" : "Claremont"
 "state" : "New Hampshire"
 "zip" : "03301"
 "revenue": "1833990"
 }
}

Here’s how you would use element binding in an XML view:

<mvc:View controllerName="sap.ui.sample.App"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <Input id="companyInput"
 binding="{/company}"
 value="{name}"
 tooltip="The name of the company is '{name}'"/> </mvc:View>

By setting binding="{/company}", we can refer to company children without having to qualify the full
binding path, when binding Input control’s properties such as the value. Using plain property binding, our
XML view would look like this:

<mvc:View

824 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.base.ManagedObject/methods/bindProperty

 controllerName="sap.ui.sample.App"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <Input id="companyInput"
 value="{/company/name}"
 tooltip="The name of the company is '{/company/name}'}"/> </mvc:View>

To define an element binding in JavaScript, for example in a controller, use the bindElement method on a
control:

var oInput = this.byId("companyInput") oInput.bindElement("/company"); oInput.bindProperty("value", "name");

Element binding is especially interesting for containers or layouts containing many controls that are all
visualizing properties of the same model object. Here’s an XML view with a VerticalLayout using element
binding:

<mvc:View controllerName="sap.ui.sample.App"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <l:VerticalLayout id="vLayout"
 binding="{/company}"
 width="100%">
 <Text text="{name}" />
 <Text text="{city}" />
 <Text text="{county}" />
 </l:VerticalLayout> </mvc:View>

To realize this in JavaScript, proceed as follows in your controller:

var oVerticalLayout = this.getView().byId('vLayout'); oVerticalLayout.bindElement("/company");
oVerticalLayout.addContent(new Text({text: "{name}"}));
oVerticalLayout.addContent(new Text({text: "{city}"})); oVerticalLayout.addContent(new Text({text: "{county}"})););

Given your XML view contains a VerticalLayout, it will look like this:

<mvc:View controllerName="sap.ui.sample.App"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <l:VerticalLayout id="vLayout"
 width="100%"/> </mvc:View>

Setting a New Context for the Binding (Master-Detail)

You create a new binding context for an element that is used to resolve bound properties or aggregations
relative to the given path. You can use this method if the existing binding path changes or has not been
provided before, for example in master-detail scenarios, as outlined below.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 825

Let's look at the following JSON model featuring a company list:

{ companies : [
 {
 name : "Acme Inc.",
 city: "Belmont",
 state: "NH",
 county: "Belknap",
 revenue : 123214125.34
 },{
 name : "Beam Hdg.",
 city: "Hancock",
 state: "NH",
 county: "Belknap"
 revenue : 3235235235.23
 },{
 name : "Carot Ltd.",
 city: "Cheshire",
 state: "NH",
 county: "Sullivan",
 revenue : "Not Disclosed"
 }] }

Let’s take this simple view, containing a single input control:

<mvc:View controllerName="sap.ui.sample.App"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <Input id="companyInput"
 value="{name}"/> </mvc:View>

In your controller, you can now bind the input control as follows:

var oInput = this.byId("companyInput"); oInput.bindElement("/companies/0");

The XML view has bound the value of the input to the name property in the model. As the path to this property
in the model is not set, this will not resolve. To resolve the binding, you use the bindElement method which
creates a new context from the specified relative path.

To remove the current binding context, call the unbindElement method on the input control. By doing this, all
bindings now resolve relative to the parent context again.

You can also use the bindElement method in conjunction with list binding. Let’s consider the following
extension of our JSON data:

{ regions: [
 {
 name: "Americas",
 companies : [
 {
 name : "Acme Inc.",
 zip : "03301",
 city: "Belmont",
 county: "Belknap",
 state: "NH",
 revenue : 123214125.34,
 publ: true

826 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 },
 {
 name : "Beam Hdg.",
 zip : "03451",
 city: "Hancock",
 county: "Sullivan",
 state: "NH",
 revenue : 3235235235.23,
 publ: true
 },
 {
 name : "Carot Ltd.",
 zip : "03251",
 city: "Cheshire",
 county: "Sullivan",
 state: "NH",
 revenue : "Not Disclosed",
 publ: false
 }]
 },{
 name: "DACH",
 companies : [
 {
 name : "Taubtrueb",
 zip : "89234",
 city: "Ginst",
 county: "Musenhain",
 state: "NRW",
 revenue : 2525,
 publ: true
 },
 {
 name : "Krawehl",
 zip : "45362",
 city: "Schlonz",
 county: "Humpf",
 state: "BW",
 revenue : 2342525,
 publ: true
 }]
 }
] }

Say we want to display companies in a sap.m.List control. Here’s what the XML view will look like:

<mvc:View controllerName="sap.ui.sample.App"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <List id=”companyList” items="{companies}">
 <items>
 <StandardListItem
 title="{name}"
 description="{city}"
 />
 </items>
 </List> </mvc:View>

Please note that items="{companies}" cannot be resolved initially, since it is a relative path. In your
controller, you can now provide an element binding for the list control:

var oList = this.byId("companyList"); oList.bindElement("/regions/0");

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 827

This will display the companies for region Americas, while the code below displays all companies in the DACH
region (Germany, Austria, Switzerland):

var oList = this.byId("companyList"); oList.bindElement("/regions/1");

API Reference

For more information, see the API Reference for the following methods:

● API Reference: sap.ui.base.ManagedObject.bindObject.
● API Reference: sap.ui.base.ManagedObject.getObjectBinding.
● API Reference: sap.ui.base.ManagedObject.unbindObject.
● API Reference: sap.ui.core.Element.bindElement.
● API Reference: sap.ui.core.Element.getElementBinding.
● API Reference: sap.ui.core.Element.unbindObject.

Related Information

Tutorial Step 13: Element Binding [page 250]
Binding Syntax [page 840]
Formatting, Parsing, and Validating Data [page 854]

List Binding (Aggregation Binding)

List binding (or aggregation binding) is used to automatically create child controls according to model data.

Let’s say we would like to display the following JSON model data in a sap.m.List:

{ companies : [
 {
 name : "Acme Inc.",
 city: "Belmont",
 state: "NH",
 county: "Belknap",
 revenue : "123214125.34"
 },{
 name : "Beam Hdg.",
 city: "Hancock",
 state: "NH",
 county: "Belknap"
 revenue : "3235235235.23"
 },{
 name : "Carot Ltd.",
 city: "Cheshire",
 state: "NH",
 county: "Sullivan",

828 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.base.ManagedObject/methods/bindObject
https://sapui5.hana.ondemand.com/#/api/sap.ui.base.ManagedObject/methods/getObjectBinding
https://sapui5.hana.ondemand.com/#/api/sap.ui.base.ManagedObject/methods/unbindObject
https://sapui5.hana.ondemand.com/#/api/sap.ui.core.Element/methods/bindElement
https://sapui5.hana.ondemand.com/#/api/sap.ui.core.Element/methods/getElementBinding
https://sapui5.hana.ondemand.com/#/api/sap.ui.core.Element/methods/unbindElement

 revenue : "Not Disclosed"
 }] }

Declarative List Binding in XML Views

<mvc:View controllerName="sap.ui.sample.App"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <List id=”companyList” items="{path: '/companies', templateShareable:false}">
 <items>
 <StandardListItem
 title="{name}"
 description="{city}"
 />
 </items>
 </List> </mvc:View>

The List element has both an items attribute and a nested items element:

● The attribute items="{path: '/companies', templateShareable:false}" binds the children of
our json model’s companies array to the list. This by itself is not enough to display the companies, instead
it sets the parent path for the binding of all contained list items and their descendants. In addition you need
to declare a nested element.

● The nested items element in our case contains a StandardListItem. This serves as a template for
creating the individual list rows.

 Note
The binding paths of StandardListItem for properties title and description are relative to
companies. This means that instead of having to write the whole binding path title={/companies/
name}, you can simply write title={name}. By omitting the slash ‘/’ at the beginning, {name} is marked
as a relative binding path.

Instead of using a StandardListItem as a list row template, you can also use any other sap.m. list item,
such as:

● ActionListItem
● DisplayListItem
● CustomListItem
● ObjectListItem

For more examples and details on when to use which list item control, see the various list items in the Samples
in the Demo Kit.

 Note
The model has a default size limit to avoid too much data being rendered on the UI. This size limit
determines the number of entries used for the list bindings. The default size limit is 100 entries.

This means that controls that don't support paging or don't request data in chunks (e.g.
sap.m.ComboBox) only show 100 entries even though the model contains more items.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 829

https://sapui5.hana.ondemand.com/explored.html

To change this behavior, you can set a size limit in the model by using oModel.setSizeLimit.

List Binding in the JavaScript Code

You can define list binding directly in JavaScript either in the settings object in the constructor or by calling
the bindAggregation method. List binding requires the definition of a template, which is cloned for each
bound entry of the list. For each clone that is created, the binding context is set to the respective list entry, so
that all bindings of the template are resolved relative to the entry. The aggregated elements are destroyed and
recreated whenever the bound list in the data model is changed.

To bind a list, you create a template or provide a factory function, which is then passed when defining the list
binding itself. In the settings object, this looks as follows:

var oItemTemplate = new sap.ui.core.ListItem({text:"{name}"}); oComboBox = new sap.m.ComboBox({
 items: {
 path: "/companies", //no curly brackets here!
 template: oItemTemplate
 templateShareable: false
 } });

A template is not necessarily a single control as shown in the example above, but can also be a tree of controls.
For each list entry, a deep clone of the template is created and added to the bound list.

You can also define the list binding by using the bindAggregation method of a control:

var oItemTemplate = new sap.ui.core.ListItem({text:"{name}"}); oComboBox.bindAggregation("items", {
path: "/companies",
template: oItemTemplate,
templateShareable: false });

In addition, some controls have a typed binding method for lists that are likely to be bound by the application:

var oComboBox.bindItems("/companies", oItemTemplate);

To remove a list binding, you can use the unbindAggregation method:

oComboBox.unbindAggregation("items");

Controls with typed binding methods also provide a typed unbind:

oComboBox.unbindItems();

When a list is unbound, its aggregated controls are removed and destroyed by default. If you would like to keep
the items in your ComboBox, for example, you can do so by using:

oComboBox.unbindAggregation("items", true);

830 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Related Information

Tutorial Step 12: Aggregation Binding Using Templates [page 244]
Binding Syntax [page 840]
Formatting, Parsing, and Validating Data [page 854]

Using Factory Functions

The factory function is a more powerful approach for creating controls from model data. The factory function is
called for each entry of a control’s aggregation, and the developer can decide whether each entry shall be
represented by the same control with different properties or even by a completely different control for each
entry.

The factory function comes with the parameters sId, which should be used as an ID for the new control, and
oContext, which is for accessing the model data of the entry. The returned object must be of type
sap.ui.core.Element. Here’s how this scenario can be realized in an XML view and a controller using our
JSON model data:

<mvc:View controllerName="sap.ui.sample.App"
 xmlns="sap.m"
 xmlns:l="sap.ui.layout"
 xmlns:mvc="sap.ui.core.mvc">
 <l:VerticalLayout
 content="{ path: '/companies', factory: '.createContent'}"
 class="sapUiContentPadding"
 width="100%"/> </mvc:View>

Please note the '.' in factory: '.createContent'. The class App.controller.js contains the
implementation of our factory method:

sap.ui.define(["sap/ui/core/mvc/Controller",
 "sap/ui/model/json/JSONModel",
 "sap/ui/model/type/String",
 "sap/ui/model/type/Float",
 "sap/m/Input",
 "sap/m/Text",
 "sap/m/CheckBox"
], function (Controller, JSONModel, StringType, Float, Input, Text, CheckBox) {
 "use strict";
 return Controller.extend("sap.ui.sample.App", {
 onInit : function () {
 …
 },
 createContent: function (sId, oContext) {
 var oRevenue = oContext.getProperty("revenue");
 switch(typeof oRevenue) {
 case "string":
 return new Text(sId, {
 text: {
 path: "revenue",
 type: new StringType()
 }
 });

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 831

 case "number":
 return new Input(sId, {
 value: {
 path: "revenue",
 type: new Float()
 }
 });

 case "boolean":
 return new CheckBox(sId, {
 checked: {
 path: "revenue"
 }
 });
 }
 },
 }); });

If you would like to avoid using the XML view, you would proceed as follows:

oVerticalLayout.bindAggregation("content", "/companies", function (sId,
oContext) { var oRevenue = oContext.getProperty("revenue");
 switch(typeof oRevenue) {
 case "string":
 return new sap.m.Text(sId, {
 text: {
 path: "revenue",
 type: new sap.ui.model.type.String()
 }
 });

 case "number":
 return new sap.m.Input(sId, {
 value: {
 path: "revenue",
 type: new sap.ui.model.type.Float()
 }
 });

 case "boolean":
 return new sap.m.CheckBox(sId, {
 checked: {
 path: "revenue"
 }
 });
 }
 } });

Related Information

Tutorial Step 15: Aggregation Binding Using a Factory Function [page 257]

832 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Sorting, Grouping, and Filtering for List Binding

Initial Sorting, Grouping and Filtering for List Binding

To provide initial sorting and grouping in an XML view, proceed as follows:

<mvc:View controllerName="sap.ui.sample.App"
 xmlns="sap.m"
 xmlns:l="sap.ui.layout"
 xmlns:mvc="sap.ui.core.mvc">
 <List items="{ path: '/companies',
 sorter: { path: 'county', descending: false, group: '.getCounty'},
 groupHeaderFactory: '.getGroupHeader'}">
 <items>
 <StandardListItem
 title="{name}"
 description="{city}"
 />
 </items>
 </List>
 </mvc:View>

The this context of a group header factory function is generally set to the control (or managed object) that
owns the binding. However, in XML views, the reference to the group header factory is done in the view
controller by putting a dot (.) in front of the name of the group header factory function
({ groupHeaderFactory:'.myGroupHeader' }). In this case, the group header factory's this context is
bound to the controller.

The list uses a sorter which sorts the list of companies in ascending order by the county column. It also groups
its rows using the App.controller’s getCounty method to provide the captions and the getGroupHeader
function to provide non-standard group header controls, as shown here:

sap.ui.define(["sap/ui/core/mvc/Controller",
 "sap/ui/model/json/JSONModel",
 "sap/m/GroupHeaderListItem "
], function (Controller, JSONModel, GroupHeaderListItem) {
 "use strict";
 return Controller.extend("sap.ui.sample.App", {
 onInit : function () {
 …
 },
 getCounty: function(oContext) {
 return oContext.getProperty('county');
 },

 getGroupHeader: function(oGroup) {
 return new GroupHeaderListItem({
 title : oGroup.key
 }
);
 }, });

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 833

As you can see, getCounty generates the group caption, which in this case is the county of the current
companies. getGroupHeader serves as a group header factory function. After sorting and grouping, the
company list looks like this:

The following XML snippet provides initial filtering:

<mvc:View controllerName="sap.ui.sample.App"
 xmlns="sap.m"
 xmlns:l="sap.ui.layout"
 xmlns:mvc="sap.ui.core.mvc">
 <List items="{ path: '/companies',
 filters: [{path: 'city', operator: 'StartsWith', value1: 'B'},
 {path: 'revenue', operator: 'LT', value1: 150000000}]}">
 <items>
 <StandardListItem
 title="{name}"
 description="{city}"
 />
 </items>
 </List> </mvc:View>

The example shown here will only display companies whose city name begins with a ‘b’ and whose revenue is
less than 150 million. As you can see, you can provide more than one filter, each of which may refer to different
columns using different filter operators. For a complete list of permitted filter operators, see
sap.ui.model.FilterOperator in the API Reference part of the Demo Kit.

As shown below, initial sorting, grouping and filtering can of course also be provided using JavaScript.

You can define a sorter and/or filters:

sap.ui.define(["sap/ui/model/Sorter",
 "sap/ui/model/Filter"
], function(Sorter, Filter) {
//returns group header captions
var fnGetCounty = function(oContext) {
 return oContext.getProperty('county');
}
var oSorter = new Sorter({
 path: 'county',
 descending: false,

834 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.FilterOperator.html

 group: fnGetCounty});
var oFilterCity = new Filter("city",
 sap.ui.model.FilterOperator.StartsWith, "B"),
 oFilterRevenue = new sap.ui.model.Filter("revenue",
 sap.ui.model.FilterOperator.LT, 150000000);
);
});

You can pass sorters and filters to the list binding:

 var oList = new sap.m.List({
 items: {path: "/companies", template: oItemTemplate,
 sorter: oSorter, filters:[oFilterCity, oFilterRevenue]
 } });

You can also use the other list binding possibilities (for example bindAggregation or bindItems) and
provide the sorter and filters as parameters.

Manual Sorting and Filtering for List Binding

You can sort or filter data manually after the list binding is complete by getting the corresponding binding and
calling the sort/filter function:

// manual sorting oList.getBinding("items").sort(oSorter);
// manual filtering oList.getBinding("items").filter([oFilterCity, oFilterRevenue]);

 Note
getBinding requires the name of the bound list. In this example, we are looking at the items of the
sap.m.List control.

For more information about the various sorting and filter methods and operators, see the documentation for
Filter, Sorter, and Filter operations under sap.ui.model in the API Reference part of the Demo Kit.

Using Complex Syntax to Add Filters and Sorters

Complex syntax can be used to add filters and sorters for list binding. One or multiple objects can be defined.

 <table:Table rows="{
 path: '/table',
 filters: [{
 path: 'field3',
 operator: 'EQ',
 value1: 'test'
 }],
 sorter: [{
 path: 'field1',
 descending: false
 }, {
 path: 'field2',

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 835

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.html

 descending: true
 }]
 }">
...
</table:Table>

Lifecycle of Binding Templates

The lifecycle of the binding templates differs from the lifecycle of controls that are contained in an aggregation.
Whenever a control object is destroyed, any aggregating object is destroyed as well. For list binding templates,
you specify the behavior by using the additional property templateShareable in the parameter of the
bindAggregation method of class sap.ui.base.ManagedObject.

In XML views, you can also use the templateShareable property by adding it to the binding info as follows:

<Table id="EmployeeEquipments" headerText="Employee Equipments" items="{ path: 'EMPLOYEE_2_EQUIPMENTS', templateShareable: false }">
 <columns>
 <!-- ... -->
 </columns>
 <items>
 <ColumnListItem>
 <cells>
 <Text text="{ID}"/>
 </cells>
 <cells>
 <Text text="{EQUIPMENT_2_PRODUCT/Name}"/>
 </cells>
 <cells>
 <Text text="{Category}"/>
 </cells>
 <cells>
 <!-- Name="PRODUCT_2_CATEGORY" Type="Collection(...)" -->
 <List items="{
 path: 'EQUIPMENT_2_PRODUCT/PRODUCT_2_CATEGORY', templateShareable: true }">
 <StandardListItem title="{CategoryName}"/>
 </List>
 </cells>
 <cells>
 <Text text="{EQUIPMENT_2_PRODUCT/PRODUCT_2_SUPPLIER/
Supplier_Name}"/>
 </cells>
 </ColumnListItem>
 </items> </Table>

● templateShareable = "false" (preferred setting)
If you set the parameter to false the lifecycle is controlled by the framework. It will destroy the template
when the binding is removed (unbindAggregation, unbindItems)

● templateShareable = "true"
If you set the parameter to true the template is not destroyed when (the binding of) the aggregated object
is destroyed. Use this option in the following cases only:
○ The template is reused in your app to define an additional list binding.

836 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Since the template is not destroyed, this could also affect some other aggregation that uses the same
template at a later point in time.

○ The parent control that contains the list binding with the template is cloned. The binding info is used in
the clone as well.
This means, when templateShareable is set to true, the template will not be cloned, when it is set
to false it will be cloned when the parent is cloned.

In these cases, the app has to make sure that the templates are properly cleaned up at some point in time -
at the latest when the corresponding controller or component is destroyed.

● If the parameter is undefined, (neither true nor false), the framework checks at several points in time
whether all list bindings are removed. If there are no bindings, the templates is marked as candidate for
destroy(), but it is not immediately destroyed. The candidate is destroyed in the following cases:
○ A new object with the same ID is created.
○ The component that owns the objects is destroyed.

If the framework determines that a "candidate for destroy" is still in use in another binding or in a clone
operation, the framework makes sure that the candidate is not destroyed by implicitly setting
templateShareable to true (as this best reflects how the app deals with the template). But now the
template is not destroyed at all (an error message is issued), and the app implementation needs to make
sure that the binding template is destroyed as soon as it is no longer needed.

 Note
The error messages are:
○ A binding template that is marked as 'candidate for destroy' is reused in a binding.
○ During a clone operation, a template was found that neither was marked with

'templateShareable:true' nor 'templateShareable:false'.

 Caution
To leave the parameter undefined is very error-prone, therefore we don't recommend this! Always set
the parameter explicitly to true or false.

Extended Change Detection

Extended change detection offers fine-grained information on the actual data changes. This can be used, for
example, to only update the DOM when really necessary and avoid complete rerendering of a huge list
whenever data is changed.

The binding base class already offers a Change event, which is fired whenever the bound data has been
changed. This is sufficient for bindings like property and context binding. Since lists can contain a huge amount
of data, you need more detailed information on the changes to avoid a complete rerendering of the whole list
each time data has been changed on the UI.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 837

Calculation of Differences

When extended change detection is enabled, an algorithm is executed to compare the last returned context
array with the current context array and the differences is attached to the array of contexts as an additional
property named diff whenever the getContexts method is called. The following results are possible:

● There is no diff property on the context array
The data was completely changed or a difference could not be calculated. In this case there is no possibility
for fine-grained update, a complete recreation or rerendering is necessary.

● The diff property returns an empty array
The algorithm has been executed, but could not find any differences between the initial and the current
state. This may occur if data within the list has been changed, but detection of updates have not been
enabled for the extended change detection.

● The diff property returns an array of different entries
The difference has been calculated and can be used by the control or application to update dependent
structures in a fine grained manner

The difference between the state when the list was initially loaded and the current state is provided to the
control as an array that contains insert and remove entries that contain the actual changes.

 Example

Old State New State

["one", "two", "three", "four", "five"] ["one", "three", "four", "five", "six"]

Difference

[{index: 1, type: "delete"}, {index: 4, type: "insert}]

The algorithm is implemented in the utility method jQuery.sap.arraySymbolDiff, which tries to
calculate the smallest possible difference for the transition from old to the new state. The indexes are
calculated in a way that they are valid after all previous steps have been applied, so it can be used in a loop
to update an existing array, without any additional index shift needed.

 Caution
● Extended change detection calculates the difference between the context arrays returned by calling

getContexts. This means, it is completely independent from the startIndex and length
parameters. Any additional call to getContexts, either by the app or the control itself, may trigger a
difference calculation and may cause update problems. If you want to access the current context of a
list binding, you should use getCurrentContexts in your app instead.

● When a ListBinding is firing a Refresh event, the call to getContexts caused by this event is used
to inform the ListBinding on the startIndex and length of entries requested by the control. No
difference calculation is done on this specific call, as controls do not use the result of this call but
instead wait for the data returned by the server.

838 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Using Extended Change Detection in App Development

If a control you want to use in your app to visualize list entries supports extended change detection, you should
make sure that each entity of your model has a unique key to improve performance.

● For OData models, the unique keys are automatically provided.
● For all other models (like a JSON model), you have to define the keys either by using a key property or by

using a function that calculates the key in the binding info of their list binding as in the following example:

key property key function

oControl.bindItems({ path: "/listData",
 key: "id" });

oControl.bindItems({ path: "/listData",
 key: function(oContext) {
 return
oContext.getProperty("user") +
oContext.getProperty("timestamp");
 } });

Using Extended Change Detection in Control Development

Extended change detection is disabled by default. If your control is meant to have only a few children like a
toolbar with buttons, you should not activate extended change detection because a copy of the previous state
would then always be kept unnecessarily in the binding.

With extended change detection the control uses specific insert and remove calls only for elements that
need to be added or removed instead of recreating all elements of an aggregation or setting new binding
contexts on all aggregated elements.

You activate extended change detection for your control by setting the bUseExtendedChangeDetection
property either on the control prototype or a specific control instance. The ManagedObject class takes care of
reading and applying the information about the differences to aggregations with the
enableExtendedChangeDetection method. The method has the following parameters:

● bDetectUpdates
Defines whether data changes within the same entity should also be contained in the diff. This is
especially relevant when a factory function is used to create child controls, so depending on the data a
different control may be created by the same entity.

● vKey
Defines how a unique symbol for each row is calculated, which is then used for the calculation of
differences. This can either be a property name (in case the data already has something like a key
property) or a function that is able to calculate such a unique key from the entity data.

You also have to implement the specific aggregation modifier methods to avoid the rerendering of the complete
UI and only to a fine-grained DOM update.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 839

 Note
If your control has a custom updateAggregation method (that means control takes care for updating the
aggregation) you have to make sure in your implementation that the difference information is interpreted
and applied.

For more information, see the API Reference: sap.ui.base.ManagedObject.bindAggregation.

Related Information

API Reference: sap.ui.base.ManagedObject.bindAggregation
API Reference: sap.ui.Model.ListBinding.getContexts

Binding Syntax

You bind UI elements to data of a data source by defining a binding path to the model that represents the data
source in the app.

When defining a binding path for a control, a binding context is created which connects this control to a data
model. The UI control then gets the data through that context and displays it on the screen.

● Views [page 787]
● Binding Path [page 842]
● Models [page 882]

Simple Binding

To reference model data in a view , you can use the simple binding syntax "{/path/to/data}":

<Input value="{/firstName}"/>

840 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.base.ManagedObject/methods/bindAggregation
https://sapui5.hana.ondemand.com/#/api/sap.ui.base.ManagedObject/methods/bindAggregation
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.ListBinding/methods/getContexts

You can add other properties like formatters or data types:

● Data type:

<Input value="{path: '/firstName', type: 'sap.ui.model.type.String'}"/>

● Formatter:

<Input value="{path: '/firstName', formatter:'my.globalFormatter'}"/>

For more information, see Binding Path [page 842].

For more information about data types and formatters, see Formatting, Parsing, and Validating Data [page
854].

Composite Binding

If a control requires data from multiple different model properties, you use a parts array of paths to define
composite binding paths:

<TextField value="{ parts: [
 {path:'birthday/day'},
 {path:'birthday/month'},
 {path:'birthday/year'}
],
 formatter:'my.globalFormatter' }"/>

For more information, see Composite Binding [page 843] and Examples for Data Binding in Different View
Types [page 851].

Expression Binding in XML Views

Expression binding is a simple way to calculate values directly in the view. For example, if you want to change
the color of the price depending on whether it is above or below some threshold. With expression binding you
don't have to declare a separate formatter:

<ObjectStatus state=="{= ${products>UnitPrice} > ${/priceThreshold} ? 'Error' :
'Success' }"/>

For more information, see Expression Binding [page 845].

Property Metadata Binding for OData Services

With metadata binding, you can bind properties of a control to the corresponding property that is defined in the
metadata of an OData service:

<Input maxLength="{/#Company/ZipCode/@maxLength}"/>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 841

For more information, see Property Metadata Binding [page 851].

Related Information

API Reference: sap.ui.base.ManagedObject.bindProperty
API Reference: sap.ui.base.ManagedObject.bindAggregation
API Reference: sap.ui.base.ManagedObject.bindObject

Binding Path

Binding paths address the different properties and lists in a model and define how a node in the hierarchical
data tree can be found.

A binding path consists of a number of name tokens, which are separated by a separator char. In all models
provided by the framework, the separator char is the slash "/".

A binding path can either be absolute or relative: Absolute binding paths start with a slash, relative binding
paths start with a name token and are resolved relative to the context of the control that is bound. A context
exists either for each entry of the aggregation in case of aggregation binding or can be set explicitly for a
control by using the setBindingContext method.

When you use multiple models, specify the model name within the binding path to address the correct model.
The same applies for setting a binding context for such a model. The binding path must start with the model
name followed by a '>' as shown in the following example for setting a binding context.

oControl.setBindingContext(oContext); oControl.setBindingContext(oContext,"myModelName");

Binding path examples:

'/Products/0/ProductName' '/Products(0)/ProductName'
'ProductName'
//with model name
'myModelName>/Products/0/ProductName'
'myModelName>/Products(0)/ProductName' 'myModelName>ProductName'

Related Information

OData V2 Model [page 883]
OData V4 Model: Bindings [page 922]
Binding Path Syntax for JSON Models [page 992]
Binding Path Syntax for XML Models [page 995]
Binding Path Syntax for Resource Models [page 996]

842 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.base.ManagedObject/methods/bindProperty
https://sapui5.hana.ondemand.com/#/api/sap.ui.base.ManagedObject/methods/bindAggregation
https://sapui5.hana.ondemand.com/#/api/sap.ui.base.ManagedObject/methods/bindObject

Composite Binding

Calculated fields enable the binding of multiple properties in different models to a single property of a control.

The value property of a text field, for example, may be bound to a property firstName and a property
lastName in a model. The application can access these values in a formatter function and can decide how they
should be processed or combined together. If no formatter function is specified, the values are joined together
by default. You can use the useRawValues property to specify if the parameter values in the formatter
function are formatted according to the type of the property or not.

The multiple property bindings are stored in a CompositeBinding and can be accessed by calling the
getBindings function. You can access the composite binding, for example, by using the
getBinding('value') function of the control. The composite binding has no path, model, context, and type
because it contains multiple property bindings containing the necessary information. A composite binding
may, for example, store two property bindings which belong to different models and have different types.

If you have specified a formatter function, it is also available in the composite binding.

There are several options to create multiple bindings for a control. The syntax is very similar to the normal
single binding declaration.

Each binding is created by the specified parts and assigned information. A part must contain the path to the
property in the model and may contain additional information for the binding, for example a type.

Constructor Declaration

1. Use binding objects to add additional parameters, for example the type:

oTxt = new sap.m.Input({ value: {
 parts: [
 {path: "/firstName", type: new sap.ui.model.type.String()},
 {path: "/lastName"},
 {path: "myModel2>/amount", type: new
sap.ui.model.type.Float()} // path to property in another model
]
 } });

2. Use strings which only take the path:

oTxt = new sap.m.Input({ value: {
 parts: [
 "/firstName",
 "/lastName",
 "myModel2>/fraud" // path to property in another model
]
 } });

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 843

Bind Property Declaration

1. Use binding objects to add additional parameters, for example the type:

oTxt.bindValue({ parts: [
 {path: "/firstName", type: new sap.ui.model.type.String()},
 {path: "/lastName"}
] });

2. Use strings which only take the path:

oTxt.bindValue({ parts: [
 "/firstName",
 "/lastName"
] });

These samples also work with a relative binding path, when you use them as a template in a list binding.

Complex Syntax for Calculated Fields

Complex (or "extended") syntax can be used for calculated fields in declarative views, such as HTML and XML
views.

To use the feature in your SAPUI5 application, set the configuration flag bindingSyntax in the bootstrap as
follows:

 <script id="sap-ui-bootstrap"
 ...
 data-sap-ui-bindingSyntax="complex"> </script>

The following examples show how to use the feature:

● You can mix text with calculated fields as follows:

 <Label text="Hello Mr. {
 path:'/singleEntry/firstName',
 formatter: '.myFormatter'
 },
 {
 /singleEntry/lastName
 } " />

 Note
Use translatable text in your application.

● Use a syntax with leading quotation marks ("...") if you use MVC and your formatter or type is located in the
controller. In the following example, the existing type or formatter function in the controller is used:

 <TextField value="{

844 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 path:'gender',
 formatter:'.myGenderFormatter'
 }
 {firstName},
 {lastName} "/>

● If you have a global formatter function, use the following syntax:

 <TextField value="{
 parts: [
 {path:'birthday/day'},
 {path:'birthday/month'},
 {path:'birthday/year'}
],
 formatter:'my.globalFormatter' }"/>

● For a global type that is created with the specified format options, see the following example:

 <Label text="A type test: {
 path:'/singleEntry/amount',
 type:'sap.ui.model.type.Float',
 formatOptions: { minFractionDigits: 1}
 } EUR "/>

Expression Binding

Expression binding is an enhancement of the SAPUI5 binding syntax, which allows for providing expressions
instead of custom formatter functions.

Using expression binding saves the overhead of defining a function and is recommended if the formatter
function has a trivial implementation like a comparison of values. Expression binding is especially useful in the
context of SAPUI5 XML templating where XML views with templating are preprocessed and the SAPUI5
controller as the natural place to put custom formatter functions is not available.

To use expression binding, you need to enable complex binding syntax by using configuration setting
bindingSyntax to complex.

 Note
Complex syntax is automatically activated when the compatVersion is set to edge or to version 1.28 or
higher. For more information, see Configuration Options and URL Parameters [page 703].

An expression binding is specified in an XML view by one of the following two options:

● {=expression}
This variant uses one-way binding. This allows the automatic recalculation if the model values change.

● {:=expression}
This variant uses one-time binding, meaning that the value is calculated only once. This variant needs less
resources because no change listeners to the model have to be maintained.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 845

The syntax of the expression is similar to JavaScript syntax, but you can only use a subset of the JavaScript
expression syntax as defined in the table below. Additionally, you can embed values from the model layer into
an expression as additional bindings by using one of the following syntaxes:

● ${binding}
● %{binding}

binding can either be a simple path, or a complex binding. The embedded binding ${binding} delivers a value
formatted according to the target type of the control property the expression binding applies to, for example,
“boolean” in case of <Icon src="sap-icon://message-warning" visible="{= ${status} ===
'critical' }">. This can be undesirable or even lead to errors, for example, if OData V4 automatically adds
the correct type for the “status” property which is string-like, not boolean. In such cases, use the syntax %
{binding} instead. It is just a shortcut for ${path : 'binding', targetType : 'any'}. In rare cases,
you might also want to specify a different “targetType”, for example “string”, “boolean”, “int” or “float”. For more
information how these values relate to OData types, see the sap.ui.model.odata.type API documentation or
explore the XML Templating: UI5 OData Types sample in the Demo Kit. For more information about
targetType, see the sap.ui.base.ManagedObject#bindProperty API documentation in the Demo Kit.

 Note
Expression binding can also be used with JavaScript. For example:

new Text({"visible" : "{= ${status} === 'critical' && ${amount} > 10000 }"});

or

new Icon({color : "'{= encodeURIComponent(${/ID}) }'"});

 Note
An expression binding does not validate binding paths. As a result, an expression binding will not detect
incorrect or misspelled binding paths. But if you use an OData V4 model and try to bind data that does not
exist in the model, a warning is logged in the console.

To embed a path containing a closing curly brace into an expression binding, use a complex binding syntax: $
{path:'...'}, for example "{:= ${path:'target>extensions/[${name} === \'semantics\']/
value'} === 'email'}". You can use this also to avoid variable replacement by build tools like Maven for
special names like “Description” or “Name”.

Syntax Element Symbol

Literal number, for example 42, 6.022e+23 or -273.15

object, for example {foo: 'bar'}

string, for example 'foo'

null

true

false

846 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/docs/api/symbols/sap.ui.model.odata.type.html
https://sapui5.hana.ondemand.com/#/sample/sap.ui.core.sample.ViewTemplate.types/preview
https://sapui5.hana.ondemand.com/#/api/sap.ui.base.ManagedObject/methods/bindProperty

Syntax Element Symbol

Grouping (...), for example 3 * (4 + 10)

Unary operator !

+

-

typeof

Multiplicative operator *

/

%

Additive operator +

-

Relational operator <

>

<=

>=

Strict equality operator ===

!==

Binary logical operator &&

||

Conditional operator ?

Member access operator with the . operator
 Note
With these, you can use members and member meth
ods on standard types such as string, array, number,
and so on.

Example: ${message>/}.length >0 or ${/
firstName}.indexOf('S').

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 847

Syntax Element Symbol

Function call <function name>(...)

Example:

• text="{= Math.max(${/value1}, ${/
value2}, ${/value3}) }"

 Note
You can use functions that are available via global sym
bols, such as Math.max(...) or isNaN(...).

Array literals [...], for example [2,3,5,7,11]

Property/array access o[...], for example 'foo/bar'.split('/')[1]

in operator 'PI' in Math (true) or 0 in [] (false)

Global symbol Array, Boolean, Date, encodeURIComponent,
Infinity, isFinite, isNaN, JSON, Math, NaN,
Number, Object, parseFloat, parseInt, RegExp,
String, undefined

Simple Example

 Note
With expression binding you only need the XML view but no controller logic.

The following example shows how you use the custom formatter function to map an XML view to an expression
binding in the XML view without controller logic.

The icon is only displayed if the status property in the view's default model has the value critical. You can
use expression binding to replace the formatter function myFormatter in the controller with an expression
binding in the XML view. You no longer need to implement any formatter function.

The application version without expression binding consists of the XML view (sample.App.view.xml) and
the controller:

XML view (sample.App.view.xml)

 <mvc:View controllerName="sample.App" xmlns="sap.ui.core"
xmlns:mvc="sap.ui.core.mvc">
...
 <Icon src="sap-icon://message-warning" visible="{path:'status',
formatter:'.myFormatter'}">
...

</mvc:View>

848 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Controller (sample.App.controller.js)

 ...
myFormatter: function(sStatus) {
 return sStatus === "critical";
}
...

When using expression binding, however, you only need the XML view without controller logic
(sample.App.view.xml):

 <mvc:View controllerName="sample.app" xmlns="sap.ui.core"
xmlns:mvc="sap.ui.core.mvc">
...
 <Icon src="sap-icon://message-warning" visible="{= ${status} === 'critical' }">
...
</mvc:View>

 Note
Some symbols need to be escaped in XML views, for example && needs to be escaped with &&.

More Complex Expressions

With the expression syntax sketched above it is possible to create more complex expressions as shown in the
examples below.

 Note
We recommend to use formatter functions instead of very complex and hard-to-read expressions. Some
characters that are used by operators, however, need to be escaped in XML, for example the left angle
bracket (<) and the ampersand (&). Escaping makes it more difficult to read the expression. To avoid
escaping, use one of the following options:

● Rephrase the expression to make it more readable, for example, use a > b instead of b < a.
● Use a custom formatter function.

For more information about escaping in XML, see the W3C XML specification at http://
www.w3.org/TR/xml/#syntax .

Examples for more complex expressions:

 <!-- Set to visible if the status is critical and the amount
is above the threshold (note escaping of &&). --> visible="{= ${status} === 'critical' && ${amount} > 10000 }"

 <!-- Text for amount level using language-dependent texts
from the resource model. --> text="{= ${/amount} > 10000 ? ${i18n>/high} : ${i18n>/normal} }"

 <!-- Set to visible if the rating is VIP, ignoring case
or if the order amount is greater than 10,000. --> visible="{= ${/rating}.toUpperCase() === 'VIP' || ${/orderAmount} > 10000 }"

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 849

http://help.sap.com/disclaimer?site=http%3A%2F%2Fwww.w3.org%2FTR%2Fxml%2F%23syntax
http://help.sap.com/disclaimer?site=http%3A%2F%2Fwww.w3.org%2FTR%2Fxml%2F%23syntax

 <!-- Set to visible if the rating contains VIP, ignoring
 the case. --> visible={= RegExp('vip', 'i').test(${/rating}) }

 <!-- Text is maximum of three values. --> text="{= Math.max(${/value1}, ${/value2}, ${/value3}) }"

 <!-- Control is enabled only if the order status is set. --> enabled="{= ${/orderStatus} !== null }"

 <!-- Set text to the second string 'middle', access second
element in the array generated via 'split'. --> text="{= 'small@middle@long'.split('@')[1] }"

 <!-- Concatenate literal strings and expression bindings
or bindings. --> text="Hello {=${gender}==='male' ? 'Mr.' : 'Mrs.'} {lastName}"

 <!-- Control such as a button in the toolbar of a table is
enabled only if there are items in the table. --> enabled="{= ${/items}.length>0 }"

 <!-- Set text by using a composite binding that combines
several values in a formatter defined by a parameterized
entry of an i18n language resource. -->
<!-- i18n language resource -->
successMsg=Message is available from {0} until {1}
errorMsg=Message is too short
<!-- View -->
<mvc:View controllerName="sample.App" xmlns="sap.m" xmlns:mvc="sap.ui.core.mvc">
...
 <Text text="{= ${/data/message}.length < 20
 ? ${i18n>errorMsg}
 : ${parts: [
 {path: 'i18n>successMsg'},
 {path: '/data/today', type:'sap.ui.model.type.Date', constraints:
{displayFormat:'Date'}},
 {path: '/data/tomorrow', type:'sap.ui.model.type.Date', constraints:
{displayFormat:'Date'}}
], formatter: '.formatMessage'}}" />
...
</mvc:View>
<!-- Controller -->
sap.ui.define(["sap/base/strings/formatMessage"], function(formatMessage) {
 sap.ui.controller("sample.App", {
 onInit: function() {
 ...
 },
 formatMessage : formatMessage,
 ...
 }); });

Related Information

Composite Binding [page 843]
Examples for Data Binding in Different View Types [page 851]

850 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

XML Templating [page 1018]
Configuration of the SAPUI5 Runtime [page 699]

Property Metadata Binding

The extended syntax makes it possible to access the metadata for certain properties of an entity in OData
services, such as heading, label, and precision.

The extended data binding syntax is only valid for PropertyBindings. The annotations can be addressed
either absolute or relative to a data path.

The consumption of label and description within an application is an example for a possible integration. Instead
of copying the corresponding label text to a properties file, which in turn will be translated, a developer can bind
a label against the label metadata field for the respective input field.

The binding must know the metadata part of the binding expression. The path to metadata must therefore
start with /#.

● Absolute bindings
An absolute binding path starts with the entity name followed by the property name. Property attributes
can be accessed with @ + propertyName, nodes can be accesses with the node name only.
Example:

 var myLabel = new sap.m.Label({text:"{/#Company/CompanyName/@sap:label}"});

● Relative bindings
A relative binding path can be resolved relative to a data path/context.
Example:

 var myLabel = new sap.m.Label({text:"{/Companies(1)/CompanyCode/
#@sap:label}"});
var myLabel2 = new sap.m.Label({text:"{City/#@sap:label}"}); myLabel2.bindElement("Companies(1)");

Examples for Data Binding in Different View Types

Examples how complex syntax can be used for calculated fields in XML, HTML, and JS views.

XML View (Recommended)

 <mvc:View controllerName="testdata.complexsyntax" xmlns:core="sap.ui.core"
 xmlns:mvc="sap.ui.core.mvc" xmlns="sap.ui.commons" xmlns:table="sap.ui.table"
 xmlns:html="http://www.w3.org/1999/xhtml">
 <html:h2>
 <Label text="Hello Mr. {path:'/singleEntry/firstName',
formatter:'.myFormatter'}, {/singleEntry/lastName}"></Label>
 </html:h2>
 <table:Table rows="{/table}">

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 851

 <table:columns>
 <table:Column>
 <Label text="Name"></Label>
 <table:template>
 <TextField value="{path:'gender',
formatter:'.myGenderFormatter'} {firstName}, {lastName}"></TextField>
 </table:template>
 </table:Column>
 <table:Column>
 <Label text="Birthday"></Label>
 <table:template>
 <TextField value="{parts:[{path:'birthday/day'},
{path:'birthday/month'},{path:'birthday/year'}],
formatter:'my.globalFormatter'}"></TextField>
 </table:template>
 </table:Column>
 </table:columns>
 </table:Table>
 <html:h2>
 <Label text="A type test: {path:'/singleEntry/amount',
type:'sap.ui.model.type.Float', formatOptions: { minFractionDigits: 1}} EUR"></
Label>
 </html:h2>
</mvc:View>

HTML View

 <template data-controller-name="testdata.complexsyntax">
 <div>
 <h2><div data-sap-ui-type="sap.ui.core.HTML" id="MyHTMLControl" data-
content="<div>Hello Mr. {/singleEntry/firstName}, {/singleEntry/lastName}</
div>"></div></h2>
 <div data-sap-ui-type="sap.ui.table.Table" id="MyTable" data-rows="{/
table}">
 <div data-sap-ui-aggregation="columns">
 <div data-sap-ui-type="sap.ui.table.Column">
 <div data-sap-ui-type="sap.ui.commons.Label" data-
text="Name"></div>
 <div data-sap-ui-aggregation="template">
 <div data-sap-ui-type="sap.ui.commons.TextField" data-
value="{firstName}, {lastName}"></div>
 </div>
 </div>
 <div data-sap-ui-type="sap.ui.table.Column">
 <div data-sap-ui-type="sap.ui.commons.Label" data-
text="Birthday"></div>
 <div data-sap-ui-aggregation="template">
 <div data-sap-ui-type="sap.ui.commons.TextField" data-
value="{parts:[{path:'birthday/day'},{path:'birthday/month'},{path:'birthday/
year'}], formatter:'my.globalFormatter'}"></div>
 </div>
 </div>
 </div>
 </div>
 <h2><div data-sap-ui-type="sap.ui.commons.Label" id="MyLabelType" data-
text="A type test: {path:'/singleEntry/amount', type:'sap.ui.model.type.Float',
formatOptions: { minFractionDigits: 1}} EUR"></div></h2>
 </div>
</template>

852 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

JS View

A JS view is not declarative view, but you may use the same syntax as in XML- and HTMLView, just do not forget
to pass a controller instance as a parameter:

 sap.ui.jsview("testdata.complexsyntax", {

 getControllerName: function() {
 return "testdata.complexsyntax";
 },
 /**
 *
 * @param oController may be null
 * @returns {sap.ui.cre.Control}
 */
 createContent: function(oController) {
 var c = sap.ui.commons;
 var aControls = [];
 var oLabel = new c.Label({text:"Hello Mr. {path:'/singleEntry/
firstName', formatter:'.myFormatter'}, {/singleEntry/lastName}"}, oController);
 aControls.push(oLabel);

 var oTable = new sap.ui.table.Table({rows:"{/table}"});
 var oColumn = new sap.ui.table.Column();
 var oLabel2 = new c.Label({text:"Name"});
 var oTextField = new c.TextField({value:"{path:'gender',
formatter:'.myGenderFormatter'} {firstName}, {lastName}"}, oController);
 oColumn.setLabel(oLabel2);
 oColumn.setTemplate(oTextField);
 oTable.addColumn(oColumn);
 aControls.push(oTable);
 var oLabel2 = new c.Label({text:"{path:'/singleEntry/amount',
type:'sap.ui.model.type.Float'}"});
 aControls.push(oLabel2);
 return aControls;
 }
});

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 853

Formatting, Parsing, and Validating Data

Data that is presented on the UI often has to be converted so that is human readable and fits to the locale of the
user. On the other hand, data entered by the user has to be parsed and validated to be understood by the data
source. For this purpose, you use formatters and data types.

● Views [page 787]
● Models [page 882]

Formatters are used to define the formatting of data on the UI while data types work in both directions: they
format the data on the UI and parse and validate user input that is entered.

You can either use standard formatters and data types or define your own custom objects. SAPUI5 provides
standard formatter classes that can be used to define custom data types and custom formatters.

If an error occurs during formatting or parsing, the following exception occurs: sap/ui/model/
FormatException / sap/ui/model/ParseException.

 Note
For some controls like sap/m/Input you can also use API properties that define the data type and add
additional features like restricted input options, for example, <Input type="Number"/>.

Formatters

A simple formatter can be defined directly in the controller. For example, you can format name data with the
first letter in upper case:

myFormatter: function(sName) { return sName.charAt(0).toUpperCase() + sName.slice(1); }

854 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Note
We recommend to use a separate formatter.js file that groups the formatters and makes them globally
available in your app. You can then load the formatters in any controller by defining a dependency and
instantiating the formatter file in a formatter variable. For more information, see Step 23: Custom
Formatters [page 128] in the Walkthrough tutorial.

When the formatter is defined in the controller, you can use it, for example, in an XML view:

<Text text="{ path : 'person/name', formatter : '.myFormatter' }" />

 Note
You can also use predefined formatter functions for standard uses cases, like formatMessage from
module sap/base/strings/formatMessage.

 Caution
The automatic type determination for OData V4 interacts with targetType and can, thus, influence a
formatter’s input values. For more information on type determination in OData V4, see Type Determination
[page 931].

Data Types

Simple Types
If you also want to validate and parse input values, you use data types. All data types inherit from the abstract
sap.ui.model.Type class.

A subclass of this class is sap.ui.model.SimpleType. The currently available types inherit from
SimpleType class.

For simple data types, you can generate the following parameters in the constructor:

● formatOptions: Format options define how a value is formatted and displayed in the UI.
● constraints: Constraints are optional and define how an input value entered in the UI should look like.

During parsing the value is validated against these constraints. For example, an Integer type has a
constraint for maximum that is automatically validated when parsing the input values.

<Input value="{ path: '/number',
 type: 'sap.ui.model.type.Integer', formatOptions: { minIntegerDigits: 3
 }, constraints: { maximum: 1000
 } }" />

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 855

For a complete list of all simple types, see API Reference: sap.ui.model.Type.

OData Types

These types support OData V2 and V4 including relevant property facets as constraints. The OData types
represent the OData EDM primitive types. For more information, see Primitive Data Types in the OData
documentation .

For a complete list of all OData types, see API Reference: sap.ui.model.odata.type.

 Note
Also see the information on automatic type determination in OData V4 under Type Determination [page
931].

Custom Data Types

You can also define a custom data type based on sap.ui.model.SimpleType by specifying a custom
implementation for formatValue, parseValue, and validateValue:

sap.ui.define(["sap/ui/model/SimpleType"
], function (SimpleType) {
 "use strict";
 return SimpleType.extend("sap.ui.demo.myCustomType", {
 formatValue: ...
 parseValue: ...
 validateValue: ...
 }); });

 Example
Step 5: Adding a Flag Button [page 389] of the Testing tutorial shows how to implement a custom data
type.

Related Information

Binding Syntax [page 840]

Simple Data Types

For a complete list of all simple types, see API Reference: sap.ui.model.Type.

856 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.model.type/overview
http://help.sap.com/disclaimer?site=http%3A%2F%2Fwww.odata.org%2Fdocumentation%2Fodata-version-2-0%2Foverview%2F
http://help.sap.com/disclaimer?site=http%3A%2F%2Fwww.odata.org%2Fdocumentation%2Fodata-version-2-0%2Foverview%2F
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.type
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.type/overview

sap.ui.model.type.Boolean

The Boolean data type represents a string.

The source value (value given in the model) must be given as boolean and is transformed into the type of the
bound control property:

● boolean: No transformation needed
● string: "true" or "X" are interpreted as true, "false" and "" as false

The Boolean type has no format or validation constraint options.

Example how a Boolean type can be initialized:

// "TypeBoolean" required from module "sap/ui/model/type/Boolean" // The source value is given as boolean. var oType = new TypeBoolean();

sap.ui.model.type.Date

The Date data type represents a date (without time).

This type transforms a source value (given value in the model) into a formatted date string and the other way
round.

The format patterns must be defined in LDML Date Format notation. For the output, the use of a style ("short,
"medium", "long" or "full") instead of a pattern is preferred, as it will automatically use a locale-dependent date
pattern.

Examples how a Date type can be initialized:

// "TypeDate" required from "sap/ui/model/type/Date" // The source value is given as Javascript Date object. The used output pattern
depends on the locale settings (default).
var oType = new TypeDate();
// The source value is given as Javascript Date object. The used output pattern
is "yy-MM-dd": e.g. 09-11-27
oType = new TypeDate({pattern: "yy-MM-dd"});
// The source value is given as string in "yyyy/MM/dd" format. The used output
style is "long". The styles are language dependent.
// The following styles are possible: short, medium (default), long, full
// This might be the common use case.
oType = new TypeDate({source: {pattern: "yyyy/MM/dd"}, style: "long"});
// The source value is given as string in "yyyy/MM/dd" format. The used output
pattern is "EEEE, MMMM d, yyyy": e.g. Saturday, August 22, 2043
oType = new TypeDate({source: {pattern: "yyyy/MM/dd"}, pattern: "EEEE, MMMM d,
yyyy"});
// The source value is given as timestamp. The used output pattern is
"dd.MM.yyyy": e.g. 22.12.2010
oType = new TypeDate({source: {pattern: "timestamp"}, pattern: "dd.MM.yyyy"});
// The source value is given as string. The used input pattern depends on the
locale settings (default). The used output pattern is "dd '|' MM '|' yyyy": e.g.
22 | 12 | 2010 oType = new TypeDate({source: {}, pattern: "dd.MM.yyyy"});

The Date type supports the following validation constraints:

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 857

● maximum (expects a date presented in the source-pattern format)
● minimum (expects a date presented in the source-pattern format)

sap.ui.model.type.DateTime

The DateTime data type represents an exact point of time (date and time).

This data type transforms a source value (given value in the model) into a formatted date+time string and the
other way round.

The format patterns must be defined in LDML Date Format notation. For the output, the use of a style ("short,
"medium", "long" or "full") instead of a pattern is preferred, as it will automatically use a locale-dependent date
and time pattern.

 Caution
When talking about exact points in time, time zones are imported. The formatted output of the DateTime
type currently shows the "local" time which equals the time settings of the machine on which the browser
runs. If the source value is given as a JavaScript Date object or as a timestamp, the exact moment is
sufficiently defined. For string source values this value is interpreted in "local" time if it does not explicitly
have a time zone. Currently, all accepted time zone notations must be based on GMT/UTC.

Examples how a DateTime type can be initialized:

// "TypeDateTime" required from "sap/ui/model/type/DateTime" // The source value is given as JavaScript Date object. The used output pattern
depends on the locale settings (default).
var oType = new TypeDateTime();
// The source value is given as JavaScript Date object. The used output pattern
is "yyyy/MM/dd HH:mm:ss": e.g. 2011/04/11 09:11:27
oType = new TypeDateTime({pattern: "yyyy/MM/dd HH:mm:ss"});
// The source value is given as string in "yyyy/MM/dd HH:mm:ss" format. The used
output style is "full". The styles are language dependent.
// The following styles are possible: short, medium (default), long, full
// This usecase might be the common one.
oType = new TypeDate({source: {pattern: "yyyy/MM/dd HH:mm:ss"}, style: "full"});
// The source value is given as string in "dd.MM.yyyy HH:mm:ss" format (no
timezone given). The used output pattern is "MMMM d, yyyy, HH:mm:ss.SSS": e.g.
August 22, 2043, 18:48:48.374
oType = new TypeDateTime({source: {pattern: "dd.MM.yyyy HH:mm:ss"}, pattern:
"MMMM d, yyyy, HH:mm:ss.SSS"});
// The source value is given as timestamp. The used output pattern is
"dd.MM.yyyy HH:mm": e.g. 22.12.2010 13:15
oType = new TypeDateTime({source: {pattern: "timestamp"}, pattern: "dd.MMM.yyyy
HH:mm"});
// The source value is given as string. The used input pattern depends on the
locale settings (default). The used output pattern is "hh-mm-ss '/' yy-MM-dd":
e.g. 06-48-48 / 43-08-22
oType = new TypeDateTime({source: {}, pattern: "hh-mm-ss '/' yy-MM-dd"});
// The source value is given as string in "dd.MM.yyyy HH:mm:ss X" format
(timezone is defined in ISO8601 format, e.g. "+02:00"). The used output pattern
depends on the locale settings (default).
oType = new TypeDateTime({source: {pattern: "dd.MM.yyyy HH:mm:ss X"}});
// The source value is given as string in "dd.MM.yyyy HH:mm:ss Z" format
(timezone is defined in RFC822 format, e.g. "+0200"). The used output pattern
depends on the locale settings (default).
oType = new TypeDateTime({source: {pattern: "dd.MM.yyyy HH:mm:ss Z"}});

858 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

// The source value is given as string in "dd.MM.yyyy HH:mm:ss z" format
(timezone is currently defined as e.g. "GMT+02:00", "UTC+02:00", "UT+02:00" or
"Z" (shortcut for "UTC+00:00")).
// The used output pattern depends on the locale settings (default). oType = new TypeDateTime({source: {pattern: "dd.MM.yyyy HH:mm:ss z"}});

The DateTime type supports the following validation constraints:

● maximum (expects a dateTime presented in the source-pattern format)
● minimum (expects a dateTime presented in the source-pattern format)

sap.ui.model.type.Float

The Float data type represents a float value.

The source value for this data type, that is, the value given in the model must be given as a number and is
transformed into the type of the bound control property:

● float: No transformation needed
● integer: Value is rounded using Math.floor
● string: Value is formatted or parsed according to the given output pattern

Examples how a Float type can be initialized:

// "TypeFloat" required from module "sap/ui/model/type/Float" // The source value is given as JavaScript number. Output is transformed into
the type of the bound control property.
// If this type is "string" (e.g. the value property of the TextField control)
the used default output pattern parameters depend on locale and fixed settings.
var oType = new TypeFloat();
// The source value is given as JavaScript number. Output is transformed into
the type of the bound control property.
// If this type is "string" (e.g. the value property of the TextField control)
the given output pattern is used (parameters which are not specified are taken
from the default pattern)
oType = new TypeFloat({
 minIntegerDigits: 1, // minimal number of non-fraction digits
 maxIntegerDigits: 99, // maximal number of non-fraction digits
 minFractionDigits: 0, // minimal number of fraction digits
 maxFractionDigits: 99, // maximal number of fraction digits
 groupingEnabled: true, // enable grouping (show the grouping separators)
 groupingSeparator: ",", // the used grouping separator
 decimalSeparator: "." // the used decimal separator });

The Float type supports the following validation constraints:

● maximum
● minimum

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 859

sap.ui.model.type.Integer

The Integer data type represents an integer value.

The source value for this data type, that is, the value given in the model, must be given as a number and is
transformed into the type of the bound control property:

● float: Value is rounded using Math.floor
● integer: No transformation needed
● string: Value is formatted or parsed according to the given output pattern

Examples how an Integer type can be initialized:

// "TypeInteger" required from module "sap/ui/model/type/Integer" // The source value is given as JavaScript number. Output is transformed into
the type of the bound control property.
// If this type is "string" (e.g. the value property of the TextField control)
the used default output pattern parameters depend on locale and fixed settings.
var oType = new TypeInteger();
// The source value is given as JavaScript number. Output is transformed into
the type of the bound control property.
// If this type is "string" (e.g. the value property of the TextField control)
the given output pattern is used (parameters which are not specified are taken
from the default pattern)
oType = new TypeInteger({
 minIntegerDigits: 1, // minimal number of non-fraction digits
 maxIntegerDigits: 99, // maximal number of non-fraction digits
 minFractionDigits: 0, // minimal number of fraction digits
 maxFractionDigits: 0, // maximal number of fraction digits
 groupingEnabled: false, // enable grouping (show the grouping separators)
 groupingSeparator: ",", // the used grouping separator
 decimalSeparator: "." // the used decimal separator });

The Integer type supports the following validation constraints:

● maximum
● minimum

sap.ui.model.type.String

The String data type represents a string.

The source value (value given in the model) must be given as a number and is transformed into the type of the
bound control property:

● string: No transformation needed
● integer/float: String is parsed accordingly
● boolean: "true" or "X" are interpreted as true, false, and " " as false

The string type does not have any format options.

Example how a String type can be initialized:

// "TypeString" required from module "sap/ui/model/type/String" // The source value is given as string. The length of the string must not be
greater than 5.

860 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 var oType = new TypeString(null, {maxLength: 5});

The String type supports the following validation constraints:

● maxLength (expects an integer number)
● minLength (expects an integer number)
● startsWith (expects a string)
● startsWithIgnoreCase (expects a string)
● endsWith (expects a string)
● endsWithIgnoreCase (expects a string)
● contains (expects a string)
● equals (expects a string)
● search (expects a regular expression)

For more information, see API Reference: sap.ui.model.type.String.

sap.ui.model.type.Time

The Time data type represents a time (without date).

This type transforms a source value (given value in the model) into a formatted time string and the other way
round.

The format patterns must be defined in LDML Date Format notation. For the output, the use of a style ("short,
"medium", "long" or "full") instead of a pattern is preferred, as it will automatically use a locale dependent time
pattern.

Examples how a Time type can be initialized:

// "TypeTime" required from module "sap/ui/model/type/Time" // The source value is given as JavaScript Date object. The used output pattern
depends on the locale settings (default).
var oType = new TypeTime();
// The source value is given as JavaScript Date object. The used output pattern
is "hh-mm-ss": e.g. 09-11-27
oType = new TypeTime({pattern: "hh-mm-ss"});
// The source value is given as string in "hh-mm-ss" format. The used output
style is "short". The styles are language dependent.
// The following styles are possible: short, medium (default), long, full
// This might be the common use case.
oType = new TypeTime({source: {pattern: "hh-mm-ss"}, style: "short"});
// The source value is given as string in "hh/mm/ss/SSS" format. The used output
pattern is "HH:mm:ss '+' SSS 'ms'": e.g. 18:48:48 + 374 ms
oType = new TypeTime({source: {pattern: "hh/mm/ss/SSS"}, pattern: "HH:mm:ss '+'
SSS 'ms'"});
// The source value is given as timestamp. The used output pattern is "HH
'Hours' mm 'Minutes'": e.g. 18 Hours 48 Minutes
oType = new TypeTime({source: {pattern: "timestamp"}, pattern: "HH 'Hours' mm
'Minutes'"});
// The source value is given as string. The used input pattern depends on the
locale settings (default). The used output pattern is "hh:mm a": e.g. 06:48 PM oType = new TypeTime({source: {}, pattern: "hh:mm a"});

The Time type supports the following validation constraints:

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 861

https://sapui5.hana.ondemand.com/#/api/sap.ui.model.type.String

● maximum (expects a time presented in the source-pattern format)
● minimum (expects a time presented in the source-pattern format)

sap.ui.model.type.DateTimeInterval

The interval data types represent intervals between two date/time related properties.

Three new types are used to format two date related properties from a model for displaying in the UI.
Additionally they are used to parse and validate the values in UI controls before they are saved back to the
model. All of the them are subtypes of sap.ui.model.CompositeType and are supposed to be set with a
composite binding. The new interval types are:

● sap.ui.model.type.DateInterval - represents a date interval (without time) which transforms the
source values into a formatted date interval string and the other way around.

● sap.ui.model.type.DateTimeInterval - represents a date interval with the exact point of time (date
and time) which transforms the source values into a formatted date+time interval string and the other way
around

● sap.ui.model.type.TimeInterval - represents a time interval (without date) which transforms the
source values into a formatted time interval string and the other way around

Usage with JSON, OData V2 or V4 models

 Note
The new date interval types can be used together with different types of model. However, there are some
differences in the usage when the new date interval types get used with a JSON, OData V2 or V4 model.

The interval types need two JavaScript Date objects from the sub-bindings to format them as a date interval
string. If the values which come from the sub-binding aren’t instances of JavaScript Date object, they need to
be converted to JavaScript Date objects before they are forwarded to the date interval types. The conversion
can be done by setting a corresponding type on the sub-binding and this type knows how the value which
comes directly from the model can be converted to a JavaScript Date object. A date interval type works
together with the types on the sub-bindings to get the original value from the model converted to a JavaScript
Date object.

 Restriction
One exception is with the OData V2 Model. Although the date fields are saved as string in the model, they
get converted to JavaScript Date objects by the open source library which is used in v2.ODataModel.
Therefore it’s not needed to set an extra type on the sub-binding when the date interval types are used
together with the OData V2 model.

The following example shows how this should be setup with a sap/m/Table which is bound to an OData V4
model. The table consists of four different columns whereas the StartsAt and EndsAt represent date field as
string with Edm type Edm.DateTimeOffset. The date interval formatting is done by combining these two date
fields together.

862 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

In order to let the date interval type correctly, get two JavaScript Date objects from the sub-bindings, a type
sap.ui.model.odata.type.DateTimeOffset is set on each sub-binding to convert the date string into a
JavaScript Date object.

// "ODataModel" required from module "sap/ui/model/odata/v4/ODataModel" // "Table" required from module "sap/m/Table"
// "Text" required from module "sap/m/Text"
// "Column" required from module "sap/m/Column"
// "ColumnListItem" required from module "sap/m/ColumnListItem"
var urlV4 = "/databinding/proxy/http/services.odata.org/TripPinRESTierService/
(S(kqyippfvpypubsah2zi1enbi))/";
// Some OData V4 model configuration
var oModelConfig = {
 groupId : "$direct",
 serviceUrl: urlV4,
 synchronizationMode: "None",
 operationMode: "Server"
};
var oModel = new ODataModel(oModelConfig);
var oTable = new Table({
 growing: true,
 columns : [
 new Column({header: new Text({text: "Name"})}),
 new Column({header: new Text({text: "StartsAt"})}),
 new Column({header: new Text({text: "EndsAt"})}),
 new Column({header: new Text({text: "Interval"})}),
]
});
oTable.setModel(oModel);
oTable.bindItems({
 path:"/People('russellwhyte')/Trips",
 template: new ColumnListItem({
 cells: [
 new Text({text:"{Name}"}),
 new Text({text:"{StartsAt}"}),
 new Text({text:"{EndsAt}"}),
 new Text({text:{
 parts:[
 {
 path:'StartsAt',
 // requires OData type to convert the date
 // string into JavaScript Date object type: "sap.ui.model.odata.type.DateTimeOffset" },{
 path:'EndsAt',
 // requires OData type type: "sap.ui.model.odata.type.DateTimeOffset" }
], type: 'sap.ui.model.type.DateInterval',
 formatOptions: {format: "yMMMdd"} }})
]
 }) });

Formatter Classes

For a complete list of all formatter classes, see API Reference: sap.ui.model.Type.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 863

http://sapui5.hana.ondemand.com/#/api/sap.ui.core.format

Date Format

The sap.ui.core.format.DateFormat class can be used to parse a string representing a date, time, or the
combination of date and time into a JavaScript date object and vice versa (also known as format).
DateFormat formats and parses date and time values according to a set of format options. It can also be used
to format intervals. A pattern base on Locale Data Markup Language (LDML) date format notation can be given
and the date is formatted following the given pattern. DateFormat can also format the date and time into
relative values on "day" level.

Instantiation

You instantiate of sap.ui.core.format.DateFormat by calling the getter defined on the DateFormat
(and not by calling the constructor):

var oDateFormat = sap.ui.core.format.DateFormat.getDateInstance(); // or
var oDateTimeFormat = sap.ui.core.format.DateFormat.getDateTimeInstance();
// or var oTimeFormat = sap.ui.core.format.DateFormat.getTimeInstance();

Parameters

There are several parameters which affect the final result of formatting and parsing a date. If no parameter is
set, the default setting defined in the current locale is used to format and parse the date.

Date Pattern
format (recommended):

The format string does contain pattern symbols (e.g. yMMMd or Hms) and will be converted into the pattern in
the used locale, which matches the wanted symbols best.

The symbols must be in canonical order, that is: Era (G), Year (y/Y), Quarter (q/Q), Month (M/L), Week (w/W),
Day-Of-Week (E/c), Day (d/D), Hour (h/H/k/K), Minute (m), Second (s), Timezone (z/Z/v/V/O/X/x).

var oFormat = sap.ui.core.format.DateFormat.getInstance({ format: "yMMMd"
}); oFormat.format(new Date()); //string in locale de "29. Jan. 2017"; string in
locale en "Jan 29, 2017"

pattern: A date pattern in LDML date format notation. The date is formatted based on the given pattern.

var oDateFormat = sap.ui.core.format.DateFormat.getDateInstance({ pattern: "EEE, MMM d, yyyy"
});

var oNow = new Date(); oDateFormat.format(oNow); //string in the same format as "Thu, Jan 29, 2017"

864 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Note
If you define format and pattern, the format will be ignored!

The letters which can be included in this pattern are explained in the following table:

Table 25: Patterns

Letter Replaced By

G era string for the current date

y year

Y Same as y, but uses the ISO year-week calendar

M month

L month in stand-alone format

w week number in year

(W) (currently not supported) week number in month

(D) (currently not supported) day number in year

d day number in month

Q quarter number

q quarter number in stand-alone format

(F) (currently not supported) day of week in month

E day of week

c day of week in stand-alone format

u day number of week

a AM or PM

j Can only be used in the format option, not in the
pattern. It will be replaced by h, H, K or k depending on
the locale preferred time cycle type (12-hour or 24-hour).

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 865

Letter Replaced By

J Can only be used in the format option, not in the
pattern. It will be replaced by h, H, K or k. However unlike
j it requests no dayPeriod marker such as "am" or "pm".
It is typically used where there is enough context that the
day period not necessary. For example, with jmm, "18:00"
could appear as "6:00 PM", while with Jmm, it would appear
as "6:00" (no PM).

H hour (0-23)

k hour (1-24)

K hour (0-11)

h hour (1-12)

m minute

s second

S fractional second

z time zone

Z time zone in RFC 822 format

X time zone in ISO 8601 format

Style

This can be set with either empty, short, medium or long. If no pattern is given, a locale-dependent default
date pattern of that style is used which is extracted from the current locale.

If in addition to style pattern or format is defined, the style is ignored.

If you use the datetime instance by calling getDateTimeInstance, you can define different styles for date
and time. For example, medium/short defines medium style for the date and short style for the time.

Relative Format

Relative format on "day"' level is only supported by the date instance but not the date time or the time instance.

● relative: if this is set to true, the date is formatted relatively to the actual date if it's within the given
date range.

● relativeRange: the day range used for relative formatting. The default is set to 6 which means only dates
within the last six days, the acutal date, and the next six days are formatted relatively.

● relativeScale: the relative scale is chosen depending on the difference between the given date and now,
possible relative scales are: year, month, week, day, hour, minute, second, and auto
If auto is set, the scale is chosen dependent on the actual difference.

866 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Interval
interval: If this is set to true, the DateFormat is capable to format two dates as an interval. The format
method expects an array with two dates as the first argument.

If the format option is set with necessary symbols, the DateFormat displays the fields which have the same
value between the two dates only once in the result string. For example, the interval "Jan 10, 2008 - Jan 12,
2008" will be formatted as "Jan 10-12, 2008". Otherwise the two given dates are formatted separately and
concatenated with locale-dependent pattern.

var oFormat = sap.ui.core.format.DateFormat.getInstance({ format: "yMMMd",
 interval: true
});
var oDate1 = new Date(2017, 3, 11);
var oDate2 = new Date(2017, 4, 11);
oFormat.format([oDate1, oDate2]);
// string in locale de "11. Apr. – 11. Mai 2017"; // string in locale en "Apr 11 – May 11, 2017"

Parsing
strictParsing: If this is set to true, the date string is validated during parsing. If it doesn't pass the
validation, null is returned.

var oDateFormat = sap.ui.core.format.DateFormat.getDateInstance({ relative: true
});

var nMS = 1000 * 60 * 60 * 24; //milliseconds in a day
var oNow = new Date();
var oDate = new Date(oNow.getTime() - nMS);
oDateFormat.format(oDate); //returns yesterday

oDate = new Date(oNow.getTime() + 7 * nMS); oDateFormat.format(oDate); //isn't returned in relative format because the
default value of relativeRange is [6|-6,]

Related Information

API Reference: sap.ui.core.format.DateFormat

Number Format

The sap.ui.core.format.NumberFormat class can be used to parse a string representing a number (float
or integer) into a JavaScript number and vice versa (also known as format).

NumberFormat uses the parameters defined for the current locale. These parameters can be overwritten on
each instance by setting the format options.

There are four types of formatters defined in NumberFormat:

● Integer formatter: formats and parses only the integer digits; decimal digits are ignored

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 867

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.format.DateFormat.html

● Float formatter: formats and parses both integer and decimal digits.
● Percent formatter: formats the number into a string with percentage sign. It validates the number whether

it contains the right percentage sign in its parser.
● Currency formatter: formats the number by using the parameters defined for the given currency code.

Either currency symbol, currency code, or none of both can be included in the final formatted string. It
parses the given string into an array which contains both the currency number and currency code.

Instantiation

The instantiation of sap.ui.core.format.NumberFormat is done by calling getter defined on
NumberFormat (and not by using the constructor).

var oIntegerFormat = sap.ui.core.format.NumberFormat.getIntegerInstance(); // or
var oFloatFormat = sap.ui.core.format.NumberFormat.getFloatInstance();
// or
var oPercentFormat = sap.ui.core.format.NumberFormat.getPercentInstance();
// or var oCurrencyFormat = sap.ui.core.format.NumberFormat.getCurrencyInstance();

Parameters

All parameters have their default value defined in the current locale. Therefore, if no parameter is given when
instantiating the formatter instance, it fetches the parameters from the current locale. All parameters can be
overwritten by giving a format option object in the getter of the formatter. There are a bunch of parameter
defined for the four types of formatters. Most of them are shared among the types and the rest are specifically
defined for a certain kind of formatter.

Integer and Decimal Digits

● minIntegerDigits: minimal number of non-fraction digits. If there are less integer digits in the number
than the value here, '0'(s) is prepended in the final result.

● maxIntegerDigits: maximal number of non-fraction digits. If there are more digits in the number than
the value here, all integer digits in the final result are replace by ?.

● minFractionDigits: minimal number of fraction digits. If there are less decimal digits in the number
than the value here, '0'(s) is appended in the final result.

● maxFractionDigits: maximal number of fraction digits. If there are more decimal digits in the number
than the value here, those digits are discarded from the result and the least significant digit is calculated by
using the given roundingMode parameter.

● decimals: number of decimal digits in the final result. Same result is achieved by setting both
minFractionDigits and maxFractionDigits to this value.

● precision: number of digits used to display the number, for example with precision 5 a number could be
1.3456 or 134.45.

868 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

● shortDecimals: number of decimal digits in the shortifed number when parameter style is set to short
or long. If this isn't set, the parameter decimal is used instead.

// Locale object is created and set to the format in order to have a user locale
independent formatter. // In most of the cases, this locale object isn't needed.
var oLocale = new sap.ui.core.Locale("en-US");
var oFormatOptions = {
 minIntegerDigits: 3,
 maxIntegerDigits: 5,
 minFractionDigits: 2,
 maxFractionDigits: 4
};
var oFloatFormat =
sap.ui.core.format.NumberFormat.getFloatInstance(oFormatOptions, oLocale);
oFloatFormat.format(1.1); // returns 001.10
oFloatFormat.format(1234.567); // returns 1,234.567 oFloatFormat.format(123456.56789); // returns ??,???.5679

// Locale object is created and set to the format in order to have a user locale
independent formatter. // In most of the cases, this locale object isn't needed.
var oLocale = new sap.ui.core.Locale("en-US");
var oFormatOptions = {
 style: "short",
 decimals: 1,
 shortDecimals: 2
};
var oFloatFormat =
sap.ui.core.format.NumberFormat.getFloatInstance(oFormatOptions, oLocale);
oFloatFormat.format(1234.56); // returns 1.23K (shortified number takes the
shortDecimals parameter) oFloatFormat.format(123.456); // returns 123.5 (non-shortified number takes the
decimals parameter)

Separator and Signs

● groupingEnabled defines whether the integer digits are put into groups which are separated by the
groupingSeparator parameter

● groupingType defines the type of grouping. Either Arabic or Indian can be set here.
● groupingSeparator defines the separator of grouping.
● decimalSeparator defines the symbol of decimal point.
● groupingSize only used if you don't want the locale-dependent grouping, for example 3 digits for de or

en
● groupingBaseSize only used if your locale uses a specific group size for the first group (like Indian), and

you don't want to use the standard
● plusSign
● minusSign

Compact Format

You can use compact format to format a number using a given scale. For example, 1000000 may be formatted
under en-US locale as 1 Million.

To format a number in compact format, set the option style to either short or long. These styles control
which version of scale name is used. For example, 1000000 is formatted as 1M with short and 1 Million with
long.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 869

The scale can be selected automatically based on the given number, or you can set it explicitely by using
shortRefNumber. You can set this option with a number which is then used for calculating the scaling factor
for formatting all given numbers to this formatter.

To hide the scaling formatter from the formatted number and only be shown once on the screen, you can use
option showScale. In order to get the scaling factor name of the number set to shortRefNumber under the
current running locale, you use method getScale.

To control the start the starting point of numbers which should be displyed in compact format, you use
shortLimit.

 Example
In the following chart, all numbers both on the chart and axis should be formatted using the same scaling
factor. The scaling factor should only appear in the chart title and be hidden from the formatted number. In
order to achieve this, the option shortRefNumber is set to 1000000 and showScale is set to false. The
corresponding scaling factor name is returned by calling the getScale method.

Miscellaneous
● emptyString defines what empty string ("") is parsed as and what is formatted as emptyString. The

allowed values are only NaN, null or 0. Default setting is NaN.
● pattern: a pattern which follows the CLDR syntax. The number is then formatted according to the given

pattern.
● roundingMode: defines a rounding behavior for discarding the digits after the maximum decimal digits

defined by maxFractionDigits or decimals. Rounding will only be applied, if the formatting value is of
type number.

870 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Table 26: Rounding Modes (with decimals parameter set to 1)

Number FLOOR CEILING
TOWARDS
_ZERO

AWAY_FR
OM_ZERO

HALF_FL
OOR

HALF_CE
ILING

HALF_TO
WARDS_Z
ERO

HALF_AW
AY_FROM
_ZERO

2.21 2.2 2.3 2.2 2.3 2.2 2.2 2.2 2.2

2.25 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3

2.29 2.2 2.3 2.2 2.3 2.3. 2.3 2.3 2.3

-2.21 -2.3 -2.2 -2.2 -2.2 -2.2 -2.2 -2.2 -2.2

-2.25 -2.3 -2.2 -2.2 -2.3 -2.3 -2.2 -2.2 -2.3

-2.29 -2.3 -2.2 -2.2 -2.3 -2.3 -2.3 -2.3 -2.3

Parsing

Parsing a number

A formatted number which contains a locale-dependent grouping separator, decimal point, or percentage sign
can be parsed into a number object using sap.ui.core.format.NumberFormat. Those number string may
not be correctly parsed by using parseInt or parseFloat in JavaScript.

// Locale object is created and set to the format in order to have a user locale
independent formatter. // In most of the cases, this locale object isn't needed.
var oLocale = new sap.ui.core.Locale("en-US");
var oFloatFormat = sap.ui.core.format.NumberFormat.getFloatInstance(oLocale);
oFloatFormat.parse("1,234.567"); // returns 1234.567 oFloatFormat.parse("12.34%"); // returns 0.1234

Related Information

API Reference: sap.ui.core.format.NumberFormat
Unit Formatting [page 873]
Currency Formatting [page 878]

File Size Format

The sap.ui.core.format.FileSizeFormat class can be used to format a number into a string which
contains both the number and the most appropriate size unit. It supports all parameters defined in

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 871

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.format.NumberFormat.html

sap.ui.core.format.NumberFormat. It can also parse a file size string with or without unit into a number
which represents the same size in unit byte.

Instantiation

The instantiation of sap.ui.core.format.FileSizeFormat is done by calling the getter defined on the
FileSizeFormat (and not by calling the constructor):

var oFileSizeFormat = sap.ui.core.format.FileSizeFormat.getInstance();

Parameters

binaryFilesize: if this is set to true, base 2 is used which means 1 Kilobyte = 1024 Byte. Otherwise base 10
is used which means 1 Kilobyte = 1000 Byte. The default value is false.

var oFileSizeFormat = sap.ui.core.format.FileSizeFormat.getInstance({ binaryFilesize: true,
 decimals: 2
});

oFileSizeFormat.format(1023); //returns 1,023.00 Bytes because it's smaller than
1 KB (1024 Bytes)

oFileSizeFormat = sap.ui.core.format.FileSizeFormat.getInstance({
 binaryFilesize: false,
 decimals: 2
}); oFileSizeFormat.format(1023); //returns 1.02 KB because it's bigger than 1 KB
(1000 Bytes)

Parsing

FileSizeFormat can also parse a string which contains both number and unit of a number which represents
the same amount of size in unit byte.

var oFileSizeFormat = sap.ui.core.format.FileSizeFormat.getInstance();
oFileSizeFormat.parse("1.23 MiB"); //returns 1289748.48 oFileSizeFormat.parse("1 MB"); // returns 1230000

Related Information

API Reference: sap.ui.core.format.FileSizeFormat

872 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.format.FileSizeFormat.html

Unit Formatting

SAPUI5 supports the formatting and parsing of units. These unit formats are by default taken from the CLDR.
Besides the default units defined in the CLDR, you can also define custom units.

Introduction

Similar to the formatting of currencies, the new unit formatting feature allows you to combine a number value
with a localized unit string. Still the actual numbers themselves can be formatted in all kinds of styles, for
example, with different decimals or fraction digits.

With version 1.54 all language files will include the CLDR data for formatting. You can check out the public
CLDR github repository for an overview of all supported languages and units: https://github.com/unicode-cldr/
cldr-units-modern

The default CLDR units include a pattern for formatting a number value in the given unit and the set locale.
Additionally, you can now parse an already formatted string back into the unit-format code from the CLDR and
of course the raw number value. The same is true for your self-defined custom units.

In addition to the formatting and parsing patterns, the CLDR also provides a display-name for all units, as well
as grammatical plural forms. The display-name for the unit volume-cubic-inch is inches³. The formatting
output might however look like this: 12 in³.

Usage

Simple Sample
Since the units and their formatting patterns are already included in the respective language JSON files, you
can simply instantiate a new unit format instance via the NumberFormat.getUnitInstance() factory. The
resulting instance supports formatting and parsing. While the FormatOptions are used to format the Number
itself, the specific unit code is passed to the format/parse method.

// create a simple unit formatting instance, without any additional options sap.ui.require(["sap/ui/core/format/NumberFormat"], function(NumberFormat) {
 var oUnitFormat = NumberFormat.getUnitInstance();
 oUnitFormat.format(12345.678, "speed-mile-per-hour"); // output: 12,345.678
mph
 oUnitFormat.parse("12345.678 mph"); // output: [12345.678, "speed-mile-per-
hour"] });

Complex Sample
Besides a simple formatting and parsing of units defined in the CLDR, you can also use the known format
options for formatting numbers independent of the unit. The style of the number output format can be defined
as either short or long.

Essentially, the new unit formatting can be combined together with the existing number formatting.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 873

http://help.sap.com/disclaimer?site=https%3A%2F%2Fgithub.com%2Funicode-cldr%2Fcldr-units-modern
http://help.sap.com/disclaimer?site=https%3A%2F%2Fgithub.com%2Funicode-cldr%2Fcldr-units-modern

// new unit formatter, decimals are limited to 2, and the output style is set to
"short"
sap.ui.require(["sap/ui/core/format/NumberFormat"], function(NumberFormat) {
 var en = new sap.ui.core.Locale("en");
 var oUnitFormat = NumberFormat.getUnitInstance({decimals:2, style:"short"},
en);
 console.log(oUnitFormat.format(12345.678, "speed-mile-per-hour")); //
output: 12.35K mph
 console.log(oUnitFormat.parse("12.35K mph")); // output: [12350, "speed-mile-
per-hour"]
});
// new unit formatter, decimals are limited to 2, and the output style is set to
"long"
sap.ui.require(["sap/ui/core/format/NumberFormat"], function(NumberFormat) {
 var en = new sap.ui.core.Locale("en");
 var oUnitFormat = NumberFormat.getUnitInstance({decimals:2, style:"long"},
en);
 console.log(oUnitFormat.format(12345.678, "speed-mile-per-hour")); // output:
12.35 thousand mph
 console.log(oUnitFormat.parse("12.35 thousand mph")); // output: [12350,
"speed-mile-per-hour"] });

The unit’s displayname can also be retrieved based on the data from the CLDR.

sap.ui.require(["sap/ui/core/format/NumberFormat", "sap/ui/core/Locale", "sap/ui/
core/LocaleData"], function(NumberFormat, Locale, LocaleData) {
 console.log(LocaleData.getInstance(new
Locale("en")).getUnitDisplayName("speed-mile-per-hour")); // output: miles/hour });

Plural Forms and RTL
Depending on the set locale/language, the output also correctly regards grammatical plural forms, as well as
right-to-left orientation. In some Arabic languages, for example, there is a distinction between “many” and
“one”, with “one” being a single string without a number in it:

 sap.ui.require(["sap/ui/core/format/NumberFormat"], function(NumberFormat) {
 var ar = new sap.ui.core.Locale("ar");
 var oUnitFormat = NumberFormat.getUnitInstance({decimals:2, style:"long"},
ar);
 console.log(oUnitFormat.format(123456.789, "angle-revolution")); // 123.46 ألف

دورة
 console.log(oUnitFormat.format(1, "angle-revolution")); // دورة });

And here’s an example of right-to-left orientation in Hebrew:

 sap.ui.require(["sap/ui/core/format/NumberFormat"], function(NumberFormat) {
 var he = new sap.ui.core.Locale("he");
 var oUnitFormat = NumberFormat.getUnitInstance({decimals:2, style:"long"},
he);
 console.log(oUnitFormat.format(12345.678, "speed-mile-per-hour")); // 12.35
;({ mph אלף

 Note
The right-to-left languages include a special whitespace character as a marker. This character is of course
invisible, but you should take note of it, in case you intend to do string comparisons and other string
operations. For example, in the Chrome debugger the RTL mark is visualized as a red dot.

874 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Custom Units

Instance-Exclusive Units

The unit NumberFormat instance also allows you to specify custom units, which can be used for formatting, as
well as parsing. All you have to do is add your custom units as an additional parameter in the
NumberFormat.getUnitInstance() factory.

In the following example, you can see how this is done for a specific instance.

 sap.ui.require(["sap/ui/core/format/NumberFormat"], function(NumberFormat) {

 var oFormat = sap.ui.core.format.NumberFormat.getUnitInstance({
 customUnits: {
 "zomb": {
 "unitPattern-count-one": "{0} Zombie...",
 "unitPattern-count-other": "{0} Zombies!!"
 }
 }
 });

 console.log(oFormat.format(1, "zomb")); // 1 Zombie...
 console.log(oFormat.format(9001, "zomb")); // 9.001 Zombies!!

 console.log(oFormat.parse("12 Zombies!!")); // [12, "zomb"]; });

 Caution
The custom units defined on the number format instance will be exclusive to this instance. No other
instances are affected. In addition, once you define custom units for an instance, only those units will be
formatted and parsed by that instance. This also means that custom units defined via the Configuration are
not taken into account for this specific instance.

This is done to circumvent ambiguities and unit clashes with the CLDR units. So in the above example, only
Zombies can be formatted, but no Gigawatt (CLDR key: power-gigawatt).

 Example

 // the previous Unit instance is used // formatting/parsing Zombies is fine
 console.log(oFormat.format(9001, "zomb")); // 9.001 Zombies!!
 console.log(oFormat.parse("12 Zombies!!")); // [12, "zomb"];

 // formatting/parsing Giga-Watt does not work (because of the
exclusivity of the custom units on the above instance) console.log(oFormat.format(1.21, "power-gigawatt")); // "": results
in an empty string

If you need both, CLDR units and custom units, you simply have to create two separate number format
instances.

Globally Configured Units

You can also add custom units via the format settings in the Core configuration. Contrary to the custom units
defined exclusively on a single unit-formatter instance, these custom units will be available in ALL unit-
formatted instances for the current locale (except if they also define a set of custom units).

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 875

Adding a unit with a key which is already available in the CLDR, will overwrite the CLDR unit. This way you can
overdefine single units, in case the CLDR provided formatting is not sufficient.

sap.ui.require(["sap/ui/core/format/NumberFormat"], function(NumberFormat) { sap.ui.getCore().getConfiguration().getFormatSettings().addCustomUnits({
 "cats": {
 "displayName": "kitties",
 "unitPattern-count-one": "{0} kitty",
 "unitPattern-count-other": "{0} kitties"
 },
 "dogs": {
 "displayName": "puppies",
 "unitPattern-count-one": "{0} puppy",
 "unitPattern-count-other": "{0} puppies"
 },
 "power-horsepower": { // overwrite of an existing CLDR unit
 "displayName": "Horsepower",
 "unitPattern-count-one": "{0} AmazingHorse", // singular form
 "unitPattern-count-other": "{0} AmazingHorses" // plural form
 }
 });

 var oUnitFormat = NumberFormat.getUnitInstance({decimals:2, style:"long"});

 // formatting a custom unit
 console.log(oUnitFormat.format(12, "cats")); // 12,00 kitties

 // formatting and existing CLDR unit
 console.log(oUnitFormat.format(5, "speed-meter-per-second")); // 5,00 m/s

 // formatting and existing CLDR unit
 console.log(oUnitFormat.format(12, "power-horsepower")); // 12,00
AmazingHorses });

Additionally, you can now define unit mappings, in order to use aliases for some units. A typical use-case is to
map from an ISO unit code to a CLDR key. Of course you can also map to custom units as shown below.

sap.ui.getCore().getConfiguration().getFormatSettings().addUnitMappings({ "kitties": "cats", // maps to a custom defined unit
 "mySpeedAlias": "speed-kilometer-per-hour" // maps to an existing the CLDR
unit });

Additional Format Options
When using either instance, exclusive or globally configured custom units, you can also add two additional
format options (decimals and precision) to the custom unit's definition block. In the following examples the
decimals option is set.

 Example
Globally configured custom units:

sap.ui.require(["sap/ui/core/format/NumberFormat"], function(NumberFormat) { // define a new unit called Lux
 sap.ui.getCore().getConfiguration().getFormatSettings().addCustomUnits({
 "lux": {
 "displayName": "Lux",
 "unitPattern-count-one": "{0} lx",
 "unitPattern-count-other": "{0} lx",

876 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 "decimals": 2
 }
 });

 var oUnitFormat = NumberFormat.getUnitInstance({style:"long"});

 console.log(oUnitFormat.format(2.4, "lux")); // 2,40 lux (notice the
padded 0 after the 4, this is due to the decimals option) });

 Example
Instance exclusive custom unit definition:

 sap.ui.require(["sap/ui/core/format/NumberFormat"], function(NumberFormat) {
 // define a new unit called Lux
 var oFormat = sap.ui.core.format.NumberFormat.getUnitInstance({
 customUnits: {
 "lux": {
 "displayName": "Lux",
 "unitPattern-count-one": "{0} lx",
 "unitPattern-count-other": "{0} lx",
 "decimals": 2
 }
 }
 });

 var oUnitFormat = NumberFormat.getUnitInstance({style:"long"});

 console.log(oUnitFormat.format(2.4, "lux")); // 2,40 lux (notice the
padded 0 after the 4, this is due to the decimals option) });

Databinding: New Unit Type

Besides the NumberFormat instances, you now can also include the new Unit type in your application. Simply
define it as the type for a property binding, and most of the formatting and parsing effort will be handled for you
out of the box.

To demonstrate this, we can consider an example with electric meters. Typically they all measure the flow of
energy in kilowatt hours (kWh). Yet some meters are more precise than others, some measure up to a few
hundred wattseconds, others just cap it at full kilowatt hours. To simplify it for our example: the number of
decimals might differ depending on the type of electric meter.

 // defining a new custom Type as a subclass of the sap.ui.model.type.Unit type
sap.ui.require(["sap/ui/model/type/Unit", "sap/ui/core/format/NumberFormat"],
function(UnitType, NumberFormat) {

 UnitType.extend("sap.ui.core.samples.MeterType", {
 constructor: function(oFormatOptions, oConstraints){
 // define the dynamic format options as the third argument
 // ‘aDynamicFormatOptionNames’
 UnitType.apply(this, [oFormatOptions, oConstraints,
["decimals"]]);
 }
 }); });

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 877

In the example we defined a new MeterType to combine not only a number value and a unit, but the already
mentioned optional dynamic format options in one single typed PropertyBinding.

<-- XML View snippet --> <t:Table rows=’energyModel>/meters’>
 ... <!-- here is more Table definition stuff, we cut this for simplicity -->

 <!-- the third part of the binding is the number of decimals for this meter
instance -->
 <m:Label text="{parts:['energyModel>value', 'energyModel>unit',
'energyModel>decimals'],type: 'sap.ui.core.samples.MeterType'}"/>

 ... </t:Table>

With the new bindable dynamic format options of Unit type, you can pass the relevant meter formatting
information in a generalized way through the cell’s bindings.

The third argument of the base Unit type constructor is a list of dynamic format options. In our example, the
binding context itself contains the information on how many-decimals should be used. Still, these dynamic
format options can be bound to any value from any model.

 Note
If you use a combination of custom units on the Configuration and the Unit type, the format options from
the type have priority.

So if you define a decimals value for a custom unit in the Configuration, the bound values from the Unit
type instance will still be taken for the formatting.

Related Information

API Reference: sap.ui.core.format.NumberFormat

Currency Formatting

Data formatting is one of the key features in SAPUI5 and enables applications to display data according to the
user locale. For this, SAPUI5 uses the Common Locale Data Repository (CLDR), a third-party library that
provides locale-specific patterns. SAPUI5 uses these patterns to adapt to the conventions of different
languages.

One use case for data formatting is the ability to format and parse numbers including currency information. For
this specific use case, the CLDR provides patterns with preconfigured currency information such as the
number of decimals for a set of different currencies. It is also possible to define custom currencies by adding
new custom currencies or reconfiguring existing currencies.

878 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.format.NumberFormat.html

Available Functions for Currency Formatting

Use the NumberFormat.getCurrencyInstance() factory function for creating a currency format instance.
On this instance, you can call the format and parse functions.

Creating a Currency Format Instance
The sap.ui.core.format.NumberFormat.getCurrencyInstance() function accepts two arguments:

● The first argument, oFormatOptions, is a set of format options that determines the output formatting.
The format option 'decimals', for example, defines the number of decimal digits of the formatted value.
For a full list of format options, see NumberFormat.

● The second argument, oLocale, defines the locale.

The following example shows how you create a simple currency formatter instance:

// create a simple currency formatting instance, without any additional options sap.ui.require(["sap/ui/core/format/NumberFormat"], function(NumberFormat) {
 var oCurrencyFormat = NumberFormat.getCurrencyInstance(); });

 Note
All code examples are based on locale English. If no locale is defined explicitly on the currency formatter
instance, the locale setting of the configuration is used.

For more information, see getCurrencyInstance.

format Function

The currency formatter instance allows you to combine a number value with a localized currency string.

// "NumberFormat" required from module "sap/ui/core/format/NumberFormat" var oCurrencyFormat = NumberFormat.getCurrencyInstance(); oCurrencyFormat.format(12345.678, "EUR"); // output: EUR 12,345.68

For more information, see format

parse Function

The 'parse' function turns a string containing a number and a currency code (EUR, USD) or symbol (€, $)
back into its raw parts: the number value and the currency code. The results are returned in an array.

// "NumberFormat" required from module "sap/ui/core/format/NumberFormat" var oCurrencyFormat = NumberFormat.getCurrencyInstance();
oCurrencyFormat.parse("EUR 12,345.678"); // output: [12345.678, "EUR"]

For more information, see parse

Formatting Options for Currency Formatting
The following formatting options for currency formatting are available:

● currencyCode defines whether the code or the symbol is used when showMeasure is set to true.
● trailingCurrencyCode defines whether the currency codes are always shown after the amount,

independent of the locale.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 879

https://sapui5.hana.ondemand.com/#/api/sap.ui.core.format.NumberFormat
https://sapui5.hana.ondemand.com/#/api/sap.ui.core.format.NumberFormat/methods/sap.ui.core.format.NumberFormat.getCurrencyInstance
https://sapui5.hana.ondemand.com/#/api/sap.ui.core.format.NumberFormat/methods/format
https://sapui5.hana.ondemand.com/#/api/sap.ui.core.format.NumberFormat/methods/parse

● currencyContext defines the pattern that is used for formatting a currency number. It can be set to
standard (default) or accounting.

Let's try out these format options and create a currency formatter that is able to format currency values with
symbols:

// "NumberFormat" required from module "sap/ui/core/format/NumberFormat" var oCurrencyFormat = NumberFormat.getCurrencyInstance({
 currencyCode: false
});
oCurrencyFormat.format(1234.567, "USD"); // returns $1,234.57
oCurrencyFormat.format(1234.567, "JPY"); // returns ¥1,235
oCurrencyFormat.parse("$1,234.57"); // returns [1234.57, "USD"] oCurrencyFormat.parse("¥1,235"); // returns [1235, "JPY"]

Custom Currencies

As mentioned above, the Common Locale Data Repository (CLDR) provides patterns with preconfigured
currency information according to the locale. It is possible, however, to add new custom currencies, or to
reconfigure existing currencies. These custom currencies can be configured on currency format instances, or
globally in the core configuration.

Custom Currencies Configuration on Currency Format Instances

The currency NumberFormat instance allows you to specify custom currencies which can be used for
formatting and parsing. All you have to do is to add your custom currencies as an additional format option in
the sap.ui.core.format.NumberFormat.getCurrencyInstance() factory.

The following example shows how this is done for a specific instance:

// "NumberFormat" required from module "sap/ui/core/format/NumberFormat" var oCurrencyFormat = NumberFormat.getCurrencyInstance({
 customCurrencies: {
 "Bitcoin": {
 decimals: 5
 }
 }
});
oCurrencyFormat.format(10.1234567, "Bitcoin"); // 10,12346 Bitcoin oCurrencyFormat.parse("12 Bitcoin"); // [12, "Bitcoin"];

If you want to define a custom currency that falls back on the currency symbol of an already existing currency,
you can configure a respective currency code (also called ISO code):

// "NumberFormat" required from module "sap/ui/core/format/NumberFormat" var oCurrencyFormat = NumberFormat.getCurrencyInstance({
 currencyCode: false,
 customCurrencies: {
 "MyEuro": {
 decimals: 5,
 isoCode: "EUR"
 }
 }
}); oCurrencyFormat.format(10.1234567, "MyEuro"); // €10.12346

880 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

The custom currencies defined on the NumberFormat instance are exclusive to this instance, meaning that no
other instances are affected. In addition, once you define custom currencies for an instance, only those
currencies are formatted and parsed by that instance.

This also means that custom currencies defined via the configuration are not taken into account for this
specific instance. This is done to circumvent ambiguities and conflicts with the CLDR currencies. So, in the
above example, only Bitcoin can be formatted, but not EUR.

In the following example, the currency instance from above is used. Formatting and parsing the currency
'Bitcoin' works fine, but the instance does not know about the currency 'EUR' because of the exclusivity of the
custom currencies:

// formatting/parsing Bitcoin is fine oCurrencyFormat.format(9001.987654, "Bitcoin"); // 9.001,98765 Bitcoin
oCurrencyFormat.parse("12 Bitcoin"); // [12, "Bitcoin"];
// formatting/parsing EUR does not work oCurrencyFormat.format(1.21, "EUR"); // "": results in an empty string, as the
currency is unknown

If you need both, CLDR predefined currencies and custom currencies, you create two separate number format
instances, or use the second approach to define custom currencies as described in the next section.

Global Custom Currencies Configuration in Core Configuration
You can also add custom currencies via the formatting settings in the core configuration. Contrary to the
custom currencies defined exclusively on a single currency-formatter instance, these custom currencies are
available in all currency formatter instances for the current locale, except for if they also define a set of custom
currencies as described in the previous section.

Adding a currency with a key which is already available in the CLDR will overwrite the CLDR currency. By this,
you can overdefine single currencies, in case the CLDR provided formatting is not sufficient.

// "NumberFormat" required from module "sap/ui/core/format/NumberFormat" sap.ui.getCore().getConfiguration().getFormatSettings().addCustomCurrencies({
 "MyCoin": {
 "symbol": "MC"
 },
 "Bitcoin": {
 "digits": 3
 },
 "USD": { // overwrite of an existing CLDR currency
 "digits": 5
 }
});
var oCurrencyFormat = NumberFormat.getCurrencyInstance();
// formatting a custom currency
oCurrencyFormat.format(12, "MyCoin"); // 12,00 MyCoin
// formatting an existing CLDR currency
oCurrencyFormat.format(5, "EUR"); // 5,00 EUR
// formatting an existing CLDR currency oCurrencyFormat.format(12, "USD"); // 12,00000 USD // Default decimal setting
would have been two

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 881

Models

A model in the Model View Controller concept holds the data and provides methods to retrieve the data from
the database and to set and update data.

● JSON Model [page 991]
● XML Model [page 993]
● Resource Model [page 995]
● OData V2 Model [page 883]
● OData V4 Model [page 918]

SAPUI5 provides the following predefined models:

● OData model: Enables binding of controls to data from OData services. The OData model supports two-
way, one-way and one-time binding modes. However, two-way binding is currently only supported for
properties, and not for aggregations.

 Note
The OData model currently supports the following OData versions:

○ OData V2
○ OData V4 (limited feature scope)

● JSON model: Can be used to bind controls to JavaScript object data, which is usually serialized in the
JSON format. The JSON model is a client-side model and, therefore, intended for small data sets, which

882 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

are completely available on the client. The JSON model supports two-way (default), one-way and one-time
binding modes.

● XML model: A client-side model intended for small data sets, which are completely available on the client.
The XML model does not contain mechanisms for server-based paging or loading of deltas. The XML
model supports two-way (default), one-way and one-time binding modes.

● Resource model: Designed to handle data in resource bundles, mainly to provide texts in different
languages. The resource model only supports one-time binding mode because it deals with static texts
only.

The JSON model, XML model, and the resource model are client-side models, meaning that the model data is
loaded completely and is available on the client. Operations such as sorting and filtering are executed on the
client without further server requests.

The OData (V2 or V4) model is a server-side model and only loads the data requested by the user interface
from the server.

You can not only define one model for your applications, but define different areas in your application with
different models and assign single controls to a model. You can also define nested models, for example, a JSON
model defined for the application and an OData model for a table control contained in the application.

A Web application should support several data sources, such as JSON, XML, Atom, or OData. However, the way
in which data binding is defined and implemented within the UI controls should be independent of the
respective data source. It is also possible to create a custom model implementation for data sources that are
not yet covered by the framework or are domain-specific.

Related Information

API Reference: sap.ui.model

OData V2 Model

The OData V2 Model enables binding of controls to data from OData services.

The OData model is a server-side model, meaning that the data set is only available on the server and the client
only knows the currently visible (requested) data. Operations, such as sorting and filtering, are done on the
server. The client sends a request to the server and shows the returned data.

 Note
Requests to the back end are triggered by list bindings (ODataListBinding), context bindings
(ODataContextBinding), and CRUD functions provided by the ODataModel. Property bindings
(ODataPropertyBindings) do not trigger requests.

The OData model currently supports OData version 2.0.

The following two versions of the OData model are implemented: sap.ui.model.odata.ODataModel and
sap.ui.model.odata.v2.ODataModel. The v2.ODataModel has an improved feature set and new features
will only be implemented in this model. sap.ui.model.odata.ODataModel is deprecated. We recommend
to only use v2.ODataModel.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 883

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.html

The following table shows the supported features for both OData models:

Feature

sap.ui.model.odata.v2.ODat
aModel

sap.ui.model.odata.ODataMo
del

OData version support 2.0 2.0

JSON format Yes (default) Yes

XML format Yes Yes (default)

Support of two-way binding mode Yes; for property changes only, not yet
implemented for aggregations

Experimental; only properties of one
entity can be changed at the same time

Default binding mode One-way binding One-way binding

Client-side sorting and filtering Yes

For more information, see API
Reference:
sap.ui.model.odata.OperationMode.

No

$batch Yes; all requests can be batched Only manual batch requests are
possible

Data cache in model All data is cached in the model Manually requested data is not cached

Automatic refresh Yes (default) Yes

Message handling Yes, see Error, Warning, and Info
Messages [page 1063]

No

 Note
Be aware of the Same-Origin-Policy security concept which prevents access to back ends on different
domains or sites.

The requests to the service to fetch data are made automatically based on the data bindings that are defined
for the controls.

Related Information

API Reference: sap.ui.model.odata.v2.ODataModel

884 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.OperationMode.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.OperationMode.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.OperationMode.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v2.ODataModel.html

Creating the Model Instance

One OData model instance can only cover one OData service. For accessing multiple services, you have to
create multiple OData model instances.

The only mandatory parameter when creating an ODataModel instance is the service URL. It can be passed as
first parameter or within the mParameters map to the constructor.

// "ODataModel" required from module "sap/ui/model/odata/v2/ODataModel" var oModel = new ODataModel("http://services.odata.org/Northwind/
Northwind.svc/"); var oModel = new ODataModel({serviceUrl: "http://services.odata.org/Northwind/
Northwind.svc"});

When creating an ODataModel instance, a request is sent to retrieve the service metadata:

http://services.odata.org/Northwind/Northwind.svc/$metadata

Service Metadata

The service metadata is cached per service URL. Multiple OData models that are using the same service can
share this metadata.

Only the first model instance triggers a $metadata request. A JSON representation of the service metadata
can be accessed by calling the getServiceMetadata() method on an Odata model instance.

 var oMetadata = oModel.getServiceMetadata();

 Note
In the v2.ODataModel, the service metadata is loaded asynchronously. It is not possible to load it
synchronously. To get notified when the loading is finished, attach the metadataLoaded event.

Adding Additional URL Parameters

For OData services, you can use URL parameters for configuration. SAPUI5 sets most URL parameters
automatically, according to the respective binding.

For authentication tokens or general configuration options, for example, you can add additional arguments to
the request URL. Some of the parameters must not be included in every request, but should only be added to
specific list or context bindings, such as $expand or $select. For this, the binding methods provide the option
to pass a map of parameters, which are then included in all requests for this specific binding. The OData model
currently only supports $expand and $select.

There are different ways to add URL parameters to the requests:

● Appending parameters to the service URL:

// "ODataModel" required from module "sap/ui/model/odata/v2/ODataModel"

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 885

 var oModel = new ODataModel("http://myserver/MyService.svc/?
myParam=value&myParam2=value");

These parameters will be included in every request sent to the OData server.
● Passing URL parameters with the mparameters map

You can pass URL parameters that are used for $metadata requests only (metadataUrlParams) as well
as URL parameters that are included only in data requests (serviceUrlParams). The parameters are
passed as maps:

// "ODataModel" required from module "sap/ui/model/odata/v2/ODataModel" var oModel = new ODataModel({
 serviceUrl: "http://services.odata.org/Northwind/Northwind.svc",
 serviceUrlParams: {
 myParam: "value1",
 myParam2: "value2"
 },
 metadataUrlParams: {
 myParam: "value1",
 myParam2: "value2"
 } });

Custom HTTP Headers

You can add custom headers which are sent with each request.

To do this, provide a map of headers to the OData model constructor or use the setHeaders() function:

● Passing custom headers with the mparameters map

var oModel = new sap.ui.model.odata.v2.ODataModel({ headers: {
 "myHeader1" : "value1",
 "myHeader2" : "value2"
 } });

● Setting custom headers globally on a model instance

oModel.setHeaders({"myHeader1" : "value1", "myHeader2" : "value2"});

 Note
When you add custom headers, all previous custom headers are removed if not specified again in the
headers map. Some headers are private, that is, they are set by the OData model internally and cannot
be set:

"accept" "accept-language"
"maxdataserviceversion"
"dataserviceversion" "x-csrf-token"

For additional methods and parameters, see the API Reference: sap.ui.model.odata.v2.ODataModel.

886 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v2.ODataModel.html

Addressing Entities: Binding Path Syntax

The binding path syntax for OData models matches the URL path relative to the service URL used in OData to
access specific entities or entity sets.

You access the data provided by the OData model according to the structure of the OData service as defined in
the metadata of a service. URL parameters, such as filters, cannot be added to a binding path. A binding path
can be absolute or relative. Absolute binding paths are resolved immediately. A relative path can only be
resolved if it can be automatically converted into an absolute binding path. If, for example, a property is bound
to a relative path and the parent control is then bound to an absolute path, the relative property path can be
resolved to an absolute path.

The following binding samples within the ODataModel are taken from the Northwind demo service.

Absolute binding path (starting with a slash ('/')):

"/Customers" "/Customers('ALFKI')/Address"

Relative binding paths that can be resolved with a context (for example "/Customer('ALFKI')"):

"CompanyName" "Address" "Orders"

Resolved to:

"/Customer('ALFKI')/CompanyName" "/Customer('ALFKI')/Address" "/Customer('ALFKI')/Orders"

Navigation properties, used to identify a single entity or a collection of entities:

"/Customers('ALFKI')/Orders" "/Products(1)/Supplier"

For more information on addressing OData entries, see the URI conventions documentation on http://
www.odata.org .

Accessing Data from an OData Model

The data requested from an OData service is cached in the OData model.

It can be accessed by the getData() and the getProperty() method, which returns the entity object or
value. These methods do not request data from the backend, so you can only access already requested and
cached entities:

oModel.getData("/Customer('ALFKI')"); oModel.getProperty("/Customer('ALFKI')/Address");

You can only access single entities and properties with these methods. To access entity sets, you can get the
binding contexts of all read entities via a list binding. The values returned by these methods are copies of the
data in the model, not references as in the JSONModel.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 887

http://help.sap.com/disclaimer?site=http%3A%2F%2Fwww.odata.org
http://help.sap.com/disclaimer?site=http%3A%2F%2Fwww.odata.org

 Caution
Do not modify objects or values inside the model manually; always use the provided API to change data in
the model, or use two-way binding (see Two-way Binding section below).

 Note
The ODataModel uses the $skip and $top URL parameters for paging. It is possible that data is modified
between two paging requests, for eample, entities can be added orremoved and this may lead to data
inconsistencies.

Creating Entities
To create entities for a specified entity set, call the createEntry() method. The method returns a context
object that points to the newly created entity.

The application can bind against these objects and change the data by means of two-way binding. To store the
entities in the OData backend, the application calls submitChanges(). To reset the changes, the application
can call the deleteCreatedEntry() method.

The application can choose the properties that shall be included in the created object and can pass its own
default values for these properties. Per default, all property values are empty, that is, undefined.

 Note
The entity set and the passed properties must exist in the metadata definition of the OData service.

// create an entry of the Products collection with the specified properties
and values var oContext = oModel.createEntry("/Products", { properties: { ID:99,
Name:"Product", Description:"new Product", ReleaseDate:new Date(),
Price:"10.1", Rating:1} });
// binding against this entity
oForm.setBindingContext(oContext);
// submit the changes (creates entity at the backend)
oModel.submitChanges({success: mySuccessHandler, error: myErrorHandler});
// delete the created entity
oModel.deleteCreatedEntry(oContext);

If created entities are submitted, the context is updated with the path returned from the creation request
and the new data is imported into the model. So the context is still valid and points to the new created
entity.

CRUD Operations
The OData model allows manual CRUD (create, read, update, delete) operations on the OData service. If a
manual operation returns data, the data is imported into the data cache of the OData model. All operations
require a mandatory sPath parameter as well as an optional mParameters map.

The create and update methods also require a mandatory oData parameter for passing the created or
changed data object. Each operation returns an object containing a function abort, which can be used to abort

888 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

the request. If the request is aborted, the error handler is called. This ensures that the success or the error
handler is executed for every request. It is also possible to pass additional header data, URL parameters, or an
eTag.

● Creating entities
The create function triggers a POST request to an OData service which was specified at creation of the
OData model. The application has to specify the entity set, in which the new entity and the entity data is to
be created.

var oData = { ProductId: 999,
 ProductName: "myProduct"
} oModel.create("/Products", oData, {success: mySuccessHandler, error:
myErrorHandler});

● Reading entities
The read function triggeres a GET request to a specified path. The path is retrieved from the OData service
which was specified at creation of the OData model. The retrieved data is returned in the success callback
handler function.

oModel.read("/Products(999)", {success: mySuccessHandler, error:
myErrorHandler});

● Updating entities
The update function triggers a PUT/MERGE request to an OData service which was specified at creation of
the OData model. After a successful request to update the bindings in the model, the refresh is triggered
automatically.

 var oData = {
 ProductId: 999,
 ProductName: "myProductUpdated"
} oModel.update("/Products(999)", oData, {success: mySuccessHandler, error:
myErrorHandler});

● Deleting entities
The remove function triggers a DELETE request to an OData service which was specified at creation of the
OData model. The application has to specify the path to the entry which should be deleted.

oModel.remove("/Products(999)", {success: mySuccessHandler, error:
myErrorHandler});

● Refresh after change
The model provides a mechanism to automatically refresh bindings that depend on changed entities. If you
carry out a create, update or remove function, the model identifies the bindings and triggers a refresh
for these bindings. If the model runs in batch mode, the refresh requests are bundled together with the
changes in the same batch request. You can disable the auto refresh by calling
setRefreshAfterChange(false). If the auto refresh is disabled, the application has to take care of
refreshing the respective bindings.

oModel.setRefreshAfterChange(false);

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 889

Concurrency Control and ETags

OData uses HTTP ETags for optimistic concurrency control. The service must be configured to provide them.
The ETag can be passed within the parameters map for every CRUD request. If no ETag is passed, the ETag of
the cached entity is used, if it is loaded already.

XSRF Token

To address cross-site request forgery, an OData service may require XSRF tokens for change requests by the
client application. In this case, the client has to fetch a token from the server and send it with each change
request to the server. The OData model fetches the XSRF token when reading the metadata and then
automatically sends it with each write request header. If the token is no longer valid, a new token can be
fetched by calling the refreshSecurityToken function on the OData model. The token is fetched with a
request to the service root URL, which usually responds with the service document. To get a valid token, make
sure that the response is not cached.

Refreshing the Model

The refresh function refreshes all data within an OData model. Each binding reloads its data from the server.
For list or context bindings, a new request to the back end is triggered. If the XSRF token is no longer valid, it
has to be fetched again with a read request to the service document. Data that has been imported via manual
CRUD requests is not reloaded automatically.

Batch Processing

The v2.ODataModel supports batch processing ($batch) in two different ways:

● Default: All requests in a thread are collected and bundled in batch requests, meaning that request is sent
in a timeout immediately after the current call stack is finished. This includes all manual CRUD requests as
well as requests triggered by a binding.

● Deferred: The requests are stored and can be submitted with a manual submitChanges() call by the
application. This also includes all manual CRUD requests as well as requests triggered by a binding.

The model cannot decide how to bundle the requests. For this, SAPUI5 provides the groupId. For each binding
and each manual request, a groupId can be specified. All requests belonging to the same group are bundled
into one batch request. Request without a groupId are bundled in the default batch group. You can use a
changeSetId for changes. The same principle applies: Each change belonging to the same changeSetId is
bundled into one changeSet in the batch request. Per default, all changes have their own changeSet.

You can use the setDeferredGroups() method to set a subset of previously defined groups to deferred.

890 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v2.ODataModel

 Note
The same is also valid for setChangeGroups() and getChangeGroups().

All requests belonging to the group are then stored in a request queue. The deferred batch group must then be
submitted manually by means of the submitChanges() method. If you do not specify a batch group ID when
calling submitChanges, all deferred batch groups are submitted.

 Example
Set a subset of groups to deferred:

// "ODataModel" required from module "sap/ui/model/odata/v2/ODataModel" var oModel = new ODataModel(myServiceUrl);

Pass the groupId to a binding:

{path:"/myEntities", parameters: {groupId: "myId"}}

Set the groupId to deferred:

1. Get the list of deferred groups:

var aDeferredGroups = oModel.getDeferredGroups();

2. Append your groupId to the list:

aDeferredGroups=aDeferredGroups.concat(["myId"]);

3. Set all groups to deferred:

oModel.setDeferredGroups(aDeferredGroups);

Submit all deferred groups:

oModel.submitChanges({success: mySuccessHandler, error: myErrorHandler});

Two-Way Binding

The v2.ODataModel enables two-way binding. Per default, all changes are collected in a batch group called
"changes" which is set to deferred.

To submit the changes, use submitChanges(). The data changes are made on a data copy. This enables you
to reset the changes without sending a new request to the backend to fetch the old data again. With
resetChanges() you can reset all changes. You can also reset only specific entities by calling resetChanges
with an array of entity paths.

 Note
Filtering and sorting is not possible if two-way changes are present as this would cause inconsistent data
on the UI. Therefore, before you carry out sorting or filtering, you have to submit or reset the changes.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 891

You can collect the changes for different entities or types in different batch groups. To configure this, use the
setChangeGroups() method of the model:

// "ODataModel" required from module "sap/ui/model/odata/v2/ODataModel" var oModel = new ODataModel(myServiceUrl);
oModel.setDeferredGroups(["myGroupId", "myGroupId2"]);
oModel.setChangeGroups({
 "EntityTypeName": {
 groupId: "myGroupId",
 [changeSetId: "ID",]
 [single: true/false,]
 }
}); oModel.submitChanges({groupId: "myGroupId", success: mySuccessHandler, error:
myErrorHandler});

To collect the changes for all entity types in the same batch group, use '*’ as EntityType. If the change is not
set to deferred, the changes are sent to the backend immediately. By setting the single parameter for
changeSet to true or false, you define if each change results in its own change set (true) or if all changes are
collected in one change set (false). The model only takes care of the changeSetId if single is set to false.

 Note
The first change of an entity defines the order in the change set.

Example

Reset changes:

// "ODataModel" required from module "sap/ui/model/odata/v2/ODataModel" var oModel = new ODataModel(myServiceUrl);
//do a change
oModel.setProperty("/myEntity(0)", oValue);
//reset the change oModel.resetChanges(["/myEntity(0)"]);

Binding-specific Parameters

The OData protocol specifies different URL parameters.

You can use these parameters in bindings in addition to the parameters described above:

● Expand parameter
The expand parameter allows the application to read associated entities with their navigation properties:

oControl.bindElement("/Category(1)", {expand: "Products"}); oTable.bindRows({
 path: "/Products",
 parameters: {expand: "Category"} });

In this example, all products of "Category(1)" are embedded inline in the server response and loaded in
one request. The category for all "Products" is embedded inline in the response for each product.

● Select parameter

892 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

The select parameter allows the application to define a subset of properties that is read when requesting
an entity.

oControl.bindElement("/Category(1)", {expand: "Products", select:
"Name,ID,Products"}); oTable.bindRows({
 path: "/Products",
 parameters: {select: "Name,Category"} });

In this example, the properties Name, ID and ofCategory(1) as well as all properties of the embedded
products are returned. The properties Name and Category are included for each product. The Category
property contains a link to the related category entry.

● Custom query options
You can use custom query options as input parameters for service operations. When creating the list
binding, specify these custom parameter as follows:

oTable.bindRows({ path: "/Products",
 parameters: {
 custom: {
 param1: "value1",
 param2: "value2"
 }
 },
 template: rowTemplate });

If you use bindElement, you can specify custom parameters as follows:

oTextField.bindElement("/GetProducts", { custom: {
 "price" : "500"
 } });

Optimizing Dependent Bindings

The ODataModel V2 supports a flag called "preliminaryContext". With this option set to true, the ODataModel
is able to bundle the OData calls for dependent bindings together into fewer $batch requests.

Introduction

Two bindings are considered "dependent" if one cannot be resolved without the other being resolved first, for
example a relative binding cannot be resolved without a resolved absolute binding.

If the preliminaryContext option is set to false, each binding will be resolved once its preceding binding
has been resolved or if it is an absolute binding itself.

The preliminaryContext option can also be activated/deactivated per binding instance. This overwrites the
default value set on the ODataModel instance.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 893

Settings and Usage

ODataModel v2
The constructor parameter is named preliminaryContext (type Boolean) and has the following properties:

● Default value is false.
● It is used by the ContextBinding as a default value for createPreliminaryContext if not given in the

constructor. For examples on its usage see "ContextBinding".
● It is used by the ContextBinding as a default value for usePreliminaryContext if not given in the

constructor. For examples on its usage see "ContextBinding"..

ODataListBinding v2
The constructor parameter is named usePreliminaryContext (type Boolean) and has the following
properties:

● Default value is false, as it is derived from the ODataModel's default.
● If set to true:

○ The ODataListBinding accepts preliminary contexts (for example. in a setContext() call).
○ The ODataListBinding fires a change event with ChangeReason.Context, if the binding is

updated and a preliminary context was set.

ODataContextBinding
The ODataContextBinding supports two different parameters:

● usePreliminaryContext (same as a ODataListBinding v2)
● createPreliminaryContext

○ If the binding cannot be resolved, it still creates a preliminary binding context, which can be used by
other subordinate dependent bindings, which have set the usePreliminaryContext option to true.

○ A change event with ChangeReason.Context is fired once the data is loaded for the currently
preliminary Context instance. Afterwards, the existing Context instance is not considered
"preliminary" anymore.

Relationship Between Binding and Model Settings

Default Behavior
To describe the preliminary context feature in more detail, we first have to look at the default Model/Binding
behavior. Let's look at the simple example in the following graphic.

894 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Figure 212: Simple Binding Example

Without using preliminary contexts, Binding 1 resolves only after Binding 0 is resolved.

For example, if Binding 1 is a relative ODataListBinding on a Table control, its OData request will only be
sent, once the data for the absolute Binding 0 is available, for example by using an Element binding on a
Panel control.

This leads to two subsequent OData requests, one for Binding 0 and afterwards one for Binding 1, as
shown in the following table:

Table 27: Simple Example: Binding Resolution

Request Number Content

1 GET Products(1)

2 GET Products(1)/Supplier

Now let's look at a more complex example.

Figure 213: Complex Binding Example

In this example we add another binding, which will be resolved once Binding 0 and Binding 1 are resolved.
This leads to the following three individual $batch requests:

Table 28: Complex Example: Binding Resolution

Request Number Content

1 GET Products(1)

2 GET Products(1)/Supplier

3 GET Suppliers(1)/Products

Optimized Behavior

Let's look at the same simple example but with some optimizations.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 895

Figure 214: Simple Binding Example - Optimized

Here Binding 1 uses the preliminary context created by Binding 0, and thus the request URL can directly
be resolved.

This now leads to only a single $batch request:

Table 29: Simple Example: Binding Resolution Optimized

Request Number Content

1 GET Products(1)

GET Products(1)/Supplier

In this example Binding 1 has set its usePreliminaryContext flag to true, and thus accepts preliminary
contexts to be set.

 Note
If either createPreliminaryContext or usePreliminaryContext is set to false, the default
behavior is active.

Now let's see how this works in the complex example.

Figure 215: Complex Binding Example - Optimized

In this example we added another binding to the scenario. Binding 2 is again a relative binding, which can
only resolve once Binding 1 is resolved. Binding 1 behaves just as before.

896 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

In this case the single, generated request looks like this:

Table 30: Complex Example: Binding Resolution Optimized

Request Number Content

1 GET Products(1)

GET Products(1)/Supplier

GET Products(1)/Supplier/Products

Results and Conclusion

Notice how the Products list of the Supplier is referenced through the entity Products(1).This is a result
of bundling all data requests into one single $batch request, without waiting for the Products(1) entity and
its associated Supplier entity to be loaded.

As opposed to the default behavior, we do not require to have the Products(1) and Supplier entities loaded
before sending the data request for the Supplier's Products.Supplier.So in this case we use a data path
based on Products(1) and not the ID of the Supplier. You can compare that to the default behavior of the
complex example described above.

 Example
What would happen if one binding in the above chain does not set the usePreliminaryContext or the
createPreliminaryContext option to true?

For example, if Binding 2 sets its usePreliminaryContext option to false, the resolution chain is
broken and we have a mixed scenario. Here one part is loaded optimized in one $batch, and the second
part is loaded in a separate $batch:

Table 31: Complex Example: Binding Resolution Optimized

Request Number Content

1 GET Products(1)

GET Products(1)/Supplier

2 GET Products(1)/Supplier/Products

 Note
With the $expand query option you can load all associated entities of another entity. In the previous
examples we requested the Product list of a certain Supplier via a separate request. When using a
$expand query instead, you could request the same information within one single request:

GET Products(1)?$expand=Supplier/Products

Even though you now also achieved to have less requests, using $expand has a couple of drawbacks. These
can be circumvented by using the preliminary context feature, which does not have these limitations.

In OData V2, with a $expand you cannot use additional filters and sorters for the expanded entries. In
addition, the $expand option always loads ALL associated entities, so paging with $skip or $top is also

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 897

not possible. Using the preliminary context feature, you get multiple sub-requests in a single $batch, yet
you can easily include additional filters and sorters on the related subordinate entries.

Function Import

The ODataModel supports the invoking of function imports or actions by the callFunction method.

oModel.callFunction("/GetProductsByRating",{method:"GET", urlParameters:
{"rating":3}, success:fnSuccess, error: fnError})

If the callFunction request is deferred, it can be submitted via the submitChangesmethod.

 Note
Only "IN" parameters of function imports are currently supported.

Binding of Function Import Parameters

OData Model V2 supports the binding against function import parameters. This is similar to the createEntry
method which supports binding against entity properties. The callFunction method returns a request
handle that has a promise. This promise is resolved when the context to which it is bound is created
successfully or is rejected if not:

var oHandle = oModel.callFunction("/GetProductsByRating", {urlParameters:
{rating:3}}); oHandle.contextCreated().then(function(oContext) {
 oView.setBindingContext(oContext); });

If the function import returns result data, then the result data can be accessed and bound against in the
$result property using the context:

<form:SimpleForm> <core:Title text="Parameters" />
 <Label text="Rating" />
 <Input value="{rating}" />
 <Button text="Submit" press=".submit" />
 <core:Title text="Result" />
 <List items="{$result}">
 <StandardListItem title="{Name}" />
 </List> </form:SimpleForm>

Language

SAPUI5 uses the concept of a "current language" (see Identifying the Language Code / Locale [page 1269]).
This language is automatically propagated to the OData service by the OData V2 model. For this reason,

898 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

applications must not hard code the language themselves, e.g. they must not specify the "sap-language"
URL parameter as a custom query option.

Meta Model for OData V2

The implementation sap.ui.model.odata.ODataMetaModel offers a unified access to both OData Version
2.0 metadata and Version 4.0 annotations.

It uses the existing sap.ui.model.odata.ODataMetadata as a foundation and merges the OData Version
4.0 annotations from the existing sap.ui.model.odata.ODataAnnotations directly into the
corresponding entity or property.

You can get an instance of sap.ui.model.odata.ODataMetaModel from an instance of
sap.ui.model.odata.v2.ODataModel, see XML Templating [page 1018].

Basic Structure

The basic structure of sap.ui.model.odata.ODataMetadata is shown in the following code snippet. It
shows you how the most important elements of the entity model are nested. Each of these elements (except
association set end) can have extensions, that is, XML attribute values from some namespace. The code
snippets below show how these extensions are stored and processed.

"dataServices": { "schema": [{
 "association": [{
 "end": []
 }],
 "complexType": [{
 "property": []
 }],
 "entityContainer": [{
 "associationSet": [{
 "end": []
 }],
 "entitySet": [],
 "functionImport": [{
 "parameter": []
 }]
 }],
 "entityType": [{
 "property": [],
 "navigationProperty": []
 }]
 }]
 } }

The following code snippet gives a closer look and has more properties:

{ "version": "1.0",
 "dataServices": {
 "dataServiceVersion": "2.0",
 "schema": [{

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 899

 "namespace": "GWSAMPLE_BASIC",
 "entityType": [{
 "name": "BusinessPartner",
 "key": {
 "propertyRef": [{
 "name": "BusinessPartnerID"
 }]
 },
 "property": [{
 "name": "BusinessPartnerID",
 "type": "Edm.String",
 "nullable": "false",
 "maxLength": "10"
 }],
 "navigationProperty": [{
 "name": "ToSalesOrders",
 "relationship": "GWSAMPLE_BASIC.Assoc_BusinessPartner_SalesOrders",
 "fromRole": "FromRole_Assoc_BusinessPartner_SalesOrders",
 "toRole": "ToRole_Assoc_BusinessPartner_SalesOrders"
 }]
 }],
 "complexType": [{
 "name": "CT_Address",
 "property": [{
 "name": "City",
 "type": "Edm.String",
 "maxLength": "40"
 }]
 }],
 "association": [{
 "name": "Assoc_BusinessPartner_SalesOrders",
 "end": [{
 "type": "GWSAMPLE_BASIC.BusinessPartner",
 "multiplicity": "1",
 "role": "FromRole_Assoc_BusinessPartner_SalesOrders"
 }, {
 "type": "GWSAMPLE_BASIC.SalesOrder",
 "multiplicity": "*",
 "role": "ToRole_Assoc_BusinessPartner_SalesOrders"
 }],
 "referentialConstraint": {
 "principal": {
 "role": "FromRole_Assoc_BusinessPartner_SalesOrders",
 "propertyRef": [{
 "name": "BusinessPartnerID"
 }]
 },
 "dependent": {
 "role": "ToRole_Assoc_BusinessPartner_SalesOrders",
 "propertyRef": [{
 "name": "CustomerID"
 }]
 }
 }
 }],
 "entityContainer": [{
 "name": "GWSAMPLE_BASIC_Entities",
 "isDefaultEntityContainer": "true",
 "entitySet": [{
 "name": "BusinessPartnerSet",
 "entityType": "GWSAMPLE_BASIC.BusinessPartner"
 }],
 "associationSet": [{
 "name": "Assoc_BusinessPartner_SalesOrders_AssocS",
 "association": "GWSAMPLE_BASIC.Assoc_BusinessPartner_SalesOrders",
 "end": [{
 "entitySet": "BusinessPartnerSet",
 "role": "FromRole_Assoc_BusinessPartner_SalesOrders"

900 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 }, {
 "entitySet": "SalesOrderSet",
 "role": "ToRole_Assoc_BusinessPartner_SalesOrders"
 }]
 }],
 "functionImport": [{
 "name": "SalesOrder_Confirm",
 "returnType": "GWSAMPLE_BASIC.SalesOrder",
 "entitySet": "SalesOrderSet",
 "httpMethod": "POST",
 "parameter": [{
 "name": "SalesOrderID",
 "type": "Edm.String",
 "mode": "In",
 "maxLength": "10"
 }]
 }]
 }]
 }] }}

Accessing Objects and Properties

The objects in the OData meta model are arranged in arrays. /dataServices/schema, for example, is an
array of schemas where each schema has an entityType property with an array of entity types, and so on.
So, /dataServices/schema/0/entityType/16 can be the path to the entity type with name "Order" in the
schema with namespace "MySchema".

However, these paths are not stable: If an entity type with lower index is removed from the schema, the path to
"Order" changes to /dataServices/schema/0/entityType/15. To avoid problems with changing indexes,
getObject and getProperty support XPath-like queries for the indexes. Each index can be replaced by a
query in square brackets. You can, for example, address the schema by using the path /dataServices/
schema/[${namespace}==='MySchema'] or address the entity by using the path /dataServices/
schema/[${namespace}==='MySchema']/entityType/[${name}==='Order'].

The syntax inside the square brackets corresponds to the expression binding syntax. The query is executed for
each object in the array until the result is true (truthy) for the first time. This object is then chosen. To embed
such a path into an expression binding, use a complex binding syntax: ${path:'...'}. Example: {:= $
{path:'target>extensions/[${name} === \'semantics\']/value'} === 'email'}

Each of these queries is self-contained. The query can refer to properties of the current candidate via a relative
path, for example ${name}, but it cannot refer to variables such as ${meta>} that are available in XML
templating at that point.

Extensions

extensions array and transformed from objects into simple properties with an sap: prefix added to their
name, see line number 8 in the following code snippet.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 901

 Note
As this happens in addition, the following example shows both representations. By this, the respective
annotations can be addressed via a simple relative path instead of searching an array.

1 { 2 "name": "BusinessPartnerID",
3 "extensions": [{
4 "name": "label",
5 "value": "Bus. Part. ID",
6 "namespace": "http://www.sap.com/Protocols/SAPData"
7 }],
8 "sap:label": "Bus. Part. ID" 9 }

OData v4 Annotations

Each element of the entity model (except association set end) can be annotated. These annotations from the
existing sap.ui.model.odata.ODataAnnotations are merged directly into the corresponding element.
The following code snippet shows how the structure from the existing
sap.ui.model.odata.ODataMetadata, as explained above and including extensions and constraints such
as nullable or maxLength, is fleshed out with lifted v2 annotations and inlined v4 annotations, such as
Org.OData.Measures.V1.Unit or com.sap.vocabularies.UI.v1.Identification. If you want to
navigate the structure, for example for XML templating, it is important to understand this structure.

ODataMetaModel JSON Format:

 "dataServices" : {
 "schema" : [{
 "namespace" : "GWSAMPLE_BASIC",
 "entityType" : [{
 "name" : "Product",
 "property" : [{
 "name" : "ProductID",
 "type" : "Edm.String",
 "nullable" : "false",
 "maxLength" : "10"
 }, {
 "name" : "SupplierName",
 "type" : "Edm.String",
 "maxLength" : "80",
 "extensions" : [{
 "name" : "label",
 "value" : "Company Name",
 "namespace" : "http://www.sap.com/Protocols/SAPData"
 }, {
 "name" : "creatable",
 "value" : "false",
 "namespace" : "http://www.sap.com/Protocols/SAPData"
 }, {
 "name" : "updatable",
 "value" : "false",
 "namespace" : "http://www.sap.com/Protocols/SAPData"
 }],
 "sap:label" : "Company Name",
 "sap:creatable" : "false",
 "sap:updatable" : "false"
 "Org.OData.Core.V1.Computed" : {

902 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 "Bool" : "true"
 }
 }, {
 "name" : "WeightMeasure",
 "type" : "Edm.Decimal",
 "precision" : "13",
 "scale" : "3",
 "Org.OData.Measures.V1.Unit" : {
 "Path" : "WeightUnit"
 }
 }, {
 "name" : "WeightUnit",
 "type" : "Edm.String",
 "maxLength" : "3"
 }],
 "com.sap.vocabularies.UI.v1.DataPoint" : {
 "Value" : {
 "Path" : "WeightMeasure",
 "EdmType" : "Edm.Decimal"
 }
 },
 "com.sap.vocabularies.UI.v1.Identification" : [{
 "Value" : {"Path" : "ProductID"}
 }, {
 "Value" : {"Path" : "SupplierName"}
 }, {
 "Value" : {"Path" : "WeightMeasure"}
 }]
 }]
 }] }

Enhancement of the OData Meta Model

In addition to the easy access to the SAP-specific OData annotations, such as sap:label, corresponding
vocabulary-based annotations are mixed in if they are not yet defined in the OData Version 4.0 annotations of
the existing sap.ui.model.odata.ODataAnnotations.

 Note
Annotation terms are not merged, but replaced as a whole ("PUT" semantics). If the same annotation term
with the same target is also contained in an annotation file, the complete OData V4 annotation converted
from the OData V2 annotation is replaced by the one contained in the annotation file for the specified
target. Converted annotations never use a qualifier and are only overwritten by the same annotation term
without a qualifier.

The following tables show the transformations that are implemented with version 1.30 of SAPUI5 (variatons of
this are marked accordingly). In the examples shown below, AnyPath is a path expression as defined in the
OData Version 4.0 specification , section 14.5.12.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 903

http://help.sap.com/disclaimer?site=http%3A%2F%2Fdocs.oasis-open.org%2Fodata%2Fodata%2Fv4.0%2Fos%2Fpart3-csdl%2Fodata-v4.0-os-part3-csdl.html

Transformations defined at EntitySet:

OData V2 SAP Extension Resulting OData V4 Annotation

sap:creatable = "false" "Org.OData.Capabilities.V1.InsertRestr
ictions": { "Insertable" : { "Bool" :
"false" } }

sap:deletable = "false" "Org.OData.Capabilities.V1.DeleteRestr
ictions": { "Deletable" : { "Bool" :
"false" } }

 Note
If both, sap:deletable and sap:deletable-
path are given, the service is broken and it is handled
as sap:deletable="false".

sap:deletable-path = "AnyPath"

Where AnyPath is a path expression that identifies a
Boolean property in the context of the entity type of the
entity set. The value of this property indicates whether the
entity can be deleted or not.

"Org.OData.Capabilities.V1.DeleteRestr
ictions": { "Deletable" : { "Path" :
"AnyPath" } }

 Note
If both, sap:deletable and sap:deletable-
path are given, the service is broken and it is handled
as sap:deletable="false".

sap:label = "foo"

Where foo is any text.

"com.sap.vocabularies.Common.v1.Label"
: {"String" : "foo" }

sap:pageable = "false" "Org.OData.Capabilities.V1.SkipSupport
ed": {"Bool" : "false" }, "Org.OData.Capabilities.V1.TopSupporte
d": {"Bool" : "false" }

sap:requires-filter = "true" "Org.OData.Capabilities.V1.FilterRestr
ictions": { "RequiresFilter" :
{ "Bool" : "true" } }

sap:searchable = "false"

Alternatively, do not use the sap:searchable
annotation.

"Org.OData.Capabilities.V1.SearchRestr
ictions": { "Searchable" : { "Bool" :
"false" } }

sap:topable = "false" "Org.OData.Capabilities.V1.TopSupporte
d": {"Bool" : "false" }

904 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

OData V2 SAP Extension Resulting OData V4 Annotation

sap:updatable = "false" "Org.OData.Capabilities.V1.UpdateRestr
ictions": { "Updatable" : { "Bool" :
"false" } }

 Note
If both, sap:updatable and sap:updatable-
path are given, the service is broken and it is handled
as sap:updatable="false".

sap:updatable-path = "AnyPath"

Where AnyPath is a path expression that identifies a
Boolean property in the context of the entity type of the
entity set. The value of this property indicates whether the
entity can be updated or not.

"Org.OData.Capabilities.V1.UpdateRestr
ictions": { "Updatable" : { "Path" :
"AnyPath" } }

 Note
If both, sap:updatable and sap:updatable-
path are given, the service is broken and it is handled
as sap:updatable="false".

Transformations defined at Property:

OData V2 SAP Extension Resulting OData V4 Annotation

sap:label = "foo"

Where foo is any text.

"com.sap.vocabularies.Common.v1.Label"
: {"String" : "foo" }

 Note
The resulting annotation is added at different places,
not to the Property.

sap:creatable = "true"

and

sap:updatable = "false"

"Org.OData.Core.V1.Immutable":
{ "Bool" : "true" }

sap:creatable = "false"

and

sap:updatable = "false"

"Org.OData.Core.V1.Computed":
{ "Bool" : "true"}

sap:display-format = "NonNegative" "com.sap.vocabularies.Common.v1.IsDigi
tSequence": { "Bool" : "true" }

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 905

OData V2 SAP Extension Resulting OData V4 Annotation

 Note
NonNegative indicates that only non-negative
numeric values are provided and persisted, other input
leads to errors; intended for Edm.String fields that
are internally stored as NUMC.

sap:display-format = "UpperCase" "com.sap.vocabularies.Common.v1.IsUppe
rCase": { "Bool" : "true" }

sap:field-control = "AnyPath"

Where AnyPath is a path expression that identifies a
property containing a numeric value that controls visibility..

"com.sap.vocabularies.Common.v1.FieldC
ontrol": { "Path" : "AnyPath" }

sap:filterable = "false" "Org.OData.Capabilities.V1.FilterRestr
ictions": { "NonFilterableProperties" : [
{ "PropertyPath" : "PropA " }, { "PropertyPath" : "PropC " }] }

For example, if sap:filterable is set to false for
properties PropA and PropC.

 Note
The resulting annotation is added to the EntitySet,
not to the Property.

sap:filter-restriction="multi-value"

For example, at a BusinessPartnerID property of a
BusinessPartner type.

"com.sap.vocabularies.Common.v1.Filter
ExpressionRestrictions": [{ "Property" : { "PropertyPath" :
"BusinessPartnerID" },
"AllowedExpressions" : { "EnumMember": "com.sap.vocabularies.Common.v1.Filter
ExpressionType/MultiValue" } }]

At the corresponding entity set, for example,
BusinessPartnerSet.multi-value is mapped to
MultiValue, single-value is mapped to
SingleValue, and interval is mapped to
SingleInterval.

 Note
The resulting annotation is added to the EntitySet,
not to the Property.

906 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

OData V2 SAP Extension Resulting OData V4 Annotation

sap:heading = "foo"

Where foo is any text.

"com.sap.vocabularies.Common.v1.Headin
g": { "String" : "foo" }

sap:precision = "AnyPath"

Where AnyPath is a path expression that identifies a
property in the context of the entity type containing the
number of significant decimal places for a numeric value.

"Org.OData.Measures.V1.Scale":
{ "Path" : "AnyPath" }

sap:quickinfo = "foo"

Where foo is any text.

"com.sap.vocabularies.Common.v1.QuickI
nfo": { "String" : "foo" }

sap:required-in-filter = "true"
If sap:required-in-filter is set to TRUE for the
PropA and PropC properties:

"Org.OData.Capabilities.V1.FilterRestr
ictions": { "RequiredProperties" : [
{ "PropertyPath" : "PropA " }, { "PropertyPath" : "PropC " }] }

 Note
The resulting annotation is added to the EntitySet,
not to the Property.

sap:sortable = "false" If sap:sortable is set to FALSE for the PropA and
PropC properties:

"Org.OData.Capabilities.V1.SortRestric
tions": { "NonSortableProperties" : [
{ "PropertyPath" : "PropA " }, { "PropertyPath" : "PropC " }]}

 Note
The resulting annotation is added to the EntitySet,
not to the Property.

sap:text = "AnyPath"

Where AnyPath is a path expression that identifies a
property in the context of the entity type containing a
human-readable text for the value of this property.

"com.sap.vocabularies.Common.v1.Text":
{ "Path" : "AnyPath" }

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 907

OData V2 SAP Extension Resulting OData V4 Annotation

sap:unit="WeightUnit"

or

sap:unit="CurrencyCode"

Where WeightUnit and CurrencyCode are names of
properties in the same entity and WeightUnit points to a
property with sap-semantics:unit-of-measure
and CurrencyCodepoints to a property with sap-
semantics:currency-code.

"Org.OData.Measures.V1.Unit":
{ "Path" : "WeightUnit" }

or

"Org.OData.Measures.V1.ISOCurrency":
{ "Path" : "CurrencyCode" }

sap:visible="false" "com.sap.vocabularies.UI.v1.Hidden" :
{ "Bool" : "true" }

Deprecated as of SAPUI5 1.44:

"com.sap.vocabularies.Common.v1.FieldC
ontrol": { "EnumMember" : "com.sap.vocabularies.Common.v1.FieldC
ontrolType/Hidden" }

sap:aggregation-role="dimension" "com.sap.vocabularies.Analytics.v1.Dim
ension" : { "Bool" : "true" }

 Note
Implemented with version 1.46.

sap:aggregation-role="measure" "com.sap.vocabularies.Analytics.v1.Mea
sure" : { "Bool" : "true" }

 Note
Implemented with version 1.46.

sap:semantics="year" "com.sap.vocabularies.Common.v1.IsCale
ndarYear" : {"Bool" : "true"}

 Note
Implemented with version 1.50.

sap:semantics="yearmonth" "com.sap.vocabularies.Common.v1.IsCale
ndarYearMonth" : {"Bool" : "true"}

908 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

OData V2 SAP Extension Resulting OData V4 Annotation

 Note
Implemented with version 1.50.

sap:semantics="yearmonthday" "com.sap.vocabularies.Common.v1.IsCale
ndarDate" : {"Bool" : "true"}

 Note
Implemented with version 1.50.

sap:semantics = url "Org.OData.Core.V1.IsURL" :
{ "Bool" : "true" }

 Note
Implemented with version 1.52.

sap:semantics="yearquarter" "com.sap.vocabularies.Common.v1.IsCale
ndarYearQuarter" : {"Bool" : "true"}

 Note
Implemented with version 1.54.

sap:semantics="yearweek" "com.sap.vocabularies.Common.v1.IsCale
ndarYearWeek" : {"Bool" : "true"}

 Note
Implemented with version 1.54.

sap:semantics="fiscalyear" "com.sap.vocabularies.Common.v1.IsFisc
alYear" : {"Bool" : "true"}

 Note
Implemented with version 1.54.

sap:semantics="fiscalyearperiod" "com.sap.vocabularies.Common.v1.IsFisc
alYearPeriod" : {"Bool" : "true"}

 Note
Implemented with version 1.54.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 909

Transformations defined at NavigationProperty:

OData V2 SAP Extension Resulting OData V4 Annotation

sap:filterable = "false" "Org.OData.Capabilities.V1.FilterRestr
ictions": { "NonFilterableProperties" : [
 { "PropertyPath" : "PropA " },
 { "PropertyPath" : "PropC " }
] }

For example, if sap:filterable is set to false for
properties PropA and PropC

 Note
The resulting annotation is added to the EntitySet,
not to the NavigationProperty.

 Note
Implemented with version 1.42.

 Caution
Deprecated with version 1.54. See entry below.

sap:filterable = "false" "Org.OData.Capabilities.V1.NavigationR
estrictions": { "RestrictedProperties": [
 {
 "FilterRestrictions":
{"Filterable": false},
 "NavigationProperty":
{"NavigationPropertyPath": "NavPropA"}
 },
 {
 "FilterRestrictions":
{"Filterable": false},
 "NavigationProperty":
{"NavigationPropertyPath": "NavPropB"}
 }
] }

For example, if sap:filterable is set to false for
navigation properties NavPropA and NavPropB.

 Note
The resulting annotation is added to the EntitySet,
not to the NavigationProperty.

910 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

OData V2 SAP Extension Resulting OData V4 Annotation

 Note
Implemented with version 1.54.

sap:creatable = "false" "Org.OData.Capabilities.V1.InsertRestr
ictions": {
"NonInsertableNavigationProperties" :
[
 { "NavigationPropertyPath" :
"NavPropA " },
 { "NavigationPropertyPath" :
"NavPropC " }
] }

For example, if sap:creatable is set to false for
navigation properties NavPropA and NavPropC

 Note
The resulting annotation is added to the EntitySet,
not to the NavigationProperty.

 Note
If sap:creatable and sap:creatable-path
are given, the service is broken and it is handled as
sap:creatable="false".

 Note
Implemented with version 1.42.

sap:creatable-path="Creatable" "Org.OData.Capabilities.V1.InsertRestr
ictions": {
"NonInsertableNavigationProperties" :
[{
 "IF" : [{
 "Not" : {
 "Path" : "Creatable"
 }
 }, {

"NavigationPropertyPath" : "NavPropA"
 }]
 }] }

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 911

OData V2 SAP Extension Resulting OData V4 Annotation

 Note
The resulting annotation is added to the EntitySet,
not to the NavigationProperty.

 Note
If sap:creatable and sap:creatable-path
are given, the service is broken and it is handled as
sap:creatable="false".

 Note
Implemented with version 1.42.

Transformations defined at Schema:

OData V2 SAP Extension Resulting OData V4 Annotation

schema-version="foo" "@Org.Odata.Core.V1.SchemaVersion" :
"foo"

 Note
Implemented with version 1.54.

Depending on the value of the sap:semantics annotation, different vocabulary-based annotations are
generated. The following transformations are implemented and defined at property. In the examples of the
resulting JSON at the "defined at" object, PROPERTY is a placeholder for the name of the property at which the
sap:semantics annotation is defined.

OData V2 SAP Extension Resulting OData V4 Annotation

sap:semantics = "currency-code" see sap:unit above

sap:semantics = "unit-of-measure" see sap:unit above

sap:semantics = "name" "com.sap.vocabularies.Communication.v1
.Contact" : { "fn" : { "Path" :
"PROPERTY" } }

sap:semantics = "givenname" "com.sap.vocabularies.Communication.v1
.Contact" : { "n" : { "given" :
{ "Path" : "PROPERTY" } } }

912 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

OData V2 SAP Extension Resulting OData V4 Annotation

sap:semantics = "middlename" "com.sap.vocabularies.Communication.v1
.Contact" : { "n" : { "additional" :
{ "Path" : "PROPERTY" } } }

sap:semantics = "familyname" "com.sap.vocabularies.Communication.v1
.Contact" : { "n" : { "surname" :
{ "Path" : "PROPERTY" } } }

sap:semantics = "nickname" "com.sap.vocabularies.Communication.v1
.Contact" : { "nickname" : { "Path" :
"PROPERTY" } }

sap:semantics = "honorific" "com.sap.vocabularies.Communication.v1
.Contact" : { "n" : { "prefix" :
{ "Path" : "PROPERTY" } } }

sap:semantics = "suffix" "com.sap.vocabularies.Communication.v1
.Contact" : { "n" : { "suffix" :
{ "Path" : "PROPERTY" } } }

sap:semantics = "note" "com.sap.vocabularies.Communication.v1
.Contact" : { "note" : { "Path" :
"PROPERTY" } }

sap:semantics = "photo" "com.sap.vocabularies.Communication.v1
.Contact" : { "photo" : { "Path" :
"PROPERTY" } }

sap:semantics = "city" "com.sap.vocabularies.Communication.v1
.Contact" : { "adr" : { "locality" :
{ "Path" : "PROPERTY" } } }

sap:semantics = "street" "com.sap.vocabularies.Communication.v1
.Contact" : { "adr" : { "street" :
{ "Path" : "PROPERTY" } } }

sap:semantics = "country" "com.sap.vocabularies.Communication.v1
.Contact" : { "adr" : { "country" :
{ "Path" : "PROPERTY" } } }

sap:semantics = "region" "com.sap.vocabularies.Communication.v1
.Contact" : { "adr" : { "region" :
{ "Path" : "PROPERTY" } } }

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 913

OData V2 SAP Extension Resulting OData V4 Annotation

sap:semantics = "zip" "com.sap.vocabularies.Communication.v1
.Contact" : { "adr" : { "code" :
{ "Path" : "PROPERTY" } } }

sap:semantics = "pobox" "com.sap.vocabularies.Communication.v1
.Contact" : { "adr" : { "pobox" :
{ "Path" : "PROPERTY" } } }

sap:semantics = "org" "com.sap.vocabularies.Communication.v1
.Contact" : { "org" : { "Path" :
"PROPERTY" } }

sap:semantics = "org-unit" "com.sap.vocabularies.Communication.v1
.Contact" : { "orgunit" : { "Path" :
"PROPERTY" } }

sap:semantics = "org-role" "com.sap.vocabularies.Communication.v1
.Contact" : { "role" : { "Path" :
"PROPERTY" } }

sap:semantics = "title" "com.sap.vocabularies.Communication.v1
.Contact" : { "title" : { "Path" :
"PROPERTY" } }

sap:semantics = "bday" "com.sap.vocabularies.Communication.v1
.Contact" : { "bday" : { "Path" :
"PROPERTY" } }

sap:semantics = "dtstart" "com.sap.vocabularies.Communication.v1
.Event" : { "dtstart" : { "Path" :
"PROPERTY" } }

sap:semantics = "dtend" "com.sap.vocabularies.Communication.v1
.Event" : { "dtend" : { "Path" :
"PROPERTY" } }

sap:semantics = "duration" "com.sap.vocabularies.Communication.v1
.Event" : { "duration" : { "Path" :
"PROPERTY" } }

sap:semantics = "class" "com.sap.vocabularies.Communication.v1
.Event" : { "class" : { "Path" :
"PROPERTY" } }

914 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

OData V2 SAP Extension Resulting OData V4 Annotation

sap:semantics = "status" "com.sap.vocabularies.Communication.v1
.Event" : { "status" : { "Path" :
"PROPERTY" } }

sap:semantics = "transp" "com.sap.vocabularies.Communication.v1
.Event" : { "transp" : { "Path" :
"PROPERTY" } }

sap:semantics = "fbtype" "com.sap.vocabularies.Communication.v1
.Event" : { "fbtype" : { "Path" :
"PROPERTY" } }

sap:semantics = "wholeday" "com.sap.vocabularies.Communication.v1
.Event" : { "wholeday" : { "Path" :
"PROPERTY" } }

sap:semantics = "location" "com.sap.vocabularies.Communication.v1
.Event" : { "location" : { "Path" :
"PROPERTY" } }

sap:semantics = "due" "com.sap.vocabularies.Communication.v1
.Task" : { "due" : { "Path" :
"PROPERTY" } }

sap:semantics = "completed" "com.sap.vocabularies.Communication.v1
.Task" : { "completed" : { "Path" :
"PROPERTY" } }

sap:semantics = "percent-complete" "com.sap.vocabularies.Communication.v1
.Task" : { "percentcomplete" :
{ "Path" : "PROPERTY" } }

sap:semantics = "priority" "com.sap.vocabularies.Communication.v1
.Task" : { "priority" : { "Path" :
"PROPERTY" } }

sap:semantics = "from" "com.sap.vocabularies.Communication.v1
.Message" : { "from" : { "Path" :
"PROPERTY" } }

sap:semantics = "sender" "com.sap.vocabularies.Communication.v1
.Message" : { "sender" : { "Path" :
"PROPERTY" } }

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 915

OData V2 SAP Extension Resulting OData V4 Annotation

sap:semantics = "subject" "com.sap.vocabularies.Communication.v1
.Message" : { "subject" : { "Path" :
"PROPERTY" } }

sap:semantics = "body" "com.sap.vocabularies.Communication.v1
.Message" : { "body" : { "Path" :
"PROPERTY" } }

sap:semantics = "received" "com.sap.vocabularies.Communication.v1
.Message" : { "received" : { "Path" :
"PROPERTY" } }

sap:semantics = "tel" At the EntityType or ComplexType:

"com.sap.vocabularies.Communication.v1
.Contact" : { "tel" : [{
"uri" : { "Path" : "ATTRIBUTE" } }]}

Where ATTRIBUTE is the name of the annotated attribute
of an EntityType or ComplexType.

At Property:

"com.sap.vocabularies.Communication.v1
.IsPhoneNumber" : { "Bool" : "true" }

sap:semantics = "tel";type=cell,work At the EntityType or ComplexType:

"com.sap.vocabularies.Communication.v1
.Contact" : { "tel" : [{
"type" : {
"EnumMember":
"com.sap.vocabularies.Communication.v1
.PhoneType/cell"
+ "
com.sap.vocabularies.Communication.v1.
PhoneType/work"
},
"uri" : { "Path" : "ATTRIBUTE" } }]}

Where ATTRIBUTE is the name of the annotated attribute
of an EntityType or ComplexType.

At Property:

"com.sap.vocabularies.Communication.v1
.IsPhoneNumber" : { "Bool" : "true" }

916 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

OData V2 SAP Extension Resulting OData V4 Annotation

sap:semantics = "email" At the EntityType or ComplexType:

"com.sap.vocabularies.Communication.v1
.Contact" : { "address" : [{
"uri" : { "Path" : "ATTRIBUTE" } }]}

Where ATTRIBUTE is the name of the annotated attribute
of an EntityType or ComplexType.

At Property:

"com.sap.vocabularies.Communication.v1
.IsEmailAddress" : { "Bool" : "true" }

sap:semantics = "email";type=work,pref At the EntityType or ComplexType:

"com.sap.vocabularies.Communication.v1
.Contact" : { "email" : [{
"address" : { "Path" : "ATTRIBUTE" },
"type" : {
"EnumMember" :
"com.sap.vocabularies.Communication.v1
.ContactInformationType/work"
+
"com.sap.vocabularies.Communication.v1
.ContactInformationType/preferred"
} }]}

Where ATTRIBUTE is the name of the annotated attribute
of an EntityType or ComplexType.

At Property:

"com.sap.vocabularies.Communication.v1
.IsEmailAddress" : { "Bool" : "true" }

Related Information

XML Templating [page 1018]
OData V2 Model [page 883]
Class sap.ui.model.odata.ODataMetaModel

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 917

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.ODataMetaModel.html

OData V4 Model

The sap.ui.model.odata.v4.ODataModel is the model implementation for consuming an OData V4
service.

 Restriction
Due to the limited feature scope of this version of the SAPUI5 OData V4 model, check that all required
features are in place before developing freestyle and Fiori elements applications. Double check the detailed
documentation of the features, as certain parts of a feature may be missing. While we aim to be compatible
with existing controls, some controls might not work due to small incompatibilities compared to
sap.ui.model.odata.(v2.)ODataModel, or due to missing features in the model (such as tree
binding). This also applies to smart controls (sap.ui.comp library) that do not support the SAPUI5 OData
V4 model, as well as controls such as TreeTable and AnalyticalTable, which are not supported
together with the SAPUI5 OData V4 model. The interface for applications has been changed for easier and
more efficient use of the model. For a summary of these changes, see Changes Compared to OData V2
Model [page 971].

The OData V4 model supports the following:

● Read access
● Updating properties of OData entities (in entity sets and contained entities) via two-way-binding
● Deleting entities
● Operation (function and action) execution
● Grouping data requests in a batch request
● Server-side sorting and filtering

 Note
The OData V4 model documentation contains several code samples. These refer to the Sales Orders
sample in the Demo Kit.

Related Information

Changes Compared to OData V2 Model [page 971]
sap.ui.model.odata.v4.ODataModel
Sample: Sales Orders

Model Instantiation and Data Access

One OData V4 model instance can only cover one OData service. This section describes the creation of a model
instance in more detail.

The OData V4 model is primarily designed for OData V4 services. Nevertheless, OData V2 services may be
used through an adapter as well. For more information see: Consuming OData V2 Services with the OData V4
Model [page 977]

918 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.sample.odata.v4.SalesOrders/preview
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v4.ODataModel.html
https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.sample.odata.v4.SalesOrders/preview

When creating an OData V4 model instance, the only parameter you actually need is a map. This map must
contain at least the properties serviceUrl and synchronizationMode. For more information, see the
sap.ui.model.odata.v4.ODataModel constructor API documentation in the Demo Kit.

OData V4 model instantiation:

 sap.ui.define(["sap/ui/model/odata/v4/ODataModel"], function (ODataModel) {
 var oModel = new ODataModel({
 serviceUrl : "/sap/opu/odata4/IWBEP/V4_SAMPLE/default/IWBEP/
V4_GW_SAMPLE_BASIC/0001/",
 synchronizationMode : "None"
 }); });

OData Custom Query Options

An OData service accepts query options placed in the service URL query part, as explained on the URL
conventions page OData Version 4.0 Part 2: URL Conventions in chapter 2 URL Components. The OData V4
model accepts OData custom query options only as explained in section 5.2 Custom Query Options of the URL
conventions page; you must not provide OData system query options (starting with "$") or OData parameter
aliases (starting with "@") at model level, see sections 5.1 System Query Options and 5.3 Parameter Aliases in
the URL conventions page.

 Note
Note that it's possible to specify certain system query options for OData V4 model bindings. For more
information, see Bindings [page 922].

OData V4 model instantiation with service URL parameters:

 sap.ui.define(["sap/ui/model/odata/v4/ODataModel"], function (ODataModel) {
 var oModel = new ODataModel({
 serviceUrl : "/sap/opu/odata4/IWBEP/V4_SAMPLE/default/IWBEP/
V4_GW_SAMPLE_BASIC/0001/?customParam=foo",
 synchronizationMode : "None"
 }); });

Default Groups for Batch Control

The OData V4 model allows you to specify whether or not requests are bundled and sent as a batch request,
and when the requests are sent. For more information, see Batch Control [page 952].

The parameter groupId specifies the default batch group and defaults to "$auto". You can use the parameter
updateGroupId to set a batch group for update requests only. If you do not set this parameter, the groupId
will be used.

The following code instantiates a model that bundles all update requests in the batch group
"myAppUpdateGroup"; the batch request can then be sent using
oModel.submitBatch("myAppUpdateGroup").

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 919

https://sapui5.hana.ondemand.com/docs/api/symbols/sap.ui.model.odata.v4.ODataModel.html#constructor
http://help.sap.com/disclaimer?site=http%3A%2F%2Fdocs.oasis-open.org%2Fodata%2Fodata%2Fv4.0%2Fodata-v4.0-part2-url-conventions.html

OData V4 model with updateGroupId:

 sap.ui.define(["sap/ui/model/odata/v4/ODataModel"], function (ODataModel) {
 var oModel = new ODataModel({
 serviceUrl : "/sap/opu/odata4/IWBEP/V4_SAMPLE/default/IWBEP/
V4_GW_SAMPLE_BASIC/0001/",
 synchronizationMode : "None",
 updateGroupId : "myAppUpdateGroup"
 }); });

Instantiating an OData V4 Model Using the Descriptor File (manifest.json)

The code sample below shows the parts of a Descriptor for Applications, Components, and Libraries [page
734] (manifest.json) that are relevant for instantiating an OData V4 model:

 {
 "sap.app" : {
 "dataSources" : {
 "default" : {
 "uri" : "/sap/opu/odata4/IWBEP/V4_SAMPLE/default/IWBEP/
V4_GW_SAMPLE_BASIC/0001/",
 "type" : "OData",
 "settings" : {
 "odataVersion" : "4.0"
 }
 }
 }
 },
 "sap.ui5" : {
 "models" : {
 "" : {
 "dataSource" : "default",
 "settings" : {
 "synchronizationMode" : "None",
 "updateGroupId" : "myAppUpdateGroup"
 }
 }
 }
 } }

Data Access

The OData V4 model only supports data access using bindings. It does not provide any direct access to the
data. For more information, see Unsupported Superclass Methods and Events [page 969]. One exception is
sap.ui.model.odata.v4.Context#setProperty. It allows to update a property without using a property binding,
even without reading the data first.

920 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/symbols/sap.ui.model.odata.v4.Context/methods/setProperty

Language

SAPUI5 uses the concept of a "current language" (see Identifying the Language Code / Locale [page 1269]).
This language is automatically propagated to the OData service by the OData V4 model. For this reason,
applications must not hard code the language themselves, e.g. they must not specify the "sap-language"
URL parameter as a custom query option.

Set HTTP Header Fields

You can set headers for HTTP requests sent by the OData V4 model: This is possible statically by adding them
to the manifest.json, or dynamically with the method ODataModel#changeHttpHeaders. These headers are
applied to data and metadata requests sent by the model. The ODataModel propagates its HTTP headers to
value list models created via ODataMetaModel#createValueListInfo; when changing HTTP headers for the
model, however, these changes are not applied to existing value list models: If value list models require the new
headers, you have to additionally call ODataModel#changeHttpHeaders for each of them. For details, see
ODataModel#changeHttpHeaders.

Sample: Set HTTP header custom in manifest.json:

{ "sap.app" : {
 "dataSources" : {
 "default" : {
 "uri" : "/sap/opu/odata4/IWBEP/V4_SAMPLE/default/IWBEP/
V4_GW_SAMPLE_BASIC/0001/",
 "type" : "OData",
 "settings" : {
 "odataVersion" : "4.0"
 }
 }
 }
 },
 "sap.ui5" : {
 "models" : {
 "" : {
 "dataSource" : "default",
 "settings" : {
 "autoExpandSelect" : true,
 "httpHeaders" : {
 "custom" : "foo"
 },
 "synchronizationMode" : "None",

 }
 }
 }
 }
}

Related Information

Constructor: sap.ui.model.odata.v4.ODataModel

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 921

https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataModel
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataMetaModel
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataModel
https://sapui5.hana.ondemand.com/docs/api/symbols/sap.ui.model.odata.v4.ODataModel.html#constructor

OData Version 4.0 Part 2: URL Conventions
Bindings [page 922]
Batch Control [page 952]
Descriptor for Applications, Components, and Libraries [page 734]
Unsupported Superclass Methods and Events [page 969]

Bindings

Bindings connect SAPUI5 view elements to model data, allowing changes in the model to be reflected in the
view element and vice versa.

The OData V4 model supports the following types of binding:

● List bindings, which represent a collection (of OData entities, complex or primitive types) such as /
SalesOrderList (see the sap.ui.model.odata.v4.ODataListBinding API documentation in the Demo Kit)

● Context bindings, which represent a single entity such as /SalesOrderList('0500000000') or a
structural property with complex type (see the sap.ui.model.odata.v4.ODataContextBinding API
documentation in the Demo Kit)

● Property bindings, which represent a single, primitive type property in an entity or complex type such as /
ProductList('HT-1000')/Name (see the sap.ui.model.odata.v4.ODataPropertyBinding API
documentation in the Demo Kit)

Related Information

sap.ui.model.odata.v4.ODataListBinding
sap.ui.model.odata.v4.ODataContextBinding
sap.ui.model.odata.v4.ODataPropertyBinding
Sample: Sales Orders
Binding Events [page 938]
Batch Control [page 952]
Filtering [page 939]
Sorting [page 942]
OData Version 4.0 Part 2: URL Conventions, 4 Resource Path
OData Version 4.0 Part 2: URL Conventions, 5 Query Options
OData Version 4.0 Part 2: URL Conventions, 5.2 Custom Query Options
OData Version 4.0 SimpleIdentifier

Creating Bindings

The OData V4 model offers the factory methods bindList, bindContext and bindProperty for creating
bindings. Typically, these methods are not called directly in applications, but indirectly by the following:

922 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/disclaimer?site=http%3A%2F%2Fdocs.oasis-open.org%2Fodata%2Fodata%2Fv4.0%2Fodata-v4.0-part2-url-conventions.html
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataListBinding
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataContextBinding
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataPropertyBinding
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataListBinding
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataContextBinding
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataPropertyBinding
https://sapui5.hana.ondemand.com/#/sample/sap.ui.core.sample.odata.v4.SalesOrders/code/Main.controller.js
http://help.sap.com/disclaimer?site=http%3A%2F%2Fdocs.oasis-open.org%2Fodata%2Fodata%2Fv4.0%2Fodata-v4.0-part2-url-conventions.html
http://help.sap.com/disclaimer?site=http%3A%2F%2Fdocs.oasis-open.org%2Fodata%2Fodata%2Fv4.0%2Fodata-v4.0-part2-url-conventions.html
http://help.sap.com/disclaimer?site=http%3A%2F%2Fdocs.oasis-open.org%2Fodata%2Fodata%2Fv4.0%2Ferrata03%2Fos%2Fcomplete%2Fpart2-url-conventions%2Fodata-v4.0-errata03-os-part2-url-conventions-complete.html
http://help.sap.com/disclaimer?site=http%3A%2F%2Fdocs.oasis-open.org%2Fodata%2Fodata%2Fv4.0%2Ferrata03%2Fos%2Fcomplete%2Fpart3-csdl%2Fodata-v4.0-errata03-os-part3-csdl-complete.html%23_SimpleIdentifier

● Binding an SAPUI5 control through an API such as oForm.bindElement("{/
SalesOrderList('0500000000')}");
This sample binds a form to a certain sales order so that form elements can be bound to display or change
single properties of the sales order.

 Note
Note that binding expressions can be complex so that they can take additional properties to specify the
binding further in addition to the path:

 oForm.bindElement({path : "/SalesOrderList('0500000000')", parameters :
{$expand : "SO_2_SOITEM", ...}, events : {dataReceived :
'.onDataEvents', ...}});

This allows you, for instance, to specify OData V4 binding parameters [page 928] such as $expand or
attach to OData V4 Binding Events [page 938] such as dataReceived.

For a complete example, see the onSalesOrderSelect method (file: Main.controller.js) in the
SalesOrders sample in the Demo Kit.

● Declaring a binding for a control property in an XML view such as the following:

 <Table items="{path : '/SalesOrderList', parameters : { $expand : 'SO_2_BP',
$filter : 'BuyerName ge \'M\'', ...}, events : {dataReceived :
'.onDataEvents', ... } }">

For a complete example, see the Main.view.xml file in the SalesOrders sample in the Demo Kit.

Path Syntax

According to the specification available under OData Version 4.0 Part 2: URL Conventions, 4 Resource Path ,
every resource path (relative to the service root URL, no query options) is a valid data binding path within this
model if a leading slash is added. For example, you can use "/EMPLOYEES('A%2FB%26C')" to access an
entity instance with key "A/B&C". Note that appropriate URI encoding is necessary.

Furthermore, the OData V4 model only supports OData SimpleIdentifier with characters from the US ASCII
code character set.

Initialization and Read Requests

Bindings are called absolute if their path starts with a forward slash "/"; otherwise they are called relative.
Relative bindings are initial meaning that they have no data as long as they have no context. They obtain a
context either from a list binding where the context represents an entity for a certain index in an entity
collection or from a context binding where the context represents the one entity of the context binding. The
binding which created the context is called the parent binding of the relative binding; the relative binding is a
child binding of its parent binding. Dependent bindings of a binding are the set of child bindings of the binding
itself and the dependent bindings of its children. If the binding has no child bindings, it is the empty set.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 923

https://sapui5.hana.ondemand.com/#/sample/sap.ui.core.sample.odata.v4.SalesOrders/preview
https://sapui5.hana.ondemand.com/#/sample/sap.ui.core.sample.odata.v4.SalesOrders/preview
http://help.sap.com/disclaimer?site=http%3A%2F%2Fdocs.oasis-open.org%2Fodata%2Fodata%2Fv4.0%2Fodata-v4.0-part2-url-conventions.html
http://help.sap.com/disclaimer?site=http%3A%2F%2Fdocs.oasis-open.org%2Fodata%2Fodata%2Fv4.0%2Ferrata03%2Fos%2Fcomplete%2Fpart3-csdl%2Fodata-v4.0-errata03-os-part3-csdl-complete.html%23_SimpleIdentifier

An absolute binding creates a data service request to read data once data is requested by a bound control or a
child control with a relative binding. The read URL path is the model's service URL concatenated with the
binding's path. The read URL query options are the union of the binding's and model query options; query
options specified for the binding overwrite model query options.

A relative list or context binding creates a data service request once it has a context in the following cases:

● The relative binding has parameters, such as OData query options like $select, or binding-specific
parameters with a name starting with $$ see the Parameters subsection below. If you want a relative
binding to create its own data service request, use the binding-specific parameter $$ownRequest.

● You specify a dynamic filter or dynamic sorter for a list binding and use
sap.ui.model.odata.OperationMode.Server, see sections Filtering [page 939] and Sorting [page
942].

 Note
If the model is configured to compute $expand and $select automatically, this behaviour changes, see
Automatic determination of $expand and $select [page 937].

 Note
A relative property binding never creates a data service request; its binding parameters are ignored in this
case.

In all other cases, a relative binding reads data from its parent binding that created the context. In case of an
own data service request, the read URL path is the model's service URL concatenated with the path of the
binding's context and the binding's path. Set the binding-specific parameter $$canonicalPath to true to
use the canonical path computed from the context's path instead of the context's path in the read URL.

The point in time that is used to actually send the request is determined as explained in the section Batch
Control [page 952]. Bindings which create own data service requests cache data from data service responses.
They do not send a data service request if data can be served from this cache.

 Note
List bindings read data in pages, i.e. they only access a certain index range from their bound collection; they
only trigger a new data service request if indexes are accessed which have not yet been read.

You can delete the cache for an absolute binding using its refresh method. The method also deletes the
caches of child bindings of the absolute binding.

 Note
There must be no pending property changes for a binding and its child bindings when calling the refresh
method. Use the binding's hasPendingChanges method to check for pending changes before you delete
the cache.

You can refresh all bindings with ODataModel.refresh, see ODataModel.refresh in the Demo Kit.

Refresh a single entity
You can refresh a single entity by calling sap.ui.model.odata.v4.Context#refresh or the bound context
or return value context of an sap.ui.model.odata.v4.ODataListBinding which corresponds to this
entity. This also refreshes all dependent bindings of its contexts.

924 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataModel/methods/refresh
https://sapui5.hana.ondemand.com/#docs/api/sap.ui.model.odata.v4.Context/methods/refresh
https://sapui5.hana.ondemand.com/#docs/api/sap.ui.model.odata.v4.ODataListBinding/overview

 Example
Usage of Context#refresh for a context in a list binding

onRefreshSelectedSalesOrder : function () { // within a sap.m.Table bound to a OData V4 list binding get the OData V4
context for the selected entity
 var oSalesOrderContext =
this.byId("SalesOrders").getSelectedItem().getBindingContext();

 if (!oSalesOrderContext.hasPendingChanges()) {
 oSalesOrderContext.refresh();
 } },

 Note
● Contexts of an sap.ui.model.odata.v4.ODataListBinding and the bound context of an

sap.ui.model.odata.v4.ODataContextBinding can only be refreshed if the binding is not
relative to a sap.ui.model.odata.v4.Contex and if its root binding is not suspended.

● Refresh is only allowed if there are no pending changes for the context and all its dependent bindings. If
you have a relative binding with changes and this binding loses its context, the former parent binding
does not report pending changes: the changes are kept, but the relation between these bindings is lost.
You can do the following:
○ To find out if there are pending changes, use

sap.ui.model.odata.v4.ODataModel#hasPendingChanges.
○ To save the changes, use sap.ui.model.odata.v4.ODataModel#submitBatch, and to delete

the changes, use sap.ui.model.odata.v4.ODataModel#resetChanges.
○ If you set a context at the relative binding, the new parent binding will report the pending changes

again.

Allow removal of a single entity when refreshing

After updating an entity, it may no longer match the query options for the collection which loaded the entity, in
particular $filter. You can decide whether the refresh on the context of a list binding should ignore the query
options or not: The corresponding context may be removed from the list binding for the collection by setting
the parameter bAllowRemoval to true.

Note that changes to the list like a different sort order require a refresh of the whole list.

An example can be seen in the SalesOrders application. The table has a filter applied to show only the sales
orders with Life Cycle Status = "New". When confirming a sales order, its status will change to In Process and
does not match the filter anymore. This sales order is then refreshed and will be removed from the list as the
bAllowRemoval flag is set to true. This is shown in the following code snippet:

 Example
refresh with allow removal

oAction.execute("confirmSalesOrderActionGroup").then(function () { oConfirmedSalesOrderContext.refresh(undefined, true); // bAllowRemoval =
true });

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 925

https://sapui5.hana.ondemand.com/#docs/api/sap.ui.model.odata.v4.ODataListBinding/overview
https://sapui5.hana.ondemand.com/#docs/api/sap.ui.model.odata.v4.ODataContextBinding/overview
https://sapui5.hana.ondemand.com/#docs/api/sap.ui.model.odata.v4.Contex/overview
https://sapui5.hana.ondemand.com/#/sample/sap.ui.core.sample.odata.v4.SalesOrders/preview

For details, see ODataListBinding.refresh, ODataContextBinding.refresh and ODataPropertyBinding.refresh in
the Demo Kit.

Example: Absolute and relative bindings created by an XML view

 <Table items="{
 path : '/SalesOrderList',
 parameters : {
 $expand : 'SO_2_BP',
 $select : 'BuyerName,CurrencyCode,GrossAmount,Note,SalesOrderID'
 }}">
 ...
 <items>
 <ColumnListItem>
 <cells>
 <Text text="{SalesOrderID}"/>
 <Text text="{SO_2_BP/CompanyName}"/>
 <Text text="{BillingStatus}"/>
 </cells>
 </ColumnListItem>
 </items>
</Table>
<Table items="{
 path : 'SO_2_SOITEM',
 parameters : {
 $select: "DeliveryDate,GrossAmount,SalesOrderID"
 }
>
...
</Table>

The above sample shows an absolute list binding: A table's items aggregation is bound to /SalesOrderList
using the $expand and $select query options as binding parameters. The columns define relative bindings
with paths SalesOrderID, SO_2_BP/CompanyName, and BillingStatus with the absolute list binding as
parent binding.

 Note
The BillingStatus remains empty and logs an error to the browser console as this structural property is
not part of the $select specified for the list binding.

The lower table for the line items has a relative binding. As it has parameters defined, it triggers its own data
service request once it receives its binding context.

Property Binding to Metadata

You can use ## in a property binding's path to branch from data into metadata.

Example: Determine label from the corresponding annotation for property GrossAmount
 <SimpleForm binding="{/SalesOrderList('42')}">
 <Label text="{GrossAmount##@com.sap.vocabularies.Common.v1.Label}" />
 <Text text="{GrossAmount}" />
</SimpleForm>

For details, see sap.ui.model.odata.v4.ODataModel#bindProperty.

926 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataListBinding/methods/refresh
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataContextBinding/methods/refresh
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataPropertyBinding/methods/refresh
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataModel/methods/bindProperty

Property Binding With an Object Value

A property binding can have an object value, if the target type specified in the corresponding control property's
binding info is "any" and the binding is relative or points to metadata. In case it points to metadata, the
binding's mode has to be OneTime, see sap.ui.model.BindingMode

Example: Using the controller method 'formatPhoneNumbersAsCSV' to show a comma-separated list of
phone numbers for business partner contacts

<SimpleForm binding="{/BusinessPartnerList('42')}"> <Label text="Phone number list" />
 <Text text="{path : 'BP_2_CONTACT', mode : 'OneTime', targetType : 'any',
formatter : '.formatPhoneNumbersAsCSV'}" /> </SimpleForm>

For details,

For details, see sap.ui.model.odata.v4.ODataModel#bindProperty.

Side Effects

Editing properties of an entity sometimes causes side effects on other properties within the same or a related
entity. Normally, a PATCH request which sends the user's input to the server includes side effects for the same
entity (if relevant for the UI) within its response. Sometimes, however, an application needs more control on
how and when this happens, or needs side effects on related entities as well.

You can use sap.ui.model.odata.v4.Context#requestSideEffects to load side effects when implicit loading is
switched off via the binding-specific parameter $$patchWithoutSideEffects. This method must only be
called on the bound context of a context binding, or on the return value context of an operation binding.
Collection-valued navigation properites are fully supported, so an efficient request is sent instead of a simple
refresh. The event validateFieldGroup provides a suitable point in time to request side effects after a
certain group of fields has been changed. The annotation
com.sap.vocabularies.Common.v1.SideEffects describes side effects and the API strikes a balance
between the generic use based on this annotation and specific hard-coded uses. When requested from the V4
OData meta model, the annotations value looks as follows:

{ "SourceEntities" : [{
 "$NavigationPropertyPath" : ""
 }, ...],
 "SourceProperties" : [{
 "$PropertyPath" : "Name"
 }, ...],
 "TargetEntities" : [{
 "$NavigationPropertyPath" : "DraftAdministrativeData"
 }, ...],
 "TargetProperties" : [{
 "$PropertyPath" : "DraftAdministrativeData/InProcessByUser"
 }, ...] }

The sap.ui.model.odata.v4.Context#requestSideEffects API requires a single array as parameter,
namely the concatenation of TargetEntities and TargetProperties.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 927

https://sapui5.hana.ondemand.com/#/api/sap.ui.model.BindingMode
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataModel/methods/bindProperty
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.Context/methods/requestSideEffects

The binding-specific parameter $$patchWithoutSideEffects can be set on context bindings and list
bindings. If the parameter is not specified in a relative binding, the parameter value from the parent binding is
used.

Parameters

When creating a binding, you can provide a parameter map which can contain the following:

● OData query options; the values determine parameters for data service requests triggered by the binding.
For more information about these options, see OData Version 4.0 Part 2: URL Conventions, 5 Query
Options .

● Binding-specific parameters start with "$$" and influence the behavior of the binding as follows:
● ○ $$canonicalPath: Set to true to use the canonical path computed from the path of the binding's

context in the read URL for data service requests. All values other than true lead to an error.
○ $$groupId and $$updateGroupId: see Batch Control [page 952]
○ $$noPatch: In a property binding, set to true to prevent changes of the value to appear in back-end

requests.
○ $$operationMode: see Filtering [page 939] and Sorting [page 942]
○ $$ownRequest: Set to true to ensure the binding uses an own service request to read data. All values

other than true lead to an error.

The binding's OData query options are combined with the query options passed to the OData V4 model; the
binding's query options overwrite model query options with the same name. The resulting query options are
appended to each data service request by this binding. The following query options are supported; all others
are not allowed and lead to an error:

● OData custom query options except those with the name prefix "sap-". For more information about
these, see OData Version 4.0 Part 2: URL Conventions, 5.2 Custom Query Options .

● The list and context binding support the OData system query options $apply, $count, $expand,
$filter, $orderby, $search and $select.

The query option $count must be specified as a boolean value with true or false. All other query options
can be specified with a string value. In addition to strings, the following alternatives are possible:

● $select can be specified as an array of strings where each string specifies a select item, or the value '*' to
select all properties. Normally, these items point to direct parts of the query result without further
expanding into related entities.Further options are available with Automatic determination of $expand and
$select [page 937].

● $expand can be an object where each object property corresponds to an expand item: the key is the
complete expand path. The value can be set as follows:
a) true or null if no expand options are required
b) An object with query options for the $expand; numeric options (like $levels) may be given as
numbers. If the option is $expand or $select, the value may again be an object or array.

Example: Binding with parameters in JavaScript

 oView.byId("SalesOrderTable").bindItems({
 path : "/SalesOrderList",
 parameters : {
 "$count" : true,

928 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/disclaimer?site=http%3A%2F%2Fdocs.oasis-open.org%2Fodata%2Fodata%2Fv4.0%2Fodata-v4.0-part2-url-conventions.html
http://help.sap.com/disclaimer?site=http%3A%2F%2Fdocs.oasis-open.org%2Fodata%2Fodata%2Fv4.0%2Fodata-v4.0-part2-url-conventions.html
http://help.sap.com/disclaimer?site=http%3A%2F%2Fdocs.oasis-open.org%2Fodata%2Fodata%2Fv4.0%2Ferrata03%2Fos%2Fcomplete%2Fpart2-url-conventions%2Fodata-v4.0-errata03-os-part2-url-conventions-complete.html

 "$expand" : {
 "SO_2_SOITEM" : {
 "$orderby" : "ItemPosition",
 "$select" : ["ItemPosition", "Quantity", "QuantityUnit",
"SalesOrderID"]
 }
 },
 "$filter" : "BuyerName ge 'M'",
 "$orderby" : "GrossAmount desc",
 "$select" : ["BuyerName", "CurrencyCode", "GrossAmount", "Note",
"SalesOrderID"]
 } });

Example: Binding with parameters in an XML view ($select and $expand values as string)

 <Table growing="true" growingThreshold="5" id="SalesOrders"
 items="{
 path : '/SalesOrderList',
 parameters : {
 $count : true,
 $expand : 'SO_2_BP',
 $filter : 'BuyerName ge \'M\'',
 $orderby : 'GrossAmount desc',
 $select : 'BuyerName,CurrencyCode,GrossAmount,Note,SalesOrderID'
 }, }">

Example: Binding with parameters in an XML view ($select and $expand values as object)

 <Table growing="true" growingThreshold="5" id="SalesOrders"
 items="{
 path : '/SalesOrderList',
 parameters : {
 $count : true,
 $expand : {
 'SO_2_SOITEM' : {
 '$orderby' : 'ItemPosition',
 '$select' :
['ItemPosition','Quantity','QuantityUnit','SalesOrderID']
 }
 },
 $filter : 'BuyerName ge \'M\'',
 $orderby : 'GrossAmount desc',
 $select :
['BuyerName','CurrencyCode','GrossAmount','Note','SalesOrderID']
 },
 }">

changeParameters allows to change, add, or delete OData query options. This does not apply, however, to
binding-specific parameters that start with $$.

The parameters are changed according to the given map of parameters: Parameters with an undefined value
are removed, the other parameters are set, and missing parameters remain unchanged. Change, add or delete
is possible at the same time. The binding is refreshed as soon as the parameter changes are applied.

Example: Change binding parameters in JavaScript

 oView.byId("SalesOrderTable").getBinding("items").changeParameters({
 "$search" : '"mountain bike"',
 "$filter" : undefined });

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 929

Binding Collection Inline Count

The OData V4 model allows for binding the inline count of the entity collection read by an ODataListBinding
which has the parameter $count set to true. In the example below, the table title is bound to "$count", thus
representing the number of sales order entities in the collection bound to the table.

Example: Table with title bound to $count
 <Table id="SalesOrders"
 items="{
 path : '/SalesOrderList',
 parameters : {
 $count : true,
 }
 }"
>
 <headerToolbar>
 <Toolbar>
 <content>
 <Title id="SalesOrdersTitle" text="{$count} Sales Orders"/>
 </content>
 </Toolbar>
 </headerToolbar>
 ... </Table>

The ODataListBinding provides a header context which holds header information like inline count for the
list. Set the binding context for the relative property binding with path "$count" to the header context, see
ODataListBinding.getHeaderContext. With this, the property binding's value is the list's inline count.

Example: Setting the header context for a property binding to $count

 setHeaderContext : function () {
 var oView = this.getView();
 oView.byId("SalesOrdersTitle").setBindingContext(
 oView.byId("SalesOrders").getBinding("items").getHeaderContext()); }

 Note
The header context needs to be set when the list binding has been resolved, for example after a relative
binding has been given its context with sap.ui.base.ManagedObject#setBindingContext or by
binding on a parent element with sap.ui.core.Element#bindElement. In case the list binding is
resolved initially, it is sufficient to set the header context in
sap.ui.core.mvc.Controller#onBeforeRendering.

 Note
A property binding bound to the path "$count" may be part of a control hierarchy. When a parent control
receives a different binding context than the list's header context, this binding context is propagated to the
property binding. The property binding then fails to read its value as the context is not the header context
and a console error is written.

Example: On selection in the Sales Orders table, the application controller code sets the binding context of
the table for the corresponding Sales Order Items table with relative binding path "SalesOrderItems" to
the context corresponding to the selected sales order. The title of the Sales Order Items table which is
bound to "$count" fails to read its value.

930 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataListBinding.getHeaderContext
https://sapui5.hana.ondemand.com/#/api/sap.ui.base.ManagedObject/methods/setBindingContext
https://sapui5.hana.ondemand.com/#/api/sap.ui.core.Element/methods/bindElement
https://sapui5.hana.ondemand.com/#/api/sap.ui.core.mvc.Controller/methods/onBeforeRendering

To circumvent this issue, proceed as follows:

1. Define the ODataModel as an additional named model with a specific name, such as
"headerContext".

2. Bind the property binding to this model using the path "headerContext>$count".
3. Set the property binding's context with the model name "headerContext".

To see this solution for the above example, search for "headerContext" in the code of the OData V4
"Sales Orders" sample app.

Type Determination

The property binding automatically determines the appropriate type depending on the property's metadata,
unless a type is specified explicitly. For example, the binding "{DeliveryDate}" will determine the type
sap.ui.model.odata.type.DateTimeOffset (assuming the metadata specifies "Edm.DateTimeOffset"
for this property), but "{path : 'DeliveryDate', type : 'sap.ui.model.odata.type.String'}"
uses the hardcoded type sap.ui.model.odata.type.String instead (and does not require metadata). You
cannot specify format options or constraints unless you also hardcode the type.

Automatic type determination will take constraints from metadata into account, namely the OData property
facets "MaxLength", "Nullable", "Precision" and "Scale". In addition to the OData property facets, the
following OData V4 annotations are considered to set type constraints on automatic type determination:

● Org.OData.Validation.V1.Validation.Minimum,
Org.OData.Validation.V1.Validation.Maximum and
Org.OData.Validation.V1.Validation.Exclusive are used to set the constraints minimum,
maximum, minimumExclusive and maximumExlusive for sap.ui.model.odata.type.Decimal.

● com.sap.vocabularies.Common.v1.IsDigitSequence is used to set the constraint
isDigitSequence for sap.ui.model.odata.type.String.

 Note
Only constant expressions are supported to determine the annotation value in this case.

Currently, the types "Edm.Boolean", "Edm.Byte", "Edm.Date", "Edm.DateTimeOffset", "Edm.Decimal",
"Edm.Double", "Edm.Guid", "Edm.Int16", "Edm.Int32", "Edm.Int64", "Edm.SByte", "Edm.Single", "Edm.String"
and "Edm.TimeOfDay" are supported and mapped to the corresponding type in the namespace
sap.ui.model.odata.type. All other types, including collections, are mapped to the generic type
sap.ui.model.odata.type.Raw which can only be used to access the raw model value "as is", but not to
convert it to a human readable representation. This allows specialized controls to work with types that would
otherwise not be supported.

For more information, see the sap.ui.model.odata.type and sap.ui.model.odata.type.Raw API documentation in
the Demo Kit.

 Note
By default, a property binding delivers a value formatted according to the target type of the control
property it applies to, for example, “boolean” in case of <Icon src="sap-icon://message-warning"

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 931

http://help.sap.com/disclaimer?site=http%3A%2F%2Fdocs.oasis-open.org%2Fodata%2Fodata%2Fv4.0%2Fodata-v4.0-part3-csdl.html
http://help.sap.com/disclaimer?site=http%3A%2F%2Fdocs.oasis-open.org%2Fodata%2Fodata%2Fv4.0%2Fodata-v4.0-part3-csdl.html
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.type
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.type.Raw

visible="{path : 'DeliveryDate', formatter : '.isOverdue'}">. This leads to errors
because type determination adds the correct type for the DeliveryDate property which is
DateTimeOffset and cannot format its value as a boolean value. In such cases, use targetType :
'any' as follows:

<Icon src="sap-icon://message-warning" visible="{path : 'DeliveryDate',
targetType : 'any', formatter : '.isOverdue'}">

In rare cases, you might also want to specify a different targetType, for example string, boolean, int,
or float. For more information how these values relate to OData types, see the sap.ui.model.odata.type
API documentation or explore the XML Templating: UI5 OData Types sample in the Demo Kit. For more
information about targetType, see the sap.ui.base.ManagedObject#bindProperty API documentation in
the Demo Kit.

Binding Modes

The OData V4 model supports one-time binding, one-way binding and two-way binding modes (see
sap.ui.model.BindingMode in the Demo Kit). The two-way binding mode is the default binding mode of the
OData V4 model. You can use the setDefaultBindingMode method on the model to change the binding
mode. For more information, see setDefaultBindingMode in the Demo Kit.

Suspend and Resume

You can suspend a list binding or context binding with its suspend method. A suspended binding does
not send data service requests nor does it fire change events. You can only suspend absolute bindings or
bindings which are quasi-absolute. A quasi-absolute binding is a relative binding with a context which is not a
sap.ui.model.odata.v4.Context. You can only suspend a binding which is not yet suspended. For a
relative binding having a V4 context, you may suspend the root binding of its binding hierarchy which is the
(quasi-) absolute ancestor binding of this binding. The binding's method getRootBinding provides the root
binding; for (quasi-) absolute bindings it returns the binding itself.

You can resume a suspended list or context binding with its resume method.

Typical use cases for suspend and resume are:

1. Trigger read requests for controls in the view later not when the view is initialized:
In some situations you may want to suppress OData requests and change events triggered by an OData V4
binding for a certain period of time. This is useful for value help dialogs, such as the value help for the /
BusinessPartnerList when creating a sales order in the SalesOrders OData V4 sample.

2. UI adaptation at runtime:
The UI is adapted by adding or removing a column to a table or a field to a form; the "auto-$expand/
$select" feature recomputes the $expand and $select query options when the corresponding list binding
or context binding is suspended before adaptation and resumed afterwards.

932 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.type
https://sapui5.hana.ondemand.com/#/entity/sap.ui.core.mvc.XMLView/sample/sap.ui.core.sample.ViewTemplate.types
https://sapui5.hana.ondemand.com/#/api/sap.ui.base.ManagedObject/methods/bindProperty
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.BindingMode
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.Model/methods/setDefaultBindingMode
https://sapui5.hana.ondemand.com/#docs/api/sap.ui.model.odata.v4.ODataListBinding/methods/suspend
https://sapui5.hana.ondemand.com/#docs/api/sap.ui.model.odata.v4.ODataContextBinding/methods/suspend
https://sapui5.hana.ondemand.com/#docs/api/sap.ui.model.odata.v4.Context
https://sapui5.hana.ondemand.com/#/sample/sap.ui.core.sample.odata.v4.SalesOrders/preview

 Note
The template for the aggregation in a UI5 control cannot be adapted afterwards. That's why the
aggregation has to be "bound again" after applying changes to the table template. For example. for a
sap.m.Table, you have to call its bindItems method.

3. Avoid intermediate request when modifying the binding multiple times
You want to add a filter and change the sorting of a list binding. If the binding is not suspended, it will
trigger a request after calling the filter method, and a second request after calling the sort method. If it
is suspended, only one request with the updated filter and sort criteria is sent on resume.

The code below shows a snippet from the SalesOrders OData V4 sample which delays the request to /
BusinessPartnerList until the Create Sales Order dialog is displayed.

 Note
The suspended flag in the binding info triggers a call to the suspend method of the corresponding binding
once it is created.

 Example
View

<Dialog id="CreateSalesOrderDialog" title="Create New Sales Order"> ...
 <Input id="NewBuyerID" suggestionItems="{path : '/BusinessPartnerList',
suspended : true}">
 <suggestionItems>
 <core:ListItem key="{BusinessPartnerID}"
additionalText="{CompanyName}" text="{BusinessPartnerID}"/>
 </suggestionItems>
 </Input>
... </Dialog>

The controller code to open the dialog resumes the list binding on /BusinessPartnerList and thus triggers
the request.

 Example
Controller

var oBPListBinding = this.byId("NewBuyerID").getBinding("suggestionItems");
if (oBPListBinding.isSuspended()) {
 oBPListBinding.resume(); }

When a binding is suspended, all methods which may trigger CRUD requests for this binding, for example
ODataListBinding.create throw an error. This is also true for dependent bindings of a suspended binding.
However methods that cause the binding to be refreshed completely are allowed. These methods are:

● ODataContextBinding.changeParameters
● ODataContextBinding.refresh
● ODataListBinding.changeParameters

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 933

https://sapui5.hana.ondemand.com/#/api/sap.m.Table
https://sapui5.hana.ondemand.com/#/sample/sap.ui.core.sample.odata.v4.SalesOrders/preview
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataContextBinding/methods/changeParameters
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataContextBinding/methods/refresh
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataListBinding/methods/changeParameters

● ODataListBinding.refresh
● ODataListBinding.filter
● ODataListBinding.sort
● ODataListBinding.setAggregation
● ODataListBinding.updateAnalyticalInfo

 Caution
It is not allowed to suspend operation bindings.

Context API

The OData V4 model's list and context bindings create sap.ui.model.odata.v4.Context objects, which
enhance sap.ui.model.Context and provide the following methods:

● getObject or getProperty provide synchronous and requestObject or requestProperty provide
asynchronous access to values; the methods to access a property can provide the value in internal or
external format

● getBinding retrieves the binding which created the context
● getIndex returns the context's list index provided the context has been created by an

ODataListBinding
● created returns a promise that resolves after the successful creation of the new entity in the back end
● delete deletes an entity
● getCanonicalPath, requestCanonicalPath determines the "canonical path" of an entity
● hasPendingChanges tests for pending changes
● isTransient tests whether a new entity exists on the client-side only
● refresh refreshes an entity
● requestSideEffects loads the side effects of a PATCH
● setProperty asynchronously sets a property value. This is even possible without reading data first, in

which case If-Match : * is used. You can also set a property without sending a PATCH request by using
null as a group ID, but only if data has been read before.

 Note
For getObject and requestObject, the data is cloned if the given path points to a non-primitive type.
This ensures that internal OData model values cannot be modified.

When a property is read in external format, the format is solely determined by the type defined in the OData
meta data of the property, and not by the type or formatter specified for the binding.

 // assume oEvent is an event fired when a button is pressed in an item of a
table bound to /SalesOrderList
sOrderID =
oEvent.getSource().getBindingContext().getProperty("SalesOrderID"); // the
SalesOrderID in the same item
// get a value in external format e.g. "1.234,23" instead of 1234.23 sGrossAmount = oEvent.getSource().getBindingContext().getProperty("GrossAmount",
true);

934 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataListBinding/methods/refresh
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataListBinding/methods/filter
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataListBinding/methods/sort
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataListBinding/methods/setAggregation
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataListBinding/methods/updateAnalyticalInfo

For more information, see sap.ui.model.odata.v4.Context in the Demo Kit.

Accessing Data in Controller Code

In the OData V4 model, bindings are used to access and modify backend data also if the data is accessed or
modified in controller code.

You can create bindings that are independent of controls using the factory methods
sap.ui.model.odata.v4.ODataModel.bindContext, sap.ui.model.odata.v4.ODataModel.bindList, and
sap.ui.model.odata.v4.ODataModel.bindProperty.

Contexts

sap.ui.model.odata.v4.Context is central for CRUD operations in the controller code.
sap.ui.model.odata.v4.Context provides the following functions:

● requestObject: Returns a promise on the value for the given path relative to the context.
● requestProperty: Returns a promise on the property value for the given path relative to the context.
● getObject: Returns the value for the given path relative to this context
● getProperty: Returns the property value for the given path relative to this context.
● setProperty: Sets a new value for the property identified by the given path.

Lists

A list binding is obtained either with sap.ui.model.odata.v4.ODataModel.bindList, or by getting an
existing list binding bound to a control. Entities of the list can be requested using
sap.ui.model.odata.v4.ODataModel.ODataListBinding.requestContexts. The function returns a promise
resolving with an array of the requested contexts. The data of each context can be accessed using the
requestObject, requestProperty, getObject, and getProperty methods of
sap.ui.model.odata.v4.Context. To modify the data,
sap.ui.model.odata.v4.Context.setProperty can be used.

var oList = oModel.bindList("/SalesOrderList"); oList.requestContexts(10, 20).then(function (aContexts) {
 aContexts.forEach(function (oContext) {
 // As we have fetched the data already, we can access "Note" through
getProperty
 var sNote = oContext.getProperty("Note");
 if (!sNote) {
 oContext.setProperty("Note", "No notes");
 }
 }); });

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 935

https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.Context
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataModel.bindContext
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataModel.bindList
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataModel.bindProperty
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.Context
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataListBinding.requestContexts

New entities can be created with sap.ui.model.odata.v4.ODataModel.ODataListBinding.create. It is not required
to read existing records before.

var oList = oModel.bindList("/SalesOrderList"), oNewContext = oList.create();

Single Entities

A context binding is obtained either with sap.ui.model.odata.v4.ODataModel.bindContext, or by getting an
existing context binding from the control tree. Data can be accessed through the bound context, see
sap.ui.model.odata.v4.ODataContextBinding.getBoundContext. Using
sap.ui.model.odata.v4.ODataContextBinding.requestObject is a short cut for
oBinding.getBoundContext().requestObject(). sap.ui.model.odata.v4.Context.setProperty is used to
modify data.

 Note
Relative bindings need to be resolved meaning that a context must have been set before data access is
possible.

var oContextBinding = oModel.bindContext("/SalesOrderList('0500000000')"); oContextBinding.requestObject("Note").then(function (sNote) {
 if (!sNote) {
 oContextBinding.getBoundContext().setProperty("Note", "No notes");
 } });

Single Properties

The access to single properties may either be done using a context binding as described above in the Single
Entities section, or by using a property binding. The property binding is obtained with
sap.ui.model.odata.v4.ODataModel.bindProperty, or by getting an existing property binding bound to a control.
The value can be requested using sap.ui.model.odata.v4.ODataPropertyBinding.requestValue. A synchronous
access is possible with sap.ui.model.odata.v4.ODataPropertyBinding.getValue, if the value is already available.

The value of a property binding can be modified using
sap.ui.model.odata.v4.ODataPropertyBinding.setValue.

var oNote = oModel.bindProperty("/SalesOrderList('0500000000')/Note");

oNote.requestValue().then(function (sValue) {
 // do something with sValue
 // Note: We cannot use setValue as oNote is an absolute property binding });

936 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataListBinding.create
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataModel.bindContext
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataContextBinding.getBoundContext
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataModel.bindProperty
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataPropertyBinding.requestValue

Automatic determination of $expand and $select

With automatic determination of $expand and $select ("auto-$expand/$select" in short), the OData V4
Model computes $expand and $select query options for service requests from binding paths specified for
control properties. This has the following advantages:

1. You don't have to add or change $select or $expand in the binding parameters yourself.
2. Auto-$expand/$select only selects data needed for the UI, so that you get a minimal response size and

improved performance.

You switch on auto-$expand/$select by setting the flag autoExpandSelect during model construction.

It is still possible to specify $expand and $select in the binding parameters. This is useful if you need to
access properties which are not bound on the UI. When auto-$expand/$select is switched on, you may add
any path to a simple or structured property to $select, even if this path contains navigation properties. The
binding converts this $select to a $expand if necessary. It is not possible to change $expand and $select
via the binding's changeParameters API. You don't have to specify key properties in the binding's $select
parameter if they aren't bound on the UI. These are selected automatically because keys are required in many
scenarios, for example, to compute the edit-URL to update an entity.

In auto-$expand/$select mode, a parent binding aggregates the binding paths and query options of its child
bindings in its $select and $expand options, so that they do not send own data services requests. This
aggregation is only possible in the following cases:

1. If the request for the parent binding is not sent and the child binding is a list or context binding which has
only OData system query options in its parameters, or is a property binding.

2. If the request for the parent binding is already sent and the request already contains the aggregation for
the child binding in its $expand and $select.

In other cases the child binding is not aggregated and sends an own request.

The list binding for the table in the following sample leads to the following request (reduced to $expand and
$select parameters):

SalesOrderList?$select=BuyerName,LifecycleStatus,Note,SalesOrderID&
$expand=SO_2_BP($select=BusinessPartnerID,CompanyName)

<Table items="{/SalesOrderList}" ...
 <items>
 <ColumnListItem>
 <cells> <Text text="{BuyerName}"/> </cells>
 <cells> <Text text="{SO_2_BP/CompanyName}"/> </cells>
 <cells> <Input enabled="{= %{LifecycleStatus} === 'N' }" value="{Note}"/>
</cells>
 </ColumnListItem>
 </items> </Table>

If you use a list binding with factory function with auto-$expand/$select, you need to specify the binding
parameters $expand and $select for all properties that may be needed by the factory function.

 Note
During automatic determination of $expand and $select the factory function is called with a "virtual"
context, that returns undefined for getProperty calls.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 937

https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataModel/constructor
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataListBinding/methods/changeParameters
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.Context/methods/getProperty

For auto-$expand/$select the model metadata must be analyzed before sending the request. This allows
further optimization of the request, also enabling access to the parent entity by reducing partner navigation
properties in the path.

Example: A view shows a sales order together with its line items, with a line item binding that is relative to the
sales order binding. Any property binding relative to the line item can then access a property of the sales order
without causing a $expand. This even works if the property is needed only after the sales order data has been
requested. This feature can be used to control the visibility or editability of a line item property based on the
state of the sales order, or for value help at the line item.

This path reduction of partner navigation properties is also performed in
sap.ui.model.odata.v4.Context#requestSideEffects, so that side effects on the sales order can be
requested via the context of a line item.

Binding Events

The OData V4 model supports certain events intended for applications, and others that are to be used for
controls, as outlined in this section.

Events for Applications

For applications, the OData V4 model supports the following events:

● The dataRequested and dataReceived events are typically used by applications to display and hide a
busy indicator or to process a back-end error which happened when requesting data. The events are fired
by ODataPropertyBinding, ODataContextBinding and ODataListBinding when reading data:
○ The dataRequested event is fired directly after data has been requested from a back end.
○ The dataReceived event is fired after the back-end data has been processed. Note that the

dataReceived event is also fired after a back-end request has failed. The error of the failed request is
passed to the event handler as an error parameter.

For more details, see the corresponding API documentation for the specific bindings
ODataPropertyBinding, ODataContextBinding and ODataListBinding in the Demo Kit.

● The createSent and createCompleted events at the ODataListBinding are typically used by
applications to lock the UI for the created entity to avoid modifications while the data for the created entity
is sent to the back end, but the response from the back end is not yet processed on the client. For each
createSent event, a createCompleted event is fired.
○ The createSent event is fired each time a POST request that is triggered for an

ODataListBinding#create is sent to the backend.
○ The createCompleted event is fired each time the backend has responded to a POST request

triggered for an ODataListBinding#create.
For more information, see ODataListBinding#create.

● The patchSent and patchCompleted events are typically used by applications that are using update
groups with submit mode Auto (which is the default) and which need to be informed when PATCH requests
are sent to the back end and when they are processed. For example, these events can be used to display a
DraftIndicator to inform the user that his changes are being saved and when saving is finished.

938 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v4.ODataPropertyBinding.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v4.ODataContextBinding.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v4.ODataListBinding.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v4.ODataListBinding/methods/create.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v4.SubmitMode.html

The patchSent and patchCompleted events are fired by ODataContextBinding and
ODataListBinding if they send their own service request:
○ The patchSent event is fired when the first PATCH request for this binding is sent to the backend.
○ The patchCompleted event is fired when the backend has responded to the last PATCH request for

this binding.
If ODataContextBinding and ODataListBinding use the service request of a superordinate binding,
the events are fired by the superordinate binding.
For more details, see the corresponding API documentation for the specific bindings ODataContextBinding
and ODataListBinding in the Demo Kit.

Events for Controls

The events change and refresh are meant for controls only, and not available for app development. They
indicate that the respective binding has new data which can be accessed by the control:

● When the binding is initialized, it fires a change event with the parameter reason set to
sap.ui.model.ChangeReason.Change.

● When a relative binding gets a new context, it fires a change event with the parameter reason set to
sap.ui.model.ChangeReason.Context.

● When a binding is refreshed, the event fired depends on the binding type, as follows:
a) ODataPropertyBinding and ODataContextBinding fire a change event with the parameter
reason set to sap.ui.model.ChangeReason.Refresh.
b) ODataListBinding fires a refresh event.

For more details, see the corresponding API documentation for the specific bindings ODataPropertyBinding,
ODataContextBinding and ODataListBinding, as well as sap.ui.model.ChangeReason in the Demo Kit.

Related Information

ODataPropertyBinding
ODataContextBinding
ODataListBinding
sap.ui.model.ChangeReason

Filtering

The OData V4 Model supports server side filtering on lists.

To use server side filtering, set the operation mode to sap.ui.model.odata.OperationMode.Server. This can be
done as follows:

● For a single ODataListBinding instance, set the binding parameter $$operationMode
● For all list bindings of the model, set the model parameter operationMode.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 939

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v4.ODataContextBinding.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v4.ODataListBinding.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v4.ODataPropertyBinding.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v4.ODataContextBinding.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v4.ODataListBinding.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.ChangeReason.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v4.ODataPropertyBinding.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v4.ODataContextBinding.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v4.ODataListBinding.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.ChangeReason.html
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.OperationMode/properties

Example: Operation mode set in manifest.json for the model

 "models" : {
 "" : {
 "dataSource" : "default",
 "settings" : {
 "operationMode" : "Server",
 "synchronizationMode" : "None"
 }
 } }

Example: Operation mode set as binding parameter for a specific list binding

 <Table growing="true" growingThreshold="5" id="Equipments"
 items="{
 path : '/Equipments',
 parameters : {
 $$operationMode : 'Server',
 $filter : 'Category eq \'Electronics\'',
 $select : 'Category,EmployeeId,ID,Name'
 } }">

The ODataListBinding allows to set static and dynamic filters:

● To set a static filter, use the $filter system query option in the binding parameters. The static filter value
is sent with every data service request for the binding; you may specify any filter value allowed in OData V4.
The static filter cannot be overwritten for an existing binding.

● The dynamic filter is an instance of sap.ui.model.Filter , or an array thereof. For an array, the filters are
combined with a logical AND. You can set the initial value for the dynamic filter in ODataModel.bindList or
declaratively in an XML view with the filters property in an aggregation's binding information. To set the
dynamic filter, use the ODataListBinding.filter method. This filter overwrites the initial value specified on
binding construction.

The ODataListBinding combines the dynamic filter and static filter with a logical AND.

Examle: Dynamic and static filters

 <Table growing="true" growingThreshold="5" id="Equipments"
 items="{
 path : '/Equipments',
 parameters : {
 $$operationMode : 'Server',
 $filter : 'Category eq \'Electronics
\'', <-- static filter
 $select : 'Category,EmployeeId,ID,Name'
 },
 filters : { <-- dynamic filter
initial value
 path : 'EmployeeId',
 operator : 'GE',
 value1 : '0000'
 } }">

The example above filters the Equipments entity set by Category (static filter) and EmployeeId (dynamic
filter, initial value).

940 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.Filter.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/ODataModel.bindList.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/ODataListBinding.filter.html

Filtering with Any and All

The OData V4 model also supports the Lambda Operators any and all as defined in section 5.1.1.10 of the
OData Version 4.0. Part 2: URL Conventions specification. They are represented by sap.ui.model.Filter
objects with filter operators sap.ui.model.FilterOperator.Any and sap.ui.model.FilterOperator.All.

Example:

sap.ui.model.Filter({ // the path of the collection for which the condition needs to be
evaluated
 path : "TEAM_2_EMPLOYEES",
 // either sap.ui.model.FilterOperator.Any or
sap.ui.model.FilterOperator.All
 operator : sap.ui.model.FilterOperator.Any,
 // any OData identifier which is a variable for the current element of
the collection referenced by path
 variable : "employee",
 // the filter condition; the path of the nested filter contains the
variable as prefix to reference current element of the collection
 condition : new sap.ui.model.Filter("employee/AGE",
sap.ui.model.FilterOperator.GT, 42) })

The path of the filter object is the path of the collection for which the boolean condition needs to be evaluated.
The variable can be any OData identifier and it needs to be part of the path of a nested filter condition.

Filter Operator any

The filter operator Any applies the boolean filter condition to each member of the collection referenced by
path. If the condition is true for at least one member of the collection, the any-filter matches. The filter with
the Any operator without a filter condition matches only if the collection referenced by path is not empty.

Example 1: Get all teams that have at least one employee who is older than 42

 oTeamsBinding.filter(
 new sap.ui.model.Filter({
 path : "TEAM_2_EMPLOYEES",
 operator : sap.ui.model.FilterOperator.Any,
 variable : "employee",
 condition : new sap.ui.model.Filter("employee/AGE",
sap.ui.model.FilterOperator.GT, 42)
 }););

The resulting request would be: http://host/service/TEAMS?$filter=TEAM_2_EMPLOYEES/
any(employee:employee/AGE gt 42)

Example 2: Get all teams that have at least one employee assigned

oTeamsBinding.filter(new sap.ui.model.Filter({
 path : "TEAM_2_EMPLOYEES",
 operator : sap.ui.model.FilterOperator.Any
 }););

The resulting request would be: http://host/service/TEAMS?$filter=TEAM_2_EMPLOYEES/any()

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 941

http://help.sap.com/disclaimer?site=http%3A%2F%2Fdocs.oasis-open.org%2Fodata%2Fodata%2Fv4.0%2Ferrata03%2Fos%2Fcomplete%2Fpart2-url-conventions%2Fodata-v4.0-errata03-os-part2-url-conventions-complete.html%23_Toc453752358
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.Filter.html
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.FilterOperator/properties
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.FilterOperator/properties

Filter Operator all
The filter operator All applies the boolean filter condition to each member of the collection referenced by
path. If the condition is true for all members of the collection, the all-filter matches.

Example: Get all teams for which all employees are older than 42.

 oOrdersListBinding.filter(
 new sap.ui.model.Filter({
 path : "TEAM_2_EMPLOYEES",
 operator : sap.ui.model.FilterOperator.All,
 variable : "employee",
 condition : new sap.ui.model.Filter("employee/AGE",
sap.ui.model.FilterOperator.GT, 42)
 }););

The resulting request would be: http://host/service/TEAMS?$filter=TEAM_2_EMPLOYEES/
all(employee:employee/AGE gt 42)

Related Information

sap.ui.model.odata.OperationMode.Server

Sorting

The OData V4 model supports server side sorting on lists.

To use server side sorting, set the operation mode to sap.ui.model.odata.OperationMode.Server as described
unter Filtering [page 939].

ODataListBinding allows to set static and dynamic sorters:

● For setting a static sorter, the $orderby system query option in the binding parameters is used. The static
sorter value is sent with every data service request for the binding. The static sorter cannot be overwritten
for an existing binding.

● The dynamic sorter is a sap.ui.model.odata.Sorter instance, or an array thereof in which case the sorters
are concatenated. You can set the initial value for the dynamic sorter in ODataModel.bindList, or
declaratively in an XML view with the sorter property in an aggregation's binding information. For setting
the dynamic sorter, the ODataListBinding.sort method is used. The sorter that is given here overwrites the
initial value specified on binding construction.

Dynamic sorters are transformed to an OData $orderby system query option value and the static sorters are
always appended as secondary sort criterion. In this example, the equipments are first ordered by Category
(dynamic sorter) and then by Name (secondary sort criterion, static sorter). For a description of the group
property, see getGroup.

Example: Dynamic and static sorters

#js <Table growing="true" growingThreshold="5" id="Equipments"
 items="{

942 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.OperationMode.html%23.Server
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.OperationMode.html%23.Server
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.Sorter.html
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataModel/methods/bindList
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataListBinding/methods/sort
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.Sorter/methods/getGroup

 path : '/Equipments',
 parameters : {
 $$operationMode : 'Server',
 $orderby : 'Name', <-- static sorter
 $select : 'Category,EmployeeId,ID,Name'
 },
 sorter : { <-- dynamic sorter;
can be overwritten by calling sort on the list binding
 path : 'Category', group : true <-- optional, see
parameter vGroup of sap.ui.model.Sorter } }">

In this example, the equipments are first ordered by Category (dynamic sorter) and then by Name (secondary
sort criterion, static sorter).

Value Lists

The OData V4 model supports the access to value list metadata and data.

Value lists enable you to read the possible values for a given property, such as Category in the Product entity
type. A value list is typically visualized as a dropdown list, or as a value help dialog, that is, a popup with
additional features such as filters which help finding the correct value. For performance reasons, you can
reduce the service $metadata document size by outsourcing value list information to value list services.
Consequently, the value list information is accessed in two steps:

1. Determine the value list type that is available for a given property via
ODataPropertyBinding.requestValueListType without loading the value list service. This is
typically called to determine the visualization of this property.
The sap.ui.model.odata.v4.ValueListType, that the promise delivers, can have the following
values:
○ None: No value list exists.
○ Fixed: One enumeration of fixed values exists.
○ Standard: A dynamic value list with multiple queries including selection criteria exists.

2. Determine the value list detail information on demand via
ODataPropertyBinding.requestValueListInfo which returns a map of all annotations
com.sap.vocabularies.Common.v1.ValueList or
com.sap.vocabularies.Common.v1.ValueListMapping by qualifier. Each mapping has the
ValueListMappingType type as specified in the OData 4.0 Common Vocabulary, see OData 4.0
Vocabularies - SAP Common . Each mapping is enriched by a $model property of type
sap.ui.model.odata.v4.ODataModel which can be used to access the value list metadata and
retrieve value list data.
For value lists of type Fixed, only one mapping is expected and the qualifier is ignored. The mapping is
available with key "".

Additionally, you can use the synchronous method ODataPropertyBinding.getValueListType if the
metadata for the property is already available. If this is not the case, an exception is thrown. The API is available
in sap.ui.model.odata.v4.ODataMetaModel analogously for use cases where controls are not yet in
place, for example, during XML templating.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 943

https://sapui5.hana.ondemand.com/#/api/sap.ui.model.Sorter/constructor
http://help.sap.com/disclaimer?site=https%3A%2F%2Fwiki.scn.sap.com%2Fwiki%2Fdisplay%2FEmTech%2FOData%2B4.0%2BVocabularies%2B-%2BSAP%2BCommon%23ValueListMappingType
http://help.sap.com/disclaimer?site=https%3A%2F%2Fwiki.scn.sap.com%2Fwiki%2Fdisplay%2FEmTech%2FOData%2B4.0%2BVocabularies%2B-%2BSAP%2BCommon%23ValueListMappingType

Example: Retrieving the value list type for a property

#js onModelContextChange : function (oEvent) {
 var oBinding = this.getBinding("value");

 if (oBinding && oBinding.isResolved()) {
 oBinding.requestValueListType().then(function (sValueListType) {

 // render the control depending on the value list type and
attach the below
 // event handler onValueHelp which is invoked when the user
requests value help

 switch (sValueListType) {
 case ValueListType.Standard:
 ...
 break;
 case ValueListType.Fixed:
 ...
 break;
 case ValueListType.None:
 ...
 break;
 }
 that.setAggregation("field", oField);
 });
 }
 },
...
 onValueHelp : function (oEvent) {
 var oBinding = this.getBinding("value");

 oBinding.requestValueListInfo().then(function (mValueListInfo) {
 // this assumes value list type "Fixed"
 var oValueListMapping = mValueListInfo[""],
 oValueListMetaModel = oValueListMapping.$model.getMetaModel();

 ...
]);
 }, ...

The ValueList Annotation

There are two options to place the ValueList annotation:

● In the value list service (the preferred way): When adding a value list for a property, the OData service only
contains an annotation with the property as target and the term
com.sap.vocabularies.Common.v1.ValueListReferences pointing to the metadata of the value list service.
The ValueList annotation itself is in the referenced service. It must not have the properties CollectionRoot
and SearchSupported.

● In the OData service itself: In this case, the ValueList annotation must have the property
CollectionRoot pointing to the metadata of the value list service. The annotation
com.sap.vocabularies.Common.v1.ValueListReferences is not needed.
The disadvantage of this solution is that the complete value list information for all properties of the service
is preloaded when the application is initialized.

944 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Related Information

OData 4.0 Vocabularies - SAP Common > ValueListType
OData 4.0 Vocabularies - SAP Common > ValueListMappingType
sap.ui.model.odata.v4.ValueListType
sap.ui.model.odata.v4.ODataPropertyBinding#getValueListType
sap.ui.model.odata.v4.ODataPropertyBinding#requestValueListInfo
sap.ui.model.odata.v4.ODataMetaModel#getValueListType
sap.ui.model.odata.v4.ODataMetaModel#requestValueListInfo

OData Operations

The OData V4 model supports OData operations (ActionImport, FunctionImport, bound Actions and
bound Functions). Unbound parameters are limited to primitive values.

Simple Function Bindings

You gain access to a FunctionImport by binding it to a view element. If there are no parameters and there is
no need to control the point in time when the function is called, you can simply bind the OData path like this:

<Text text="{path: '/GetNumberOfAvailableItems()', type:
'sap.ui.model.odata.type.Int16'}"/>

This binding path represents the function's return value. The model calls the function immediately when a
control requests this value.

The type must be specified if the return value is a primitive type.

Deferred Operation Bindings

Often it is not feasible for the operation to be called immediately, for example if there are parameters that the
user has to enter first. In such cases, use an ODataContextBinding as element binding at a layout element in
the view, for example a <Form> or a <VBox> (see the ODataContextBinding API documentation in the Demo
Kit). Mark the operation as deferred by inserting an ellipsis ("...") in the brackets, for example
GetNextAvailableItem(...). Access the return value from child elements using relative bindings. When
used like this, the context binding is called an operation binding or more specifically, a function binding or
action binding depending on the type of OData operation it is used for.

If the operation binding defers operation execution, you need to call its execute method to execute the
operation. See below for an example.

View:

<Form id="getNextAvailableItem" binding="{/GetNextAvailableItem(...)}">

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 945

https://wiki.scn.sap.com/wiki/display/EmTech/OData+4.0+Vocabularies+-+SAP+Common#ValueListType
https://wiki.scn.sap.com/wiki/display/EmTech/OData+4.0+Vocabularies+-+SAP+Common#ValueListMappingType
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v4.ValueListType.html
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataPropertyBinding/methods/getValueListType
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataPropertyBinding/methods/requestValueListInfo
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataMetaModel/methods/getValueListType
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataMetaModel/methods/requestValueListInfo
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v4.ODataContextBinding.html

 <Label text="Description"/>
 <Text text="{Description}"/>
 <Button text="Call the function" press="onGetNextAvailableItem"/> </Form>

Controller:

onGetNextAvailableItem : function (oEvent) { this.getView().byId("getNextAvailableItem").getObjectBinding().execute(); }

In the above example, the function import is bound to a form (which has an ID that we need later). The text field
showing a property of the result is a child of this form. It has a relative binding to the property "Description".

If the function returns a primitive value or a collection, the binding for the result must be "{value}" as shown
in the 2 examples below:

View:

<Form id="getNumberOfAvailableItems" binding="{/GetNumberOfAvailableItems(...)}"> <Label text="Number of available items:"/>
 <Text text="{value}"/>
 <Button text="Call the function" press="onGetNumberOfAvailableItems"/> </Form>

<VBox id="getAvailableItems" binding="{path : '/GetAvailableItems(...)',
parameters : {$select : 'ProductName', 'ProductId'}}"> <List id="xyz" items="{value}">
 <items>
 <ObjectListItem title="{ProductName}" />
 </items>
 </List> </VBox>

execute returns a promise which is resolved if the operation was successful and rejected with an error if this
was not the case. Note that the promise is not fulfilled with the action's result: Use dependent bindings to
access the result.

refresh is silently ignored on a deferred function binding as long as it has not yet been executed. Afterwards,
a refresh calls the function again.

Action Bindings

Action bindings must be deferred, otherwise the application cannot control when the action is executed. A
deferred action binding is declared exactly like a deferred function binding:

View:

<Form id="Submit" binding="{/Submit(...)}"> <Button text="Submit the action" press="onSubmit"/> </Form>

You append "(...)" even though the action's resource URL does not contain them. However, they are needed to
mark the binding as deferred. In execute, the binding uses the metadata to distinguish between action and
function and to build the correct operation resource path.

946 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

refresh is always silently ignored on a deferred action binding to prevent the action from being executed
accidentally (for example by calling the refresh method on the ODataModel instance oModel.refresh()).

Operation Parameters

You can use the parameters of a deferred operation binding inside an XML view.

The parameters are addressed by the path prefix "$Parameter". This can either be done by binding each
control property via the path prefix "$Parameter" (Option 1) or by having an outer binding with a "$Parameter"
path (Option 2).

 Note
The path "$Parameter" must not be added directly to the path of a deferred operation binding. A deferred
operation binding is identified by an ellipsis at the end of the path.

This is how to bind each property without a "$Parameter" context:

View:

 Example
Binding parameters to a dialog (Option 1)

<Dialog binding="{/ChangeTeamBudgetByID(...)}" id="operation1" title ="Change
Team Budget"> <buttons>
 ...
 </buttons>
 <form:SimpleForm>
 <Label text="TeamID" />
 <Input value="{$Parameter/TeamID}" />
 <Label text="Budget" />
 <Input value="{$Parameter/Budget}" />
 </form:SimpleForm> </Dialog>

Alternatively, you may bind the entire form to the $Parameter context:

View:

 Example
Binding parameters to a dialog (Option 2)

<Dialog binding="{/ChangeTeamBudgetByID(...)}" id="operation2" title="Change
Team Budget"> <buttons>
 ...
 </buttons>
 <form:SimpleForm binding="{$Parameter}">
 <Label text="TeamID" />
 <Input value="{TeamID}" />
 <Label text="Budget" />
 <Input value="{Budget}" />
 </form:SimpleForm> </Dialog>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 947

In either case, the values of the parameters are set using the model binding of the control, with no need to write
any application code.

Alternatively, operation parameters can be set by calling the function setParameter on the operation binding,
as shown in this example:

Controller:

onSubmit : function (oEvent) { this.getView().byId("Submit").getObjectBinding().setParameter("Comment",
sComment).execute(); }

The API method getParameterContext can be used to access parameters in controller code, see also
Accessing Data in Controller Code [page 935]

The example below demonstrates how a budget may be modified depending on the TeamID:

Controller:

 Example
Reading parameter values using the parameter context

adaptBudgetToTeam : function (){ var oDialog = this.oView.byId("operation2"); // the second dialog in the
paragraph before
 oParameterContext = oDialog.getObjectBinding().getParameterContext();

 if (oParameterContext.getProperty("TeamID') === "STARTUP") {
 oParameterContext.setProperty("Budget", 555.55);
 else {
 oParameterContext.setProperty("Budget", 123.45);
 } }

 Note
The parameter context is only defined if the operation binding is resolved.

Bound Actions and Functions

So far, the examples always used operations at root level, addressed via an action import or function import.
However, it is also possible to bind an action or a function to another resource of the service. This can be an
entity, a collection of entities or an entity property.

Bound actions or functions are controlled in the same way as unbound operations; append (...) to the
binding path for the control's property.

To call actions or functions bound to a single entity, entity property, or navigation property use a relative
binding. The following sample calls the "invoice created" action on the sales order selected in the
corresponding table:

var oModel = this.getView().getModel(),

948 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 oTable = this.getView().byId("SalesOrders"),
 oSalesOrderContext = oTable.getSelectedItem().getBindingContext(),
 oAction = oMoodel.bindContext("name.space.InvoiceCreated(...)",
oSalesOrderContext);

oAction.execute().then(
 function () {
 MessageToast.show("Invoice created for sales order " +
oSalesOrderContext.getProperty("SalesOrderID"));
 },
 function (oError) {
 MessageBox.alert(oError.message, {
 icon : MessageBox.Icon.ERROR,
 title : "Error"});
 });
 });

To call actions or functions bound to a collection specified by an OData entity set, you can create a context
binding with an absolute path, or with a relative path for the operation (for example
name.space.DestroyOutdated(...)") and the header context of a list binding as parent context. The
following sample shows a button press event handler which calls the destroy outdated action on the
LeaveRequests entity set.

var oModel = this.getView().getModel(); oModel.bindContext("/LeaveRequests/name.space.DestroyOutdated(...)").execute();

The same example with a relative binding and the header context of the list binding as parent context:

var oModel = this.getView().getModel(), // assume there is a table with ID "leaveRequests" and its items aggregation
bound to "/LeaveRequests"
 oListBinding = this.byId("leaveRequests").getBinding("items"),
 oHeaderContext = oListBinding.getHeaderContext(); oModel.bindContext("name.space.DestroyOutdated(...)", oHeaderContext).execute();

 Note
● The path of an operation binding may also start with a navigation property.

Example: The operation binding has a relative path BP_2_PRODUCT/name.space.Change(...). You
set its binding context from the selected item in a table bound to /BusinessPartners. When you call
execute on the operation binding, the "change" action is executed with the selected business
partner's navigation property BP_2_PRODUCT as binding parameter.

● The parent binding of a deferred operation must not be a deferred operation itself.

Advertised Operations

According to the OData 4.0 specification ("11.5.2 Advertising Available Operations within a Payload")
services may return available actions and functions bound to a particular entity as part of the entity
representation within the payload. Data for an advertised operation within an entity is sent as property starting
with #<namespace>.<action> of that entity. If the entity does not advertise the operation, it does not contain
this property. To access the advertised operation in a binding, the same format has to be used. See the
following example:

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 949

http://help.sap.com/disclaimer?site=http%3A%2F%2Fdocs.oasis-open.org%2Fodata%2Fodata%2Fv4.0%2Ferrata03%2Fos%2Fcomplete%2Fpart1-protocol%2Fodata-v4.0-errata03-os-part1-protocol-complete.html%23_Toc453752309

 Example
Enable a button to trigger an action AcSetIsOccupied available on entity type of entity set EMPLOYEES
depending on advertisement of this action on the entity EMPLOYEES('1')

<FlexBox binding="{/EMPLOYEES('1')}"> <Button text="Set occupied" enabled="{= !!%
{#com.sap.gateway.default.iwbep.tea_busi.v0001.AcSetIsOccupied} }"/> </FlexBox>

Here a button is enabled only if the action AcSetIsOccupied is advertised for the entity EMPLOYEES('1').
The % operator is used to set the internal type to any because the advertised action is sent as an object. The
double negation !! converts this object to a boolean value that is needed by the enabled control property.

If no advertised action was returned in the payload, undefined (or null in OData 4.01 in case of advertised
non-availability) is returned as value for the binding. This translates to false in the expression above.

If there is an additional list of non-binding parameter names to identify a specific overload, then they need to be
given in the binding path as well, for instance: %{#Model.RemainingVacation(Year)}.

 Note
The bound action advertisement is added to $select automatically if the model parameter
autoExpandSelect is set.

To access the metadata of an operation, the double hash (##) syntax has to be used as is illustrated in the next
example:

 Example
Binding against metadata of an action

var oContext = oModel.createBindingContext("/EMPLOYEES('1')/
##com.sap.gateway.default.iwbep.tea_busi.v0001.AcSetIsOccupied"); var oMetaModel = oContext.getModel(); oMetaModel.requestObject("0/$ReturnType/$Type", oContext).then(alert);

Here a context is created pointing to the metadata of the action and afterwards the type is accessed using this
context.

This approach can also be used with XML templating where createBindingContext is called internally.

Access Operation Results

You can access the results of the operation by calling getObject() from the bound context.

// let oOperation be the operation's context binding oOperation.execute().then(function () { // Note: execute does not deliver the results var oResults = oOperation.getBoundContext().getObject();
 ... });

950 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataModel/constructor
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataModel/methods/createBindingContext

The promise returned by the operation binding's execute method may resolve with a return value context
provided the conditions specified in execute are met. The operation binding may be bound to an entity or a
collection of entities.

The typical use case for return value context is when you call a bound operation with a context C1 defining its
binding parameter and the bound operation returns a different version of the entity used as binding parameter.
C1 is the binding context of an "object page" container displaying properties of the corresponding entity. You
need to replace C1 as binding context of the object page by the return value context. This way, the different
version of the entity is displayed without a further read request. If the bound operation returns the entity used
as binding parameter, the changes will automatically be copied to the binding parameter.

If the operation binding fulfills the conditions for returning a context, you can set the parameter $
$inheritExpandSelect for the binding: The request for the bound operation is then sent with the same
$expand and $select query options used to load the operation's binding parameter. This way you guarantee
that all fields of the object page are available in the operation response.

Sample object page to display an Artist entity

<form:SimpleForm id="objectPage"> <Toolbar>
 <Button text="Edit" enabled="{IsActiveEntity}" press=".onEdit"/>
 </Toolbar>
 <Label text="ID"/> <Text text="{ArtistID}"/>
 <Label text="Is Active"/> <Text text="{IsActiveEntity}"/>
 <Label text="Name"/> <Input value="{Name}" />
 ... </form:SimpleForm>

Controller code to display the active version of Artist 42 initially and switch to draft version on Edit

// display "active" version of artist initially onInit : function () {
 var oActiveArtistContext = oModel
 .bindContext("/Artists(ArtistID='42',IsActiveEntity=true)")
 .getBoundContext();
 this.byId("objectPage").setBindingContext(oActiveArtistContext);
},

// display the "inactive" version of the entity returned by the "EditAction"
onEdit : function () {
 var that = this;
 oModel.bindContext("name.space.EditAction(...)",
this.byId("objectPage").getBindingContext(), {$$inheritExpandSelect : true})
 .execute()
 .then(function (oInactiveArtistContext) {
 that.byId("objectPage").setBindingContext(oInactiveArtistContext);
 }); }

Related Information

OData Version 4.0 Part 1, 11.5 Operations
ODataContextBinding

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 951

https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataContextBinding/methods/execute
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataContextBinding/methods/execute
http://help.sap.com/disclaimer?site=http%3A%2F%2Fdocs.oasis-open.org%2Fodata%2Fodata%2Fv4.0%2Fodata-v4.0-part1-protocol.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v4.ODataContextBinding.html

Batch Control

OData V4 allows you to group multiple operations into a single HTTP request payload, as described in the
official OData V4 specification Part 1, Batch Requests (see the link under Related Information for more details).

The OData V4 model sends requests in the following cases:

● Implicit read requests to retrieve data for a binding
Example: A list binding with the absolute path /SalesOrderList triggers a GET SalesOrderList to
read data.

● Implicit update requests via two-way binding
Example: Update a sales order's note through a property binding with the relative path Note, which has a
context with path /SalesOrderList(SalesOrderID='42') triggering PATCH
SalesOrderList(SalesOrderID='42') with the note's value as JSON payload.

● Explicit requests triggered through API calls like ODataListBinding.refresh or
ODataContextBinding.execute

For each of these cases, it is possible to specify a group ID of type string.

A group ID has one of the following submit modes to control the use of batch requests:

● sap.ui.model.odata.v4.SubmitMode.API - Requests associated with the group ID are sent in a batch
request via sap.ui.model.odata.v4.ODataModel#submitBatch .

● sap.ui.model.odata.v4.SubmitMode.Auto - Requests associated with the group ID are sent in a
batch request which is triggered automatically before rendering.

● sap.ui.model.odata.v4.SubmitMode.Direct - Requests associated with the group ID are sent
directly without batch.

The following group IDs are possible:

● "$auto" and "$auto.*": Predefined batch group ID which is the default if no group ID is specified. You
can use different $auto.* group IDs to use different batch requests. The suffix can be any non-empty
string consisting of alphanumeric characters from the basic Latin alphabet, including the underscore. They
have the submit mode sap.ui.model.odata.v4.SubmitMode.Auto.

● "$direct": Predefined batch group ID which has the submit mode
sap.ui.model.odata.v4.SubmitMode.Direct. For more information, see Performance Aspects
[page 967].

● An application group ID is a non-empty string consisting of alphanumeric characters from the basic Latin
alphabet, including the underscore. By default, an application group has the submit mode
sap.ui.model.odata.v4.SubmitMode.API. It is possible to use a different submit mode; for details
see section Define submit mode for an application group ID [page 955].

To specify the group ID for implicit requests, use the parameters $$groupId (group ID for read requests) and $
$updateGroupId (group ID for update requests) for the binding which triggers the request (see the
ODataModel.bindList, ODataModel.bindContext and ODataModel.bindProperty API documentation).

Batch requests for update groups with a submit mode different from $direct are queued per group ID. A
batch request with changes is only sent if the previous batch request for the same group ID is returned and
processed. In this case, all submitted changes for that group ID are combined in one batch request; changes
associated with different calls to ODataModel.submitBatch use different change sets inside the batch request.

Code example: Updates for the sales order note through two-way binding will use the group ID "myGroup",
whereas data is read with the group "$auto".

952 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.SubmitMode
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataModel/methods/submitBatch
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataModel/methods/bindList
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataModel/methods/bindContext
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataModel/methods/bindProperty
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataModel/methods/submitBatch

Batch group usage for binding created via JavaScript:

 sap.ui.define(["sap/ui/model/odata/v4/ODataModel"], function (ODataModel) {
 var oModel = new ODataModel({serviceUrl : "/myService/",
synchronizationMode : "None"}),
 oContextBinding = oModel.bindContext("/
SalesOrderList(SalesOrderID='42')", /*oContext*/ undefined, {$$updateGroupId :
"myGroup"}),
 oPropertyBinding = oModel.bindProperty("Note",
oContextBinding.getBoundContext()); });

XML view sample: Declares controls which create the context binding (in the SimpleForm) and the property
binding (in the Input) as sketched in the above JavaScript code sample.

Batch group usage for bindings created via XML view:

 <form:SimpleForm binding="{path : '/SalesOrderList(SalesOrderID=\'42\')',
parameters : {$$updateGroupId : 'myGroup'}}" editable="true" ...>
 <Label labelFor="Note" text="Note" />
 <Input id="Note" value="{Note}" />
 ... </form:SimpleForm>

On instantiation of an OData V4 model, you can provide both a group ID and an update group ID; they are used
as defaults if the corresponding binding parameter is not specified. The default for the group ID is "$auto".
The value of group ID is used as a default for the update group ID.

For explicit requests, the group ID can be specified as an optional parameter to the corresponding API method.
The group ID or update group ID of the binding is used as a default. For more information, see the
ODataContextBinding.execute, ODataContextBinding.refresh, ODataListBinding.refresh,
ODataPropertyBinding.refresh and ODataPropertyBinding.setValue API documentation in the Demo Kit.

Change Sets and Order of Requests Inside a Batch Request

The OData V4 model automatically puts all non-GET requests into a single change set, which is located at the
beginning of a batch request. All GET requests are put after it. If there is only a single request within the change
set, it is replaced by that single request when submitting the batch group (saves overhead on the wire). PATCH
requests for the same entity are merged into a single request.

Resetting Property Changes

You can set an update group ID for a binding so that property changes are collected in a batch queue. The
ODataModel.submitBatch method sends all these changes for a given batch group at once and the
ODataModel.resetChanges method resets the changes. With these methods, you can, for example,
implement a Save and a Cancel button for a form: Save triggers submitBatch, and Cancel triggers
resetChanges.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 953

https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataContextBinding/methods/execute
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataContextBinding/methods/refresh
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataListBinding/methods/refresh
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataPropertyBinding/methods/refresh
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataPropertyBinding/methods/setValue

 Note
The resetChanges method only resets all implicit update requests via two-way binding for the given
group, while read requests or requests from ODataContextBinding.execute remain in the queue and
are sent when the submitBatch method is called.

The list and context binding also offer the resetChanges method which resets changes for the binding and its
child bindings.

 Note
The promise returned by submitBatch can be used together with the hasPendingChanges method to
check whether changes were successfully persisted. hasPendingChanges exists for the ODataModel as
well as for ODataListBinding, ODataContextBinding and ODataPropertyBinding. Note that the promise
returned by submitBatch is only rejected if the complete batch request has failed.

Example: View
 <Toolbar design="Transparent">
 <content>
 <Button icon="sap-icon://save" press="onSaveSalesOrder"/>
 <Button icon="sap-icon://sys-cancel-2" press="onCancelSalesOrder"/>
 </content>
</Toolbar>
<form:SimpleForm id="mySimpleForm" binding="{path: '/SalesOrderList(ID=\'42\')',
$$updateGroupId: 'SalesOrderUpdateGroup'}">
 <Label text="Sales Order ID" />
 <Text text="{SalesOrderID}" />
 <Label labelFor="Note" text="Note" />
 <Input id="Note" value="{Note}" /> </form:SimpleForm>

Example: Controller

onCancelSalesOrder : function (oEvent) { this.getView().getModel().resetChanges("SalesOrderUpdateGroup");
},

onSaveSalesOrder : function (oEvent) {
 var that = this;

this.getView().getModel().submitBatch("SalesOrderUpdateGroup").then(function(){
 if (!
that.byId("mySimpleForm").getBindingContext().getBinding().hasPendingChanges()){
 // raise success message
 }
 }); },

Repeating Property Changes

The OData V4 model automatically repeats failed property changes (PATCH requests). If the update group ID
has SubmitMode.API and the property change of the entity on the server fails, the change is repeated with the
next call of ODataModel.submitBatch for this group. If the update group ID has SubmitMode.Auto or

954 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.SubmitMode.API
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataModel/methods/submitBatch
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.SubmitMode.Auto

SubmitMode.Direct and the change fails, the change is repeated automatically with the next update for the
entity. Since 1.67.0, ODataModel.submitBatch can also be used for update group IDs with SubmitMode.Auto in
order to repeat, independently of an update.

The same holds true for Creating an Entity [page 974].

Define submit mode for an application group ID

On construction of the model, it is possible to specify the submit mode for application group IDs. This is useful
when you want to separate requests requiring short processing time on the server from those requiring long
processing time, so that responses to "fast" requests are visible earlier on the UI.

The following example shows how to set the submit mode sap.ui.model.odata.v4.SubmitMode.Auto for
the group IDs fastGroup and slowGroup in the manifest.

 Example
Specify the submit mode for an application group in manifest.json

"models" : { "" : {
 "dataSource" : "default",
 "settings" : {
 "operationMode" : "Server",
 "synchronizationMode" : "None",
 "groupProperties" : {
 "fastGroup" : {"submit" : "Auto"},
 "slowGroup" : {"submit" : "Auto"}
 }
 } }

Related Information

ODataModel.submitBatch
ODataModel.bindList
ODataModel.bindContext
ODataModel.bindProperty
ODataContextBinding.execute
ODataContextBinding.refresh
ODataListBinding.refresh
ODataPropertyBinding.refresh
ODataPropertyBinding.setValue
OData V4 Specification Part 1, Batch Requests

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 955

https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.SubmitMode.Direct
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataModel/methods/submitBatch
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.SubmitMode.Auto
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataModel/methods/submitBatch
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataModel/methods/bindList
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataModel/methods/bindContext
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataModel/methods/bindProperty
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataContextBinding/methods/execute
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataContextBinding/methods/refresh
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataListBinding/methods/refresh
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataPropertyBinding/methods/refresh
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataPropertyBinding/methods/setValue
http://help.sap.com/disclaimer?site=http%3A%2F%2Fdocs.oasis-open.org%2Fodata%2Fodata%2Fv4.0%2Ferrata03%2Fos%2Fcomplete%2Fpart1-protocol%2Fodata-v4.0-errata03-os-part1-protocol-complete.html

Meta Model for OData V4

Each OData V4 model offers access via getMetaModel to a corresponding metadata model
sap.ui.model.odata.v4.ODataMetaModel, which is read-only and offers access to OData V4 metadata in
a streamlined JSON format (see links under Related Information for more details). Only one-time bindings are
supported by this model because the metadata is immutable.

Synchronous vs. Asynchronous Access

Access to metadata is basically asynchronous (e.g. requestObject) to allow for dynamic loading of
metadata. There is also a corresponding method for synchronous access (e.g. getObject) which returns
undefined if metadata is not yet available. It should only be used in situations where metadata has already
been loaded asynchronously before. Loading happens individually for each document, i.e. each $metadata
document is loaded and processed as a whole and is available thereafter. Includes and references to other
$metadata documents are not supported, only the service root's initial $metadata document can be used.

Path Syntax

The requestObject API documentation in the Demo Kit explains how metadata is accessed and the
supported path syntax in great detail. The basic idea is that every path described in the specification OData
Version 4.0 Part 3: Common Schema Definition Language, 14.2.1 Attribute Target is a valid absolute path
within the metadata model if a leading slash is added; for example "/" + "MySchema.MyEntityContainer/
MyEntitySet/MyComplexProperty/MyNavigationProperty". For more information, see the
requestObject API documentation in the Demo Kit.

Annotations

The main API for both programmatic access from JavaScript and declarative access from XML templating is
sap.ui.model.odata.v4.ODataMetaModel#getObject. It works together with
sap.ui.model.odata.v4.ODataMetaModel#resolve (for <template:with>) and
sap.ui.model.odata.v4.ODataMetaModel#bindList (for <template:repeat>) in order to provide
convenient access to annotations, inline as well as external targeting.

The OData meta model knows how to follow "14.2.1 Attribute Target" described in specification "OData Version
4.0 Part 3: Common Schema Definition Language " as well as "14.5.2 Expression edm:AnnotationPath",
"14.5.11 Expression edm:NavigationPropertyPath", "14.5.12 Expression edm:Path", and "14.5.13 Expression
edm:PropertyPath".

XML Templating [page 1018] still works the same as for V2, with some slight changes as outlined below:

● Metadata paths need to refer to the V4 metadata JSON structure.

956 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/disclaimer?site=http%3A%2F%2Fdocs.oasis-open.org%2Fodata%2Fodata%2Fv4.0%2Fodata-v4.0-part3-csdl.html
http://help.sap.com/disclaimer?site=http%3A%2F%2Fdocs.oasis-open.org%2Fodata%2Fodata%2Fv4.0%2Fodata-v4.0-part3-csdl.html
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataMetaModel/methods/requestObject
http://help.sap.com/disclaimer?site=http%3A%2F%2Fdocs.oasis-open.org%2Fodata%2Fodata%2Fv4.0%2Fodata-v4.0-part3-csdl.html
http://help.sap.com/disclaimer?site=http%3A%2F%2Fdocs.oasis-open.org%2Fodata%2Fodata%2Fv4.0%2Fodata-v4.0-part3-csdl.html

● Note the difference between "/TEAMS@Org.OData.Capabilities.V1.TopSupported" and "/TEAMS/
@com.sap.vocabularies.Common.v1.Deletable" (look closely at the slash!), see
ODataMetaModel.requestObject.

● Use sap.ui.model.odata.v4.AnnotationHelper instead of
sap.ui.model.odata.AnnotationHelper. The ability to follow a path has been built into the V4 OData
meta model itself. See field>Value/$Path@com.sap.vocabularies.Common.v1.Label in the code
example below. Instead of sap.ui.model.odata.AnnotationHelper.format, you can use
sap.ui.model.odata.v4.AnnotationHelper.value or
sap.ui.model.odata.v4.AnnotationHelper.format. You can use both as a computed annotation.

● Computed annotations start with "@@", for example <Text text="{meta>Value/
@@sap.ui.model.odata.v4.AnnotationHelper.value}" />. Their name without the "@@" prefix
refers to a function in the global namespace which computes an annotation value from the metadata
addressed by the preceding path. For more information, see ODataMetaModel.requestObject .

● Ensure that the view is loaded asynchronously. In this case, there is no longer a need to preload metadata,
because the template processor waits for every binding to be resolved before proceeding.

● Use a double hash ('##') or single hash ('#') separator to branch from the OData V4 model into metadata,
see createBindingContext .

 Note
The single hash separator is deprecated since 1.52

 Remember
An appropriate URI encoding is necessary for the data path (before the separator), but neither for the
separator itself nor for the metadata path that follows it.

Example: <template:with path="/Products('A%2FB%26C')/
Name#@com.sap.vocabularies.Common.v1.Label" var="label"> or <template:with
path="data>/Products#/" var="productEntityType">, etc.

Example of an OData V4 XML template:

<mvc:View template:require="{AnnotationHelper : 'sap/ui/model/odata/v4/
AnnotationHelper'}"
 xmlns="sap.m"
 xmlns:template="http://schemas.sap.com/sapui5/extension/
sap.ui.core.template/1">
 <template:alias name="format" value="AnnotationHelper.format">
 <template:alias name="value" value="AnnotationHelper.value">
 <template:with path="meta>/BusinessPartnerList/" var="entityType">
 <template:with path="entityType>@com.sap.vocabularies.UI.v1.LineItem"
var="lineItem">
 <Table headerText="Business Partners"
 items="{path : '/BusinessPartnerList', length : 5}">
 <columns>
 <template:repeat list="{lineItem>}" var="field">
 <Column>
 <template:if test="{field>Label}">
 <template:then>
 <Label design="{:= $
{field>@com.sap.vocabularies.UI.v1.Importance/$EnumMember}
 === 'com.sap.vocabularies.UI.v1.ImportanceType/High' ?
'Bold' : 'Standard'}"
 text="{field>Label}"/>
 </template:then>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 957

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v4.ODataMetaModel.html%23requestObject
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v4.AnnotationHelper.html
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataMetaModel/methods/requestObject
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v4.ODataModel.html%23createBindingContext

 <template:else>
 <Text text="{field>Value/
$Path@com.sap.vocabularies.Common.v1.Label}"/>
 </template:else>
 </template:if>
 </Column>
 </template:repeat>
 </columns>
 <items>
 <ColumnListItem>
 <cells>
 <template:repeat list="{lineItem>}" var="field">
 <template:with path="field>Value/$Path" var="target">
 <template:if test="{= $
{target>@@AnnotationHelper.getValueListType} === 'Standard' }">
 <template:then>
 <Input value="{path : 'field>Value/@@value'}"
showValueHelp="true", valueHelpRequest=".onValueHelp"}" />
 </template:then>
 <template:elseif test="{= $
{target>@@AnnotationHelper.getValueListType} === 'Fixed' }">
 <ComboBox value="{path : 'field>Value/@@value'}"
loadItems=".onLoadItems" showValueHelp="true" />
 </template:elseif>
 <template:elseif
test="{target>@com.sap.vocabularies.Common.v1.Text}">
 <!-- Note: TextFirst, TextLast, TextSeparate,
TextOnly -->
 <template:if test="{= $
{target>@com.sap.vocabularies.Common.v1.Text@com.sap.vocabularies.UI.v1.TextArran
gement/$EnumMember}
 ===
'com.sap.vocabularies.UI.v1.TextArrangementType/TextLast' }">
 <!-- Text: "A descriptive text for values of
the annotated property.
 Value MUST be a dynamic expression when
used as metadata annotation." -->
 <Text text="{field>Value/@@value}
{target>@com.sap.vocabularies.Common.v1.Text/@@value}" />
 </template:if>
 </template:elseif>
 <template:else>
 <Text text="{field>Value/@@format}" />
 </template:else>
 </template:if>
 </template:with>
 </template:repeat>
 </cells>
 </ColumnListItem>
 </items>
 </Table>
 </template:with>
 </template:with>
 </template:alias>
 </template:alias> </mvc:View>

AnnotationHelper

The module sap/ui/model/odata/v4/AnnotationHelper delivers the following computed annotations;
require it as shown in the example above:

958 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

● value helps to convert annotations into corresponding expression bindings or similar. The resulting
binding does not contain type and constraint information; both are detected automatically. For examples,
see sap.ui.model.odata.v4.AnnotationHelper.value.

● format helps to convert annotations into corresponding expression bindings, or similar. Compared to
value, format adds type and constraints information to the resulting binding. This is useful, for example,
if the XML of the view is cached.
If you use format with a path containing a single "$AnnotationPath" or "$Path" segment, the value
corresponding to that segment is considered as a data binding path prefix whenever a dynamic "14.5.12
Expression edm:Path" or "14.5.13 Expression edm:PropertyPath" is turned into a data binding.
For examples, see format.
If format finds a Org.OData.Measures.V1.ISOCurrency or a Org.OData.Measures.V1.Unit
annotation at a property, a composite binding with a sap.ui.model.odata.type.Currency or a
sap.ui.model.odata.type.Unit type is generated. For more information, see Currencies and Units
[page 986].

● label - Returns the value for the label of a com.sap.vocabularies.UI.v1.DataFieldAbstract from
the meta model.

● getValueListType - Determines which type of value list exists for the property. The function returns a
value from the enumeration sap.ui.model.odata.v4.ValueListType. It can be called directly on a
property:

 <template:with path="/BusinessPartnerList/Role" var="property">
 <template:if test="{= ${property>@@AnnotationHelper.getValueListType} ===
'Fixed'}">
 ...
 </template:if> </template:with>

Alternatively it can be called on an annotation holding an edm:Path to a property when it is called in the
context of an entity type. This is typically the case when iterating over a
com.sap.vocabularies.UI.v1.LineItem annotation of an entity type and asking for value help on the
data fields. See the example regarding LineItem of BusinessPartnerList (the relevant parts are repeated
here):

 <template:with path="meta>/BusinessPartnerList/" var="entityType">
 <template:with path="entityType>@com.sap.vocabularies.UI.v1.LineItem"
var="lineItem">
...
 <template:repeat list="{lineItem>}" var="field">
 <template:with path="field>Value/$Path" var="target">
 <template:if test="{= $
{target>@@AnnotationHelper.getValueListType} === 'Standard' }"> ...

The first <template:with> defines entityType to be the type of the set BusinessPartnerList. The
<template:repeat> iterates over its annotation com.sap.vocabularies.UI.v1.LineItem (a collection
of records with type com.sap.vocabularies.UI.v1.DataField). The record's property Value is assumed
to be an edm:Path pointing to a property of the entity type. For this path the value list type is determined.

Related Information

OData V4 Metadata JSON Format [page 960]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 959

https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.AnnotationHelper/methods/sap.ui.model.odata.v4.AnnotationHelper.value
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.AnnotationHelper/methods/sap.ui.model.odata.v4.AnnotationHelper.value
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.AnnotationHelper/methods/sap.ui.model.odata.v4.AnnotationHelper.format
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.AnnotationHelper/methods/sap.ui.model.odata.v4.AnnotationHelper.format
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.AnnotationHelper/methods/sap.ui.model.odata.v4.AnnotationHelper.label
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.AnnotationHelper/methods/sap.ui.model.odata.v4.AnnotationHelper.getValueListType
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v4.ValueListType.html
http://help.sap.com/disclaimer?site=http%3A%2F%2Fdocs.oasis-open.org%2Fodata%2Fodata%2Fv4.0%2Ferrata03%2Fos%2Fcomplete%2Fpart3-csdl%2Fodata-v4.0-errata03-os-part3-csdl-complete.html%23_Toc453752658

getMetaModel
sap.ui.model.odata.v4.ODataMetaModel
requestObject
sap.ui.model.odata.v4.ODataMetaModel#getObject
sap.ui.model.odata.v4.ODataMetaModel#bindList
sap.ui.model.odata.ODataMetaModel#loaded

OData V4 Metadata JSON Format

The OData V4 model provides access to metadata in a streamlined JSON format which is described in the
section below.

It is different to the $metadata service's JSON format (see OData JSON Format Version 4.0) and the OData
JSON Format for Common Schema Definition Language (CSDL) Version 4.0 (see corresponding specification

), intended to simplify client-side processing.

In the sections below, angled brackets indicate variable parts. The numbers next to each expression
correspond to the numbered sections in the official specification, see OData Version 4.0 Part 3: Common
Schema Definition Language (CSDL) Plus Errata 03 . Comments highlight optional properties, especially
those that have certain default values.

Design Rationale

We have prefixed constant property names with "$" as this is a legal first character for JavaScript identifiers,
but not for OData simple identifiers. This way, inline annotations can be added via "@<14.3.1 Annotation
Term>#<14.3.2 Annotation Qualifier>" : <value> everywhere without resulting in any naming
conflicts. This is shown as "@..." : <value> below.

We assume that schema aliases have been resolved. We add a trailing dot after a schema's namespace,
meaning qualified name "A.B" cannot clash with schema namespace "A.B.", for example. This trailing dot is also
present for "$Include", "$TermNamespace" and "$TargetNamespace" values.

$kind has been added to each object with a (qualified) OData name and to almost each object which can be
annotated via external targeting, but not to enum members. Actions and functions are arrays of overloads and
$kind has been added to each overload.

We assume each enum member has a value via the fallback rule "If no values are specified, the members are
assigned consecutive integer values in the order of their appearance, starting with zero for the first member."

Facets like MaxLength, Precision and Scale are represented as numbers if possible ("$Scale" :
"variable" is the only exception). DefaultValue is represented as a string for lack of type information in
the general case. "$MaxLength" : "max" is omitted and will be treated the same as an unspecified length on
the client-side.

A "17.5 TargetPath" used as "13.4.1 Attribute Path" or "13.5.3/13.6.3 Attribute EntitySet" is normalized in the
following sense: a simple identifier is used instead of a target path for entity sets (or singletons) within the
same container.

960 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataModel/methods/sap.ui.model.odata.v4.ODataModel.getMetadata
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v4.ODataMetaModel.html
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataMetaModel/methods/requestObject
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataMetaModel/methods/getObject
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataMetaModel/methods/bindList
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.ODataMetadata/methods/loaded
http://help.sap.com/disclaimer?site=http%3A%2F%2Fdocs.oasis-open.org%2Fodata%2Fodata-json-format%2Fv4.0%2Fos%2Fodata-json-format-v4.0-os.html
http://help.sap.com/disclaimer?site=http%3A%2F%2Fdocs.oasis-open.org%2Fodata%2Fodata-json-csdl%2Fv4.0%2Fodata-json-csdl-v4.0.html
http://help.sap.com/disclaimer?site=http%3A%2F%2Fdocs.oasis-open.org%2Fodata%2Fodata-json-csdl%2Fv4.0%2Fodata-json-csdl-v4.0.html
http://help.sap.com/disclaimer?site=http%3A%2F%2Fdocs.oasis-open.org%2Fodata%2Fodata-json-csdl%2Fv4.0%2Fodata-json-csdl-v4.0.html
http://help.sap.com/disclaimer?site=http%3A%2F%2Fdocs.oasis-open.org%2Fodata%2Fodata-json-csdl%2Fv4.0%2Fodata-json-csdl-v4.0.html

Each annotation specifies a value. Accordingly, $DefaultValue has been omitted for the time being.

Normalization: For all EDM elements which allow both inline annotations and external targeting, only external
targeting is used. This affects edm:ActionImport, edm:ComplexType, edm:EntityContainer, edm:EntitySet,
edm:EntityType, edm:EnumType, edm:FunctionImport, edm:Member, edm:Singleton, edm:Term,
edm:TypeDefinition, edm:NavigationProperty, edm:Property. The goal is to reduce cases that contain a mixture
of inline annotations and external targeting to the bare minimum. External targeting is possible for edm:Action,
edm:Function, edm:Parameter, and edm:ReturnType via 4.01 style annotation targets, either in a way that
applies to all overloads of the action or function or all parameters of that name across all overloads, or in a way
that identifies a single overload.

We use the "<key>@<14.3.1 Annotation Term>#<14.3.2 Annotation Qualifier>" : <value>
syntax for inline annotations in the following cases to avoid explicit object representations:

● "7.2 Element ReferentialConstraint" with key "<7.2.1 ReferentialConstraint Property>"
● "7.3 Element OnDelete" with key "$OnDelete"
● "14.3 Annotation" with key "@<14.3.1 Annotation Term>#<14.3.2 Annotation Qualifier>"

(yes, this does lead to a double at-sign "@...#...@...#...")
● "14.5.14.2 Element PropertyValue" with key "<14.5.14.2.1 PropertyValue Property>"

Metadata JSON Structure

The following JSON file represents the metadata document which corresponds to GET <serviceRoot>/
$metadata:

 {
 "$Version" : "<3.1.1 Edmx Version>",
 "$Annotations" : {
 "<14.2.1 Annotations Target>" : {
 // Note: "<14.3.2 Annotation Qualifier>" defaults to "<14.2.2 Annotations
Qualifier>",
 // qualifiers are optional, "#" is omitted then
 "@<14.3.1 Annotation Term>#<14.3.2 Annotation Qualifier>" : <value> //
constant or dynamic expression
 "@<14.3.1 Annotation Term>#<14.3.2 Annotation Qualifier>@..." : <value> //
annotation of an annotation
 }
 },
 "$EntityContainer" : "<5.1.1 Schema Namespace>.<13.1.1 EntityContainer
Name>", // root entity container for this $metadata document
 "$Reference" : {
 // server-relative, dereferencable URLs (to $metadata) only!
 "<3.3.1 Reference Uri>" : { "@..." : <value>,
 "$Include" : ["<3.4.1 Include Namespace>.", ...], // optional
 "$IncludeAnnotations" : [{
 "$TermNamespace" : "<3.5.1 IncludeAnnotations TermNamespace>.",
 "$Qualifier" : "<3.5.2 IncludeAnnotations Qualifier>", // optional
 "$TargetNamespace" : "<3.5.3 IncludeAnnotations TargetNamespace>." //
optional
 }, ...] // optional
 }
 }, // optional
 "<5.1.1 Schema Namespace>" : {
 "$kind" : "Schema",
 "@..." : <value> // place inline annotations for schema itself here!
 },
 "<5.1.1 Schema Namespace>.<8.1.1 EntityType Name>" : {

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 961

 "$kind" : "EntityType",
 "$BaseType" : "<8.1.2 EntityType BaseType>", // optional
 "$Abstract" : true, // omit in case of default value: false
 "$OpenType" : true, // omit in case of default value: false
 "$HasStream" : true, // omit in case of default value: false
 "$Key" : [
 "<8.3.1 PropertyRef Name>", // in case no Alias is given
 {"<8.3.1 PropertyRef Alias>" : "<8.3.1 PropertyRef Name>"},
 ...
], // optional
 "<6.1.1 Property Name>" : {
 "$kind" : "Property",
 "$Type" : "<6.1.2 Property Type>",
 "$isCollection" : true, // omit in case of default value: false
 "$Nullable" : false, // omit in case of default value: true
 "$MaxLength" : <6.2.2 MaxLength>, // optional, number
 "$Precision" : <6.2.3 Precision>, // optional, number
 "$Scale" : <6.2.4 Scale> | "variable", // optional, number or fixed string
 "$Unicode" : false, // omit in case of default value: true
 "$SRID" : "<6.2.6 SRID>", // optional
 "$DefaultValue" : "<6.2.7 DefaultValue>" // optional
 },
 "<7.1.1 NavigationProperty Name>" : {
 "$kind" : "NavigationProperty",
 "$isCollection" : true, // omit in case of default value: false
 "$Type" : "<7.1.2 NavigationProperty Type>",
 "$Nullable" : false, // omit in case of default value: true
 "$Partner" : "<7.1.4 NavigationProperty Partner>", // optional
 "$ContainsTarget" : true, // omit in case of default value: false
 "$ReferentialConstraint" : {
 "<7.2.1 ReferentialConstraint Property>" : "<7.2.2 ReferentialConstraint
ReferencedProperty>"
 }, // optional
 "$OnDelete" : "<7.3.1. OnDelete Action>" // optional
 },
 },
 "<5.1.1 Schema Namespace>.<9.1.1 ComplexType Name>" : {
 "$kind" : "ComplexType",
 "$BaseType" : "<9.1.2 ComplexType BaseType>", // optional
 "$Abstract" : true, // omit in case of default value: false
 "$OpenType" : true, // omit in case of default value: false
 "<6.1.1 Property Name>" : {
 // see above
 },
 "<7.1.1 NavigationProperty Name>" : {
 // see above
 }
 },
 "<5.1.1 Schema Namespace>.<10.1.1 EnumType Name>" : {
 "$kind" : "EnumType",
 "$UnderlyingType" : "<10.1.2 EnumType UnderlyingType>", // omit in case of
default value: Edm.Int32
 "$IsFlags" : true, // omit in case of default value: false
 "<10.2.1 Member Name>" : "<10.2.2 Member Value>" // use string value in case
of base type Edm.Int64, else number
 },
 "<5.1.1 Schema Namespace>.<11.1.1 TypeDefinition Name>" : {
 "$kind" : "TypeDefinition",
 "$UnderlyingType" : "<11.1.2 TypeDefinition UnderlyingType>",
 "$MaxLength" : <11.1.3 MaxLength>, // optional, number
 "$Precision" : <11.1.3 Precision>, // optional, number
 "$Scale" : <11.1.3 Scale> | "variable", // optional, number or fixed string
 "$Unicode" : false, // omit in case of default value: true
 "$SRID" : "<11.1.3 SRID>" // optional
 },
 "<5.1.1 Schema Namespace>.<12.1.1 Action Name>" : [{
 "$kind" : "Action",
 "$IsBound" : true, // omit in case of default value: false

962 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 "$EntitySetPath" : "<12.1.3 Action EntitySetPath>", // optional
 "$Parameter" : [{
 "$Name" : "<12.4.1 Parameter Name>",
 "$isCollection" : true, // omit in case of default value: false
 "$Type" : "<12.4.2 Parameter Type>",
 "$Nullable" : false, // omit in case of default value: true
 "$MaxLength" : <12.4.4 MaxLength>, // optional, number
 "$Precision" : <12.4.4 Precision>, // optional, number
 "$Scale" : <12.4.4 Scale> | "variable", // optional, number or fixed string
 "$SRID" : "<12.4.4 SRID>" // optional
 }, ...], // optional
 "$ReturnType" : {
 "$isCollection" : true, // omit in case of default value: false
 "$Type" : "<12.3.1 ReturnType Type>",
 "$Nullable" : false, // omit in case of default value: true
 "$MaxLength" : <11.1.3 MaxLength>, // optional, number
 "$Precision" : <11.1.3 Precision>, // optional, number
 "$Scale" : <11.1.3 Scale> | "variable", // optional, number or fixed string
 "$SRID" : "<11.1.3 SRID>" // optional
 } // optional
 }, ...],
 "<5.1.1 Schema Namespace>.<12.2.1 Function Name>" : [{
 "$kind" : "Function",
 "$IsBound" : true, // omit in case of default value: false
 "$IsComposable" : true, // omit in case of default value: false
 "$EntitySetPath" : "<12.2.4 Function EntitySetPath>", // optional
 "$Parameter" : [{
 // see above
 }, ...], // optional
 "$ReturnType" : {
 // see above
 }
 }, ...],
 "<5.1.1 Schema Namespace>.<13.1.1 EntityContainer Name>" : {
 "$kind" : "EntityContainer"
// "$Extends" : "<13.1.2 EntityContainer Extends>", // not in the 1st step
 "<13.2.1 EntitySet Name>" : {
 "$kind" : "EntitySet",
 "$Type" : "<13.2.2 EntitySet EntityType>", // Note: renamed for
consistency!
 "$IncludeInServiceDocument" : false, // omit in case of default value: true
 "$NavigationPropertyBinding" : {
 "<13.4.1 NavigationPropertyBinding Path>" : "<13.4.2
NavigationPropertyBinding Target>" // normalized
 } // optional
 },
 "<13.3.1 Singleton Name>" : {
 "$kind" : "Singleton",
 "$Type" : "<13.3.2 Singleton Type>",
 "$NavigationPropertyBinding" : {
 "<13.4.1 NavigationPropertyBinding Path>" : "<13.4.2
NavigationPropertyBinding Target>" // normalized
 } // optional
 },
 "<13.5.1 ActionImport Name>" : {
 "$kind" : "ActionImport",
 "$Action" : "<13.5.2 ActionImport Action>",
 "$EntitySet" : "<13.5.3 ActionImport EntitySet>" // optional, normalized
 },
 "<13.6.1 FunctionImport Name>" : {
 "$kind" : "FunctionImport",
 "$Function" : "<13.6.2 FunctionImport Function>",
 "$EntitySet" : "<13.6.3 FunctionImport EntitySet>", // optional, normalized
 "$IncludeInServiceDocument" : true // omit in case of default value: false
 }
 },
 "<5.1.1 Schema Namespace>.<14.1.1 Term Name>" : {
 "$kind" : "Term",

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 963

 "$isCollection" : true, // omit in case of default value: false
 "$Type" : "<14.1.2 Term Type>",
 "$BaseTerm" : "<14.1.3 Term BaseTerm>", // optional
// "$DefaultValue" : "<14.1.4 Term DefaultValue>", // omit in case of default
value: null
// "$AppliesTo" : "<14.1.5 Term AppliesTo>", // JSON clients need not validate
 "$Nullable" : false, // omit in case of default value: true
 "$MaxLength" : <14.1.6 MaxLength>, // optional, number
 "$Precision" : <14.1.6 Precision>, // optional, number
 "$Scale" : <14.1.6 Scale> | "variable", // optional, number or fixed string
 "$SRID" : "<14.1.6 SRID>" // optional
 } }

Constant and Dynamic Expressions

Constant and dynamic expressions are used as values for annotations. Their JSON representation is shown in
the following two tables.

Table 32: Constant Expressions

Expression Options Additional Information

14.4 Constant Expressions {"$Binary" : "T0RhdGE"}

{"$Date" : "2000-01-01"}

{"$DateTimeOffset" :
"2000-01-01T16:00:00.000-0
9:00"}

{"$Decimal" : "3.14"}

{"$Duration" :
"P11D23H59M59.999999999999
S"}

{"$Guid" :
"21EC2020-3AEA-1069-
A2DD-08002B30309D"}

{"$TimeOfDay" :
"21:45:00"}

"Binary", "Date", "DateTimeOffset",
"Decimal", "Duration", "Guid", "TimeOf
Day" are objects with a single property
that has a string value.

14.4.2 Expression Bool false

true

Is represented by the JavaScript boo
lean literals.

14.4.7 Expression EnumMember {"$EnumMember" : 42}

{"$EnumMember" :
"1234567890123456789"}

Is represented like above object nota
tion, but with a JavaScript number lit
eral as long as the value is a safe inte
ger, else with a string value.

964 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Expression Options Additional Information

14.4.8 Expression Float 3.1415926535

{"$Float" : "-INF"}

{"$Float" : "INF"}

{"$Float" : "NaN"}

Is represented by a JavaScript number
literal (except for the nanInfinity
ABNF rule which needs an object nota
tion with a string value).

14.4.10 Expression Int 42

{"$Int" :
"1234567890123456789"}

Is represented by a JavaScript number
literal as long as the value is a safe inte
ger. Else the above object notation is
used.

14.4.11 Expression String "Product Catalog" Is represented by a JavaScript string lit
eral.

Table 33: Dynamic Expressions

Expression Options and Additional Information

14.5.1 Comparison and Logical Operators edm:Not is written as {"$Not" : <value>,
"@..." : <value>}. All others are written like
{"$And" : [<value>, <value>], "@..." :
<value>} because they require two child expressions.

14.5.2 Expression AnnotationPath {"$AnnotationPath" : "..."}

14.5.3 Expression Apply {"$Apply" : [<value>, ...],
"$Function" : "<14.5.3.1 Apply
Function>", "@..." : <value>}

14.5.4 Expression Cast {
"$Cast" : <value>,
"$isCollection" : true, // omit in
case of default value: false
"$Type" : "<14.5.4.1 Cast Type>",
"$MaxLength" : <6.2.2 MaxLength>, //
optional, number
"$Precision" : <6.2.3 Precision>, //
optional, number
"$Scale" : <6.2.4 Scale> |
"variable", // optional, number or
fixed string
"$SRID" : "<6.2.6 SRID>", // optional
"@..." : <value> }

14.5.5 Expression Collection [<value>, ...]

Simply an array. No additional properties, no annotations
possible.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 965

Expression Options and Additional Information

14.5.6 Expression If {"$If" : [<value>, <value>, <value>],
"@..." : <value>}

Condition, then, else (which is optional inside a "14.5.5 Ex
pression Collection" only).

14.5.7 Expression IsOf {
"$IsOf" : <value>,
"$isCollection" : true, // omit in
case of default value: false
"$Type" : "<14.5.7.1 IsOf Type>",
"$MaxLength" : <6.2.2 MaxLength>, //
optional, number
"$Precision" : <6.2.3 Precision>, //
optional, number
"$Scale" : <6.2.4 Scale> |
"variable", // optional, number or
fixed string
"$SRID" : "<6.2.6 SRID>", // optional
"@..." : <value> }

14.5.8 Expression LabeledElement {"$LabeledElement" : <value>, "$Name" :
"<5.1.1 Schema Namespace>.<14.5.8.1
LabeledElement Name>", "@..." : <value>}

14.5.9 Expression LabeledElementReference {"$LabeledElementReference" :
"<QualifiedName name of a labeled
element expression in scope>"}

14.5.10 Expression Null null

{"$Null" : null, "@..." : <value>}

The object notation is needed in case of inline annotations.

14.5.11 Expression NavigationPropertyPath {"$NavigationPropertyPath" : "..."}

14.5.12 Expression Path {"$Path" : "..."}

14.5.13 Expression PropertyPath {"$PropertyPath" : "..."}

14.5.14 Expression Record The record itself is a map:

 {
 "$Type" : "<14.5.14.1 Record Type>",
 "<14.5.14.2.1 PropertyValue
Property>" : <value>,
 "@..." : <value> }

14.5.15 Expression UrlRef {"$UrlRef" : <value>, "@..." : <value>}

966 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Related Information

OData JSON Format Version 4.0
OData JSON Format for Common Schema Definition Language (CSDL) Version 4.0
OData Version 4.0 Part 3: Common Schema Definition Language (CSDL) Plus Errata 02

Performance Aspects

The OData V4 model offers the features described below which influence performance.

odata.metadata=minimal

The OData V4 model uses an odata.metadata=minimal header in its requests to reduce the amount of data
that is sent from server to client. For more information, see section "3.1.1 odata.metadata=minimal" in the
OData JSON Format Version 4.0 specification.

$expand and $select

An application can either specify $expand and $select parameters to read all data to be displayed in one
request, or create bindings dynamically to load only part of the data with one request per binding. The
application needs to decide whether to have less roundtrips with a bigger payload or more roundtrips with
smaller payload.

To reduce payload, applications should only select properties that are needed using $select (see the code
sample in the Parameters [page 928] topic). Besides the properties needed on the UI, the binding must select
key properties to support features such as read requests sent from a child binding, write requests, or bound
operations on the respective entity.

Batching Requests or Not

By default, the OData V4 model collects all requests made to the OData service in a batch request to reduce
the number of roundtrips. The disadvantage of a batch request is that it cannot be cached by the browser. If
some of the requests (e.g. value help requests) are "cacheable", it is a good idea to request these resources
directly and use the browser cache to improve the performance of the application. In such cases, use the
$direct group as described in the section Batch Control [page 952].

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 967

http://help.sap.com/disclaimer?site=http%3A%2F%2Fdocs.oasis-open.org%2Fodata%2Fodata-json-format%2Fv4.0%2Fos%2Fodata-json-format-v4.0-os.html
http://help.sap.com/disclaimer?site=http%3A%2F%2Fdocs.oasis-open.org%2Fodata%2Fodata-json-csdl%2Fv4.0%2Fodata-json-csdl-v4.0.html
http://help.sap.com/disclaimer?site=http%3A%2F%2Fdocs.oasis-open.org%2Fodata%2Fodata-json-csdl%2Fv4.0%2Fodata-json-csdl-v4.0.html
http://help.sap.com/disclaimer?site=http%3A%2F%2Fdocs.oasis-open.org%2Fodata%2Fodata-json-format%2Fv4.0%2Fos%2Fodata-json-format-v4.0-os.html

Binding Caches

Absolute bindings and also relative bindings, which fulfill certain conditions, have a cache that is used for their
data. Once data is read, all value requests (e.g. those made by dependent relative bindings) are served by this
cached data. ODataListBinding additionally supports paging. For more information about this, see Bindings
[page 922].

Calling refresh on an absolute binding clears its cache as well as the caches of its relative child bindings.
Calling refresh on the model refreshes all bindings that have been created by that model.

 Tip
Relative bindings have an own cache store cache by context. When you change the context of the relative
binding and then switch back to the previous context, the latter context change will not lead to a data
request as the cache holding this data is reused. This is useful for master-detail scenarios where selection
in the master leads to setting the corresponding context in the relative binding for the detail. Entries in the
master that have already been selected won't lead to a data request.

Note: For the above mechanism to work, you must not recreate a relative binding as you then lose the
cache for the previously selected contexts. Keep the binding and just set its context.

Early requests for metadata and security token

The requests for the service's root $metadata document and annotation files and for the security token may
be on the "critical execution path": By default, these requests are sent lazily when the SAPUI5 application
starts, for example. only when the corresponding information is needed. This delays application startup until
these requests have returned.

If you construct the model with parameter earlyRequests, the requests are sent as early as possible and
application startup performance may improve.

 Note
Modern browsers typically can process up to six parallel requests. Therefore it strongly depends on the
number of requests sent initially by the application, if and how much the performance improves.

 Remember
The default value for earlyRequests is false in SAPUI5 version 1.54. It may, however, change to true in
later releases: Do not rely on the default value and explicitly set it to false to ensure the requests are not
sent early.

Related Information

OData JSON Format Version 4.0
Bindings [page 922]

968 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/disclaimer?site=http%3A%2F%2Fdocs.oasis-open.org%2Fodata%2Fodata-json-format%2Fv4.0%2Fos%2Fodata-json-format-v4.0-os.html

Batch Control [page 952]

Unsupported Superclass Methods and Events

Certain methods derived from SAPUI5 model and binding superclasses are not supported in OData V4 model
classes or have limited support.

The following methods and events are affected by this. For more information, see the corresponding API
documentation for each method and event in the Demo Kit.

Table 34: Unsupported Methods

Class Method

sap.ui.model.odata.v4.ODataMetaModel

(See sap.ui.model.odata.v4.ODataMetaModel in the Demo
Kit)

bindTree

getOriginalProperty

isList

refresh

setLegacySyntax

sap.ui.model.odata.v4.ODataModel

(See sap.ui.model.odata.v4.ODataModel in the Demo Kit)

bindTree

destroyBindingContext

getObject

getOriginalProperty

getProperty

isList

setLegacySyntax

sap.ui.model.odata.v4.ODataContextBindin
g

(See sap.ui.model.odata.v4.ODataContextBinding in the
Demo Kit)

isInitial

refresh (limited support only)

resume (limited support only)

suspend (limited support only)

sap.ui.model.odata.v4.ODataListBinding

(See sap.ui.model.odata.v4.ODataListBinding in the Demo
Kit)

getDistinctValues

isInitial

refresh (limited support only)

resume (limited support only)

suspend (limited support only)

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 969

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v4.ODataMetaModel.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v4.ODataModel.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v4.ODataContextBinding.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v4.ODataListBinding.html

Class Method

sap.ui.model.odata.v4.ODataPropertyBindi
ng

(See sap.ui.model.odata.v4.ODataPropertyBinding in the
Demo Kit)

isInitial

refresh (limited support only)

resume

setValue (limited support only)

suspend

Table 35: Unsupported Events

Class Event

sap.ui.model.odata.v4.ODataMetaModel

(See sap.ui.model.odata.v4.ODataMetaModel in the Demo
Kit)

parseError

propertyChange

requestCompleted

requestFailed

requestSent

sap.ui.model.odata.v4.ODataModel

(See sap.ui.model.odata.v4.ODataModel in the Demo Kit)

parseError

propertyChange

requestCompleted

requestFailed

requestSent

Related Information

sap.ui.model.odata.v4.ODataMetaModel
sap.ui.model.odata.v4.ODataModel
sap.ui.model.odata.v4.ODataContextBinding
sap.ui.model.odata.v4.ODataListBinding
sap.ui.model.odata.v4.ODataPropertyBinding

970 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v4.ODataPropertyBinding.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v4.ODataMetaModel.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v4.ODataModel.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v4.ODataMetaModel.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v4.ODataModel.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v4.ODataContextBinding.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v4.ODataListBinding.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v4.ODataPropertyBinding.html

Changes Compared to OData V2 Model

This section outlines the main differences between the OData V2 and OData V4 models.

While some of the differences between the OData V4 model and the OData V2 model are due to features that
have not yet been implemented, many differences are due to the following:

● Protocol incompatibility between OData V4 and OData V2
● API cleanup and simplification
● Adherence to OData V4 standards regarding the names and terms used in APIs

These differences will therefore remain even after all features have been implemented. The table below gives
you an overview of these changes, as well as the reason behind them and (if applicable) how the OData V2
model mechanism is supported in the OData V4 model.

Change Reason

Binding parameter names: The binding parameter name for
an OData system query option is identical to the system
query option name: $expand, $select, ... (V2 uses
expand, select).

Simplification: The OData V4 model simplifies the binding
parameter structure to just one map where all entries in the
map are OData query options, with the exception of entries
that have a key starting with "$$" (binding-specific parame
ters). In all cases, the names of the binding parameters are
exactly the same as in the OData URL sent to the server.

The model does not support the methods getData,
getObject, getOriginalProperty, getProperty.
For data access, use the context API instead of methods on
the model.

OData requires asynchronous data retrieval: Synchronous
data access requires that data has already been loaded from
the server. This means there is no way of knowing whether
this already happened, meaning the result of a synchronous
access method is quite often unpredictable.

The OData V4 context API offers ansynchronous and syn
chronous access to the data of a specific context. It is no
longer necessary to construct a path for data access as
needed by the methods on the model. For more information,
see the section Context API in Bindings [page 922].

Minimize APIs required for batch control: Model does not
support the methods getChangeBatchGroups,
getChangeGroups, getDeferredGroups,
setChangeBatchGroups, setChangeGroups,
setDeferredBatchGroups, setDeferredGroups,
setUseBatch (and corresponding model construction pa
rameters).

Simplification: Batch groups are solely defined via binding
parameters with the corresponding parameters on the
model as default. Application groups are by default deferred;
there is no need to set or get deferred groups. You just need
the submitBatch method on the model to control execu
tion of the batch. You can use the predefined batch group
"$direct" to switch off batch either for the complete
model or for a specific binding (only possible for the com
plete model in V2). For more information, see Batch Control
[page 952].

OData operations executed via binding: Model does not sup
port the method callFunction.

Simplification: Use an operation binding instead; it is now
much easier to bind operation execution results to controls.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 971

Change Reason

No CRUD methods on model: Model does not support the
methods create, read, remove, update.

Simplification: read, update, create and remove oper
ations are available implicitly via the bindings. Bindings can
also be used without controls. It is not possible to trigger re
quests for specific OData URLs. For more information, see
Accessing Data in Controller Code [page 935].

No metadata access via model: Model does not support
methods getServiceAnnotations,
getServiceMetadata, refreshMetadata as well as
methods corresponding to the events metadataFailed,
metadataLoaded.

Simplification: Metadata is only accessed via
ODataMetaModel. Metadata is only loaded when needed
(e.g. for type detection or to compute URLs for write re
quests); the corresponding methods on the
v4.ODataMetaModel use promises instead of events.

sap.ui.model.odata.AnnotationHelper is not supported for
OData V4.

Simplification: Much of the functionality in
sap.ui.model.odata.AnnotationHelper is provided by
sap.ui.model.odata.v4.ODataMetaModel and
sap.ui.model.odata.v4.ODataModel.

 Example
The path syntax supported by the v4.ODataMetaModel,
see sap.ui.model.odata.v4.ODataMetaModel, method
requestObject allows for navigation in the model's
metadata; there is no need to use
AnnotationHelper methods for this. You can find
the remaining functionality in the OData V4 specific
sap.ui.model.odata.v4.AnnotationHelper.

Related Information

sap.ui.model.odata.AnnotationHelper
sap.ui.model.odata.v4.ODataMetaModel
sap.ui.model.odata.v4.ODataModel

Additional Annotation Files

The OData V4 model supports loading of additional annotation files.

The annotation files have to be given during creation of an ODataModel instance. Adding annotation files at a
later point in time is not supported.

The format of the annotation file has to be the same as the metadata file of the service. Only XML files are
supported. You can specify the annotation files in the descriptor for applications, components, and libraries
(manifest.json).

972 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.AnnotationHelper.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.AnnotationHelper.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v4.ODataMetaModel.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v4.ODataModel.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v4.ODataMetaModel.html
https://sapui5.hana.ondemand.com/#docs/api/sap.ui.model.odata.v4.AnnotationHelper.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.AnnotationHelper.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v4.ODataMetaModel.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v4.ODataModel.html

Annotation files are specified in manifest.json as follows:

 "dataSources" : {
 "default" : {
 "uri" : "/sap/opu/odata4/IWBEP/V4_SAMPLE/default/IWBEP/
V4_GW_SAMPLE_BASIC/0001/",
 "type" : "OData",
 "settings" : {
 "annotations": ["localAnnotations"],
 "odataVersion" : "4.0"
 }
 },
 "localAnnotations": {
 "uri": "data/annotations.xml",
 "type": "ODataAnnotation"
 } },

Annotation files are usually defined as data sources in manifest.json. In the example above, the annotation
file is located relative to the component. In the dataSource definition of the OData service, you can reference
these annotation data sources in the annotations setting. The content of the annotation files are then
merged into the service metadata in the given order (the last one wins). Every (target, term, qualifier)-tuple
must appear at most once within $metadata documents, but can be overwritten by annotation files.

Annotation terms are not merged, but replaced as a whole (“PUT” semantics). For example, if you have defined
the sort restriction annotation Org.OData.Capabilities.V1.SortRestrictions at the
BusinessPartnerSet as shown in the example below, you have to repeat the term in your annotation file if
you want to add, for example, the additional property AscendingOnlyProperties.

The annotation term is specified in the service metadata document:

 <Annotations Target="GWSAMPLE_BASIC.GWSAMPLE_BASIC_Entities/BusinessPartnerSet">
 <Annotation Term="Org.OData.Capabilities.V1.SortRestrictions">
 <Record>
 <PropertyValue Property="NonSortableProperties">
 <Collection>
 <PropertyPath>BusinessPartnerID</PropertyPath>
 </Collection>
 </PropertyValue>
 </Record>
 </Annotation> </Annotations>

If an additional property needs to be added, the term has to be repeated in the annotation file:

 <Annotations Target="GWSAMPLE_BASIC.GWSAMPLE_BASIC_Entities/BusinessPartnerSet">
 <Annotation Term="Org.OData.Capabilities.V1.SortRestrictions">
 <Record>
 <PropertyValue Property="AscendingOnlyProperties">
 <Collection>
 <PropertyPath>AnyPropertyPath</PropertyPath>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="NonSortableProperties">
 <Collection>
 <PropertyPath>BusinessPartnerID</PropertyPath>
 </Collection>
 </PropertyValue>
 </Record>
 </Annotation> </Annotations>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 973

Creating an Entity

The sap.ui.model.odata.v4.ODataListBinding#create method creates a new entity. Users can
interact with a newly created entity even before it has been sent to the server.

To create new entities, ODataListBinding#create uses the list binding's update group ID as group ID. For
more information how this group ID is determined, see the documentation for the binding-specific parameter $
$updateGroupID of ODataModel#bindList.

A newly created entity can be inserted at the start or at the end of the list. This new entity is transient until it is
successfully submitted, see Context#isTransient. The initial data for the created entity can be supplied via
the parameter oInitialData and modified via property bindings. Properties that are not part of the initial
data show the default value from the service metadata on the UI, but they are not sent to the server. If there is
no default value, null is used instead, even if the property is not nullable. Updates for the transient entity are
collected and added to the POST request which creates the entity on the server.

Inserting an entity at the end of the list is done via the bAtEnd parameter in the create call. This is only
possible, if the list's length has been requested via the system query option $count.

To delete transient entities, use Context#delete. Transient entities are also deleted when you reset the
changes for the list binding on which the entity has been created, see ODataListBinding#resetChanges
and ODataModel#resetChanges. The promise returned by Context#created is rejected in all cases where
the created entity is deleted before it is created in the backend. As long as the list binding has a transient entity,
ODataListBinding#hasPendingChanges returns true and the following methods of ODataListBinding
raise an error: refresh, filter, and sort. The deletion of another entity of the same list binding is possible.

 Note
The position of the created entity may change after the methods refresh, filter, or sort of an
ODataListBinding.

If you have called ODataListBinding#create on a list binding where the update group ID has
SubmitMode.API and the creation of the entity on the server fails, the creation is repeated with the next call of
submitBatch for this group. If the update group ID has SubmitMode.Auto or SubmitMode.Direct and the
creation fails, the creation is repeated automatically with the next update for the entity. submitBatch can also
be used for update group IDs with SubmitMode.Auto to repeat, independently of an update. The error
returned by the server is passed to the MessageManager and the promise you get via Context.created is
not rejected. Each time the data for the created entity is sent to the server, a Context.createSent event is
fired. Each time the client receives a response for the creation, a Context.creatCompleted event is fired,
independent of whether the creation was successful, or not.

If you have called ODataListBinding#create on a list binding with an application group ID, and the creation
of the entity on the server fails, the creation is repeated with the next call of ODataModel#submitBatch for
this group. If the update group ID is $auto or $direct, and the creation fails, the creation is repeated
automatically with the next update for the entity. The error is passed to the MessageManager and the promise
you get via Context#created is not rejected. Each time the data for the created entity is sent to the server, a
createSent event is fired. Each time the client receives a response for the creation, a createCompleted
event is fired, independent of whether the creation was successful, or not.

974 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataListBinding/methods/create
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataModel/methods/bindList
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.Context/methods/isTransient
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.Context/methods/delete
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataListBinding/methods/resetChanges
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataModel/methods/resetChanges
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.Context/methods/created
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataListBinding/methods/hasPendingChanges
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataListBinding
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataListBinding
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataListBinding/methods/create
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.SubmitMode
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataModel/methods/submitBatch
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.SubmitMode
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.SubmitMode
https://sapui5.hana.ondemand.com/#/api/sap.ui.core.message.MessageManager
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.Context/methods/created
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.Context/methods/createSent
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.Context/methods/createCompleted
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataListBinding/methods/create
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataModel/methods/submitBatch
https://sapui5.hana.ondemand.com/#/api/sap.ui.core.message.MessageManager
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.Context/methods/created
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.Context/methods/createSent
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataListBinding/events/createCompleted

 Recommendation
Lock the UI each time the (POST) request for the creation is sent to the server and unlock it, when the
response from the server for that (POST) request is processed, because updates in between result in errors.
If the update group ID is SubmitMode.API, you can lock the UI when calling ODataModel#submitBatch
and unlock it again when the promise returned by ODataModel#submitBatch is resolved or rejected.
However, if the update group ID is SubmitMode.Auto or SubmitMode.Direct, use the createSent
event to lock the related UI and the createCompleted event to unlock it.

// suppose this list binding has no own update group; it uses the model's update
group instead (an application group) ...
 onCreateSalesOrder : function (oEvent) {
 var oContext = this.getView().byId("SalesOrders").getBinding("items")
 .create({
 "Note" : "My new Sales Order",
 "NoteLanguage" : "E",
 "BuyerID" : "0100000000",
 "CurrencyCode" : "EUR"
 });

 // Note: This promise fails only if the transient entity is deleted
 oContext.created().then(function () {
 // sales order successfully created
 }, function (oError) {
 // handle rejection of entity creation; if oError.canceled
=== true then the transient entity has been deleted
 });
 },

 onDeleteSalesOrder : function () {
 var oSalesOrderContext =
this.getView().byId("SalesOrders").getSelectedItem().getBindingContext();

 oSalesOrderContext.delete("$auto").then(function () {
 // sales order successfully deleted
 }, function (oError) {
 // do error handling
 });
 },

 onSaveSalesOrder : function () {
 var oView = this.getView();

 function resetBusy() {
 oView.setBusy(false);
 }

 // lock UI until submitBatch is resolved, to prevent errors caused
by updates while submitBatch is pending
 oView.setBusy(true);

oView.getModel().submitBatch(oView.getModel().getUpdateGroupId()).then(resetBusy,
 resetBusy);
 }, ...

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 975

https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.SubmitMode
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataModel/methods/submitBatch

 Note
To ensure that for a list binding all expanded data is available as soon as the promise returned by
Context#created is resolved, an additional single GET request for the newly created entity is sent
automatically once the POST request has arrived.

If you want to skip this additional single GET request, call ODataListBinding#create with parameter
bSkipRefresh=true.

The promise returned by Context#created is resolved when the entity represented by this context has been
created in the backend. Once the promise is resolved, Context#getPath returns a path including the key
predicate of the new entity. For returning the path including the key predicates, all key properties need to be
available.

Related Information

sap.ui.model.odata.v4.ODataListBinding
sap.ui.model.odata.v4.ODataModel
sap.ui.model.odata.v4.Context
sap.ui.core.message.MessageManager

Deleting an Entity

The Context.delete method deletes an entity on the server and updates the user interface accordingly.

When you delete the entity from a list binding, the corresponding row is removed. When you delete the entity
from a context binding, the binding and all dependent bindings lose the reference.

Example: Delete From a Table

 onDeleteSalesOrder : function () {
 var oTable = this.getView().byId("SalesOrders"),
 oSalesOrderContext = oTable.getSelectedItem().getBindingContext();

 oSalesOrderContext.delete("$auto").then(function () {
 oTable.removeSelections();
 MessageBox.alert("Deleted Sales Order",
 {icon : MessageBox.Icon.SUCCESS, title : "Success"});
 }, function (oError) {
 MessageBox.alert("Could not delete Sales Order: "
 + oError.message, {icon : MessageBox.Icon.ERROR, title : "Error"});
 }); },

Related Information

Context.delete

976 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.Context/methods/created
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataListBinding/methods/create
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.Context/methods/created
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.Context/methods/getPath
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataListBinding
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.ODataModel
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.Context
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.message.MessageManager.html
https://sapui5.hana.ondemand.com/#/api/sap.ui.model.odata.v4.Context/methods/delete

Consuming OData V2 Services with the OData V4 Model

The SAPUI5 framework can consume OData V2 Services in a non-intrusive way as if working directly with
OData V4.

Overview

With SAPUI5 the OData V4 Model supports the consumption of OData V2 services. The framework takes care
to convert the metadata and the data in a way that the application developer writes its application as he would
do with an OData V4 model with a corresponding OData V4 service. As OData V4 supports various features
that are not covered by OData V2, some features of the OData V4 model cannot be used. A list of the
limitations is available below.

Here is an example of a manifest.json file, which shows how to configure your application to consume a V2
service with the V4 model.

{ "_version" : "1.1.0",
 "sap.app" : {
 ...
 "dataSources" : {
 "default" : {
 "uri" : "<ODataV2 Service URL>",
 "type" : "OData",
 "settings" : {
 "odataVersion" : "2.0"
 }
 }
 },
 ...
 },
 ...
 "sap.ui5" : {
 ...
 "dependencies" : {
 "minUI5Version" : "1.49",
 ...
 },
 "models" : {
 "" : {
 "dataSource" : "default",
 "settings" : {
 "autoExpandSelect" : false,
 "operationMode" : "Server",
 "synchronizationMode" : "None"
 },
 "type" : "sap.ui.model.odata.v4.ODataModel"
 }
 },
 ...
 } }

If you have an OData V2 service and you want to consume this service with an OData V4 model, you have to set
type of the corresponding model to sap.ui.model.odata.v4.ODataModel and odataVersion of the
corresponding data source to 2.0. Both settings are needed. Additionally, the minUI5Version has to be at
least 1.49.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 977

Type Mapping and Data Conversion

OData V4 has several types, which do not exist in OData V2 (e.g. Edm.Date, Edm.TimeOfDay) and the other
way around dm.DateTime, Edm.Time), so we need a mapping between corresponding data types.

The following OData V2 types are supported and mapped:

● Edm.Binary, Edm.Boolean, Edm.Byte, Edm.Decimal, Edm.Double, Edm.Guid, Edm.Int16,
Edm.Int32, Edm.Int64, Edm.SByte, Edm.String do not need a type mapping as they exist in both
OData versions.

● Edm.DateTime is mapped to OData V4 type Edm.Date if the property has the OData V2 annotation
sap:display-format="date" or otherwise to Edm.DateTimeOffset with UTC timezone.

● Edm.Time is mapped to OData V4 type Edm.TimeOfDay.

Some data types have different representation in OData V2 and OData V4. The application developer should
only use the OData V4 values. The framework takes care that the values are converted before sending the
request to the backend (e.g. as a value of a key property) and after receiving the response from the backend.

Here are some examples:

● OData V2 uses a different alphabet for the base-64 encoding for Edm.Binary. OData V2 uses '+' and '/'
but OData V4 uses instead '-' and '_'.

● For Edm.DateTimeOffset OData V2 uses a JavaScript Date (i.e. Date(1420529121547)) and OData V4
a String (i.e. "2015-01-06T12:25:21.547") representation.

Mapping of OData V4 Features

System Query Options

$expand / $select system query options

OData V4 supports "$expand with options", which means an $expand option can contain query options for the
expanded navigation property such as $select, $orderby or $expand itself.. OData V2 does not support
"$expand with options" but only $expand and $select with path values. An OData V4 $expand option, which
contains only $select and $expand options, is transformed to the corresponding OData V2 $expand and
$select options by "flattening" the OData V4 structure.

 Example
OData V4 system query options to expand line items:

$expand=SO_2_SOITEM($select=DeliveryDate,ItemPosition,SalesOrderID) $select=SalesOrderID,GrossAmount

These options are converted into following OData V2 system query options:

$expand=SO_2_SOITEM $select=SO_2_SOITEM/DeliveryDate,SO_2_SOITEM/ItemPosition,SO_2_SOITEM/
SalesOrderID,SalesOrderID,GrossAmount

978 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Note
Because of the flat structure of $expand and $select, the URLs get longer than the URLs in OData V4. In
some browsers that might be an issue if you use $direct as group ID. (for more information see: Batch
Control [page 952]).

$orderby

OData V4 supports system query option $orderby also in $expand structures, but OData V2 supports only
$orderby on top level. When consuming an OData V2 service with an OData V4 model, system query $orderby
on top level is supported but an error is raised if $orderby is used in $expand.

$orderby can also work with expressions, but those need to be identical in V2 and V4.

$count

In OData V2 $count can only be used on top level. An error is raised if $count is used in $expand. On top level,
$count is converted to V2 $inlinecount and propagated to the request.

$filter

In OData V2 $filter can only be used on top level. An error is raised if $filter is used in $expand. On top level,
$filter is converted to V2 syntax and propagated to the request. $filter supports comparisons, and, or, not
and the following built-in functions:

● String functions: concat, contains (converted to substringof), endswith, indexof, length,
startswith, tolower, toupper, trim

● Date and time functions: day, hour, minute, month, second, year
● Arithmetic functions: ceiling, floor, round

The remaining functions are unsupported because they have no equivalent in V2.

 Caution
Avoid passing literals to date, time and arithmetic functions, because the parameter to these functions can
have different types and it cannot be decided which one is correct.

 Example
In floor(42) the 42 can be either an Edm.Double or an Edm.Decimal. Avoid comparing two literals like,
for example 42 eq 42, because the converter determines the type of a literal from the other operand
in comparisons.

OData V2 Annotations

Following V2 (attributes with namespace http://www.sap.com/Protocols/SAPData) annotations are
converted to corresponding V4 annotations (see OData V2 Model -> Meta Model for OData V2 ->Enhancement
of the OData Meta Model [page 903]).

OData V2 Annotations defined at EntitySet:

● creatable, deletable, deletable-path, label, pageable, requires-filter, searchable, topable, updatable,
updatable-path

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 979

http://help.sap.com/disclaimer?site=http%3A%2F%2Fwww.sap.com%2FProtocols%2FSAPData

OData V2 Annotations defined at Property:

● aggregation-role, creatable, creatable-path, display-format (with values NonNegative and UpperCase),
field-control, filterable, filter-restriction, heading, label, precision, quickinfo, required-in-filter, sortable text,
unit, updatable, visible

OData V2 Annotations defined at Schema:

● sap:schema-version="foo"

sap:semantics:

● bday, body, city, class, completed, country, currency-code dtend, dtstart, due, duration, familyname,
fbtype, fiscalyear, fiscalyearperiode, from, givenname, honorific, location, middlename, name, nickname,
note, org, org-role, org-unit, percent-complete, photo, pobox, priority, received, region, sender, status,
street, subject, suffix, tel (with types cell, work, fax), title, transp, url, unit-of-measure, url, wholeday,
year, yearmonth, yearmonthday, yearquarter, yearweek, zip

OData V2 Annotations defined at NavigationProperty:

● filterable, creatable, creatable-path

OData V2 Annotations defined at FunctionImport:

● action-for, label

Warnings are logged for all SAP attributes that have not been processed by the V2 converter.

Limitations

Not all OData V4 features are supported yet when consuming an OData V2 service. We have following
limitations:

● The OData V4 model can consume an OData V2 service for read scenarios only.
● The OData V2 services has to provide inline type metadata in responses, i.e. property

__metadata.__type. This information is needed to convert the data between the OData V2 and the
OData V4 types.

● Supported data types are listed above (see Type Mapping and Data Conversion [page 978]).
● System query options $orderby, $filter and $count on top level and $expand and $select are supported. All

other system query options raise an exception.
● Not all OData V2 annotations are converted yet. Supported OData V2 annotations are listed above (see

OData V2 Annotations [page 979]).

 Caution
OData V4 validates that namespaces are always loaded from the same URI. Ensure to reference the
metadata document (e.g. .../IWBEP/GWSAMPLE_BASIC/$metadata) in additional annotation files and
not the service document (.../IWBEP/GWSAMPLE_BASIC).

980 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Extension for Data Aggregation

The OData V4 Model supports features of the OData Extension for Data Aggregation V4.0 specification.

The binding parameter $$aggregation at sap.ui.model.odata.v4.ODataModel#bindList holds the
information needed for data aggregation. It may be changed by
sap.ui.model.odata.v4.ODataListBinding#setAggregation. It cannot be combined with an explicit
system query option $apply because it implicitly derives $apply. You can find more information also in the
OData Extension for Data Aggregation V4.0 specification .

Two scenarios are supported:

● You can provide properties for grouping and aggregation. An appropriate system query option $apply is
derived from those and the list binding still provides a flat list of contexts ("rows"), but with additional
aggregated properties ("columns"). In addition, you can request grand total values for aggregatable
properties. In this case, an extra row appears at the beginning of the flat list of contexts and contains the
grand total values as well as empty values for all other properties.

 Sample Code
Example XML View With Grand Total

<table:Table fixedRowCount="1" rows="{
 path : '/BusinessPartners',
 parameters : {
 $$aggregation : {
 aggregate : {
 SalesAmountSum : {
 grandTotal : true,
 name : 'SalesAmount',
 with : 'sap.unit_sum'
 }
 },
 group : {
 Region : {}
 }
 },
 $count : true,
 $filter : 'SalesAmountSum gt 1000000',
 $orderby : 'SalesAmountSum desc'
 }}">
 <table:Column template="Region">
 <Label text="Region"/>
 </table:Column>
 <table:Column hAlign="End">
 <Label text="Sales Amount"/>
 <table:template>
 <Text text="{path : 'SalesAmountSum', type :
'sap.ui.model.odata.type.Decimal'}" />
 </table:template>
 </table:Column>
 <table:Column>
 <Label text="Currency"/>
 <table:template>
 <Text text="{path : 'SalesAmountSum@Analytics.AggregatedAmountCurrency',
 type : 'sap.ui.model.odata.type.String'}" />
 </table:template>
 </table:Column> </table:Table>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 981

https://sapui5.hana.ondemand.com/#api/sap.ui.model.odata.v4.ODataModel/methods/bindList
https://sapui5.hana.ondemand.com/#api/sap.ui.model.odata.v4.ODataListBinding/methods/setAggregation
http://help.sap.com/disclaimer?site=http%3A%2F%2Fdocs.oasis-open.org%2Fodata%2Fodata-data-aggregation-ext%2Fv4.0%2Fodata-data-aggregation-ext-v4.0.html

● You can provide group levels to determine a hierarchy of expandable group levels in addition to the leaf
nodes determined by the groupable and aggregatable properties. Only a single group level is currently
supported and it cannot be expanded yet. Group levels cannot be combined with filtering or with the
system query option $count : true.

 Restriction
Multi-unit situations are not supported with data aggregation. An error is thrown if the
sap.ui.model.odata.v4.ODataListBinding detects a multi-unit situation.

Given a service with groupable properties G1,…,Gn, an aggregatable property A with related unit property
U. An aggregated OData request is said to return a multi-unit situation, if the following conditions are
fulfilled for the requested aggregation levels G1,…,Gj :

1. The result contains two or more entities with identical values for the groupable properties G1,…,Gj.
2. The entities from 1. have different values for the unit-property U and any value for A.

 Restriction
The grand total calculation is currently only supported for the standard aggregation functions sum, min,
and max as well as for custom aggregates that use these functions. This also applies to displaying subtotals
of group levels.

Filtering

Filters are provided to the list binding as described in Filtering [page 939]. The Filter objects are analyzed
automatically to perform the filtering before the aggregation where possible using the filter()
transformation. The remaining filters, including the provided $filter parameter of the binding, are applied
after the aggregation either via the system query option $filter or within the system query option $apply,
using again the filter() transformation.

Server Messages in OData V4 Model

The OData V4 model supports server messages sent via an OData V4 service.

 Caution
This feature is experimental. For more information, see Compatibility Rules [page 17].

Messages transported via an OData V4 service response are parsed and reported to the message model
sap.ui.model.message.MessageModel. An application can retrieve the messages and display them in a
suitable control, for example in sap.m.MessageView.

End user messages contain the following information:

● code - language-independent message code

982 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

● message- language-dependent message text
● target - path to the target of the message detail
● technicalDetails - technical details of the message
● transition - specifies a message as a state (false) or a transition message (true)
● numericSeverity – classification of end user messages; allowed values: 1 (success), 2 (info), 3

(warning), 4 (error); numericSeverity is mapped to the specific sap.ui.core.MessageType
● longtextUrl – optional; is omitted, if there is no long text available for the corresponding message.

The use of the fields in specific cases is described in the sections below.

Messages can be either bound or unbound: Unbound messages are not related to OData entities and are,
therefore, also not part of the OData success response in the HTTP body. Bound messages are related to
OData entities and are modeled as OData resources.

Unbound Messages

Unbound messages are transported in the header field sap-messages, which is an array of messages.
Unbound messages cannot be suppressed. They are always returned by the server and they always refer to the
current request as described in the section about transition messages below. In case of successful requests,
unbound messages are transported as an array in the HTTP header field sap-messages:

sap-messages:[{
 "code" : "SYS/42",
 "message" : "System will be down for maintenance next weekend.",
 "numericSeverity" : 2,
 "longtextUrl" : "Messages(3)/LongText/$value"
 }]

 Note
longtextUrl can be a relative or absolute path. Relative paths are treated as relative to the request URL.
Absolute paths are treated as relative to the server.

 Example
Request URL: http://<server>:<port>/serviceroot.svc/BusinessPartners(42)/
to_Address; longtextUrl: "Messages(3)/LongText/$value"

Result: http://<server>:<port>/serviceroot.svc/BusinessPartners(42)/Messages(3)/
LongText/$value

Request URL: http://<server>:<port>/serviceroot.svc/BusinessPartners(42);
longtextUrl: "/Messages(3)/LongText/$value"

Result: http://<server>:<port>/Messages(3)/LongText/$value

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 983

Bound Messages

Bound messages are related to OData entities and are modeled as OData resources. An OData entity contains
its bound messages as collection valued property of the complex type specified in the description of
com.sap.vocabularies.Common.v1.Messages. Thus, bound messages are transported in the HTTP body.
The target property specifies to which property the message is bound. The application needs to specify in the
$select binding parameter whether messages should be returned by the server, or not.

1 <ComplexType Name="<name of message type>"> 2 <Property Name="code" Type="Edm.String" Nullable="false" />
3 <Property Name="message" Type="Edm.String" Nullable="false" />
4 <Property Name="target" Type="Edm.String" Nullable="true" />
5 <Property Name="transition" Type="Edm.Boolean" Nullable="false" />
6 <Property Name="numericSeverity" Type="Edm.Byte" Nullable="false" />
7 <Property Name="longtextUrl" Type="Edm.String" Nullable="true" /> 8 </ComplexType>

The target property may contain a path relative to the entity which contains the message. The target can, for
example, refer to a property within that entity. This information is used to highlight UI elements such as input
fields, if they are bound to properties referenced by the path contained in the target property. All responses
are checked for bound messages. If there are messages, they are reported to the message model.

For bound messages, longtextUrl can be a relative or absolute path. Relative paths are treated as relative to
the innermost context path (@odata.context) in the response, or to the request URL, if there is no context
path. Absolute paths are treated as relative to the server.

Messages in Error Responses

Error messages are always reported in the error response in JSON format as described in the OData JSON
Format Version 4.0 in section 19 Error Response with the following additions:

● The instance annotation com.sap.vocabularies.Common.v1.longtextUrl can be used to provide a
long text URL, which can be a relative or an absolute path. Relative paths are treated as relative to the
request URL. Absolute paths are treated as relative to the server.

● target is relative to the requested resource.
● The error message type is always sap.ui.core.MessageType.Error. The instance annotation

com.sap.vocabularies.Common.v1.numericSeverity determines the message type of the detail
messages.

● The error message and all messages in details are transition messages.

State Messages and Transition Messages

Messages can be either state or transition messages:

● State messages refer to the state of the corresponding resource (OData entity instance). State messages
are valid as long as the related business object is not changed. The OData V4 Model is responsible for the
lifecycle of state messages and will remove state messages from the message model, if they are no longer
sent by the server when the corresponding resource is requested.

984 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

● Transition messages refer to the current request and are not related to the state of a resource. They are
only relevant for the request that was triggered, for example System not available, business object could not
be updated. Optionally, transition messages can reference a business object, for example Shipping address
could not be changed due to missing authorization. Transition messages are translated into persistent
messages in the message model. The application is responsible for the lifecycle of such persistent
messages. The OData V4 Model will not remove persistent messages from the message model.

Lifecycle Management for State Messages
The lifecycle management for state messages is optimized for a specific orchestration with the server. When
bound messages are requested, the OData V4 server returns all bound messages for the respective entity and
its subentities within the same business object. The business object is defined by the first path segment.

The following example uses a sales order with items and related products:

● A GET request for /SalesOrder(´0815´) returns all bound messages for the sales order and the items,
even if the items themselves are not contained in the response. Messages to assigned products, business
partners, and so on, that are not part of the SalesOrder business object will not be sent if the path starts
within the SalesOrder business object.

● A GET request for a specific item with path /SalesOrder(´0815´)/_Items(´010´) returns all bound
messages for this item.

● A GET request for the product related to an item using the deep path /SalesOrder(´0815´)/
_Items(´010´)/_Product will not return any bound messages.

The OData V4 model checks whether the response contains the message property and removes all previous
bound state messages from the message model, if their target path starts with the path of the entity.

This concept has the following consequences:

● When you display the information for the business object itself, you can also display the messages for all
subentities of this business object.

● For displaying the entities within a business object, an application has to use deep paths, instead of
canonical paths. Otherwise, messages will appear twice. In the object page of item ´010´, for example, the
binding needs to use the path /SalesOrder(´0815´)/_Items(´010´). You can achieve this also with a
relative binding using the context of the sales order.

● Binding entities outside the business object with the deep path means that no messages will be retrieved
for this entity. Using the binding /SalesOrder(´0815´)/_Items(´010´)/_Product to display product
information of item 010, for example, will not return any product-specific bound message.

● As a consequence, it must also not be possible to change the entity that is bound with a path that starts
with a different business object. If, for example, product information needs to be changed, we
recommended to use the canonical path to bind the product assigned to item 010 to achieve that the
server sends the bound messages of the product.

 Note
The SAPUI5 V4 ODataModel is agnostic to business objects. The application needs to take care of the
proper setup.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 985

Combining State/Transition and Bound/Unbound Messages

State Transition

Unbound

Bound

Message Severity

The table shows the supported severity values and their mapping to the specific
sap.ui.core.MessageType.

numericSeverity Type Comment

1 sap.ui.core.MessageType.Su
ccess

Positive feedback - no action required

2 sap.ui.core.MessageType.In
formation

Additional information - no action re
quired

3 sap.ui.core.MessageType.Wa
rning

Warning - action may be required

4 sap.ui.core.MessageType.Er
ror

Error - action is required

Accessing the Original Message

The attribute technicalDetails.originalMessage of the message in the message model allows you to
access the original message from the back-end.

Related Information

https://wiki.scn.sap.com/wiki/display/EmTech/OData+4.0+Vocabularies+-+SAP+Common

Currencies and Units

 Caution
This feature is experimental. For more information, see Compatibility Rules [page 17].

986 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://wiki.scn.sap.com/wiki/display/EmTech/OData+4.0+Vocabularies+-+SAP+Common

For amounts or measures, you may sometimes need different currencies or units than defined in the CLDR.
The data types sap.ui.model.odata.type.Currency and sap.ui.model.odata.type.Unit enable you
to use code lists with customizing for currency codes and units. For code lists with customizing, you need to
define the following annotations:

● Currencies: com.sap.vocabularies.CodeList.v1.CurrencyCodes
● Measures: com.sap.vocabularies.CodeList.v1.UnitsOfMeasure

Code list annotations for currency codes and measures in "metadata.xml"

<EntityType Name="Product"> ...
 <Property Name="WeightMeasure" Type="Edm.Decimal" Nullable="false"
Precision="13" Scale="variable" />
 <Property Name="WeightUnit" Type="Edm.String" Nullable="false"
MaxLength="3" />
 <Property Name="CurrencyCode" Type="Edm.String" Nullable="false"
MaxLength="5" />
 <Property Name="Price" Type="Edm.Decimal" Nullable="false" Precision="15"
Scale="variable" />
 ...
</EntityType>
...
<Annotations Target="SAP__self.Container">
 <Annotation Term="com.sap.vocabularies.CodeList.v1.CurrencyCodes">
 <Record>
 <PropertyValue Property="Url" String="../../../../default/iwbep/common/
0001/$metadata" />
 <PropertyValue Property="CollectionPath" String="Currencies" />
 </Record>
 </Annotation>
</Annotations>
<Annotations Target="SAP__self.Container">
 <Annotation Term="com.sap.vocabularies.CodeList.v1.UnitsOfMeasure">
 <Record>
 <PropertyValue Property="Url" String="../../../../default/iwbep/common/
0001/$metadata" />
 <PropertyValue Property="CollectionPath" String="UnitsOfMeasure" />
 </Record>
 </Annotation>
</Annotations>

...
<Annotations Target="SAP__self.Product/Price">
 ...
 <Annotation Term="Org.OData.Measures.V1.ISOCurrency" Path="CurrencyCode" />
 ...
</Annotations>
...
<Annotations Target="SAP__self.Product/WeightMeasure">
 ...
 <Annotation Term="Org.OData.Measures.V1.Unit" Path="WeightUnit" />
 ... </Annotations>

Code lists that are referenced by the com.sap.vocabularies.CodeList.v1.CurrencyCodes or
com.sap.vocabularies.CodeList.v1.UnitsOfMeasure annotations need the following:

● The internal code as its only key property
● A language-dependent description
● A numeric property with the unit-specific number of significant fractional digits
● Optional: An external code that should be visualized instead of the internal code
● Optional: A standard code

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 987

The key property is annotated with:

● com.sap.vocabularies.Common.v1.Text pointing to the description property
● com.sap.vocabularies.Common.v1.UnitSpecificScale pointing to the numeric property
● Optional: com.sap.vocabularies.CodeList.v1.StandardCode pointing to the standard code

property

The entity type is optionally annotated with Org.OData.Core.V1.AlternateKeys pointing to another
property that should be used for visualization.

If the alternate key is available, the type uses the alternate key as the key of the currency or unit. In this case,
the data of the actual service have to contain the alternate key representation in the currency or unit property.
The key is used and expected in the data if no alternate key is annotated. Note that there must be a maximum
of one alternate key, and that key and alternate key must have exactly one property.

The property annotated as com.sap.vocabularies.CodeList.v1.StandardCode is interpreted as the
ISO code by sap.ui.model.odata.type.Currency and used to find currency symbols. The currency
symbols may be used for entering data.

Example for the metadata of a code list service

... <EntityType Name="Currency">
 <Key>
 <PropertyRef Name="CurrencyCode" />
 </Key>
 <Property Name="CurrencyCode" Type="Edm.String" MaxLength="5" />
 <Property Name="ISOCode" Type="Edm.String" MaxLength="3" />
 <Property Name="Text" Type="Edm.String" MaxLength="15" />
 <Property Name="DecimalPlaces" Type="Edm.SByte" />
 </EntityType>

 <EntityType Name="UnitOfMeasure">
 <Key>
 <PropertyRef Name="UnitCode" />
 </Key>
 <Property Name="UnitCode" Type="Edm.String" MaxLength="3" />
 <Property Name="ISOCode" Type="Edm.String" MaxLength="3" />
 <Property Name="ExternalCode" Type="Edm.String" MaxLength="3" />
 <Property Name="Text" Type="Edm.String" MaxLength="30" />
 <Property Name="DecimalPlaces" Type="Edm.Int16" />
 </EntityType>

 <Annotations Target="SAP__self.Currency/CurrencyCode">
 <Annotation Term="Common.Text" Path="Text" />
 <Annotation Term="Common.UnitSpecificScale" Path="DecimalPlaces" />
 <Annotation Term="CodeList.StandardCode" Path="ISOCode" />
 </Annotations>

 <Annotations Target="SAP__self.UnitOfMeasure">
 <Annotation Term="Core.AlternateKeys">
 <Collection>
 <Record>
 <PropertyValue Property="Key">
 <Collection>
 <Record>
 <PropertyValue Property="Name" PropertyPath="ExternalCode" />
 <PropertyValue Property="Alias" String="ExternalCode" />
 <Record>
 </Collection>
 </PropertyValue>
 <Record>
 </Collection>

988 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 </Annotation>
 </Annotations>

 <Annotations Target="SAP__self.UnitOfMeasure/UnitCode">
 <Annotation Term="Common.Text" Path="Text" />
 <Annotation Term="Common.UnitSpecificScale" Path="DecimalPlaces" />
 <Annotation Term="CodeList.StandardCode" PropertyPath="ISOCode" />
 <Annotation Term="CodeList.ExternalCode" PropertyPath="ExternalCode" />
 </Annotations> ...

With the metadata above, you can use the data types sap.ui.model.odata.type.Currency and the
sap.ui.model.odata.type.Unit in an input field as shown in the following example. The data types use a
complex binding with the amount or measure as first part, the currency code or unit as second part, and the
information about the code list customizing that has to be used as third part.

Example how to use currency and unit types in a freestyle application

... <Input value="{mode:'TwoWay', parts:['WeightMeasure', 'WeightUnit',
{mode:'OneTime', path:'/##@@requestUnitsOfMeasure', targetType:'any'}],
type:'sap.ui.model.odata.type.Unit'}"/>
...
<Input value="{mode:'TwoWay', parts:['Price', 'CurrencyCode', {mode:'OneTime',
path:'/##@@requestCurrencyCodes', targetType:'any'}],
type:'sap.ui.model.odata.type.Currency'}"/> ...

The code lists are automatically requested only once per browser session and code list URL.

If you use XML templating, you can use sap.ui.model.odata.v4.AnnotationHelper.format to generate
the composite binding for an amount or measure property. To recognize a property as an amount or measure,
the property needs to be annotated either with the Org.OData.Measures.V1.ISOCurrency, or with the
Org.OData.Measures.V1.Unit annotation. For more informatio about XML templating, see XML
Templating [page 1018].

Additional annotations when using XML templating

<!-- used in view template --> <Annotations Target="SAP__self.Product">
 <Annotation Term="com.sap.vocabularies.UI.v1.LineItem">
 <Collection>
 ...
 <Record Type="com.sap.vocabularies.UI.v1.DataField">
 <PropertyValue Property="Label" String="Weight" />
 <PropertyValue Property="Value" Path="WeightMeasure" />
 </Record>
 <Record Type="com.sap.vocabularies.UI.v1.DataField">
 <PropertyValue Property="Label" String="Price" />
 <PropertyValue Property="Value" Path="Price" />
 </Record>
 ...
 </Collection>
 </Annotation> </Annotations>

You can now use sap.ui.model.odata.v4.AnnotationHelper.format in the XML template view to
generate the composite binding for sap.ui.model.odata.type.Currency and
sap.ui.model.odata.type.Unit types.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 989

How to use AnnotationHelper.format with currencies or units

<template:alias name="format"
value="sap.ui.model.odata.v4.AnnotationHelper.format"> <template:alias name="label"
value="sap.ui.model.odata.v4.AnnotationHelper.label">
<VBox>
 <template:with path="meta>/ProductList/@com.sap.vocabularies.UI.v1.LineItem"
var="lineItem">
 <Table items="{/ProductList}">
 <columns>
 <template:repeat list="{lineItem>}" var="field">
 <Column>
 <Label text="{field>@@label}"/>
 </Column>
 </template:repeat>
 </columns>
 <ColumnListItem>
 <template:repeat list="{lineItem>}" var="field">
 <Input value="{field>Value/@@format}"/>
 </template:repeat>
 </ColumnListItem>
 </Table>
 </template:with>
</VBox>
</template:alias> </template:alias>

Example: Templating output

<VBox> <Table items="{/ProductList}">
 <columns>
 ...
 <Column>
 <Label text="Weight"/>
 </Column>
 <Column>
 <Label text="Price"/>
 </Column>
 ...
 </columns>
 <ColumnListItem>
 ...
 <Input value="{mode:'TwoWay', parts:[{path:'WeightMeasure',
type:'sap.ui.model.odata.type.Decimal', constraints:{'precision':13,
'scale':'variable', 'nullable':false}}, {path:'WeightUnit',
type:'sap.ui.model.odata.type.String', constraints:{'maxLength':3,
'nullable':false}}, {mode:'OneTime', path:'/##@@requestUnitsOfMeasure',
targetType:'any'}], type:'sap.ui.model.odata.type.Unit'}"/>
 <Input value="{mode:'TwoWay', parts:[{path:'Price',
type:'sap.ui.model.odata.type.Decimal', constraints:{'precision':15,
'scale':'variable', 'nullable':false}}, {path:'CurrencyCode',
type:'sap.ui.model.odata.type.String', constraints:{'maxLength':5,
'nullable':false}}, {mode:'OneTime', path:'/##@@requestCurrencyCodes',
targetType:'any'}], type:'sap.ui.model.odata.type.Currency'}"/>
 ...
 </ColumnListItem>
 </Table> </VBox>

990 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

JSON Model

The JSON model can be used to bind controls to JavaScript object data, which is usually serialized in the JSON
format.

The JSON model is a client-side model and, therefore, intended for small data sets, which are completely
available on the client. The JSON model does not support mechanisms for server-based paging or loading of
deltas. It supports, however, two-way binding. Also, client-side models like the JSON model have no built-in
support for sending data back to the server. The apps have to use, for example, model.getData() and
jQuery.ajax() to send updated data to the server.

To instantiate a JSON model, use the following code:

var oModel = new sap.ui.model.json.JSONModel();

After the instance has been created, there are different options to get the data into the model.

The easiest option is to set data by using the setData method:

oModel.setData({ firstName: "Peter",
 lastName: "Pan" });

 Note
The correct JSON notation uses double quotes for the keys and string values.

Usually, you do not define your data inline in the application but load it from a server-side service using an XHR
request. The JSON model, however, also has a loadData method, which loads the JSON data from the
specified URL asynchronously and applies it to the model:

oModel.loadData("data.json");

Related Information

API Reference: sap.ui.model.json.JSONModel

Sorting and Filtering in JSON Models

If you use a JSON model for data binding, sorting and filtering is implemented in JavaScript because the data is
available on the client. You can use custom sorting and filtering methods in the JSON model. To define custom

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 991

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.json.JSONModel.html

methods, set the fnCompare method on the Sorter object or the fnTest method on the filter object after
creating it.

The fnTest method of the filter gets the value to test as the only parameter and returns, whether the row with
the given value should be filtered or not.

var oFilter = new sap.ui.model.Filter("property", function(value) { return (value > 100);
});

The fnCompare method of the Sorter gets the two values to compare as parameters and returns -1, 0 or 1,
dependent on which of the two values should be ordered before the other:

var oSorter = new sap.ui.model.Sorter("property"); oSorter.fnCompare = function(value1, value2) {
 if (value1 < value2) return -1;
 if (value1 == value2) return 0;
 if (value1 > value2) return 1; };

Binding Path Syntax for JSON Models

The JSON model has a simple binding path syntax, because it consists of named objects, such as properties,
arrays, or nested objects.

The following example shows a simple JSON model with the different binding paths:

 {
 company: {
 name: "Treefish Inc",
 info: {
 employees: 3,
 },
 contacts: [
 {
 name: "Barbara",
 phone: "873"
 },
 {
 name: "Gerry",
 phone: "734"
 },
 {
 name: "Susan",
 phone: "275"
 }
]
 } }

Absolute binding paths within this model:

/company/name /company/info/employees /company/contacts

992 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Relative binding paths within the "/company" context:

name info/employees contacts

Relative binding paths within a list binding of "/company/contacts":

name phone

XML Model

The XML model allows to bind controls to XML data. It is a client-side model intended for small datasets, which
are completely available on the client. The XML model does not contain mechanisms for server-based paging
or loading of deltas. It supports two-way binding.

To instantiate the model, use the following code:

var oModel = new sap.ui.model.xml.XMLModel();

The XML model allows to bind controls to XML data. It is a client-side model intended for small data sets, which
are completely available on the client. The XML model does not contain mechanisms for server-based paging
or loading of deltas. It supports two-way binding.

oModel.setData(oXMLDocument);

To create inline XML data or to get XML data as a string, the XML model provides a setXML method. This
method takes XML in text format and uses the browser's XML parser to create a document.

oModel.setXML("<?xml version=\"1.0\"?><some><xml>data</xml></some>");

Usually, you load your data from the server using an HTTP-based service, so the loadData method provides
an easy way to load XML data from the given URL:

oModel.loadData("data.xml");

For more information, see the API Reference in the Demo Kit.

Related Information

API Reference: sap.ui.model.xml.XMLModel

Sorting and Filtering in XML Models

If you use an XML model for data binding, sorting and filtering is implemented in JavaScript because all data is
available on the client. You can use custom methods for sorting and filtering in an XML model. To define

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 993

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.xml.XMLModel.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.xml.XMLModel.html

custom methods, set the fnCompare method on the Sorter object or the fnTest method on the Filter object
after creating it.

The fnTest method of the Filter gets the value to test as the only parameter and returns, whether the row with
the given value should be filtered or not. To implement a filter, use the following code :

var oFilter = new sap.ui.model.Filter("property"); oFilter.fnFilter = function(value) {
 return (value > 100); };

The fnCompare method of the Sorter gets the two values to compare as parameters and returns -1, 0 or 1,
dependent which of the two values should be ordered before the other. To implement a sorter, use the following
code:

var oSorter = new sap.ui.model.Sorter("property"); oSorter.fnCompare = function(value1, value2) {
 if (value1 < value2) return -1;
 if (value1 == value2) return 0;
 if (value1 > value2) return 1; };

XML Namespace Support

The XML model supports documents using XML namespaces.

For this purpose, you must declare namespaces using the setNameSpace method. The namespace prefixes do
not necessarily need to be the same as in the XML document, they only used in the binding paths which are
used to address nodes in the document.

Assumed this sample XML document:

 <data xmlns="http://tempuri.org/base" xmlns:ext="http://tempuri.org/ext">
 <ext:entry id="0" value="foo" />
 <ext:entry id="1" value="foo" /> </data>

The namespaces must be declared in the JavaScript like this, to be able to bind to them:

 var oModel = new sap.ui.model.xml.XMLModel(oXMLDoc);
oModel.setNameSpace("http://tempuri.org/base");
oModel.setNameSpace("http://tempuri.org/ext", "e"); [...] oTable.bindRows("/e:entry");

994 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Binding Path Syntax for XML Models

XML models differentiate between attributes and content. XML has no arrays and defines lists as multiple
elements with the same name instead. This makes the binding path syntax for XML models more difficult than
for JSON or OData models.

For attributes, a special selector using the "@" character exists and "text()" can be used to reference the
content text of an element. Lists are referenced by using the path to the multiple element.

 Note
For the XML model the root must not be included in the path.

 <companies>
 <company name="Treefish Inc">
 <info>
 <employees>3</employees>
 </info>
 <contact phone="873">Barbara</contact>
 <contact phone="734">Gerry</contact>
 <contact phone="275">Susan</contact>
 </company> </companies>

Absolute binding paths within this model:

/company/@name /company/info/employees

Relative binding paths within the /company context:

@name info/employees/text()

Relative binding paths within a list binding of /company/contact:

text() @phone

 Note
In a similar JSON model you would use /companies/company/locations as binding path for the
locations collection. In an XML model the respective collection binding path is: /company/locations/
location.

Resource Model

The resource model is used as a wrapper for resource bundles. In data binding you use the resource model
instance, for example, to bind texts of a control to language-dependent resource bundle properties.

A resource model is instantiated with a bundleName or a bundleURL. The bundle name is the name of the
resource bundle and equals a SAPUI5 module name within the define/require concept. The bundle URL points

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 995

to a resource bundle. If you use the bundle name, the file must have the .properties suffix. If you do not
specify a locale, the system uses the login language: var oModel = new
sap.ui.model.resource.ResourceModel({bundleName:"myBundle",locale:"en"});

In this resource model implementation you cannot pass parameters to your texts within the resource bundle. If
you have to pass parameters, you must do this on your own. Therefore, you can load the bundle yourself or
retrieve it from the model.

var myBundle = oModel.getResourceBundle();

After the resource model has been instantiated, you have a model containing the resource bundle texts as data.

● Views [page 787]
● Resource Bundles [page 1272]

Related Information

Modules and Dependencies [page 1094]
Localization [page 1269]
Resource Bundles [page 1272]
API Reference: sap.ui.model.resource.ResourceModel

Binding Path Syntax for Resource Models

The binding path syntax for the resource model only contains a flat list of properties.

The following example shows a simple resource model that illustrates the possible binding paths: Resource
bundle content:

 CLOSE_BUTTON_TEXT=Close
OPEN_BUTTON_TEXT=Open

996 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.resource.ResourceModel.html

CANCEL_BUTTON_TEXT=Cancel

Binding paths within the model:

 CLOSE_BUTTON_TEXT
OPEN_BUTTON_TEXT CANCEL_BUTTON_TEXT

Binding Texts to a Resource Bundle

If you don't want to use a component or descriptor file, or you want to use a more fine-grained resource bundle,
you can declaratively instantiate a resource model in an XML or JSON view. To do so, you define the resource
bundle by a name (resourceBundleName property) or a URL (resourceBundleUrl property) and assign an
alias (resourceBundleAlias property) for the bundle in the view definition.

The ResourceModel required for binding these texts is created during view instantiation. The model is set as
secondary model with the given alias to the view instance. If you want to bind other properties to another
model, you have to create the model on your own in the corresponding controller or HTML page and attach it to
the view with another alias. The binding itself behaves in the same way as every SAPUI5 data binding and as
described above.

1. Define the following resource bundle content: MY_TEXT=Hello World
2. To bind this resource bundle content in XML views, insert the following code:

<core:View resourceBundleName="myBundle" resourceBundleAlias="i18n"
 controllerName="sap.hcm.Address" xmlns="sap.m"
xmlns:core="sap.ui.core"
 xmlns:html="http://www.w3.org/1999/xhtml">
 <Panel>
 <Button text="{i18n>MY_TEXT}"/>
 </Panel> <core:View>

Custom Model

Custom models can be used if none of the models provided by SAPUI5 is suitable for the specific needs of an
application.

To instantiate a custom model, proceed as follows:

1. Extend the Model class and specify the binding modes that the model should support (for example, two-
way, one-way, one-time).

2. Extend the Binding class to suit your specific binding or reuse the existing specific binding
implementations PropertyBinding, ListBinding, and/or TreeBinding.

3. To enable the filtering functionality, use the Filter class with FilterOperator enum in your binding
implementation.

4. To enable the sorting functionality, use the Sorter class in your binding implementation.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 997

You can find all necessary classes in the sap.ui.model namespace. As a starting point, take a look at the
JSONModel implementation in sap.ui.model.json.JSONModel.

Assigning the Model to the UI

If you don't want to use a component or descriptor file, you have to assign the model instance manually to the
UI, before you can bind controls to this model instance.

SAPUI5 provides a flexible and modularized concept in which you can not only define one model for your
applications, but define different areas in your application with different models and assign single controls to a
model. You can, for example, define a JSON model for the application and an OData model for a table contol
that is contained in the application. You can also set multiple models for a control, a UI area, or the core by
specifying a name for the model. These models can be accessed by their name.

var oJSONModel = new sap.ui.model.json.JSONModel(); var oODataModel = new sap.ui.model.odata.v2.ODataModel("myServicelUrl");
var oControl = new sap.m.Input();
oControl.setModel(oODataModel);
//set the JSONModel with the name 'myJSONModel' to the same control oControl.setModel(oJSONModel,"myJSONModel");

When you set a model to a UI area or control, it will be propagated to all aggregated child controls. So if you set
a model to a container control, for example, all controls that are contained (aggregated) in this container have
access to this model. If one of the contained controls has its own model set (with the same name), the
propagation stops. It is not possible to have two models with the same name set to one control instance.

Choose one of the following options:

● You can define a global model that can be accessed by all controls from all UI areas by using the setModel
method on the SAPUI5 core object. This is useful for simple form applications or demo applications.

 sap.ui.getCore().setModel(oModel);

● You can also define a specific model for sections within a UI area, for example, inside a panel or for a table
control. In this case, you can use the setModel method available on any control:

 var oTable = sap.ui.getCore().byId("table"); oTable.setModel(oModel);

Related Information

Components [page 720]
Descriptor for Applications, Components, and Libraries [page 734]

998 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Setting the Default Binding Mode

The default binding mode applies when a model instance is created. You can overwrite the default binding
mode after model creation.

● To change the default binding mode, call the setDefaultBindingMode method on the model as follows:

 var oModel = new sap.ui.model.json.JSONModel(); oModel.setDefaultBindingMode(sap.ui.model.BindingMode.OneWay);

In this example, all new bindings for the model will have the one-way binding mode by default.
● You can, however, only set supported binding modes as default binding mode. You can check if a binding

mode is supported as follows:

 var oModel = new sap.ui.model.json.JSONModel();
if (oModel.isBindingModeSupported(sap.ui.model.BindingMode.OneTime)) { // true
 oModel.setDefaultBindingMode(sap.ui.model.BindingMode.OneTime); }

 Note
When you change the binding mode of an existing model instance, the existing bindings are not
updated with the newly set binding mode.

Using Data Binding for Data Export

Data binding supports the export of data in a specific format so that the data can be used in other programs.

To export data, load the necessary modules as shown in the following example:

sap.ui.require(["sap/ui/core/util/Export", "sap/ui/core/util/ExportTypeCSV"],
function(Export, ExportTypeCSV) { // ... });

The following code snippet uses a JSON model as basis for the export. You can also use other models, such as
the OData model.

 // "JSONModel" required from module "sap/ui/model/json/JSONModel"
var oModel = JSONModel([
 {
 firstname: "Al",
 lastname: "Dente"
 },
 {
 firstname: "Andy",
 lastname: "Friese"
 },
 {
 firstname: "Anita",
 lastname: "Mann"
 },
 {
 firstname: "Doris",
 lastname: "Schutt"
 },

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 999

 {
 firstname: "Kenya",
 lastname: "Dewit"
 }
]);

In the next step, create the data export object and pass the required information for the export to the object:

 // "Export" required from module "sap/ui/core/util/Export"
var oExport = new Export({
 // "ExportTypeCSV" required from module "sap/ui/core/util/ExportTypeCSV"
 // Type that will be used to generate the content. Own ExportType's can be
created to support other formats
 exportType: new ExportTypeCSV({
 separatorChar: ";"
 }),
 // Pass in the model created above
 models: oModel,
 // binding information for the rows aggregation
 rows: {
 path: "/"
 },
 // column definitions with column name and binding info for the content
 columns: [
 {
 name: "First name",
 template: {
 content: {
 path: "firstname"
 }
 }
 },
 {
 name: "Last name",
 template: {
 content: {
 path: "lastname"
 }
 }
 }
]
});

The export class provides a generate method that triggers the generation process and returns a jQuery
Promise object. The done handler is called when the generation process has finished. If you use the OData
model, this happens asynchronously. The always handler is also called when the generation has failed. When
the generation has finished and the export object is no longer needed, destroy the export object.

 oExport.generate().done(function(sContent) {
 console.log(sContent);
}).always(function() {
 this.destroy();
});

The above example provides the following output:

First name;Last name Al;Dente
Andy;Friese
Anita;Mann
Doris;Schutt Kenya;Dewit

1000 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

You can directly save the file by triggering a download. This calls the generate method internally and uses the
file util class (sap/ui/core/util/File) to trigger the download.

 oExport.saveFile().always(function() {
 this.destroy();
});

Export Types

You can use the CSV export type out of the box, or define other export types. The concept is similar to custom
notepad controls, see Developing Controls [page 2158]. The generate method is called and should return the
created file as a string.

 Note
Make sure that all values are encoded or escaped properly.

 // "ExportType" required from module "sap/ui/core/util/ExportType"
// "encodeXML" required from module "sap/base/security/encodeXML"
ExportType.extend("my.own.ExportType", {
 init: function() {
 // Set default values
 this.setProperty("fileExtension", "mytype", true);
 this.setProperty("mimeType", "text/mytype", true);
 this.setProperty("charset", "utf-8", true);
 },
 generate: function() {
 var aBuffer = [];
 var oColumns = this.columnGenerator(),
 oColumn;
 aBuffer.push("<columns>");
 while (!(oColumn = oColumns.next()).done) {
 aBuffer.push("<column>" + encodeXML(oColumn.value.name) + "</
column>");
 }
 aBuffer.push("</columns>");

 var oRows = this.rowGenerator(),
 oRow;
 aBuffer.push("<rows>");
 while (!(oRow = oRows.next()).done) {
 var oCells = oRow.value.cells,
 oCell;
 aBuffer.push("<row>");
 aBuffer.push("<cells>");
 while (!(oCell = oCells.next()).done) {
 aBuffer.push("<cell");
 if (oCell.value.customData.color) {
 aBuffer.push(" color=\"" +
encodeXML(oCell.value.customData.color) + "\"");
 }
 aBuffer.push(">");
 aBuffer.push(encodeXML(oCell.value.content));
 aBuffer.push("</cell>");
 }

 aBuffer.push("</rows>");

 return aBuffer.join("");
 }

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1001

});

Custom Data

It is also possible to pass customData to the cell template. This can be used to provide additional metadata to
the ExportType (see example code above).

 // column definitions with column name, binding info for the content and
additional custom data
columns: [
 {
 name: "First name",
 template: {
 content: {
 path: "firstname"
 },
 customData: [
 {
 "key": "color",
 "value": {
 path: "color"
 }
 }
]
 }
 },
 {
 name: "Last name",
 template: {
 content: {
 path: "lastname"
 }
 }
 }
]

Model Data

 // "JSONModel" required from module "sap/ui/model/json/JSONModel"
var oModel = new JSONModel([
 {
 firstname: "Al",
 lastname: "Dente",
 color: "red"
 },
 {
 firstname: "Andy",
 lastname: "Friese",
 color: "black"
 },
 {
 firstname: "Anita",
 lastname: "Mann",
 color: "yellow"
 },
 {
 firstname: "Doris",
 lastname: "Schutt",
 color: "green"
 },
 {
 firstname: "Kenya",
 lastname: "Dewit",
 color: "blue"
 }
]);

1002 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Output

 <columns>
 <column>First name</column>
 <column>Last name</column>
</columns>
<rows>
 <row>
 <cells>
 <cell color="red">Al</cell>
 <cell>Dente</cell>
 </cells>
 </row>
 <row>
 <cells>
 <cell color="black">Andy</cell>
 <cell>Friese</cell>
 </cells>
 </row>
 <row>
 <cells>
 <cell color="yellow">Anita</cell>
 <cell>Mann</cell>
 </cells>
 </row>
 <row>
 <cells>
 <cell color="green">Doris</cell>
 <cell>Schutt</cell>
 </cells>
 </row>
 <row>
 <cells>
 <cell color="blue">Kenya</cell>
 <cell>Dewit</cell>
 </cells>
 </row>
</rows>

Integration in Controls

sap/ui/table/Table

The exportData method creates an export instance and fills the rows and columns with the table's rows/
column definition, if not defined otherwise. This also includes filters and sorters that have been applied to the
columns.

 // "ExportTypeCSV" required from module "sap/ui/core/util/ExportTypeCSV"
oTable.exportData({
 exportType: ExportTypeCSV()
})
.saveFile()
.always(function() {
 this.destroy();
});

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1003

Reusing UI Parts: Fragments

Fragments are light-weight UI parts (UI sub-trees) which can be reused, defined similar to views, but do not
have any controller or other behavior code involved.

UI parts which are to be used in several views cannot be easily defined. They either have to be created as new
controls, or they have to be created as views. Creating them as new controls results in a development
overhead, while creating them as separate views results in a runtime overhead. In the latter case they would
have a separate controller instead of having the same controller as the view does. Also, views and popup
controls like dialogs do not go well together. The dialog content can be defined as a view but the dialog control
itself always has to be written in the program.

To solve these issues, fragments have been introduced. They can be reused and, if source code is required and
for event handler methods, they can connect to existing controllers of the "owning" view. This means that one
important characteristic of fragments is that they are independent of the model-view-controller (MVC) concept
and can be used without using MVC. However, if fragments are used together with views and controllers,
fragments can make use of them and integrate them neatly.

Similar to DocumentFragments in HTML, the fragment itself has no HTML representation when it is inserted
into the UI tree. Instead, its content is inserted. This means that fragments are not like controls, but more like a
factory creating the contained controls. They support reuse and view modularization without adding overhead.

SAPUI5 provides different types of fragments:

● XML fragments
● HTML fragments
● JS fragments

More fragment types can be implemented and plugged in.

Defining a fragment is similar to defining views within a separate file. The fragments simply end with
*.fragment instead of *.view. Also, the same rules for file location apply.

Related Information

Model View Controller (MVC) [page 784]
Walkthrough Step 16: Dialogs and Fragments [page 106]

HTML Fragments

HTML fragments have a similar syntax as HTML views, but without the <template> tag.

You can define a simple HTML fragment like this:

 <div data-sap-ui-type="sap.m.Button" data-press="doSomething" data-text="Hello World"></div>

1004 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

The fragment is stored as …/my/useful/UiPartZ.fragment.html and referenced as Fragment
my.useful.UiPartZ. HTML fragments cannot specify a controller to be instantiated. They can use a
controller for binding event handler methods, but only if the code instantiating them passes a controller.

XML Fragments

XML fragments are similar to XML view, but have no <View> tag as root element. Instead, there is an SAPUI5
control.

You define a simple XML fragment as shown in the following code snippet:

<Button xmlns="sap.m" id="btnInFragment" text="Hello World"/>

This simple UI definition can, for instance, be located in a file named …/my/useful/
VerySimpleUiPart.fragment.xml, be referenced by its name my.useful.VerySimpleUiPart, and can
be found by the module loading mechanism.

A slightly more complex XML fragment can be defined as follows:

<VBox xmlns="sap.m"> <Label text="My Label inside an XML fragment"/>
 <Button id="btnInFragment" text="Hello World" press="doSomething"/>
 <Button text="{/someText}"/> </VBox>

The event handler is bound to the doSomething method of a controller. This is expressed by the
doSomething value of the press event attribute. This means that this fragment can only be instantiated with
a controller if the controller has this method. If not, the code throws an error.

You can see how the data binding syntax is the same as that of XML views. Of course, this requires the
fragment to be placed into a part of the UI tree where the model is available.

JS Fragments

The structure of JS fragments is similar to the structure of the respective views: They have a name and an
object with a createContent() function.

You define a simple JS fragment named my.useful.UiPartX as shown in the following code snippet:

sap.ui.jsfragment("my.useful.UiPartX", { createContent: function(oController) {
 var oButton = new sap.m.Button({
 text:"Hello World",
 press:oController.doSomething
 });
 return oButton;
 } });

The createContent() function is responsible for the UI definition and has to return a control. The definition
can be created either inline or in a separate file, for instance in …/my/useful/UiPartX.fragment.js. The

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1005

oController is either already defined or it is null. In the first case, its methods can be used for the event
handlers of controls.

Despite the many similarities to views, there are also differences: First of all, there is no
getControllerName() method. Fragments cannot specify whether they have a controller. Whether
oController is defined or not is not a decision of the fragment itself. Instead, it is decided by the code
instantiating the fragment. If that code is part of a controller, it can pass a reference to itself to the fragment.
This means there can be a dependency between controllers and fragments: Fragments may expect a controller
to exist and to have certain methods. And controllers may expect certain controls to be in the fragment. This is
in line with the purpose of fragments - to be very light-weight re-use entities that provide little encapsulation.
For more encapsulation, views or even components are better suited.

Related Information

Components [page 720]
Views [page 787]

Instantiation of Fragments

SAPUI5 provides the generic function sap.ui.fragment() to instantiate fragments.

Comparing fragments to views, there is one important difference: Fragments are no controls. While views are
control instances which have their own HTML and their own set of properties and may contain other controls,
fragments just consist of their content. Views contain their content controls, while fragments consist of their
content controls.

For example, when a fragment containing a button is instantiated, the result is just this button.

The generic function sap.ui.fragment() can be called with either the name, the type, and optionally a
controller, or with a configuration object and an optional controller. It either returns the root control contained
in the fragment or an array of root controls, depending on the type of the fragment. This fragment type is
usually known in advance. Therefore, a specific method for each fragment type can be used to
programmatically instantiate a fragment. You find more information on the instantiation process in the
respective topics linked in the related link section below.

The different methods used for the instantiation of a fragment have the following commonalities:

● A fragment name must be given. This name must be resolvable to the fragment file URL by the SAPUI5
module loading mechanism. In case of JS fragments the name may also be defined inline.

● A controller can be optionally given. Some fragments may require a controller and certain methods to be
present in this controller.

● An ID can be optionally given.
If no ID is given, any control IDs specified in the fragment are used as is. The repeated use of a fragment
can lead to duplicate IDs. One way to avoid that problem is to specify a unique fragment ID. For more
information see Unique IDs [page 1011]. This ID will then be used as prefix for all controls in this fragment
instance.

1006 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Programmatically Instantiating JS Fragments

For each fragment type, SAPUI5 provides a method that can be used to programmatically instantiate a
fragment.

Context

To give an example of a programmatic instantiation of a JS fragment, you first have to define one. The following
code presents an example definition:

sap.ui.jsfragment ("my.useful.UiPartX",{ createContent: function (oController) {
 var oButton = new sap.m.Button({
 text: "Hello World" ,
 press:oController.doSomething
 });
 return oButton;
 } });

This fragment can be instantiated from a controller as follows:

 var myButton = sap.ui.jsfragment("my.useful.UiPartX",this); // assuming "this"
is the controller

This button can now be used as if it had been created in a standard way. Note how a controller instance is
passed as second parameter. This is required because that particular fragment tries to bind the button press
handler to the method doSomething in the given controller. With no controller given, this would cause an error.

For fragments that are used several times, an ID for the fragment can be given optionally, see Unique IDs [page
1011]:

 var myButton = sap.ui.jsfragment("someId", "my.useful.UiPartX", this); //
assuming "this" is the Controller

Within a JS view's createContent() method the fragment content could be included like this:

... createContent: function (oController) {
 var hLayout = new sap.m.HBox ();
 ...
 var myFragment = sap.ui.jsfragment("my.useful.UiPartX" , oController);
 // here the fragment is instantiated
 hLayout.addContent (myFragment);
 ...
 return hLayout ;
 } ...

The fragment content (= the button) would be added to the layout which is the content of this JSView. Other
fragments not requiring a controller can of course be instantiated without passing a controller. But it also does
not hurt to pass the controller - it is only used for setting up the event handlers (or within the
createContent() method, in case of JS fragments).

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1007

Programmatically Instantiating XML Fragments

For each fragment type, SAPUI5 provides a method that can be used to programmatically instantiate a
fragment.

Context

To give an example of a programmatic instantiation of an XML fragment, you first have to define one. The
following code presents an example definition:

<Button xmlns="sap.ui.commons" id="btnInFragment" text="Hello World" />

This fragment can be instantiated from a controller as follows:

sap.ui.require(["sap/ui/core/Fragment"], function(Fragment) { Fragment.load({
 name: "my.useful.VerySimpleUiPart"
 }).then(function(myButton) {
 // ...
 }); });

 Note
This specific fragment does not use a controller; if controls inside a fragment needs methods that are to be
defined in a controller, the controller has to be referred to in an additional parameter.

Fragments can be instantiated from JSViews, as well. Fragments of any type can be used within views of any
type.

If XML fragments are used within XML views, giving the view ID as fragment ID will allow calling this.byId(…)
in the view’s controller to retrieve controls inside the fragment. The following code inside the controller will
instantiate the above fragment with the Button and then again retrieve the Button:

sap.ui.require(["sa/ui/core/Fragment"], function(Fragment) { Fragment.load({
 name: "my.useful.VerySimpleUiPart"
 }).then(function(myButton) {
 // ...
 });
}); var theSameButton = this.byId("btnInFragment"); // returns the button in the
fragment

1008 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Programmatically Instantiating HTML Fragments

For each fragment type, SAPUI5 provides a method that can be used to programmatically instantiate a
fragment.

Context

To give an example of a programmatic instantiation of an HTML fragment, you first have to define one. The
following code presents an example definition:

<div data-sap-ui-type="sap.m.Button" data-press="doSomething" data-text="Hello
World"></div>

This fragment can be instantiated from a controller as follows:

sap.ui.require(["sap/ui/core/Fragment"], function(Fragment) { Fragment.load({
 type: "HTML",
 name: "my.useful.UiPartZ",
 controller: oController // this specific fragment again needs a
controller
 }).then(function(myButton) {
 // ... });

This instantiation can be done at any place in the code, given that a controller is available and the returned
button can be used like any button.

Instantiating Fragments in Declarative Views

Example, how all three types of fragments can be instantiated in an XML view.

Context

In XML views, fragments are used like regular controls, or more precisely, like views.

The following code example shows an XML view that includes all three types of fragments, that is an XML
fragment, a JS fragment and an HTML fragment. Each type is instantiated once without a given ID and once
with a given ID. These fragment references basically work like import statements including the fragment
content controls.

<mvc:View xmlns:mvc="sap.ui.core.mvc" xmlns:core="sap.ui.core"
controllerName="testdata.fragments.XMLViewController" >
 <core:Fragment fragmentName="my.useful.SimpleUiPart"
type="XML" />
 <core:Fragment id="xmlInXml" fragmentName="my.useful.SimpleUiPart"
type="XML" />

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1009

 <core:Fragment fragmentName="my.useful.UiPartX" type="JS" />
 <core:Fragment id="jsInXml" fragmentName="my.useful.UiPartX" type="JS" />

 <core:Fragment fragmentName="my.useful.UiPartZ" type="HTML" />
 <core:Fragment id="htmlInXml" fragmentName="my.useful.UiPartZ" type="HTML" /> </mvc:View>

Related Information

Unique IDs [page 1011]
Using Other Objects Instead of Controllers [page 1010]

Using Other Objects Instead of Controllers

For the instantiation of fragments, the oController object must not necessarily be a controller. It can also be
another object.

Context

The oController object given when instantiating a fragment does not need to be an object of type
sap.ui.core.mvc.Controller. It is entirely up to the fragment what to expect from this object. This object
is passed to the createContent method of JS fragments. In case of the declarative fragment types, that is
XML, or HTML fragments, the event handler methods are searched on this object. This means that in most
cases instead of a real controller object any JavaScript object could be given - provided it has the required
methods.

The following example of an HTML fragment can be used in an environment where no MVC is used.

 var oDummyController = {
 doSomething: function() {
 // do whatever should happen when the button in the fragment is pushed...
 }
};
var myButton = sap.ui.htmlfragment("my.useful.UiPartZ", oDummyController); // this specific fragment needs a controller and gets a dummy controller here.

Inline Definition and Instantiation of Fragments

Instead of defining fragments externally in a separate file, they can also be defined inline and can be
instantiated immediately.

The content definition and also the instantiation syntax are just the same compared to an instantiation in a
program. However, instead of the "fragmentName" the "fragmentContent" needs to be given. This feature can

1010 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

both be used for prototyping or for dynamic fragment composition or for loading fragment content from
sources which are not accessible by the normal module loading mechanism. In general, inline definition of
fragments plays only a minor role.

JS fragment definitions can be done both inline and within a separate file without any changes. Example inline
definitions of XML and HTML fragments are displayed in the following code examples:

Example of an Inline XML Fragment

// define the XML fragment as a string (or load it from anywhere) var myXml = '<Panel xmlns="sap.m" text="Hello World"><Button text="Hello
World"></Button></Panel>';
// use this XML string as "fragmentContent"
var oFragment = sap.ui.xmlfragment({fragmentContent:myXml}); // oFragment is now
the Panel Control
// put the Fragment content into the document oFragment.placeAt('content');

Example of an Inline HTML Fragment

// define the HTML fragment as a string (or load it from anywhere) var myHtml = '<div data-sap-ui-type="sap.m.Button" data-text="Hello World"></
div>';
// use this HTML string as "fragmentContent"
var oFragment = sap.ui.htmlfragment({fragmentContent:myHtml}); // oFragment is
now the Button Control
// put the Fragment content into the document oFragment.placeAt('content');

Related Information

Programmatically Instantiating JS Fragments [page 1007]

Unique IDs

You can use a unique ID for a fragment that will be used as a prefix for all controls in a fragment instance.

In SAPUI5, IDs are either automatically generated or given as string constants by the application developer.

In MVC views, another type of reusable components, all IDs that are given as static strings inside the
declarative views (XML, HTML, JSON) are automatically prefixed with the view ID. For JS views and for controls
created in the controller code of declarative views, no automated prefixing exists. Instead, we recommend
using the View.createId() method to prefix the ID and ensure there are no ID collisions even when the view
is used multiple times within the same page.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1011

The method View.byId() is used to handle these prefixed IDs.

Fragments, however, are meant to be a more light-weight concept of separating and reusing UI parts. What's
more, there are no fragment instances involved which could have IDs and handle ID prefixing helper functions
(in contrast to view instances). For this reason, stable IDs in fragments are used "as is" by default, meaning
they are not prefixed to make them unique. If no ID is given, it will be generated. However, if a fragment is
intended to be used more than once within one application, the prefixing mechanism can still be used by giving
an ID when instantiating the fragment.

The basic principle is as follows: When a control ID is defined, declarative views add a prefix and the code in
views should add a prefix. Fragments also add a prefix if they have a defined ID.

To get rid of the prefixes, the instance method View.byId() can be used with the static method
sap.ui.core.Fragment.createID() if required, that is, if a fragment added a prefix.

 Note
Do not rely on the specific prefixing syntax because it may change at some point. Always use methods like
byId() and createId().

Related Information

IDs in Declarative XML or HTML Fragments [page 1012]
IDs in JS Fragments [page 1013]
IDs of Fragments in Views [page 1013]

IDs in Declarative XML or HTML Fragments

If a fragment with a control ID is instantiated twice without giving an ID, a duplicate ID error occurs.

Given the following XML fragment example:

<HBox xmlns="sap.m"> <Button text="Hello World" />
 <Button id="btnInFragment" text="Hello World" /> </HBox>

The first button will always have a generated ID, as, for instance, __button2. This is regardless of how the
fragment is instantiated or whether it resides inside a view.

The second button will either have the ID btnInFragment, in case the fragment is instantiated without giving
an ID. This approach is easy to use, but implies the risk of ID collisions when instantiated multiple times:

sap.ui.htmlfragment("my.useful.UiPartZ"); // Button ID will not be prefixed

The other possible ID of the second button is myFragment--btnInFragment, in case the fragment is
instantiated giving the ID myFragment. You should not rely on the exact syntax of this prefixing.

sap.ui.htmlfragment("myFragment", "my.useful.UiPartZ");

1012 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

It is, however, possible that a containing view may add its prefix. For more information, see IDs of Fragments in
Views [page 1013].

IDs in JS Fragments

The fragment logic of JS fragments cannot influence the IDs of controls that are created in the
createContent() method.

This behavior is similar to how JS views behave regarding IDs. When a stable ID is given within a JS fragment,
the this.createId() method should be used:

createContent: function(oController) { var oButton = new sap.m.Button(this.createId("btnInJsFragment"), {
 // use createId() to let the fragment influence the ID
 text: "Hello JS World"
 });
 return oButton ; }

If an ID is given when the fragment is instantiated, createId() will add it as prefix. Else, createId() will
leave the given ID untouched.

It is, however, possible that a containing view may add its prefix. For more information, see IDs of Fragments in
Views [page 1013].

IDs of Fragments in Views

For fragments that are used within declarative views, generated IDs are not prefixed.

The following rules apply for given IDs:

● Given IDs are prefixed with only the view ID when no fragment ID was given
● Given IDs are prefixed with both view ID and fragment ID when a fragment ID was given

Related Information

Example: JS Fragments Used in XML Views [page 1014]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1013

Retrieving Control Instances by Their ID

A control instance can be found in a fragment by means of its ID.

Context

Due to the above prefixing that guarantees unique IDs, there are different cases possible which require different
calls.

Assuming the control has the ID myControl, there are two ways how to retrieve it by its ID.

● Retrieving a control instance when the fragment is not part of a view
○ When no fragment ID was given: myControl = sap.ui.getCore().byId("myControl")
○ When a fragment ID myFrag was given: myControl = sap.ui.core.Fragment.byId("myFrag",

"myControl")
● Retrieving a control instance when the fragment is embedded into a view and the code is inside a

controller. The controller is called this in the following examples.
○ When no fragment ID was given: myControl = this.byId("myControl")
○ When a fragment ID myFrag was given: myControl =

this.byId(sap.ui.core.Fragment.createId("myFrag", "myControl"))

Example: JS Fragments Used in XML Views

Example of a JS fragment used in an XML view

The example uses different combinations. Make sure that the sap-ui-core.js script location points to an
existing SAPUI5 installation.

<!DOCTYPE html> <html>
 <head>
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta content="charset=utf-8">

 <title>JSFragment used in XmlView</title>

 <!-- Load UI5, select theme and the "sap.m" control library -->
 <script id='sap-ui-bootstrap' type='text/javascript'
 src='/sapui5/resources/sap-ui-core.js'
 data-sap-ui-theme='sap_belize'
 data-sap-ui-libs='sap.m,sap.ui.layout'></script>

 <!-- DEFINE RE-USE COMPONENTS - NORMALLY DONE IN SEPARATE FILES -->

 <!-- define a JS Fragment - normally done in a separate file -->
 <script>
 // define a new (simple) View type
 // ...alternatively this can be done in an XML file without JavaScript!
 sap.ui.jsfragment("my.own.frag", {

 // defines the UI of this View

1014 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 createContent: function() {
 // button text is bound to Model, "press" action is bound to
Controller's event handler
 return [
 new sap.m.Button({text:'my Fragment Button'}),
 new sap.m.Button(this.createId("btn2"), {text:'my second
Fragment Button'})
]
 }
 });
 </script>

 <!-- define an XMLView - normally done in a separate file -->
 <script id="view1" type="sapui5/xmlview">
 <mvc:View xmlns:core="sap.ui.core" xmlns:layout="sap.ui.layout"
xmlns:mvc="sap.ui.core.mvc" xmlns="sap.m"
 controllerName="my.own.controller" xmlns:html="http://www.w3.org/
1999/xhtml">
 <layout:VerticalLayout id="vl">
 <Button text="Find controls by ID" press="findControls"></Button>
 <Text text="Fragment referenced inline, no Fragment ID:" />
 <core:Fragment fragmentName='my.own.frag' type='JS' />
 <Text text="Fragment referenced inline, with Fragment ID
'myFrag':" />
 <core:Fragment id="myFrag" fragmentName='my.own.frag'
type='JS' />
 </layout:VerticalLayout>
 </mvc:View>
 </script>

 <script>
 // define a new (simple) Controller type
 sap.ui.controller("my.own.controller", {

 // implement an event handler in the Controller
 findControls: function() {
 // Fragment is instantiated within an XMLView => all GIVEN IDs
are prefixed with the
 // View ID and View.byId() needs to be used to find the controls
 var b1 = null; // ID is generated: "__button1"
 var b2 = this.byId("btn2"); // Button ID is given, Fragment has
no ID: "myView--btn2"
 var b3 = null // Fragment has an ID, but Control ID is generated
and hence not prefixed: "__button2"
 var b4 = this.byId(sap.ui.core.Fragment.createId("myFrag",
"btn2")); // Button and Fragment ID are given, let the Fragment construct the
prefixed ID and then let the View search the again prefixed ID
 alert("Controls in Fragment:\nButton 1: has no given ID, cannot
be found\nButton 2: " + b2 + "\nButton 3: has no given ID, cannot be found
\nButton 4: " + b4);
 }
 });

 /*** THIS IS THE "APPLICATION" CODE ***/

 // instantiate the View
 var myView = sap.ui.xmlview("myView",
{viewContent:jQuery('#view1').html()}); // accessing the HTML inside the script
tag above

 // put the View onto the screen
 myView.placeAt('content');

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1015

 </script>

 </head>
 <body class='sapUiBody'>
 <div id='content'></div>
 </body> </html>

Dialogs and other Popups as Fragments

You can use fragments to declaratively define dialogs and other popup controls which are not part of the
normal page UI structure.

This is a huge advantage over views that do not support this use. The main reason for this is that the view
control is always a wrapper around the view content.

Defining Dialogs as Fragments

You can use fragments for the definition of dialogs.

Context

To use fragments for defining popups, just let the root control of the fragment be a dialog or similar control.

The following shows an XML fragment dialog example:

<Dialog xmlns="sap.m" title="XML Fragment Dialog"> <TextView text="{/dialogText}" />
 <buttons>
 <Button text="Close" press="closeDialog"/>
 </buttons> </Dialog>

Other fragment types are used the same way to define, for instance, a dialog as fragment.

For example, in JS fragments, the createContent() method returns a dialog control:

 sap.ui.jsfragment("testdata.fragments.JSFragmentDialog", {
 createContent: function(oController) {
 var oDialog = new sap.m.Dialog({
 title: "JavaScript Fragment Dialog",
 content: [
 new sap.m.Input({
 text: "{/dialogText}"
 })
],
 buttons: [
 new sap.m.Button({
 text: "Close",
 press: function(){
 oDialog.close();

1016 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 }
 })
]
 return oDialog;
 } });

Using Dialogs Defined as Fragments

The fragment instantiation function always returns the fragment's root control, which is a dialog control that
can be used like any dialog.

Context

In the following example, the dialog is opened immediately:

// "Fragment" required from module "sap/ui/core/Fragment" Fragment.load({type: "XML", name:
"testdata.fragments.XMLFragmentDialog"}).then(function(oDialog) {
 oDialog.open(); });

Note that any global model is available for data binding within this dialog. Also any model set on the dialog
itself. However, if this dialog is opened from a controller, the model of this controller's view is NOT automatically
available within the dialog fragment. The reason for this is that the dialog is not part of the view UI. If the above
code for opening the fragment dialog is part of a controller, it could set the view's model on the dialog:

// "Fragment" required from module "sap/ui/core/Fragment" Fragment.load({type: "XML", name:
"testdata.fragments.XMLFragmentDialog"}).then(function(oDialog) {
 oDialog.setModel(this.getView().getModel());
 oDialog.open(); }.bind(this));

Alternatively, the special aggregation dependents of sap.ui.core.Element can be used to connect the
dialog to the lifecycle management and data binding of the view:

// "Fragment" required from module "sap/ui/core/Fragment" Fragment.load({type: "XML", name:
"testdata.fragments.XMLFragmentDialog"}).then(function(oDialog) {
 this.getView().addDependent(oDialog);
 oDialog.open(); }.bind(this));

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1017

Fragments with Multiple Root Nodes

XML fragments and JS fragments can have more than one root control.

In JS fragments, the createContent() method can optionally return an array of controls:

 // "Label" required from module "sap/m/Label"
// "Input" required from module "sap/m/Input"
// "Button" required from module "sap/m/Button"
sap.ui.jsfragment("sap.ui.core.fragmenttest.MultiRootFragment", {
 createContent: function(oController) {
 var oLabel = new Label({text:"These controls are within one multi-root
Fragment:"});
 var oInput = new Input();
 var oButton = new Button({text: "Still in the same Fragment"});
 return [oLabel, oInput, oButton];
 } });

As XML documents need to have exactly one root node, to achieve XML fragments with multiple root nodes, an
additional <FragmentDefinition> tag needs to be added as root element containing the actual root
controls. This <FragmentDefinition> tag will not have any representation in HTML at runtime; the children
are added directly to wherever this fragment is placed.

 <core:FragmentDefinition xmlns="sap.m" xmlns:core="sap.ui.core">
 <Label text="These controls are within one multi-root Fragment:" />
 <Input />
 <Button text="Still in the same Fragment" /> </core:FragmentDefinition>

 Note
For HTML fragments this feature is currently not available.

XML Templating

The XML templating concept enables you to use an XML view as a template. This template is transformed by
an XML preprocessor on the source level, the XML DOM, at runtime just before an SAPUI5 control tree is
created from the XML source.

The label texts and binding paths in the example below come from SAP Annotations for OData Version 2.0
(http://www.sap.com/Protocols/SAPData) such as sap:semantics, and from OData Version 4.0 annotations
such as com.sap.vocabularies.UI.v1.Badge. Much more complex tasks than shown in this simple
example are possible.

 Note
HTML templating is no longer supported as of version 1.56.

The transformation happens if a preprocessor for XML is called when the view is created, see lines 4 and 5 in
the Calling the XML Preprocessor example. This preprocessor can be given one or more models along with a
corresponding binding context, see lines 6 and 9; this concept exists for any SAPUI5 control's constructor.
Typically, an OData model's meta model is given, along with the meta context corresponding to a data path.

1018 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://www.sap.com/Protocols/SAPData

XML templating operates on meta data. If the data changes, the XML templating can not be executed again.
This is due to the processing time. Only the resulting bindings are evaluated again.

If the view is loaded asynchronously, fragments and required modules are loaded asynchronously, too.

 Restriction
XML templating is not directly supported with routing, that is, there is no way to declare that the XML
Preprocessor should run on the target view of a route. Instead, you should define a JavaScript view as the
route's target and use that view's createContent method to create an XML view with templating. In case
you need access to models (which are not yet available in that hook), you should return some dummy
content first (for instance sap.m.HBox), register to the view's modelContextChange event and create the
inner view in that event's handler, finally adding it to the dummy content.

JavaScript Target View For Routing

sap.ui.jsview("some.package.RouteTargetView", { createContent : function () {
 return sap.ui.view({
 async : true,
 preprocessors : {
 xml : {
 // ...
 }
 },
 type : sap.ui.core.mvc.ViewType.XML,
 viewName : "some.package.TemplateView"
 });
 } });

In the example, sPath = "/ProductSet('HT-1021')/ToSupplier" and the corresponding meta context
point to "/dataServices/schema/0/entityType/0" (the entity type BusinessPartner). The resulting
view is bound to the data path within the OData model in order to display the supplier of that product.

Example: Calling the XML Preprocessor

1 View.create({ 2 async : true,
3 models : oModel,
4 preprocessors : {
5 xml : {
6 bindingContexts : {
7 meta : oMetaModel.getMetaContext(sPath)
8 },
9 models : {
10 meta : oMetaModel
11 }
12 }
13 },
14 type : ViewType.XML,
15 viewName : "sap.ui.core.sample.ViewTemplate.tiny.Template"
16 }).then(function (oTemplateView) {
17 oTemplateView.bindElement(sPath);
18 ... 19 }

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1019

The XML preprocessor traverses the view's XML DOM in a depth-first, parent-before-child manner and does
the following:

● All XML attributes which represent an available binding, that is, a binding based only on models available to
the preprocessor, are replaced by the result of that binding. Formatters and so on can be used as with any
SAPUI5 binding.

● XML fragments are inlined; that is, the reference is replaced by the fragment's XML DOM and
preprocessing takes place on that DOM as well.

● The preprocessing instructions <template:with>, <template:if> and <template:repeat> are
processed.

Example: Component.js
Template.view.xml

Field.fragment.xml

Resulting XML View

See sample sap.ui.core.sample.ViewTemplate.tiny. This sample is based on OData Version 4.0 annotations. It
consists of the following three pieces:

● A component controller that creates an OData model (line 17), waits for the meta model to be loaded (line
28) and then creates a template view (line 29) as its content. A preprocessor for XML is requested (line 31)
and settings are passed to it, namely the meta model and the binding context that identifies the starting
point within that model. The resulting view is bound to the actual data (model and path).

● A template view that includes a fragment twice (line 20 and 25) to demonstrate how to reuse code.
● An XML fragment that demonstrates a simple test (line 10), using expression binding.

 Tip
You can find more elaborate XML templating samples here: XMLView.

Take a look at the demo scenario for a complete overview of all OData v4 notations.

 Caution
The OData model is based on GWSAMPLE_BASIC and will not work unless a suitable proxy for back-end
access is used. For simplicity, no mock data is included in this example.

For more information, see the Help topic, Sample Service - Basic.

1 /*! 2 * ${copyright}
3 */
4
5 /**
6 * @fileOverview Application component to display supplier of "/
ProductSet('HT-1021')"
7 * from GWSAMPLE_BASIC via XML Templating.
8 * @version @version@
9 */
10 sap.ui.define([

1020 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.sample.ViewTemplate.tiny/preview
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.ui.core.mvc.XMLView/samples
http://help.sap.com/saphelp_nw74/helpdata/en/59/283fc4528f486b83b1a58a4f1063c0/frameset.htm

11 'sap/m/VBox',
12 'sap/ui/core/UIComponent',
13 'sap/ui/core/mvc/View',
14 'sap/ui/core/mvc/ViewType',
15 'sap/ui/model/odata/v2/ODataModel'
16], function (VBox, UIComponent, View, ViewType, ODataModel) {
17 "use strict";
18
19 return
UIComponent.extend("sap.ui.core.sample.ViewTemplate.tiny.Component", {
20 metadata : "json",
21
22 createContent : function () {
23 var oModel = new ODataModel(
24 "proxy/sap/opu/odata/IWBEP/GWSAMPLE_BASIC/", {
25 annotationURI : "proxy/sap/opu/odata/IWFND/CATALOGSERVICE;v=2"
26 + "/
Annotations(TechnicalName='ZANNO4SAMPLE_ANNO_MDL',Version='0001')/$value",
27 json : true,
28 loadMetadataAsync : true
29 }),
30 oMetaModel = oModel.getMetaModel(),
31 sPath = "/ProductSet('HT-1021')/ToSupplier",
32 oViewContainer = new VBox();
33
34 oMetaModel.loaded().then(function () {
35 View.create({
36 async : true,
37 models : oModel,
38 preprocessors : {
39 xml : {
40 bindingContexts : {
41 meta : oMetaModel.getMetaContext(sPath)
42 },
43 models : {
44 meta : oMetaModel
45 }
46 }
47 },
48 type : ViewType.XML,
49 viewName : "sap.ui.core.sample.ViewTemplate.tiny.Template"
50 }).then(function (oTemplateView) {
51 oTemplateView.bindElement(sPath);
52 oViewContainer.addItem(oTemplateView);
53 });
54 });
55
56 // Note: synchronously return s.th. here and add content to it
later on
57 return oViewContainer;
58 }
59 }); 60 });

1 <mvc:View 2 xmlns="sap.m"
3 xmlns:core="sap.ui.core"
4 xmlns:form="sap.ui.layout.form"
5 xmlns:mvc="sap.ui.core.mvc"
6 xmlns:template="http://schemas.sap.com/sapui5/extension/
sap.ui.core.template/1">
7
8 <!-- "meta" model's binding context MUST point to an entity type -->
9 <template:with path="meta>com.sap.vocabularies.UI.v1.Badge" var="badge">
10 <form:SimpleForm>
11 <form:title>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1021

12 <core:Title text="{path: 'badge>HeadLine', formatter:
'sap.ui.model.odata.AnnotationHelper.format'}"/>
13 </form:title>
14
15 <Label text="{path: 'badge>Title/Label', formatter:
'sap.ui.model.odata.AnnotationHelper.format'}"/>
16 <Text text="{path: 'badge>Title/Value', formatter:
'sap.ui.model.odata.AnnotationHelper.format'}"/>
17
18 <Label text="{path: 'badge>MainInfo/Label', formatter:
'sap.ui.model.odata.AnnotationHelper.format'}"/>
19 <template:with path="badge>MainInfo" var="field">
20 <core:Fragment
fragmentName="sap.ui.core.sample.ViewTemplate.tiny.Field" type="XML"/>
21 </template:with>
22
23 <Label text="{path: 'badge>SecondaryInfo/Label', formatter:
'sap.ui.model.odata.AnnotationHelper.format'}"/>
24 <template:with path="badge>SecondaryInfo" var="field">
25 <core:Fragment
fragmentName="sap.ui.core.sample.ViewTemplate.tiny.Field" type="XML"/>
26 </template:with>
27 </form:SimpleForm>
28 </template:with> 29 </mvc:View>

1 <core:FragmentDefinition 2 xmlns="sap.m"
3 xmlns:core="sap.ui.core"
4 xmlns:template="http://schemas.sap.com/sapui5/extension/
sap.ui.core.template/1">
5
6 <!-- "field" MUST point to a
com.sap.vocabularies.Communication.v1.DataField -->
7 <HBox>
8 <template:with path="field>Value"
helper="sap.ui.model.odata.AnnotationHelper.resolvePath" var="target">
9 <!-- go to entity type's property and check SAP Annotations for
OData Version 2.0 -->
10 <template:if test="{= ${target>sap:semantics} === 'tel'}" >
11 <core:Icon src="sap-icon://phone" width="2em"/>
12 </template:if>
13 </template:with>
14 <Text text="{path: 'field>Value', formatter:
'sap.ui.model.odata.AnnotationHelper.format'}"/>
15 </HBox> 16 </core:FragmentDefinition>

The result is equivalent to the following handwritten XML view. Any references to the meta model are gone.
Type information has been inserted into the bindings and an "odata.concat" expression for
badge>MainInfo/Value has been processed by sap.ui.model.odata.AnnotationHelper.format,
concatenating the company name and legal form.

<mvc:View xmlns="sap.m" xmlns:core="sap.ui.core" xmlns:form="sap.ui.layout.form"
xmlns:mvc="sap.ui.core.mvc"> <form:SimpleForm>
 <form:title>
 <core:Title text="{path : 'BusinessPartnerID', type :
'sap.ui.model.odata.type.String', constraints :
{'maxLength':'10','nullable':'false'}}"/>
 </form:title>
 <Label text="Name"/>
 <Text text="{path : 'CompanyName', type : 'sap.ui.model.odata.type.String',
constraints : {'maxLength':'80'}} {path : 'LegalForm', type :
'sap.ui.model.odata.type.String', constraints : {'maxLength':'10'}}"/>

1022 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 <Label text="Phone"/>
 <HBox>
 <core:Icon src="sap-icon://phone" width="2em"/>
 <Text text="{path : 'PhoneNumber', type :
'sap.ui.model.odata.type.String', constraints : {'maxLength':'30'}}"/>
 </HBox>
 <Label text="Web"/>
 <HBox>
 <Text text="{path : 'WebAddress', type : 'sap.ui.model.odata.type.String',
constraints : {}}"/>
 </HBox>
 </form:SimpleForm> </mvc:View>

Summary

Overall, XML templating is based on:

● Preprocessing instructions such as <template:if>, which can be used inside XML views
● An OData meta model which offers a unified access to both, OData V2 metadata and OData V4

annotations
● A set of OData type implementations which add knowledge of OData types to SAPUI5
● Expression binding which facilitates the use of expressions instead of custom formatter functions
● The helper class sap.ui.model.odata.AnnotationHelper that offers formatter and helper functions

to be used inside XML template views. It knows about the OData meta model and helps with standard
tasks like accessing a label or providing a runtime binding path. It brings in the OData types, along with
their facets. Its output uses expression binding, if needed.

 Note
XML Templating works almost the same for OData V4 as for OData V2; for the differences see the
Annotations section in Meta Model for OData V4 [page 956].

Related Information

Meta Model for OData V2 [page 899]
Expression Binding [page 845]
SAP Annotations for OData Version 2.0
sap.ui.model.odata.AnnotationHelper

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1023

http://www.sap.com/Protocols/SAPData
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.AnnotationHelper.html

Preprocessing Instructions

Preprocessing intructions are processed by the XML preprocessor when it traverses the view's XML DOM.

 Note
A model name can be seen as a variable with a value that consists of two parts: a model instance and a
binding context path.

You can base conditions on the available variables. XML attributes that represent an available binding are
replaced automatically.

with

The <template:with> instruction can be used to change a variable's value or to add a variable with a new
name.

This changed variable is available only within the scope of the with instruction. In the example titled "with"
Template, "meta>com.sap.vocabularies.UI.v1.Badge" refers to "/dataServices/schema/0/
entityType/0/com.sap.vocabularies.UI.v1.Badge" within oMetaModel. "badge" then becomes a
valid model name while processing the content of the with instruction, in addition to the existing ones:

● meta = oMetaModel, "/dataServices/schema/0/entityType/0"
● badge = oMetaModel, "/dataServices/schema/0/entityType/0/

com.sap.vocabularies.UI.v1.Badge"

If you omit the "var" attribute, the same model name will be reused; for example, "meta" in our example, and
the with instruction changes the binding context locally. A new variable name improves readability.

Example: "with" Template

 <template:with path="meta>com.sap.vocabularies.UI.v1.Badge" var="badge">
 <!-- ... -->
</template:with>

A helper can be called from a with instruction. It receives an sap.ui.model.Context object identifying the
model and path from the instruction's "path" property and may return one of the following:

● A sap.ui.model.Context object that is assigned to the variable
● A non-empty string that is used as a path within the same model and assigned to the variable
● Undefined, in which case the helper is ignored and the original path is assigned to the variable
● A thenable (usually a Promise) resolving with any of the above, if the view is loaded asynchronously.

The helper can analyze the object the path points to and derive a "resolved path" from that, such as by
normalization or following references. Typically, it only points to a different path, but it can even change the
model instance, such as jumping from a data model to its meta model or jumping to a resource model, and so
on.

1024 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

The example titled "with" Template Including Helper assumes that "field" is an OData meta model with a
current binding context that points to a field inside some annotation, such as "/dataServices/schema/0/
entityType/0/com.sap.vocabularies.UI.v1.Badge/MainInfo". The helper function
sap.ui.model.odata.AnnotationHelper.resolvePath is used to follow the field value's path property.
For more information, see Annotation Helper [page 1035] and API Reference:
sap.ui.model.odata.AnnotationHelper.resolvePath.

It returns a path inside the meta model which refers to the corresponding property's meta data, such as "/
dataServices/schema/<i>/entityType/<j>/property/<k>". This result is in turn assigned by the
with instruction to the variable named "target".

Example: "with" Template Including Annotation Helper

 <template:with path="meta>Value"
helper="sap.ui.model.odata.AnnotationHelper.resolvePath" var="target">
 <template:if test="{= {target>sap:semantics} === 'email'}" >
 <core:Icon src="sap-icon://email" />
 </template:if>
 <template:if test="{= {target>sap:semantics} === 'tel'}" >
 <core:Icon src="sap-icon://phone" />
 </template:if> </template:with>

Related Information

Annotation Helper [page 1035]

repeat

The <template:repeat instruction iterates the sap.ui.model.ListBinding given by the list attribute.

 Note
Sorting and filtering is already supported by the list binding via an extended syntax. For more information,
see Sorting, Grouping, and Filtering for List Binding [page 833].

The var attribute holds the name of the loop variable which can be used to access the current list element in a
child element of repeat. In the preprocessing, repeat is replaced by multiple clones of its content, one clone
per list element, with each clone again preprocessed as if it were contained in a with instruction defining the
loop variable.

The following example iterates all fields in the identification annotation from the SAP UI vocabulary in the
currently referenced element of the model meta and displays a label and content for each field. It is completely
transparent to the repeat implementation whether the list binding refers to data or meta data. The templating
engine is replacing "template time" binding expressions which refer to meta data with corresponding runtime

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1025

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.AnnotationHelper.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.AnnotationHelper.html

binding expression which refer to data. The formatter sap.ui.model.odata.AnnotationHelper.format
is used, which encapsulates knowledge about the SAP UI vocabulary and so on.

Example: Template for "repeat" Instruction

 <template:repeat list="{meta>com.sap.vocabularies.UI.v1.Identification}"
var="field">
 <Label text="{path: 'field>Label', formatter:
'sap.ui.model.odata.AnnotationHelper.format'}" />
 <Text text="{path: 'field>Value', formatter:
'sap.ui.model.odata.AnnotationHelper.format'}" /> </template:repeat>

Example: Output Template for the "repeat" Instruction (in Memory Only)

 <Label text="Product ID" />
<Text text="{path:'ProductID',type:'sap.ui.model.odata.type.String',constraints:
{"nullable":false,"maxLength":10}}" />
<Label text="Price" />
<Text text="{path:'Price/
Amount',type:'sap.ui.model.odata.type.Decimal',constraints:{"precision":
13,"scale":3}}" />
<Label text="Category" />
<Text text="{path:'Category',type:'sap.ui.model.odata.type.String',constraints:
{"maxLength":40}}" />
<Label text="Supplier" /> <Text
text="{path:'SupplierName',type:'sap.ui.model.odata.type.String',constraints:
{"maxLength":80}}" />

Example: Template for the "repeat" Instruction with startIndex and length

You can start the iteration at an index other than 0 or limit the length of the iterated list in the usual manner. For
this, specify startIndex and length. Both are optional and the defaults are 0 for startIndex and full length
for length.

 <template:repeat
list="{path:'entityType>com.sap.vocabularies.UI.v1.Identification',startIndex:
1,length:3}" var="field">
 <!-- ... --> </template:repeat>

As the OData meta model supports filtering by name, you can repeat all FieldGroup annotations regardless of
their qualifier.

 Note
In JSON content, the annotation can be called com.sap.vocabularies.UI.v1.FieldGroup or
com.sap.vocabularies.UI.v1.FieldGroup#Dimension, and so on, depending on its qualifier. The
filter that is used in the following code snippet for the <template:repeat> instruction uses the special
path name @sapui.name which refers back to the name of the object that is inspected for filtering. This
name is, for example, com.sap.vocabularies.UI.v1.FieldGroup#Dimension.

Example: Filter By Annotation Term

 <template:repeat list="{path:'entityType>', filters: {path: '@sapui.name',
operator: 'StartsWith', value1: 'com.sap.vocabularies.UI.v1.FieldGroup'}}"
var="fieldGroup">
 <form:SimpleForm>
 <form:title>

1026 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 <core:Title text="{path: 'fieldGroup>Label', formatter:
'sap.ui.model.odata.AnnotationHelper.format'}"/>
 </form:title>
 <template:repeat list="{fieldGroup>Data}" var="field">
 <Label text="{path: 'field>Label', formatter:
'sap.ui.model.odata.AnnotationHelper.format'}"/>
 <core:Fragment
fragmentName="sap.ui.core.sample.ViewTemplate.scenario.Field" type="XML"/>
 </template:repeat>
 </form:SimpleForm> </template:repeat>

if

The <template:if> instruction evaluates a condition expressed via existing SAPUI5 data binding features,
such as extended syntax; in the preprocessing it is removed or replaced by its child elements based on the
value of this condition.

For more information, see Sorting, Grouping, and Filtering for List Binding [page 833].

You set the condition to the test attribute of the if instruction. It is recommended to use expression binding if
you need to write logical expressions or convert values into Booleans. You can also use formatter functions, as
with any SAPUI5 binding, such as sap.ui.model.odata.AnnotationHelper.isMultiple. For more
information, see sap.ui.model.odata.AnnotationHelper.isMultiple in the API Reference.

 Note
The test condition is treated as a property binding and the result is converted to the Boolean type
according to the usual JavaScript rules, with the exception of the string "false", which is converted to the
Boolean false for convenience. For more information about the JavaScript rules, see the ECMAScript®
Language Specification on the ECMA International website.

Example: "if" Instruction to Include an Image Only if the URL is Set

The output of the template below after preprocessing is as follows: If the test condition does not hold, the
<template:if> node is dropped and if the test condition holds, the node is replaced by its content.

<template:if test="{meta>ImageUrl}"> <Image src="{path: 'meta>ImageUrl', formatter:
'sap.ui.model.odata.AnnotationHelper.format'}" /> </template:if>

 Note
The example above shows a shortcut syntax where <template:then> can be omitted in case no
<template:else> is present.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1027

http://help.sap.com/disclaimer?site=http%3A%2F%2Fwww.ecma-international.org%2F

Example: "if/then/else" Instruction to Include an Image Only if the URL is
Set and Display a Title Otherwise

The syntax of this example is more complex due to the additional <template:then>/<template:else>
elements. The output is the <template:if> node replaced by the content of the appropriate child node.

 Sample Code

<template:if test="{meta>ImageUrl}"> <template:then>
 <Image src="{path: 'meta>ImageUrl', formatter:
'sap.ui.model.odata.AnnotationHelper.format'}" />
 </template:then>
 <template:else>
 <Text text="{path: 'meta>Title/Value', formatter:
'sap.ui.model.odata.AnnotationHelper.format'}" />
 </template:else> </template:if>

Example: if/then/else Instruction

It is even possible to check multiple conditions in one <template:if> construct using the
<template:elseif> element as shown in the example below.

<template:if test="{meta>ImageUrl}"> <template:then>
 <m:Image src="{path: 'meta>ImageUrl', formatter:
'sap.ui.model.odata.AnnotationHelper.format'}" />
 </template:then>
 <template:elseif test="{meta>TypeImageUrl}">
 <commons:Image src="{path: 'meta>TypeImageUrl', formatter:
'sap.ui.model.odata.AnnotationHelper.format'}" />
 </template:elseif>
 <template:else>
 <commons:Text text="{path: 'meta>Title/Value', formatter:
'sap.ui.model.odata.AnnotationHelper.format'}" />
 </template:else> </template:if>

Related Information

Expression Binding [page 845]
XML Templating [page 1018]

1028 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

alias

The <template:alias> instruction can be used to define a shortcut alias name for a JavaScript value, for
example a static helper class, a formatter function, or a helper function.

The shortcut alias is only available in the scope of the alias instruction. Each nested scope can redefine
aliases.

A proper relative name must be used. This proper name must not contain or consist of a dot. The value to
which the alias refers to can be any JavaScript object or property including a function that is available at that
point. Exisiting alias names can be used in new alias definitions to refer to values, for example,
<template:alias name="format" value="AH.format">. Aliases are inherited into fragments, but of
course a fragment may (re)define its own set of aliases. For compatibility reasons, aliases can also start with a
dot, both in definition and in references.

Example: "alias" Template

<template:alias name="AH" value="sap.ui.model.odata.AnnotationHelper"> <template:with path="meta>com.sap.vocabularies.UI.v1.Badge" var="badge">
 <form:SimpleForm>
 <form:title>
 <core:Title text="{path: 'badge>HeadLine', formatter: 'AH.format'}"/>
 </form:title>
 <Label text="{path: 'badge>Title/Label', formatter: 'AH.format'}"/>
 <Text text="{path: 'badge>Title/Value', formatter: 'AH.format'}"/>
 <Label text="{path: 'badge>MainInfo/Label', formatter: 'AH.format'}"/>
 <template:with path="badge>MainInfo" var="field">
 <core:Fragment fragmentName="sap.ui.core.sample.ViewTemplate.tiny.Field"
type="XML"/>
 </template:with>
 <Label text="{path: 'badge>SecondaryInfo/Label', formatter: 'AH.format'}"/>
 <template:with path="badge>SecondaryInfo" var="field">
 <core:Fragment fragmentName="sap.ui.core.sample.ViewTemplate.tiny.Field"
type="XML"/>
 </template:with>
 </form:SimpleForm>
 </template:with> </template:alias>

require

The template:require attribute can be used at the root element of an XML template view or fragment. You
can specify a list of required modules as Unified Resource Names, similar to sap.ui.require, and assign
aliases to them using a JSON-like syntax. The aliases can then be used to access the modules in the same way
<template:alias> works. (This requires that the view is loaded asynchronously.)

 Note
The aliases can be used for formatter references (first text element in the code sample) as well as for
function calls inside an expression binding (second text element in the code sample).

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1029

Example: "require" Template

 <mvc:View
 controllerName="sap.ui.core.sample.ViewTemplate.scenario.Detail"
 template:require="{Helper: 'sap/ui/core/sample/ViewTemplate/scenario/Helper',
 AnnotationHelper: 'sap/ui/model/odata/AnnotationHelper'}"
 xmlns:mvc="sap.ui.core.mvc"
 xmlns:template="http://schemas.sap.com/sapui5/extension/
sap.ui.core.template/1">
<template:alias name="bar" value="Helper.bar">
<Text text="{formatter: 'bar', path: '/foo'}"/>
<Text text="{= bar(${/foo}) }"/>

For compatibility reasons, especially if the view is loaded synchronously, the template:require attribute
may contain a space-separated list of module names for jQuery.sap.require. These modules will then be
required before processing. You have to access them via their global names.

sap.ui.model.odata.AnnotationHelper is automatically available.

Example

<mvc:View controllerName="sap.ui.core.sample.ViewTemplate.scenario.Detail"
 template:require="sap.ui.core.sample.ViewTemplate.scenario.Helper"
 xmlns:mvc="sap.ui.core.mvc" xmlns:template="http://schemas.sap.com/sapui5/extension/
sap.ui.core.template/1">

Replacement of Bindings

For attributes, SAPUI5 binding expressions are used instead of preprocessing instructions. If the value of an
XML attribute represents a valid SAPUI5 binding which refers to currently available model (= <variable>)
names only, the binding is evaluated and the result is written back into the XML attribute.

The sap.ui.model.odata.AnnotationHelper.format method can be used as a formatter which properly
interprets OData Version 4.0 annotations from the OData meta model. You can use the same formatter for
labels and values. For more information, see SAP Annotations for OData Version 2.0.

Formatters for labels are usually not needed. Instead, pointing to 'badge>MainInfo/Label/String' could
be used, but this does not take care of escaping and works only for string constants. The
sap.ui.model.odata.AnnotationHelper.format inserts references to translatable texts in case the
preprocessor has been called with bindTexts : true. This is important for design-time templating.

The following example shows a template with binding:

 <Label text="{path: 'badge>MainInfo/Label', formatter:
'sap.ui.model.odata.AnnotationHelper.format'}"/> <Text text="{path: 'field>Value', formatter:
'sap.ui.model.odata.AnnotationHelper.format'}" />

1030 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://www.sap.com/Protocols/SAPData

At the time the binding is resolved, field>Value refers to meta>/dataServices/schema/0/
entityType/0/com.sap.vocabularies.UI.v1.Badge/MainInfo/Value. In the resulting XML DOM, the
references to the meta model are gone and the type information including the constraints is inserted in the
binding. This is shown in the following example:

 <Label text="Phone"/>
<Text text="{path : 'PhoneNumber', type : 'sap.ui.model.odata.type.String',
constraints : {'maxLength':'30'}}" /> Custom Formatter Functions

Custom Formatter Functions

You can also write your own custom formatter functions. For information how you access the model and path
related to the current formatter call, see sap.ui.core.util.XMLPreprocessor.IContext.

The following code snippet shows a composite binding example. It assumes that the structure of the meta
model that is used corresponds to the structure in the example and that title> refers to the header info's title
property (line 2 in the code snippet):

 1 "com.sap.vocabularies.UI.v1.HeaderInfo": {
2 "Title": {
3 "Label": {
4 "String": "Customer"
5 },
6 "Value": {
7 "Path": "CustomerName"
8 }
9 } 10 }

The following code snippet shows a formatter function that can be used in composite bindings either at root
level (line 1), or for individual parts (Line 2). You can also use it for a simple binding. In this case, it behaves in
the same way as a single part.

1 <Text text="{path: 'title>Label', formatter: 'formatParts'}: {path:
'title>Value', formatter: 'formatParts'}"/> 2 <Text text="{parts: [{path: 'title>Label', formatter: 'formatParts'}: {path:
'title>Value'}], formatter: 'formatParts'}"/>

The following code snippet shows an example formatter function.

 1 /*
2 * Custom formatter function for complex bindings to demonstrate access to
ith part of binding.
3 * Delegates to {@link sap.ui.model.odata.AnnotationHelper#format} and wraps
label texts in
4 * square brackets. Joins parts together, separated by a space.
5 *
6 * @param {sap.ui.core.util.XMLPreprocessor.IContext} oInterface
7 * the callback interface related to the current formatter call
8 * @param {...any} [vRawValue]
9 * the raw value(s) from the meta model
10 * @returns {string}
11 * the resulting string value to write into the processed XML
12 */
13 window.formatParts = function(oInterface, vRawValue) {

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1031

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.util.XMLPreprocessor.IContext.html

14 var i, aResult;
15
16 /*
17 * Delegates to {@link sap.ui.model.odata.AnnotationHelper#format} and
wraps label texts
18 * in square brackets.
19 *
20 * @param {sap.ui.core.util.XMLPreprocessor.IContext|
sap.ui.model.Context} oInterface
21 * the callback interface related to the current formatter call
22 * @param {any} [vRawValue]
23 * the raw value from the meta model
24 * @returns {string}
25 */
26 function formatLabelValue(oInterface, vRawValue) {
27 var sResult = sap.ui.model.odata.AnnotationHelper.format(oInterface,
vRawValue);
28 return sMyString.endsWith(oInterface.getPath(), "/Label")
29 ? "["+ sResult + "]"
30 : sResult;
31 }
32
33 try {
34 if(oInterface.getModel()) {
35 returnformatLabelValue(oInterface, vRawValue);
36 } else {
37 // root formatter for a composite binding
38 aResult = [];
39 // "probe for the smallest non-negative integer"
40 for (i = 0; oInterface.getModel(i); i += 1) {
41 aResult.push(
42 // Note: arguments[i + 1] is the raw value of the ith
part!
43 formatLabelValue(oInterface.getInterface(i), arguments[i
+ 1])
44);
45 }
46 return aResult.join(" ");
47 }
48 } catch (e) {
49 return e.message;
50 }
51 } 52 window.formatParts.requiresIContext = true;

This example formatter opts to the extended signature (see line 51), which provides a context interface as the
first parameter. It distinguishes between root level calls and others (see line 34), delegates to
sap.ui.model.odata.AnnotationHelper#format (see line 27), and wraps label texts in square brackets
for demo purposes (see line 29). For root level calls, it loops over all available parts (see line 40) and accesses
each part (see line 43). The demo code handles each part individually and joins the result, but in practice some
more complicated dependency between parts would be realistic.

The delegation to sap.ui.model.odata.AnnotationHelper#format provides the raw value we already
have at hand, even for root level calls (see comment in line 42).

 Note
The custom formatter function needs to be accessible globally, because XML templating cannot call
formatter functions inside the view's controller. This controller does not yet exist at the time of
preprocessing. However, it is not sufficient to simply put it into window (see line 8). You must put it into your
own namespace.

1032 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

The example formatter has the following output:

 <Text text="[Customer]: {CustomerName}"/> <Text text="[Customer] {CustomerName}"/>

 Note
The colon (":") is taken over literally from the first composite binding which consists of two bindings
separated by a string literal.

Mixing Runtime Data and Meta Data Within a Single Binding

The following code snippet shows a single binding that mixes runtime data and meta data. This will not work:
The binding refers to the runtime and as runtime is not available ar this point, XML templating cannot replace
the binding. (In the example, "runtime" stands for the name of the model at runtime. This would typically be the
default model and thus has no name.)

{= ${runtime>value} > ${meta>threshold} }

meta will no longer be available anymore, so this binding cannot work as expected, but it will be evaluated every
time the value changes and will compare the value to undefined.

To solve this, a clear separation is required: One expression binding that refers to meta data only and can be
replaced by XML templating, and another expression binding that refers to runtime data only and can be
evaluated later on. These two bindings need to be nested as follows:

{= '{= ${runtime<value} > ' + ${meta>threshold} + ' }' }

XML templating replaces this with a kind of a partial evaluation of the original mixed binding. By carefully
putting the pieces into string literals and by taking care of escaping, you have full control over this process of
partial evaluation. This is shown in the following examples, where the threshold value is assumed to be a
number:

Expression binding with runtime data only:

{= ${runtime>value} > 42 }

Escaping for string constants:

{= '{= \'' + ${meta>A} + '\' + ${/B} } // --> {= 'A' + ${/B} }

Using the annotation helper:

{= '{= $' + ${path : 'meta>value, formatter : 'sap.ui.model.odata.AnnotationHelper.format'} + ' > ' + ${path :
'meta>threshold',
formatter : 'sap.ui.model.odata.AnnotationHelper.format'} + ' }' } // --> {= ${path : 'path/to/property/value', type :
'sap.ui.model.odata.type.Int16'} > 42 }

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1033

Related Information

sap.ui.model.odata.AnnotationHelper.format
sap.ui.core.util.XML.Preprocessor.IContext
XML Templating [page 1018]
Formatting, Parsing, and Validating Data [page 854]

XML Fragments

SAPUI5 fragments of type XML are used in the context of XML templating to provide reuse parts for templates.

Any reference to an XML fragment is inlined by the preprocessor; that is, the reference is replaced by the
fragment's XML DOM and preprocessing takes place on that DOM as well. All currently available variable
names are inherited into the fragment.

Example: XML Fragment

 <core:Fragment fragmentName="sap.ui.core.sample.ViewTemplate.tiny.Field"
type="XML"/>

The fragment name can also result from a binding, including an expression binding which evaluates to a
constant. As formatter functions return strings, and not booleans, === 'true' has been added in the
following example:

Example: Dynamic Fragment Name

 <core:Fragment fragmentName="{= ${path: 'facet>Target', formatter:
'sap.ui.model.odata.AnnotationHelper.isMultiple'} === 'true'
 ? 'sap.ui.core.sample.ViewTemplate.scenario.TableFacet' : 'sap.ui.core.sample.ViewTemplate.scenario.FormFacet' }" type="XML"/>

Related Information

XML Templating [page 1018]

Extension Points

Extension points can be used in XML templating to extend the standard with custom content.

The extension point has a default content which is used unless the extension point is replaced via customizing.
The extension point name can result from a binding, including an expression binding which evaluates to a
constant. If the extension point is to be replaced by an XML fragment, the extension point element is replaced
by the fragment's XML DOM and preprocessing takes place on the DOM as well. All currently available variable

1034 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.AnnotationHelper.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.util.XMLPreprocessor.IContext.html

names and aliases are inherited into the fragment as usual. You get the same debug output as for fragment
instructions, and you see the customized fragment name there.

 <!-- expression binding just to showcase dynamic names -->
<core:ExtensionPoint name="{:= 'HeaderInfo' }">
 <form:SimpleForm>
 <form:title>
 <core:Title text="HeaderInfo"/>
 </form:title>
 <template:with path="entityType>com.sap.vocabularies.UI.v1.HeaderInfo">
 <!-- ... -->
 </template:with>
 </form:SimpleForm>
</core:ExtensionPoint>

Related Information

View Extension [page 2149]

Annotation Helper

A collection of methods which help to consume OData Version 4.0 annotations in XML template views.

The AnnotationHelper connects all the pieces related to XML templating: It knows the OData meta model
and its structure as well as the OData v4 annotations. The AnnotationHelper offers formatter functions and
helper functions. You can call these methods directly from the JavaScript code without XML runtime
templating. You do not need to require sap.ui.model.odata.AnnotationHelper before use.

 Tip
You can see more information on the expressions, constants and functions used by the
AnnotationHelper, in the respective chapters of the specification OData Version 4.0 Specification: Part
3: Common Schema Definition Language .

Formatter Functions

The formatter functions can be used in binding expressions and <template:if> instructions for test
conditions.

 Note
To use formatter functions, you need to enable the extended binding syntax by setting the configuration
option xx-bindingSyntax to complex. For more information, see Composite Binding [page 843]. If the
extended binding syntax is not enabled and expressions are created by means of the annotation helper's
format functions, the following warning is issued in the console: Complex binding syntax not active.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1035

http://help.sap.com/disclaimer?site=http%3A%2F%2Fdocs.oasis-open.org%2Fodata%2Fodata%2Fv4.0%2Fodata-v4.0-part3-csdl.html
http://help.sap.com/disclaimer?site=http%3A%2F%2Fdocs.oasis-open.org%2Fodata%2Fodata%2Fv4.0%2Fodata-v4.0-part3-csdl.html

The following formatter functions exist:

● createPropertySetting: Creates a property setting which is either a constant value or a binding info
object from the given parts and from the optional root formatter function. Each part can have one of the
following types:
○ boolean, number, undefined: The part is a constant value.
○ string: The part is a data binding expression with complex binding syntax (for example, as created by

format) and is parsed accordingly to create either a constant value or a binding info object. Proper
backslash escaping must be used for constant values with curly braces.

○ object: The part is a binding info object if it has a "path" or "parts" property, otherwise it is a constant
value.

If a binding info object is not the only part and has a parts property itself, then it must have no other
properties except formatter. This applies to expression bindings and data binding expressions that are
created by format. If all parts are constant values, the resulting property setting is also a constant value
computed by applying the root formatter function to the constant parts once. If at least one part is a
binding info object, the resulting property setting is also a binding info object and the root formatter
function will be applied again and again to the current values of all parts, no matter whether constant or
variable.

 Note
The root formatter function should not rely on its this value because it depends on how the function is
called.

A single data binding expression can be given directly to applySettings; you do not need to call this
function first.

● format: General purpose method that handles proper escaping and formatting of constant values and
provides binding expressions with suitable types. format supports the following constructs:
○ The "14.4 Constant Expressions" for "edm:Bool", "edm:Date", "edm:DateTimeOffset", "edm:Decimal",

"edm:Float", "edm:Guid", "edm:Int", "edm:TimeOfDay".
○ Constant "14.4.11 Expression edm:String": This constant is either turned into fixed text, for example

"Width", or into a data binding expression, for example "{/##/dataServices/schema/0/
entityType/1/com.sap.vocabularies.UI.v1.FieldGroup#Dimensions/Data/0/Label/
String}". If XML template processing has been started with the setting bindTexts : true, data
binding expressions are used. The constant is used to reference translatable texts from OData v4
annotations, especially for XML template processing at design time. The string constants that contain
a simple binding "{@i18n>...}" to the hard-coded model name "@i18n" with an arbitrary path are
not turned into a fixed text, but kept as a data binding expression. This enables local annotation files to
refer to a resource bundle for internationalization. If you want to avoid this behaviour, add a space at
the end of the string constant and it will be turned into a fixed text again.

○ Dynamic "14.5.1 Comparison and Logical Operators": Turned into an expression binding to perform the
operations at runtime

○ Dynamic "14.5.3 Expression edm:Apply":
○ "14.5.3.1.1 Function odata.concat": Turned into a data binding expression relative to an entity
○ "14.5.3.1.2 Function odata.fillUriTemplate": Turned into an expression binding to fill the template at

runtime
○ "14.5.3.1.3 Function odata.uriEncode": Turned into an expression binding to encode the parameter

at runtime
The apply functions can be nested arbitrarily.

1036 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

○ Dynamic "14.5.12 Expression edm:Path" and "14.5.13 Expression edm.PropertyPath: This dynamic
expression is turned into a data binding relative to an entity including type information and constraints
as available from metadata, for example "{path : 'Name', type :
'sap.ui.model.odata.type.String', constraints : {'maxLength':'255'}}".

○ Dynamic "14.5.6 Expression edm:If": This dynamic expression is turned into an expression binding to
be evaluated at runtime. The expression is conditional, for example, "{=condition ?
expression1 : expression2}".

 Note
Unsupported values are turned into strings, and indicated as such. To ensure that the data binding
syntax is not corrupted, proper escaping is used.

<Text text="{path: 'meta>Value', formatter:
'sap.ui.model.odata.AnnotationHelper.format'}"/>

● getNavigationPath: Special formatter that extracts a data binding expression for the navigation path
from one of the following dynamic expressions: 14.5.2 Expression edm:AnnotationPath, "14.5.11 Expression
edm:NavigationPropertyPath", "14.5.12 Expression edm:Path" and "14.5.13 Expression edm:PropertyPath";
example:
○ The input value {AnnotationPath : "ToSupplier/

@com.sap.vocabularies.Communication.v1.Address"} returns "{ToSupplier}"
○ The input value {AnnotationPath :

"@com.sap.vocabularies.UI.v1.FieldGroup#Dimensions"} returns "{}"
○ The input value {} returns ""
 <template:if test="{path: 'facet>Target', formatter:
'sap.ui.model.odata.AnnotationHelper.getNavigationPath'}">
 <form:SimpleForm binding="{path: 'facet>Target', formatter:
'sap.ui.model.odata.AnnotationHelper.getNavigationPath'}" /> </template:if>

● isMultiple: Special formatter that knows about the one of the following dynamic expressions: 14.5.2
Expression edm:AnnotationPath, "14.5.11 Expression edm:NavigationPropertyPath", "14.5.12 Expression
edm:Path" and "14.5.13 Expression edm:PropertyPath". The formatter returns the information whether the
navigation path ends with an association end with multiple "*". If the multiple "*" are not the last
characters, the formatter returns an error.

 <template:if test="{path: 'facet>Target', formatter:
'sap.ui.model.odata.AnnotationHelper.isMultiple'}">

● simplePath: Specialized method useful for design-time templating in connection with smart fields; it can
only return simple binding expressions without type information. This has the advantage that the resulting
XML view, which is shown at design-time, looks much simpler and nicer without " escapes.
Example:

 <mvc:View
 xmlns:mvc="sap.ui.core.mvc"
 xmlns:sfi="sap.ui.comp.smartfield"
 xmlns:sfo="sap.ui.comp.smartform"
 xmlns:template="http://schemas.sap.com/sapui5/extension/
sap.ui.core.template/1">
 <sfo:SmartForm title="{path: 'meta>com.sap.vocabularies.UI.v1.HeaderInfo/
TypeName', formatter: 'sap.ui.model.odata.AnnotationHelper.format'}">
 <template:repeat list="{path:'meta>', filters: {path: 'RecordType',
operator: 'EQ', value1: 'com.sap.vocabularies.UI.v1.FieldGroupType'}}">

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1037

 <sfo:Group label="{path: 'meta>Label', formatter:
'sap.ui.model.odata.AnnotationHelper.format'}">
 <template:repeat list="{meta>Data}">
 <sfo:GroupElement label="{path: 'meta>Label', formatter:
'sap.ui.model.odata.AnnotationHelper.format'}">
 <sfi:SmartField value="{path: 'meta>Value', formatter:
'sap.ui.model.odata.AnnotationHelper.simplePath'}"/>
 </sfo:GroupElement>
 </template:repeat>
 </sfo:Group>
 </template:repeat>
 </sfo:SmartForm> </mvc:View>

Output:

 <mvc:View xmlns:mvc="sap.ui.core.mvc" xmlns:sfi="sap.ui.comp.smartfield"
xmlns:sfo="sap.ui.comp.smartform">
 <sfo:SmartForm title="Sales Order">
 <sfo:Group label="Order Note">
 <sfo:GroupElement label="Text">
 <sfi:SmartField value="{Note}"/>
 </sfo:GroupElement>
 </sfo:Group>
 </sfo:SmartForm> </mvc:View>

The formatter functions can also be called directly from JavaScript. The following code snippet shows an
example for the use of a formatter function outside templating:

var oModel = this.getModel(), sPath = "##com.sap.vocabularies.UI.v1.HeaderInfo/Description/Label",
 oContext = oModel.getContext(oModel.resolve(sPath,
this.getBindingContext())),
 oLabel = new sap.m.Label({
 text : sap.ui.model.odata.AnnotationHelper.format(oContext)
 })); ...

The formatter functions are called with a context object as first parameter. The second parameter
(vRawValue) is optional. If the value is not provided, it is calculated in the formatter function. If the application
has already calculated the value, it passes the raw value as second parameter, thus avoiding unnecessary
further calculations of the raw value.

Helper Functions

The following helper functions can be used with <template:with>:

● gotoEntityset: Helper function for a with instruction for the entity set with the given name or the entity
set that depending on how it is called has been determined by the last navigation property of one of the
following dynamic expressions: 14.5.2 Expression edm:AnnotationPath, "14.5.11 Expression
edm:NavigationPropertyPath", "14.5.12 Expression edm:Path" and "14.5.13 Expression edm:PropertyPath".

 <template:with path="facet>Target"
helper="sap.ui.model.odata.AnnotationHelper.gotoEntitySet" var="entitySet" /> <template:with path="associationSetEnd>entitySet"
helper="sap.ui.model.odata.AnnotationHelper.gotoEntitySet" var="entitySet"/>

1038 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

The binding context passed to the helper function, as determined by the template:with instruction's
path property, must point to a simple string or to an annotation (or annotation property) of type
Edm.AnnotationPath, embedded within an entity set or type; the context's model must be an
sap.ui.model.odata.ODataMetaModel.

● gotoEntityType: Helper function for a with instruction that goes to the entity type with the given
qualified name. The binding context passed to the helper function, as determined by the template: with
instruction's path property, must point to the qualified name of an entity type; the context's model must
be an sap.ui.model.odata.ODataMetaModel.
Example: Assume that entitySet refers to an entity set within an OData meta model; the helper function
is then called on the entityType property of that entity set (which holds the qualified name of the entity
type) and in turn the path of that entity type is assigned to the variable entityType.

 <template:with path="entitySet>entityType"
helper="sap.ui.model.odata.AnnotationHelper.gotoEntityType" var="entityType">

● resolvePath is a helper function for a template:with instruction that resolves one of the following
dynamic expressions: 14.5.2 Expression edm:AnnotationPath, "14.5.11 Expression
edm:NavigationPropertyPath", "14.5.12 Expression edm:Path" and "14.5.13 Expression edm:PropertyPath".
The function supports navigation properties and term casts. The binding context passed to the helper
function, as determined by the template:with instruction's path property, must point to an annotation
or annotation property of type Edm.AnnotationPath, embedded within an entity type, The context's
model must be sap.ui.model.odata.ODataMetaModel.

 <template:with path="meta>Value"
helper="sap.ui.model.odata.AnnotationHelper.resolvePath" var="target">

● gotoFunctionImport: Helper function for a template:with instruction that goes to the function
import with the name which oContext points at. Example: Assume that dataField refers to a
DataFieldForAction within an OData meta model; the helper function is then called on the Action
property of that data field (which holds an object with the qualified name of the function import in the
String property) and in turn the path of that function import is assigned to the variable function.

 <template:with path="dataField>Action"
helper="sap.ui.model.odata.AnnotationHelper.gotoEntityType" var="function">

Related Information

sap.ui.model.odata.AnnotationHelper
OData Version 4.0

Debugging

For the debug levels DEBUG and ALL, the XML preprocessor writes a trace for what it exactly does.

The following events are traced (the numbers represent the line numbers in the example below):

● The start including the view being processed (1)

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1039

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.AnnotationHelper.html
http://help.sap.com/disclaimer?site=http%3A%2F%2Fdocs.oasis-open.org%2Fodata%2Fodata%2Fv4.0%2Fodata-v4.0-part3-csdl.html

● A list of all binding contexts with the path they are pointing to (2)
● Start of processing of a <with> statement including the new variable assignment (3,6)
● Evaluation of an <if> or <elseif> statement including the test result (4,10)
● Start of processing of a <repeat> statement (8)
● Each iteration of the <repeat> statement including the current variable assignment (9)
● Start of processing of a <Fragment> statement including the resulting fragment name (7)
● Finished processing of any of the following statements: <with>, <if>, <repeat>, <Fragment> (12-17)
● If any attribute of any other node has been resolved (5,11)
● The finish (18)

Each debug line looks as follows:

[level] message - <node> sap.ui.core.util.XMLPreprocessor

[level] is the number of currently active preprocessor statements. It is incremented each time when the
processing of an <if>, <with>, <repeat> or <Fragment> starts. It is decremented when the node is
completely processed. <node> is the node being processed with all its attributes.

Example:

 1 [0] Start processing Element sap.ui.core.mvc.XMLView#__xmlview5
(sap.ui.core.sample.ViewTemplate.scenario.Detail) -
sap.ui.core.util.XMLPreprocessor
2 [0] meta = /dataServices/schema/0/entityContainer/0/entitySet/0 -
sap.ui.core.util.XMLPreprocessor
3 [1] entityType = /dataServices/schema/0/entityType/0 - <template:with
path="meta>entityType"
helper="sap.ui.model.odata.AnnotationHelper.gotoEntityType" var="entityType">
sap.ui.core.util.XMLPreprocessor
4 [2] test == [object Array] --> true - <template:if
test="{entityType>com.sap.vocabularies.UI.v1.LineItem}">
sap.ui.core.util.XMLPreprocessor
5 [2] items = {path:'/BusinessPartnerSet', length: 5} - <Table
includeItemInSelection="true" mode="SingleSelect"
selectionChange="onSelectionChange" items="{= '{path:\'/' + ${meta>name} + '\',
length: 5}' }"> sap.ui.core.util.XMLPreprocessor
6 [3] target = /dataServices/schema/0/entityType/0/
com.sap.vocabularies.UI.v1.LineItem - <template:with
path="entityType>com.sap.vocabularies.UI.v1.LineItem" var="target">
sap.ui.core.util.XMLPreprocessor
7 [4] fragmentName = sap.ui.core.sample.ViewTemplate.scenario.Table -
<core:Fragment fragmentName="sap.ui.core.sample.ViewTemplate.scenario.Table"
type="XML"/> sap.ui.core.util.XMLPreprocessor
8 [5] Starting - <template:repeat list="{target>}" var="field">
sap.ui.core.util.XMLPreprocessor
9 [5] field = /dataServices/schema/0/entityType/0/
com.sap.vocabularies.UI.v1.LineItem/0 - <template:repeat list="{target>}"
var="field"> sap.ui.core.util.XMLPreprocessor
10 [6] test == [object Object] --> true - <template:if test="{field>Value}">
sap.ui.core.util.XMLPreprocessor
11 [6] text = ID - <Text text="{path: 'field>Label', formatter:
'sap.ui.model.odata.AnnotationHelper.format'}"/> sap.ui.core.util.XMLPreprocessor
12 [6] Finished - </template:if> sap.ui.core.util.XMLPreprocessor
13 [5] Finished - </template:repeat> sap.ui.core.util.XMLPreprocessor
14 [4] Finished - </core:Fragment> sap.ui.core.util.XMLPreprocessor
15 [3] Finished - </template:with> sap.ui.core.util.XMLPreprocessor
16 [2] Finished - </template:if> sap.ui.core.util.XMLPreprocessor
17 [1] Finished - </template:with> sap.ui.core.util.XMLPreprocessor

1040 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

18 [0] Finished processing Element sap.ui.core.mvc.XMLView#__xmlview5
(sap.ui.core.sample.ViewTemplate.scenario.Detail) -
sap.ui.core.util.XMLPreprocessor

Working with Controls

Controls are used to define the appearance and behavior of screen areas.

Controls consist of:

● Control name
The control name is a string that consists of the library name and the control name, separated by a dot.
The library name can be omitted if there is no need to assign the control to a library. It is possible, for
example, to use Square as control name. For controls that are reused by others, we recommend to use a
unique library name, for example sap.byd.Square.

● Control metadata
The metadata defines the properties, events, aggregations and associations of a control.
Control properties, such as text or width, are used to modify the appearance or to relate to data that is
displayed by the control. The controls are defined by the control metadata, which is the public API of the
control. The API can be used by applications at runtime and also contains information on runtime features
such as data binding and type validation checks.
Controls can aggregate other controls. These controls with aggregations serve as a container or layout
control to which the application can add child controls. They can also serve as composite controls if the
control itself adds child controls and reuses available components. In an aggregation, child controls are
owned by the parent control and are destroyed together with the parent control. A control can only have
one aggregation parent. Adding the control to another aggregation removes it from the previous parent
control.
Associated controls are not part or children of an aggregation control. They are connected by ID instead of
reference. Destroying a control in an association does not affect the other control. It is possible that an
associated control does not yet or no longer exist.
Controls fire events. Events typically relate to the control's purpose and functionality on a semantically
higher level than browser events such as click. Examples for control events are triggerSearch for a
search field or collapse in a panel.

● Elements
Elements are parts of controls or rather configuration packages for parts of controls. Elements cannot be
used standalone and do not have their own renderer. Instead, the control that uses the element does the
rendering: The ComboBox control, for example, renders the Item elements. The information provided for
controls also applies to elements but not to the renderer. The sap.ui.core.Element class is the base
class of sap.ui.core.Control.

● Methods
By convention, methods are public, unless their name starts with an underscore or if it is one of the special
method types. When developing control libraries, public methods must be annotated with @public in the
JSDoc, and private methods with @private. The generated getter/setter methods for properties are also
public methods.
Methods are added to a new control by simply providing the implementation. It is not necessary to add the
method to the metadata. Other controls and the application must only call public methods and the control
ensures that they remain compatible. There are no technical rules that prevent the call of private methods,
but it is not allowed.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1041

The base class for all controls in SAPUI5 is sap.ui.core.Control. To inherit and extend the functionality,
specific controls can either inherit from the base class, or from another control.

UI Control Constructors

A constructor is a special type of function that is called to create an object. The constructor uses values to set
control properties, thus preparing the new object for use.

In SAPUI5, control constructors accept the following arguments in the specified order:

1. An optional unique identifier of type string which must either be the first argument, or omitted
altogether. If you omit the ID, the SAPUI5 framework automatically computes an ID. Specifying your own
identifier allows your application to easily find the control and, for example, retrieve the current user input
from it. Alternatively, you can keep a reference to the control in a variable.

2. A simple object as mSettings parameter that defines values for any property, aggregation, association, or
event.

The following code snippet shows an example of a constructor that is called to create a new text control saying
"Hello World" with the specified tooltip and width:

// required from sap/m/Text var oText = new Text("testText", {text : "Hello World", tooltip: "This is an example tooltip", width: "100px"});

The above example is an abbreviated version of the following code snippet with a detailed list of statements,
which is alternatively supported:

// required from sap/m/Text var oText = new Text("testText");
oText.setText("Hello World");
oText.setTooltip("This is an example tooltip"); oText.setWidth("100px");

The supported parameters are documented in the API Reference of the respective control.

Related Information

Developing Controls [page 2158]

Custom Data - Attaching Data Objects to Controls

SAPUI5 provides the data() method to attach data objects to controls.

The data() method is contained in sap/ui/core/Element. You can use this method to set and get data. The
API is equivalent to jQuery.data().

1042 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

The following additional options exist for attaching data to SAPUI5 controls:

● Attaching data declaratively in XML views and JSON views, see XML View [page 787]
● Using data binding, see Data Binding [page 815]
● For strings only: Writing data to the HTML DOM as "data-*" attribute, see Writing Data to the HTML DOM

as DATA-* Attribute [page 1045]

Setting and Retrieving Data

To set and retrieve data, use the following code:

myButton.data("myData", "Hello"); // attach some data to the Button alert(myButton.data("myData")); // alerts "Hello"
var dataObject = myButton.data(); // a JS object containing ALL data alert(dataObject.myData); // alerts "Hello"

Binding Data: Use in a List Binding

For list bindings, use the following code:

// "CustomData" required from "sap/ui/core/CustomData" // "JSONModel" required from module "sap/ui/model/json/JSONModel"
// "List" required from module "sap/m/List"
// "StandardListItem" required from module "sap/m/StandardListItem"
function giveAnswer(oEvent) {
 var oItem = oEvent.getSource(); // the StandardListItem
 var sData = oItem.data("theAnswer"); // access the custom data stored under
the key "theAnswer"
 alert("The answer is: " + sData);
}
// create a JSONModel, fill in the data and bind the ListBox to this model
var oModel = new JSONModel(aData); // aData.questions is an array of
elements like {question:"Some question?",answer:"Some answer!"}
var oList = new List({select:giveAnswer}); // method giveAnswer() retrieves the
custom data from the selected ListItem
oList.setModel(oModel);
// create an item template and bind the question data to the "text" property
var oItemTemplate = new StandardListItem({title: "{question}", press:
giveAnswer, type: "Active"});
// create a CustomData template, set its key to "answer" and bind its value to
the answer data
var oDataTemplate = new CustomData({key:"theAnswer", value: "{answer}"});
// add the CustomData template to the item template
oItemTemplate.addCustomData(oDataTemplate);
// bind the items to the "questions" (which is the name of the data array) oList.bindAggregation("items", "/questions", oItemTemplate);

You can find a productive example in the SAPUI5 test suite by searching for CustomData in sap.ui.core.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1043

Use in XML Views

In XML views, CustomData objects can be written as normal aggregated objects. However, to reduce the
amount of code and improve the readability, a shortcut notation has been introduced: You can directly write the
data attributes into the control tags. Simply use the following namespace for the respective attributes:

myNamespace="http://schemas.sap.com/sapui5/extension/sap.ui.core.CustomData/1".

The difference between this more formal namespace and the existing MVC namespaces is intentional.

 Example
Use without Data Binding

The following example shows how you attach the string "just great" to a button:

<mvc:View xmlns:core="sap.ui.core" xmlns:mvc="sap.ui.core.mvc" xmlns="sap.m"
controllerName="my.own.controller" xmlns:app="http://schemas.sap.com/sapui5/extension/
sap.ui.core.CustomData/1">
 <Button id="myBtn" text="Click to show stored coordinates data"
app:mySuperExtraData="just great" press="alertCoordinates"></Button> </mvc:View>

The string is returned at runtime by calling button.data("mySuperExtraData").

 Example
Use with Data Binding

You can use data binding with the following notation:

<mvc:View xmlns:core="sap.ui.core" xmlns:mvc="sap.ui.core.mvc" xmlns="sap.m"
controllerName="my.own.controller" xmlns:app="http://schemas.sap.com/sapui5/extension/
sap.ui.core.CustomData/1">
 <Button id="myBtn" text="Click to show stored coordinates data"
app:coords="{data}" press="alertCoordinates"></Button> </mvc:View>

Use in JSON Views

To add custom data to an element in a JSON view, add the following code to the element properties (examples
with data binding):

customData: { Type:"sap.ui.core.CustomData",
 key:"coords",
 value:"{data}" // bind custom data }

To add multiple data elements, use an array:

customData: [{ Type:"sap.ui.core.CustomData",

1044 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 key:"coords",
 value:"{data}" // bind custom data
 },
 {
 Type:"sap.ui.core.CustomData",
 key:"coords",
 value:"{data}" // bind custom data }]

In context, this looks as follows:

var json = {
 Type: "sap.ui.core.mvc.JSONView",
 controllerName:"my.own.controller",
 content: [{
 Type:"sap.m.Panel",
 content:[{
 Type:"sap.m.Button",
 text:"{actionName}",
 press: "doSomething",
 customData: {
 Type:"sap.ui.core.CustomData",
 key:"coords",
 value:"{data}" // bind custom data
 }
 }]
 }] };

Use in HTML Views

To add custom data objects to a control or an element in HTML views, use a specific HTML attribute with the
following syntax: data-custom-data:my-key="myValue". A custom data attribute starts with data-
custom-data: followed by the name of the key. The dashes convert the respective following character into an
upper case character. The value can be either a string or a binding expression:

<div data-sap-ui-type="sap.m.Button" data-text="This button is added
dynamically" data-custom-data:my-key="myValue" data-custom-data:my-bound-key="{/
mypath}"></div>

Writing Data to the HTML DOM as DATA-* Attribute

SAPUI5 supports writing custom data to the HTML DOM.

These are two use cases, where this feature can be useful:

● To generate markers in the HTML from data binding which then can then be used for data-dependent
styling.

● To create stable anchors in the HTML which can be used for automated tests.

A "data-" prefix is added to the key and the result is then written as an attribute into the root HTML element of
the control. The CustomData value is written as an attribute value.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1045

For this, the key has to be a valid HTML ID and the value has to be a string; otherwise an error is logged.

 Note
HTML attribute names are case-insensitive and browsers may convert the key to lowercase.

Do not write too much data into the DOM.

In JavaScript, you can set the flag as shown in the following code snippet:

 myButton.data("mydata", "Hello", true); // attach some data to the Button and
mark it as "write to HTML"

To set the writeToDom flag in XML views, the aggregation has to be written in expanded notation:

 <Button ... >
 <customData>
 <core:CustomData key="mydata" value="Hello" writeToDom="true" />
 </customData> </Button>

This results in the following HTML:

<button ... data-myData="Hello" ... >

This is done similarly in HTML views:

 <div data-sap-ui-type="sap.m.Button" data-text="This button has custom data
written to the DOM">
 <div data-sap-ui-aggregation="customData">
 <div data-sap-ui-type="sap.ui.core.CustomData" data-key="mydata" data-
value="Hello" data-write-to-dom="true"/>
 </div>
</div>

The CSS can now use attribute selectors to check the presence or the value of the custom data attribute:

 button[data-mydata="Hello"] { border: 3px solid red !important; }

Using Predefined CSS Margin Classes

SAPUI5 gives you the option of adding spacing in between controls by adding a margin. A margin clears an area
around its respective control, outside of its border.

Unlike paddings, margins are transparent, are not part of the control's clickable area, and they collapse with
adjacent margins, meaning that they do not add to each other. For instance, if you have two 32px margins next
to each other, the result is that only one 32px margin is displayed, not 64px of space.

All margins predefined in SAPUI5 support right-to-left (RTL) languages: when you add a margin to the left, we
make sure that it's displayed on the right if your user has chosen an RTL language such as Hebrew or Arabic.
For our CSS classes, we offer four standard sizes, namely tiny (0.5rem or 8px), small (1rem or 16px), medium
(2rem or 32px) and large (3rem or 48px).

1046 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

There are four types of margins available:

● Full margins, which completely surround your control
● Single-sided margins
● Two-sided margins
● Responsive margins, which adapt to the available screen width

Full Margins

If you would like to clear an area all around your control, use one of the following margin classes:

● sapUiTinyMargin
● sapUiSmallMargin
● sapUiMediumMargin
● sapUiLargeMargin

Single-Sided Margins

For single-sided margins, choose a size (Tiny, Small, Medium, or Large, which stands for 8, 16, 32 or 48px
respectively) and a direction (Begin, End, Top, or Bottom, where Begin is left and End is right and vice versa
in RTL mode). For example, if you need to clear a 32px space to the left of your control (or to the right in RTL
mode), you would add the class sapUiMediumMarginBegin. You can also add several classes at once, as long
as they point to different directions. For example, you would add classes sapUiLargeMarginEnd and
sapUiLargeMarginBottom to clear a 48px space to the bottom and to the right of a control (or to the left in
RTL mode).

Here are the classes we provide for single-sided margins:

sapUiTinyMarginTop

sapUiTinyMarginBott
om

sapUiTinyMarginBegi
n

sapUiTinyMarginEnd

sapUiSmallMarginTop

sapUiSmallMarginBot
tom

sapUiSmallMarginBeg
in

sapUiSmallMarginEnd

sapUiMediumMarginTo
p

sapUiMediumMarginBo
ttom

sapUiMediumMarginBe
gin

sapUiMediumMarginEn
d

sapUiLargeMarginTop

sapUiLargeMarginBot
tom

sapUiLargeMarginBeg
in

sapUiLargeMarginEnd

Two-Sided Margins

If you’d like to clear the space to the left and right or top and bottom of your control, we've provided several
two-sided margin classes for you to use. Again, just choose the size and orientation that you need (BeginEnd,

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1047

TopBottom). For example, if you need to clear a 32px space both to the left and right of a control, you would
add the class sapUiMediumMarginBeginEnd. Here are the classes that are available:

sapUiTinyMarginBegi
nEnd

sapUiTinyMarginTopB
ottom

sapUiSmallMarginBeg
inEnd

sapUiSmallMarginTop
Bottom

sapUiMediumMarginBe
ginEnd

sapUiMediumMarginTo
pBottom

sapUiLargeMarginBeg
inEnd

sapUiLargeMarginTop
Bottom

We've also provided a set of negative margin classes that add a two-sided (BeginEnd) negative margin of an
element. The negative margins are useful for aligning elements with built-in paddings.

sapUiTinyNegativeMa
rginBeginEnd

sapUiSmallNegativeM
arginBeginEnd

sapUiMediumNegative
MarginBeginEnd

sapUiLargeNegativeM
arginBeginEnd

Responsive Margins

If your application is supposed to run on smartphone, tablet and desktop, it can be useful to choose your
margins depending on the screen width that is available. SAPUI5 now comes with CSS class
sapUiResponsiveMargin, which does just that. It works with media queries to determine the available
screen width and adapts its margin as follows:

Screen Width Example

Screen width less than 600px (smartphones): For devices
such as these, sapUiResponsiveMargin provides a
16px (1rem) bottom margin to your control. Each of the pan
els shown in the screenshot is using
sapUiResponsiveMargin. As a result, they're all clear
ing the same 16px area of space below them.

1048 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Screen Width Example

Between 600px and 1023px (tablets and small desktops):
For these, sapUiResponsiveMargin provides a 16px
(1rem) margin all around your control, as you can see in the
screenshot.

Larger than 1023px (large desktops): For these,
sapUiResponsiveMargin provides 16px (1 rem) top
and bottom margin as well as a 32px (2 rem) left and right
margin, as shown in the screenshot.

The following exceptions to these rules exist:

● When your sapUiResponsiveMargin control is placed within an sap.m.SplitApp master view, it's
always provided with a 16px bottom margin and nothing else. Here, the thresholds mentioned previously do
not affect your control.

● Within a SplitApp’s detail view, there's always a 16px margin all around your sapUiResponsiveMargin
control, regardless of the available screen width. Usually, the SplitApp is responsive as well, though. If it
hides its master view because the available screen width isn't sufficient, or if it’s running in ‘HideMode’,
your control also ignores the fact that it's placed into a SplitApp’s detail view and it becomes responsive
again.

Controls with 100% Width

When applying classes with horizontal margins to a control, such as sapUiSmallMargin or
sapUiSmallMarginBegin, for example, make sure that your control doesn’t have a 100% width. If your
control has a width property (which most controls have), set the width value to auto, for example:

<Panel width="auto" class="sapUiLargeMarginBegin sapUiLargeMarginBottom">

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1049

If your control does not have a width property but still has a default width of 100%, you can add our CSS class
sapUiForceWidthAuto to your control, which ensures that the control’s default width is overwritten with the
value auto. An example for such a control is sap.m.IconTabBar.

Adding Margin Classes to Your Code

To apply the classes described here in your code, simply add a class attribute and the margin class to the
respective control tag in your declarative xml views. If you need to add several classes at once (which can be
the case if you’re using single-sided margins), separate them by a space. Here’s a sample snippet containing a
panel and an IconTabBar:

 <mvc:View
 height="100%"
 controllerName="sap.m.sample.StandardMarginsEnforceWidthAuto.Page"
 xmlns:mvc="sap.ui.core.mvc"
 xmlns="sap.m">
 .
 .
 .
 <Panel width="auto" class="sapUiLargeMarginBegin sapUiLargeMarginBottom">
 <content>

 </content>
 </Panel>
<IconTabBar
 expanded="{device>/isNoPhone}"
 class="sapUiForceWidthAuto sapUiMediumMarginBeginEnd">
 <items>
 .
 .
 .
 </items>
</IconTabBar>
 .
 . </mvc:View>

If you would like to add margins to javascript code, use the control’s addStyleClass method. For example:
myPanel.addStyleClass(‘sapUiLargeMargin’). Again, if you need to add several classes at once, you
can do so by separating them by a space. Make sure that you set the panel’s width to auto as shown here:
myPanel.setWidth(‘auto’).

Removing Margins

If a control comes with a margin that you don’t want for some particular reason, you can use one of our
convenience classes to remove it. You can either use sapUiNoMargin to remove the margins all around your
control, or you can choose one or more classes from the following list to remove a margin in one or more
particular directions:

● sapUiNoMarginTop
● sapUiNoMarginBottom

1050 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

● sapUiNoMarginBegin
● sapUiNoMarginEnd

Sample

For a detailed example of how our predefined margin classes work, see the Samples.

Using Container Content Padding CSS Classes

For many container controls in SAPUI5, such as a Dialog or a Page, you can define whether the container
should have a padding within the content area. A padding clears the area between the container layout and the
controls that are displayed in the content area.

You can either choose to have no padding, a small padding, or a responsive padding that is based on the user’s
screen size.

The following CSS classes for content padding are provided by SAPUI5:

sapUiNoContentPadding
sapUiContentPadding
sapUiResponsiveContentPadding

The effects of these paddings will be different depending on the container that is being used:

● If the container is defining a padding on its content area by default, then setting
sapUiNoContentPadding in the application code will remove the padding and thus not display any space
between the container layout and the content controls.

● If the container is defining no padding on its content by default, then setting sapUiContentPadding will
add 1rem (16px) of padding around the content area to layout the content controls.

● Setting sapUiResponsiveContentPadding on the container control will add a padding based on the
user’s screen size. On small screen devices such as smartphones, or when the browser window is resized
to a small size, no padding is displayed. On medium screen sizes and applications that are using a
SplitApp, the control will get 1rem (16px) of padding. Finally, on large screen sizes in full-screen mode, the
container control will get 2rem (32px) of padding to the left and right and 1rem (16px) of padding at the top
and bottom.

The following list shows examples of controls that support container content padding CSS classes:

sap.f.DynamicPage
sap.m.Carousel
sap.m.Dialog
sap.m.IconTabBar
sap.m.List
sap.m.Page
sap.m.Panel
sap.m.Popover
sap.m.ScrollContainer

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1051

https://sapui5.hana.ondemand.com/#/entity/sap.ui.core.StandardMargins

sap.m.Table
sap.ui.layout.BlockLayoutCell
sap.ui.layout.DynamicSideContent
sap.ui.layout.HorizontalLayout
sap.ui.layout.VerticalLayout

Example

 <Page class="sapUiResponsiveContentPadding">

Example

For a detailed example of how our container padding classes work, see the sample
sap.ui.core.ContainerPadding.

Enabling Responsive Paddings

Apply responsive paddings over separate parts of the controls.

 Note
You can enable the responsive paddings only for the SAP Quartz themes.

Usage

Application developers can now apply responsive paddings over separate parts of the controls and align the
space distribution properly, according to the width of the control (and not the whole screen). This can be done
by using a set of classes, which are available for the different controls.

Applied Paddings
Based on the container’s size, one of the following classes is added, and the corresponding padding-left and
padding-right are applied:

Container Size (pixels) Class
Padding-Left and Padding-Right Ap
plied

<= 600 sapUi-Std-PaddingS 1rem

>600 sapUi-Std-PaddingM 2rem

1052 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/entity/sap.ui.core.ContainerPadding/samples

Container Size (pixels) Class
Padding-Left and Padding-Right Ap
plied

>1024 sapUi-Std-PaddingL 2rem

>1440 sapUi-Std-PaddingXL 3rem

Supported Controls
The following table shows the controls that support responsive paddings. To enable this concept and to add
responsive paddings to an element of the controls, add the corresponding classes to the controls, depending
on your use case:

Supported Con
trols

sapUiRespons
ivePadding--
header

sapUiRespons
ivePadding--
subHeader

sapUiRespons
ivePadding--
content

sapUiRespons
ivePadding--
footer

sapUiRespons
ivePadding--
floatingFoot
er

sap.m.Dialog

(sap.m.Messag
eBox,

sap.m.Select
Dialog,

sap.m.TableS
electDialog)

sap.m.IconTa
bBar

sap.m.Object
Header

sap.m.Page

sap.m.Popove
r

sap.m.TabCon
tainer

sap.m.Wizard

 Note
If nessecary, you can further align controls by using the available set of predefined CSS margin classes. For
example, you can add negative margins to an element on its left and right sides. For more information, see
Using Predefined CSS Margin Classes [page 1046].

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1053

Example

<Page class="sapUiResponsivePadding--header sapUiResponsivePadding--subHeader
sapUiResponsivePadding--content sapUiResponsivePadding--footer
sapUiResponsivePadding--floatingFooter">

For a detailed example, see the Samples for sap.m.Page.

How to Enable Responsive Paddings
As a control developer, you can enable application developers to apply responsive paddings, by implementing
the sap.ui.core.util.ResponsivePaddingsEnablement utility.

Here is an example:

ResponsivePaddingsEnablement.call(MyCustomControl.prototype, { header: {suffix: "-myCustomControlHeader"},
 content: {selector: ".myCustomControlContent"}
 });

As the example demonstrates, there are two ways to select an element:

● Using suffix: This enables you to select an element by its ID.
● Using selector: This covers all possible CSS selections.

To call the utility, when initializing the control, use:

MyCustomControl._initResponsivePaddingsEnablement()

As a result, application developers will be able to use classes, such as sapUiResponsivePadding—header
and sapUiResponsivePadding--content, to enable the paddings on the respective element.

Field Groups

Group of controls that belong together semantically. This group can be used, for example, for validating the
data consistency for the field group.

Field groups are built by means of a common fieldGroupIds array for a group that can be set for each
control. When the user changes the focus to a control with a different fieldGroupIds array, the
validateFieldGroup event is raised and bubbled in the control hierarchy, that is, the event is propagated to
the parent control until it reaches the top most control, or the event is handled and oEvent.bCancelBubble
is set to true. The application developer can now validate the fields within the group. The
validateFieldGroup event is also raised if the user presses Enter in a field without any modifier keys.

1054 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/entity/sap.m.Page

Example: Validation of Credit Card Information

Depending on the credit card vendor, different validation rules can be implemented for a field group, for
example:

● Vendor 1: First digit must be a 3 and second digit must be a 4 or 7, the valid length is 15 digits
● Vendor 2: First digit must be a 5 and second digit must be in the range from 1 to 5 inclusive, the valid length

is 16 digits

Plenty of other validation rules for vendors exist. In addition to this, the expiry date must not be in the past and,
in case of Vendor 1, is only allowed to be 4 years in the future.

Defining a Field Group ID

fieldGroupIds is a property of all sap.ui.core.Control instances and can be set there as an array of
strings. The developer has to make sure that the ID is unique. Field group IDs can be added as a comma-
separated string as it is usually done in an xml view declaration.

var myInput1 = new sap.m.Input({fieldGroupIds:["MyGroup","MyGroup2"]}), myInput2 = new sap.m.Input({fieldGroupIds:["MyGroup","MyGroup2"]);

//XMLView declaration of multiple groups <input fieldGroupIds="MyGroup,MyGroup2" />

Validating Field Groups

The validateFieldGroup event is raised on the control that lost the focus and at least one field group was
left. The event bubbles up the control hierarchy. In the example below, the surrounding VerticalLayout is
handling the event for its fields.

var myVerticalLayout = new sap.ui.layout.VerticalLayout({content:[myInput1,
myInput2], validateFieldGroup: function(oEvent) { var aFieldGroup = oEvent.getParameters().fieldGroupIds;
 if (aFieldGroup.indexOf("MyGroup") > -1) {
 //do validation
 oEvent.bCancelBubble = true; //stop bubbling to the parent control
 } }});

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1055

Accessing Controls in a Field Group

In some scenarios, it is required to find all controls that belong to a specific field group, or to all controls with a
fieldGroupId. For this, the control implements the public getControlsByFieldGroupId method that gets
a list of child controls in the application code.

var aAllControlsWithFieldGroupId =
myVerticalLayout.getControlsByFieldGroupId(); //all where
fieldGroupId is not empty var aMyGroupControls =
myVerticalLayout.getControlsByFieldGroupId("myGroup"); //exact matches to
myGroup

Similar to the above you can use the byFieldGroupId method of sap.ui.Core to all controls with certain
field group IDs.

var aAllControlsWithFieldGroupId =
sap.ui.getCore().byFieldGroupId(); //all where fieldGroupId is not
empty var aMyGroupControls =
sap.ui.getCore().byFieldGroupId("MyGroup"); //exact matches to myGroup var aNotGrouped =
sap.ui.getCore().byFieldGroupId([]); //exact empty array (default
value of fieldGroupIds)

Using the fieldGroupId With Composite Controls

Composite controls that derive from control base class automatically support setting a FieldGroupId.
Nevertheless, the FieldGroupId is not propagated to inner controls of the composite control as they are
unknown to the SAPUI5 framework. Therefore, a composite control needs to propagate the FieldGroupId on
its own. For all internally aggregated controls, the FieldGroupId should be propagated as follows:

MyCompositeControl.prototype.setFieldGroupIds = function(vValue,
bSuppressInvalidate) { this._myAggregatedInnerControl.setFieldGroupIds(vValue, bSuppressInvalidate);
 this.setProperty("fieldGroupIds",vValue, bSuppressInvalidate); }

Note

For a control with a fieldGroupId that currently has the focus, the following applies:

● If the control is destroyed before the focus is moved to another control, the validateFieldGroup event
is not fired.

● If the control changes its fieldGroupIds, the validateFieldGroup event is fired for the new
fieldGroupIds and not for the old.

1056 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Related Information

Sample: Field Groups

Declarative Support

Declarative programming allows you to define the UI within the HTML document as elements.

For this, SAPUI5 provides the sap.ui.core.plugin.DeclarativeSupport plugin that can be included
either as required or marked as a module in the initial bootstrap script tag. The plugin parses the document
and converts its tags with special attributes into SAPUI5 controls.

Declarative support is aware of properties, associations, events, and aggregations in a SAPUI5 control manner.
This means that you can specify them within the markup of the HTML document either as data attributes or as
child elements.

The following sections provide an overview of the declarative support and introduce the use of declarative
support in SAPUI5.

Example

The following example shows the concept by combining a sap.m.input with a sap.m.Button control. When
you click the button, the value of the text field is displayed in an alert box:

<!Doctype HTML> <html>
<head>
 <title>Declarative Programming for SAPUI5 - sample01</title>
 <script id="sap-ui-bootstrap"
 type="text/javascript"
 src="resources/sap-ui-core.js"
 data-sap-ui-theme="sap_belize"
 data-sap-ui-libs="sap.m"
 data-sap-ui-modules="sap.ui.core.plugin.DeclarativeSupport"
 >
 </script>
</head>
<body class="sapUiBody">
 <div data-sap-ui-type="sap.m.Input" id="message" class="my-button" data-
value="Hello World"></div>
 <div data-sap-ui-type="sap.m.Button" data-text="Click me!" data-
press="handlePress"></div>
</body> </html>

Summary: Attributes Used by Declarative Support

The table summarizes the attributes used by declarative support and gives examples.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1057

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.sample.FieldGroup/preview

Attribute Description Example

data-sap-ui-type Type of control <div data-sap-ui-
type="sap.m.Button"></div>

data-sap-ui-aggregation Defines the aggregation that shall be
used for the element or child element

<div data-sap-ui-
type="sap.m.Panel"><div
data-sap-ui-
aggregation="content"
data-sap-ui-
type="sap.m.Button" data-
text="My Button"></div></
div>

data-sap-ui.default-
aggregation

Sets or overrides the default
aggregation of a control

<div data-sap-ui-
type="sap.m.Panel" data-
sap-ui-default-
aggregation="headerToolbar
"><div data-sap-ui-
type="sap.m.Toolbar"></
div></div>

id Defines the ID property of a control <div data-sap-ui-
type="sap.m.Button"
id="myButton"></div>

class Adds a style class to the control <div data-sap-ui-
type="sap.m.Button"
class="myButton"></div>

Enabling Declarative Support

Declarative support needs to be enabled in the HTML document by adding an attribute to the SAPUI5
bootstrap script tag.

This is done as follows:

data-sap-ui-modules="sap.ui.core.plugin.DeclarativeSupport"

SAPUI5 then requires (loads) the plugin sap.ui.core.plugin.DeclarativeSupport. When started, the
plugin parses and enhances special HTML tags in the HTML document. The complete bootstrap script tag for
SAPUI5 (based on a CDN version) looks as follows:

<script id="sap-ui-bootstrap" type="text/javascript"
 src="resources/sap-ui-core.js"
 data-sap-ui-theme="sap_belize"
 data-sap-ui-libs="sap.m"
 data-sap-ui-modules="sap.ui.core.plugin.DeclarativeSupport"
 > </script>

1058 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Defining Controls

For declarative support, define the controls in your HTML document as HTML tags.

For this, use the following data attribute that defines the SAPUI5 control that should be rendered in the HTML
tag by using the HTML tag as its UI area:

data-sap-ui-type="sap.m.Button"

Rendering a button in the body of an HTML document without setting any property, association, event, or
aggregation looks as follows:

 <body>
 <div data-sap-ui-type="sap.m.Button"></div> </body>

 Note
Make sure that you close the tags properly. HTML5 does not support self-closing tags.

 Note
All attributes used to define properties, associations, events, or aggregations are data attributes except for
attributes that exist in HTML, for example id or class. Data attributes are prefixed with data-*, for
example data-text.

Declarative Support: Properties

For setting a property, define the property as a data attribute of the corresponding HTML tag.

To add text to the button, add the attribute data-text to its HTML tag:

 <div data-sap-ui-type="sap.m.Button" data-text="HelloWorld"></div>

 Note
To define a property with upper case characters, you have to "escape" them with a dash character, similar
to CSS attributes. The following code gives an example:

 <div data-sap-ui-type="sap.ui.commons.ApplicationHeader" data-display-
logoff="false" data-display-welcome="false"></div>

As the name of the attributes of HTML tags are case-insensitive, the properties displayLogoff and
displayWelcome of the ApplicationHeader control have to be "escaped" as data-display-logoff
and data-display-welcome for the name of the attributes of the HTML tag. Keep this in mind when
matching properties, associations, or events as an attribute of the HTML tag.

The id attribute defines the ID of a control:

 <div data-sap-ui-type="sap.m.Button" id="myButton"></div>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1059

To add a CSS class to the control, use the class attribute:

 <div data-sap-ui-type="sap.m.Button" class="my-button"></div>

Declarative Support: Associations

An association is defined as a data attribute of the HTML tag. Instead of passing the reference to another
control you define the ID of another control.

The following code gives an example:

 <div data-sap-ui-type="sap.m.Label" data-text="Message:" data-label-
for="message"></div> <div data-sap-ui-type="sap.m.Input" id="message"></div>

The code snippet defines the link between Label and Input by using the ID of Input as a value for the data-
label-for attribute of the Label.

Declarative Support: Events

The value of the event data attribute contains the name of a JavaScript function which will be used as callback
once the event has been triggered.

The following code snippet gives an example how a change of Input results in an alert with its new value when
the focus is lost:

<script> function handleChange (oEvent) {
 alert (oEvent.getSource().getValue());
 }
</script> <div data-sap-ui-type="sap.m.Input" data-value="Change me!" data-
change="handleChange"></div>

Currently, SAPUI5 only supports to specify the name of a callback function. You can define callback functions
within any class, see the following code example:

 <div data-sap-ui-type="sap.m.Input" data-value="Change me!" data-change=
"my.company.MyClass.handleChange"></div>

1060 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Declarative Support: Aggregations
Aggregation support is required to allow nested controls for layout containers and/or add elements to a
control, for example, for ComboBox.

SAPUI5 uses the control's default aggregation as default. If, for example, the panel control has the default
aggregation content, all child elements of the data-sap-ui-type="sap.ui.commons.Panel" element are
added to this aggregation:

 <div data-sap-ui-type="sap.ui.commons.Panel">
 <div data-sap-ui-type="sap.ui.commons.Button" data-text="My Button 1"></div>
 <div data-sap-ui-type="sap.ui.commons.Button" data-text="My Button 2"></div>
 <div data-sap-ui-type="sap.ui.commons.Button" data-text="My Button 3"></div>
 <div data-sap-ui-type="sap.ui.commons.Button" data-text="My Button 4"></div> </div>

The markup in the example above generates an instance of the sap.ui.commons.Panel control and adds
implicit four buttons to the default aggregation content of the control.

You can also explicitly declare an aggregation. In general, an explicit aggregation is expressed with a meta
HTML tag between the parent controls HTML tag and the HTML tags of the children. The following code adds
four buttons explicitly to the "content" aggregation of the declared panel:

 <div data-sap-ui-type="sap.ui.commons.Panel">
 <div data-sap-ui-aggregation="content">
 <div data-sap-ui-type="sap.ui.commons.Button" data-text="My Button 1"></div>
 <div data-sap-ui-type="sap.ui.commons.Button" data-text="My Button 2"></div>
 <div data-sap-ui-type="sap.ui.commons.Button" data-text="My Button 3"></div>
 <div data-sap-ui-type="sap.ui.commons.Button" data-text="My Button 4"></div>
 </div> </div>

For aggregations with the cardinality "0..1" the "data-sap-ui-aggregation" attribute can be written
directly to the control tag:

 <div data-sap-ui-type="sap.ui.commons.Panel">
 <div data-sap-ui-aggregation="title" div data-sap-ui-
type="sap.ui.commons.Title" data-text="My Panel"></div> </div>

The default aggregation of the declarative support is usually also the default aggregation of the control as
defined in the control's meta information. However, when no default aggregation is set or another aggregation
should be used as a default, for example to avoid unnecessary meta tags, it can be useful to define a so-called
default aggregration attribute on the parent controls HTML tag. This is done as follows:

data-sap-ui-default-aggregation="title"

With this, all children which are not included in the data-sap-ui-aggregation meta tag are added to the
default aggregation. This is shown in the following example:

 <div data-sap-ui-type="sap.ui.commons.Panel" data-sap-ui-default-
aggregation="title">
 <div data-sap-ui-type="sap.ui.commons.Title" text="My Panel"></div>
 <div data-sap-ui-default-aggregation="content">
 <div data-sap-ui-type="sap.ui.commons.Button" data-text="My Button 1"></div>
 <div data-sap-ui-type="sap.ui.commons.Button" data-text="My Button 2"></div>
 </div> /div>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1061

You can now apply this to the MatrixLayout as follows:

 <div data-sap-ui-type="sap.ui.commons.layout.MatrixLayout" data-layout-
fixed="false">
 <div data-sap-ui-type="sap.ui.commons.layout.MatrixLayoutRow">
 <div data-sap-ui-type="sap.ui.commons.layout.MatrixLayoutCell">
 <div data-sap-ui-type="sap.ui.commons.TextField" data-value="Hello
World"></div>
 </div>
 <div data-sap-ui-type="sap.ui.commons.layout.MatrixLayoutCell">
 <div data-sap-ui-type="sap.ui.commons.Button" data-text="Hello World"></
div>
 </div>
 </div> </div>

Or you can add ListItems to a ComboBox:

 <div data-sap-ui-type="sap.ui.commons.ComboBox" data-value="Item 1">
 <div data-sap-ui-type="sap.ui.core.ListItem" data-text="Item 1"></div>
 <div data-sap-ui-type="sap.ui.core.ListItem" data-text="Item 2"></div>
 <div data-sap-ui-type="sap.ui.core.ListItem" data-text="Item 3"></div>
 <div data-sap-ui-type="sap.ui.core.ListItem" data-text="Item 4"></div>
 <div data-sap-ui-type="sap.ui.core.ListItem" data-text="Item 5"></div> </div>

Declarative Support: Data Binding

Declarative support in SAPUI5 also enables data binding.

Just add the model path in curly brackets and bind the model to the control (or parent control):

 <div data-sap-ui-type="sap.m.Button" data-text="{/stringValue}" data-
enabled="{model2>/booleanValue}"></div>

0..n aggregations can define templates to use for the list binding:

 <div data-sap-ui-type="sap.m.Carousel" data-content="{/buttons}">
 <div data-sap-ui-type="sap.m.Button" data-text="{title}"></div> </div>

In the example above, the button template is used for the carousel content data binding.

Related Information

Data Binding [page 815]

1062 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Compiling Declarative HTML

SAPUI5 provides a plugin for controls that are defined as declarative markup on startup time.

To compile the declarative UI markup deferred, for example, when the markup is dynamically loaded and added
to the DOM you can call the sap.ui.core.plugin.DeclarativeSupport.compile method, see the
following code snippet:

<div id="button"> <div data-sap-ui-type="sap.m.Button" data-text="This button is added
dynamically"></div>
</div>
<script>

sap.ui.core.plugin.DeclarativeSupport.compile(document.getElementById("button")); </script>

Error, Warning, and Info Messages

SAPUI5 provides a central place for storing and managing info, warning, and error messages.

Messages can be used to notify the user about specific states of the application and can help the user to
correct their incorrect inputs. The central MessageManager for storing messages is available globally by
calling sap.ui.getCore().getMessageManager() and the central MessageModel for managing messages
is available by calling sap.ui.getCore().getMessageManager().getMessageModel().

Message Object Properties

The following properties of sap.ui.core.message.Message instances are important:

● Target: Describes the part of the application to which the message applies. If the target is empty, the
message applies to the entire application. The target format depends on the used message processor.
Currently,SAPUI5 supports two types of targets:
○ Control IDs with control properties: The sap.ui.core.message.ControlMessageProcessor

propagates these messages to the affected control.
○ Binding path: The sap.ui.model.Model propagates these messages to affected bindings.

● Message processor: The object that handles the message in the application and propagates the message
to correct controls, bindings, or other objects, see
sap.ui.core.message.ControlMessageProcessor in the API reference.

● Type: Defines the severity of the message; possible types are: error, warning, info, and success, see
sap.ui.core.MessageType in the API reference.

● Message text: The actual message text describing the issue. This text is shown to the user.
● Persistent: This property influences the lifecycle of the message. Non-persistent messages are cleaned up

by the framework messaging lifecycle, persistent messages have to be removed manually by the
application.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1063

Message Creation

There are several ways to create messages automatically and push them into the central message model:

● Validation messages refer to a control. They are created by the SAPUI5 framework when data is parsed,
formatted, and validated according to defined data types, see Formatting, Parsing, and Validating Data
[page 854]. Such messages are propagated to one specific control. For more information, see Validation
Messages [page 1065].

● OData V2 messages refer to a binding path. They are typically managed by the server and are changed
every time the back end responds to a request. Such messages are propagated to all bindings with the
specific binding path. For more information, see OData V2 Messages [page 1067].

You can also create messages manually or extend the messaging features provided by the framework:

● You can create custom messages manually via the central sap.ui.core.message.MessageManager
APIs. For these manually created messages, the application has to ensure a proper message lifecycle.

● For custom target formats, you can use the custom message processor. The own message processor has
to inherit from the class sap.ui.core.message.MessageProcessor.

● If the used back end serves messages in a special way, you can use your own implementation of
sap.ui.core.message.MessageParser. For more information, see Implementing Your Own OData V2
Message Parser [page 1071].

Related Information

API Reference: sap.ui.core.message.Message
API Reference: sap.ui.core.MessageType
API Reference: sap.ui.core.message.MessageManager
API Reference: sap.ui.model.message.MessageModel
API Reference: sap.ui.core.message.MessageParser
API Reference: sap.ui.core.message.MessageProcessor
API Reference: sap.ui.core.message.ControlMessageProcessor
API Reference: sap.ui.model.Model

1064 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.message.Message.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.MessageType.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.message.MessageManager.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.message.MessageModel.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.message.MessageParser.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.message.MessageProcessor.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.message.ControlMessageProcessor.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.Model.html

Validation Messages

Validation messages are either created by the framework and processed by the
sap.ui.core.message.ControlMessageProcessor or manually by the application.

Target

The target of a validation message can be empty. In this case, the message has no specific target and is
relevant for the whole application. If a target is set, the target is a string consisting of a control ID, a slash ("/"),
and the name of the property to which the message applies.

Example: label0/text

Lifecycle

Validation messages are added with a target referencing a control and its specific property. The messages are
kept until a validation message for the property is created and assigned. If new data for the same property is
received from the server, the valdation messages are erased unless their persistent property is set to true.

Automatically Created Messages

Validation messages are generated by the framework type validation when data changes. If a bound property
has an assigned type, the validation can trigger the message creation. To activate the automatic message
creation, the following options exist:

● Component:
You can activate the automatic message generation in the component metadata or as a parameter when
instantiating the component as follows:

// "UIComponent" required from "sap/ui/core/UIComponent" // "ComponentContainer" required from "sap/ui/core/ComponentContainer"
UIComponent.extend("MyComponent", {
 metadata : {
 version : "1.0" ,
 handleValidation : true
 } });

var oComponentContainer = new ComponentContainer("MyComponentContainer", { name: "MyComponent",
 id: "myComponentId",
 handleValidation: true });

● Descriptor for Applications

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1065

You can activate the automatic message generation in the "sap.ui5" section of the manifest.json file
as follows:

"sap.ui5": { "handleValidation": true }

● Control
You can activate automatic message generation for controls by registering the control in the message
manager as follows:

// "Input" required from "sap/m/Input" // "TypeFloat" required from "sap/ui/model/type/Float"
var oInput = new Input({
 value: { path: "/Products(1)/Price", type: new TypeFloat() }
 value: { path: "/Products(1)/Price", type: new sap.ui.model.type.Float() }
}); sap.ui.getCore().getMessageManager().registerObject(oInput, true);

 Note
If you don't set the second attribute of
sap.ui.core.message.MessageManager.registerObject to true, the event is canceled
without any message, see sap.ui.core.message.MessageManager.registerObject in the API
reference.

Manually Created Messages

You can also create validation messages manually and add them to the message manager. If you add the
message to a control property that is bound and validated by a data binding type, your message gets deleted
when new validation results from the type comes in. You can override this behavior by setting the persistent
property of the message to true.

var oMessageProcessor = new sap.ui.core.message.ControlMessageProcessor(); var oMessageManager = sap.ui.getCore().getMessageManager();
oMessageManager.registerMessageProcessor(oMessageProcessor);
var oInput = new sap.m.Input({
 id: "myInputId",
 value: { path: "/Products(1)/Price" , type: new sap.ui.model.type.Float() }
});
oMessageManager.addMessages(
 new sap.ui.core.message.Message({
 message: "ZIP codes must have at least 23 digits",
 type: sap.ui.core.MessageType.Error,
 target: "/myInputId/value",
 processor: oMessageProcessor
 }));

Related Information

API Reference: sap.ui.core.ControlMessageProcessor

1066 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.core.message.MessageManager/methods/registerObject
https://sapui5.hana.ondemand.com/#/api/sap.ui.core.message.MessageManager/methods/registerObject
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.ControlMessageProcessor.html

API Reference: sap.ui.core.message.MessageManager

OData V2 Messages

OData V2 messages are either created automatically by sap.ui.model.odata.ODataMessageParser and
processed by the sap.ui.model.odata.v2.ODataModel or can be created manually by the application.

Target

The target of these messages can be empty. In this case, the message has no specific target and is relevant for
the whole application. If a target is set, it must correspond to a binding path which is then used to propagate
the message to the corresponding bindings. If these bindings belong to a control that implements the
refreshDataState function, the control is able to react to data state changes.

Lifecycle

OData V2 messages are kept until a message from the server for the same path arrives. The server always
sends all messages for a specific target which means that all current messages are replaced with the ones sent
by the server, except for persistent UI messages. Back-end messages with property transition set to
true are parsed to persistent UI messages.

Manually Created Messages

To create messages manually that are handled like OData messages, use model as message processor as
follows:

// oMyModel is defined elsewhere... // "Input" required from module "sap/m/Input"
// "TypeFloat" required from module "sap/ui/model/type/Float"
// "Message" required from module "sap/ui/core/message/Message"
// "coreLibrary" required from module "sap/ui/core/library"
var oMessageManager = sap.ui.getCore().getMessageManager();
oMessageManager.registerMessageProcessor(oMyModel);
var oInput = new Input({
 id: "myInputId",
 value: { path: "/Products(1)/Price", type: new TypeFloat() }
});
oMessageManager.addMessages(
 new Message({
 message: "Price must contain only numbers",
 type: coreLibrary.MessageType.Error,
 target: "/Products(1)/Price",
 processor: oMyModel
 }));

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1067

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.message.MessageManager.html

Automatically Created Messages

The sap.ui.model.odata.v2.ODataModel supports automatic parsing of OData V2 messages by means of
sap.ui.model.odata.ODataMessageParser.

For other back-end service types, an application can implement its own parser, see Implementing Your Own
OData V2 Message Parser [page 1071].

OData V2 Message Parser

The ODataMessageParser is created automatically for all v2.ODataModel instances and parses all
responses from the server. The ODataModel implements the message processor interface and is used to
propagate the messages to the message manager. In case of an error response, the response body is parsed
for error messages. In case of a successful response, the "sap-message" header is parsed as a JSON-formatted
error object. The name of the header field can be changed by calling the setHeaderField() method on the
ODataMessageParser.

Troubleshooting for the OData V2 Message Parser

In this section you find known limitations of the ODataMessageParser and how you can resolve issues with
unexpected numbers of UI messages.

Duplicate messages with different targets

Mulitple OData changes that are part of the same change set are send as batch request to the back end, for
example:

● Change operation (POST Product('id=123'))
● Change operation (POST Product('id=456'))

If one change operation fails, the back end rolls back all operations of the change set, but returns only a single
message, for example:

{ "code": "MYCODE/111",
 "message": "Invalid input!",
 "severity": "error",
 "target": "" }

This leads to two UI message objects with the following message targets:

● "/Product('id=123')"
● "/Product('id=456')"

Solution: The message target has to be defined in the back-end error message. By this, only one UI message
which represents the failed change is created and pushed into the central message model. Otherwise, the
ODataMessageParser creates a separate error message for every change included in the change set.

1068 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Duplicate messages with the same target
The OData service error response can also contain multiple inner-errors to deliever more than one error
message to the front end. The inner-error messages should generally be used to describe the problem in more
detail, for example

{ "code": "MYCODE/111",
 "message": "Failed operations!",
 "severity": "error",
 "details": [
 {
 "code": "MYCODE/222",
 "message": "Object 1 already exists!"
 "severity": "error"
 },
 {
 "code": "MYCODE/222",
 "message": "Object 2 already exists!"
 "severity": "error"
 },
 ...
] }

Solution: The outer-error will also be parsed into a separate UI error message. These general error messages,
such as Failed operations, can be confusing for end users. To prevent these general UI messages, the outer-
error message has to have the same error code and error message text ("message" property) as an inner-error.
This way, the outer message information is ignored, that is, not parsed into a UI message, since there already is
an inner-error message with more details that represents the same issue.

Hint: The duplicate detection only works for request body error messages. For request header error messages,
the unwanted outer-error must be filtered out in the front end. As an alternative, the outer-error could already
represent the first detailed error, see the example error with message Object 1 already exists.

Scenario 3: Missing UI messages
This can happen when an OData entity is changed and the same entity is requested again shortly afterwards.
The change and the read operation could also be part of the same batch request, for example:

● Change operation ('POST' request with target "Product('id=123')")
● Read operation ('GET' request with target "Products")

If the change operation fails, a UI message is created. But this UI message is deleted directly afterwards via the
messaging lifecycle since the read operation of the same entity does not return any message. There are two
options to get the expected behavior in this scenario:

Solution 1: Mark the UI message as persistent. By this, the message lifecycle will not delete the UI message,
but the application has to take care of cleaning up such messages by using the
sap.ui.core.message.MessageManager APIs.

Solution 2: Defer the read operation. By this, the UI message is also not deleted, but the application has to
make sure the read operation is triggered at an appropriate point in time.

Hint: The read operation is often automatically triggered by the v2.ODataModel. To prevent this request from
being sent, you can use the model parameter refreshAfterChange.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1069

Related Information

API Reference: sap.ui.model.odata.v2.ODataModel
API Reference: sap.ui.core.message.MessageManager
API Reference: sap.ui.model.message.MessageModel
API Reference: sap.ui.mode.odata.ODataMessageParser
Server Messages in OData V4 Model [page 982]

Message Model

The message model contains all messages and is used to bind to the messages to display them.

The message model is retrieved from the message manager by calling the getMessageModel() method. You
can use it directly in the application, or you can use it as a reference implementation.

Using the Message Model

You use the message model like any other model to bind an aggregation to a root path ("/), for example the
items in a list, and add filters and sorters. The MessagePopover control is used to display the messages to the
user:

// "Button" required from "sap/m/Button" // "MessagePopover" required from "sap/m/MessagePopover"
// "MessagePopoverItem" required from "sap/m/MessagePopoverItem"
var oMessagePopoverButton = new Button({
 text: "Show MessagePopover",
 type: "Accept",
 press: function() {
 oMP.openBy(this);
 }
});
var oMP = new MessagePopover({
 items: {
 path:"message>/",
 template: new MessagePopoverItem({ description: "{message>description}",
type: "{message>type}", title: "{message>message}"})
 }
});
oMP.setModel (sap.ui.getCore().getMessageManager().getMessageModel(),"message"); oMessagePopoverButton.placeAt("content");

 Note
For an example how to bind to the message model and show the messages to the user, see
sap.m.MessagePopover in the API reference.

1070 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v2.ODataModel.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.message.MessageManager.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.message.MessageModel.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.ODataMessageParser.html

Related Information

API Reference: sap.ui.model.message.MessageModel
API Reference: sap.ui.core.message.MessageManager
API Reference: sap.ui.core.message.MessagePopover

Implementing Your Own OData V2 Message Parser

A message parser is a simple interface that is implemented to allow the propagation of messages from back
end services. For messages from OData V2 services, the sap.ui.model.odata.ODataMessageParser is
used.

If you have your own service implementation, for example, a JSON-based back end that also sends messages,
you can implement your own message parser by implementing the sap.ui.core.message.MessageParser
interface.The interface is very simple: It has only the parse and the setProcessor method. The parse
method takes at least one parameter, that is, the response object from the server. The method can take more
model-specific arguments. The setProcessor method takes only one argument, the processor object that
is used to propagate the messages, this is usually the model instance.

The main task of the message parser is to retrieve the messages from the back end response and then
calculate the message delta that is handed over to the message processor by means of the two parameters
oldMessages and newMessages of the messageChange event. The oldMessages parameter specifies the
messages that are to be removed, and the newMessages parameter specifies the messages that are to be
added.

this.getProcessor().fireMessageChange({ oldMessages: aRemovedMessages,
 newMessages: aNewMessages });

The delta calculation must be a back end-specific implementation. In the OData implementation, for example,
all messages for the requested resource(s) must be returned from the back end on every request. This means
that all messages that were available before with a target that corresponds to the requested resources must be
put in the oldMessages parameter of the event.

Related Information

sap.ui.model.odata.ODataMessageParser
sap.ui.model.odata.v2.ODataModel
sap.ui.core.message.MessageParser

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1071

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.message.MessageModel.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.message.MessageManager.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.message.MessagePopover.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.ODataMessageParser.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v2.ODataModel.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.message.MessageParser.html

Routing and Navigation

SAPUI5 offers hash-based navigation, which allows you to build single-page apps where the navigation is done
by changing the hash. In this way the browser does not have to reload the page; instead there is a callback to
which the app and especially the affected view can react. A hash string is parsed and matched against patterns
which will then inform the handlers.

You use routing in the following cases:

● Enable users to navigate back using the browser history, for example, the Back button of the browser or a
physical back button on mobile devices.

● Enable bookmarks and deep links to pages inside an app; this means that you can start the app and
resume the bookmarked state.

● Pass on data via the hash to application logic.

Figure 216: Routing overview

In SAPUI5, navigation and routing is implemented using a “router” to forward the hash change and the data in
the hash to one or more views of the app.

You use routes to notify your application that the hash has changed to a certain value. For each route, you
define the pattern that can be used in the app implementation.

With targets, you define where a view or a component is loaded and where the view or component is shown on
the UI. By referring to one or multiple targets in a route's definition, you can load and show the views or
components once the route's pattern matches the current hash.

You configure routing in SAPUI5 in the descriptor file (manifest.json) (see Descriptor for Applications,
Components, and Libraries [page 734]) or in the Component.js file (see Components [page 720]) to have it
available globally throughout your app, but you can also define routes and targets locally by calling the
constructors of the classes, for example under the sap.ui.core.routing and sap.m.routing
namespaces.

1072 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Note
You can also define only routes or only targets, but then just have to make sure that you implement the
counterpart elsewhere.

Routing Patterns

Whenever a hash is added to a URL, the router checks whether there is a route with a matching pattern. The
first matching route is taken and the corresponding target view is called. The data provided with the hash are
passed on to the target.

You can use the following kinds of patterns:

● Hard-coded pattern:
The pattern matches the hash exactly. For example, when a pattern is defined as product/settings, this
pattern matches only if the hash is product/settings and no data is passed on to the events of the
route.
For more information, see the tutorial Step 6: Navigate to Routes with Hard-Coded Patterns [page 312].

● Route with mandatory parameter:
You can define mandatory parameters for the pattern by placing the parameter in curly brackets
({parameter ID}).
For example, if you define the pattern product/{id}, the hashes product/5 and product/3 (where 3
and 5 are product IDs) match the pattern. The matched event handler gets 5 or 3 passed on with the key
id in its arguments. But hash product/ does not match the pattern because the mandatory parameter is
missing.
For more information, see the tutorial Step 7: Navigate to Routes with Mandatory Parameters [page 317].

● Route with optional parameter:
You can define optional parameters for the pattern by placing the parameter between colons (:parameter
ID:).
For example, if you define a pattern product/{id}/detail/:detailId:, the detailId parameter is
optional, whereas id is mandatory. Both hashes product/5/detail and product/3/detail/2 match
the pattern.

● Route with query parameter:
The query parameter allows you to pass on queries with any parameter. A query parameter starts with ?,
and you can either define it as mandatory (product/{?query}) or optional (product/:?query:).
The matched value will be converted into an object saved with the parameter name as the key when
passed to the event handler.
For more information, see the tutorial Step 9: Allow Bookmarkable Tabs with Optional Query Parameters
[page 334].

● "rest as string" parameter:
A parameter that ends with an asterisk (*) is called a "rest as string" parameter. Such a parameter
matches as much as possible. It can be combined with the syntax of mandatory or optional parameters.
For example, a pattern product/{id}/:detail*: defines a mandatory parameter with the name id and
an optional "rest as string" parameter with the name detail. It matches product/5/3 and product/5/
detail/3/foo. The event handler gets 3 or detail/3/foo passed on with the key detail in its
arguments.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1073

 Tip
For a better understanding about how patterns work and what matched parameters look like, see the
following page in the Samples in the Demo Kit: sap.ui.core.sample.PatternMatching/preview.

 Note
SAPUI5 uses Crossroads.js for parsing the hash and the Hasher framework for manipulating the hash.

Related Information

Tutorial: Navigation and Routing [page 291]
API Reference: sap.ui.core.routing
API Reference: sap.m.routing.Router
API Reference: sap.ui.core.routing.Route: Constructor Detail
Crossroads.js
Hasher framework on GitHub

Routing Configuration

Routing configuration consists of routes, targets, config, and owner.

Routes

Each route defines a name, a pattern, and optionally one or more targets to which to navigate when the route
has been matched. In the routes section, you define which patterns are available for navigation.

● The name of the route (unique within one router instance)
● The pattern as hash part of the URL that matches the route
● The navigation target as defined in the targets section

If you want to load multiple views/components at the same time, you can assign multiple targets (see
Working with Multiple Targets [page 1082]).

● If a target is configured for loading a component, you can enable the routing in the loaded component, see
Enabling Routing in Nested Components [page 1086].

● The titleTarget to specify from which target the title is taken when multiple targets are displayed. If no
titleTarget is defined, the first target that has a title is chosen (see Using the title Property in Targets
[page 1083]).

The sequence of the routes in the routes definition is important. As soon as a pattern is matched, the
following patterns are ignored. To prevent this for a specific route, you use the greedy parameter. If set to
true, the route is always taken into account.

1074 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.sample.PatternMatching/preview
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.routing.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.routing.Router.html
https://sapui5.hana.ondemand.com/#/api/sap.ui.core.routing.Route/constructor
http://help.sap.com/disclaimer?site=https%3A%2F%2Fmillermedeiros.github.io%2Fcrossroads.js%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fgithub.com%2Fmillermedeiros%2Fhasher%2F

For more information, see API Reference: sap.m.routing.Router.

Targets

A target defines the view or component that is displayed. It is associated with one or more routes or it can be
displayed manually from within the app. Whenever a target is displayed, the corresponding view or component
is loaded and added to the aggregation configured with the controlAggregation option of the control. The
target definition can contain the following parameters:

● The target key
● The type to specify whether the target is a view or a component
● The name to specify the name of the view or component
● Additional optional parameters

If you don't specify a parameter, the default value is taken from the config section.
○ viewType (e.g. XML) which is valid only when the type is set to "View"
○ id of the view or component instance

A view or component instance is cached in SAPUI5 routing under the combination of its name and id.
If there already is one instance created for a specific view or component with an id, this instance is
reused if another target with the same name and id is displayed. If a new instance needs to be created
instead of reusing the existing ones, assign the target a different id.

○ viewLevel
You can use different levels to define the navigation direction,for example the navigation from a lower
view level to a higher view level leads to forward navigation. This is, for example, important for flip
and slide transitions, where the slide animation should go from left to right or vice versa.

○ controlId of the control that is used as the parent to insert the view or component (e.g. app)
○ controlAggregation target aggregation of the control with controlId to which the view or

component is added
The NavContainer control, for example, has an aggregation called Pages and the shell container has
Content.

○ parent: the key of another target which a view is created and added before the target view or
component is added

○ path: the namespace of the view or component
○ targetParent where the control with the controlId is located (see Working with Multiple Targets

[page 1082]); this option is set automatically for the root view of a component if the router instance is
instantiated by the component.

○ clearAggregation specifies whether the aggregation should be cleared before adding the new view
instance.
When you use the sap.m.routing.Router the default is false, for
sap.ui.core.routing.Router it is true.
When using sap.ui.ux3.Shell this value should be set to true, for sap.m.NavContainer to
false to ensure that the correct content is shown.

○ transition defines how the transition happens; you can choose between slide (default), flip,
fade, and show.

○ title contains either a static text or a valid binding syntax, e.g. to an i18n model, which is resolved
under the binding context of the view (see Using the title Property in Targets [page 1083])

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1075

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.routing.Router.html

 Note
You can also use targets without routes to call a view directly . For more information, see the tutorial Step 5:
Display a Target Without Changing the Hash [page 308] and Step 10: Implement “Lazy Loading” [page
338], and the sample Targets Without a Router in the Samples in the Demo Kit.

For more information, see API Reference: sap.m.routing.Router.

Config

The config section contains the global router configuration and default values that apply for all routes and
targets. The config section contains the following settings.

● routerClass defines which router is used.
You can either use class sap.ui.core.routing.Router (default) or sap.m.routing.Router. If you
use a sap.m control (such as NavContainer or SplitApp) in your app, you can benefit more from using
sap.m.routing.Router because it not only loads the targets and places them in the corresponding
container, but also triggers the animation for navigating to the right target.

 Note
The possible values for routerClass are sap.ui.core.routing.Router,
sap.m.routing.Router, or any other subclasses of sap.ui.core.routing.Router.

Compared to sap.ui.core.routing.Router, the sap.m.routing.Router is optimized for mobile
apps and adds the properties viewLevel, transition, and transitionParameters which can be
specified for each route or target created by the sap.m.routing.Router. The
transitionParameters can also be used for custom transitions. See the API Reference for more
information.

● The homeRoute defines the route whose target title is inserted as the first entry in the title history in the
titleChanged event or in the return value of
sap.ui.core.routing.Router.prototype.getTitleHistory. For more information, see section
Initial title of the home page of Using the title Property in Targets [page 1083].
The property contains the name of one of the routes that are defined in the routes section as value.

● You can also define default values for all target parameters
● async defines whether targets are loaded asynchronously; the default value is false. We recommend

setting this parameter to true to improve performance.

 Note
A target with type "Component" is only displayed with asynchronous loading.

 Note
If you use asynchronous loading, you cannot rely on the sequence of events that are fired during the
load phase. If you follow our programming model with MVC, this should not be a problem.

1076 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/entity/sap.ui.core.routing.Targets/samples
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.routing.Router.html

● Using the bypassed parameter, you specify the navigation target that is used whenever no navigation
pattern is matched. If you use this setting, you also have to define a corresponding target in the targets
section.

For more information, see API Reference: sap.m.routing.Router.

Owner

The owner parameter defines the owner of all views that are created by the router. This is typically a
UIComponent. This parameter is set automatically if the router instance is instantiated by a component.

Example

{ metadata: {
 routing: {
 config: {
 async: true
 viewType: "XML",
 path: "view",
 controlId: "splitApp",
 clearTarget: false,
 bypassed: {
 target: "notFound"
 },
 homeRoute: "home"
 },
 routes: [
 {
 pattern: "",
 name : "home",
 target: "home"
 },
 {
 pattern: "category/{id}",
 name: "category",
 target: "category"
 },
 {
 pattern: "category/{id}/product/{productId}",
 name: "product",
 target: ["category", "product"]
 },
],
 targets: {
 category: {
 type: "View",
 name: "Category",
 controlAggregation: "masterPages"
 },
 product: {
 type: "View",
 name: "Product",
 controlAggregation: "detailPages",
 },
 home: {
 type: "View",

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1077

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.routing.Router.html

 name: "Home",
 controlAggregation: "masterPages"
 },
 notFound: {
 type: "View",
 name: "NotFound",
 controlAggregation: "detailPages",
 parent: "home"
 }
 }
 }
 } }

In this example, the Home view is always shown when the hash is empty. The Category view is shown when the
hash matches the pattern category/{id}. Both, the Category and the Product view are shown when the
hash matches the pattern category/{id}/product/{productId}, because both of them are added to the
target property of the product route.

Related Information

API Reference: sap.ui.core.routing
API Reference: sap.m.routing.Router
Sample: Targets Without a Router
Working with Multiple Targets [page 1082]
Tutorial: Navigation and Routing [page 291]
Enabling Routing in Nested Components [page 1086]

Methods and Events for Navigation

SAPUI5 provides a method and events for navigation.

Methods

Navigation can be triggered by method navTo on Router with changing the hash or method display on
Targets for showing a new view without changing the hash.

navTo method

Use this method to navigate to the given route and fill the hash with the corresponding data. It the route
contains a target, the target is displayed. The listener callbacks of controllers listening to this route are
provided with data. When changing the hash, all listeners to this hash are informed.

The method uses the following parameters:

● name of the route parameter

1078 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.routing.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.routing.Router.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.ui.core.routing.Targets/samplesl

● route parameters
● route information for the Component target(s), see Navigate with Nested Components [page 1090].
● replace (default: false) to define whether the hash should be replaced (no new browser history entry)

or set (browser history entry)

sap.ui.require(["sap/ui/core/UIComponent", ...
], function(UIComponent, ...) {
 sap.ui.controller("MyApp.View2", {
 anyEvent: function() {
 var oRouter = this.getOwnerComponent().getRouter();
 oRouter.navTo("product", {
 id: "5",
 productId: "3"
 });
 }
 });
});

display method

Use this method to navigate to display one or multiple targets. The method uses the target name or an array of
target names as only parameter.

Events

Figure 217: Navigation events

Events attachRouteMatched on Router and attachMatched on Route

These events are fired when a hash matches a route or a pattern. The routeMatched event is fired if a pattern
of any route in the routing configuration is matched. The matched event is fired for a specific route.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1079

If you want to only react to specific routes, check if the name parameter matches the route that you want to
listen to. The events have the following parameters:

● name of the route that has been matched
● arguments that are part of the route, mainly the parameters of the hash
● config of the route

sap.ui.controller("MyApp.View1", { onInit: function() {
 var oRouter = this.getOwnerComponent().getRouter();
 oRouter.getRoute("view1").attachMatched(function(oEvent) {
 this._selectItemWithId(oEvent.getParameter("arguments").id);
 }, this);
 },

 _selectItemWithId : function(id) {
 //implementation
 }
}

display event on Target
This event is fired on the target instance when this target is added and displayed on the UI. The event has the
following parameters:

● object for the instance which is displayed; this is either a View instance or a ComponentContainer
instance which wraps the loaded component

● control in which the target object is displayed
● config of the target
● data of the object passed when calling the display method

created event on Views
This event is fired on the view/component cache in SAPUI5 routing which can be fetched by calling the
getViews() method on a router instance every time a new view or component has been created by
navigation. The event has the following parameters:

● object for the created instance
● options containing additional options

Related Information

Tutorial: Navigation and Routing [page 291]
API Reference: sap.ui.core.routing
API Reference: sap.m.routing.Router

1080 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.routing.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.routing.Router.html

Initializing and Accessing a Routing Instance

This topic describes how to initialize routing in a component and access the routing functions.

Initializing

You initialize the router in the component using the following code:

sap.ui.define(["sap/ui/core/UIComponent", ...
], function (UIComponent, ...) {
 "use strict";
 return UIComponent.extend("YourComponentClassName", { ...,

 init: function () {
 ...
 // call the init function of the parent
 UIComponent.prototype.init.apply(this, arguments);
 // this component should automatically initialize the router
 this.getRouter().initialize();
 ...
 } }); });

The router instance is automatically destroyed when the component is destroyed.

Accessing

To access the router and to use its functions, use the getRouter() function or the static getRouterFor
function of the UI component. You can pass either a controller, or a view:

 var oRouter = sap.ui.core.UIComponent.getRouterFor(this);

You can also use the getRouter function of your UI component.

All views that are generated by the router are automatically created in the context of the component.

Related Information

Components [page 720]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1081

Working with Multiple Targets

If you want to navigate to multiple targets with the same hash, you can either assign multiple targets to a route,
or define a parent for the target.

Multiple Targets for the Same Route

In the routing configuration, you can add multiple targets for the same route.

All target view or component instances are created and loaded in the order that they appear in the target
option of a route when the pattern is matched.

If you add multiple targets to a route, this builds a connection between the targets on the route level only. The
targets can still be displayed separately if needed. Use this approach when the connection between the targets
is only needed in some routes, but not always.

Parent Relationship

You can also define a parent for a target in the target definition. For the parent, you also create an entry in the
targets configuration, but you don't have to create a corresponding route.

Whenever a target has a parent, an instance of the parent is always created before an instance of the target is
created.

A parent relationship between targets tightly couples the two targets together. The parent target is always
displayed before the child target is displayed. The child target can't be displayed without first displaying the
parent target. This approach is mainly used when the view in the child target is added to an aggregation of the
view in the parent target.

 Note
There is also a parent property for the route. This property is only used when its parent exists in a parent
component of the current component (see Enabling Routing in Nested Components [page 1086]). For all
other types of parent-child relationships, either use multiple targets or a parent relationship in targets.

Example

In the following example, the relationship between the views employeeOverviewTop and
employeeOverviewContent is established by assigning both to the same route.

The relationship between the target employeeOverview and employeeOverviewTop
(employeeOverviewContent respectively) is a parent relationship.

 "routing": {
 "config": {

1082 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 path: "sap.ui.demo.nav.view.employee.overview",
 [...]
 },
 "routes": [{
 "pattern": "employees/overview",
 "name": "employeeOverview", "target": ["employeeOverviewTop", "employeeOverviewContent"] }],
 "targets": { "employeeOverview": { "type": "View",
 "name": "EmployeeOverview",
 "viewLevel": 2,
 "controlId": "app",
 "controlAggregation": "content"
 },
 "employeeOverviewTop": { "parent": "employeeOverview", "type": "View",
 "name": "EmployeeOverviewTop",
 "controlId": "EmployeeOverviewParent",
 "controlAggregation": "content"
 },
 "employeeOverviewContent": { "parent": "employeeOverview", "type": "View",
 "name": "EmployeeOverviewContent",
 "controlId": "EmployeeOverviewParent",
 "controlAggregation": "content"
 } }

For more information, see the tutorial Step 11: Assign Multiple Targets [page 343].

Using the title Property in Targets

Routing in SAPUI5 allows you to define titles declaratively in the configuration. The title can be set with valid
binding syntax which is then resolved under the scope of the target to which it belongs. This means that the
title can be translated when it’s bound to the i18n model or resolved dynamically under the current binding
context.

When a new target that has the title property defined is displayed, or the title of the current target changes,
the titleChanged event is fired. The event contains the current title and the history of previously displayed
titles. You can use this event to update the title of your app.

Examples for setting the title in Target

{ ...,
 "routes": [{
 "pattern": "products/overview",
 "name": "ProductsOverview",
 "target": "products"
 }],
 "targets": {
 "products": {

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1083

 "type": "View",
 "path": "shop.products", "title": "Products Overview" }
 },
 ... }

{ ...,
 "routes": [{
 "pattern": "products/{id}",
 "name": "Product",
 "target": "product"
 }],
 "targets": {
 "product": {
 "type": "View",
 "path": "shop.products", "title": "{ parts: ['helperModel>/PRODUCTS_TITLE',
'myModel>productName'], formatter: '.myFormatterFunction' }" }
 },
 ... }

The title property can also be defined on a "Component" type target. When it is set with a binding syntax, the
binding is resolved in the context of the root view of the component that is loaded by this target. The router of
the loaded component may also have title property defined on its own target(s) and eventually fire its own
titleChanged event once a target is displayed inside the loaded component. UI5 provides a way to propagate
the titleChanged event from a "Component" target to its owner router in order to let the event be consumed
at one central place (and not at any available router). For detailed information, see Propagate titleChanged
Event from the Nested Component to the Parent Component [page 1089].

{ ...,
 "routes": [{
 "pattern": "attachment/{id}",
 "name": "Attachment",
 "target": {
 "name": "attachment",
 "prefix": "atch"
 }
 }],
 "targets": {
 "attachment": {
 "type": "Component",
 "usage": "productComponent", "title": "Attachment" }
 },
 ... }

1084 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Defining titleTarget in Route

A route can display multiple targets and you can use the titleTarget option in the Route configuration to
specify which target the title should be taken from explicitly. By default, the Route takes the title of the first
target that has the title property defined.

{ ...,
 "routes": [{
 "pattern": "product/{id}/parts",
 "name": "ProductParts",
 "target": ["product", "productParts"], "titleTarget": "productParts" }],
 "targets": {
 "product": {
 "viewPath": "shop.products",
 "viewName": "Product",
 "title": "Product"
 },
 "productParts": {
 "viewPath": "shop.products",
 "viewName": "Product",
 "title": "Product Parts"
 }
 },
 ... }

Listening to the titleChanged event

To receive a notification when the title is changed, you can register to the titleChanged event on the Router
instance. The titleChanged event is then fired when a target with a set title options displayed, or the title
of a displayed target is changed (for example, because the binding context changes).

oRouter.attachTitleChanged(function(oEvent) { var sTitle = oEvent.getParameter("title"),
 aHistory = oEvent.getParameter("history");
 // Example usage: set the browser page title (optional)
 document.title = sTitle;
 aHistory.reverse().forEach(function(oHistory) {
 // show the history in a dropdown
 // oDropdown.addItem(new Item({
 // text: oHistory.title
 //}).data("hash", oHistory.hash));
 }); });

 Note
You don't need this event in the SAP Fiori launchpad. The title is updated automatically.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1085

Initial title of the home page

In the routing configuration, you select one of the routes as a home route that leads to the home page of your
app.

If a user navigates to any view of the app using deep link navigation, the home page is also added to the
navigation history as the first entry:

{ hash: sHomeRoutePattern,
 isHome: true,
 title: sAppTitle }

This ensures that the user can also navigate to the home page from any other view.

The title of the home page (and also any title of a route) is only defined in the targets section of the routing
configuration. Since the user did not navigate to the home page yet, this target information is not loaded, and
the title is not available. Therefore, the title attribute that is defined in the manifest.json descriptor file, is
taken as placeholder for the home page title until the actual title is loaded.

Enabling Routing in Nested Components

Every SAPUI5 component can define routing configuration in its manifest and a UI5 router instance will be
created automatically after the component is instantiated.

Using components as targets in routing presents another challenge: When multiple components with their own
routing configuration are used in an application, their router instances listen to the browser's hashChange
event simultaneously and may do concurrent changes to the hash. This can lead to conflicts, hence, the hash
access has to be coordinated. Therefore, some additional configuration has to be made for these nested
components to ensure everything is running stable.

Configure a Component as Routing Target

A target in SAPUI5 routing can load either a view, or a component. To load a component, you need to define the
component in the componentUsages section of the owner component's manifest.json, see Using and
Nesting Components [page 726].

Loading a child component with a type Component target in a router builds up a hierarchy between this router
and the router in the child component.

{ "sap.ui5": {
 "componentUsages": {
 "myreuse": {
 "name": "reuse.component",
 "settings": {},
 "componentData": {},
 "lazy": false
 }

1086 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 }
 } }

Use the following configuration to load the component from the target:

● type: Set the type to Component; this loads and instantiates the Component.js that is available under
componentUsages.

● usage: Use the key of the component usage as used in the the componentUsages section of the parent
component's manifest.json.

● options (optional): Add additional options that are merged with the options defined in the
componentUsage section, see sap.ui.core.UIComponent.

● containerOptions (optional): Add additional options that are passed to the constructor of the
component container where the component is rendered, see sap.ui.core.ComponentContainer.

{ "sap.ui5": {
 "componentUsages": { "myreuse": {
 "name": "reuse.component",
 "settings": {},
 "componentData": {},
 "lazy": false
 } },
 "routing": {
 "config": {
 ...
 },
 "routes": [
 ...
],
 "targets": {
 "attachment": {
 "type": "Component", "usage": "myresue", "options": {
 // optional
 // define the additional parameter for
 // instatiating the component instance
 },
 "containerOptions": {
 // optional
 // define the additional parameter for
 // instantiating the component container
 // which enables the component to be rendered
 // in the parent control
 },
 "controlId": "page",
 "controlAggregation": "content"
 }
 }
 }
 } }

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1087

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.UIComponent.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.ComponentContainer.html

Configure Hash Prefix for the Nested Component

The hash from every router needs to be persisted in the browser hash. To identify the ownership of the hash
segments from the browser hash, a prefix needs to be assigned to the component which is loaded by a
Target. The prefix can be defined in the Route where the Target is used.

Instead of assigning the target option in a route with the name of a target which is going to be displayed once
the route's pattern is matched, an object is assigned which also contains the prefix of the hash for this
component besides the name of the target. The loaded component from the target has its own hash segment
which begins with the given prefix and can change the hash by using method navTo on Router in the same
way as it is done in the top level component.

{ "sap.ui5": {
 "componentUsages": {
 "myreuse": {
 "name": "reuse.component",
 "settings": {},
 "componentData": {},
 "lazy": false
 }
 },
 "routing": {
 "config": {
 ...
 },
 "routes": [{
 "name": "home",
 "pattern": "",
 "target": {
 "name": "attachment", "prefix": "atch" }
 }],
 "targets": {
 "attachment": {
 "type": "Component",
 "usage": "myreuse",
 "options": {
 // optional
 // define the additional parameter for
 // instatiating the component instance
 },
 "containerOptions": {
 // optional
 // define the additional parameter for
 // instantiating the component container
 // which enables the component to be rendered
 // in the parent control
 },
 "controlId": "page",
 "controlAggregation": "content"
 }
 }
 } }

1088 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Propagate titleChanged Event from the Nested Component to the Parent
Component

When the nested component myreuse has routing enabled, the router instance within the myreuse
component fires on its own a titleChanged event once the displayed target has the title property defined.
It is easier for an application to react to a titleChanged event if any titleChanged event(s) fired in the
nested component(s) can be propagated to the router in the root component. To enable this, the property
propagateTitle can be set in two ways:

● in the target object of a route to enable the title propagation for this Component target.
● in the config section of the routing configuration to enable the title propagation for all "Component"

targets.

If propagateTitle is not set, no titleChanged event will be propagated from the nested component.

{ "sap.ui5": {
 "componentUsages": {
 "myreuse": {
 "name": "reuse.component",
 "settings": {},
 "componentData": {},
 "lazy": false
 }
 },
 "routing": {
 "config": {
 ...
 },
 "routes": [{
 "name": "home",
 "pattern": "",
 "target": {
 "name": "attachment",
 "prefix": "atch", "propagateTitle": true }
 }],
 "targets": {
 "attachment": {
 "type": "Component",
 "usage": "myreuse",
 "options": {
 // optional
 // define the additional parameter for
 // instatiating the component instance
 },
 "containerOptions": {
 // optional
 // define the additional parameter for
 // instantiating the component container
 // which enables the component to be rendered
 // in the parent control
 },
 "controlId": "page",
 "controlAggregation": "content"
 }
 }
 } }

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1089

The existing titleChanged event is extended with the following properties:

● propagated: whether the event is propagated from the router of a nested component
● nestedHistory: an array which contains the title and title history information of both the current router

and the routers of the nested component(s). An application doesn't need to merge nestedHistory with
the existing history parameter, because nestedHistory also contains the title history of the current
router. Each element in the array has the following properties:
○ ownerComponentId: the ID of the component whose router fired the event. The router instance of this

component can be retrieved by using the property
sap.ui.getCore().getComponent(sOwnerComponentId).getRouter() which can be used for
applying the hash of one title history entry to the browser. See the hash property for more
information.

○ history: an array which contains the previous titles fired on the router. If the current event is fired on
this router directly, the array contains the current title information as well, so that the application
doesn't need to consider the existing title property of the event anymore. Each element in the array
contains the following properties:
○ title: the title
○ hash: the browser hash part that belongs to this router when the event was fired. When only one

component is created in the application, the entire browser hash can be used by the router of this
component. Some applications use the global hash changer:

HashChanger.getInstance().setHash(sHash) // HashChanger is required
from sap/ui/core/routing/HashChanger

to apply the hash to the browser. However, with nested components all component instances
share the browser hash. The global hash changer then can't be used anymore, because it
overwrites the entire browser hash without considering the other components. Instead, the
application can parse the hash by using the method getRouteInfoByHash and navigate to the
route by using the method navTo:

var oRouter =
sap.ui.getCore().getComponent(sOwnerComponentId).getRouter(); var oRouteInfo = oRouter.getRouteInfoByHash(sHash);
if (oRouteInfo) {
 oRouter.navTo(oRouteInfo.name, oRouteInfo.arguments); }

○ isHome: whether the title was changed from the home route

Navigate with Nested Components

The navTo method in the sap.ui.core.routing.Router class enables you to define a set of parameters to
navigate to a specific route.

To use the navTo method for navigation with nested components, you need to call the method with the
following information:

● Name of the route
● Parameters for the route
● Target information for the route name and the parameters in the nested components (optional)

1090 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

● Information, whether the current browser hash is replaced or a or a new hash entry is set (optional)

For more information, sap.ui.core.routing.Router.navTo in the API Reference.

The call triggers the following actions in the given order:

1. For the new hash, the variable placeholders in the route's pattern are replaced with the given parameters. If
the method is called with information for a router in nested components, the targets with type Component
are loaded to compose the hash parts of these Component targets.

2. The new hash is set to the browser.
3. The browser fires a hashchange event.
4. The router processes the event and propagates the event along the hierarchy which was built while loading

the nested components.
5. Each router checks its own hash part and informs the matched route. The matched route displays the

targets which are configured for this route.
6. Each targets loads its View or Component and adds it to the configured controlAggregation of the

controlId container.
7. The router fires a routeMatched event and the route fires a matched event to inform the application that

the hash change is completed.

Using navTo for Passing Information to a Nested Router

For passing information about the route name and parameters for a nested router, you use the
oComponentTargetInfo parameter of the navTo method. By this, the router in nested components can
show the targets which are configured to one specific route instead of giving the router an empty hash as
default. This oComponentTargetInfo parameter contains key-value pairs with the name of a Component
target as the key, and the value must be an object which has at least the route name in the route property. The
route name should be matched within the router of this component with the parameters for this route. If this
route has again Component targets, the property componentTargetInfo can be used to specify the route
information. The value of the componentTargetInfo property has the same structure as the
oComponentTargetInfo parameter of the navTo method.

The following example shows a top level router with a "home" route with two Component targets:

● Component target childComp1 with the following two defined routes:
○ Route list: Has an empty string hash as pattern and shows a list of items
○ Route detail: Shows the details for an item

● Component target childComp2 with the following two defined routes:
○ Route list: Has an empty string hash as pattern and shows a list of items
○ Route detail: Shows the details for an item which displays again a nested Component target

grandChildComp1

The grandChildComp1 target has the following two routes defined:

● Route list: Has an empty string hash as pattern and shows a list of items
● Route detail: Shows the details for an item

When the home route in the top level router is matched, the Component targets childComp1 and childComp2
are loaded and shown. Each of them receives an empty string hash as default, and so the list routes of their
routers are matched.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1091

https://sapui5.hana.ondemand.com//#/api/sap.ui.core.routing.Router/methods/navTo

By using the navTo method, specific route information can be given to multiple nested components and, if
available, their deep nested components. For example, the detail routes in both Component targets
childComp1 and childComp2 need to be matched. Since the detail route of target childComp2 loads
another nested component (grandChildComp1), it is also possible to match the detail route in the deep
nested component grandChildComp1 with the same navTo call, see the following code snippet.

oRouter.navTo("home", { // this route doesn't need any parameter
}, {
 childComp1: {
 route: "detail",
 parameters: {
 ...
 }
 },
 childComp2: {
 route: "detail",
 parameters: {
 ...
 },
 componentTargetInfo: {
 grandChildComp1: {
 route: "detail",
 parameters: {
 ...
 }
 }
 }
 } });

1092 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

After the navTo call, the route state of each router looks as depicted in the following figure:

Navigating Away From a Nested Component

When a new route is matched within a router and a Component target was displayed within the old route, it is
necessary to avoid that this Component target still reacts to unnecessary events such as hashChanged. For
example, after switching from the detail route to the list route within the Component target childComp2,

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1093

the deep nested Component target grandChildComp1 is no longer relevant for the UI. This is shown in the
following figure:

To avoid this,

● the hash part is removed from the browser hash.
● the router is stopped, so that it no longer reacts to the hashChanged event.

Modules and Dependencies

The SAPUI5 framework has built-in support for modularizing comprehensive JavaScript applications. That
means, instead of defining and loading one large bundle of JavaScript code, an application can be split into
smaller parts which then can be loaded at runtime at the time when they are needed. These smaller individual
files are called modules.

A module is a JavaScript file that can be loaded and executed in a browser. There are no rules or definitions
what code belongs to a module, and what code does not. The content bundled in a module is up to the
developer, but typically the content has a common topic, such as forming a JavaScript class or namespace or
the contained functions address a specific topic, for example client to server communication or mathematical
functions.

Modules have no predefined syntax or structure, but module developers can use the following features:

● Name
The name indentifies the module in connection with the sap.ui.define and sap.ui.require syntax. A
module defined under a certain name can be required using the same name.

● Definition
Modules have a predefined structure based on the function sap.ui.define.
The sap.ui.define syntax for defining modules helps to ensure an asynchronous loading of resources.

1094 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

For more information, see the API Reference: sap.ui.define.
● Dependencies

Every module defines a list of dependencies that have to be resolved before the callback function for the
module is executed.
The dependency declarations can be evaluated at runtime, but can also be analyzed at build time or at
deploy time on the server.

Example

The following code snippet shows a typical module that uses all of features listed above. The name of the
module is someClass:

 sap.ui.define("SomeClass", ['sap/mylib/Helper', 'sap/m/Bar'], function(Helper,
Bar) {
 // create a new class
 var SomeClass = function () {};

 // add methods to its prototype
 SomeClass.prototype.foo = function () {

 // use a function from the dependency 'Helper' in the same package (e.g.
'sap/mylib/Helper')
 var mSettings = Helper.foo();

 // create and return an sap.m.Bar (using its local name 'Bar')
 return new Bar(mSettings);
 };
 // return the class as module value
 return SomeClass;

 });

// later requiring the previously defined module
sap.ui.require(['SomeClass'], function(SomeClass) {
 var oInstance = new SomeClass(); });

Static and Dynamic Dependencies

Adding each and every dependency to the sap.ui.define call can lead to many modules that have to be
loaded before your module can be executed. Often, dependencies are not needed initially when the module is
started. For rarely or not immediately used references, it might be overhead to load them in advance before
executing your module.

Therefore, you have to decide whether you want to use static or dynamic dependencies:

● Static dependencies are loaded in the dependency declaration array of the sap.ui.define call. These
dependencies are always loaded in advance before executing the defined module:

sap.ui.define(['sap/m/Input'], function(Input) {

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1095

https://sapui5.hana.ondemand.com/#/api/sap.ui/methods/sap.ui.define

 // callback is executed once all dependencies are loaded
 ... });

● Dynamic dependencies are resolved on demand after the initial module execution, as they are not needed
for the initialisation of the module and are often tied to either a conditional or a user interaction.
Dynamic dependencies should always be loaded asynchronously via sap.ui.require. The use of
jQuery.sap.require is synchronous and considered as "bad practice" because syncXHR is deprecated
by the Web Hypertext Application Technology Working Group (WHATWG).
When dynamically requiring modules, the callback function will be called once all referenced modules (and
their dependencies) are fully loaded:

sap.ui.define(['sap/m/Input'], function(Input) {
 var MyControl = ...;

 MyControl.prototype.onSavePress = function () {
 // dynamically load a dialog once it is needed
 sap.ui.require(['sap/m/Dialog'], function(Dialog) {
 var oDialog = new Dialog(...);
 oDialog.open(...);
 });
 };

 return MyControl; });

 Note
Many code samples in the SAPUI5 documentation use the sap.ui.require syntax even though we could
also have used sap.ui.define.

Loading a Module

For loading (requiring) a module, SAPUI5, you use the sap.ui.require function, which takes over the
dependency resolution for you.

You can either load modules asynchronously or synchonously.

Asynchronous Loading

If the arguments of the sap.ui.require call consist of an array of one or more strings (module names) and
an optional callback function, the string array is interpreted as a list of dependent modules.

The corresponding modules are loaded and the callback function is called asynchronously once all required
modules are loaded.

// the callback function will be executed once the JSONModel, and the
UIComponent modules are loaded sap.ui.require(['sap/ui/model/json/JSONModel', 'sap/ui/core/UIComponent'],
function(JSONModel, UIComponent) {

1096 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 var MyComponent = UIComponent.extend('MyComponent', {
 ...
 });
 ... });

 Caution
If necessary, you can load a module synchronously. Be aware, that synchronous requests are already
deprecated in some modern browsers and may not be supported in future. It is a better practice to load
modules asynchronously.

Synchronous Retrieval of a Single Module Value

When calling sap.ui.require with a single string as argument, the respective module has to be loaded
already.

If the module is not yet loaded or it is not a SAPUI5 module (third-party module), the return value is
undefined.

By using sap.ui.require, you can synchronously access modules without triggering a loading request in
case the module is not present.

// If JSONModel class is loaded, it is returned. If the module is not loaded
yet, there will be no additional loading request. // The variable JSONModel might be undefined after making this call. var JSONModel = sap.ui.require("sap/ui/model/json/JSONModel");

Loading Dependencies

You can load dependencies at different points in time.

Constructor and init

If a module is needed during the constructor call or initialization of a class, you declare the dependency as a
static dependency in the sap.ui.define call.

If the dependency is required in the constructor, the instantiation is of course delayed until the dependency is
loaded.

User interaction

Some modules can be required dynamically on user interaction. An example could be a dialog, which is not
needed in most cases, but needs to be loaded only in case the user performs a certain interaction.

Other modules might be required dynamically while a data request is running to minimize the overall load time,
as the user has to wait on the data anyway.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1097

Checking the Availability of Modules

The sap.ui.require function can not only be used to load modules, but also to check the availability of
modules.

The return value of the following function call is either a reference on the already loaded module or undefined.
If undefined is returned, the module was not loaded yet and the sap.ui.require call without a callback
function will not trigger a load.

var ModuleInQuestion = sap.ui.require("name/of/module/in/Question");

instanceof Checks

Since the above sap.ui.require call retrieves a module reference, you can use the reference not only to
instantiate instances of classes but also to perform JavaScript instanceof checks.

sap.ui.define(['sap/ui/core/mvc/View', 'sap/ui/core/Fragment'], function(View,
Fragment) { ...
 if (oControl instanceof View) {
 ...
 } else if (oControl instanceof Fragment) {
 ...
 } });

instanceof Checks for Dynamically Required Modules
You can use the following approach to make sure your instanceof check is valid without the need to actually
load the module.

To perform an instanceof check, the respective class does not need to be loaded. If the class module is not
loaded, there can never be an instance of that class. The sap.ui.require call returns undefined in case the
module is not loaded.

The lazyInstanceOf convenience function makes sure that the instanceof check is performed against a
function and not undefined, in case the module or class was not loaded yet.

 function lazyInstanceof(obj, module) {
 var FNClass = sap.ui.require(module);
 return typeof FNClass === 'function' ? obj instanceof FNClass : false;
}

if (lazyInstanceof(oControl, "sap/ui/core/mvc/View")) {
 …
} else if (lazyInstanceof(oControl, "sap/ui/core/Fragment")) {
 … }

1098 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Multiple Module Locations

SAPUI5 supports multiple module locations by means of the sap.ui.loader.config function.

In web applications, modules can be located in different locations, such as servers and web apps. A web
application can, for example, be deployed as an individual web app and contain modules that have to be loaded
at runtime. SAPUI5 and its modules, however, have to be loaded either from a content delivery network (CDN)
or from a centrally deployed web app. By default, SAPUI5 loads modules from its resource root URL, that is,
from the centrally deployed web application. This would fail for modules that are contained in your web
application.

The sap.ui.loader.config function associates a module name prefix with a URL prefix. All modules are
loaded from the registered URL instead of the standard resource root URL:

sap.ui.loader.config({ paths: {
 'my/module': 'https://example.com/resources/my/module'
 } });

Thus, it is possible to redirect the request for the application-specific modules to the corresponding web
application:

 <script src="https://openui5.hana.ondemand.com/resources/sap-ui-core.js" ></
script>
 <script>
 // redirect the 'my.webapp' package to the local web app
 sap.ui.loader.config({
 paths:{
 "my/webapp": "my-webapp/resources/my/webapp"
 }
 });

 sap.ui.require([
 'sap/ui/core/Core',
 'my/webapp/MyModule01’ // loads /my-webapp/resources/my/webapp/
MyModule01.js
], function (Core, MyModule01) {
 //[…] use modules
 } </script>

 Note
The registered URL above contains the transformed module name prefix my/webapp/. This allows a more
flexible packaging of the modules, for example, if you decide to deploy all modules named my.company.*
to the central URL http://my.company/shared/ without packaging them into a two level hierarchy of
subfolders:

 sap.ui.loader.config({
 paths:{
 "my/company": "http://my.company/shared/"
 } });

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1099

However, when the standard build tools of the SAPUI5 framework are used, the full package name will be
part of the runtime file hierarchy and the registration must contain the transformed package hierarchy as
above.

Best Practices for Loading Modules

This section provides best practices for SAPUI5 module loading patterns.

These best practices are especially important when you switch from the synchronuous variant of the SAPUI5
module loader to the asynchronous variant. Patterns that may have worked in synchronuous module loading
may lead to applications that cannot start in asynchonuous module loading.

 Note
Use the async configuration parameter to enable asynchronous module loading via the bootstrap. For
more information, see Standard Variant for Bootstrapping [page 694].

How to Define Modules

Every SAPUI5 module file must contain exactly one unnamed module definition on the top level: the
sap.ui.define call. Also, to avoid side-effects, all module-related functions must be defined within the
callback function.

Example: The following two modules are unnamed. They only contain one top-level sap.ui.define and can
be addressed with the respective unique module name:

myLib/MyModuleA.js

sap.ui.define(function(){ ...
}); ...

For troubleshooting information with regard to loading your module, see Why is my Module Not Loading? [page
1101].

How to Address Modules

A module must always be addressed with the unique module name. The module name is case-sensitive.

myLib/MyModuleB.js

sap.ui.define(["myLib/MyModuleA"], function(MyModuleA){ ... });

1100 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

For troubleshooting information with regard to addressing modules, see What is wrong with the way I am
addressing the modules? [page 1105].

How to Structure a Project

The entry point of an SAPUI5 application is often a module that is used to instatiate a SAPUI5 component. This
central module is considered as single node of a graph and all dependent modules as well as their
dependencies are nodes which must be connected by directed edges: the graph must fulfill the requirements of
a directed acyclic graph (DAG).

Example: All modules are evaluated in a clearly defined order. The evaluation starts with module D, then
module C and module B, and ends with module A.

For troubleshooting information with regard to the project structure, see How can I remove project structures
with cyclic dependencies? [page 1106].

Troubleshooting for Loading Modules

The following sections give examples that you must avoid because they cause problems when loading your
module.

Why was my Module Not Loaded Correctly?

The following list contains possible reasons why your module does not load. To see how it is done correctly, see
Best Practices for Loading Modules - How to Define Modules [page 1100].

The module name is given in sap.ui.define
If you explicitly give the module name in sap.ui.define, you introduce additional complexity to the project
structure which may cause inconcistencies and clashing module names. This problem is difficult to detect and
can easily and proactively be avoided by omitting the module name in sap.ui.define.

The following example shows how it must not be done: The library file structure of myLib does not fit the
module name. If there is another module named MyModule in the myLib library, the module would be hard to

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1101

address. If you use an unnamed module instead, the module names would reflect the library file structure. By
this, you reduce the probability of module name conflicts. In general, when addressing UI5 modules, make sure
you separate all parts of the module's name with slashes instead of dots, for example myLib/MyModule
instead of myLib.MyModule.

myLib/myAdditionalPathSegment/MyModule.js

// CAUTION: BAD EXAMPLE - DON'T DO THIS sap.ui.define("myLib.MyModule", [], function(){
 ... });

Using multiple sap.ui.define calls with unnamed modules

If you have more than one sap.ui.define call in a JavaScript file, the module loader does not know which
definition actually represents the module. As there is no scenario that requires multiple module definitions in
one file and in order to comply with the AMD specification (see https://github.com/amdjs/amdjs-api/wiki/AMD

), the async variant of the SAPUI5 module loader does not tolerate multiple definitions anymore and throws
an error.

Example: The myModule module is defined twice. This was most probably done by accident. To resolve this,
the two module definitions have to be split into two separate modules.

myModule.js

// BAD EXAMPLE - DON'T DO THIS sap.ui.define([], function(){
 ...
});
sap.ui.define([], function(){
 ... });

Combining conditional modules with sap.ui.define

Conditional module definitions should not be used because of the following reasons:

● The modules cannot be required with parameters because the check conditions are related to globals.
● The export value is not consistent. This makes it difficult to consume the module.
● The module dependencies are unclear. This prevents an efficient module bundling.

Example: The export value of myModule depends on the global myProperty property. In this case, it makes
sense to split the two definitions into separate files for example into the two variants myModuleA and
myModuleB. Another module can then make the required myProperty check and require the variant of
myModule via sap.ui.require.

myModule.js

// BAD EXAMPLE - DON'T DO THIS if (myProperty){
 sap.ui.define([], function(){
 ...
 });
else {
 sap.ui.define([], function(){
 ...
 }); }

1102 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/disclaimer?site=https%3A%2F%2Fgithub.com%2Famdjs%2Famdjs-api%2Fwiki%2FAMD
http://help.sap.com/disclaimer?site=https%3A%2F%2Fgithub.com%2Famdjs%2Famdjs-api%2Fwiki%2FAMD

Mixing old and new loader APIs

Using deprecated APIs is not recommended and mixing old and new loader APIs is even worse: If the
synchronicity has changed between older and newer APIs, mixing them will cause timing-related issues as well
as general inconsistencies.

Example: The namespace myLib.myModule is registered through the jQuery.sap.declare call. Besides
actually defining the module export value, the subsequent sap.ui.define call does the same registration.
So, the jQuery.sap.declare in this example is unnecessary and must be omitted in this example.

myLib/MyModule.js

// BAD EXAMPLE - DON'T DO THIS jQuery.sap.declare("myLib.myModule");
sap.ui.define([], function(){
 ... });

Using sap.ui.require instead of sap.ui.define on the top level

Although the API signature for sap.ui.define and sap.ui.require looks similar, you must use the
sap.ui.define API to define a reusable JavaScript object (that is, a module). Note the following differences
between sap.ui.require and sap.ui.define:

Action sap.ui.require sap.ui.define

Value export Not possible The callback function defines an export
to provide functionality to other
modules.

Module name registration Not possible The module name is registered at the
loader registry and can be used to
address the module.

Relative dependencies This is not possible, because no
module name is registered and a
reference point is missing.

Can be used.

Execution order Dependent modules can be executed
before the sap.ui.require
callback has been executed. Therefore,
using sap.ui.require instead of
sap.ui.define can break the
intended dependency graph and
module execution order.

The dependent modules are waiting for
the module callback execution to be
finished.

Example: The file for module C has one top-level sap.ui.require instead of a top-level sap.ui.define call.
The module callback evaluation order starts with module B, because it has no dependencies. Afterwards, the
framework can execute module A or module C, because the intended module C is not a module from the
module loader perspective. Furthermore, the undefined export value of module C will most probably lead to
errors in module A. If module C is defined correctly via a top-level sap.ui.define call, the module callback
execution order is clear: B - C - A.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1103

Defining (unnamed) modules via inline scripts
It is unclear how modules that are defined via inline scripts can by addresses by other modules. Therefore, the
inline scripts must be omitted.

Example: Module A is defined after bootstrapping UI5 and before the actual app is started. As the module is
not addressable, the module definition must be moved to a separate file.

startMyApp.html

<!-- BAD EXAMPLE - DON'T DO THIS --> <html>
...
 <script>
 //Boot UI5
 </script>
 <script>
 //Definition for Module A
 sap.ui.define(function(){
 ...
 });
 </script>
 <script>
 // Start UI5 Application
 </script>
... </html>

Avoiding synchronous access to a module definition export
Never do a synchronous access to the export of a module definition because the module definition could be
done asynchronously. Never rely on the synchronicity of a module definition, even if a module has no
dependencies.

Example: The sap.ui.define call for the myModule module is made and the export value is synchronously
used by creating a new object of that export. Although this may work in some scenarios, never do it this way,
because it is unclear whether the module definition is already done. Instead, use the export of myModule in a
separate module with a correctly maintained dependency to the myModule module.

myLib/MyModule.js

// BAD EXAMPLE - DON'T DO THIS sap.ui.define([], function(){

1104 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 ...
});
...
var oMyModule = new myLib.MyModule(); ...

For more information, see the API Reference for sap.ui.define - Asynchronuous Contract.

Avoid synchronous probing after module definition
Similar to the synchronous access of a module's export value, you also must omit the synchronous probing for
modules defined in the same browser task.

Example: The sap.ui.define call for the myModule module is made and is synchronously checked by
probing through calling sap.ui.require. Instead, the probing for myModule must be done in a separate
module with a correctly maintained dependency to myModule.

myLib/MyModule.js

// BAD EXAMPLE - DON'T DO THIS sap.ui.define([], function(){
 ...
}); var MyModule = sap.ui.require('myLib/MyModule');

What is wrong with the way I am addressing the modules?

The following examples show how you should not address a module. To see how it is done correctly, see Best
Practices for Loading Modules - How to Address Modules [page 1100].

Case insensitivity when addressing modules
Addressing a module inconsistently can cause various side-effects. If the server is not case sensitive, for
example, the same resource can be addressed with URLs that differ only in case sensitivity. Besides that, it is
bad from a performance perspective if the same resource is loaded twice and the same module is defined
twice. This is similar to the example for multiple definitions above: multiple definitions of the same module can
cause several issues, such as failing checks of instanceof.

Example: If we assume a server that is not case-sensitive, the sap.m library's Button control is loaded and
evaluated twice.

myView.xml

<!-- BAD EXAMPLE - DON'T DO THIS --> <mvc:View xmlns:mvc="sap.ui.core.mvc" xmlns:m="sap.m">
 ...
 <m:Button></m:Button>
 <m:button></m:button>
 ... </mvc:View>

myModule.js

... // BAD EXAMPLE - DON'T DO THIS
 sap.ui.require(['sap/m/button'], function(){

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1105

https://sapui5.hana.ondemand.com/#/api/sap.ui/methods/sap.ui.define

 ...
 });
 sap.ui.require(['sap/m/Button'], function(){
 ...
 }); ...

Manual loading of UI5 modules via script tags

When you load modules manually, the module loader cannot know how the module shall be named. Therefore,
UI5 modules must always be loaded and evaluated via the UI5 module loader APIs.

Example: The myModule module is loaded via a script tag. Instead, use a sap.ui.require call to loading the
module.

startMyApp.js

<html> ...
 <script src="https://myhost/mypath/myModule.js"></script>
... </html>

How can I remove project structures with cyclic dependencies?

When you use cyclic dependencies in the project structure, the module dependencies cannot be resolved. The
UI5 module loade detects the cycle and returns an undefined value instead of the correct module export.

As an exception, in specific scenarios, you may make the involved modules robust enough to handle undefined
module exports at module callback execution time and use the export value via probing later. However, if you
use the async variant of the loader, all modules that belong to a cycle must be able to handle undefined
exports.

To see how to set up a correct project structure, see Best Practices for Loading Modules - How to Structure a
Project [page 1101].

Example: All modules have exactly one dependency, which cannot be resolved correctly.

1106 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Solution 1 – Resolved cycle: The following figure shows how the cycle can be resolved by moving the
functionality of module A, which is used by module B, to a separate module (module A2). In general, resolving
cyclic dependencies can require a larger refactoring of all involved modules, especially when multiple cycles
have to be resolved.

Solution 2 – Probing modules: In the example given in the following figure, the cycle is not resolved, but the
involved modules do not access the dependent modules directly when the module callback is executed. They
access them later via probing.

Adapting to the Modularization of the Core

Small, predefined modules for specific purposes, providing standalone functionality can be used any time
SAPUI5 is loaded.

The modules are either Browser-dependent (sap/ui/core) and use the DOM or any other Browser-native
API, or not Browser-dependent (sap/base) and could run in node.js without DOM access. Note that
node.js is not an officially supported environment.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1107

Compatibility With Existing Modules

The modules are introduced with SAPUI5 version 1.58 and replace the existing larger core modules to make the
code easier to understand and maintain, and to decrease the initial payload of SAPUI5. To avoid that the
removal of dependencies caused by the switch to the new modules causes exceptions, a lazy loading of the
legacy modules is provided. For compatibility reasons, this lazy loading is done synchronously and it provides
just the API namespace without loading the actual implementation.

As it may not be obvious where those calls occur or where a dependency is missing, a rule in the Support
Assistant reports the use and provides guidance on how to avoid them. A second rule with lower priority
reports the use of an jQuery.sap API in general. There are also log warnings in the console of the browser's
development tools, including a stack trace which makes it easy to locate the call in your coding.

Migration

To benefit from the improvements provided by the modules, perform the following steps:

● Always declare the full dependencies as described in Loading a Module [page 1096].
● Migrate to the new module API as described in Legacy jQuery.sap Replacement [page 1109]. Do not use

the global jQuery.sap API anymore.
● Do not use the global sap.ui factory functions. Instead, use their replacements, see Legacy Factories

Replacement [page 1124].

1108 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Legacy jQuery.sap Replacement

Overview of the mapping of legacy APIs to the new APIs for the migration

The deprecation of the jQuery.sap API requires that it is replaced with the new API. The following list provides
an overview of the required replacements.

Replacement With New Modules

To migrate the simple replacements, add the new module dependency and replace the call with the added
argument name as shown in the following example:

 Example

Old API Call New Module Replacement Type Replace with

jQuery.sap.assert sap/base/assert Simple replacement assert

jQuery.sap.resource
s

sap/base/i18n/
ResourceBundle

Method changed ResourceBundle.crea
te

jQuery.sap.log sap/base/Log Simple replacement Log

jQuery.sap.log.addL
ogListener

sap/base/Log Simple replacement Log.addLogListener

jQuery.sap.log.debu
g

sap/base/Log Simple replacement Log.debug

jQuery.sap.log.erro
r

sap/base/Log Simple replacement Log.error

jQuery.sap.log.fata
l

sap/base/Log Simple replacement Log.fatal

jQuery.sap.log.getL
evel

sap/base/Log Simple replacement Log.getLevel

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1109

Old API Call New Module Replacement Type Replace with

jQuery.sap.log.getL
og

sap/base/Log Method changed Log.getLogEntries

jQuery.sap.log.getL
ogEntries

sap/base/Log Simple replacement Log.getLogEntries

jQuery.sap.log.getL
ogger

sap/base/Log Simple replacement Log.getLogger

jQuery.sap.log.info sap/base/Log Simple replacement Log.info

jQuery.sap.log.isLo
ggable

sap/base/Log Simple replacement Log.isLoggable

jQuery.sap.log.Leve
l

sap/base/Log Simple replacement Log.Level

jQuery.sap.log.logS
upportInfo

sap/base/Log Simple replacement Log.logSupportInfo

jQuery.sap.log.remo
veLogListener

sap/base/Log Simple replacement Log.removeLogListen
er

jQuery.sap.log.trac
e

sap/base/Log Simple replacement Log.trace

jQuery.sap.log.warn
ing

sap/base/Log Simple replacement Log.warning

jQuery.sap.encodeCS
S

sap/base/security/
encodeCSS

Simple replacement encodeCSS

jQuery.sap.encodeJS sap/base/security/
encodeJS

Simple replacement encodeJS

jQuery.sap.encodeUR
L

sap/base/security/
encodeURL

Simple replacement encodeURL

jQuery.sap.encodeUR
LParameters

sap/base/security/
encodeURLParameters

Simple replacement encodeURLParameters

jQuery.sap.encodeHT
ML

sap/base/security/
encodeXML

Simple replacement encodeXML

jQuery.sap.encodeXM
L

sap/base/security/
encodeXML

Simple replacement encodeXML

1110 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Old API Call New Module Replacement Type Replace with

jQuery.sap.addUrlWh
itelist

sap/base/security/
URLWhiteList

Method changed URLWhitelist.add

jQuery.sap.clearUrl
Whitelist

sap/base/security/
URLWhiteList

Method changed URLWhitelist.clear

jQuery.sap.getUrlWh
itelist

sap/base/security/
URLWhiteList

Method changed URLWhitelist.entrie
s

jQuery.sap.removeUr
lWhitelist

sap/base/security/
URLWhiteList

Method changed URLWhitelist.delete

jQuery.sap.validate
Url

sap/base/security/
URLWhiteList

Method changed URLWhitelist.valida
te

jQuery.sap.camelCas
e

sap/base/strings/
camelize

Simple replacement camelize

jQuery.sap.charToUp
perCase

sap/base/strings/
capitalize

Simple replacement capitalize

jQuery.sap.escapeRe
gExp

sap/base/strings/
escapeRegExp

Simple replacement escapeRegExp

jQuery.sap.formatMe
ssage

sap/base/strings/
formatMessage

Simple replacement formatMessage

jQuery.sap.hashCode sap/base/strings/
hash

Simple replacement hash

jQuery.sap.hyphen sap/base/strings/
hyphenate

Simple replacement hyphenate

jQuery.sap.unicode

jQuery.sap.isString
NFC

sap/base/strings/
NormalizePolyfill

Simple replacement NormalizePolyfill

- sap/base/strings/
toHex

- -

jQuery.sap.arraySym
bolDiff

sap/base/util/
array/diff

Simple replacement diff

jQuery.sap.unique sap/base/util/
array/uniqueSort

Simple replacement uniqueSort

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1111

Old API Call New Module Replacement Type Replace with

jQuery.sap.equal sap/base/util/
deepEqual

Simple replacement deepEqual

- sap/base/util/
defineLazyProperty

- -

jQuery.sap.each sap/base/util/each Simple replacement each

jQuery.sap.forIn sap/base/util/each Simple replacement each

- sap/base/util/
includes

- -

jQuery.isPlainObjec
t

sap/base/util/
isPlainObject

Simple replacement isPlainObject

jQuery.sap.parseJS sap/base/util/
JSTokenizer

Simple Replacement JSTokenizer.parseJS

1112 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Old API Call New Module Replacement Type Replace with

jQuery.sap.extend sap/base/util/merge Complex Replacement Old:

// Shallow jQuery.sap.exten
d({}, sContent);
// Deep jQuery.sap.exten
d(true, {},
sContent)

New:

// Shallow //
// No actual
replacement for
shallow copies
available, see
the note below
for more info.
// Deep merge({},
sContent);

 Note
jQuery.sap.exten
d vs. jQuery.extend

The use of
jQuery.sap.exten
d() is the same as
jQuery.extend(),
but arguments that are
null or undefined
are not ignored.

Object.assign

The
Object.assign()
method only copies enu
merable and own proper
ties, but does not copy
properties on the proto
type chain and non-enu
merable properties.

Considering this,
Object.assign()
might be a suitable re
placement for

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1113

Old API Call New Module Replacement Type Replace with

jQuery.sap.exten
d for a shallow copy.

null and undefined
arguments are not ig
nored.

jQuery.sap.now sap/base/util/now Simple Replacement now

jQuery.sap.getObjec
t

sap/base/util/
ObjectPath

Complex Replacement ObjectPath.get("s
ome.object.path",
 "someProperty");

If the object path does not
exist, the method doesn't
create it anymore. If the path
needs to be create it has do
be done separately:

ObjectPath.creat
e("some.object.pa
th",
window.myLib);

jQuery.sap.setObjec
t

sap/base/util/
ObjectPath

Complex Replacement ObjectPath.set("s
ome.object.path",
 "myValue",
window.myLib);

The object path is created if
it does not exist.

jQuery.sap.properti
es

sap/base/util/
Properties

Method changed Properties.create

jQuery.sap.uid sap/base/util/uid Simple Replacement uid

jQuery.sap.getUriPa
rameters

sap/base/util/
UriParameters

Changed to class for instan
tiation

var
oUriParameters =
new
UriParameters(win
dow.location.href
); oUriParameters.ge
t("sap-ui-
debug");

- sap/base/util/
values

Simple Replacement -

1114 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Old API Call New Module Replacement Type Replace with

jQuery.sap.Version sap/base/util/
Version

Simple Replacement Version

- sap/ui/core/
support/HotKeys

- -

jQuery.sap.syncStyl
eClass

sap/ui/core/
syncStyleClass

Simple Replacement syncStyleClass

jQuery.device.is.an
droid_phone

sap/ui/Device Complex Replacement Device.os.android
 &&
Device.system.pho
ne

jQuery.device.is.an
droid_tablet

sap/ui/Device Complex Replacement Device.os.android
 &&
Device.system.tab
let

jQuery.device.is.de
sktop

sap/ui/Device Complex Replacement Device.system.des
ktop

jQuery.device.is.ip
ad

sap/ui/Device Complex Replacement Device.os.ios &&
Device.system.ipa
d

jQuery.device.is.ip
hone

sap/ui/Device Complex Replacement Device.os.ios &&
Device.system.pho
ne

jQuery.device.is.la
ndscape

sap/ui/Device Complex Replacement Device.orientatio
n.landscape

jQuery.device.is.ph
one

sap/ui/Device Complex Replacement Device.system.pho
ne

jQuery.device.is.po
rtrait

sap/ui/Device Complex Replacement Device.orientatio
n.portrait

jQuery.device.is.ta
blet

sap/ui/Device Complex Replacement Device.system.tab
let

jQuery.os.Android sap/ui/Device Complex Replacement Device.os.name
=== "Android"

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1115

Old API Call New Module Replacement Type Replace with

jQuery.os.bb sap/ui/Device Complex Replacement Device.os.name
=== "bb"

jQuery.os.fVersion sap/ui/Device Complex Replacement Device.os.version

jQuery.os.iOS sap/ui/Device Complex Replacement Device.os.name
=== "iOS"

jQuery.os.linux sap/ui/Device Complex Replacement Device.os.name
=== "linux"

jQuery.os.mac sap/ui/Device Complex Replacement Device.os.name
=== "mac"

jQuery.os.os sap/ui/Device Complex Replacement Device.os.name

jQuery.os.version sap/ui/Device Complex Replacement Device.os.version
Str

jQuery.os.win sap/ui/Device Complex Replacement Device.os.name
=== "win"

jQuery.os.winphone sap/ui/Device Complex Replacement Device.os.name
=== "winphone"

jQuery.sap.contains
OrEquals

sap/ui/dom/
containsOrEquals

Simple Replacement containsOrEquals

jQuery.sap.denormal
izeScrollBeginRTL

sap/ui/dom/
denormalizeScrollBe
ginRTL

Simple Replacement denormalizeScrollBe
ginRTL

jQuery.sap.denormal
izeScrollLeftRTL

sap/ui/dom/
denormalizeScrollLe
ftRTL

Simple Replacement denormalizeScrollLe
ftRTL

- sap/ui/dom/
getComputedStyleFix

- -

jQuery.sap.ownerWin
dow

sap/ui/dom/
getOwnerWindow

Simple Replacement getOwnerWindow

1116 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Old API Call New Module Replacement Type Replace with

jQuery.sap.scrollba
rSize

sap/ui/dom/
getScrollbarSize

Simple Replacement getScrollbarSize

jQuery.sap.includeS
cript

sap/ui/dom/
includeScript

Simple Replacement includeScript

jQuery.sap.includeS
tylesheet

sap/ui/dom/
includeStylesheet

Simple Replacement includeStylesheet

jQuery.sap.replaceD
OM

sap/ui/dom/patch Simple Replacement patch

jQuery.sap.pxToRem sap/ui/dom/
units/Rem

Simple Replacement Rem.fromPx

jQuery.sap.remToPx sap/ui/dom/
units/Rem

Simple Replacement Rem.toPx

jQuery.sap.checkMou
seEnterOrLeave

sap/ui/events/
checkMouseEnterOrLe
ave

Simple Replacement checkMouseEnterOrLe
ave

jQuery.sap.bindAnyE
vent

sap/ui/events/
ControlEvents

Simple Replacement bindAnyEvent

jQuery.sap.ControlE
vents

sap/ui/events/
ControlEvents

Simple Replacement events

jQuery.sap.unbindAn
yEvent

sap/ui/events/
ControlEvents

Simple Replacement unbindAnyEvent

jQuery.sap.handleF6
GroupNavigation

sap/ui/events/
F6Navigation

Simple Replacement handleF6GroupNaviga
tion

jQuery.sap.isMouseE
ventDelayed

sap/ui/events/
isMouseEventDelayed

Simple Replacement isMouseEventDelayed

jQuery.sap.isSpecia
lKey

sap/ui/events/
isSpecialKey

Simple Replacement isSpecialKey

jQuery.sap.touchEve
ntMode

sap/ui/events/
jquery/
EventSimulation

Simple Replacement touchEventMode

jQuery.sap.keycodes sap/ui/events/
KeyCodes

Simple Replacement KeyCodes

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1117

Old API Call New Module Replacement Type Replace with

jQuery.sap.PseudoEv
ents

sap/ui/events/
PseudoEvents

Simple Replacement PseudoEvents

jQuery.sap.disableT
ouchToMouseHandling

sap/ui/events/
TouchToMouseMapping

Simple Replacement disableTouchToMouse
Handling

jQuery.sap.register
ModulePath

- Complex Replacement sap.ui.loader.con
fig({paths:
{"myPath": "some/
path"}});

jQuery.sap.register
ResourcePath

- Complex Replacement sap.ui.loader.con
fig({paths:
{"myPath": "some/
path"}});

jQuery.sap.measure.
add

sap/ui/performance/
Measurement

Simple Replacement Measurement.add

jQuery.sap.measure.
average

sap/ui/performance/
Measurement

Simple Replacement Measurement.average

jQuery.sap.measure.
clear

sap/ui/performance/
Measurement

Simple Replacement Measurement.clear

jQuery.sap.measure.
end

sap/ui/performance/
Measurement

Simple Replacement Measurement.end

jQuery.sap.measure.
filterMeasurements

sap/ui/performance/
Measurement

Simple Replacement Measurement.filterM
easurements

jQuery.sap.measure.
getActive

sap/ui/performance/
Measurement

Simple Replacement Measurement.getActi
ve

jQuery.sap.measure.
getAllMeasurements

sap/ui/performance/
Measurement

Simple Replacement Measurement.getAllM
easurements

jQuery.sap.measure.
getMeasurement

sap/ui/performance/
Measurement

Simple Replacement Measurement.getMeas
urement

jQuery.sap.measure.
pause

sap/ui/performance/
Measurement

Simple Replacement Measurement.pause

jQuery.sap.measure.
registerMethod

sap/ui/performance/
Measurement

Simple Replacement Measurement.registe
rMethod

1118 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Old API Call New Module Replacement Type Replace with

jQuery.sap.measure.
remove

sap/ui/performance/
Measurement

Simple Replacement Measurement.remove

jQuery.sap.measure.
resume

sap/ui/performance/
Measurement

Simple Replacement Measurement.resume

jQuery.sap.measure.
setActive

sap/ui/performance/
Measurement

Simple Replacement Measurement.setActi
ve

jQuery.sap.measure.
start

sap/ui/performance/
Measurement

Simple Replacement Measurement.start

jQuery.sap.measure.
unregisterAllMethod
s

sap/ui/performance/
Measurement

Simple Replacement Measurement.unregis
terAllMethods

jQuery.sap.measure.
unregisterMethod

sap/ui/performance/
Measurement

Simple Replacement Measurement.unregis
terMethod

jQuery.sap.fesr.get
Active

sap/ui/performance/
trace/FESR

Simple Replacement FESR.getActive

jQuery.sap.fesr.set
Active

sap/ui/performance/
trace/FESR

Simple Replacement FESR.setActive

jQuery.sap.fesr.add
BusyDuration

sap/ui/performance/
trace/Interaction

Simple Replacement Interaction.addBusy
Duration

jQuery.sap.interact
ion.*

sap/ui/performance/
trace/Interaction

Method changed Interaction.*

jQuery.sap.measure.
clearInteractionMea
surements

sap/ui/performance/
trace/Interaction

Method changed Interaction.clear

jQuery.sap.measure.
endInteraction

sap/ui/performance/
trace/Interaction

Method changed Interaction.end

jQuery.sap.measure.
filterInteractionMe
asurements

sap/ui/performance/
trace/Interaction

Method changed Interaction.filter

jQuery.sap.measure.
getAllInteractionMe
asurements

sap/ui/performance/
trace/Interaction

Method changed Interaction.getAll

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1119

Old API Call New Module Replacement Type Replace with

jQuery.sap.measure.
getPendingInteracti
onMeasurement

sap/ui/performance/
trace/Interaction

Method changed Interaction.getPend
ing

jQuery.sap.measure.
startInteraction

sap/ui/performance/
trace/Interaction

Method changed Interaction.start

jQuery.sap.fesr.get
CurrentTransactionI
d

sap/ui/performance/
trace/Passport

Method changed Passport.getTransac
tionId

jQuery.sap.fesr.get
RootId

sap/ui/performance/
trace/Passport

Method changed Passport.getRootId

jQuery.sap.passport
.*

sap/ui/performance/
trace/Passport

Simple replacement Passport.*

jQuery.sap.getModul
ePath

- Complex replacement sap.ui.require.to
Url("some/
path/to/
module.js");

jQuery.sap.getResou
rcePath

- Complex replacement sap.ui.require.to
Url("some/
path/to/
resource.json");

jQuery.sap.FrameOpt
ions

sap/ui/security/
FrameOptions

Simple replacement FrameOptions

jQuery.sap.act sap/ui/util/
ActivityDetection

Simple replacement ActivityDetection

jQuery.sap.initMobi
le

sap/ui/util/Mobile Method changed Mobile.init

jQuery.sap.setIcons sap/ui/util/Mobile Simple replacement Mobile.setIcons

jQuery.sap.setMobil
eWebAppCapable

sap/ui/util/Mobile Simple replacement Mobile.setWebAppCab
able

jQuery.sap.storage sap/ui/util/Storage Method changed Storage

jQuery.sap.storage.
Type.*

sap/ui/util/Storage Simple replacement Storage.Type

1120 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Old API Call New Module Replacement Type Replace with

jQuery.sap.getParse
Error

sap/ui/util/
XMLHelper

Simple replacement Helper.getParseErro
r

jQuery.sap.parseXML sap/ui/util/
XMLHelper

Method changed Helper.parse

jQuery.sap.serializ
eXML

sap/ui/util/
XMLHelper

Method changed Helper.serialize

Replacement with Native Browser APIs

Old API Call New Native Replacement

jQuery.device.is.standalone window.navigator.standalone

jQuery.inArray var b = (aElements ?
Array.prototype.indexOf.call(aElements
, 4) : -1);

jQuery.isArray Array.isArray

jQuery.sap.clearDelayedCall window.clearTimout

jQuery.sap.clearIntervalCall window.clearInterval

jQuery.sap.delayedCall window.setTimeout

jQuery.sap.domById window.document.getElementById

jQuery.sap.endsWith sMyString.endsWith("abc")

jQuery.sap.endsWithIgnoreCase sMyString.toLowerCase().endsWith(sMyOt
herString.toLowerCase())

jQuery.sap.getter function(value) { return function()
{ return value; }; }(myValue);

jQuery.sap.intervalCall window.setInterval

jQuery.sap.isEqualNode Node.isEqualNode

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1121

Old API Call New Native Replacement

jQuery.sap.newObject Object.create

jQuery.sap.padLeft "a".padStart(110, "0");

jQuery.sap.padRight "a".padEnd(110, "0");

jQuery.sap.resources.isBundle instanceof

jQuery.sap.startsWith sMyString.startsWith("abc");

jQuery.sap.startsWithIgnoreCase sMyString.toLowerCase().startsWith(sMy
OtherString.toLowerCase())

jQuery.support.retina window.devicePixelRatio >= 2

jQuery Extensions Dependencies

jQuery extensions have been extracted into different modules. If the jQuery extension is required, it needs to be
added to the module dependencies.

 Example
Change from the global dependencies to adding the module dependencies to the jQuery extensions:

jQuery Call Old Module New Module

jQuery.* jQuery.sap.global sap/ui/thirdparty/jquery

jQuery.position jQuery.sap.global sap/ui/thirdparty/
jqueryui/jquery-ui-
position

jQuery.fn.control jquery.sap.ui sap/ui/dom/jquery/control

jQuery.fn.addLabelledBy jquery.sap.dom sap/ui/dom/jquery/Aria

jQuery.fn.removeLabelledBy jquery.sap.dom sap/ui/dom/jquery/Aria

1122 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

jQuery Call Old Module New Module

jQuery.fn.addDescribedBy jquery.sap.dom sap/ui/dom/jquery/Aria

jQuery.fn.removeDescribedB
y

jquery.sap.dom sap/ui/dom/jquery/Aria

jQuery.fn.cursorPos jquery.sap.dom sap/ui/dom/jquery/
cursorPos

jQuery.fn.firstFocusableDo
mRef

jquery.sap.dom sap/ui/dom/jquery/
Focusable

jQuery.fn.lastFocusableDom
Ref

jquery.sap.dom sap/ui/dom/jquery/
Focusable

jQuery.fn.getSelectedText jquery.sap.dom sap/ui/dom/jquery/
getSelectedText

jQuery.fn.hasTabIndex jquery.sap.dom sap/ui/dom/jquery/
hasTabIndex

jQuery.fn.parentByAttribut
e

jquery.sap.dom sap/ui/dom/jquery/
parentByAttribute

jQuery.fn.rect jquery.sap.dom sap/ui/dom/jquery/rect

jQuery.fn.rectContains jquery.sap.dom sap/ui/dom/jquery/
rectContains

jQuery.fn.scrollLeftRTL jquery.sap.dom sap/ui/dom/jquery/
scrollLeftRTL

jQuery.fn.scrollRightRTL jquery.sap.dom sap/ui/dom/jquery/
scrollRightRTL

jQuery.fn.enableSelection jquery.sap.dom sap/ui/dom/jquery/
Selection

jQuery.fn.disableSelection jquery.sap.dom sap/ui/dom/jquery/
Selection

:sapTabbable, :focusable,
:sapFocusable

jquery.sap.dom sap/ui/dom/jquery/
Selectors

jQuery.fn.selectText jquery.sap.dom sap/ui/dom/jquery/
selectText

jQuery.fn.zIndex jquery.sap.dom sap/ui/dom/jquery/zIndex

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1123

Legacy Factories Replacement

Overview of the replacement of global functions with the factory functions

The AMD module syntax already avoids Globals and enforces the strict dependency declaration. The following
table shows how APIs which use synchronous requests to fetch modules or resources internally, can be
replaced with asynchronous alternatives. The W3C has already deprecated the use of synchronous requests in
the browser main thread, so this replacement prepares your applications for the removal of synchronous
requests.

The SAPUI5 framework by default uses synchronous requests internally in several places. Most have already
been replaced by asynchronous alternatives, or prepared to exchange the synchronous behaviour shown
below. The asynchronous adoption starts from the beginning with the bootstrap script tag, where the async
configuration parameter should be set to true. Applications can register an event callback via
sap.ui.getCore()#attachInit. . The examples below show only the most frequently used synchronous
APIs. There are more of these APIs, and most often the asynchronous alternatives return a Promise that can
be used to retrieve the former return value.

Legacy, synchronous API Modern API

Declarative App Description

 sap.ui.component({
 name: "my.comp"
});

 sap.ui.require(['sap/ui/core/
Component'], function(Component){
 Component.create({
 name: "my.comp"
 // default: manifest: true
 }).then(function(oComp) { ... });

Components - Some API still experimental

 var oComponentInstance =
sap.ui.component({
 name: "my.comp"
});

 sap.ui.require(['sap/ui/core/
Component'], function(Component){
 Component.create({
 name: "my.comp"
 }).then(function(oComp) { ... });

Alternatively, migrate to componentUsages with an addi
tional adaption in the manifest.json file:

 createContent: function() {
 var oReuseComponentPromise =
this.createComponent({
 "usage": "reuse"
 }).then(function(oComp) { ... });
}

1124 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.core.Core/methods/attachInit

Legacy, synchronous API Modern API

 var oComponentClass =
sap.ui.component.load({
 name: "my.comp"
});

 sap.ui.require(['sap/ui/core/
Component'], function(Component){
 Component.load({
 name: "my.comp"
 }).then(function(oClass) {
 var oComponentInstance = new
oClass({...});
 });
});

var oComponentInstance =
sap.ui.component("my-comp-id");

 sap.ui.require(['sap/ui/core/
Component'], function(Component){

 var oComponentInstance =
Component.get("my-comp-id");
});

i18n texts

 jQuery.sap.resources({
 url: "mybundle.properties"
});

 // sap/ui/Resources -> sap/base/i18n/
ResourceBundle
sap.ui.require(['sap/base/i18n/
ResourceBundle'], function(Resource){
 ResourceBundle.create({
 url: "mybundle.properties",
 async: true
 }).then(function(oResource)
{ ... });

Views

 var oView = sap.ui.view({
 viewName: "my.View",
 type: "XML"
});

 sap.ui.require(['sap/ui/core/mvc/
View'], function(View){
 View.create({
 viewName: "my.View",
 type: "XML"
 }).then(function(oView) { ... });

 var oView = sap.ui.xmlview({
 viewName: "my.View"
});

 sap.ui.require(['sap/ui/core/mvc/
XMLView'], function(XMLView){
 XMLView.create({
 viewName: "my.View"
 }).then(function(oView) { ... });

Controllers

var oController =
sap.ui.controller({ ... });

 sap.ui.require(['sap/ui/core/mvc/
Controller'], function(Controller){
 Controller.create({
 ...
 }).then(function(oController)
{ ... });

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1125

Legacy, synchronous API Modern API

Extension Points

var oView =
sap.ui.extensionpoint(...);

 sap.ui.require(['sap/ui/core/
ExtensionPoint'],
function(ExtensionPoint){
 ExtensionPoint.load({
 ...
 }).then(function(aControls)
{ ... });

Fragments

 var oView = sap.ui.fragment({
 name: "my.fragment",
 type: "XML"
});

 sap.ui.require(['sap/ui/core/
Fragment'], function(Fragment){
 Fragment.load({
 name: "my.fragment",
 type: "XML"
 }).then(function(aControls)
{ ... });

Version Info

var oView = sap.ui.getVersionInfo(); sap.ui.require(['sap/ui/core/
VersionInfo'], function(VersionInfo){
 VersionInfo.load({
 ...
 }).then(function(oVersionInfo)
{ ... });

Troubleshooting

How do I get the new Logger module on the browser console?

jQuery.sap.log is currently still available and the module sap/base/Log is not yet globally available. So, if a
developer wants to set a log level with the new module on the console, additional code is required.

Old:

jQuery.sap.log.setLevel(3); // OR jQuery.sap.log.setLevel(jQuery.sap.log.Level.INFO);

New:

sap.ui.require("sap/base/Log").setLevel(3); // OR

1126 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

var Log = sap.ui.require("sap/base/Log"); Log.setLevel(Log.Level.INFO);

How can I mock or spy the new modules?

The new modules are no longer global. Spying or mocking them on jQuery.sap.* does not work. The module
has to be loaded with sap.ui.require:

 sap.ui.require(["sap/base/Log"],function(Log){
 QUnit.test("My Test", function(assert) {
 var oLogSpy = sinon.spy(Log, "warning");
 ...
 assert.equal(oLogSpy.callCount, 1, "Warning should be logged");
 Log.warning.restore();
 });
});

 Note
Some of the new modules were changed from objects to functions, for example sap/base/util/uid and
sap/base/strings/hash. This means that the export of a module is used for import into other modules.
Each importing module has its own reference to the original export. The test can change its own reference,
but not the reference that other modules have obtained already. The value of the reference (the function),
however, is always the same.

Until further testing capabilities are available, you should write the tests in a way that it is not necessary to
mock them, because they are used inside the actual API, which should be tested instead.

Optimizing Applications

SAPUI5 supports several means of optimizing the loading time for applications.

Resource Handling: Modularization and Localization

The handling of resources in SAPUI5 is divided in a client-side and a server-side part. The two parts are
complementary and don’t depend on each other.

The server-side resource handling is an optional component to improve the client-server interaction by
providing a server-side locale fallback instead of a client-side fallback with multiple requests. The server-side
resource handling is mainly used in Eclipse to support the modularized development of SAPUI5 applications
and libraries.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1127

Client-Side Resource Handling

SAPUI5 provides the following mechanism for handling resources on the client:

● Modularization of JavaScript files, see Modules and Dependencies [page 1094]
● Localization of application texts with resource bundles, see Resource Bundles [page 1272]

In both cases, SAPUI5 loads additional resources from a server. This server can be any kind of web server
(simple, Java, ABAP, ...). Both do not depend on a specific server-side technology.

Server-Side Resource Handling

For the Java server and the integration into Eclipse, SAPUI5 provides a resource handler to improve the
interaction between client and server, for example by providing a server-side locale fallback for the language to
avoid multiple requests to get the correct language. It’s also used to support modularized development of
SAPUI5 applications and libraries. The Java resource handler is aligned with the concept of the JavaServer
Faces.

● The default implementation must support packaging resources in the web application root under the path
resources/<resourceIdentifier> relative to the web app root.

● Resources packaged in the classpath must reside under the JAR entry name META-INF/resources/
<resourceIdentifier>

The SAPUI5 resource handler extends this concept to support standard and test-relevant resources. The
resources are therefore packaged into the following paths:

● resources/**
Resources are all kind of JavaScript, CSS, Mimes, Resource Bundles, which are relevant for the runtime.

● test-resources/**
Test resources are resources that are samples and only relevant for testing purposes, for example, the
content of the SAPUI5 test suite.

The resource handler in SAPUI5 provides the following additional features:

● Theme fallback:
If resources aren’t available for a theme, the resource handler automatically checks the base theme for
such resources and returns them instead of a 404 error message.

● Resource bundle fallback:
This fallback is similar to the client-side mechanism for loading resource bundles, but it negotiates the
request on the server and returns the best found resource bundle instead of issuing a 404 error, for
example:
messagebundle_en_US.properties > messagebundle_en.properties >
messagebundle.properties

1128 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Resource Servlet

For Java Servlet containers, SAPUI5 provides a ResourceServlet to manage the access to SAPUI5 resources
within the web application and the various UI libraries in the classpath. The following snippet shows how to
enable the resource servlet for SAPUI5:

 <!-- == --> <!-- SAPUI5 resource servlet used to handle application resources -->
 <!-- == -->

 <servlet>
 <display-name>ResourceServlet</display-name>
 <servlet-name>ResourceServlet</servlet-name>
 <servlet-class>com.sap.ui5.resource.ResourceServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>ResourceServlet</servlet-name>
 <url-pattern>/resources/*</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>ResourceServlet</servlet-name>
 <url-pattern>/test-resources/*</url-pattern> </servlet-mapping>

Before you use it, make sure that the ResourceServlet is available in the classpath as JAR file.

Configuration

The resource handler is configured via context parameters, which are defined in the web.xml. The following
table gives an overview about configuration parameters:

Key Description

com.sap.ui5.resource.USE_CACHE Flag for resource cache enabling; default: true

com.sap.ui5.resource.MAX_AGE Specifies the maximum age of resources in milliseconds;
default: 604800000 = 1 week

com.sap.ui5.resource.ACCEPTED_ORIGINS List of accepted origins, for example *,
*mycompany.corp, or server.mycompany.corp;
default: empty

com.sap.ui5.resource.DEV_MODE Flag development mode enabling; default: false

com.sap.ui5.resource.TEMPLATE_PATH Specifies path to template for resource listing; default: /
templates/listing.html

com.sap.ui5.resource.VERBOSE Specifies verbosity of the resource handler; default: false

com.sap.ui5.resource.REMOTE_LOCATION Specifies the location that is used to proxy requests to
resources that aren’t available locally; default: empty

com.sap.ui5.resource.PREFER_REMOTE_LOCAT
ION

Flag to resolve the resource from the remote location before
fallback to classpath; default: false

com.sap.ui5.resource.USE_SERVER_CACHE Flag to enable caching of any resources in resource servlet;
default: true (default in dev mode: false

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1129

Configuration parameters are added as context parameters to the web.xml.

Development Mode

When you're starting to develop SAPUI5 controls and modules being located inside the servlet paths
resources/ or test-resources/, it makes the development process easier to disable the caching of such
resources as well as to enable the resource browsing. To activate the development mode, add the following
context parameter:

 <!-- BEGIN: DEV MODE --> <context-param>
 <param-name>com.sap.ui5.resource.DEV_MODE</param-name>
 <param-value>true</param-value>
 </context-param> <!-- END: DEV MODE -->

Resource Browsing

If the development mode is active, you can browse resources via the resource browser:

● %SERVER_URL%!/resources/
● %SERVER_URL%/test-resources/

Tunneling a Remote Location

You can use the ResourceServlet to tunnel/proxy requests to another server that provides SAPUI5
resources instead of referring to SAPUI5 from a remote location inside the bootstrap script tag and thus avoid
cross domain issues. To activate the remote location tunneling/proxying, add the following context parameter
to the web.xml of your application:

 <context-param> <param-name>com.sap.ui5.resource.REMOTE_LOCATION</param-name>
 <param-value>http://%server%:%port%/sapui5</param-value> </context-param>

This dispatches the requests from resources/sap/m/Button.js to http://%server%:%port%/sapui5/
resources/sap/m/Button.js.

If you are located behind a proxy and the remote location is outside your localnetwork, you can configure the
proxy settings via the standard Java Networking and Proxy configurations by setting the system properties (for
HTTP): http.proxyHost, http.proxyPort, http.nonProxyHosts, or (for HTTPS) https.proxyHost,
https.proxyPort, https.nonProxyHosts of your Java runtime environment.

In general, for the resources returned from the proxy the ResourceServlet is enabling caching. By default, it
uses the configured com.sap.ui5.resource.MAX_AGE to avoid too much load on the ResourceServlet.

Verify that a Resource was Retrieved from Remote Location

1130 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

When in development mode, it’s possible to verify that a resource was retrieved from the desired remote
location by checking the response header of the respective request. In this case, the response header has an
entry x-sap-ResourceUrl = remote resource URL, for example:

x-sap-ResourceUrl = http://%server%:%port%/sap/public/bc/ui5_ui5/resources/sap-
ui-core.js

Resource Packaging

Resource packaging for web applications and Java modules can be any kind of JAR file, for example SAPUI5 UI
library that is available in the classpath of the web application.

Store the resources as follows:

● Web application:

WebContent/ resources/
 /
 test-resources/ **/**

● SAPUI5 UI libraries:

META-INF/ resources/
 /
 test-resources/ **/**

For custom JAR files, you need to apply to this on your own.

OSGi Servlet Container

When you run SAPUI5 as an OSGi web bundle and reference the UI libraries as OSGi bundles, you need to
determine the SAPUI5 OSGi bundles:

● Extend the ResourceServlet in the OSGi servlet container by using an OSGi fragment that is responsible
to add the OSGi flavor for the determination of UI libraries. Now, the ResourceServlet is aware of the
OSGi bundles and can search within the OSGi servlet container for UI libraries.

● The OSGiResourceServlet uses the following entry in the MANIFEST.MF of the UI library's JAR files to
determine the relevant UI libraries:

x-sap-ui5-ContentTypes: UILibrary

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1131

SAPUI5 Library Location Used for Testing

The location of the SAPUI5 library that is used for testing may differ depending on several parameters.

If the SAPUI5 bootstrap tag contains src="resources/sap-ui-core.js", the SAPUI5 runtime libraries
from the Eclipse plugin are used.

If you want to test your SAPUI5 application in Eclipse against a different SAPUI5 Library location, for example
on the ABAP server when running in the SAP NetWeaver UI AddOn scenario, you can configure the
ResourceServlet. For that, open the web.xml file located in the <WebContent folder name>/WEB-INF folder
and configure the parameter com.sap.ui5.resource.REMOTE_LOCATION and
com.sap.ui5.resource.PREFER_REMOTE_LOCATION of the ResourceServlet where the placeholders
{protocol}, {host name}, {port number}, {path to UI5 library} are to be exchanged by the real protocol, host
name, port number and path to the SAPUI5 library, see Resource Handling [page 1127], section Tunneling a
Remote Location.

 <servlet>
 <display-name>ResourceServlet</display-name>
 <servlet-name>ResourceServlet</servlet-name>
 <servlet-class>com.sap.ui5.resource.ResourceServlet</servlet-class>
 </servlet>
 ...
 <!-- force to use the remote location -->
 <context-param>
 <param-name>com.sap.ui5.resource.PREFER_REMOTE_LOCATION</param-name>
 <param-value>true</param-value>
 </context-param>
 <!-- add the remote location for the UI5 libraries -->
 <context-param>
 <param-name>com.sap.ui5.resource.REMOTE_LOCATION</param-name>
 <param-value>{protocol}://{host name}:{port number}/{path to UI5 library}</
param-value> </context-param>

Cache Buster for SAPUI5

A cache buster allows SAPUI5 to notify the browser to refresh the resources only when the SAPUI5 resources
have been changed. As long as they are not changed, the resources can always be fetched from the browser's
cache.

 Note
SAPUI5 supports the cache buster concept for Java and ABAP servers and for SAP Cloud Platform. SAP
HANA XS does not support the cache buster concept.

When you want to cache your resources permanently, you simply need to change the URL in the SAPUI5
bootstrap tag from resources/sap-ui-core.js to resources/sap-ui-cachebuster/sap-ui-
core.js.

The cache buster mechanism allows to always put the SAPUI5 resources into the browsers cache until a UI
library or a web application has been changed. The default behavior of the SAPUI5 resource handler is either to
cache the resources for a specific amount of time or alternatively in development mode it is using the 304/NOT
MODIFIED mechanism to check the SAPUI5 resources for being up-to-date. Both mechanisms are not optimal

1132 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

in a final, productive scenario - that is the reason for the implementation of the cache buster mechanism.
Applications, which want to use the cache buster mechanism, have to explicitly decide to use it.

The cache buster mechanism is part of the resource servlet. In general, requests to JavaScript resources can
be handled via the cache buster mechanism. Typically this is used for the initial request for the bootstrap
JavaScript:

 <script type="text/javascript" id="sap-ui-bootstrap"
 src="resources/sap-ui-cachebuster/sap-ui-core.js"
 data-sap-ui-libs="sap.ui.core,sap.m,sap.ui.table" data-sap-ui-theme="sap_belize"></script>

The bootstrap JavaScript will be included via the URL resources/sap-ui-cachebuster/sap-ui-core.js
instead of resources/sap-ui-core.js.

Mechanism

The basic mechanism is implemented in the ResourceServlet. For the request to the bootstrap JavaScript it
now serves a JavaScript file with the following content:

(function() { var sTimeStamp = '~20120716-0201~';
 var sScriptPath = 'sap\x2dui\x2dcore.js';
 var aScriptTags = document.getElementsByTagName('script');
 for (var i = 0; i < aScriptTags.length; i++) {
 if (aScriptTags[i].src) {
 var iIdxCb = aScriptTags[i].src.indexOf('/sap-ui-cachebuster/');
 if (iIdxCb >= 0 && aScriptTags[i].src.substring(iIdxCb + '/sap-ui-
cachebuster/'.length) == sScriptPath) {
 var sBasePath = aScriptTags[i].src.substring(0, iIdxCb);
 sBasePath += '/' + sTimeStamp + '/';
 window["sap-ui-config"] = window["sap-ui-config"] || {};
 window["sap-ui-config"].resourceRoots = window["sap-ui-
config"].resourceRoots || {};
 window["sap-ui-config"].resourceRoots[''] = sBasePath;
 document.write('<script type="text/javascript" src="' + sBasePath +
sScriptPath + '"></script>')
 break;
 }
 }
 } })();

This script basically ensures that the global SAPUI5 configuration variable (window["sap-ui-config"])
exists, without modifying any existing values. It defines the resource root of SAPUI5 (the location where
SAPUI5 loads all JavaScript modules, controls and control related resources from). Finally, another script tag is
added to the page that points to the real boostrap JavaScript. The new resource root and the request path to
the bootstrap JavaScript now contain a timestamp. Additionally the cache headers of the responses now look
like the following:

Date: Mon, 16 Jul 2012 05:17:54 GMT Expires: Thu, 14 Jul 2022 05:17:54 GMT Cache-Control: max-age=315360000, public

By default all cache buster resources will be cached for one year.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1133

Request Flow

When using the cache buster mechanism, the first request must never be cached because it is being used to
determine the timestamp / and to finally redirect to the correct script. The following list explains the flow:

● resources/sap-ui-cachebuster/sap-ui-core.js => NO_CACHE
● resources/~201106210204~/sap-ui-core.js =>CACHE

Timestamp

If you are interested in the timestamp of the cache buster, you can grab it with the following request:

resources/sap-ui-cachebuster

The response is text/plain with such value: ~20120716-0201~

Application Cache Buster

The application cache buster (short AppCacheBuster) is similar to the cache buster but is used for
application resources.

 Note
SAPUI5 supports the application cache buster on SAP NetWeaver AS for ABAP only.

For Java apps on SAP NetWeaver AS for Java and SAP HANA XS the application cache buster concept is
not supported.

Applications provide an index file named sap-ui-cachebuster-info.json (created on the fly) containing
the last modified timestamps of all included files (like scripts, properties, or any other file that we load via XHR
programmatically). Technically this file is a mapping between the request path (below the context path of the
application) and the last modified time stamp.

The server instructs the client to cache all the above resources (not using the 304/not modified mechanism).
For the index file we are using the 304/not modified mechanism to avoid to load when it has not been changed.

On the client side, we initially load this file of the application when enabled via configuration option sap-ui-
appcachebuster and use this for the XHR requests. If the request path is contained in the above mentioned
index file we simply add the time stamp as leading path segment to this request. If the time stamp doesn’t
change the URL is unique and therefore it will be taken from cache. Once the file is modified the URL parameter
will be changed and therefore loaded again from the back end.

The server has to delete the time stamp from this URL to look up the file properly. For SAP NetWeaver AS for
ABAP, the logic is implemented in the ICF handler. Both back end implementations, SAP NetWeaver AS for
Java and SAP NetWeaver AS for ABAP, also generate the index file on-the-fly.

1134 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Note
The application cache buster does not work across application borders. If you require resources from
another application they are not loaded via this mechanism.

Application Cache Buster: Index File

The index file includes all files that should use the cache buster.

Unlike the cache buster mechanism for runtime resources, the application files have an own timestamp for
each file. Thus, the application provides the index file sap-ui-cachebuster-info.json. The index file looks
as follows:

 {
 "mvc/MyMVC.view.js": "20120907134005",
 "mvc/MyMVC.controller.js": "20120907134005",
 "mvc/MyMVC.view2.js": "20120906113301",
 "mvc/MyMVC.controller2.js": "20120906113023" }

Application Cache Buster: Configuration

The configuration data-sap-ui-appCacheBuster="./" must be added to the bootstrap script of the
application page.

The following code shows an example how the configuration is added to activate the application cache buster:

 <script id="sap-ui-bootstrap"
 src="resources/sap-ui-cachebuster/sap-ui-core.js"
 data-sap-ui-libs="sap.ui.core,sap.m,sap.ui.table"
 data-sap-ui-theme="sap_belize" data-sap-ui-appCacheBuster="./"></script>

The parameter data-sap-ui-appCacheBuster is a string[] which means you can pass a comma-
separated list of base URLs pointing to other applications which should be considered by the Application Cache
Buster. By default it should contain the base path of your local application.

These base URLs are used to load the index files.

Application Cache Buster: Request Flow

When using the application cache buster, a request order must be observed.

When using the Application Cache Buster mechanism, the first request must never be cached because it is
being used to fetch the index file. The following list explains the flow:

1. http://myserver/myapp/sap-ui-cachebuster-info.json ⇒ NO_CACHE

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1135

2. http://myserver/myapp/~201106210204~/mvc/MyMVC.view.js ⇒ CACHE
○ http://myserver/myapp/mvc/MyMVC.view.js ⇒ internally resolve to this URL

Application Cache Buster: Enhanced Concept

The enhanced concept for application cache buster takes care about most of the URLs in a general way.

The first iteration of the Application Cache Buster only supports files which have been loaded via
jQuery.ajax. The enhanced concept supports the transformation of URLs for
jQuery.sap.includeScript, jQuery.sap.includeStyleSheet, and properties of the type
sap.ui.core/URI. Additionally the enhanced concept allows to register components or base URLs which are
considered by the Application Cache Buster. This base URL is used to load the index file with the timestamp
information.

Registration of external URLs

If you do not specify all the applications in the bootstrap configuration, you can also register them during
runtime. To register additional locations, use the following API:

 sap.ui.core.AppCacheBuster.register("/sap/bc/my/other/component");

Avoid handling of specific URLs

To avoid handling of specific URLs, you can override the default behavior as follows:

 sap.ui.core.AppCacheBuster.handleURL = function(sURL) {
 return sURL !== "my/specific/url"; };

1136 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Adapting to Operating Systems And Devices

No need to worry about device specifics! SAPUI5 apps run on smartphones, tablets, and desktops. The UI
controls automatically adapt themselves to each device's capabilities and make the most of the available real
estate. supports several functions to adapt to operating systems and devices.

The Device API

The device API (sap.ui.Device) is an API which provides information about device specifics, like the
operating system along with its version, the browser and browser version, screen size, current orientation and
support for specific features like touch event support, orientation change and so on.

For example, the sap.ui.Device.orientation object holds the current orientation information:

● landscape: Flag indicating whether the current orientation is landscape
● portrait: Flag indicating whether the current orientation is portrait

If you want to register a handler for a particular event like a resize or an orientation change, for example, you
can do so easily by attaching to such an event:

 sap.ui.Device.orientationChange.attachHandler(function(){
 alert("orientation changed"); });

Both work across platforms, even in cases where the orientation change event is not natively supported by the
device, for instance.

If you want to check for a certain system category (phone, tablet, desktop) in your code, you can ask for the
value of sap.ui.Device.system.phone, which would be set to true if you are accessing the page from a
phone.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1137

 Note
Categorization is based on various factors like screen size, touch enablement, operating system and user
agent. Depending on the combination of features on a device, it could happen that more than one flag is set
to true.

In the same way, you can also check for different browsers, different operating systems and available features
for the current device or browser.

An API for screen width change events is available under sap.ui.Device.media. It allows you to attach
handlers to screen width changes between certain intervals. Whenever such an interval is met, there is a
certain CSS class added to the HTML root tag on the page. There are predefined range sets for these intervals
for typical widths. The standard sets which are automatically initialized are as follows:

● SAP_3STEPS: A 3-step range set (S-L)
● SAP_STANDARD_EXTENDED: A 4-step range set (Phone, Tablet, Desktop, LargeDesktop)

For more information about the exact values and corresponding css classes, see
sap.ui.Device.media.RANGESETS in the API Reference in the Demo Kit.

The range sets described above will add a CSS class to the body element of the HTML according to the
following pattern: sapUiMedia-Std-NAME_OF_THE_INTERVAL and sapUiMedia-StdExt-
NAME_OF_THE_INTERVAL.

The following ranges are available by default:

● "Phone": For screens smaller than 600 pixels.
● "Tablet": For screens greater than or equal to 600 pixels and smaller than 1024 pixels.
● "Desktop": For screens greater than or equal to 1024 pixels and smaller than 1440 pixels.
● "LargeDesktop": For screens greater than or equal to 1440 pixels (coming from the Extended range set)

You can use any of the available range sets to attach to a particular width interval change, like in this example
here:

 // attach to event
sap.ui.Device.media.attachHandler(fnSizeChanged, null,
sap.ui.Device.media.RANGESETS.SAP_STANDARD);
// eventHandler:
function fnSizeChanged(mParams) {
 switch(mParams.name) {
 case "Phone":
 // Do what is needed for a little screen
 break;
 case "Tablet":
 // Do what is needed for a medium sized screen
 break;
 case "Desktop":
 // Do what is needed for a large screen
 }
}

Your event handler will be called with a single argument, a map of parameters you can then access which
contain the following information about the current interval after the width change:

● mParams.from: The start value (inclusive) of the entered interval as a number
● mParams.to: The end value (exclusive) range of the entered interval as a number or undefined for the last

interval (infinity)

1138 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.Device.media.RANGESETS.html

● mParams.unit: The unit used for the values above, for example "px"
● mParams.name: The name of the entered interval, if available

In your event handler, you can then easily check for the current interval or interval name and implement your
code to update the UI for the new range set accordingly. If you want to work with a different range set, you need
to make sure that you initialize it explicitly by using the initRangeSet method available with
sap.ui.Device.media.

If your use case requires it, you can also define your own range set, which would again require explicit
initialization from your side.

For more information, see sap.ui.Device.media.initRangeSet in the API Reference in the Demo Kit.

Controls with Built-In Device Adaptation

SAPUI5 comes with several controls which are already able to react to the available screen real estate and
resolution by themselves. Some require particular properties to be set, and with some, everything just works
out of the box.

 Note
This list does not claim to be comprehensive, but shows some widely used examples outlining the steps
you can take to make use of this functionality. For more details, browse through the Samples in the Demo
Kit and see what SAPUI5 has in store for your app.

sap.m.SplitApp

The SplitApp is a control that can act as a root element of an application for mobile and desktop devices. It is
designed to be used as the base for applications following the master-detail pattern.

It maintains two NavContainers if running on tablet or desktop, and one if running on a phone. In default
mode, the master NavContainer will always be displayed on desktop screens and on tablets in landscape
mode. It will be hidden on tablet-sized screens and can either be swiped in and out (if the device is touch-
enabled) or the visibility can be toggled by clicking a button. On phone devices, either the master
NavContainer or the detail NavContainer will be shown, and a true forward-backward navigation is
established between the two.

For more information, see the sap.m.SplitApp samples and sap.m.SplitApp in the API Reference in the Demo
Kit.

As the SplitApp control inherits from sap.m.SplitContainer, you can alter this behavior by setting the
corresponding mode property. You can set this property to StretchCompressMode, for instance, if you want
the master to always be displayed on tablet-sized screens, irrespective of the current orientation. The different
modes that are available are described under sap.m.SplitAppMode in the API Reference in the Demo Kit.

For more information about the SplitContainer, see the sap.m.SplitContainer samples and
sap.m.SplitContainer in the API Reference in the Demo Kit.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1139

https://sapui5.hana.ondemand.com/#/api/sap.ui.Device.media/methods/sap.ui.Device.media.initRangeSet
https://sapui5.hana.ondemand.com/explored.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.m.SplitApp/samples
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.SplitApp.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.SplitAppMode.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.m.SplitContainer/samples
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.SplitContainer.html

sap.m.Table (also called the “Responsive Table”)

One control that is widely used across all kinds of different applications is sap.m.Table, which has several
features you can use for device adaptation. On smaller devices, for example, you can set certain properties that
will make particular columns pop in instead of being displayed as a normal column, or show and hide columns
completely.

For example, you can set a minScreenWidth for the columns. This will cause columns to only show up if a
certain screen width is matched. You can define this minScreenWidth in px or rem, but here you can also use
the standard categories that come from the device API (Phone, Tablet, or Desktop). For more information
about the device API, see The Device API [page 1137].

Setting the additional property demandPopin to true for a column will also react to the minScreenWidth you
specify. In such a case, the column will be shown as a popin on smaller screens, instead of being completely
hidden. For more information about responsive tables and their columns, see the sap.m.Table and
sap.m.Column samples and sap.m.Table in the API Reference in the Demo Kit.

sap.m.ResponsivePopover

The ResponsivePopover is actually a combination of the functionality offered by a sap.m.Dialog and a
sap.m.Popover. Depending on the device it is displayed on, it will either act as the former (on a phone) or as
the latter (on tablets and desktop). For reuse, it is best placed within a fragment, which will be instantiated and
displayed on demand, like when a user clicks a certain button, for example.

The ResponsivePopover does not need any additional properties to achieve proper device adaptation, it can
simply be used "as is". There are, however, several properties that only take effect on one particular type of
device, as some properties will not make any sense at all for a particular screen size.

For more details on these properties, see the documentation and sample for sap.m.ResponsivePopover in the
Samples and sap.m.ResponsivePopover in the API Reference in the Demo Kit.

sap.m.OverflowToolbar

The OverflowToolbar is a special type of toolbar that allows you to decide if elements within should go into
an overflow area when space on the screen is limited. All elements going into the overflow area can then be
reached by clicking the overflow button.

As a developer, you can decide if there are elements that will never or always go into the overflow area by
adding overflow layout data to particular content.

For detailed examples and more information about the OverflowToolbar, see the sap.m.OverflowToolbar
samples and sap.m.OverflowToolbar in the API Reference in the Demo Kit.

1140 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/entity/sap.m.Table/samples
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.m.Column/samples
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.Table.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.m.ResponsivePopover/samples
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.ResponsivePopover.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.m.OverflowToolbar/samples
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.OverflowToolbar.html

sap.m.PullToRefresh

The PullToRefresh control allows users to trigger an update operation with touch or mouse interaction. On
touch-enabled devices, the control will automatically be hidden, and users can swipe down the page to trigger
it. On mouse-operated devices, the control will always be shown and can be clicked in order to trigger the
functionality.

To use this control, it first needs to be placed within the content of any scroll container. In the corresponding
controller, the refresh handler can be implemented, which in this use case would update the list of products in
the view.

To see a full example and read more information about PullToRefresh, see the sap.m.PullToRefresh samples
and sap.m.PullToRefresh in the API Reference in the Demo Kit.

sap.ui.layout.form.Form

sap.ui.layout.form.Form is a form that can also adapt to the available screen size, particularly when used
with the corresponding ResponsiveGridLayout. A form consists of FormContainers, which in turn contain
the fields and their labels. You can define general layout data for a form. For instance, you can decide how many
columns you want to display depending on the available screen size, as shown here:

<f:layout> <f:ResponsiveGridLayout
 columnsL="4"
 columnsM="2"/> </f:layout>

(assuming that f is declared as the sap.ui.layout.form namespace under which the
ResponsiveGridLayout is also available.)

On a small screen, there will always be only one column for form containers.

Furthermore, you can define how much space labels will take when one or more columns are displayed, and
you can also specify sap.ui.layout.GridData as layout data on the FormContainers, labels and content
fields, as the sap.ui.layout.Grid is used internally in the form.

For more information about sap.ui.layout.form.Form, see the sap.ui.layout.form.Form samples and
sap.ui.layout.form.Form in the API Reference in the Demo Kit.

For more information about ResponsiveGridLayout and GridData, see
sap.ui.layout.form.ResponsiveGridLayout and sap.ui.layout.GridData in the API Reference in the Demo Kit.

Checking the Operating System your Application is Running
on

A platform attribute is added to the HTML tag when running on mobile devices.

This attribute provides information about the current platform and version.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1141

https://sapui5.hana.ondemand.com/explored.html#/entity/sap.m.PullToRefresh/samples
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.PullToRefresh.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.ui.layout.form.Form/samples
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.layout.form.Form.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.layout.form.ResponsiveGridLayout.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.layout.GridData.html

 Note
The list of supported devices when using sap.m library can be found here: Browser and Platform Support
[page 20]

In addition to that, SAPUI5 adds a platform-dependent CSS class to the HTML tag of the page. This enables
control or application developers to create platform-dependent styling for their controls or applications.

Technical Details

When the SAPUI5 bootstrap script file is loaded, a check is performed to see if the application is running on a
mobile platform. If this is the case, the attribute and CSS classes are added to the HTML tag. The platform
attribute value has the following connotation: Operating system + version, for example iOS6.0, Android4.1.1
or bb10.0.9.2372. Operating system can have the following values:

● iOS (Apple devices)
● Android (Android devices)
● bb (BlackBerry)
● winphone (Windows phone)

The version numbers are separated by dots. The possible values for the CSS class are:

● sap-ios (Apple devices)
● sap-android (Android devices)
● sap-bb (BlackBerry)
● winphone (Windows phone)

The platform attribute or CSS class is used as follows:

● To provide a different font on Android devices, you specify your font by directly using the CSS class sap-
android.

 .sap-android{
 font-family: Roboto; }

● Example for providing a different font when running on Android 2.x:

 html[data-sap-ui-os^='Android2'] .sap-android{
 font-family: "Droid Sans"; }

Content Densities

The devices used to run apps that are developed with SAPUI5 run on various different operating systems and
have very different screen sizes. SAPUI5 contains different content densities for certain controls that allow your
app to adapt to the device in question, allowing you to display larger controls for touch-enabled devices and a
smaller, more compact design for devices that are operated by mouse.

1142 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Available Content Densities

The table below shows the content densities that are available for the Quartz Light, Belize, Blue Crystal, and
high-contrast themes:

Content Density CSS Class Explanation

Cozy sapUiSizeCozy 'Large' design: Dimensions of the con
trols are optimized for touch-enabled
devices, such as smartphones, to allow
users to interact with controls more
easily.

This is the default density for most con
trols, particularly those in the sap.m li
brary.

Compact sapUiSizeCompact Reduced-size design: The font size is
the same as for the cozy density, but
the dimensions of the controls and the
spacing between them are reduced.
This density is more suitable for
mouse-operated devices, such as desk
tops.

For some controls, this is the default
density.

Condensed sapUiSizeCondensed Size even further reduced compared to
Compact (in particular, row heights
smaller).

This density can be used for all tables of
the sap.ui.table library.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1143

The following two screenshots show the difference between the Cozy and Compact densities, using a simple
sap.ui.table.Table example:

Figure 218: Cozy Density: Mainly for Touch Devices (such as Smartphones)

Figure 219: Compact Density: Mainly for Mouse-Operated Devices (such as Desktops)

Checking Which Content Densities Are Supported for a Control

If you need to know which content densities are supported for a particular control, the best place to look is the
Samples section in the Demo Kit. After choosing a control from the list, look at the details in the Object Header

1144 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html

area to see which density is supported. In the example shown below, the control supports both the Compact
and Cozy content densities:

Alternatively, you can also use the filter function in the Samples in the Demo Kit to filter the controls according
to their content densities. Simply choose the filter selection icon in the upper left corner of the screen and then
select Content Density, as shown below:

Setting Densities

You set the corresponding content density CSS class on the container for the part that you need to switch to
the content density in question, not on the control itself. This is usually done within the administration settings
of the SAP Fiori launchpad, but for a standalone scenario we recommend that you set it at a high level, such as
<body>, as in most cases you will want to set it for the whole app.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1145

 Note
Be aware that you can only set one density within a hierarchy: Once you have set a CSS class at a high level,
such as the one described above, it cascades all the way down, meaning you cannot revoke or overwrite it in
the lower levels of your coding.

Thus, when using densities, you cannot mix them: You must not combine Cozy and Compact or Cozy and
Condensed within the same hierarchy.

You can use densities in the following way:

● Cozy
Make sure you always only use the Cozy density within a hierarchy.

● Compact
Make sure you always only use the Compact density within a hierarchy.

● Condensed
Condensed is a special case and can only be used in combination with the Compact density.
Also, keep in mind that the Condensed density has an effect on controls in the sap.ui.table library and
their content only. If the density is set for controls outside of these tables, it will not have any effect on
them.

How to Use Densities for Controls

How content densities are set and how they can be used in the SAP Fiori launchpad is explained and shown in
the following code samples (using the Compact density as an example).

 Note
The default design for all controls belonging to the sap.m library is the Cozy density (larger dimensions and
spacings). If your application only uses the sap.m library, you can skip setting a CSS class if the Cozy
density is exactly what you require. However, controls belonging to other libraries may also support a cozy
design (such as sap.ui.table.Table) but the default might be different (such as Compact density). For
this reason, if your application uses controls belonging to different libraries, we strongly recommend that
you set the CSS class sapUiSizeCozy if you want to use the Cozy density (and similarly, CSS class
sapUiSizeCompact for the Compact density).

Using Densities

A density is triggered by the related CSS class, for example, sapUiSizeCompact for the Compact density, set
on a parent element of the UI region for which you want to use the controls. This means that some parts of the
UI or different apps inside a sap.m.Shell can use the standard density of the sap.m controls, while other
parts can use a different density at the same time. However, sub-parts of the UI part that is set to Compact
density cannot use the Cozy density because the CSS class affects the entire HTML subtree.

As dialogs and other popups are located at the root of the HTML document, you also have to set the CSS class
for those elements to the respective density. The CSS class only affects child controls. You cannot make a

1146 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

control itself compact or cozy by adding the CSS class to it. Instead, set the CSS class on the parent container,
for example a view or a component.

XML view definition - Example:

<mvc:View class="sapUiSizeCompact" xmlns=....> ... </mvc:View>

JS view definition - Example:

createContent: function(oController) { ...
 this.addStyleClass("sapUiSizeCompact"); // make everything inside this View
appear in Compact density
 ... }

JavaScript opening a dialog - Example:

// "Dialog" required from module "sap/m/Dialog" var myDialog = new Dialog({.....}).addStyleClass("sapUiSizeCompact"); myDialog.open();

JavaScript instantiating a view - Example:

// "View" required from module "sap/ui/core/mvc/View" View.create({ ... }).then(function(oView) {
 oView.addStyleClass("sapUiSizeCompact"); });

 Note
It is also possible to apply the relevant density only under certain circumstances, for example, for devices
that do not support touch interaction. In this case, add the class dynamically to the UI instead of statically.
You can do this, for example, in the view controller:

sap.ui.define(['sap/ui/core/mvc/Controller', 'sap/ui/Device'],
function(Controller, Device) { return Controller.extend("sap.my.controller", {
 onInit: function() {
 // apply compact density if touch is not supported, the
standard cozy design otherwise
 this.getView().addStyleClass(Device.support.touch ?
"sapUiSizeCozy" : "sapUiSizeCompact");
 }
 }
); });

As the check depends on several factors, you may not want to repeat the same logic again and again. A dialog
opened from a compact or cozy view should, for example, also be in Compact or Cozy density.

Synchronizing a Density for a Dialog

As dialogs are rendered in a different part of the HTML tree, they do not automatically inherit the density. To
decide if you set the relevant density for a dialog, either perform the same check as for the view or use the

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1147

convenience function syncStyleClass from sap/ui/core/syncStyleClass. This convenience function
synchronizes a style class between elements. The function accepts the following parameters: Name of the style
class, source element, and destination element. The following code snippet shows an example:

<mvc:View controllerName="mycontroller"
 xmlns:mvc="sap.ui.core.mvc"
 xmlns="sap.m">
 <Button text="Show Dialog" press="onOpenDialog" /> </mvc:View>

<core:FragmentDefinition xmlns="sap.m" xmlns:core="sap.ui.core"> <Dialog title="Alert" type="Message">
 <Text text="Lorem ipsum dolor sit amet" />
 <beginButton>
 <Button text="Close" press="onDialogClose" />
 </beginButton>
 </Dialog> </core:FragmentDefinition>

sap.ui.define(["sap/ui/core/mvc/Controller", "sap/ui/core/Fragment", "sap/ui/
core/syncStyleClass"], function(Controller, Fragment, syncStyleClass) { return Controller.extend("mycontroller", {
 onOpenDialog: function (oEvent) {
 var fnSync = function() {
 // sync compact style
 syncStyleClass("sapUiSizeCompact", this.getView(),
this._oDialog);
 this._oDialog.open();
 }.bind(this);
 if (!this._oDialog) {
 Fragment.load({
 name: "mydialog",
 controller: this
 }).then(function(oDialog) {
 this._oDialog = oDialog;
 this.getView().addDependent(this._oDialog);
 fnSync();
 }.bind(this));
 } else {
 fnSync();
 }
 }
 }); });

When calling syncStyleClass from sap/ui/core/syncStyleClass, the source element can be a jQuery
object, a SAPUI5 control, or the ID of an HTML element. The destination object can either be a jQuery object or
a SAPUI5 control.

Checking for the Density Style Class

To determine if the relevant style class is set anywhere above a certain HTML element, you can use the
closest function from jQuery as shown in the following example:

// "Button" required from module "sap/m/Button" // "Dialog" required from module "sap/m/Dialog"
var btn = new Button({
 text: "Hello World",

1148 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 press: function(){
 var dialog = new Dialog({
 title: "Hello World",
 content: new Button({text:"Test Me"})
 });

 // add the 'sapUiSizeCompact' class if the Button is in an area using
Compact density
 if (this.$().closest(".sapUiSizeCompact").length > 0) { // "this" in the
event handler is the control that triggered the event
 dialog.addStyleClass("sapUiSizeCompact");
 }

 dialog.open();
 } });

Using Density Classes in the SAP Fiori launchpad

The SAP Fiori launchpad (FLP) optionally reads the supported content densities from the app descriptor
(manifest.json) and - if available - sets the appropriate content density class on the <body> tag. On devices
with mouse and touch support, the FLP also allows the desired content density to be configured by the user. To
avoid situations where an application and the FLP write different content density classes, we recommend using
the following logic within all applications that are intended to be used inside the FLP:

 getContentDensityClass : function() {
 if (this._sContentDensityClass === undefined) { // check whether FLP has already set the content density class; do
nothing in this case if (jQuery(document.body).hasClass("sapUiSizeCozy") ||
jQuery(document.body).hasClass("sapUiSizeCompact")) {
 this._sContentDensityClass = "";
 } else {
 // Store "sapUiSizeCompact" or "sapUiSizeCozy" in
this._sContentDensityClass, depending on which modes are supported by the app.
 // E.g. the “cozy” class in case sap.ui.Device.support.touch
is “true” and “compact” otherwise.
 }
 }
 return this._sContentDensityClass; }

This function returns an empty string if the FLP has already set a content density CSS class, or the proper CSS
class to be set. The result of this function should then be set as a style class on the root view of the application
and all dialogs and popups.

Providing Density Support for a Control

If you want to apply content densities to your own controls, provide the default CSS styling for the Cozy density
regardless of any size density classes and provide additional CSS styling to shrink the size, if an ancestor

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1149

element has the sapUiSizeCompact class, for example, for the Compact density. The following code snippet
shows you an example:

.myOwnControl { /* the standard (big) style */ ...
 height: 3rem;
 ...
}
.sapUiSizeCompact .myOwnControl { /* reduce the height in compact density */
 height: 2rem; }

Options for Further Adaptation

In addition to those performed automatically by SAPUI5, the application can apply further platform
adaptations.

You can use the sap.ui.Device API to check for touch enablement, a particular screen size, orientation,
browser or operating system, for example. For more information about this API, see The Device API [page
1137].

Besides using this API, there are also several options available for you to use by using CSS, as outlined below.

Hiding/Displaying Controls Depending on the Device

To determine a control’s visibility in a device-dependent way, you can use the following CSS classes:

● sapUiVisibleOnlyOnDesktop
● sapUiHideOnDesktop
● sapUiVisibleOnlyOnTablet
● sapUiHideOnTablet
● sapUiVisibleOnlyOnPhone
● sapUiHideOnPhone

The names are actually self-explanatory; for each device, you have a corresponding class that you can use to
either explicitly hide or show the particular control.

 Note
The control will still be part of the app but hidden by CSS only. For managing visibility on a generic level,
consider controlling the visible property with the device API instead, as this means the controls will not be
added to the DOM at all but just treated as invisible by SAPUI5.

1150 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Responsive Margin and Padding Classes

In order to make it possible for app developers to adjust margins and paddings in their apps without needing to
write their own CSS, SAPUI5 provides them with convenience classes. For responsiveness, the classes
sapUiResponsiveMargin and sapUiResponsiveContentPadding are particularly useful.

To read more detailed documentation about margins and padding classes, see Using Predefined CSS Margin
Classes [page 1046] and Using Container Content Padding CSS Classes [page 1051] respectively.

Writing Device-Dependent Custom CSS

It is easy to add your own device-dependent or screen-size-dependent custom CSS by prefixing your selectors
with the classes that come from the device API (for more information about the device API, see the link below
under Related Information). Whenever you need to set a particular style on, say, a small screen like a phone
only, you can do so by picking the sapUiMedia-Std-Phone CSS class as part of your selector. For example, a
particular style for phone only could look like this:

 .sapUiMedia-Std-Phone .yourSelector{
 Style-applied-to-phone-only: someValue; }

Additionally, the information regarding which device you are currently on is available on the html root tag as
one of these three CSS classes:

● sap-desktop
● sap-tablet
● sap-phone

This means you can provide style for the phone use case using CSS cascades as follows:

 .sap-phone .myControl {
 font-size: small; }

The main difference between the two options is that the first one makes assumptions based on the current
range interval (so the screen size), whereas the latter is indeed set depending on which device is present.

You might also consider checking the screen size using media queries in CSS or the browser/jQuery APIS in
JavaScript.

For more information about writing custom CSS in general, please also read CSS Styling Issues [page 1464].

Related Information

The Device API [page 1137]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1151

SAPUI5 Flexibility: Adapting UIs Made Easy

Modification-free, cost-saving, easy to use, and performant: Discover the new flexibility when adapting SAP
Fiori UIs using SAPUI5 flexibility.

Flexibility is key! Enterprise software must adapt to rapidly changing en
vironments. For example, customers need their apps to fit their proc
esses without long IT projects to adapt them, and cloud providers want to
run the same software for everyone to reduce TCO. You think adapting
the user interface of SAP Fiori apps (for example, by adding, hiding or re
arranging fields) is a complex process? Think again! SAPUI5 flexibility
features allow upgrade-safe and modification-free UI changes on differ-
ent levels (for example, at customer side) that can be performed by dif
ferent users (end users, key users, and developers).

Here are four reasons why you want to use SAPUI5 flexibility:

● It allows modification-free UI changes.
In contrast to extension points, UI changes made with SAPUI5 flexibility are modification-free. This means
better lifecycle stability over release cycles, as the original app stays untouched and the changes are
applied to the views only at runtime. This is achieved by storing the changes by the different users in
separate layers. For more information, see Layering Concept [page 1156].

● It saves time and money.
In the past, changing the UI was a complex, time and money consuming process. SAPUI5 flexibility
changes all that! For example, with its key user adaptation feature, even users without technical knowledge
can easily make UI changes themselves.

● It's easy to use.
Using SAPUI5 flexibility makes adapting the UIs of apps simple and intuitive, with WYSIWYG features and
tools that are available right in the context the user is working in: end users personalize object pages of
their apps and key users adapt apps for their teams directly in the SAP Fiori launchpad; developers can use
the SAPUI5 Visual Editor in SAP Web IDE .

● It's performant.
Last but not least: This flexibility doesn't come at the expense of performance! By caching the UI changes,
SAPUI5 flexibility guarantees smooth working with your adapted apps.

1152 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

How SAPUI5 flexibility supports its users

● #unique_536/unique_536_Connect_42_subsection-im1 [page 1153]
● #unique_536/unique_536_Connect_42_subsection-im2 [page 1154]
● #unique_536/unique_536_Connect_42_subsection-im3 [page 1155]

Hover over each quote for a brief description and click for more information.

End users can personalize object pages directly in the SAP Fiori launchpad

They just start the personalization mode and use intuitive WYSIWYG functions to adapt the UI to meet their
unique, day-to-day needs.

For the personalization feature to be available, in SAP Fiori launchpad on ABAP or on SAP Cloud Platform
Portal on Neo Environment, the app needs to be assigned to one of the user's roles.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1153

 Note
For more information, open the documentation for SAP Fiori Launchpad in SAP NetWeaver AS for ABAP
7.52 with SAP_UI 752 on the SAP Fiori Launchpad overview page, and search for Enabling
Personalization of Object Pages (Experimental)

For more information about personalizing object pages in SAP Fiori apps using SAPUI5 flexibility, open the
documentation for SAP Fiori Launchpad in SAP NetWeaver AS for ABAP 7.52 with SAP_UI 752 on the SAP
Fiori Launchpad overview page, and search for Personalizing Apps (Experimental).

Key users can adapt apps, which can then be used by all users, directly in the SAP Fiori
launchpad

Here's a typical scenario: A team lead who has business knowledge, but probably no technical or development
skills, wants to adapt an app for all users of the app. In the context of SAPUI5 flexibility, we call this team lead a
key user. Let's assume, the users would need to see the supplier number in addition. Using the key user
adaptation feature of SAPUI5 flexibility, the key user just starts the adaptation mode and changes the user
interface using intuitive WYSIWYG functions. So, for example, it's very easy to rearrange UI elements using drag
and drop or to add fields to the user interface. The supplier number would be added in no time. After releasing
the adapted version of the app, it's available for all users working with the app.

1154 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://help.sap.com/viewer/product/SAP_FIORI_LAUNCHPAD/EXTERNAL/en-US
https://help.sap.com/viewer/product/SAP_FIORI_LAUNCHPAD/EXTERNAL/en-US
https://help.sap.com/viewer/product/SAP_FIORI_LAUNCHPAD/EXTERNAL/en-US

For more information about adapting the user interface of SAP Fiori apps using the key user adaptation feature
of SAPUI5 flexibility, open the documentation for SAP Fiori Launchpad in SAP NetWeaver AS for ABAP 7.52
with SAP_UI 752 on the SAP Fiori Launchpad overview page, and search for Adapting SAP Fiori UIs at
Runtime. If you use SAP Cloud Platform Portal, see Adapting the UI at Runtime in the SAP Cloud Platform
Portal documentation.

Administrators have to enable key users to be able to use key user adaptation. For more information, search for
Enabling UI Adaptation at Runtime in the documentation for SAP Fiori launchpad in SAP NetWeaver
AS for ABAP 7.52 with SAP_UI 752 in the SAP Fiori Launchpad overview page on the SAP Help Portal.

Key user adaptation - minimal effort for developers, maximum benefit for customers
What has to be considered when developing apps that support key user adaptation? In a nutshell: It's all about
using the supported controls and stable IDs. For more information, see SAPUI5 Flexibility: Enable Your App for
UI Adaptation [page 1450]. If you've developed your app based on SAP Fiori elements, you can make changes
to the user interfaces using the intuitive SAPUI5 Visual Editor in SAP Web IDE, for example hiding the Export to
Excel button.

For more information, see SAPUI Visual Editor in the SAP Web IDE Full-Stack guide.

 Tip
Not all SAP Fiori apps support key user adaptation. How to find out whether an app does? Either contact
the developers of the app or check whether it uses the controls supported by key user adaptation as well as
stable IDs. To do so, access the diagnosis window and choose Control Tree. For more information, see
Diagnostics [page 1326].

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1155

https://help.sap.com/viewer/product/SAP_FIORI_LAUNCHPAD/EXTERNAL/en-US
https://help.hana.ondemand.com/cloud_portal/frameset.htm?f7f671f6c26348d7a662c2c3d120202d.html
https://help.sap.com/viewer/product/SAP_FIORI_LAUNCHPAD/EXTERNAL/en-US
https://help.sap.com/viewer/product/SAP_FIORI_LAUNCHPAD/EXTERNAL/en-US
https://help.sap.com/viewer/825270ffffe74d9f988a0f0066ad59f0/CF/en-US/17874ff21cb04d799657afb03d9e8b39.html

Related Information

Layering Concept [page 1156]
Example: Layering of UI Changes [page 1157]
Extending Apps [page 2143]
Stable IDs: All You Need to Know [page 1442]
SAPUI5 Flexibility: Enable Your App for UI Adaptation [page 1450]

Layering Concept

SAPUI5 flexibility uses a consistent layering concept to store the UI changes as semantic delta information.
This layering concept applies consistently to all users of SAPUI5 flexibility (end users, key users, and
developers).

The delta changes are stored in a repository, called layered repository, as it contains different layers where the
UI changes of the different users are stored in respective layers. Here's an overview:

Layer Used by Stores changes by Type of changes

USER Customer End users
User-specific personalization
settings (for object pages)

CUSTOMER Customer

Key users
UI changes to adapt apps for
all users made using key user
adaptation

End users
Views that the end user
saves as Public

CUSTOMER_BASE Customer Developers
UI changes made using the
SAPUI5 Visual Editor editor
in SAP Web IDE

VENDOR SAP SAP Example: Update of an app

The semantic changes are attached to stable IDs. This makes them upgrade-safe, for example, if the controls of
the app get exchanged.

How are the layered changes stored?

The changes are stored in the respective layers separately from the original content that remains unchanged.
The repository stores the logical information for the changes that are to be applied to the original entity in a
JSON-based file. The repository calls the client API to create, update, and delete these changes and calls the
REST services to update the back-end system.

1156 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Related Information

SAPUI5 Flexibility: Adapting UIs Made Easy [page 1152]
Example: Layering of UI Changes [page 1157]
SAPUI5 Flexibility: Enable Your App for UI Adaptation [page 1450]
Stable IDs: All You Need to Know [page 1442]

Example: Layering of UI Changes
Here's an example of how the layering of UI changes based on SAPUI5 flexibility works.

The original app displays the fields Vehicle and Type.

Using SAPUI5 flexibility, customer 1 adds the additional field Info and customer 2 renames the existing field
Vehicle to Car. After the app was shipped to the customers, SAP changes Vehicle to Automobile in the original
app.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1157

Applying the changes based on the layering concept, the customers would now get the following:

● In the app of customer 1, Vehicle would be replaced by Automobile. The Info field added by the customer
would also be applied.

● In the app of customer 2, the change made by SAP (Vehicle renamed to Automobile) would not be applied.
Reason: customer 2 renamed this field to Car and changes made by customers overrule changes made by
SAP.

Bootstrapping SAPUI5 Flexibility

You can define an alternative route from where to load SAPUI5 flexibility.

If you want SAPUI5 flexibility to be loaded from the default location as part of the SAPUI5 bootstrap, you don't
need to do anything.

If you'd like SAPUI5 flexibility to be loaded from an alternative location, use the configuration parameter
flexibilityServices="</path/to/alternative/location>".

If you'd like to disable SAPUI5 flexibility during SAPUI5 bootstrap, set the parameter value to an empty string.

You can get the value of the parameter using the method getFlexibilityServices of class
sap.ui.core.Configuration.

For more information on how to set a configuration parameter as well as how to retrieve its current value, see
sap.ui.core.Configuration.

Testing

SAPUI5 provides several testing options, like to unit and integration tests and the mock server.

Before you start implementing your first test, you should think about how to test the different aspects of your
application. The image below shows some examples of testing tools along the agile testing pyramid.

1158 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.core.Configuration

Figure 220: Testing pyramid

You can use a local test runner, such as Selenium or Karma, that automatically executes all tests whenever a
file in the app project has been changed.

Related Information

Tutorial: Testing [page 368]
Continuous Integration: Ensure Code Quality [page 1398]
Selenium Home Page
Karma Home Page

Unit Testing with QUnit

QUnit is a powerful, easy-to-use JavaScript unit testing framework. It is used by the jQuery, jQuery UI and
jQuery Mobile projects and is capable of testing any generic JavaScript code. It supports asynchronous tests
out-of-the-box.

 Note
Before you begin setting up a QUnit test environment, read the background information and introduction to
the QUnit test API itself, which is available on the external web site http://api.qunitjs.com/. This
official QUnit documentation features a complete description of the QUnit test API and contains many
examples.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1159

http://help.sap.com/disclaimer?site=http%3A%2F%2Fdocs.seleniumhq.org%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fwww.npmjs.com%2Fpackage%2Fkarma

Why Does SAPUI5 Use QUnit Tests?

QUnit tests provide good support for asynchronous testing. These types of tests are often needed for UI
functional tests, for example if you have to wait until rendering is done, animations are complete, or a backend
call returns. In addition, a QUnit test page can be executed standalone in the browser without the need of an
additional "tool". This makes the creation and execution of single QUnit tests much easier. Finally, QUnit is
closely related to jQuery, which is also a fundamental part of SAPUI5.

Creating a QUnit Test Page

Prerequisites

As a prerequisite for creating a test, you need to have created a SAPUI5 application (such as myapp). Once you
have done this, continue with the steps described below.

Creating a Test Page

Create a QUnit test module myqunittest.qunit.js in the folder test-resources/.

 Note
The file name XYZ.qunit.js is a recommendation to clearly indicate that this is a QUnit test. Technically,
the .qunit name extension is not required.

You can use the file template shown below. This code snippet shows a basic QUnit test template which is used
for SAPUI5 control tests.

Each test file represents a UI5 module.

/*global QUnit */ sap.ui.define([], function() {
 "use strict";
 QUnit.module("Module A");
 QUnit.test("1. a basic test example", 2, function (assert) {
 assert.ok(true, "this test is fine");
 var value = "hello1";
 assert.equal(value, "hello1", "We expect value to be 'hello1'");
 }); });

This QUnit test file does not include the SAPUI5 bootstrap (sap-ui-core.js). The test starter ensures that
the QUnit tests are loaded within an HTML page.

1160 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Writing Test Functions

Write your test code (like in the following example) into the template introduced in the previous section:

/*global QUnit */ sap.ui.define(["sap/m/Button", "sap/ui/qunit/QUnitUtils", "sap/ui/qunit/utils/
createAndAppendDiv"], function(Button, QUnitUtils, createAndAppendDiv) {
 "use strict";
 // create content div
 createAndAppendDiv("myContent");
 /* Create e.g. an SAPUI5 control which you need for your tests
 Alternatively you can do this also in the `beforeEach` method of a module
 */
 var oButton = new Button("myButton", {text: "Click me"});
 //...
 oButton.placeAt("myContent");
 /* The QUnit processing starts automatically when the page is
 loaded. If you want to delay the start because of some
 additional preparation work you can use the following utility
 function:
 */
 QUnitUtils.delayTestStart(5000);
 /* The module call can be used to categorize your test functions.
 In addition it is possible to define actions which are processed
 during `beforeEach` and `afterEach`.
 */
 QUnit.module("Module A");
 /* Example for a non-asynchronous test function:
 The first parameter is the name of the test,
 the second (optional) parameter is the number of expected assertions in
the test,
 the third parameter is the test function to call when the tests runs.
 */
 QUnit.test("Test 1", 3, function(assert) {
 assert.ok(true, "this test is fine");
 var value = "hello1";
 assert.equal(value, "hello1", "We expect value to be 'hello1'");
 /* You can also do some actions between the assertions,
 like triggering a keydown event with Enter key on the
 Dom element with ID 'myButton' using the utilities.
 Note: The utility function simulates a keyboard event
 using 'jQuery.trigger'. This is not a 'real'
 event which comes from the browser and there might
 be differences you must be aware of: When the
 user presses the Enter key on a button several
 events are fired by the browser like keydown, keyup,
 click, The function below ONLY simulates a
 keydown!
 */
 QUnitUtils.triggerKeydown("myButton", "ENTER");
 assert.ok(true, "another test after the action");
 });
 /* Modules have a second, optional "lifecycle" parameter. The life cycle
object can
 have two methods - `beforeEach` and `afterEach`. Both methods are called
for each test
 of the module. It is best practice to use those life cycle methods to
have standelone
 tests that do not have dependencies on other tests.
 */
 QUnit.module("Module B", {
 beforeEach: function() {
 // Code needed for the tests of this module
 // this.foo = new Bar();
 },
 afterEach: function() {

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1161

 // Cleanup here
 // this.foo = null;
 }
 });
 /* Example for an asynchronous test function: */
 QUnit.test("Test 2", 3, function(assert) {
 var done = assert.async();
 /* Instead of using the second parameter in the test definition you can
define the number expected assertions in the function body. This is handy, when
you write tests with different outcome. */
 // assert.expect(3);
 /* First you start with tests in the normal flow */
 assert.ok(true, "this test is fine");
 setTimeout(function() {
 assert.ok(true, "this test is executed asynchronously");
 /* Do the asynchrounos tests and give QUnit the sign to go on with
the next test function via 'done' when the processing of the current one is
completed */
 done();
 }, 1000);
 /* Do the things which needs a test delay, e.g. press a button which
starts a backend call */
 QUnitUtils.triggerKeydown("myButton", "ENTER");
 assert.ok(true, "this test is not executed asynchronously"); });

Executing a QUnit Test

Creating a QUnit TestSuite

For running QUnit tests, you need a QUnit TestSuite which configures the environment for the test. You create
the QUnit TestSuite as follows:

1. Create a file named testsuite.qunit.html:

 <!DOCTYPE html> <html>
 <head>
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta charset="utf-8">
 <base href="../../">
 <title>TestSuite myapp</title>
 <script src="resources/sap/ui/test/starter/createSuite.js"
 data-sap-ui-testsuite="test-resources/testsuite.qunit"></
script>
 </head>
 <body>
 </body> </html>

2. Create an additional configuration file that contains references to all tests, for example,
testsuite.qunit.js.

The QUnit test starter is configured with one configuration file per QUnit TestSuite. The file is a standard
SAPUI5 AMD module (using sap.ui.define) which returns an object with the configuration.

1162 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

The configuration object is an object with the following top level properties:

sap.ui.define(function() { "use strict";
 return {
 /*
 * Name of the test suite.
 *
 * This name will be used in the title of the index page / testsuite
page.
 */
 name: "TestSuite for myapp",
 /*
 * An Object with default settings for all tests.
 *
 * The defaults and the test configuration will be merged recursively in
a way
 * that the merge contains properties from both, defaults and test
config;
 * if a property is defined by both config objects, the value from the
test config will be used.
 * There's no special handling for other types of values, e.g an array
value in the defaults
 * will be replaced by an array value in the test config.
 */
 defaults: {
 qunit: {
 version: 2
 }
 },

 /*
 * A map with the individual test configurations, keyed by a unique test
name.
 *
 * There's no technical limitation for the length or the characters of
the test names.
 * The will be used only in the overview page showing all tests of your
suite.
 *
 * But by default, the name is also used to derive the ID of the module
that contains the test cases.
 * It is therefore suggested to use module ID like names (no blanks, no
special chars other than / or dot)
 * If you have multiple tests that execute the same module but with
different configurations
 * (e.g. different QUnit versions or different URL parameters), you have
to make up unique names
 * and manually configure the module IDs for them.
 */
 tests: {
 /*
 * A test named 'myqunittest'.
 * By default, it will require the module 'myqunittest.qunit'
 * assuming that your testsuite configuration is stored in
testsuite.qunit.js.
 */
 myqunittest: {
 title: "My QUnit test for myapp"
 }
 }
 };
});

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1163

Starting the QUnit TestSuite

After creating the QUnit TestModule, you can easily run this test without any tool in any browser by just using
the URL of the QUnit TestSuite page, for example http://localhost:8080/myapp/test-resources/
testsuite.qunit.html. This executes the test and informs you about its success or shows you any errors.

Migrating Existing HTML-based Testing Suites

The migrating of existing HTML-based QUnit tests to the new QUnit test starter framework brings several
benefits:

● Code reduction by removing duplicated HTML environment code
● Separation of concerns: test js code, html environment code, configuration code
● CSP compliance: No inline JavaScript execution

Extract Configuration from QUnit TestSuite and Tests
The list of configured test pages as defined in the existing testsuite.qunit.html has to be transformed to
the new configuration format described in the Configuration section.

For each individual test page, the necessary configuration has to be extracted from the page itself: the QUnit
version and Sinon version that is used, if a Bridge (Sandbox) is used and the options that are defined for the
UI5 Core or for Code coverage etc.+

The configuration has to be stored in a new AMD module that has the same name as the QUnit TestSuite but
ending with '.js' instead of '.html', for example, testsuite.qunit.js.

Make testsuite.qunit.html Use the Externalized Configuration

The testsuite.qunit.html must be re-written to use the above mentioned createSuite.js script and to
read the new configuration:

testsuite.qunit.html

<!DOCTYPE html> <html>
 <head>
 <!-- the usual headers -->
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta charset="utf-8">
 <!-- it is suggested to use a base tag pointing to the application root,
 as it normalizes URLs across test suites, but this is not mandatory
-->
 <base href="../../../../../../../">
 <!-- include the generic script that creates the TestRunner suite from
the configuration
 The name of the suite is specified in a separate attribute data-sap-
ui-testsuite.
 Note that this attribute value is a UI5 resource name (no .js at
the end, no relative name).
 The configuration will be read using sap.ui.require. The test
starter will take care to
 register a path for prefix 'test-resources/'.
 -->
 <script src="resources/sap/ui/test/starter/createSuite.js"

1164 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 data-sap-ui-testsuite="test-resources/sap/ui/core/qunit/test/
starter/testsuite.starter.qunit"></script>
 </head>
 <body>
 </body> </html>

(Semi-)Automation

The application migrate.html can automate parts of the above work. After starting it, it collects the names of
existing QUnit TestSuites. This may take about 60 sec and provides a list of the existing QUnit TestSuites. Enter
the name of one QUnit TestSuite. The application reads it, collect the tests, peeks into the individual test files to
gather some of the configuration settings, and shows the resulting testsuite.qunit.html and
testsuite.qunit.js in two code editors. You can use the shown code as a starting point for your migration.

Convert Test Pages to AMD Modules
This step is potentially the biggest effort and it has to be done manually. In order that it can be used with the
new testing / testsuite approach, note the following minimal requirements:

● The HTML page is converted to an AMD JS module, using sap.ui.define.
● The test configuration (used testing framework components, UI5 Core setup ...) has been added to the

external configuration described above
● The new module creates all QUnit tests on execution, not later. It does not call QUnit.start(). If, for

some reason, the module cannot fulfill this task on execution, but has to wait for some asynchronous task,
the test option autostart can be set to false and the test module can call QUnit.start() at an
appropriate point in time. Note: Do not mix the test option autostart with the QUnit option autostart.

The following requirements that are optional:

● The test code is fully cleaned up and no longer uses globals, only AMD references.
● The test code no longer uses sync APIs.

 Note
This will become a mandatory requirement for CSP level 2 policy as sync code loading always requires
a kind of eval.

Test Suite Configuration Options

Both, the defaults and the individual test configurations have the same structure, which is documented in the
following code snippet. The snippet also shows the internal defaults of the test starter. They are used as a
fallback for options that are not defined in the configuration file (neither defaults, nor individual tests).

{ /*
 * ID(s) of the module(s) to load.
 *
 * Can either be a single string or an array of strings.
 * Each string can use the following placeholders
 * leading "./" - package name of the testsuite configuration
 * {name} - name of the current test
 */
 module: "./{name}.qunit",

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1165

 /*
 * URL of the test page to start for this test.
 *
 * By default, all tests use the generic starter page which reads the suite
 * configuration, finds the tests and starts the configured test components
 * before it requires and executes the configured test module(s).
 *
 * The URL must be relative to the application root and can use the following
 * placeholders, enclosed in curly braces:
 * {suite} - name of the testsuite (configuration)
 * {name} - name of the current test
 */
 page: "resources/sap/ui/test/starter/Test.qunit.html?
testsuite={suite}&test={name}",

 /*
 * Title of the test.
 * The URL must be relative to the application root and can use the following
 * placeholders, enclosed in curly braces:
 * {suite} - name of the testsuite (configuration)
 * {name} - name of the current test
 */
 title: "QUnit tests '{name}' of suite '{suite}'",

 /*
 * QUnit configuration.
 *
 * Either can be a null or false or an object with the properties documented
below.
 * The values null and false are equivalent to the object { version: null }
 */
 qunit: {
 /*
 * Version of QUnit that should be loaded.
 * If set to a null, QUnit won't be loaded.
 * If set to "edge", the newest available version of QUnit will be used.
 * If set to a number, the corresponding version of QUnit will be used
if supported.
 * Currently supported versions are 1 and 2, an error will be thrown for
unsupported versions.
 */
 version: "edge",

 /*
 * Most statically configurable options from QUnit.config can be
configured,
 * e.g. reorder, blocking etc.
 * Note that 'autostart' is an exception. To avoid timing issues with
asynchronous test
 * loading, 'autostart' will always be set to false. Only after all
tests have been loaded,
 * QUnit.start() will be called, either by the generic test starter or
by the test module itself,
 * see the general test option 'autostart' below.
 */
 // reorder: true // only serves as an example, not part of the internal
defaults of the starter
 },

 /*
 * Sinon configuration.
 *
 * Either can be a null or false or an object with the properties documented
below.
 * The values null and false are equivalent to the object { version: null }

1166 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 */
 sinon: {

 /*
 * Version of Sinon that should be loaded.
 * If set to null, Sinon won't be loaded.
 * If set to "edge", the newest available version of Sinon will be used.
 * If set to a number, the corresponding version of Sinon will be used
if supported.
 * Currently supported are versions 1 and 4, an error will be thrown for
unsupported versions.
 */
 version: "edge",

 /*
 * Whether one of the sinon-qunit bridges will be loaded.
 * When set to true, the sap/ui/thirdparty/sinon-qunit bridge will be
loaded for Sinon 1
 * and the sap/ui/qunit/sinon-qunit-bridge will be loaded for newer
versions of Sinon.
 *
 * The bridge will only be loaded after both, QUnit and Sinon have been
loaded.
 * If either QUnit or Sinon are not loaded, no bridge will be loaded.
 *
 * If Sinon is not loaded, but QUnit, the bridge will not be loaded, but
a shim
 * with dependencies will be configured. This allows tests to load
Sinon / the bridge on
 * their own without taking care of the bridge dependencies.
 */
 qunitBridge: true,

 /*
 * Any other statically configurable Sinon option can be specified as
well.
 * Note that they only play a role when a sandbox is used.
 */
 useFakeTimers: false,
 useFakeServer: false
 },

 /*
 * Code coverage options.
 * The qunit-coverage module will always be loaded after QUnit has been
loaded to enable the coverage
 * option. When the 'coverage' parameter is set in the URL (e.g. because the
coverage checkbox has been
 * clicked), then blanket will be loaded before qunit-coverage to avoid
synchronous loading of it.
 */
 coverage: {
 only: null,
 never: null,
 branchTracking: false
 },
 /*
 * UI5 runtime configuration options.
 *
 * All properties will be copied to window["sap-ui-config"].
 * If window["sap-ui-config"] doesn't support it or if the value is of a type
 * not supported for window["sap-ui-config"], executing the UI5 Core might
fail.
 *
 * Only exception for now: the libs property can be an array of library
names,

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1167

 * not only a comma separated string.
 *
 * To ease test development, the following defaults are defined by the test
starter:
 */
 ui5: {
 bindingSyntax: 'complex',
 noConflict: true,
 libs: [],
 theme: "sap_belize"
 },

 /*
 * Whether the UI5 Core (sap/ui/core/Core.js) should be required and booted.
 *
 * When this option is true, the Core is not only loaded and started, but
loading and execution
 * of the test module(s) is also delayed until a listener registered with
sap.ui.getCore().attachInit()
 * has been executed.
 */
 bootCore: true,

 /*
 * Whether the test starter should call QUnit.start() after all
prerequisites have been fulfilled
 * (e.g. QUnit, Sinon, a bridge, have been loaded, coverage tooling has been
loaded and configured,
 * the Core has been booted, the test modules have been loaded and executed).
 */
 autostart: true,

 /*
 * Whether the test starter should skip a test file. Such tests will remain
in the overview list,
 * but won't be executed in the test suite.
 */
 skip: false };

Code Coverage Measurement

You can measure the code coverage for your test inside the Control.qunit.html page either via HTML or
JavaScript code using Blanket.js.

HTML

With the following line you enable Blanket.js to measure the code coverage:

<script type="text/javascript" src="../../../../../resources/sap/ui/qunit/qunit-
coverage.js"></script>

With this argument, all files that are executed during the test run are added to the result.

1168 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

If you want to limit the test run, you can use the following code:

● Limit test to a single file:

<script type="text/javascript" src="../../../../../resources/sap/ui/qunit/
qunit-coverage.js" data-sap-ui-cover-only="sap/ui/core/Popup.js" ></script>

● Limit test to multiple files (provide an array with comma-separated sources that should occur in the
result):

<script type="text/javascript" src="../../../../../resources/sap/ui/qunit/
qunit-coverage.js" data-sap-ui-cover-only="[sap/ui/core/Popup.js, sap/ui/core/EventProvider]" ></script>

● Limit test to a specific library:

<script type="text/javascript" src="../../../../../resources/sap/ui/qunit/
qunit-coverage.js" data-sap-ui-cover-only="sap/ui/core/" ></script>

● Exclude specific objects:

<script type="text/javascript" src="../../../../../resources/sap/ui/qunit/
qunit-coverage.js" data-sap-ui-cover-never="sap/m/" ></script>

JavaScript

Inside your test page, you can add these lines before running the tests:

sap.ui.require(["sap/ui/qunit/qunit-coverage"], function(/*coverage*/){ // code });

If you want to limit the test run, you can use the following code:

● Limit test to a single file:

if (window.blanket) { blanket.options("sap-ui-cover-only", "sap/ui/core/Popup.js"); }

● Limit test to multiple files (provide an array with comma-separated sources that should occur in the
result):

if (window.blanket) { blanket.options("sap-ui-cover-only", "[sap/ui/core/Popup.js, sap/ui/core/
EventProvide]"); }

● Limit test to a specific library:

if (window.blanket) { blanket.options("sap-ui-cover-only", "sap/ui/core/");

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1169

}

● Exclude specific objects:

if (window.blanket) { blanket.options("sap-ui-cover-never", "sap/ui/example/thirdparty/"); }

Results

To view the results of the measurement, select the Enable coverage checkbox on the test page. This will trigger
a new test run.

In this example the coverage is limited to one specific file - the only one that is important for this test.

1170 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Related Information

More information about Blanket.js

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1171

http://help.sap.com/disclaimer?site=https%3A%2F%2Fgithub.com%2Falex-seville%2Fblanket%2Fblob%2Fmaster%2Fdocs%2Fintermediate_browser.md

Sinon.JS: Spies, Stubs, Mocks, Faked Timers, and XHR

By integrating Sinon.JS for QUnit, you can use spies, stubs, mocks, faked timers or faked XHR. For more
information about using sinon.js, see the official documentation at http://sinonjs.org/docs/.

All you have to do is add a sinon section to the test suite configuration as shown below:

sap.ui.define(function() { "use strict";

 return {
 name: "TestSuite for myapp",
 defaults: {
 qunit: {
 version: 2
 },
 sinon: {
 version: 4,
 qunitBridge: true,
 useFakeTimers: false
 }
 },
 // ...
 }; });

The variable sinon is now globally available in your test.

The following examples show you the basic way in which Sinon.JS can be used. These examples are adapted
from the official Sinon.JS documentation available at http://sinonjs.org/docs/:

A simple spy test:

/*global QUnit sinon */ sap.ui.define(["sap/m/Button"], function(Button) {
 "use strict";
 QUnit.test("Spy", 2, function(assert) {
 var callback = sinon.spy();
 var oButton = new Button();
 oButton.attachPress(callback);
 assert.ok(!callback.called, "Callback Spy not called yet");
 oButton.firePress();
 assert.ok(callback.called, "Callback Spy called");
 oButton.destroy();
 }); });

A simple stub test:

/*global QUnit sinon */ sap.ui.define([], function() {
 "use strict";

 QUnit.test("Stub", 1, function(assert) {
 sinon.stub(jQuery, "ajax").yieldsTo("success", [1, 2, 3]);

 jQuery.ajax({
 success: function (data) {
 assert.deepEqual(data, [1, 2, 3], "Right data set");
 }
 });
 jQuery.ajax.restore();
 });

1172 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

})

A simple mock test:

/*global QUnit sinon */ sap.ui.define([], function() {
 "use strict";
 QUnit.test("Mock", 2, function(assert) {
 var myAPI = { method: function () {} };

 var mock = sinon.mock(myAPI);
 mock.expects("method").once().throws();

 try {
 myAPI.method();
 } catch (exc) {
 assert.ok(mock.verify(), "Mock function called and all expectations
are fullfilled");
 }
 mock.restore();
 }); });

A simple faked timer test:

/*global QUnit sinon */ sap.ui.define([], function() {
 "use strict";

 QUnit.test("Basic", 1, function(assert) {
 var oClock = sinon.useFakeTimers();
 setTimeout(function() {
 assert.ok(true, "Called without need of async test");
 }, 800);
 oClock.tick(800);
 oClock.restore();
 }); });

A simple faked XHR test:

/*global QUnit sinon */ sap.ui.define([], function() {
 "use strict";
 QUnit.module("Faked XHR", {
 beforeEach: function() {
 this.xhr = sinon.useFakeXMLHttpRequest();
 var requests = this.requests = [];
 this.xhr.onCreate = function (xhr) {
 requests.push(xhr);
 };
 },
 afterEach: function() {
 this.xhr.restore();
 }
 });
 QUnit.test("Basic", 2, function(assert) {
 var callback = sinon.spy();
 jQuery.ajax("test", {
 success: callback
 });
 assert.equal(1, this.requests.length, "Right number of requests");
 this.requests[0].respond(200, {
 "Content-Type": "application/json"
 }, '[{ "foo": "bar", "bar" : "foo" }]');

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1173

 assert.ok(callback.calledWith([{ "foo": "bar", "bar" : "foo" }]), "Data
is called right"); });

How to Test SAPUI5 Controls with QUnit

Comprehensive overview of QUnit testing for controls.

Dos and Don'ts

● When writing QUnits, always keep your tests atomic.
● Don't rely on the execution of previous tests.
● Don't introduce globals, destroy controls after creating them.
● Only test one single thing.
● When writing a test, always make sure you break it first: don't rely on tests that have never failed!
● Write human readable tests - use descriptive names for variables. Readability is more important than

performance. You don't have to write a reuse for everything. It's ok to repeat yourself in unit tests if it helps
readability.

● Don't test too many internal aspects: try to test the control like an application or user will use it.
● You have to find a balance between not stubbing / expecting too much of the internal aspects and not

doing it at all. If you tightly couple your test to the implementation, maintenance will be a pain.
● If your test is too long, you're squeezing too much stuff into one of your control's functions. Divide the

complexity, then your test will be simpler and your productive code will be better.
● Don't test general SAPUI5 functionality. Only test things actually done by your control (see "What Should

You Test?" below).
● Never write an if in a test. It is a sign that you're either not stubbing correctly or you're testing multiple

things in one test.
● Never use the expect QUnit statement. You should always write your test in a way that every assertion you

set up will be hit 100%.
● Whenever you encounter a Bug/Ticket, start by writing a QUnit that fails first, and then fix the code.
● Write your tests as small as possible: don't add a statement that is not needed for the test, such as an ID in

the control's constructor properties.
● Use fake timers to avoid as many async tests as possible.
● Don't test the exact same thing multiple times.
● Use modules for grouping your tests: this will give you a better organizational test setup.
● You may use modules for beforeEach/afterEach, but don't overuse this feature. If you have a longer

module, you might not see what the test does because you don't know its setup.
● It's sometimes better to write code multiple times.
● Don't set up your system being tested in the beforeEach/afterEach. It is very rare that all tests in a

module have the same constructor. Furthermore, using a global constructor object is dangerous.

If you stick to these rules, you will find it much easier to refactor/maintain your tests. Keeping the tests atomic
will make debugging much easier, because you will hit your breakpoints for the code being tested only. If you

1174 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

write QUnits without keeping to these rules, you may well not notice anything bad to begin with, but you will
eventually end up in the middle of a maintenance nightmare!

Arrange Act Assert Pattern

Internally, we use three templates for testing. The one shown below is the general control template.

Use the following pattern to structure your tests. If everyone sticks to this same pattern, you will be able to read
your colleagues' tests very quickly:

 QUnit.test("Should do Something", function (assert) {
 // Arrange

 // System under Test
 var oMyControl = new nameSpace.myControl({
 });

 // Act

 // Assert
 // Cleanup
 oMyControl.destroy(); });

Arrange

In Arrange, you should set up the dependencies and options you need for your System under Test.

Examples:

● The constructor object of your control
● Sinon spies/stubs and mocks (dependencies of your System under Test)
● Model

System under test

In System under Test, you should create your control and you should also render it if you want to test the
rendering.

Act

Ideally, this part is only one single line of code executing the function you want to test.

Assert

This part may contain multiple statements of QUnit assertions, but ideally not too many in total.

Make sure that you also test negative paths, not only the expected ones.

Optional: Cleanup

Here you should destroy all the controls/models you created.

If you don't use Sinon sandboxes, revert all the spies/stubs/mocks.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1175

What Should You Test?

● Test all the public functions you introduced.
● Test all the overwritten getters and setters.
● Test your control's events and how often they are called.
● Test all possible user interactions (tap, keyboard, focus).
● You could test how often your control gets rerendered when interacting with it, but only if you are worried

that it might be rerenderd too often or not at all.
● Test RTL if you have special things done in javascript.
● Write some integration tests if you have a composite control (don't cover 100% of your child controls -

that's overkill and child controls will be hard to maintain).
● You may test default values of properties, since we cannot change them backwards afterwards and a test

will recognize this.
● Test how your control interacts with models (OData + Json).
● Test the destruction of your control when working with composites, test if all dependencies/events are

unbound on destruction.

What Should You NOT Test?

● Never test non-overwritten getters and setters (these are tested in the core of the framework).
● Never test your complete CSS with computed styles: just check if the classes are set correctly. Focus on

testing JavaScript.
● Never test other generic framework functionality. Focus on your control.

Rendering Tests

In the rendering tests part, you have to place your control in the DOM. The best place to put it is the qunit-
fixture div, since its content gets deleted after every test.

Make sure you destroy your control, since SAPUI5 will keep a reference to it and may also rerender it.

It's crucial that you call sap.ui.getCore().applyChanges() after each time you have caused a
rerendering.

The call to this function synchronizes the changes of your control with the DOM. If you do not make this call,
the DOM will not be updated.

You can use the following template to make sure that you don't forget to destroy your control:

QUnit.test("Should do Something", function(assert) { // Arrange
 var oContructor = {

 };

 // System under Test
 var oMyControl = new nameSpace.myControl(oContructor);

1176 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 oMyControl.placeAt("qunit-fixture");
 sap.ui.getCore().applyChanges();
 // Act

 // Assert
 // Cleanup
 oMyControl.destroy(); });

Pitfalls

Sinon fake timers
If you are using sinon.qunit, it will automatically use fake timers by itself. Fake timers will prevent any
setTimeout/setIntervall function from being executed, unless you call
this.clock.tick(milliseconds) in your test. This means that a Mock Server with auto-respond will not
respond and OPA will not be able to wait for controls.

In addition, control events might be fired inside of a setTimeout(, 0), so the event might not be triggered at
all.

Testing SAPUI5 control events with Sinon
If you want to test SAPUI5 events, you can use spies to test how often they are called. If you try to test the
parameters, however, you cannot do this with spies as SAPUI5 uses an eventPool that reuses the same object
again. This means that after an event is set, all of the parameters will be deleted, Sinon will keep a reference to
the object without properties.

The effect of this is that you cannot assert on them anymore. The workaround is to use a stub with a custom
implementation that saves a copy of the parameters to your test function scope.

An example of this is shown in the cookbook below (events).

I've set a property on my control: Why aren't the changes in the DOM?
The most likely reason for this is that sap.ui.getCore().applyChanges() was not called. SAPUI5 does not
render synchronously, but calling this function will render immediately.

Cookbook for Testing Controls with QUnit

Test Cases

You can use a factory function. To keep this pointer and have a descriptive message, you should use the test
inside of the function and pass a test name to it.

Internally, we prefer to pass an object to the test for retrieving the values - it makes the test cases readable.

// "Bar" required from module "sap/m/Bar"

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1177

 // "Core" required from module "sap/ui/core/Core"
function renderBarInPageTestCase(sTestName, oOptions) {
 QUnit.test(sTestName, function (assert) {
 // System under Test
 var oBar = new Bar();
 oBar.placeAt("qunit-fixture");
 // Act
 oBar.applyTagAndContextClassFor(oOptions.context);
 Core.applyChanges();
 // Assert
 assert.strictEqual(oBar.getDomRef().nodeName,
oOptions.expectedTag.toUpperCase());
 assert.ok(oBar.$().hasClass(oOptions.expectedClass), "The bar has the
context class: " + oOptions.expectedClass);
 // Cleanup
 oBar.destroy();
 });
};
renderBarInPageTestCase("Should render the header context", {
 context : "header",
 expectedTag : "header",
 expectedClass : "sapMHeader-CTX"
});
renderBarInPageTestCase("Should render the header context", {
 context : "subheader",
 expectedTag : "header",
 expectedClass : "sapMSubHeader-CTX"
});
renderBarInPageTestCase("Should render the header context", {
 context : "footer",
 expectedTag : "footer",
 expectedClass : "sapMFooter-CTX" });

Testing Control Events

You cannot test for event parameters in SAPUI5 so you have to record them. Nevertheless, you can still use
Sinon to retain the spy's call counting capabilities. Here is a working example for this:

// "HashChanger" required from module "sap/ui/core/routing/HashChanger" QUnit.test("Should set the Hash", function(assert) {
 //Arrange
 var aCalls = [],
 fnHashChanged = function(oEvt) {
 aCalls.push({ newHash : oEvt.getParameter("newHash"), oldHash :
oEvt.getParameter("oldHash") });
 },
 oSpy = this.spy(fnHashChanged);

 //System under Test
 var oHashChanger = new HashChanger();
 oHashChanger.init();
 oHashChanger.attachEvent("hashChanged", oSpy);
 //Act
 oHashChanger.setHash("one", true);
 oHashChanger.setHash("two");
 //Assert
 assert.strictEqual(oSpy.callCount, 2, "did change the Hash two times");
 assert.strictEqual(aCalls[0].newHash, "one", "first event was correct");
 assert.strictEqual(aCalls[1].newHash, "two", "second event was correct");

 //Cleanup
 oHashChanger.destroy();

1178 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 });

Testing User Interactions

When testing user interactions, you can use sap.ui.test.qunit to trigger events.

Here is an example for when a user presses Esc on the select:

// "Item" required from module "sap/ui/core/Item" // "Select" required from module "sap/m/Select"
// "KeyCodes" required from module "sap/ui/events/KeyCodes"
// "Core" required from module "sap/ui/core/Core"
// "QUnitUtils" required from module "sap/ui/qunit/QUnitUtils"
QUnit.test("Should close the popup menu if it is open and you press escape",
function(assert) {
 // Arrange
 var oContstructor = {
 items: [
 new Item({
 key: "0",
 text: "item 0"
 }),
 new Item({
 key: "1",
 text: "item 1"
 })
]
 };
 // System under test
 var oSelect = new Select(oContstructor);
 oSelect.placeAt("select-content");
 Core.applyChanges();
 // Arrange after rendering
 oSelect.focus();
 var fnEscapeSpy = this.spy(oSelect, "onsapescape");
 var fnCloseSpy = this.spy(oSelect, "close");
 // Act
 QUnitUtils.triggerKeydown(oSelect.getDomRef(), KeyCodes.ESCAPE);
 // Assertion
 assert.strictEqual(fnEscapeSpy.callCount, 1, "onsapescape() method was
called exactly once");
 assert.strictEqual(fnCloseSpy.callCount, 0, "close() method is not called");
 // Cleanup
 oSelect.destroy(); });

Testing the Re-rendering

In this example, you will test to see whether the control fails to rerender. The control has overwritten the setter
of the tooltip property to avoid triggering a re-rendering.

To test this, we add an eventDelegate to see how often the rendering function is called. We need to make
sure that we apply the changes after setting the property because we want SAPUI5 to render synchronously:

// "Label" required from module "sap/m/Label" // "Core" required from module "sap/ui/core/Core"

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1179

QUnit.test("Should suppress rerendering when tooltip is set", function(assert) {
 // Arrange
 var oContructor = {
 tooltip : "foo"
 };
 var oRerenderingSpy = this.spy();
 // System under Test
 var oLabel = new Label(oContructor);
 oLabel.placeAt("qunit-fixture");
 Core.applyChanges();
 oLabel.addEventDelegate({
 onBeforeRendering : oRerenderingSpy
 });
 // Act
 oLabel.setTooltip("bar");
 Core.applyChanges();
 // Assert
 assert.strictEqual(oRerenderingSpy.callCount, 0, "Did not rerender");
 assert.strictEqual(oLabel.getTooltip(), "bar", "Tooltip property got set");
 assert.strictEqual(oLabel.$().attr("title"), "bar", "Tooltip got updated");
 // Cleanup
 oLabel.destroy(); });

Testing with Models

When testing with models, you need to make sure that you also setup/destroy your model inside a test itself.
OData tests will always be integration tests, since you will require multiple files in order to use the mock server.
You may use a factory method to do this.

An example for setting up the mock server is shown below:

 // "MockServer" required from module "sap/ui/app/MockServer"
function startMockServer(iRespondAfter) {
 // configure respond to requests delay
 MockServer.config({
 autoRespond : true,
 autoRespondAfter : iRespondAfter || 10
 });
 // create mockserver
 var oMockServer = new MockServer({
 rootUri : "http://sap.com/service/"
 });
 // start and return
 oMockServer.simulate("data/metadata.xml", "data");
 oMockServer.start();
 return oMockServer;
}
//Your test:
QUnit.test("Should do something with the model", function (assert) {
 //Arrange
 var oMockServer = startMockServer(0),

 // System under Test + Act
 //Cleanup
 oMockServer.stop(); });

When using the mock server, you can use async tests since calling respond each time on the mock server does
not help the readability of the test.

1180 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

After setting up the mock server, we set up the model as follows:

 // "ODataModel" required from module "sap/ui/model/v2/ODataModel"
// "jQuery" required from module "sap/ui/thirdparty/jquery"
function createODataModel(sURL, mSettings) {
 sURL = sURL || "http://sap.com/service/";
 var oModel = new ODataModel(sURL);

 mSettings = mSettings || {};
 jQuery.each(mSettings, function(sProperty, vValue) {
 sProperty = sProperty[0].toUpperCase() + sProperty.substring(1);
 oModel["set" + sProperty](vValue);
 });

 return oModel;
}
//Your test:
QUnit.test("Should do something with the model", function(assert) {
 // Arrange
 var oModel = createODataModel(),
 oMockServer = startMockServer(0),
 done = assert.async();
 // System under Test + Act + call done();
 // Cleanup
 oModel.destroy();
 oMockServer.stop(); });

You can now bind your model against your control and test whatever you want.

We use clock.tick to trigger the server response. If you didn't do this, the text of the label would still be
empty:

// "Label" required from module "sap/m/Label" // "Core" required from module "sap/ui/core/Core"
//Your test:
QUnit.test("Should do something with the model", function(assert) {
 // Arrange
 var oModel = createODataModel(),
 oMockServer = startMockServer(50);
 // System under Test
 var oLabel = new Label({
 text : "{/myProperty}"
 });
 oLabel.placeAt("qunit-fixture");
 Core.applyChanges();
 // Act - trigger the request
 sinon.clock.tick(50);
 // Assert
 assert.strictEqual("myExpected", oLabel.getText(), "The expected text was
present");
 // Cleanup
 oModel.destroy();
 oMockServer.stop();
 sinon.clock.reset() });

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1181

Integration Testing with One Page Acceptance Tests (OPA5)

OPA5 is an API for SAPUI5 controls. It hides asynchronicity and eases access to SAPUI5 elements. This makes
OPA especially helpful for testing user interactions, integration with SAPUI5, navigation, and data binding.

The OPA5 library is JavaScript-based. This means that you can write your tests in the same language in which
your app is written. This has the following advantages:

● Quick and easy access to JavaScript functions
● Easy ramp-up as it can be used with any JavaScript unit test framework, such as QUnit or Jasmine
● Using the same runtime enables debugging
● Good SAPUI5 integration
● Feedback within seconds makes it possible to execute tests directly after a change
● Asynchronicity is handled with polling instead of timeouts, which makes it faster
● Enables test-driven development (TDD)

Developers write OPA tests during app development. The test-driven development (TDD) results in less fragile
tests, because the app is better isolated and supports less fragile APIs for testing:

● It follows the arrange act assert pattern (corresponds to given when then), which improves readability and
understanding of the test cases.

● It is easy to run on mobile devices as no plugins/apps are needed; you can as easily just run it in the
browser.

● Saves time for the developer as regressions decrease

In short: Writing acceptance tests with OPA5 is very easy – Give it a try!

Limitations of OPA5

Note the following limitations of OPA:

● Screen capturing
● Testing across more than one page
● Remote test execution
● End-to-end tests are not recommended with OPA due to authentication issues and fragility of test data

Getting Started with OPA5

The following section explains step-by-step how to easily write tests for SAPUI5 apps.

We assume a simple app that displays a button on the page after a random time between 0 and 10 seconds.
After pressing the button, the text on the button changes. Again, this may take 0 to 10 seconds.

This simulates the behaviour of many SAPUI5 apps: Depending on user actions and model changes, controls
change after some time. How can we easily test these SAPUI5 apps without having to write complicated tests
that know a lot about the implementation of the app?

1182 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Creating an Asynchronous App

First, we create a very simple view with an invisible button with Press me as the button text:

 <mvc:View controllerName="view.Main"
 xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <App>
 <Page>
 <headerContent>
 <Button id="pressMeButton" text="Press me" press="onPress"
visible="false"/>
 </headerContent>
 </Page>
 </App>
</mvc:View>

We display the button in the controller after 0 to 10 seconds. On press, we change the text.

sap.ui.define(["sap/ui/core/mvc/Controller"], function(Controller) { "use strict";
 return Controller.extend("view.Main", {
 onInit: function() {

 var that = this;
 window.setTimeout(function() {
 that.byId("pressMeButton").setVisible(true);
 }, Math.random() * 10000);
 },
 onPress: function() {
 this.byId("pressMeButton").setText("I got pressed");
 }
 });
 }, true);
 // "Controller" required from module "sap/ui/core/mvc/Controller"
 Controller.create({
 name: "view.Main" });

Now how can we test this app without having to do a lot of mocking or writing of cryptic code?

Creating an OPA Test

When we write tests, we try to write it in a way that everyone can immediately understand what is done and
tested with this test:

sap.ui.require(["sap/ui/test/Opa5",
 "sap/ui/test/opaQUnit",
 "sap/ui/test/actions/Press",
 "sap/ui/test/matchers/PropertyStrictEquals"
], function (Opa5, opaQUnit, Press, PropertyStrictEquals) {
 opaQUnit("Should press a Button", function (Given, When, Then) {
 // Arrangements
 Given.iStartMyApp();
 //Actions
 When.iPressOnTheButton();
 // Assertions
 Then.theButtonShouldHaveADifferentText();

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1183

 }); });

If you use opaQunit, OPA gives you the following three objects in your QUnit:

● Given = arrangements
● When = actions
● Then = assertions

Given: Defining Arrangements

Let's start by defining arrangements. In the following example, we assume that the app runs in a page called
index.html. Our OPA test is located in the test/opa5.html folder.

We define a relative path pointing to the index.html of our application under test ../index.html - ../.
This means that you go up one directory relative to the current directory:

// "Opa5" required from "sap/ui/test/Opa5" var arrangements = new Opa5({
 iStartMyApp : function () {
 return this.iStartMyAppInAFrame("../index.html");
 } });

This is simple because we already programmed our app and just need to start it. The return this is needed
for chaining the statements.

When: Defining Actions

We now give OPA the ID and the viewName of the control we are looking for. OPA waits until the element is
present in the respective view. OPA checks whether it is visible. After OPA has found the button, it invokes the
Press action. If no button is found, we specify an error message so we know which waitFor went wrong.

var actions = new Opa5({ iPressOnTheButton : function () {
 return this.waitFor({
 viewName : "Main",
 id : "pressMeButton",
 actions : new Press(),
 errorMessage : "did not find the Button"
 });
 }
});

1184 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Then: Defining Assertions

After clicking the button, we want to check if the text has changed. For this, we can use matchers to check if the
button we are searching for matches our conditions. We want to be sure that the text property of the button is
equal to "I got pressed".

var assertions = new Opa5({ theButtonShouldHaveADifferentText : function () {
 return this.waitFor({
 viewName : "Main",
 id : "pressMeButton",
 matchers : new PropertyStrictEquals({
 name : "text",
 value : "I got pressed"
 }),
 success : function (oButton) {
 Opa5.assert.ok(true, "The button's text changed to: " +
oButton.getText());
 },
 errorMessage : "did not change the Button's text"
 });
 } });

Running the Test

We have now defined all statements and must now add them to the OpaConfig as follows:

// "Opa5" required from "sap/ui/test/Opa5" Opa5.extendConfig({
 arrangements : arrangements,
 actions : actions,
 assertions : assertions,
 viewNamespace : "view."
});

The viewNamespace is very important for finding the correct view. As you probably do not want to set this in
every single waitFor, a default is provided. You can now launch the test page and the OPA test should run. If
everything worked, you get the following result:

For more information, see the API Reference and the Samples.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1185

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.test.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.ui.test.Opa5/samples

OPA Startup

Starting a UIComponent

You can use a UIComponent to run your OPA5 tests. To do this, you have to call the iStartMyUIComponent
function on the OPA5 instance with an object that contains at least the name of your UIComponent (see API
documentation about sap/ui/component for all possible parameters), for example:

// "Opa5" required from "sap/ui/test/Opa5" new Opa5().iStartMyUIComponent({
 componentConfig: {
 name: "samples.components.button"
 }
});

Your UIComponent will now run in the same window as your OPA5 Tests. In addition, you can append a new
hash value to the browser URL, for example:

// "Opa5" required from "sap/ui/test/Opa5" new Opa5().iStartMyUIComponent({
 componentConfig: {
 name: "samples.components.button"
 } ,
 hash: "newHashValue" });

This is very helpful if you want to start your tests with a specific target.

 Note
Use the iStartMyUIComponent approach instead of an iFrame if you want your tests to run faster (thanks
to all resources being loaded at once), make debugging easier (by not having to switch between different
frames), and if you want to have full control over the mock server (e.g. Start and Stop time).

 Note
Please note that OPA5 tests can only run for a single UIComponent. You first have to tear down the current
UIComponent before starting an OPA5 test for another UIComponent, for example:

// "Opa5" required from "sap/ui/test/Opa5" new Opa5().iTeardownMyApp();
// or new Opa5().iTeardownMyUIComponent();

Starting an App in an iFrame

You can run the app being tested in an iFrame. You can start only one iFrame at a time. An error will be thrown if
you try to start an iFrame when one is already launched or if you try to teardown the iFrame before it is started.
If an iFrame element is already present on the page, it will be used. The iFrame and test window must be in the
same domain. For example, if you have the test.html file next to the index.html file, you can start your app
with the following code:

// "Opa5" required from "sap/ui/test/Opa5" Opa5().iStartMyAppInAFrame("index.html?responderOn=true");

1186 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

The OPA iFrame launcher overwrites the iFrame's history API so we can later change the iFrame's hash, and
pass parameters to the app. In Internet Explorer, the history behaves differently if an iFrame was added with
JavaScript, this is why you should add the frame directly to the HTML of your test page:

<iframe id="OpaFrame" src="index.html?responderOn=true" style="width:100%;
height:100%"></iframe>

You can remove the iFrame using one of the following methods:

// "Opa5" required from "sap/ui/test/Opa5" new Opa5().iTeardownMyApp();
// or new Opa5().iTeardownMyAppFrame();

For more information, see the API Reference: Opa5.

Starting the app can be a slow operation so it is not recommended to do this for every test. However, it is good
practice to group tests in modules and restart the app in every module to enable faster debugging of larger
suites.

Loading an iFrame is significantly slower than loading a component. It requires a separate page, in which the
mocked app is started in an SAP Fiori Launchpad sandbox. This is useful as it allows debugging of unmocked
data requests and mock app issues in isolation from the OPA test. It is easy to migrate to the component
launcher once the test suite grows and the app is proven to be correctly mocked.

SAPUI5 and OPA code (for example, autoWaiter, UI5 plugin, QUnitUtils) is injected asynchronously in the
iFrame on launch. The iFrame will be considered launched when all of the scripts are loaded. These scripts will
communicate the app state to the test code. Errors in the iFrame will also be logged in the test. If OPA code is
already loaded by the app, the newly injected code will be used instead to ensure version compatibility.

OPA provides several getters that give access to certain properties of the context in which the app is loaded. By
default, the getters return the test window's objects but if an iFrame is used, they will return the iFrame's
objects. You need to keep the context in mind if you want to manipulate app data in your test:

// "Opa5" required from "sap/ui/test/Opa5" // returns the body of the app window wrapped in a jQuery object
Opa5.getJQuery()("body"); // returns the SAPUI5 OPA plugin object of the app window Opa5.getPlugin(); // returns the SAPUI5 core interface of the app window Opa5.getWindow().sap.ui.getCore();
// returns the Date in the app context
Opa5.getWindow().Date();
// the following test code will return false if the app is started in an iFrame new Opa5.getWindow().Date() instanceof Date

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1187

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.test.Opa5.html

Cookbook for OPA5

Advanced topics and best practices for OPA tests.

Executing a Single Statement After Other waitFors are Done

If you skip all parameters except for the success parameter, you can execute your code after the other
waitFors are done. Since there is no check function, OPA runs directly to success.

 iChangeTheHashToTheThirdProduct : function () {
 return this.waitFor({
 success : function () {
 sap.ui.test.Opa5.getWindow().location.hash = "#/Products(2)";
 }
 }); },

Passing a Parameter from One waitFor to Another

To check special conditions, for example, how one control relates to another control, you have to pass a control
found in one waitFor statement as input for another waitFor statement. The following two options exist:

● Storing the control in a variable in the outer scope: Use this option if you have a common outer scope, like
the same functions, or the same page object file.

● Storing the control in the OPA context: Use this option if you have to pass the parameter, for example,
across some page objects.

 iDoSomething: function () {
 var oControl;
 this.waitFor({
 id : "myControlId",
 success : function (oCtrl) {
 //store control in outer scope
 oControl = oCtrl;

 //as alternative you could store the control in the Opa context
 sap.ui.test.Opa.getContext().control = oCtrl;
 }
 });
 return this.waitFor({
 controlType : "some.other.control"
 check: function (aControlsFromThisWaitFor) {
 //now you can compare oControl with aControlsFromThisWaitFor
 //or you can compare sap.ui.test.Opa.getContext().control with
aControlsFromThisWaitFor
 }
 });
 },

1188 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Application Parameters

As of version 1.48, you can easily specify URL parameters that are relevant for the application being tested.
Simply place them in the appParams object under Opa5.extendConfig(). Only primitive types are
supported. The provided object is serialized to URL search string and all parameters are available to the
application being tested.

Opa5.extendConfig({ appParams: {
 "key": "value"
 } });

When the application is started with Opa5.iStartMyAppInAFrame(), its parameters are appended to the
application URL as provided in the first parameter. Application parameters overwrite any duplicated string in
the URL that is given as first parameter of iStartMyAppInAFrame(). Alternatively, when
Opa5.iStartMyUIComponent() is used, the URL parameters are appended to the current URL as the
component is started in the same browser window. On Opa5.iTeardownMyApp(), the application parameters
are cleared from the current URL.

For more details, see the API Reference for Opa5

URL Parameters

As of version 1.48, OPA supports overwriting global configuration parameters for a single execution from URL.
On startup, OPA parses window.location.href and extracts all search parameters starting with 'opa'. The
prefix is removed and the resulting string has its first character changed to lower case. For example, the ?
opaExecutionDelay=600 string in a URL sets the value of executionDelay to 600 ms. All OPA config
parameters of primitive string and number types that are documented in Opa.resetConfig() could be
overwritten.

All URL parameters that do not start with 'opa' are considered relevant for the application being tested and are
passed to it. Application parameters from a URL always overwrite the application parameters provided in
Opa5.extendConfig().

For more details, see the API Reference: Opa5.extendConfig() and Opa.resetConfig()

Working with Message Toasts

A message toast is a small, non-disruptive popup for displaying information or success messages. Message
toasts automatically disappear after a timeout unless the user moves the mouse over the message or taps on
it.

To ensure stable execution of OPA5 tests which manipulate messageToast elements, it is recommended to
set explicitly autoWait parameter to false only for the affected waitFor methods, as shown by the following
example:

this.waitFor({

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1189

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.test.Opa5.html
https://sapui5.hana.ondemand.com/#/api/sap.ui.test.Opa/methods/sap.ui.test.Opa.resetConfig
https://sapui5.hana.ondemand.com/#/api/sap.ui.test.Opa/methods/sap.ui.test.Opa.resetContext

 ...
 autoWait: false,
 ...
 } });

To retrieve a message toast control and manipulate it accordingly, use standard jQuery selectors with the help
of the check parameter of OPA5 waitFor method, as messageToast elements cannot be retrieved by
interaction with the SAPUI5 API.

Example:

iShouldSeeMessageToastAppearance: function () { return this.waitFor({
 // Turn off autoWait
 autoWait: false,
 check: function () {
 // Locate the message toast using its class name in
a jQuery function
 return Opa5.getJQuery()(".sapMMessageToast").length
> 0;
 },
 success: function () {
 Opa5.assert.ok(true, "The message toast was shown");
 },
 errorMessage: "The message toast did not show up"
 }); }

Working with Busy Controls

There are OPA5 rules that limit the ways you can use busy controls. Some OPA5 features prevent you from
locating controls while they are busy. For example, actions require that the control is interactable and therefore
not busy and autoWait ensures that all controls on the page are interactable. You can't test a control in its
busy state when these features are enabled. You can always work with controls that are not busy as OPA5
either waits for them to become interactable (and not busy) or enforces no limitations.

Table 36: The following table is a cheatsheet with the values for each OPA5 rule and the outcome for busy control testing:

OPA5.config autoWait waitFor actions waitFor autoWait verify busy control

✓ ✓ any X

✓ X true / not modified X

✓ X false ✓

X ✓ any X

X X false / not modified ✓

X X true X

A common scenario is asserting the busy state of a control. Testing whether a control is not busy is
meaningless when autoWait is globally enabled. An example of testing for busyness with enabled autoWait
can be found in the OPA5 Samples.

1190 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/entity/sap.ui.test.Opa5

Working with Responsive Toolbars

A responsive toolbar can have overflowing content depending on the screen size. This content is moved to a
popover, which can be opened by pressing a toggle button in the toolbar. A toggle button is displayed only when
there's overflowing content. This is a problem for tests because they must only try to press the button when it's
visible and interactable. One way to solve this is to always start the application being tested with a fixed screen
size. Another way is to first look for toggle button with no visibility restrictions and then press on it only if it
exists:

this.waitFor({ id: sToolbarId, // find the toolbar
 success: function (oToolbar) {
 this.waitFor({
 controlType: "sap.m.ToggleButton",
 visible: false, // look for ANY toggle button in the toolbar
 matchers: new Ancestor(oToolbar),
 success: function (aToggleButton) {
 if (aToggleButton[0].$().length) {
 // if the button exists, press on it
 this.waitFor({
 controlType: "sap.m.ToggleButton",
 matchers: new Ancestor(oToolbar),
 actions: new Press()
 });
 } else {
 Opa5.assert.ok(true, "The toggle button is not present");
 }
 } });

Deactivating Tests in Need of Adaptation

As of version 1.61, you can use the opaTodo and opaSkip methods in addition to opaTest. They are similar to
Qunit.todo and QUnit.skip and have the same signatures as their QUnit counterparts.

In QUnit1, opaTodo is equivalent to opaTest as QUnit.todo is not yet available. In QUnit2, opaTodo will
succeed if the test has at least one failing assertion or if it timeouts with either OPA5 or QUnit timeout.

If a test has to be adapted after recent changes, you have to disable it temporarily in order to have a successful
build. A test which is commented out can easily be forgotten and its coverage value lost. opaTodo prompts you
to uncomment the test once an adaptation is provided.

opaTodo and opaSkip are readily available to your test as globals.

Example:

oOpa.waitFor({ success: function () {
 Opa5.assert.ok(false, "Should not report test that needs adaptation");
 } });

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1191

Retrieving Controls

Common use cases for retrieving controls

Retrieving a Control by Its ID

new sap.ui.test.Opa5().waitFor({ id : "page-title",
 viewName : "Category",
 viewNamespace : "my.Application.",
 success : function (oTitle) {
 Opa5.assert.ok(oTitle.getVisible(), "the title was visible");
 } });

In this example, we search for a control with the ID page-title. The control is located in the
my.Application.Category view.

By default, OPA5 tries to find the element until the default timeout of 15 seconds is reached. You can override
this behavior by passing it as a parameter to the waitFor function. Zero means infinite timeout.

new sap.ui.test.Opa5().waitFor({ id : "productList",
 viewName : "Category",
 success : function (oList) {
 Opa5.assert.ok(oList.getItems().length, "The list did contain products");
 },
 timeout: 10 });

In this example, the check function is omitted. In this case, OPA5 creates its own check function that waits
until the control is found or the specified timeout is reached.

Retrieving a Control That Doesn’t Have an ID

Sometimes you need to test for a control that has no explicit ID set and maybe you can’t or don’t want to
provide one for your test. To get around this issue, use a custom check function to filter for this control. Let's
assume we have a view called Detail and there are multiple sap.m.ObjectHeaders on this page. We want to
wait until there’s an object header with the title myTitle.

To do this, use the following code:

return new Opa5().waitFor({ controlType : "sap.m.ObjectHeader",
 viewName : "Detail",
 matchers : new sap.ui.test.matchers.PropertyStrictEquals({
 name : "title",
 value: "myTitle"
 }),
 success : function (aObjectHeaders) {
 Opa5.assert.strictEqual(aObjectHeaders.length, 1, "was there was only
one Object header with this title on the page");

1192 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Opa5.assert.strictEqual(aObjectHeaders[0].getTitle(), "myTitle", "was on
the correct Title");
 }
});

Since no ID is specified, OPA passes an array of controls to the check function. The array contains all visible
object header instances in the Detail view. However, a built-in support for comparing properties doesn't exist,
so we implement a custom check.

More About Matchers

For more information about all matchers, see the API Reference and the Samples.

sap.ui.test.matchers.Properties: This matcher checks if the controls have properties with given
values. The values can also be defined as regular expressions (RegExp) for the string type properties.

return new Opa5().waitFor({ controlType : "sap.ui.commons.TreeNode",
 matchers : new sap.ui.test.matchers.Properties({
 text: new RegExp("root", "i"),
 isSelected: true
 }),
 success : function (aNodes) {
 Opa5.assert.ok(aNodes[0], "Root node is selected")
 },
 errorMessage: "No selected root node found" });

 Note
sap.ui.test.matchers.Properties and sap.ui.test.matchers.PropertyStrictEquals serve
the same purpose but it's easier to pass parameters to sap.ui.test.matchers.Properties.

sap.ui.test.matchers.Ancestor: This matcher checks if the control has the specified ancestor (ancestor
is of a control type).

var oRootNode = getRootNode(); return new Opa5().waitFor({
 controlType : "sap.ui.commons.TreeNode",
 matchers : new sap.ui.test.matchers.Ancestor(oRootNode),
 success : function (aNodes) {
 Opa5.assert.notStrictEqual(aNodes.length, 0, "Found nodes in a
root node")
 },
 errorMessage: "No nodes in a root node found" });

sap.ui.test.matchers.Descendant: This matcher checks if the control has the specified descendant. In
this example, we search for a table row, which has a text control with a certain value.

this.waitFor({ controlType: "sap.m.Text",
 matchers: new Properties({
 text: "special text"
 }),
 success: function (aText) {
 return this.waitFor({

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1193

https://sapui5.hana.ondemand.com/#/api/sap.ui.test.matchers
https://sapui5.hana.ondemand.com/#/entity/sap.ui.test.matchers

 controlType: "sap.m.ColumnListItem",
 matchers: new Descendant(aText[0]),
 success: function (aRows) {
 Opa5.assert.strictEqual(aRows.length, 1, "Found row with special
text");
 },
 errorMessage: "Did not find row or special text is not inside table
row"
 });
 },
 errorMessage: "Did not find special text" });

sap.ui.test.matchers.BindingPath: This matcher checks if the controls have specified data binding
paths. The path property matches controls by their binding context. Controls with a binding context are
usually inside an aggregation or have a parent control with data binding. The propertyPath property matches
controls by the data binding paths of their own properties. Binding property paths can be part of an expression
binding. You can set the path and propertyPath properties separately or in combination. For a practical
example of the various types of data binding, see the Tutorial Samples.

// Match a CheckBox located inside a ListItem: // the CheckBox has a property binding with relative path "Selected"
// the ListItem has a binding context path "/products/0"
return new Opa5().waitFor({
 controlType : "sap.m.CheckBox",
 matchers : new sap.ui.test.matchers.BindingPath({
 path: "/products/0",
 propertyPath: "Selected"
 }),
 success : function (aResult) {
 Opa5.assert.ok(aResult[0], "CheckBox is matched")
 } });

You can also define a matcher as an inline function: The first parameter of the function is a control to match. If
the control matches, return true to pass the control on to the next matcher and/or to check and success
functions.

return new Opa5().waitFor({ controlType : "sap.ui.commons.TreeNode",
 matchers : function(oNode) {
 return oNode.$().hasClass("specialNode");
 },
 success : function (aNodes) {
 Opa5.assert.notStrictEqual(aNodes.length, 0, "Found special
nodes")
 },
 errorMessage: "No special nodes found"
});

If you return a 'truthy' value from the matcher, but not a Boolean, it will be used as an input parameter for the
next matchers and/or check and success. This allows you to build a matchers pipeline.

return new Opa5().waitFor({ controlType : "sap.ui.commons.TreeNode",
 matchers : [
 function(oNode) {
 // returns truthy value - jQuery instance of control
 return oNode.$();
 },
 function($node) {
 // $node is a previously returned value

1194 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/entity/sap.ui.core.tutorial.databinding

 return $node.hasClass("specialNode");
 }
],
 actions : function (oNode) {
 // oNode is a matching control's jQuery instance
 oNode.trigger("click");
 },
 errorMessage: "No special nodes found"
});

sap.ui.test.matchers.LabelFor: This matcher checks if a given control is associated with an
sap.m.Label control. This means that there should be a label on the page with a labelFor association to the
control. The label can be filtered by text value or by the i18n key of a given property value. Note that some
controls, such as sap.ui.comp.navpopover.SmartLink, sap.m.Link, sap.m.Label, and sap.m.Text
can’t be matched by sap.ui.test.matchers.LabelFor as they can’t have an associated label.

Using the i18n key:

return new Opa5().waitFor({ controlType: "sap.m.Input",
 // Get sap.m.Input which is associated with Label which have i18n text with
key "CART_ORDER_NAME_LABEL"
 matchers: new sap.ui.test.matchers.LabelFor({ key: "CART_ORDER_NAME_LABEL",
modelName: "i18n" }),
 // It will enter the given text in the matched sap.m.Input
 actions: new sap.ui.test.actions.EnterText({ text: "MyName" }) });

Using the text property:

return new Opa5().waitFor({ controlType: "sap.m.Input",
 // Get sap.m.Input which is associated with Label which have i18n text with
text "Name"
 matchers: new sap.ui.test.matchers.LabelFor({ text: "Name" }),
 // It will enter the given text in the matched sap.m.Input
 actions: new sap.ui.test.actions.EnterText({ text: "MyName" }),
 success: function (oInput) {
 Opa5.assert.ok(oInput.getValue() === "MyName", "Input value is correct");
 } });

For more information, see the API Reference and the Sample.

Searching for Controls Inside a Dialog

Use the option searchOpenDialogs to restrict control search to open dialogs only. You can combine
searchOpenDialogs with controlType or any predefined or custom matcher. As of version 1.62, the ID
option is also effective in combination with searchOpenDialogs. If the dialog is inside a view, the viewName
option ensures that the given ID is relative to the view. Otherwise, the search is done by global ID.

This is an example of matching a control with ID mainView--testButton located inside a dialog. The dialog
itself is part of a view with name main.view and ID mainView:

this.waitFor({ searchOpenDialogs: true,
 id: "testButton",

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1195

https://sapui5.hana.ondemand.com/#/api/sap.ui.test.Opa5
https://sapui5.hana.ondemand.com/#/sample/sap.ui.core.sample.OpaMatchers/preview

 viewName: "main.view"
 actions: new sap.ui.test.actions.Press(),
 errorMessage : "Did not find the dialog button" });

The next example shows the use case where we want to press a button with 'Order Now' text on it inside a
dialog.

To do this, we set the searchOpenDialogs option to true and then restrict the controlType we want to
search for to sap.m.Button. We use the check function to search for a button with the text 'Order Now' and
save it to the outer scope. After we find it, we trigger a tap event:

iPressOrderNow : function () { var oOrderNowButton = null;
 this.waitFor({
 searchOpenDialogs : true,
 controlType : "sap.m.Button",
 check : function (aButtons) {
 return aButtons.filter(function (oButton) {
 if(oButton.getText() !== "Order Now") {
 return false;
 }
 oOrderNowButton = oButton;
 return true;
 });
 },
 actions: new sap.ui.test.actions.Press(),
 errorMessage : "Did not find the Order Now button"
 });
 return this; }

Searching for Controls Inside a Fragment

As of version 1.63, you can limit control search to a fragment with the option fragmentId.

fragmentId is effective only when searching by control ID inside a view. Whether a control belongs to a
fragment is only relevant when the fragment has a user-assigned ID, which is different from the ID of its parent
view. In this case, the fragment ID takes part in the formation of control ID and you have to use the
fragmentId option to simplify test maintenance.

The next example shows the use case where we want to press a button with ID theMainView--greeting--
helloWorld, located inside a fragment with ID greeting and view with ID theMainView:

this.waitFor({ viewId: "theMainView",
 fragmentId: "greeting",
 id: "hello",
 actions: new Press(),
 errorMessage : "Did not find the Hello button" });

1196 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Searching for Missing Controls

In OPA5, you can look for controls that are invisible, disabled, or noninteractable by using the respective
waitFor boolean properties: visible, enabled, and interactable.

You need a more creative approach to verify that no controls on the page match a certain criteria. One idea is to
verify that a parent doesn't have a given child. Locate the parent using OPA5 standard matchers and then use a
custom check function to iterate over the children of the parent. The result of check should be truthy if no
children match a given condition.

The following example shows a custom check function that returns true if a popover doesn't contain a button
with a certain text.

this.waitFor({ controlType: "sap.m.Popover",
 success: function (aPopovers) {
 return this.waitFor({
 check: function () {
 var aPopoverContent = aPopovers[0].getContent();
 var aButtons = aPopoverContent.forEach(function (oChild) {
 return oChild.getMetadata().getName() === "sap.m.Button" &&
 oChild.getText() === "Another text";
 });
 return !aButtons || !aButtons.length;
 },
 success: function () {
 Opa5.assert.ok(true, "The popover button is missing");
 },
 errorMessage: "The popover button is present"
 });
 } });

Searching for Disabled Controls

As of version 1.65, you can search for controls by their enabled state using the enabled property. When
enabled is set to true, only enabled controls will match. When enabled is set to false, both enabled and
disabled controls will match.

By default, only enabled controls are matched when:

● autoWait is set to true, or
● there are actions defined in the waitFor

If autoWait is disabled and there are no actions, the search matches disabled controls as well.

The next example shows that the enabled property has priority over autoWait:

this.waitFor({ controlType: "sap.m.Button",
 enabled: false,
 autoWait: true,
 success: function () {...} })

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1197

Writing Nested Arrangements and Actions

UI elements can be recursive, for example in a tree. Instead of triggering the action for each known element,
you can also define it recursively (see the code snippet below). OPA ensures that the waitFor statements
triggered in a success handler are executed before the next arrangement, action, or assertion. That also allows
you to work with an unknown number of entries, for example in a list. First, you wait for the list, and then trigger
actions on each list item.

iExpandRecursively : function() { return this.waitFor({
 controlType : "sap.ui.commons.TreeNode",
 matchers : new sap.ui.test.matchers.PropertyStrictEquals({
 name : "expanded",
 value : false
 }),
 actions : function (oTreeNode) {
 if (oTreeNode.getNodes().length){
 oTreeNode.expand();
 that.iExpandRecursively()
 }
 },
 errorMessage : "Didn't find collapsed tree nodes"
 });
}

Declarative Syntax

Overview
As of version 1.72, OPA5 supports the declarative matcher syntax that allows you to declare built-in matchers in
a literal object. The syntax is inspired by control locators in UIVeri5 and promotes reuse between the two
testing tools. A matcher declaration is a JSON object. The OPA5 waitFor statement is simplified by using a
single JSON object, instead of the more verbose matcher instances. Only built-in matchers are allowed. Inline
matcher functions and custom matcher instances are only allowed in the matchers waitFor parameter:

return this.waitFor({ controlType : "sap.m.Text",
 matchers : function () {
 // ...
 } });

There are two places you can add a matcher declaration in a waitFor object:

● On the top level
In this case, if you use an unknown matcher, an exception is thrown, stating that the parameter isn’t
defined in OPA5 API.

this.waitFor({ controlType : "sap.m.Text",
 propertyStrictEquals: {
 name : "text",
 value : "foo"
 } });

1198 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

● In the matchers parameter
In this case, if you use an unknown matcher, an exception is thrown, stating that the matcher isn’t
supported.

this.waitFor({ controlType : "sap.m.Text",
 matchers: {
 propertyStrictEquals: {
 name : "text",
 value : "foo"
 }
 } });

If there are matchers declared in both places, they’re combined.

For more information, see https://github.com/SAP/ui5-uiveri5 .

Matcher Properties
A matcher is declared by its name and properties. The name is a key in the matchers object literal and has to
start with a lower-case letter. For example, to declare an sap.ui.test.matchers.Properties matcher, use
the name properties. Every matcher accepts a specific set of properties, which has to be declared as a value
in the matchers object. This value has to be an object literal. Behind the scenes, every matcher declaration is
transformed into a matcher instance. Every value in the declaration represents the properties that are fed to
one matcher instance. There’s an example for every built-in matcher in the API documentation.

The following two waitFor statements produce the same set of matchers:

// declaration this.waitFor({
 controlType : "sap.m.Text",
 matchers: {
 propertyStrictEquals: {
 name : "text",
 value : "foo"
 }
 }
});
// instantiation
this.waitFor({
 controlType : "sap.m.Text",
 matchers: new PropertyStrictEquals({
 name : "text",
 value : "foo"
 }) });

If you have to use one matcher twice, the value for the matcher must be an array. Each element of the array has
to be an object literal that is used by one matcher instance. This is useful when you have to match a control by
two or more of its properties.

The following two waitFor statements produce the same set of matchers:

// declaration this.waitFor({
 matchers: {
 properties: [{
 text: "hello"
 }, {
 number: 0
 }]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1199

http://help.sap.com/disclaimer?site=https%3A%2F%2Fgithub.com%2FSAP%2Fui5-uiveri5

 }
});
// instantiation
this.waitFor({
 matchers: [
 new PropertyStrictEquals({
 name : "text",
 value : "foo"
 }),
 new PropertyStrictEquals({
 name : "number",
 value : 0
 })
] });

Ancestors and Descendants
When declaring an sap.ui.test.matchers.Ancestor or sap.ui.test.matchers.Descendant, you
have to declare which control is ancestor or descendant. With matcher instances, you simply pass the control
instance that you have already located in a previous waitFor statement. Keep in mind that with matcher
declarations you can’t use object instances or functions as values. The solution is to use a nested declarative
matcher for the ancestor or descendant. It’s assumed that it will match exactly one control and if it doesn't, any
one of the matches is used. This is a special matcher, which supports a superset of matchers, such as,
controlType, ID, and any other JSON-compatible properties available in a typical waitFor statement.

The following two waitFor statements produce the same result:

// declaration this.waitFor({
 controlType: "sap.m.Text",
 matchers: {
 ancestor: {
 controlType : "sap.m.Bar",
 properties: {
 text: "hello"
 }
 }
 }
});
// instantiation
this.waitFor({
 controlType : "sap.m.Bar",
 matchers: new Properties({
 text: "hello"
 }),
 success: function (aAncestors) {
 var oAncestor = aAncestors[0]; // order not guaranteed
 return this.waitFor({
 controlType: "sap.m.Text",
 matchers: new Ancestor(oAncestor)
 });
 } });

1200 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Structuring OPA Tests With Page Objects

The page object design pattern supports UI-based tests with improved readability, fostering the don't repeat
yourself (DRY) principle of software development that is aimed at reducing repetition of any kind of
information.

A page object wraps an HTML page or fragment with an application-specific API, which makes it easy to find a
control and provide reuse across multiple tests. If you have multiple pages or UI areas that have several
operations, you can place them as reuse functionality in page object. The page object groups all OPA
arrangements, actions, and assertions that logically belong to some part of the screen. Since only the test will
know if an action is used to set up the test case or to act on the application under test, the page object will
combine actions and arrangements into actions. In contrast to the general guidance of Selenium and Martin
Fowler, OPA page objects also provide assertions, as the corresponding testing via waitFor statements better
fit into the page objects. When you define actions or assertions in your page object, have in mind how the test
would spell them and if that would be similar to the way you would explain a scenario to your colleagues.

Page objects accept parameters, so you can parametrize your tests either by writing multiple tests, or by
repeating your test being on a set of parameters defined in the code. It is also possible to put test fragments
into a separate file and refer to this file in the test. This enables you to reuse the same test fragments in
different test pages with different setups.

You can also share utility functionality between page objects. Simulating clicks, for example, is useful for most
page objects and should be placed in a base class that you can create. As the page objects extend the base
class, the functions provided in the base class are available for the page objects. If, for example, you want to
share tree handling functions in all tree-based page objects, create a TreeBase class by extending the base
class. Tree-based page objects such as repository browser and outline then specify TreeBase as baseClass
instead of the generic base class.

OPA5 provides a static method to create page objects, see the OPA Samples in the Demo Kit.

 Opa5.createPageObjects({
 //give a meaningful name for the test code
 inThe<Page Object> : {
 //Optional: a class extending Opa5, with utility functionality
 baseClass : fnSomeClassExtendingOpa5,

 actions : {
 //place all arrangements and actions here
 <iDoSomething> : function(){
 //always return this or a waitFor to allow chaining
 return this.waitFor({
 //see documentation for possibilities
 });
 }
 },
 assertions : {
 //place all assertions here
 <iCheckSomething> : function(){
 //always return this or a waitFor to allow chaining
 return this.waitFor({
 //see documentation for possibilities
 });
 }
 }
 }
 });

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1201

https://sapui5.hana.ondemand.com/explored.html#/entity/sap.ui.test.Opa5/samples

The method in your test finds all actions at the Given and When object, the assertions will be at the Then
object. Everything is prefixed with the page object name.

 When.inThe<Page Object>.<iDoSomething>();
Then.inThe<Page Object>.<iCheckSomething>();

Be careful with Opa5.extendConfig() if you give arrangements, actions, or assertions, all previously loaded
page objects will be overwritten. So if you mix them, call extendConfig before loading the page objects. See
the samples in the Demo Kit.

Using the autoWait Parameter

Configuring OPA to use autoWait parameter for all statements improves test stability and reduces the
number of waitFor statements.

Overview

OPA autoWait parameter is available as of version 1.48. It is a good practice to enable it in your tests. By
default, it is not enabled in order to keep old tests running.

autoWait synchronizes test execution with the app. No interactions are attempted while the app is performing
asynchronous work. This increases the probability that OPA statements succeed as they are only executed
when the app is ready to respond.

autoWait is used:

● When you retrieve a control with the intent to perform an action on it
● For every control search, when you explicitly set autoWait to true

autoWait is applied before searching for a control, which means before OPA check functions and matchers. If
there is no work to await, the controls are retrieved, then actions are executed on them and lastly the success
function is called. If there is still pending work, matchers, actions, and success function are skipped and OPA
retries the check until it succeeds or a timeout is reached.

Success functions are only called when controls are found, their state is valid and the app is responsive. We
recommend that you use actions rather than the success function when interacting with a control. This
ensures that the interaction is performed properly and the app is in a state that allows the interaction to be
executed.

autoWait covers several types of asynchronous work:

● Delayed work set with timeout and immediate
● XHR requests created using XMLHttpRequests and sinon.FakeXMLHttpRequests
● Native promises created with resolve, all, race, and reject functions
● UI navigation of parent containers
● UIArea rerendering

Enabling autoWait ensures that the controls and their parents are visible, enabled and not busy and also that
the controls are not hidden behind static elements, such as dialogs.

1202 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/entity/sap.ui.test.Opa5/samples

If your app has ongoing asynchronous work when the OPA timeout is reached, the test fails. The test failure
message includes details of the last detected work before the timeout. This type of OPA timeouts is usually
caused by test instability. When writing a huge set of tests and executing them frequently, you might notice
some tests that fail sporadically. Setting autoWait to true should stabilize most of these tests.

If you decide to follow the best practices and to enable autoWait, we recommend that you do it only once in
your code, near the starting point of your tests. You can then disable it per waitFor statement where needed.
This will help you to avoid confusion when debugging test failures.

Example:

// in QUnit start page, before all OPA tests Opa5.extendConfig({
 autoWait: true
});
// in an OPA test
oOpa.waitFor({
 id: "myControlID",
 success: function (oControl) {
 Opa5.assert.ok(!oControl.getBusy(), "My control was not busy");
 }
});
// and then in a special waitFor case which requires a control to be non-
interactable
oOpa.waitFor({
 autoWait: false,
 id: "myControlID",
 success: function (oControl) {
 // now you can explicitly check for some blocking condition
 Opa5.assert.ok(oControl.getBusy(), "My control was busy");
 } })

If you decide to start using autoWait in your existing tests, the easiest way to migrate is to extend OPA config
by enabling autoWait, run the tests to see if any waitFor statements timeout and then disable autoWait
specifically for them.

autoWait and App Startup

Usually, there is a lot of time-consuming work done on app startup which can make the entire app
noninteractive for a long time.

To ensure that OPA doesn't timeout before the app is fully loaded, the timeout for iStartMyAppInAFrame and
iStartMyUIComponent is increased to the default of 80 seconds.

Despite the increase, there are still some tests that timeout. The timeout usually occurs during the first test
step, which can be misleading regarding the actual cause of failure. autoWait is recommended in such cases
but it is disabled during startup to prevent issues with module loading during app launcher initialization.

As of version 1.54, the optional use of autoWait after launcher initialization is allowed to make sure that the
app is loaded before the first test step. It is disabled by default for backward compatibility as some tests check
for busy indicators on app start. You can use the option with both app launchers, for example:

Given.iStartMyAppInAFrame({ source: "applicationUnderTest/index.html",
 autoWait: true

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1203

});

AutoWait and Overflow Toolbars

Under some specific circumstances, the autoWait is not waiting enough time and the next interaction
happens before the awaited controls are fully rendered. This problem is particularly visible with overflow
toolbars as the interaction with buttons in the toolbar happens before it is completely open and the included
buttons are not yet ready, meaning that the interactions are lost.

The root cause is a specific behavior in OPA polling when a control is found on first check. In this case, the next
check() is synchronous, for example, it is executed immediately and not on the next poll interval. The problem
with this implementation is that the synchronous check prevents the detection of subsequent flows started by
the previous interaction. As a result, the synchronization is premature as it happens before the interaction is
fully processed and before the UI is completely rendered.

As of version 1.54, there is an asyncPolling parameter that overcomes this problem. It causes a
postponement of the check() in the next polling and gives a chance for the execution flows caused by the
interaction to complete. Unfortunately, it is not possible to make this behavior as default as there are many
tests that are coded against the old behavior.

The suggested approach is to set asyncPolling as default for all waitFor statements:

// in QUnit start page, before all OPA tests Opa5.extendConfig({
 autoWait: true,
 asyncPolling: true });

Setting asyncPolling on existing tests may cause a failure because of the more strict synchronization. The
most common uncovered problem is a test that is dependent on premature synchronization, such as an
assertion for table rows that is executed before the table is fully loaded.

Same parameter can be set for individual waitFor statements:

// in an OPA test oOpa.waitFor({
 id: "controlId",
 asyncPolling: true,
 success: function (oControl) {
 // TODO assert status
 } });

Related Information

Pitfalls and Troubleshooting [page 1218]
API Reference: sap.ui.test.Opa5
Samples: sap.ui.test.Opa5

1204 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.test.Opa5.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.ui.test.Opa5/samples

Extensions for OPA5

Extend OPA capabilities with custom extensions.

You can provide application-aware assertions that are called from the test but operate in the context of the
application being tested.

Interface

The extension API is defined in the sap.ui.test.OpaExtension class. A custom extension should extend
this class and implement the necessary methods. The extension class should be available in the application
and loaded in the application frame.

● onAfterInit() - called after the application is fully loaded. The test will wait for the returned promise to
resolve before starting. This is a good place for extension initialization.

● onBeforeExit() - called after the test is finished but before the application is discarded. The application
shutdown will wait for the returned promise to resolve. This is the place to clean up the extension.

● getAssertions() - called after extension initialization but before the test has started. It should return a
map of assertion names and assertion functions. This map is merged in the default QUnit assertion object.
The assertion function is called in the context of the application being tested and should return a promise
that resolves with QUnit.pushResult object. The promise should be resolved for both passing and failing
assertion and rejected only if the assertion evaluation fails. The assertion function could interact with the
application under test and the test will wait for the returned promise to resolve before continuing. From the
point of the view of the test, this assertion is consistent with the classical synchronous QUnit assertions.
For more information, see https://api.qunitjs.com/assert/pushResult .

Lifecycle

To load an extension, the test should enable it by specifying extension class name as string in the key
'extensions' in the options object given to Opa5.extendConfig(). An array of extension names could be
specified or the extension name ?opaExtensions=[my/custom/Extension] could be given in the test URL.
If the extension needs some application parameters, they could be provided in the appParams.

For more information, see the API Reference: Opa5.extendConfig()

Example

Custom extension class:

sap.ui.define(['sap/ui/test/OpaExtension'
], function(OpaExtension) {
 "use strict";
 var customExtension =
OpaExtension.extend("sap.ui.test.sample.CustomOpaExtension", {

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1205

http://help.sap.com/disclaimer?site=https%3A%2F%2Fapi.qunitjs.com%2Fassert%2FpushResult
https://sapui5.hana.ondemand.com/#/api/sap.ui.test.Opa5/methods/sap.ui.test.Opa5.extendConfig

 metadata : {
 publicMethods : [
 "getAssertions"
]
 },
 getAssertions : function() {
 return {
 myCustomAssertion: function() {
 return new Promise(function(resolve, reject) {
 // start custom assertion logic, resolve the promise when ready
 setTimeout(function() {
 // Assertion passes
 resolve({
 result: true,
 message: "Custom assertion passes"
 });
 // OR Assertion fails
 resolve({
 result: false,
 message: "Custom assertion fails"
 });
 // OR Propagate an error while evaluating assertion
 reject(new Error("Error while evaluating assertion, details: " +
details));
 },0);
 });
 }
 }
 }
 });

 return customExtension; });

Activate this extension and provide some URI parameters to the application:

Opa5.extendConfig({ extensions: ["sap/ui/test/sample/CustomOpaExtension"],
 appParams: {
 "key": "value"
 } });

Call the custom extension from the test:

Opa5.createPageObjects({ onMyView : {
 viewName : "MyView",
 assertions : {
 iShouldUseMyCustomAssertion : function () {
 return this.waitFor({
 id: "MyControlId",
 actions: new Press(),
 success : function () {
 Opa5.assert.myCustomAssertion();
 }
 });
 }
 }
 } });

1206 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Test Libraries for OPA5

Test libraries are a means of collaboration between app developers and reusable content providers.

As of version 1.48, you can declare OPA5 test libraries to be used within your integration tests.

The main benefit is reduced test maintenance efforts and avoidance of code repetition. You can isolate generic
actions and validations in a test library and reuse them across apps, for example, clicking search and back
buttons, and validating table content. As a result, app tests are simplified and have compact page objects and
short journeys. The test library provider is responsible for keeping it up to date with component changes, which
significantly lowers maintenance costs.

Consuming a Test Library

There are 3 simple steps to start using a test library:

1. Define the test library resource root in the QUnit start page.
For example, the app my.application has a dependency on the test library my.awesome.testlibrary
and its test resources are built into the directory test-resources.

<script id="sap-ui-bootstrap" src="../../resources/sap-ui-core.js" data-sap-ui-resourceroots='{
 "my.application.test.integration": "./",
 "my.awesome.testlibrary.integration.testLibrary" : "../../../test-
resources/my/awesome/testlibrary/integration/testLibrary" }'> </script>

2. Add the name of the library and its configuration object to the testLibs OPA5 configuration property:

Opa5.extendConfig({ testLibs: {
 myAwesomeTestLibrary: {
 appId: "my.application.appId",
 entitySet: "MyExampleEntitySet",
 viewNamespace: "my.application.mainView"
 } }

3. Require the test library modules in your test files:

sap.ui.require(["sap/ui/test/Opa5",
 "my/awesome/testlibrary/integration/testLibrary/ExampleList/pages/
ExampleList"
], function (Opa5, ExampleList) {
 // you can now use ExampleList's actions and assertions
 When.onTheTestLibraryPage.iDoThings();
 Then.onTheTestLibraryPage.iCheckTheResult(); });

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1207

Reusing Functionality

Page Objects

You can directly consume page objects defined by the test library. We recommend you follow the pattern
described in Structuring OPA Tests With Page Objects [page 1201].

Here is an example, assuming that the page object onTheListPage is defined by a test library:

Then.onTheListPage.iSearchForItem();

Page Object Utilities

If a test library has exposed utilities, you can use them in your own page objects to simplify interaction with
complex controls. There are two steps to start reusing utility functions:

1. Configure the test library:

Opa5.extendConfig({ testLibs: {
 myAwesomeTestLibrary: {...}
 } });

2. Load the test library before the page objects that will use it.
The utilities will be available on the page object instance under a property matching the name of the test
library:

Opa5.createPageObjects({ onTheListPage: {
 viewName: "myTestView",
 actions: {
 iSetTheFilter: function () {
 this.myAwesomeTestLibrary.iSelectItem();
 // trigger other interactions
 }
 }
 }
}); Then.onTheListPage.iSetTheFilter();

Global Configuration

Global statements set by a test library are defined and used in the same way as global statements set by a
consumer.

Here is an example, assuming that the action iSetupTheApp is added by a test library:

Given.iSetupTheApp();

Creating a Test Library

The test library consists of OPA5 statements written the same way as in a regular test. Users should be able to
provide app-specific parameters, such as app ID, view names, control IDs, control labels and texts.

1208 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

The test library can access the configuration provided by the consumer test in the following manner:

var oConfiguration = Opa5.getTestLibConfig("myAwesomeTestLibrary"); oConfiguration.appId === "my.application.appId" // true

Exposing Functionality

There are several ways to expose functionality from a test library.

Page Objects
We recommend you use the page objects pattern described in Structuring OPA Tests With Page Objects [page
1201]. Page objects created by this pattern are automatically available for the app tests.

Use this pattern for interactions that always involve a single page:

Opa5.createPageObjects({ onTheListPage: {
 viewName: "myTestView",
 actions: {
 iSearchForItem: function () {
 // find a search field and enter some text
 }
 }
 } });

Page Object Utilities
Define utility functions when you need to expose functionality that will be used as a building block for user page
objects. A utility function can be used by multiple page objects.

A common use case is the interaction with a single control:

Opa5.extendConfig({ testLibBase: {
 myAwesomeTestLibrary: {
 actions: {
 iSelectItem: function: () {
 // choose item of a Select
 }
 }
 }
 } });

Global Configuration
Extending OPA5 configuration from within the test library has an effect on the app test as well. This means that
you can also set global OPA5 test statements.

Use this pattern when you need to expose functionality relevant to the the entire app, such as setup and
teardown:

var Common = Opa5.extend("testLibrary.pageObjects.Common", { iSetupTheApp: function () {
 // do some setup actions

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1209

 }
});
Opa5.extendConfig({
 actions: new Common() });

Related Information

Samples: sap.ui.test.Opa5

Simulating User Interactions on Controls

OPA5 has a built-in actions parameter that can be used for simulating events. If you use an action, OPA5 will
make sure that the UI is in a state that allows the action to be executed.

We recommend that you use actions and not success functions for user interactions as using success
functions will not execute the checks on the UI. You can use multiple actions on one control and you can mix
built-in actions with custom actions.

Simulating a press Event

In this example we trigger a press event on a button, using the waitFor function of OPA5, and the Press
action. Note that the action has access to the located button implicitly.

oOpa.waitFor({ id: "myButton",
 actions: new Press() });

Choosing an Item from sap.m.Select

Here's an example showing how to choose an item from sap.m.Select, using the waitFor function of OPA5,
and the Press action:

sap.ui.require(["sap/ui/test/opaQUnit",
 "sap/ui/test/actions/Press",
 "sap/ui/test/matchers/Properties",
 "sap/ui/test/matchers/Ancestor"
], function (opaTest, Press, Properties, Ancestor) {
 opaTest("Should trigger a press event", function (Given, When, Then) {
 // Startup the application using Given
 When.waitFor({
 id: "mySelect",
 actions: new Press(),

1210 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/entity/sap.ui.test.Opa5/samples

 success: function(oSelect) {
 this.waitFor({
 controlType: "sap.ui.core.Item",
 matchers: [
 new Ancestor(oSelect),
 new Properties({ key: "Germany"})
],
 actions: new Press(),
 errorMessage: "Cannot select Germany from mySelect"
 });
 },
 errorMessage: "Could not find mySelect"
 });
 // Assert what happened after pressing using Then
 }); });

For sap.m.Combobox, use controlType: "sap.m.StandardListItem".

Entering Text into Input Fields

Use the EnterText action when you want to enter text in a form control.

In this example, the text of an sap.m.Input is changed twice. First, "Hello " is entered as value. Then, with the
second action, "World" is added. As a result, the value of the input is "Hello World".

oOpa.waitFor({ id: "myInput",
 actions: [
 new EnterText({ text: "Hello " }),
 new EnterText({ text: "World" })
] });

There are a couple of modifiers to the EnterText action:

● Use the clearTextFirst property to empty the existing value before entering new text. This example
changes a control value to "Hello" and then to "World" with two consecutive actions:

actions: [new EnterText({ text: "Hello" }), // changes Input value to "Hello"
 new EnterText({ text: "World", clearTextFirst: true }) // changes Input
value to "World"]

● Use the keepFocus property to preserve the focus on the input after the action completes. This is useful if
the control has enabled suggestions that have to remain open after the text is entered. After the text is
entered, you can perform another OPA5 search for the suggestion control and select it using a Press
action.

// Show the suggestion list with filter "Jo" oOpa.waitFor({
 id: "formInput",
 actions: new EnterText({
 text: "Jo",
 keepFocus: true
 }),
 success: function (oInput) {
 // Select a suggestion by pressing an item with text "John".

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1211

 // After the press action, the value of the input should be changed
to "John".
 // Note that the focus will remain in the input field.
 this.waitFor({
 controlType: "sap.m.StandardListItem",
 matchers: [
 new Ancestor(oInput),
 new Properties({
 title: "John"
 })
],
 actions: new Press()
 });
 } });

Table Interaction

A Table consists of columns (sap.m.Column) and rows. The rows, defined as sap.m.ColumnListItems,
consist of cells. In order to utilize a stable locator which is not expected to change frequently, you can use a
field/value combination to retrieve and interact with table items.

The following example simulates a click on an item in a table. The name of the field can be found in the
$metadata file of your OData service.

iClickOnTableItemByFieldValue: function () { return this.waitFor({
 controlType: "sap.m.ColumnListItem",
 // Retrieve all list items in the table
 matchers: [function(oCandidateListItem) {
 var oTableLine = {};
 oTableLine =
oCandidateListItem.getBindingContext().getObject();
 var sFound = false;
 // Iterate through the list items until the
specified cell is found
 for (var sName in oTableLine) {
 if ((sName === "Field Name") &&
(oTableLine[sName].toString() === "Cell Value")) {
 QUnit.ok(true, "Cell has been found");
 sFound = true;
 break;
 }
 }
 return sFound;
 }],
 // Click on the specified item
 actions: new Press(),
 errorMessage: "Cell could not be found in the table"
 }); }

Writing Your Own Action

Since OPA5 uses JavaScript for its execution, you cannot use native browser events to simulate user events.
Sometimes it's also hard to know the exact position where to click or enter your keystrokes since SAPUI5

1212 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

controls don't have a common interface for that. If you find you're missing a certain built-in action, you can
create your own actions very easily. Just provide an inline function as shown here:

sap.ui.require(["sap/ui/test/opaQUnit", "sap/ui/test/matchers/Properties"],
function (opaTest, Properties) { opaTest("Should simulate press on the delete button", function (Given, When,
Then) {
 // Startup the application using Given
 When.waitFor({
 id : "entryList",
 matchers : new Properties({ mode : "Delete"}),
 actions: function (oList) {
 oList.fireDelete({listItem : oList.getItems()[0]});
 },
 errorMessage : "The delete button could not be pressed"
 });
 // Assert what happened after selecting the item using Then
 }); });

Related Information

API Reference: sap.ui.test.actions
API Reference: sap.ui.test.actions.EnterText
API Reference: sap.ui.test.actions.Press
API Reference: sap.ui.test.matchers.Interactable

Using OpaBuilder

Write tests by leveraging the builder pattern to create OPA5 descriptors.

sap.ui.test.OpaBuilder is available as of version 1.74.

The main benefit for developers is having a function-driven API at hand, which supports and promotes a clean
test definition and execution.

In Simulating User Interactions on Controls [page 1210], we provided some examples on how to interact with
controls. Let's have a look at some by implementing them using OpaBuilder.

Simulating a press Event

The waitFor options for this straightforward example are as follows:

return oOpa.waitFor({ id: "myButton",
 actions: new Press() });

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1213

https://sapui5.hana.ondemand.com/#/api/sap.ui.test.actions
https://sapui5.hana.ondemand.com/#/api/sap.ui.test.actions.EnterText
https://sapui5.hana.ondemand.com/#/api/sap.ui.test.actions.Press
https://sapui5.hana.ondemand.com/#/api/sap.ui.test.matchers.Interactable

When you use OpaBuilder, it looks like this:

return oOpa.waitFor(new OpaBuilder()
 .hasId("myButton")
 .doPress()
 .build());

The result of the OpaBuilder.build method is the configuration object for the Opa5.waitFor method.
Because it's commonly used just as such, OpaBuilder comes with a convenient OpaBuilder.execute()
method. The required Opa5 instance can be provided as a parameter to the execute function, or you can use
the constructor or create method. Taking this into account, the previous example can also be written like
this:

return OpaBuilder.create(oOpa) .hasId("myButton")
 .doPress() .execute();

For more information, see OpaBuilder.build, OpaBuilder.execute, and OpaBuilder.create.

Complex Interaction with Child Elements

Let's assume we want to show the suggestion list with a filter for "Jo". The waitFor definition could look like
this:

oOpa.waitFor({ id: "formInput",
 actions: [
 new EnterText({
 text: "Jo",
 keepFocus: true
 }),
 function (oInput) {
 this.waitFor({
 controlType: "sap.m.StandardListItem",
 matchers: [
 new Ancestor(oInput),
 new Properties({ title: "John" })
],
 actions: new Press()
 });
 }
] });

OpaBuilder comes with convenient functions to operate on aggregations and child elements:
OpaBuilder.doOnAggregation and OpaBuilder.doOnChildren.

While doOnAggregation requires the aggregation name of the defined control and only operates on those
SAPUI5 aggregation items, doOnChildren addresses any control that is a child within the control hierarchy.
Internally, the sap.ui.test.Matchers.Ancestor matcher is used as well, but the definition is simplified:

OpaBuilder.create(oOpa) .hasId("formInput")
 .doEnterText("Jo", false, true),

1214 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.test.OpaBuilder/methods/build
https://sapui5.hana.ondemand.com/#/api/sap.ui.test.OpaBuilder/methods/execute
https://sapui5.hana.ondemand.com/#/api/sap.ui.test.OpaBuilder/methods/sap.ui.test.OpaBuilder.create

 .doOnChildren(
 OpaBuilder.create(oOpa)
 .hasType("sap.m.StandardListItem")
 .hasProperties({ title: "John" })
 .doPress()
) .execute();

For more information, see OpaBuilder.doOnAggregation and OpaBuilder.doOnChildren.

Custom Functions and Chaining

Let's have a look at an example including a custom matcher and an action:

When.waitFor({ id: "entryList",
 matchers: [
 new Properties({ mode: "MultiSelect" }),
 function (oList) {
 return oList.getItems().length > 0;
 }
],
 actions: function (oList) {
 for (var i = 0; i < oList.getItems().length; ++i) {
 oList.setSelectedItem(oList.getItems()[i], true);
 }
 },
 errorMessage: "Could not select all items" });

 Note
This example showcases the usage of a custom action. The best practice that we recommend is to use only
Press and EnterText actions when simulating user interactions.

Besides user-defined functions, the example also contains two matchers. As the parameter of the has method
accepts the same types as the matchers property, this part could directly be rewritten as:

... .has([
 new Properties({ mode: "MultiSelect" }),
 function (oList) {
 return oList.getItems().length > 0;
 }
]) ...

However, by leveraging the builder pattern, the .has methods can easily be chained. The resulting matchers
options are an array consisting of all defined single matchers in the order of definition. This is similar to the .do
method and the actions property.

OpaBuilder.create(When) .hasId("entryList")
 .hasProperties({ mode: "MultiSelect" })
 .has(function (oList) {
 return oList.getItems().length > 0;
 })
 .do(function (oList) {

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1215

https://sapui5.hana.ondemand.com/#/api/sap.ui.test.OpaBuilder/methods/doOnAggregation
https://sapui5.hana.ondemand.com/#/api/sap.ui.test.OpaBuilder/methods/doOnChildren

 for (var i = 0; i < oList.getItems().length; ++i) {
 oList.setSelectedItem(oList.getItems()[i], true);
 }
 })
 .error("Could not select all items") .execute();

While matchers and actions can be an array of functions, the more seldom used check and success
properties must be a single function. Nevertheless, due to the builder pattern, those functions can be chained
as well:

OpaBuilder.create() .check(fnCheck1)
 .check(fnCheck2)
 .check(fnCheck3)
 .success(fnAssert1)
 .success(fnAssert2) .build();

OpaBuilder chains those functions, which results in the following waitFor options:

{ check: function (vInput) {
 return function(vInput) {
 return fnCheck1(vInput) && fnCheck2(vInput);
) && fnCheck3(vInput);
 },
 success: function (vInput) {
 fnAssert1(vInput);
 fnAssert2(vInput);
 } }

Additional Features

While OpaBuilder itself cannot extend the features provided by Opa5.waitFor, it comes with some
convenient methods to support test definition. Besides the already mentioned child element support, method
chaining, and most commonly used matchers and actions as predefined functions, there are some less obvious
features.

Generated Error Message
If no error message is explicitly defined, OpaBuilder generates an error message when calling build(). The
message consists of the controlType and id properties as well as the number of any additional matchers. A
generated errorMessage can look like this:

sap.m.Button#myButton with 1 additional matcher(s) not found

Success Message and Description
When defining an OPA5 test without an assertion, there's no output on success. Most often, such an output is
useful for longer journeys, so the OpaBuilder.success method also accepts a string argument. This
generates a simple truthy assertion with the provided message as a success function:

success: function (vControls) {

1216 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Opa5.assert.ok(true, sSuccessMessage); }

The OpaBuilder.description function can be used for even better logging. The provided message is set as
errorMessage and assertion on success:

OpaBuilder.description("Pressing 'Cancel' button") // Output message...
// ...in case of success
Pressing 'Cancel' button - OK
// ...in case of failure Pressing 'Cancel' button - FAILURE

Aggregation Matcher
A common use case of tests is finding and operating on a control with one or more aggregation items that fulfill
certain conditions. While there are already some predefined matchers for aggregations in place, OpaBuilder
comes with the generic hasAggregation and the most commonly used hasAggregationProperties
methods. The vMatchers parameter of hasAggregation can be any matcher method (or matcher chain)
that is executed against the items of the defined aggregation of the matching control.

OpaBuilder.create(oOpa) .hasType("sap.m.CustomListItem")
 .hasAggregation("content", [
 function(oContentItem) {
 return oContentItem instanceof sap.m.Title;
 },
 {
 properties: {
 text: sMatchingTitle
 }
 }
])
 .press()
 .description("Pressing list item with title: " + sMatchingTitle) .execute();

 Note
Defining two hasAggregation matchers can also match two different aggregation items. To ensure that
one item fulfills all criteria, an all-criteria-matcher should be defined in the same hasAggregation call.

Conditional Actions
When defining journeys, reusable functions in the page can speed up writing tests and their quality.
Sometimes, the generic approach of those functions has its limitations. One limitation is that a test fails if no
control is found that matches the conditions. This could be a challenge if the control being tested is not
guaranteed to exist.

Example:

Let's have an interaction that selects all items of a list that aren't selected yet.

OpaBuilder.create(oOpa) .hasType("sap.m.CustomListItem")
 .hasProperties({ selected: false })
 .doPress()
 .description("Selecting unselected items") .execute();

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1217

This is fine as long as there is at least one unselected list item. When all items are already selected, the test
fails, which is not what we want. Here, the doConditional function comes in handy:

OpaBuilder.create(oOpa) .hasType("sap.m.CustomListItem")
 .doConditional(
 OpaBuilder.Matchers.properties({ selected: false }),
 OpaBuilder.Actions.press()
)
 .description("Selecting unselected items") .execute();

Commonly Used Matchers and Actions
As already seen in the last example, OpaBuilder has two static members: OpaBuilder.Matchers and
OpaBuilder.Actions. While there's no issue in using any matchers from sap.ui.test.Matchers in the
OpaBuilder definition, the goal of the two members is to provide the most commonly used matchers and
actions to be directly accessed when working with OpaBuilder without explicitly requiring them in the test
class.

OpaBuilder.Actions contains both sap.ui.test.Actions.Press and
sap.ui.test.Actions.EnterText, while OpaBuilder.Matchers does not contain every predefined
matcher in sap.ui.test.Matchers, but still provides some additional ones as described in the API.

Related Information

API Reference: sap.ui.test.OpaBuilder
API Reference: sap.ui.test.OpaBuilder.Matchers
API Reference: sap.ui.test.OpaBuilder.Actions

Pitfalls and Troubleshooting

Tips and tricks if OPA isn't behaving or reacting the way you expect it to.

Why Can't OPA Find the Control I'm Looking For?

OPA checks many conditions before it passes a control to your matchers/actions/success functions. If your
control doesn't match these conditions, you're not able to set a breakpoint. For such instances, OPA logs lots of
information into the browser's console if you turn on the SAPUI5 debug mode. You can either use the sap-ui-
debug=true URL parameter or the SAPUI5 Diagnostics [page 1326]. The diagnostics can also be helpful to see
the state of your UI.

After turning on the debug mode, you can have a look at the log and also filter it by looking for opa or
matchers.

1218 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.test.OpaBuilder
https://sapui5.hana.ondemand.com/#/api/sap.ui.test.OpaBuilder.Matchers
https://sapui5.hana.ondemand.com/#/api/sap.ui.test.OpaBuilder.Actions

A frequent cause of error is typos in the view name or control IDs. These are easily found by looking through the
logs.

Multiple Views with the Same viewName

If there are multiple views with the same viewName, OPA5 may not find the exact control you're looking for.

As of version 1.62, there are a couple of ways to ensure a correct match:

● viewId parameter is introduced. You can set it in Opa5.extendConfig(), Opa5.waitFor() and in page
object definitions. viewId can be used standalone or in combination with viewName. If OPA5 finds
multiple views with the same name, it prompts you to add a view ID with the test failure message "Please
provide viewId to locate the exact view.".

● Only views that are rendered are used in OPA5 control search.

Control Isn't Found When Running the Test on a Different Machine or in a Suite

The size of the iFrame in which the app is loaded is as large as the browser window. It's scaled down to leave
space for the QUnit info but the content is preserved the same as when run in full size. This means that
regardless of the small iFrame, you shouldn't see any responsive change in the app's appearance.

If the test runs fine locally but control isn’t found on another machine, there’s a chance that the other
machine's screen is too small and triggers the responsive behaviour of some controls. For example, CI
executors with smaller screens or when the test is part of a suite and the iFrame is placed inside a suite
wrapper much smaller than the screen.

One way is to test for the responsive behavior and add conditional waitFors and test cases. Tests for different
screens, such as phone and desktop, are better separated in different test files.

If you want to work around the sizing issue and don't want to test responsive behavior, you can set a fixed size
for the iFrame. The idea is to write the test for the small size which most probably results in the central
environment. You can use the width and height parameters of iStartMyAppInAFrame or the
opaFrameWidth and opaFrameHeight URL parameters.

If either width or height isn’t defined, a default value is assigned. The default screen size is 1280x1024 px. The
iFrame takes 60% of the screen size, which makes the default iFrame size to be 768x614.4 px.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1219

Sometimes My Test Fails, Sometimes It Doesn't

Is It the Startup That's Failing?

Maybe the app is loading too slowly for the OPA tests. If there's a local index file that doesn't contain the library
dependencies your app needs, the SAPUI5 bootstrap is very slow. To fix this, add the dependencies you need in
your application descriptor's sap.ui.dependencies namespace. If you don't have a descriptor, use the
bootstrap option libs. For more information, see Descriptor for Applications, Components, and Libraries [page
734] and Configuration Options and URL Parameters [page 703].

It's Failing During the Execution

If this happens, your test is probably executing actions faster than it should. If you encounter a failure, look at
the current state of the UI - in almost all cases an action couldn't be triggered or a JavaScript error occurred.
This error should be included in the console logs. If an action couldn't be executed, make sure that you use the
action parameter of OPA5's waitFor function. When using the success function for triggering actions, OPA5
doesn't check many things.

Here are some examples that have occurred in known apps:

● An app was using the bindingContext of a control in a press handler. OPA5 was way faster than a human
user, so the HTTP-Request that was sometimes finished by the time OPA5 was executing the check, was
sometimes still pending and so an exception was thrown. The test failed because OPA was trying to reach a
page that couldn't be shown because of this error. This had to be fixed in the app.

● When there was no action parameter available, a ListItem got rerendered while a press action was
executed on it. Due to the rerendering, the List wasn't able to perform the click, meaning it wasn't
executed and the test failed. This only happened on certain occasions, depending on the execution speed
of the machine executing the test. This is now detected automatically when using actions.

OPA5 Is Failing on a Specific Browser: What Should I Do?

Am I Comparing Language-Dependent Texts and the Browser Has a Different Language?

Check the logs to see if your matcher is failing because it's checking a text against a different language. If you
want to always execute your tests with the same language, use the sap-ui-language= URL or bootstrap
parameter.

Is It Only Internet Explorer That's Affected?

If you're using an IFrame to launch your app, Internet Explorer is more strict when it comes to objects from
removed IFrames. If you're using the OPA context to remember objects, destroy your frame, and then execute a
function on the object, you get a JavaScript exception. How do you avoid it? By only remembering values like
strings or integers when destroying the frame, or by using the component startup in OPA5.

1220 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

OPA Isn't Even Starting and There's No Logging Either

If you require sinon-qunit.js, it overwrites the browser functions setTimeout and setInterval. OPA
needs these functions and without them the tests don't start. You can either set the fakeTimers to false in
your test setup, or maybe consider not using sinon-qunit.js together with OPA.

module("Opatests", { beforeEach : function () {
 sinon.config.useFakeTimers = false;
 },
 afterEach : function () {
 sinon.config.useFakeTimers = true;
 } });

OPA Tests Aren't Stable

For example, the tests run fine most of the time, but they fail:

● in automated test runs
● when run with different OPA speeds
● sporadically on various steps

One way to stabilize your tests is to use OPA autoWait and actions.

Working with Controls Which Set Timeouts

Examples of such controls are busy indicators, notification popups, and message toasts. These controls set a
timeout after which the control is supposed to disappear. In some apps, it can be important to ensure that such
a control is displayed. Note that if you enable autoWait in your tests globally, then you have to disable
autoWait specifically in the waitFor statements related to these special controls. For example, if you want to
test that a busy indicator is displayed during the sending of a request, you don't want to wait for controls to be
interactable:

oOpa.waitFor({ autoWait: false,
 id: "myBusyList", // a control that is expected be covered by a busy
indicator
 matchers: new PropertyStrictEquals({
 name: "busy",
 value: true
 }),
 success: function (oList) {
 Opa5.assert.ok(true, "My list is busy");
 } });

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1221

Related Information

Cookbook for OPA5 [page 1188]
Diagnostics [page 1326]

Mock Server

Mock server is a mocking framework for HTTP and HTTPS that is used to simplify integration testing and to
decouple development teams by allowing to develop against a service that is not complete or unstable.

In SAPUI5, the mock server mimics OData backend calls. It simulates the OData provider and is completely
client-based, meaning that no network connectivity to a remote host is required. It intercepts HTTP calls made
to the server and provides a fake output to the client. All this is transparent to data binding and use of OData
model and feels like a real server. No changes are required on the OData model.

The mock server provides mock services and also mock data. It supports randomly generated data based on
the service metadata, as well as mock data provided in JSON files.

 Note
Mock Server only supports the JSON format for representing the resources it exposes, such as collections,
entries, links, and so on.

Related Information

sap.ui.core.util.MockServer

OData Features Supported by Mock Server

List of OData version 2.0 features supported or not supported by the mock server

The mock server only supports the JSON format for representing the resources it exposes, such as collections,
entries, and links.

 Restriction
The mock server doesn’t support more than one draft service in an application.

The following table lists the OData features that are supported by the mock server.

1222 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.util.MockServer.html

Table 37: Supported OData Features

Feature Status

CRUD calls Supported

Navigations Supported

Query String options:

- Orderby System Query Option ($orderby) Supported

- Top System Query Option ($top) Supported

- Skip System Query Option ($skip) Supported

- Filter System Query Option ($filter) Supported; eq, ne, gt, lt, ge, le, substringof,
startswith, endswith, and, or

- Expand System Query Option ($expand) Supported

- Select System Query Option ($select) Supported

- Inlinecount System Query Option ($inlinecount) Supported

- Format System Query Option ($format) Supported; only JSON format is allowed

Batch processing Supported

Multiple services Supported; we recommend to create one Mock Server in
stance per service

Update via MERGE/PATCH Supported

ETag handling Supported

The following table lists the OData features that are not supported by the mock server.

Table 38: Unsupported OData Features

Feature Status

Service operations (function imports) Unsupported, but can be extended

Annotations Unsupported

Getting individual properties of an entity ($value) Unsupported

Edm.DateTime keys Unsupported

Edm.DateTime values All dates have to be either before 2017 or after; you cannot
use mixed values

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1223

Feature Status

metadata.xml with properties from datetimeoffset Unsupported

Key of type Edm.Boolean Unsupported

Key of type Edm.Int64 Unsupported

$links and #AddressingLinksBetweenEntries Unsupported

For more information see Addressing Links between Entries
 and Referencing Requests in a Change Set on http://

www.odata.org/ .

Multiple navigation properties Unsupported

Response in byte array format Unsupported

Combination of the system queries $select and
$expand in draft OData services

Unsupported

Filter query string operator ($filter) with one of the func
tions substringof(string po, string p1),
endswith(string p0, string p1) or
startswith(string p0, string p1)

Does not support input strings (p0 or p1) containing a
comma ,.

Key values containing a comma Unsupported

System query option $expand with multiple multi-level
navigation properties with the same root navigation property

Unsupported

Filter query $filter on fields from type edm.datetime Unsupported

Mock Server: Frequently Asked Questions

Is the mock server a real server?

No. The mock server runs on the client and only uses the server terminology of 'start' and 'stop'. It does not
require a network connection since there is no actual server involved.

1224 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/disclaimer?site=http%3A%2F%2Fwww.odata.org%2Fdocumentation%2Fodata-version-2-0%2Furi-conventions%2F%23AddressingLinksBetweenEntries
http://help.sap.com/disclaimer?site=http%3A%2F%2Fwww.odata.org%2Fdocumentation%2Fodata-version-2-0%2Furi-conventions%2F%23AddressingLinksBetweenEntries
http://help.sap.com/disclaimer?site=http%3A%2F%2Fwww.odata.org%2Fdocumentation%2Fodata-version-2-0%2Fbatch-processing%2F%23ReferencingRequestsInAChangeSet
http://help.sap.com/disclaimer?site=http%3A%2F%2Fwww.odata.org%2F
http://help.sap.com/disclaimer?site=http%3A%2F%2Fwww.odata.org%2F

What module is needed?

The mock server is contained in module sap/ui/core/util/MockServer. The module can either be added
to the list of dependencies in a sap.ui.define call or it can be required with a call to sap.ui.require:

sap.ui.define([…, 'sap/ui/core/util/MockServer', ...], function(…, MockServer,
…) { var oMyMockServer = new MockServer(...);
});
sap.ui.require(['sap/ui/core/util/MockServer'], function(MockServer) {
 var oMyMockServer = new MockServer(…); });

Can we use one mock server instance to mock multiple OData services?

No. Each OData service needs its own mock server. Create one MockServer instance per service.

How to obtain metadata xml?

Call the metadata of the service in a browser and save it into a file.

How to obtain mock data? What options do I have for mock data?

You can let the mock server generate random mock data automatically based on services metadata. For this,
provide only the path to the metadata file and omit the second parameter of the simulate function as follows:

// url to the service metadata document var sMetadataUrl = "testdata/rmtsampleflight/metadata.xml"; oMockServer.simulate(sMetadataUrl);

You can provide your own mock data in .json files, which can either be created manually or saved from an
OData service response. Mock data in JSON format can be generated from an OData service by adding the
$format=json parameter to the URL. Save the browser response which is called <entity set
name>.json, for example FlightCollection.json and put it into the model folder. Add the path to the
simulate function:

// url to the service metadata document var sMetadataUrl = "testdata/rmtsampleflight/metadata.xml";
 // base url which contains the mockdata
 var sMockdataBaseUrl = "testdata/rmtsampleflight/"; oMockServer.simulate(sMetadataUrl, sMockdataBaseUrl);

You can specify a path to .json mock data and let the mock server generate data for the rest of the service
entities:

var sMetadataUrl = "testdata/rmtsampleflight/metadata.xml"// url to the service
metadata document

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1225

 var sMockdataBaseUrl = "testdata/rmtsampleflight/"// base url which
contains the mockdata
 oMockServer.simulate(sMetadataUrl, {
 'sMockdataBaseUrl' : sMockdataBaseUrl,
 'bGenerateMissingMockData' : true });

You can specify the names of the entity sets that are needed, and the mock server will load data only for the
specified service entities:

var sMetadataUrl = "testdata/rmtsampleflight/metadata.xml"// url to the service
metadata document var sMockdataBaseUrl = "testdata/rmtsampleflight/"// base url which
contains the mockdata
 oMockServer.simulate(sMetadataUrl, {
 'sMockdataBaseUrl' : sMockdataBaseUrl,
 'bGenerateMissingMockData' : true,
 'aEntitySetsNames' : ["EntitySetName1", " EntitySetName2"] });

I'm using the OData model and I get the following error in the console: The
following problem occurred: no handler for data

The OData model uses JSON to fetch the data:

var oModel = new sap.ui.model.odata.ODataModel(sUri, true);

What do I put in the rootUri?

Verify that you use the exact same URI prefix in the request as in the rootUri you define for the mock server. If
a root URI is set, all request path URIs are prefixed with this root URI. The root URI has to be relative and
requires a trailing '/'. It also needs to match the URI set in OData/JSON models or simple XHR calls in order for
the mock server to intercept them.

The code snippet shows an example:

sap.ui.define([…, 'sap/ui/core/util/MockServer',
 'sap/ui/model/odata/v2/ODataModel',
 ...
], function(…, MockServer, ODataModel, …) {
 var sUri = "/mock/";
 var oMockServer = new MockServer({
 rootUri : sUri
 });
 var oModel = new ODataModel(sUri, true);
 ... });

1226 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Can the mock server be used for more than for OData service simulation?

Yes. The mock server can be used to help you fake server response on any given API and stub all AJAX access
to resources such as OData service, metadata, annotation files (XML), other JSON or *.properties files.

Is OData navigation supported?

The mock server supports navigation via association also if no referential constraint is defined. However, the
result of the navigation is the entire collection of the navigation, or the first entry of the collection according to
the association multiplicity. So, if you want the navigation to return "correct" results according to keys, define a
respective referential constraint.

 Note
Due to a limitation of the mock server, you cannot use the same association to describe a two-way
navigation. If the navigation shall work for both directions, you need to define an appropriate association for
each direction.

How can I use the mock server in a QUnit?

You can set up the mock server in the setup function. For example:

sap.ui.require(['sap/ui/core/util/MockServer'], function(MockServer) { ...
 QUnit.module("OData data provider", {
 beforeEach : function() {
 this._oMockServer = new MockServer({ rootUri: "/model/"});
 this._oMockServer.simulate("../../../../qunit/service/
metadata.xml");
 this._oMockServer.start();
 },
 afterEach : function() {
 this._oMockServer.stop();
 }
 });
 ... });

How can I provide exit functions as pre/post functions of requests?

Mock Server has APIs to provide more flexibility and control over its current request processing. During request
processing, the callbacks are called before or after native handling of the Mock Server using the SAPUI5
eventing mechanism. You can add a callback in all requests of a specific HTTP method, for example in all get
requests, but additionally also on a specific entity set name, for example, POST to SaleOrders).

// add a callback in all requests of a specific http method

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1227

 oMockServer.attachAfter(sap.ui.core.util.MockServer.HTTPMETHOD.GET, fnCbPost);

// on a specific entityset name oMockServer.attachAfter(sap.ui.core.util.MockServer.HTTPMETHOD.GET, fnCbPost,
"CarrierCollection");

// remove the callback oMockServer.detachAfter(sap.ui.core.util.MockServer.HTTPMETHOD.GET, fnCbPost);

If you add additional request handlers and want to use this hooks mechanism inside your response function,
just call:

this.fireEvent(sap.ui.core.util.MockServer.HTTPMETHOD.GET + 'sEntityset' +
':before' , {oXhr: oXhr, sUrlParameters: sUrlParameters});

What do I need to do to run an OPA test with mock server

Start your app in mock mode. It is not possible to declare a mock server outside the app context.

Using Mock Data

Mock Data can be used when you start the development of an app as well as for testing and problem solving
when the data service is not available or it requires effort to set up data services.

To switch to mock mode, set the URL parameter responderOn to true. We recommend to provide one check
for this parameter in the app in a central place, for example in the model.Config object in the model folder.

jQuery.sap.declare("model.Config"); model.Config = {};
(function () {

 // The "reponder" URL parameter defines if the app shall run with mock data
 var responderOn = jQuery.sap.getUriParameters().get("responderOn");

 // set the flag for later usage
 model.Config.isMock = ("true" === responderOn);
}
)();

To run your app with mock data, you can use the mock server. The mock server intercepts HTTP calls to the
server and produces a faked output to the client. This is transparent to your data binding and the use of OData
model and feels like a real server. You start the mock server when you intialize your app as follows:

sap.ui.app.Application.extend("Application", {
 init : function () {

 ...

 // start mock server
 if (model.Config.isMock) {
 jQuery.sap.require("sap.ui.core.util.MockServer");
 var oMockServer = new sap.ui.core.util.MockServer({

1228 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 rootUri: model.Config.getServiceUrl();
 });
 oMockServer.simulate("model/metadata.xml", "model/");
 oMockServer.start();
 }

The mock server needs a metadata XML file that describes the data structure of your service. You can obtain
this by opening the OData service root URL in a browser with the suffix "$metadata" appended. Copy the
resulting XML file into the model folder of your application.

Remove any kind of link that points to internal servers.

The following two options for providing mock data exist:

● Provide your own mock data
You can provide JSON files as test data for the mock server to produce the output. Put all files into the
model folder. To avoid a "not found" error messages of the mock server, provide JSON files for each entity
of the service. Otherwise, the mock server will log those error messages to the console and create empty
data sets for the entities lacking a respective JSON data file. This is all right, in case you do not want to load
mock data for those entities. The mock server can also generate mock data for those entities by passing a
parameter to the simulate function.

● Mock server generates the mock data
The mock server can produce random mock data based on the service metadata it simulates. This can be
done easily by providing the path to the metadata fil and omitting the second parameter of the simulate
function. However, this option does not provide data that matches your business scenario.

Test Automation

To make sure that the code is always tested thoroughly before it is included in a productive app, you should use
a test runner that automates tests. The test runner can be included in your project setup so that it is called
whenever code changes are submitted.

In the following section, we describe the setup with Karma, but you can of course choose a different solution.

Karma uses plugins to add support for various framworks. For SAPUI5, you can use the karma-ui5 plugin that
helps with testing SAPUI5 projects.

Related Information

Continuous Integration: Ensure Code Quality [page 1398]
Karma Home Page
karma-ui5 on GitHub

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1229

http://help.sap.com/disclaimer?site=https%3A%2F%2Fkarma-runner.github.io%2F
https://help.sap.com/viewer/disclaimer-for-links?q=https%3A%2F%2Fgithub.com%2FSAP%2Fkarma-openui5

Installing Karma for Automated Testing

Initial setup of the application testing environment with Karma.

Prerequisites

You have installed Node.js in version 8.5 or higher and npm.

Procedure

1. Install Karma globally via npm so that you can run Karma by typing the karma command in your
command-line interface (CLI).

For more information, see the Karma Installation Guide on GitHub .

Use the following command:

npm install --global karma-cli

2. Create a package.json file.

○ If you already have an npm project, you can skip this step.
○ If not, use the following command:

npm init --yes

3. Install Karma locally in your working directory.

Use the following command:

npm install --save-dev karma

4. Install the Karma UI5 plugin locally on your working directory.

Use the following command:

npm install --save-dev karma-ui5

5. Install the Karma Chrome Launcher locally in your working directory.

Use the following command:

npm install --save-dev karma-chrome-launcher

In this example, we use Google Chrome as browser. You can find an overview of availabler browser
launchers by searching for packages with the keywords karma-launcher on the npm home page.

6. Create a karma.conf.js file in your working directory with the following content:

module.exports = function(config) { config.set({
 frameworks: ["ui5"],

1230 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/disclaimer?site=http%3A%2F%2Fkarma-runner.github.io%2F1.0%2Fintro%2Finstallation.html

 ui5: {
 url: "https://<<server\>\>:<<port\>\>"
 },

 browsers: ["Chrome"]

 }); });

Adapt the URL (<server\>:<port\> to the SAPUI5 resources according to your installation. You can also
use SAPUI5 from a content delivery network, see Variant for Bootstrapping from Content Delivery Network
[page 696].

 Note
The SAPUI5 plugin uses sensible defaults to detect your type of project and the relevant folders. If you
have a project with a different structure, you need to add some more configuration options. For more
information, see the Karma UI5 documentation on GitHub.

7. You can now run the tests with the following command:

karma start

Related Information

Karma Home Page
Node.js Home Page
npm Home Page
karma-ui5 on GitHub

Continuous Integration With Headless Chrome

For running tests in CI scenarios, such as Travis CI in GitHub, Headless Chrome needs to be used. Headless
Chrome is a Chromium Browser without GUI (in a headless environment).

You can use Headless Chrome standalone, but also with Karma. To launch Karma with Headless Chrome, you
need to add the following changes to the karma config.

1. Add karma-chrome-launcher to the project dev dependencies.

npm install -D karma-chrome-launcher

 Note
This is only required, if Chrome is not used as browser, that means, it was not defined during karma
initialization. In some cases, for example for running tests in a docker container, we recommend to add
puppeteer as dependency which includes the latest Chrome version. For more details, see the karma-
chrome-launcher repository on GitHub.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1231

http://help.sap.com/disclaimer?site=https%3A%2F%2Fgithub.com%2FSAP%2Fkarma-ui5%23about
http://help.sap.com/disclaimer?site=https%3A%2F%2Fkarma-runner.github.io%2F
http://help.sap.com/disclaimer?site=http%3A%2F%2Fnodejs.org%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fwww.npmjs.com%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fgithub.com%2FSAP%2Fkarma-openui5

2. Define the browser environment for running karma. For this, update the config object in karma.conf.js
as follows:

module.exports = function(config) { config.set({
 [...]
 browsers: ['ChromeHeadless'],
 singleRun: true
 [...]
 }) }

 Note
Make sure to set the singleRun flag to true. Otherwise, the script ends up in watch mode, listening
for file changes.

You can launch karma also with a specific config file. It might make sense, for example, to define a config file
(default: karma.conf.js) for the local environment, and one config file, for example karma-ci.conf.js for
the CI scenario. To launch karma with a different config file, add the file name as third parameter as follows:

karma start karma-ci.conf.js

Code Coverage with Istanbul and OPA5

To measure the code coverage, you can use the Istanbul Code Coverage plugin for Karma. Since the Istanbul
plugin cannot retrieve results from within iFrames, you may run into problems if you use OPA5 tests.

To get correct code coverage results for OPA5 tests, you need to execute them inside the component
containers instead of iFrames. This will also speed up the execution time of your OPA5 tests.

 Note
With component containers, you lose the isolation of your single tests. Also, the index.html file of your
app is no longer executed (only the Component.js file is needed).

To execute the tests inside a component container, replace iStartMyAppInAFrame() with
iStartMyUIComponent() and iTeardownMyAppFrame() with iTeardownMyApp() in all your OPA5 tests.

 Restriction
Currently, this does not work for apps that are created for the SAP Fiori launchpad (FLP).

For more information, see the API Reference: sap.ui.test.Opa5.

Related Information

Istanbul Code Coverage Home Page

1232 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.test.Opa5.html
http://help.sap.com/disclaimer?site=https%3A%2F%2Fistanbul.js.org%2F

Behavior-driven Development with Gherkin

With behavior-driven development (BDD), you as a developer start with a user story that defines the business
value that the developed app should have. Next, you write a test that verifies the new functionality (this test
initially fails). Finally, you write the needed functionality and your test passes. Gherkin is a test framework that
supports this approach.

At first, as you are learning BDD, it will take a long time to implement new tests. Resist the temptation to
abandon automated testing. The most important software development phase for successful software is the
maintenance phase. Automated tests are the best way to ensure an effective maintenance phase, and help
ensure that the code quality remains high over time.

It's true that when you first try automated testing it might take a long time, but even this first attempt will be
worthwhile and pay dividends later. In your future projects, when you implement your tests much faster, your
initial investment in learning how to do integration testing will really pay off.

One good way to ensure that you get the most value for your investment of time into automated testing is to
ensure that you test the right things. Integration testing is best for testing the main path of the major business
scenarios. These are what are called "face-saving tests", in the sense that you will lose face if you try to deliver
the software when these major business scenarios are failing. Hence, integration tests are a great way to do a
quick and painless smoke test every time you commit a change to your software, to ensure that you haven't
broken anything important.

Since writing integration tests can be time-consuming, it's better to use unit testing to test all of the nuances
and failure cases of your software. Unit tests are cheap and easy to write, and are better suited to achieving full
test coverage for the software.

Gherkin

Gherkin is written in JavaScript and is fully compatible with SAPUI5, OPA, and QUnit. It is based on the
“cucumber” tool.

The advantages of using Gherkin are:

● You write executable specifications that are easy to understand and that allow the easy generation of
integration tests.

● Product specification and documentation are always up to date; they evolve during the development
project.

● Single source of truth: Reduce communication errors across your development team, because the product
owner, developers, and testers are all working from the same specification.

● Maximize the business value you get out of the time spent writing tests, and keep your focus on the
customer and their requirements.

The Gherkin library contains the following parts:

● Feature file
Software specification written in Gherkin syntax. Feature files are human-readable specifications that are
also machine-readable. Features are composed of test scenarios, which are themselves composed of test
steps.

#!featureFeature: Wearing sunscreen stops skin cancer

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1233

 Scenario: Apply sunscreen
 Given the sun is dangerous
 When I apply sunscreen Then I protect my skin

● Steps file
Translates the feature file into something a computer can understand and execute. The steps file also
contains the tests to be executed to ensure that the software behaves according to its specification. The
main elements of a steps file are called step definitions.

this.register(/^I protect my skin$/i, function() { this.assert.assertEqual(this.mySkin, 'protected'); });

● Test harness
Stitches together the feature file and steps file and executes runtime tests on the result using a test
framework such as QUnit.

● DataTableUtils
Convenience library for handling data tables and string normalization.

Related Information

cucumber Home Page
Gherkin documentation on Github

Feature Files

Feature files are human-readable specifications that are also machine-readable.

The Gherkin syntax is simple. Each major software feature is written in a separate file. You need to decide how
to split your software up into features. For example, if you are testing a coffee machine, features might include:
serving coffee, accepting money, dispensing change, setting the cost of each beverage, serving hot chocolate,
serving hot water, etc. Each one of these features could have its own feature file.

Each feature file contains exactly one feature, and this feature contains one or more test scenarios. Each test
scenario contains one or more test steps. Test steps describe the practical steps that the user needs to
perform to execute the overall test scenario.

For example, for the "accepting money" feature, a test scenario might include steps such as (1) the user must
insert enough money into the machine before (2) the machine serves coffee. You could create a second test
scenario, where (1) the user doesn't insert enough money and (2) the machine does not serve coffee. In this
example, each scenario is composed of two steps.

Conventions for Feature Files

● Use the file extension .feature

1234 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/disclaimer?site=https%3A%2F%2Fcucumber.io%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fgithub.com%2Fcucumber%2Fcucumber%2Fwiki%2FGherkin

● Can include comments by adding the hash (#) symbol at the beginning of a line
● Feature files are composed of one or more test scenarios, which walk the user through using the software;

what the user does, and what the expected results are.
● These scenarios are themselves composed of lines starting with the keywords Given, When, Then, And,

But and *.
● New lines begin with a keyword

○ Features start with Feature
○ Test scenarios start with Scenario

Indentation is purely for readability and is not parsed. Similarly, blank lines are ignored by the parser.
● You can also just create a bulleted list of steps instead of using keywords

Example

The following example shows the structure of a sample feature file :

#!featureFeature: this is the name of the feature Here you can describe the feature. Indentation is purely to make
 this more readable for you. This section will not be used for
 testing, it is solely for human consumption.
 Scenario: this is the scenario's name
 This is a comment about the scenario
 Given you make a certain assumption here
 And you make another assumption
 When some action is taken
 Then there is an expected response that you write here
 But there is an exception you should test for
 # comment lines must start with #, and will be skipped by the parser
 Scenario: another scenario's name
 * you can also just create a bulleted list of steps * instead of using keywords

Additional Options for Feature Files

We recommend that you familiarize yourself with the following advanced concepts in behavior-driven
development with Gherkin.

Tags

Gherkin supports the concept of tags. A tag is metadata that can augment a feature or scenario with
contextual information. Tags begin with an @ symbol, appear on the line above a feature or scenario, and are
separated by spaces. Tags can be added before a feature, a scenario, a scenario outline, or an example.

#!feature@lemmings Feature: Clicking Buttons is a Life Saving Activity
 @saved @button
 Scenario: Click a button, save a life!
 Then I save a lemming's life

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1235

Tags on a feature level are inherited by all of the scenarios and scenario outlines in the feature. In addition, tags
on a scenario outline are inherited by its examples. In the example above, the scenario has three tags:
@lemmings, @saved, and @button.

Tags generally help to understand the feature file, and have a number of interesting uses:

● Tags can function like a category to create collections of features or scenarios, for example: @sales or
@human-resources.

● Tags can be used to refer to numbered documents, for example: @BCP-1234567890.
● Tags can refer to the stage of the development process for that feature, for example: @requirements,

@development, or @testing.

There is one special tag : the @wip tag. This tag indicates to the Gherkin test harness that it should skip that
test during test execution. A skipped test is not executed and passes automatically. Use the @wip tag when
you're in the middle of implementing the tests for a feature file. You can also use it for scenarios or features that
you have no intention of testing.

Here's an example of a test execution with a skipped test:

Background scenarios

When writing a feature file, some test steps might need to be executed for every scenario. For example, the test
step that loads the app is often repeated for each test scenario.

#!featureFeature: Clicking Buttons is a Life Saving Activity Scenario: Click a button, save a life!
 Given I have started the app
 Then I save a lemming's life
 Scenario: The saved lemming has a name
 Given I have started the app Then I see Alice at the end of the list

You can consolidate all of the repeated steps into a single "background scenario", which uses the keyword
Background. The test steps in the background scenario get executed at the beginning of each scenario in the
feature file. The following feature file is equivalent to the feature file shown above:

#!featureFeature: Clicking Buttons is a Life Saving Activity

1236 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Background:
 Given I have started the app
 Scenario: Click a button, save a life!
 Then I save a lemming's life
 Scenario: The saved lemming has a name Then I see Alice at the end of the list

Step arguments and regular expressions

When writing test steps in feature files, test steps are sometimes repeated, but with a slight variation in each
step.

#!featureScenario: Save one lemming When I click on the life saving button 1 time
 Then I see Alice at the end of the list of saved lemmings
Scenario: Save two lemmings
 When I click on the life saving button 2 times Then I see Bob at the end of the list of saved lemmings

To write a steps file for the this feature file you might have to write four separate step definitions. The problem
would only get worse if you needed to write more scenarios. However, using step arguments you can
consolidate the four step definitions into two step definitions (written here in pseudo-code):

I click on the life saving button <X> time(s)

I see <NAME> at the end of the list of saved lemmings

How does this work in real JavaScript code? When you write the regular expression for the step definition, you
can use a regular expression concept called "capturing groups" to specify arguments to extract from the
natural language of the test step. If you've never worked with regular expressions before, it can take some
getting used to, but it's a really powerful tool that is worth learning. The capturing groups are passed to the test
function as parameters (of type string) that you can name whatever you want. Continuing the example
above, here are the step definitions that you could write:

this.register(/^I click on the life saving button (\d+) times?$/i,
 function(sNumTimes) {}
);
this.register(
 /^I see (.*?) at the end of the list of saved lemmings$/i,
 function(sName) {}
);

 Caution
All parameters extracted from capturing groups are of the JavaScript type string. You will need to use
parseInt to convert numbers into type int before you do a numerical comparison.

Here are a few regular expression concepts that are especially useful in Gherkin:

(.*?) – captures any text into a parameter (\d+) – captures any number into a parameter
\s* - matches 0 or more spaces
s? – matches the character "s" if it's there (replace "s" with any character)
(text)? – captures "text" into a parameter if it's there
(?:text)? – matches "text" if it's there, without capturing into a parameter

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1237

 Caution
A common problem in regular expressions is that many characters are reserved and have a special
meaning, in particular backslash (\), period (.), asterisk (*), plus (+), dash (-) and braces ([], () and {}).
Put the backslash character in front of a special character to treat it as plain text, for example: \- or \+.

If your regular expression contains multiple parameters, then they will be passed to the test function in the
same order as they appear in the regular expression.

this.register(/^I click (\d+) times and see (.*?) at the end of the list$/i,
 function(sNumTimes, sName) {});

Context

Look at the following feature file scenario:

#!featureScenario: some steps depend on each other Given I have a Latte Cappuccino in front of me
 When I drink the coffee
 Then I feel less sleepy

Trying to implement the step definitions might be a bit challenging because in the second step, I drink the
coffee, there is no mention of which coffee. Sometimes, to make a feature file sound more natural, or just to
reduce repetition, it can be beneficial to retain the context from one test step to the next.

In Gherkin, the JavaScript this variable is unique for each scenario. Any variables assigned to one step
definition can be used in subsequent step definitions within the same scenario. Each new scenario in the
feature starts with a new this object. As a result, we could implement the previous feature file's step
definitions in the following manner:

this.register(/^I have a (.*?) in front of me$/i, function(coffeeType) { this.coffeeType = coffeeType;
});
this.register(/^I drink the coffee$/i, function() {
 this.sleepinessBefore = user.getSleepiness();
 user.drink(this.coffeeType);
});
this.register(/^I feel less sleepy$/i, function() {
 Opa5.assert.ok(user.getSleepiness() < this.sleepinessBefore, "Verified...");
});

QUnit Assert Object

To use QUnit for automated testing, it is necessary to use QUnit's built-in assertion methods. QUnit defines
these assertion methods in the QUnit.assert object. QUnit makes this object globally available to your test
code, but it's a good practice to refer to the local assert object (particularly when you're doing asynchronous
testing).

1238 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Gherkin makes the assert object available to you in two different ways, depending on whether you are using
OPA5 or not. If you are using pure QUnit (no OPA5), then you can access the QUnit assert object inside of a
step definition with this.assert.

this.register(/^I have launched my wombat$/i, function() { this.assert.strictEqual(this.myWombat.state, "launched"); });

If you are using OPA5, then OPA5 makes the QUnit assert object available to you inside a step definition via
Opa5.assert:

this.register(/^My wombat is currently in orbit$/i, function() { Opa5.assert.strictEqual(this.myWombat.state, "orbit"); });

Data tables

If you want to use a large amount of structured data in your test, you can use a data table. In a feature file, a
data table is placed underneath a test step and is composed of rows and columns, with rows separated by line
breaks, and columns surrounded with the pipe (|) character.

#!featureScenario: lots of data Given I see the following lemmings:
 | Name | Age in Months | Role |
 | Alice | 24 | Support |
 | Bob | 70 | |
 | Charlie | 120 | Stories |

In the steps file, if a data table is included in the test scenario then an extra parameter is passed at the end of
the step definition function (after any step arguments that appear in the regular expression).

this.register(/^I see the following (.*?):$/i,
 function(sAnimalType, aDataTable) {}
);

Data tables are usually passed to the test function as a two-dimensional array (an array of arrays). For example,
the above feature file data table would produce the following array in a variable aDataTable at runtime:

#!feature[["Name", "Age in Months", "Role"],
 ["Alice", "24", "Support"],
 ["Bob", "70", ""],
 ["Charlie", "120", "Stories"]
]

If the feature file data is a single row or a single column, then the test function receives a simple array instead of
a two-dimensional array.

#!featureScenario: lots of data Given I see the following lemmings:
 | Alice |
 | Bob |
 | Charlie |
 And I see the following lemmings:

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1239

 | Alice | Bob | Charlie |

Both test steps will provide the following runtime value for aDataTable:

["Alice", "Bob", "Charlie"]

Data table utilities

The contents of the data table in the feature file are sent to the step definition function with no modifications.
Although this raw format is often useful, sometimes a different format would be more helpful. There is a
Gherkin namespace called dataTableUtils that makes this reformatting task easy. This namespace provides
several utilities including the function toTable, which transforms the two-dimensional array into a simple
array of objects. In the array of objects, each object's attribute names are derived from the header line in the
table. For example, consider the following feature file:

#!featureScenario: lots of data Given I see the following lemmings:
 | Name | Age in Months | Role |
 | Alice | 24 | Support |
 | Bob | 70 | |
 | Charlie | 120 | Stories |

And the following steps file:

this.register(/^I see the following lemmings:$/i, function(aRawData) {
 var aData = dataTableUtils.toTable(aRawData, "camelCase");
 }
);

In the above steps code, we ask the dataTableUtils to use camel case when setting the names of the object
attributes. (For those unfamiliar with coding conventions, camel case transforms the string "Hello World" into
helloWorld.) At runtime, the variable aData is assigned the following value:

 [{
 ageInMonths: "24"
 name: "Alice"
 role: "Support"
 },
 {
 ageInMonths: "70"
 name: "Bob"
 role: ""
 },
 {
 ageInMonths: "120"
 name: "Charlie"
 role: "Stories"
 }
]

In this toTable format, the data is now easier to work with. There are other transformation functions and
normalization functions available. For more information, see API Reference: sap.ui.test.gherkin.

1240 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.test.gherkin.html

If you have specialized normalization needs, you can also create your own normalization function. This is a
function that accepts a single string parameter and returns a string. You could, for example, pass your custom
normalization function into a toTable call like this:

var aData = dataTableUtils.toTable(aRawData, function(s) { return dataTableUtils.normalization.camelCase(s).replace("role", "job");
});

Scenario outlines

Sometimes you need to test a repeating pattern of steps. For example:

#!featureScenario: Save 1 Lemming When I click on the life saving button 1 time
 Then I see Alice at the end of the list of saved lemmings
Scenario: Save 2 Lemmings
 When I click on the life saving button 2 times
 Then I see Bob at the end of the list of saved lemmings
Scenario: Save 3 Lemmings
 When I click on the life saving button 3 times
 Then I see Charlie at the end of the list of saved lemmings

Step arguments make it easier to implement this in the steps file, but the repetition looks bad and is difficult to
maintain. The solution is to use a scenario outline. With a scenario outline, you can write the test scenarios
once, Gherkin will execute the test as many times as you specify, for whichever input examples you have given.
Here's how it looks in the feature file:

#!featureScenario Outline: Using a scenario outline to Save Lemmings When I click on the life saving button <NUM CLICKS> times
 Then I see <NAME> at the end of the list of saved lemmings
Examples: list of lemmings
NUM CLICKS	NAME
1	Alice
2	Bob
3	Charlie

The above scenario outline is equivalent to writing out the three scenarios separately. In the above feature file,
NUM CLICKS and NAME are called "placeholders". At test execution, these placeholders get replaced
automatically with the values in the examples table. A new test scenario is generated for each row in the
Examples table.

Pay attention to the following details:

● Placeholders are case-sensitive, and can use spaces or punctuation.
● Placeholders are surrounded by angle brackets (< >) in the scenario outline steps, and without angle

brackets in the Examples table.
● Each placeholder found in the scenario outline requires a column in the Examples table, with the header

row holding the placeholders themselves.
● The examples section must be immediately after the scenario outline in the feature file.
● You can specify multiple sets of examples for a single scenario outline.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1241

Basic Example How to Use Gherkin

Like test-driven development (TDD), behavior-driven development (BDD) with Gherkin encourages us to write
more tests because you do it right from the beginning. Having more tests makes it cheaper and easier to
maintain the code over time. Let's dive into the specifics using following an example.

The ideal pattern for a BDD iteration goes like this:

1. Write a scenario in the feature file.
2. Execute the test to verify that the step definition is not found.

This might seem strange since we haven't actually written a test yet, but this way we can check to see that
our feature file works.

3. Write the step definition in the steps file.
4. Execute the test, see the test fail.
5. Develop the missing code in the app.
6. Execute the test and watch it pass.
7. Return to step 1.

 Note
You can find the code for this example in the Samples in the Demo Kit at Using Gherkin with OPA5.

Write the first feature file

Do you like lemmings? According to legend, they occasionally throw themselves into the sea in a mass suicide
attempt. Imagine that you are writing an app that allows you to save lemmings' lives by clicking a button. In the
BDD style, the first thing you do is write a feature file to document what your app is supposed to do.

Requirements1.feature
Create the following feature file (make sure that you use file extension .feature):

#!featureFeature: Clicking Buttons is a Life Saving Activity Let's save some lemmings' lives
 Scenario: Click a button, save a life!
 Given I have started the app
 And I can see the life saving button
 And I check how many lemmings have been saved already
 When I click on the life saving button Then I save a lemming's life

Execute a test

Next we should execute the test. This might seem strange since we haven't actually written a test yet, but this
way we can check to see that our feature file works. Also, if you are working in a large project, some of the tests
might have already been written by a colleague. Gherkin notifies us of all of the missing tests, and then we can
proceed to write them one by one.

1242 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.sample.gherkin.GherkinWithOPA5/preview

To actually execute the test, we need to create an HTML bootstrap test runner file, and a Steps.js stub file.

Steps.js
Here is a stub Steps.js file, without any step definitions, to get you started. You need to adjust the path and
file name in the call to extend to match your scenario:

sap.ui.define(["jquery.sap.global",
 "sap/ui/test/gherkin/StepDefinitions",
 "sap/ui/test/Opa5",
 "sap/ui/test/gherkin/dataTableUtils"
], function($, StepDefinitions, Opa5, dataTableUtils) {
 "use strict";
 return StepDefinitions.extend("GherkinWithOPA5.Steps", {
 init: function() {
 }
 });
});

To execute Gherkin tests, you need to find a version of SAPUI5 or OpenUI5 that works for you. Here are some
possibilities, sorted in order from most stable to least stable:

● Stable: https://sapui5.hana.ondemand.com/resources/sap-ui-core.js or https://
openui5.hana.ondemand.com/resources/sap-ui-core.js

● Beta: https://openui5beta.hana.ondemand.com/resources/sap-ui-core.js
● Nightly: https://openui5nightly.hana.ondemand.com/resources/sap-ui-core.js

Our examples all use the nightly OpenUI5 build.

Website.html
Here is a sample HTML bootstrap file for Gherkin. In this example, the feature file is named
Requirements.feature and the steps file is named Steps.js. Both are located in the same directory as
your HTML bootstrap. You will need to adjust the SAPUI5 src (if you don't want to use the suggested build),
SAPUI5 resourceroots, and the feature and steps file names to match your scenario and your app:

<!DOCTYPE html> <html>
 <head>
 <meta charset="utf-8">
 <title>Using Gherkin with OPA5</title>
 <script
 id="sap-ui-bootstrap"
 src="https://openui5nightly.hana.ondemand.com/resources/sap-ui-core.js"
 data-sap-ui-resourceroots='{"GherkinWithOPA5": "./"}'
 data-sap-ui-loglevel="INFO"
 ></script>
 <script>
 sap.ui.require([
 "jquery.sap.global",
 "sap/ui/test/gherkin/opa5TestHarness",
 "GherkinWithOPA5/Steps"
], function($, opa5TestHarness, Steps) {
 "use strict";
 opa5TestHarness.test({
 featurePath: "GherkinWithOPA5/Requirements",
 steps: Steps
 });
 });
 </script>
 </head>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1243

 <body>
 <div id="qunit"></div>
 <div id="qunit-fixture"></div>
 </body>
</html>

When you load the HTML file in your browser, the Gherkin tests are executed automatically . If you are using
Google Chrome, you may need to start it with the command line flags --allow-file-access-from-files
--disable-web-security. When everything is working correctly, you should see something like the
following in your browser:

We expect the test to fail because we haven't written any tests yet. You'll notice that Gherkin has explained that
it was not able to find a matching step definition for the first test step, "I have started the app", in the steps file.
Scrolling down, you can see that none of the test steps have been found. We will need to write these step
definitions.

Looking back at the feature file that we wrote, "I have started the app" is the first test step in the test scenario.
Hence, it makes sense that we would see this test step first in the test results. You can also see the exact
wording of the Feature and Scenario text that you entered: Feature: Clicking Buttons Is a Life
Saving Activity: Scenario: Click a button, save a life!. This should make it easier for you to
find your way around in the test results.

Write the first failing test

To verify the feature file, we will implement a steps file, which to recap is both the translation that allows the
computer to understand the human-readable feature file, and also the verification steps (tests) to be run. Once
you have a working feature file and can execute the test suite, then you are ready to write your first test. We will
start by writing a simple test that we expect to fail.

1244 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

In the Steps file, inside the init method, add the following code:

this.register(/^I have started the app$/i, function() { Opa5.assert.ok(false, 'This test will fail!');
});

The register method defines a new step definition and takes two arguments:

● a regular expression to match against the test steps in the feature file
● a function to execute when there is a match

At test execution time, the Gherkin test harness tries to find a step definition with a matching regular
expression, and execute the step definition's test function.

Try executing the test now. You should see something like this:

Step 1 is green because a matching step definition was found in the steps file. In Gherkin, the test harness
always checks for the existence of the step definition first before executing the step definition's function. After
Gherkin finds a step definition, it executes the step definition's function, and thus executes any QUnit
assertions inside the function.

In step 2, notice how the text "This test will fail!" is copied from the steps file. You can use this functionality to
make it easier to debug your test. We recommend that you start any QUnit assertion comment with the word
“Verified” to make it easier to read your test executions.

Write the second failing test

Let's write a bit more test code. To make a test useful, it will need to load your app and verify its properties. We
will use OPA5 for this purpose. Replace the code inside your steps file's init method with the following code:

var oOpa5 = new Opa5(); this.register(/^I have started the app$/i, function() {
 oOpa5.iStartMyAppInAFrame("Website.html");
});
this.register(/^I can see the life saving button$/i, function() {
 oOpa5.waitFor({
 id: "life-saving-button",

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1245

 success: function(oButton) {
 Opa5.assert.strictEqual(oButton.getText(), "Save a Lemming",
 "Verified that we can see the life saving button");
 }
 }); });

You may need to adapt the above code to fit your situation. When you execute this code, you should see
something like this:

There are several important things to note here:

For one, now that you are actually testing the app, you will see a popup overlay of the application under test
appear in the bottom right corner of the window. This overlay is interactive, although you should wait until the
test is complete before trying to interact with it. The overlay is extremely helpful for debugging your tests since
at any given point in time you can see what state the app is in, particularly when the debugger is running and
execution is paused. If the overlay is getting in the way, then after the tests have finished executing you can get
rid of it by selecting the Close Frame checkbox at the top left.

In the above screenshot, steps 1 and 2 are passing because Gherkin was able to match the feature file test step
to a step definition in the steps file. The test step "I have started the app" does not actually execute any
verifications (that is, it does not call any QUnit assertion functions) and hence there is no verification occurring
between "I have started the app" and "I can see the life saving button". Step 3 is the actual verification of the
app executed inside the step definition "I can see the life saving button" function, and since in this example the
app is an empty Web page, the test is failing. The error message Failed to wait for check is an OPA5
error that happens when the waitFor function fails to find the SAPUI5 control that's being searched for.

Write the first passing test

To make the "I can see the life saving button" test pass, you need to implement the app that is under test.

1246 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Website.html
Here is a simple stub for a test Web site (you may need to update the bootstrap source):

<html> <head>
 <title>Using Gherkin with OPA5 Website</title>
 <script
 id="sap-ui-bootstrap"
 src="https://openui5nightly.hana.ondemand.com/resources/sap-ui-core.js"
 data-sap-ui-libs="sap.m,sap.ui.layout"
 ></script>
 <script src="WebsiteCode.js"></script>
 </head>
 <body class="sapUiBody">
 <div id="uiArea"></div>
 </body> </html>

WebsiteCode.js
Here's some simple code for an app:

sap.ui.getCore().attachInit(function() { "use strict";
 var oLayout = new sap.ui.layout.VerticalLayout({id: "layout"});
 var oButton = new sap.m.Button({
 id: "life-saving-button",
 text: "Save a Lemming",
 press: function() {}
 });
 oLayout.addContent(oButton);
 oLayout.placeAt("uiArea"); });

Now when you execute the test, you should see a passed verification step:

Steps 1 and 2 passed because the corresponding step definitions were found in the steps file. Here Gherkin is
confirming that it was able to find the step definitions.

Step 3 was an actual verification step that executed a QUnit assertion to verify a property of the Web page.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1247

Step 4 is failing because you haven't written that step definition yet.

Your next activity would be to write a step definition for step 4, execute the test and see it fail, then write the
new code in the app, execute the test and see it pass, and so on.

Gherkin and OPA Page Objects

Gherkin is compatible with the concept of OPA5 page objects.

OPA5 page objects are a method for architecting integration testing to make test components more intuitive
and reusable. For more information about OPA page objects, see Structuring OPA Tests With Page Objects
[page 1201].

 Note
You can find a sample implementation in the Samples in the Demo Kit at Using Gherkin with OPA5 Page
Objects.

To make Gherkin work with page objects, you should load your OPA5 page objects in the HTML bootstrap file,
as shown in the sample. The only adaptation you need to make when starting the Gherkin testing is to add the
parameter generateMissingSteps when calling opa5TestHarness.test:

opa5TestHarness.test({ featurePath: "GherkinWithPageObjects/Requirements1",
 generateMissingSteps: true
});

This signals to Gherkin that if it cannot find a matching step definition in the steps file then it should try to use
an OPA5 page object call instead. In the example above, no steps file is specified, which means that Gherkin will
expect to make a page object call for each test step. You could also take a hybrid approach where each test step
in the feature file either matches a Gherkin step definition or executes an OPA5 page object call. In addition,
you can combine OPA5 page object calls with a Gherkin data table or scenario outline to achieve powerful
results (you can see both options in the sample). Here is a sample feature file scenario that takes advantage of
page objects:

#!featureScenario: Page 1 journey When on the overview: I press on "Go to Page 1"
 Then on page 1: I should see the page 1 text

Use the Gherkin console logs to help you debug your OPA5 page object calls.

 Caution
Chaining OPA5 page objects, for example,
When.onTheOverview.iPressOnGoToPage1().and.onPage1.iShouldSeeThePage1Text() is
currently not supported in Gherkin feature files.

1248 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.sample.gherkin.GherkinWithPageObjects/preview
https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.sample.gherkin.GherkinWithPageObjects/preview

Code Coverage

It can be handy to calculate the code coverage of your integration tests, for example, to figure out whether you
forgot to test something or to provide statistics on your test quality.

At test execution time, Gherkin offers the option Enable coverage at the top left of the test results. Enabling the
option reruns the tests and then lists the files that were tested at the bottom of the page.

Gherkin calculates code coverage for any JavaScript file that is loaded after the test harness. This may cause
some system libraries to appear in the results. You can specify which files to calculate code coverage for by
adding code to your HTML bootstrap file (after loading SAPUI5, but before running your tests), as follows.

<script src="path/to/resources/sap/ui/qunit/qunit-coverage.js"
 data-sap-ui-cover-only="GherkinWithOPA5/"
 data-sap-ui-cover-never="sap/ui/"> </script>

For more information, see the documentation for Blanket.js on GitHub. Keep in mind that the attribute name is
slightly different in the SAPUI5 implementation (data-sap-ui-cover-only instead of data-cover-only).

Related Information

Blanket.js Documentation on GitHub
Code Coverage Measurement [page 1168]

Logging

During tesing with Gherkin, errors are logged to the test execution Web page.

Most error messages are sufficient to figure out what has gone wrong, for example, if an OPA5 waitFor call is
failing. Gherkin also logs information to the JavaScript console with the prefix [GHERKIN] at priority INFO.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1249

http://help.sap.com/disclaimer?site=https%3A%2F%2Fgithub.com%2Falex-seville%2Fblanket%2Fblob%2Fmaster%2Fdocs%2Fintermediate_browser.md

 Note
If at test execution time you don't see the logs, then SAPUI5 might not be logging down to this level.

Check the bootstrap in the HTML file:

<!DOCTYPE html> <html>
 <head>
 <meta charset="utf-8">
 <title>Using Gherkin with OPA5</title>
 <script
 id="sap-ui-bootstrap"
 src="https://openui5nightly.hana.ondemand.com/resources/sap-ui-core.js"
 data-sap-ui-resourceroots='{"GherkinWithOPA5": "./"}' data-sap-ui-loglevel="INFO"> </script>

Example

Here are some examples of Gherkin console logs:

● [GHERKIN] Running feature: 'Feature: Clicking Buttons Is a Life Saving Activity'
● [GHERKIN] Running scenario: 'Scenario: Click a button, save a life!'
● [GHERKIN] Running step: text='I see Alice' regex='/^I see (.*?)$/i'

These logs are particularly helpful for telling you which regular expression (the regex attribute from step
definition in a steps file) was matched with a particular feature file test step (the text attribute). This can help
you search for the relevant regular expression among your step definitions (when your test code is large), and
could also help with troubleshooting if an unexpected regular expression is being matched.

Frequently Asked Questions

How can I avoid timeouts?

There are two situations where you might have trouble with timeouts:

● When loading your app
● When trying to find SAPUI5 controls in the app

When loading the app, the OPA5 command can accept a parameterdefining the number of seconds to wait for
the application to load.

var opa5 = new Opa5(); opa5.iStartMyAppInAFrame("path/to/your/app.html", 30); // wait time in seconds

1250 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

When trying to find SAPUI5 controls in the app, you can add the following settings to cause OPA5 to wait a
different amount of time for a control to become available on the screen. You also need to set the QUnit timeout
(to a time equal to or greater than the OPA5 setting), otherwise QUnit might give up early:

sap.ui.test.Opa.config.timeout = 20; // wait time in seconds QUnit.config.testTimeout = 20000; // wait time in milliseconds

Who should write feature files?

Ideally, the Product Owner develops feature files together with developers. Depending on how familiar Product
Owners are with the tool, they can upload the feature files directly to source control, or let the developers do
the upload.

How can I avoid inadequacies when writing the step definitions?

You may find that there is a gap between what the Product Owner has written, and the information that the
developer requires to implement an integration test. Developers can modify the feature file to enable testing, as
long as they check back with the Product Owner to ensure that the feature file is still correct.

Every time the Product Owner modifies the feature file, it breaks the tests
How can I avoid this?

Actually, this is the point of Gherkin. When modifications to a feature file are uploaded to source control, we
expect this to break existing tests, since the application's expected behavior has changed — but the application
itself has not changed yet. Gherkin is forcing the application to stay in sync with the feature file. Consider that
this also encourages you to be more honest about accepting new feature changes into your product — and the
amount of extra work that this entails. We recommend that you use your formal code review process to allow
developers to change the application and fix the tests, and then submit all the new code together with the
feature file changes at the same time into the master branch.

Test Recorder

The Test Recorder tool supports app developers who write integration and system tests.

The Test Recorder is part of the SAPUI5 framework and is available in all browsers. As of version 1.74, you can
use the tool in any SAPUI5 app to inspect the rendered user interface (UI), view the control properties, and gain
hints on writing tests. The Test Recorder is aligned with the two official SAPUI5 testing tools – OPA5 and
UIVeri5.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1251

Getting Started

There are two ways to open the Test Recorder:

● In a separate window: Press CTRL + SHIFT + ALT + T
● In an IFrame: Press CTRL + SHIFT + ALT + P to display the Technical Information Dialog and then

choose Activate Test Recorder

The main sections of the tool are Control Tree, Snippet, and Common Info.

From the navigation actions at the top bar of the Test Recorder, you can minimize, resize, open it in a new
window, or close the tool.

Control Tree and Common Information

In the Control Tree section, you can see the DOM structure of the current app page. When navigating to another
page or view, the tree is automatically updated.

1252 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

You can display more information in the Control Tree by selecting the Namespaces and Attributes checkboxes.
Entering text in the Search field highlights all elements that (partially) match by namespace, control name, or
attribute values.

 Note
Elements in the Control Tree get highlighted if there's a match by namespace or attribute value even when
the Namespaces and Attributes checkboxes aren't selected and the information isn't visible.

There are three general types of testing-relevant information that you can gather for any control:

● Position in the rendered control tree, type and ID – displayed in the Control Tree section. To see the control
type, select the Namespace checkbox. To see the ID, select the Attributes checkbox.

● Properties (either own or inherited) – displayed in the Common Info section on the Properties tab.
● Bindings (binding context, properties, and aggregations) – displayed in the Common Info section on the

Bindings tab.

 Note
● If an ID is not stable (because it was generated automatically), it's not suitable for tests. Unstable IDs

start with a double underscore.
● Many controls can have the same property or binding values. Therefore, when you use them in a

control locator, the test finds multiple controls. This is a valid scenario, but it’s always more reliable to
locate only one control with a highly specific locator.

Actions

You can perform the following actions on controls, either from the Control Tree or from the rendered UI of the
app:

● Highlight: Generates a code snippet for finding the control, which can be used to assert the control state.
● Press: Generates a code snippet for pressing on the control.
● Enter Text: Generates a code snippet for entering text into the control.

To perform an action from the Control Tree, right-click and choose Press or Enter Text in the context menu. If
you want to highlight the respective control in the rendered UI, simply select the desired element in the tree.

To perform an action from the app page, right-click on any control and select the desired action from the
context menu (the respective control is highlighted in the Control Tree).

 Note
A Press or Enter Text action snippet is generated irrespective of whether the control accepts such
interactions. Keep in mind that such a snippet is not suitable for tests.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1253

Snippets

The code snippets generated by the Test Recorder usually contain a function invocation that locates one
control on the app page. The function receives one argument – a control locator. The control location is a JSON
object containing a specific combination of conditions and matchers.

The code snippet can be directly copied and pasted into your test code and is already aligned with the
supported tools for testing – OPA5 and UIVeri5. To choose the tool for which to generate a code snippet, select
an option from the Dialect dropdown menu. The raw selector option gives you just the control locator with no
function invocations.

Related Information

Integration Testing with One Page Acceptance Tests (OPA5) [page 1182]
Stable IDs: All You Need to Know [page 1442]
API Reference: sap.ui.test.Opa5
GitHub: ui5-ui5veri5

Theming

SAPUI5 is an HTML UI library, therefore styling is done using Cascading Style Sheets (CSS). This allows for
creating an impressive visual experience using a widely known standard technology which is well-accepted on
the market.

SAPUI5 supports you when creating and using different visual designs - called themes - that can be used
alternatively and switched on the fly. This way, the same application can look very different, depending on the
user's design preference or accessibility requirements. Existing themes can serve as a basis for new themes
and, in case of new design trends, it is possible to create a matching theme for all existing applications without
modifying the applications. The theme handling is decoupled from application development and done in a
separate layer. The SAPUI5 library loads the required CSS files and offers ways of switching themes.

On top of pure CSS, SAPUI5 offers a variety of optional features that add value regarding modularization,
modification, compatibility, and performance:

● CSS variables, mixins, color calculations and other functions, provided by the Open Source library LESS
● In particular, CSS variables are used for centrally defined and centrally modifiable colors
● Compilation of one CSS file per control library from modular per-control CSS files
● Optimization/compression of CSS size
● Clean browser switch and mobile platform detection available (inside CSS code)
● Base theme (as a basis for a style that is always required to reduce the amount of CSS required for specific

themes)
● Generic right-to-left support

To ensure these functions, SAPUI5 uses the following components:

1254 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.test.Opa5
http://help.sap.com/disclaimer?site=https%3A%2F%2Fgithub.com%2FSAP%2Fui5-uiveri5
http://help.sap.com/disclaimer?site=http%3A%2F%2Flesscss.org%2F

● A CSS generator with several functions: LESS processing (CSS variables substitution etc.), merge of CSS
files created for different themes and controls for optimal runtime consumption, as well as compression or
right-to-left substitution if required.

● The SAPUI5 runtime handles the loading of the appropriate CSS file for the control libraries used in the
application page by adding <style> tags to the document head. There is also an API available for
switching themes, which replaces the CSS URLs and therefore does not modify the application state.

How to Theme Your SAPUI5 Application

To theme your application, you can choose among a number of options:

● Adapt an existing theme by using the UI theme designer, which basically modifies the color scheme, but in
a very easy, non-technical manner with instant live preview. Adaptation parameters are limited, but the UI
theme designer also lets you add custom CSS, which gives you the freedom to adapt basically everything.

● Create a new theme from scratch, writing every piece of CSS which will then be loaded later. The only
requirement is to have library.css files within a certain folder structure (which also defines the theme
name).

● Adapt an existing theme by adding CSS on application level. This is the easiest option and still sufficient for
many use cases. You can technically adapt and change everything. The adaptation is rather done on top of
an existing theme and only available within the specific application.

All options except the last one result in a new stand-alone theme which needs to be deployed and referenced by
its name in the application and which can be used by any application.

For all these options, the CSS developer might reduce the styling effort and focus on those controls which are
actually used in the application (which in turn decreases the reuse value of the theme in other applications).

Developing Custom HTML or Your Own Control – What to Bear in Mind

● To ensure that your SAPUI5 application's theme can be adapted easily, you should follow some
recommendations.
For more information, see Creating Themable User Interfaces [page 1261].

● To ensure that your custom content fits the colors of the SAPUI5 theme used, you can use specific CSS
classes.
For more information, see CSS Classes for Theme Parameters [page 1262].

More Information

UI Theme Designer

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1255

http://help.hana.ondemand.com/theme_designer/frameset.htm

Setting Themes

You define which theme is used by your app either in the bootstrap, by using a URL parameter, or by using
method sap.ui.getCore.applyTheme.

● The initial theme can be hardcoded in the application (in the script tag of the bootstrap loading SAPUI5) or
in a JS configuration object defined before SAPUI5 is loaded, for example:

<script id="sap-ui-bootstrap" type="text/javascript"
 src="resources/sap-ui-core.js"
 data-sap-ui-theme="sap_belize"> </script>

This setting has the lowest priority.
● A URL parameter (for example: html?sap-ui-theme=sap_belize) can be used when starting a SAPUI5

application to set or override the initial theme.
If you use the UI theme designer to define your own custom theme, you can append the location of the
custom theme as a server-relative path to the sap-ui-theme parameter, separated by an @ sign:

http://myserver.com/sap/myapp/?sap-ui-theme=my-theme@/sap/public/bc/themes/
~client-111

Although a full URL can be specified, the framework will only use the path information of the URL to
prevent CSS-based attacks that would otherwise be possible by referencing CSS from a malicious server.
In a more complex landscape, for example, if the infrastructure of the UI theme designer is running on a
separate server, either a Web dispatcher can be used to combine both servers in one namespace, or you
should set a full URL using method sap.ui.getCore.applyTheme for custom apps as described below.

 Note
The UI theme designer infrastructure stores themes for multiple technologies in the same location,
each in its own subdirectory (UI5/ for SAPUI5). Other SAP products (like SAP Enterprise Portal)
append only the common root URL to the sap-theme parameter. SAPUI5 therefore appends folder
UI5/ to any given path that is defined in the sap-theme parameter.

● You can use method sap.ui.getCore.applyTheme to switch themes on the fly. The application state is
not lost, and there is no server roundtrip (except for loading the CSS, if not cached). Only the style sheets
are exchanged.
You can specify a second parameter containing the root URL of the theme. The URL is not restricted in any
way, therefore the caller has to make sure that the URL is valid and safe. If the URL points to the theme
infrastructure, it must contain the folder suffix UI5/.
For more information, see the API Reference.

 Note
This option allows you to switch themes in your app during runtime.

1256 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.core.Core/methods/applyTheme

Using Custom Themes

To load an external custom theme, you set this theme either by static declaring in the page or by using the
Core.setThemeRoot() method. This is very much like using registerModulePath() for libraries that are
in a different location. You can do this as follows:

1. Define the path to the theme with the following code:
sap.ui.getCore().setThemeRoot("my_theme", "http://url.to/the/root/dir");. SAPUI5
then loads all theme resources from this URL. For example, the library.css file of the sap.ui.core
library is loaded from: http://url.to/the/root/dir/sap/ui/core/themes/my_theme/
library.css.
This base directory can also be given as second argument to method core.applyTheme(...).
If some parts of the theme are in different locations, you can use the above call to set the default, but
override the theme location for specific libraries by specifying them in an array as second parameter:
sap.ui.getCore().setThemeRoot("my_theme", ["my.lib.one","my.lib.two"], "http://
url.to/the/other/root/dir");

2. Configure the theme by using one of the following options:
○ Use the same object structure as JSON string in an attribute of the SAPUI5 bootstrap script tag, for

example:

<script id="sap-ui-bootstrap" type="text/javascript"
 src="resources/sap-ui-core.js"
 data-sap-ui-theme-roots='{"my_theme" : "http://themes.org/ui5"}'> </script>

○ Specify the location of a theme with a URL parameter:

http://myserver.com/sap/myapp/?sap-ui-theme=my-theme@/sap/public/bc/themes/
~client-111

○ Use the global configuration object. Insert the following before the bootstrap script tag:

<script type="text/javascript"> window["sap-ui-config"] = {
 themeRoots : {
 "my_preconfigured_theme" : "http://preconfig.com/ui5-themes",

 "my_second_preconfigured_theme" : {
 "" : "http://preconfig.com/ui5-themes",
 "sap.ui.core" : "http://core.com/ui5"
 }
 }
} </script>

The first theme is loaded for all libraries from the location specified. The second theme is loaded for
the sap.ui.core library from the location specified. For all other libraries, the theme is loaded from
the default location.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1257

Theme Origin Whitelist

When configuring a theme with a themeRoot URL via the sap-ui-theme/sap-theme URL parameter,
security restrictions apply. Absolute URLs to a different origin than the current page are stripped off by default.
The path segment will be resolved relative to the current page origin.

In order to allow certain origins, according to RFC 6454, to be used via the URL parameter, a <meta> tag can be
added to the <head> of the page:

<meta name="sap-allowedThemeOrigins" content="https://example.com">

This allows to load a theme from https://example.com, that is provided via the URL parameter:

https://myserver.com/sap/myapp/?sap-theme=my_theme@https://example.com/custom-
themes/

Origins provided in the <meta> tag must contain the same protocol, host and port as the origin provided in the
URL parameter. Multiple allowed origins can be separated with a comma.

A general wildcard (*) can also be used to allow all origins. However this should only be used in combination
with additional security mechanisms such as CSP style-src directives. Wildcards to allow sub-domains are not
supported.

Listening to the ThemeChanged Event

Whenever the theme is switched, an event is fired indicating that a theme switch has been triggered. If you
want your application to react on this event, you can attach a handler to it:

 sap.ui.getCore().attachThemeChanged(function(){
 myFunction(); });

You can use the sap.ui.getCore.applyTheme method to switch themes.

Enhanced Theming Concepts

On top of pure CSS, SAPUI5 offers advanced theming concepts and functions which can be used optionally.
These concepts are outlined in detail below.

CSS Variables, Functions and More

SAPUI5 uses the popular CSS preprocessor LESS . This tool introduces several features, including CSS
variables, a concept which has also been heavily demanded by the CSS community: In any UI5-controlled CSS
file, variables can be defined and can then be referenced anywhere in the CSS code of the same library. These
variables are mainly used for colors. All CSS variables are global. The CSS variable concept contributes to a
consistent way of implementing and changing the styles.

1258 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/disclaimer?site=http%3A%2F%2Flesscss.org%2F

LESS adds more features like color calculations, mixins, and CSS selector nesting. The color calculations are
used in SAPUI5 to derive many different color shades from just a few variables.

Here is the syntax:

@sapUiText: #000000; /* define the text color as 'black' */ button {
 color: @sapUiText; /* buttons will automatically have the current text color,
which is '#000000' right now */
 [...]
}

LESS then takes care of substituting all references to a CSS variable by the current value of this variable. This
happens during the build of the control library.

 Note
In development scenarios this LESS processing might even happen at runtime in the browser to shorten
the build time for SAPUI5 libraries. This is indicated by a less mode rectangle when a page is launched.

Additionally, a specific theme can modify the CSS parameter values given by the base theme. So a control can
just define its text color to use sapUiText by default which will automatically take care of applying the correct
color for every theme or user modification: The theme generation will create one CSS file per theme, and the
substitution of the CSS parameter references will always take the theme-dependent value into account. So a
visually very different theme can easily be created by simply changing a number of colors.

While every library and control can introduce their own CSS variables, those defined in global.css are most
important. Ideally, there should only be a few of them, and they should be simple enough to be understood by
most end users (similar to what the Windows operating system offers end users), but still cover as many
aspects of the visual appearance as necessary to make them sufficient for most customer-required theme
modifications.

Additional benefits of CSS variables are, for example:

● They can be used to generically build simple styling tools that allow for a limited degree of freedom
(=changing the CSS parameter values). The UI theme designer is an example of such a tool.

● They can also be linked to metadata, for example, to which group of colors they belong, to which colors
they need to have some visual contrast.

Compilation of One CSS File

SAPUI5 CSS generation does not only substitute the CSS variable values but also merges all CSS files of a
control library into one file that is loaded at runtime, thus increasing the performance.

Here are some of the reasons why you would not want to have all styles defined within one file during
development:

● Less collisions and merging when different developers edit the styles of their controls
● Clear separation between the styles for different controls, which helps to estimate and test the impact of a

CSS modification
● Keeping the door open for future optimization regarding runtime performance and data transfer by

tailoring CSS files on server side that only contain the CSS required on the current application page

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1259

Optimization and Compression of CSS Size

For performance reasons, the SAPUI5 CSS generation can optionally remove all comments and unnecessary
whitespace and can compress verbose declarations into a more compact format.

Base Theme for Generic Style

While some of the style and layout applied using CSS clearly depends on the current theme, and customers are
likely to modify such style rules, there are other style rules that are required for a control to work properly and
unlikely to differ for different themes. Examples are the overflow behavior, the positioning of popup elements,
the mouse cursor type, the display mode, and others.

SAPUI5 promotes and supports keeping those style definitions in the so-called base theme, which serves as a
common base for all themes.

Themes are built upon this base style that defines their specific visual design by applying colors and images,
sizes and fonts. SAPUI5 theme generation takes care of combining the base theme with the specific theme for
each generated theme CSS file. Because the specific CSS is appended to the base theme, a specific theme can
always override styles defined in the base theme. If this step is required often, the respective style declaration
should probably not be located in the base theme.

Any style declarations which are referencing CSS variables (at least those common ones defined in the base
theme) can also be done in the base theme, and it is sufficient to do it only there: The CSS generation will apply
the correct value for each respective theme. So this split between base theme and specific themes avoids
duplicate creation and maintenance of CSS parts which are common for all themes and keeps the CSS files
that need to be written for any new theme smaller.

Generic Right-to-Left Support

For some countries, right-to-left (RTL) text mode needs to be supported. In order to avoid the need to create a
completely new set of CSS files for those countries, SAPUI5 supports generic RTL generation. Basically, this
involves switching the right and left margins and mirroring everything else (including CSS3 rotations, and so
on).

Everything else that is not covered by this automatic transformation can be fixed by using style rules that are
only applied in the RTL case.

If you override RTL-specific attributes like text alignment, positioning and so on, you have to write the RTL
equivalent into your application CSS. The attributes below are critical for RTL support:

● float
● clear
● text-align

The following attributes require special attention:

● margin
● padding

1260 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

● border
● background-position
● position (right/left)
● text-indent

Depending on the values, these latter attributes might also need to be mirrored. As applications running in RTL
mode add a dir attribute to the HTML tag in the DOM, custom styles that have to be written can use the
following selector to handle RTL-specific styling:

html[dir="rtl"] .myselector { }

Creating Themable User Interfaces

There are several things you should keep in mind to ensure that an application can actually be themed.

General Aspects

Do not hard-code colors and fonts if you want your control or application to be themable in the theme designer
tool.

For example, if you hard-coded the font color to black, this color cannot be adjusted when you apply a custom
theme. This can be problematic if you want to apply a custom theme with a dark background color because the
font color cannot be adjusted to a light color.

Stable Theme Parameters

● Themes in SAPUI5 are built with the CSS preprocessor LESS and make use of a complex parameter
structure.

● You can view the entire set of basic theme parameters in this sample in the Demo Kit.
● SAPUI5 applications have access to these parameters at runtime via the API call Parameters.get\(\)

from module sap/ui/core/theming/Parameters. These parameters not only differ in terms of themes,
they are also not necessarily stable across different versions of SAPUI5. For this reason, you cannot rely on
the completeness of the set of parameters.

● To allow developers to build theme-dependent, custom-styled applications or controls, a subset of roughly
70 parameters representing colors for different types of usage (such as border, backgrounds, charts) is
available.

● The parameters in this subset can be considered as "stable", which means the following:
○ We will not change the naming for these parameters.
○ The contrast ratio between foreground- colors like text and the related background will remain stable.

● Always choose parameters that fit best from a semantic perspective, do not choose them based on their
color value.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1261

http://help.sap.com/disclaimer?site=http%3A%2F%2Flesscss.org%2F
https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.sample.BasicThemeParameters/preview

● This set is available across the predefined themes sap_fiori_3_dark, sap_fiori_3, sap_belize,
sap_belize_plus, sap_fiori_3_hcw, and sap_fiori_3_hcb and should be handled with care. You
should test your implementations for all themes to ensure the results are as expected.

 Note
This approach can only cover the most common use cases. In addition, be aware that due to parameter
value changes with future versions of SAPUI5 it might be necessary to rework your applications even
when using the “stable” theme parameters described here.

● For charts, two individual sets are available, Chart Accent and Chart Semantic. Both sets are logically
independent. Therefore only one of these sets is to be used consistently across individual charts.

Tips for SAPUI5 Application Developers Writing Custom HTML

● LESS parameters are not accessible via CSS and only support standard libraries.
● To ensure theme-dependent styling, only use basic theme parameters.
● Read appropriate parameter values via API and set the elements' CSS properties rather than hard-coding

colors or borrowing arbitrary style classes from control sets:

sap.ui.require(["sap/ui/core/theming/Parameters"], function(Parameters){ var myColor = Parameters.get("sapUiDarkBG"); });

Tips for SAPUI5 Control Developers

● Use the theme LESS parameters in CSS class definitions and rules.
● Use the appropriate level of parameters for the control, creating new ones as appropriate. For example, do

not use color values or quick theming parameters directly in CSS rules.
● Follow the control parameter hierarchy conventions.

CSS Classes for Theme Parameters

SAPUI5 provides a set of essential adjustable colors behind the generic predefined CSS rules that enable
custom content to use the respective CSS classes for the required colors.

If SAPUI5 applications define their own HTML and CSS content that is not created by any standard SAPUI5
controls, switching between different themes or adapting colors using the theme designer won't have any
effect on these parts of the application.

The reason this doesn't work is because this type of styling cannot make use of the SAPUI5 theme parameters.

HTML content like that might be created as part of the following:

● JavaScript libraries that are not SAPUI5 libraries

1262 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

● Custom/notepad controls(if they do not belong to a control library with a theme build)
● Plain static HTML or CSS content used in an application

To resolve this problem, you can use CSS classes. There is a number of predefined CSS classes that are
supplied with color values by LESS CSS parameters of the current theme. These classes can be used in custom
HTML content and in custom controls. The names of the CSS classes are generic and derived from the
respective theme parameter name. This makes it easier to use the classes, and the names created are not too
long or conflict-prone.

Example

The most straightforward example is the theme parameter @sapUiText. The theme parameter is mainly used
for text colors, so the custom CSS rule sets the color property. Every parameter sapUiXY can be provided as
a CSS class sapThemeXY. This suggests it is a theme color, and sapTheme is a new and reserved prefix for CSS
classes.

 CSS .sapThemeText {
 color: @sapUiText; }

This solution is not sufficient if the same color is used for borders, for example. To support this, the color is
defined for each CSS color parameter: Once as a text color, once as a background color, once as a border color,
and so on. The styled CSS property name is part of the CSS class name, as a suffix:

 CSS .sapThemeText-asColor {
 color: @sapUiText;
}
.sapThemeText-asBackgroundColor {
 background-color: @sapUiText;
}
.sapThemeText-asBorderColor {
 border-color: @sapUiText; }

Nevertheless, if there is an obvious default CSS property, such as the (text) color for @sapUiText or the
background color for @sapUiPageBG, this one is available without suffix.

If an application is using SAPUI5, and a theme is loaded into the page, any custom content like plain HTML,
HTML inside HTML controls or HTML/XML views, or HTML rendered by custom/notepad controls can use
theming if the respective generic CSS classes are added. If custom HTML should have the font color as defined
in the current theme, the application writes:

 some custom text in custom HTML

Whenever the theme is switched or the theme designer is used to modify the standard text color, this span
automatically gets the new text color. The same is valid if a custom/notepad control is created. Just make sure
the control writes the respective CSS class, for example, by calling oRm.addClass("sapThemeText");:

 // the part creating the HTML:
render : function(oRm, oControl) {
oRm.openStart("div", oControl);
 oRm.style("width", oControl.getSize());

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1263

 oRm.style("height", oControl.getSize());
 oRm.class("mySquare");
 oRm.class("sapThemeText"); // here the CSS class is added which makes the
text color depend on the current theme
 oRm.openEnd();
 oRm.text(oControl.getText());
 oRm.close("div");
},

Related Information

List of Supported CSS Classes [page 1264]
Step 34: Custom Controls [page 170]

List of Supported CSS Classes

Overview of the CSS classes currently supported by SAPUI5.

CSS Class Name CSS Property sap_bluecrystal All Themes Description

sapThemeFontFam
ily

font-family X X Default font

sapThemeFontSiz
e

font-size X X Default font size

sapThemeFont font-family
+font-size

X X Default font and font
size

sapThemeText color X X Default text color

sapThemeText-
asColor

color X X Default text color

sapThemeText-
asBackgroundCol
or

background-
color

X X Default text color

sapThemeText-
asBorderColor

border-color X X Default text color

sapThemeText-
asOutlineColor

outline-color X X Default text color

sapThemeTextInv
erted

color X X Default color of
inverted text

sapThemeTextInv
erted-asColor

color X X Default color of
inverted text

sapThemeBaseBG background-
color

X X Base color for all
backgrounds

1264 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

CSS Class Name CSS Property sap_bluecrystal All Themes Description

sapThemeBaseBG-
asBackgroundCol
or

background-
color

X X Base color for all
backgrounds

sapThemeBaseBG-
asBorderColor

border-color X X Base color for all
backgrounds

sapThemeBaseBG-
asColor

color X X Base color for all
backgrounds

sapThemeBrand-
asColor

color X X Brand color

sapThemeBrand-
asBorderColor

border-color X X Brand color

sapThemeBrand-
asBackgroundCol
or

background-
color

X X Brand color

sapThemeBrand-
asOutlineColor

outline-color X X Brand color

sapThemeHighlig
ht-asColor

color X X Color for highlighted
elements

sapThemeHighlig
ht-
asBorderColor

border-color X X Color for highlighted
elements

sapThemeHighlig
ht-
asBackgroundCol
or

background-
color

X X Color for highlighted
elements

sapThemeHighlig
ht-
asOutlineColor

outline-color X X Brand color

sapThemePageBG background-
color

X - Background color of
mobile pages

sapThemePageBG-
asColor

color X - Background color of
mobile pages

sapThemeBarBG background-
color

X - Background color for
header bars in mobile
pages

sapThemeBarHead
ing

color X - Header text color for
header bars in mobile
pages

sapThemeBarText color X - Normal text color for
header bars in mobile
pages

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1265

CSS Class Name CSS Property sap_bluecrystal All Themes Description

sapThemeNegativ
eText

color X - Semantic negative text
color

sapThemeCritica
lText

color X - Semantic critical text
color

sapThemePositiv
eText

color X - Semantic positive text
color

sapThemeLightTe
xt

color X - Light text color

sapThemeMediumT
ext

color X - Medium text color

sapThemeDarkTex
t

color X - Dark text color

You can also check the availability of the sapTheme classes across the predefined themes Blue Crystal and
High Contrast Black (HCB) in the sample in the Demo Kit.

Theming FAQ

Frequently asked questions regarding theming in SAPUI5

How can I adapt the visuals of a control?

While there is always the option to create a new theme, this is overkill for most minor style adaptations. For
those minor changes, the recommendation is to include additional CSS into the page which changes the style
of the respective tags of the SAPUI5 control. This allows complete, arbitrary changes of the visual design - after
all it is the same technology that the UI5 controls use for their styling.

The main options are the following:

● Inspect the HTML and CSS of a control and write a similar, but adapted CSS rule for a CSS property you
want to override for all controls of a type.

● Call .addStyleClass("myStyle") on some control instances if you want only those instances to look
different from other instances - and then write CSS code that refers to the normal classes/tags and to the
CSS class you just added.

 Note
● With this high degree of power and flexibility comes quite some responsibility. With CSS you can easily

break the functionality of a control. This is not SAPUI5-specific, but when you make CSS adaptions, you
should always have good knowledge of this open standard.

● The inner structure of a control, the tag hierarchy, the IDs and CSS classes are not part of the public
control API for which we guarantee stability. This is also the case for other UI libraries which might
define some CSS classes as stable, but not everything else. As CSS can refer to the inner structures of

1266 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.sample.ThemeCustomClasses/preview

a control, you have to accept the risk that your style changes break when we change the inner
structure. Changing the inner structure is a freedom we absolutely need to reserve, so we can fix bugs
and add features of a control.

● When your CSS does not work as expected, use the developer tools in your browser to inspect the page
and check which CSS rules are applied to the respective tag, and which rules might be applied but are
overridden by other rules. If your rules are overridden by other rules, this is probably due to their order
of appearance (last rule wins) or the CSS selector specificity (more specific CSS selectors win).

DON'Ts

● Do not adapt the style attribute of HTML elements belonging to SAPUI5 controls. When these controls are
re-rendered, the changes will be lost.

How can I provide additional CSS that is not overwritten by the SAPUI5 CSS?

When SAPUI5 is used in a standard way, which means loaded by a<script> element in the <head> of a page,
and all libraries declared in the respective attribute of the script tag), it is sufficient to just add the custom
CSS to any place after the SAPUI5 <script> element. SAPUI5 will insert its CSS links immediately after the
<script> tag, so any subsequent CSS will appear further down in the DOM and can thus overwrite the SAPUI5
CSS.

However, it is important to understand the precedence rules of CSS: The order of appearance is not the only
factor that determines which one of two or more conflicting rules wins. Actually it is only the least important
factor. The most important (and maybe least known) factor is the specificity of the selector belonging to a rule.

For example, if one rule says button {color:red;} to make all button texts red, and a second rule says div
> button {color:green;} to make all button texts, which are direct children of a <div> element, green,
the second rule always wins because it is more specific. The order of appearance in the DOM does not matter
in this case. It would only matter if both rules started with an equal selector, such as button{color:***}.

The order of loading is completely irrelevant, only the position in the DOM counts in this case. If you load
SAPUI5 without a <script> tag in the <head>, or if you do not specify all used control libraries in the
<script> tag, but loaded some of them later on when the body was already loaded, you can still make sure a
custom CSS appears further down in the DOM by loading it with
jQuery.sap.includeStyleSheet(stylesheetUrl[, id])after loading SAPUI5 or the dynamically
loaded control library.

Related Information

● For more information on the related part of the CSS specification, see http://www.w3.org/TR/CSS21/
cascade.html#cascading-order

● For more information on specificity, see http://www.w3.org/TR/CSS21/cascade.html#specificity

Why do SAPUI5 controls not have a style property where I can make arbitrary
changes?

A control usually does not map to one HTML element, but to a whole tree of HTML elements. Whatever is set
for the style property would probably be added to the root element of this HTML tree, and only there, so there

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1267

http://help.sap.com/disclaimer?site=http%3A%2F%2Fwww.w3.org%2FTR%2FCSS21%2Fcascade.html%23cascading-order
http://help.sap.com/disclaimer?site=http%3A%2F%2Fwww.w3.org%2FTR%2FCSS21%2Fcascade.html%23cascading-order
http://help.sap.com/disclaimer?site=http%3A%2F%2Fwww.w3.org%2FTR%2FCSS21%2Fcascade.html%23specificity

is no style access to inner parts. If you just want to override the height of a button, this would actually work.
But as soon as a change is a bit more complex, it will not work that easily. A more complex change is, for
example, adapting the height of a ComboBox control. The outer <div> will get the proper height. And
incidentally also the <input> tag inside, as it has 100% height set. But the dropdown arrow and the respective
button-kind-of-thing has a fixed height, and the whole control will look pretty broken then.

In other cases, when HTML elements that break the CSS inheritance chain are nested, for example, <table>
and font settings, you can change style to a different font and text color, but it will simply do nothing.

In general, we try to expose the obvious adaptation content in the API, for example, the button height. But the
less obvious adaptations might have to be supported from inside the control to work properly, and as we
cannot foresee and support everything you can do with a style property, we raise the bar a little bit by
requiring you to write CSS (potentially using .addStyleClass(…) for the respective control). With CSS you
can do what you cannot do with a style property: tweak the inner HTML components of a control.

Applications (at least the more traditional ones – currently this seems to be less of a rule, but I’m not sure it will
stay like this forever) need to conform to some visual design guideline and, in general, it is not even desired that
applications change the TextField height or use font just the way they like. As you can use CSS, UI5 still
supports that, but we shouldn’t make breaking the visual design a rule in our official API.

I am adding a style class, but it does not work! Why?

If you want to change some styling and use control.addStyleClass(…) to add a CSS class, but it does not
seem to work, you first have to pin down exactly what is not working:

● Has the style class not been added to the HTML?
● Has the style class been added correctly, but the style you supplied not been applied by the browser?

You can check this by inspecting the HTML with your browser's developer tools.

● If the style class has really not been added to a control, bear in mind that some entities are not controls,
but only elements (inherited from sap.ui.core.Element). Only some of them support
addStyleClass.

● If the style class is available in the HTML, the bug is inside the CSS styles you supplied:
○ Are they loaded by the browser?
○ Are the selectors matching the element you want to style? You can again check in the developer tools:

They mostly list all styles which apply, but some are overriding others (those are usually listed with a
strikethrough). If your style is not listed at all, your CSS selector is probably not correct.

○ If your selector is fine, but other style rules override your styles (potentially those from the original UI5
theme), then the CSS precedence rules determined this. Refer to the section on additional CSS above
and see http://www.w3.org/TR/CSS21/cascade.html#cascading-order for the respective part of
the CSS spec and http://www.w3.org/TR/CSS21/cascade.html#specificity for more on specificity.

○ Maybe your browser does not understand the CSS styles you have written. Some browsers still display
them in the developer tools, some don't, so you might want to try changing very common styles like
the border to check whether selector and specificity are fine.

1268 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/disclaimer?site=http%3A%2F%2Fwww.w3.org%2FTR%2FCSS21%2Fcascade.html%23cascading-order
http://help.sap.com/disclaimer?site=http%3A%2F%2Fwww.w3.org%2FTR%2FCSS21%2Fcascade.html%23specificity

How can I perform a "clean" browser switch inside CSS code?

On all SAPUI5 application pages, the HTML root tag of the DOM gets the additional attribute data-sap-ui-
browser where the value is the type and the current browser version. When browser-specific CSS needs to be
written, this attribute can be used in CSS selectors.

html[data-sap-ui-browser="ie11"] button { /* this rule will only be applied if
the current browser is Internet Explorer 11 */ margin-top: 0px;
}
html[data-sap-ui-browser*="sf"] button { /* this rule will only be applied if
the current browser is ANY version of Safari */
 padding-top: 0px;
}

When should I use the UI theme designer, and when should I perform manual
steps?

There is not one single way to create a new theme, but there are several options. Which one you choose
depends on several factors:

● How different is the desired design from an existing theme?
● Should the theme be used across several applications or just in one?
● Are sufficient CSS skills available?
● How much effort can be invested?

Depending on the answers it might be better to not even create a new theme but just adapt an existing one.

Localization

The framework concepts for text localization in SAPUI5 are aligned with the general concepts of the Java
platform.

 Note
When connected to an SAP NetWeaver Application Server (ABAP), you can use the SAPUI5 repository to
trigger the translation process on the ABAP server. For more information, see: Fallback: Translating Apps
Using the SAPUI5 Text Repository [page 1517]

Identifying the Language Code / Locale

For the identification of languages, the framework uses a language code of type string.

The language can be set, for example, by using the following options:

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1269

● URL parameter sap-ui-language and configuration parameter language
● Script tag attribute data-sap-ui-language
● Global configuration variable window["sap-ui-config"].language
● URL parameter sap-language

These SAPUI5 configuration options accept the following formats:

● Language codes according to the de facto standard BCP-47, which are used by most browsers for language
identification
As of JDK 1.7 they are also supported by the Java locale class. Examples are de, en-US, zh-Hans-CN.

● Java locale syntax that combines a lower case ISO 639 alpha-2 or alpha-3 language code with an ISO 3166
alpha-2 country code
Both codes are combined with an underscore. An arbitrary sequence of variant identifiers (also separated
by underscores) can be appended as a third component. Examples are de, en_US, zh_TW_Traditional

● SAP proprietary language codes (only supported by URL parameter sap-language)
SAPUI5 applications are often used to connect to ABAP-based SAP application servers. These servers use
SAP proprietary language codes for compatibility reasons. These language codes often match an ISO 639
alpha-2 language code, but not in all cases. If the language code for an SAPUI5 application is specified with
the URL parameter sap-language, SAPUI5 assumes that it is an SAP proprietary language code and
converts it to a BCP-47 language tag as follows:

SAP Language Code BCP47 Language Tag Description

ZH zh-Hans ZH is the SAP language code for
Simplified Chinese. The most generic
representation in BCP47 is zh-
Hans. zh-CN (Chinese, China) is
another representation, but SAPUI5
decided to use zh-Hans.

ZF zh-Hant ZF is the SAP language code for
Traditional Chinese. The most generic
representation in BCP47 is zh-
Hant. zh-TW (Chinese, Taiwan) is
another representation, but SAPUI5
decided to use zh-Hant.

1Q en-US-x-saptrc 1Q is a technical SAP language code
used in support scenarios, for
example for translation issues. When
you select this language code, the
technical keys are displayed instead
of the actual data. As no ISO639 code
for this exists, the information has
been added as a BCP47 private
extension to the en-US language tag:
"trc" stands for "trace" or
"traceability".

2Q en-US-x-sappsd 2Q is also used as a technical SAP
language code in support scenarios
and displays a pseudo translation
("psd" in the private extensions
name).

1270 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Note
Only these SAP-proprietary language codes are understood by SAPUI5. Other SAP-proprietary
language codes are not automatically transformed. If you develop your app to run in the SAP Fiori
launchpad, all other SAP-proprietary language codes are handled by the SAP Fiori launchpad.

If you don't make use of the SAP Fiori launchpad, you may have to explicitly implement the language
handling. You can use the sap.ui.getCore().setLanguage() method to provide both settings, a
BCP47 language code and the corresponding SAP-proprietary language) in one call. SAPUI5 will then
use one of the two codes where appropriate (e.g. BCP47 for the retrieval of translated texts or in HTTP
Accept Headers, but the proprietary SAP language code when propagating the sap-language URL
parameter to an OData service).

Current Language Code / Locale

SAPUI5 has the notion of a current language. It is determined during the SAPUI5 bootstrap from the following
sources of information. The sources are ordered increasingly by priority and the last available user language/
locale wins:

1. Hard-coded SAPUI5 default locale en
2. Potentially configured browser language (window.navigator.browserLanguage); for Internet Explorer

this is the language of the operating system
3. Potentially configured user language (window.navigator.userLanguage); for Internet Explorer this is

the language in the region settings
4. General language information from the browser (window.navigator.language)
5. Android: Language contained in the user agent string (window.navigator.userAgent)
6. First language from the list of the user’s preferred languages (window.navigator.languages[0]) (For

more information, see https://developer.mozilla.org .)
7. Locale configured in the application coding (For more information, see API Reference:

sap.ui.core.Configuration.)
8. Locale configured via URL parameters

After the bootstrap, the language can be changed by calling sap.ui.getCore().setLanguage(…). A call to
this method does not guarantee that all already existing translatable texts will be adapted. You use the
configuration API to retrieve the resulting current language as follows:

 var sCurrentLocale = sap.ui.getCore().getConfiguration().getLanguage();

For more information, see API Reference: sap.ui.core.Configuration.setLanguage.

 Note
The syntax of the returned value depends on the syntax used for configuration. If the information source is
one of the browser language properties, the returned language most likely is in BCP-47 format. If it is
configured as a URL parameter, the user might have chosen the JDK Locale syntax.

 Note
None of the window.navigator.* properties in Internet Explorer (IE) reflect the settings of the Language
Preference dialog. Instead, IE returns the language of the Operating System installation as

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1271

http://help.sap.com/disclaimer?site=https%3A%2F%2Fdeveloper.mozilla.org%2Fen%2Fdocs%2FWeb%2FAPI%2FNavigatorLanguage%2Flanguages
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.Configuration.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.Configuration.html
https://sapui5.hana.ondemand.com/#/api/sap.ui.core.Configuration/methods/setLanguage

browserLanguage and the language from the Operating System regional settings as userLanguage. As a
result, the settings in the Language Preference dialog cannot be used for the current language of SAPUI5.
This is often confusing for developers and a known shortcoming in IE. To circumvent this, an additional
server request could be used where IE provides the corresponding setting in theAccept-Language
header. This server request, however, requires a backend component. SAPUI5 must be able to run without
a server component and, thus, the server request is not implemented.

Resource Bundles

A resource bundle file is a Java properties file (as described in the Javadoc of class java.util.Properties).
It contains key-value pairs where the values are the language-dependent texts and the keys are language-
independent and used by the application to identify and access the corresponding values.

Resource bundles are a collection of *.properties files. All files are named with the same base name (prefix
identifying the resource bundle), an optional suffix that identifies the language contained in each file, and the
fixed .properties extension. The language suffixes are formed according to the older JDK locale syntax. By
convention, a file without a language suffix should exist and contain the raw untranslated texts in the
developer's language. This file is used if no more suitable language can be found.

When a localized text is needed, the application uses the SAPUI5 APIs to load the properties file that matches
the current language best. The same applies to any other localized data that can be represented as a string, for
example, a date formatter string. To retrieve a text from the properties file, the application uses the (language-
independent) key. If no text can be found for this key, the next best matching file is loaded and checked for the
text. Finally, if no file matches, the raw file is loaded and checked.

 Example
The resource bundle sap.ui.commons.message_bundle consists of the following individual files:

● sap.ui.commons.message_bundle.properties: Contains the raw texts form the developer,
determines the set of keys

● sap.ui.commons.message_bundle_en.properties: Contains English texts (without a specific
country)

● sap.ui.commons.message_bundle_en_US.properties: Contains texts in American English
● sap.ui.commons.message_bundle_en_UK.properties: Contains texts in British English
● sap.ui.commons.message_bundle_de.properties: Contains texts in German

To enable proper translation, you classify the texts with additional information, at least with the text type. Place
the additional information in the line directly above the text element, beginning with the number sign (#). For
more information, see Text Classification [page 1519].

A properties file can, for example, look like this

SAPUI5 TRANSLATION-KEY <GUID> #XMSG: A message to greet the world
helloWorld=Hello World
#XBUT,10: Save button text
buttonSave=Save
#XFLD,30: Greetings displayed in the upper right corner of the screen
welcome=Welcome {0}

1272 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Note
If you are using SAPUI5 in SAP HANA, resource bundles files must have the extension *.hdbtextbundle
instead of *.properties.

To load this bundle, you add the following code to the createContent function of your view:

// "ResourceBundle" required from module "sap/base/i18n/ResourceBundle" // load the resource bundle
var oBundle = ResourceBundle.create({
 // specify url of the .hdbtextbundle
 url : "i18n/messagebundle.hdbtextbundle" });

Related Information

Resource Model [page 995]
API Reference: sap.ui.model.resource.ResourceModel

Use of Localized Texts in Applications

SAPUI5 provides two options to use localized texts in applications: The sap/base/i18n/ResourceBundle
module and data binding.

Using sap/base/i18n/ResourceBundle

You can use the JavaScript module sap/base/i18n/ResourceBundle to access localized texts. The module
contains APIs to load a resource bundle file from a given URL and for a given locale.

You can then use the ResourceBundle.create function to load the resource bundle from the given URL that
is the bundle name, and for a provided locale. When no locale is specified, the default locale (en) is used. The
following code snippet shows the use of the ResourceBundle.create function to return a Promise which
resolves with a sap/base/i18n/ResourceBundle:

// "ResourceBundle" required from module "sap/base/i18n/ResourceBundle" ResourceBundle.create({
 url : sUrl,
 locale: sLocale,
 async: true
}).then(function(oBundle) {
 // code });

For more information, see ResourceBundle in the API Reference.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1273

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.resource.ResourceModel.html

The resource bundle sap/base/i18n/ResourceBundle provides access to the localized texts that are
contained in the resource bundle. You can use the getText method to access the texts in the loaded bundle by
means of their key. This is shown in the following code snippet:

var sText = oBundle.getText(sKey);

Localization Test Page

The test suite provides a test page that shows how to use localized texts. This section only provides a short
overview how the sap/base/i18n/ResourceBundle module is used there.

For a localized Web page you need the .html page itself and the .properties files of the required languages, in
this example English and German.

The resource bundle i18n.properties is the English fallback version, which is the default version.

welcome=Welcome {0}. Please enter a new contact: lastname=Last Name:
firstname=First Name:
street=Street:
zip=ZIP: city=City:

The resource bundle i18n_de.properties contains the texts in German. The following code snippet shows
the content of this file:

welcome=Willkommen {0}. Bitte geben Sie einen neuen Kontakt ein: lastname=Nachname:
firstname=Vorname:
street=Straße:
zip=PLZ: city=Ort:

The localization test page uses these texts to display a welcome message and a form to enter the address of a
person. The coding of the test page looks as follows:

// "ResourceBundle" required from module "sap/base/i18n/ResourceBundle" // "MatrixLayout" required from module "sap/ui/commons/layout/MatrixLayout"
// "Label" required from module "sap/ui/commons/Label"
// "TextField" required from module "sap/ui/commons/TextField"
// "TextView" required from module "sap/ui/commons/TextView"
var sLocale = sap.ui.getCore().getConfiguration().getLanguage();
ResourceBundle.create({url : "res/i18n.properties", locale:
sLocale}).then(function(oBundle) {
 var oMatrixLayout = new MatrixLayout();
 oMatrixLayout.setLayoutFixed(false);
 oMatrixLayout.createRow(
 new TextView({text: oBundle.getText("welcome", ["Administrator"])})
);
 oMatrixLayout.getRows()[0].getCells()[0].setColSpan(2);
 oMatrixLayout.createRow(
 new Label({text: oBundle.getText("lastname")}),
 new TextField()
);
 oMatrixLayout.createRow(
 new Label({text: oBundle.getText("firstname")}),
 new TextField()
);

1274 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 oMatrixLayout.createRow(
 new Label({text: oBundle.getText("street")}),
);
 oMatrixLayout.createRow(
 new Label({text: oBundle.getText("zip")}),
 new TextField()
);
 oMatrixLayout.createRow(
 new Label({text: oBundle.getText("city")}),
 new TextField()
);
 oMatrixLayout.placeAt("userForm"); });

With regard to localization, the code above defines the following procedure:

1. Require the sap/base/i18n/ResourceBundle module
2. Determine the language
3. Load the resource bundle
4. Access the text using the welcome key and pass the value for the placeholder ({0}) via an array
5. Access the text using the lastname key and set it as text for the Label

Data Binding

You can also use data binding to access localized texts. The ResourceModel is a wrapper for resource bundles
that exposes the localized texts as a model for data binding. You use the ResourceModel to bind texts for
control properties to language dependent resource bundle properties. You can instantiate the ResourceModel
either with bundleName (name of a resource bundle that equals a SAPUI5 module name within the define/
require concept), or a bundleUrl, which points to a resource bundle. When you use the bundle name, make
sure that the file has a .properties suffix. If no locale is defined, the current language is used.

 Example

// "ResourceModel" required from module "sap/ui/model/resource/ResourceModel" // "Button" required from module "sap/ui/commons/Button"
 var oModel = new ResourceModel({
 bundleName:"myBundle",
 bundleLocale:"en",
 async: true
 });
 var oControl = new Button({
 id : "myButton",
 text : "{i18n>MY_BUTTON_TEXT}"
});
// attach the resource model with the symbolic name "i18n"
// The texts are resolved via databinding, once the resource bundle file was
loaded oControl.setModel(oModel, "i18n");

 Note
The current data binding implementation does not allow to pass parameters to your texts in the resource
bundle. If you have to pass parameters, you must do this on your own. You can, however, access the
resource bundle directly from the model instead of loading it:

oModel.getResourceBundle().then(function(oBundleInstance) {

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1275

 ... });

After the instance has been created, you have a model containing the resource bundle texts as data.

For a complete overview of available methods and parameters, see ResourceModel in the API Reference in the
Demo Kit

Related Information

Resource Model [page 995]

Accessibility

Accessibility features are essential for users with disabilities. In an ongoing approach, SAPUI5 controls aim to
comply with various product standards such as screen reader support, high-contrast theming and keyboard
handling.

The following topics provide important accessibility information related to SAPUI5 controls from an end-user
perspective.

 Note
This documentation describes standard accessibility functionality in SAPUI5. For specific information on
accessibility in products based on SAPUI5, see the documentation for the respective product. In case of
conflict between the SAPUI5 documentation and the respective product documentation describing
accessibility functionality, the respective product documentation shall prevail.

Note that accessibility for web applications also depends on the browser and the operating system used.
For more information, see the Accessibility Status Documents .

The following table shows the availability of the different accessibility features.

Table 39: Accessibility Feature Availability

Feature Available as of version

Keyboard Handling 1.26

HCB Theme 1.26

Screen Reader Support 1.30

HCW Theme 1.46

1276 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.resource.ResourceModel.html
http://help.sap.com/disclaimer?site=http%3A%2F%2Fexperience.sap.com%2Farchived%2Fsaps-accessibility-product-status-documents%2F

Keyboard Handling for SAPUI5 UI Elements

SAPUI5 UI elements provide keyboard handling in order to improve accessibility and speed up work.

Keyboard Shortcuts for End Users

In this topic we introduce the main keyboard combinations that are used by SAPUI5 UI elements. Furthermore
we describe some additional combinations that are used in specific cases.

Table 40: Main Keyboard Combinations

Key Combination What it does Specific Behavior

Tab / Shift + Tab Focuses UI elements in order (forward /
backward)

You can cycle through all interactive,
enabled and visible UI elements that are
part of a given dialog or other container.
When the last UI element is focused,
pressing the key again will move the fo
cus to first element.

Space Triggers an action (reversible) Pressing and releasing the key triggers
the action that is associated with a UI
element (for example, open a link or
toggle a button).

 Tip
If you press and hold the key, you
can cancel the trigger action by
pressing Shift .

Enter Triggers an action (immediate) Triggers the action that is associated
with a UI element (for example, open a
link or toggle a button). The action is
triggered immediately after the key is
pressed.

Arrow Keys Navigates between elements You can move the focus between ele
ments within a complex UI element (for
example a table or a list). Depending on
the structure, this navigation is either
one-directional (left/right or up/down)
or two-directional (left, right, up, down).

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1277

Key Combination What it does Specific Behavior

Home / End Navigates between elements You can move the selection to the first/
last element within a set of elements.

 Tip
When using UI elements like sliders
and rating indicators, pressing
these keys will set the selected
value to the maximum/minimum
respectively.

Page Up / Page Down Skips elements during navigation You can move the selection forward/
backward by several elements at a time.
If the remaining number of elements is
less than the step size, selection will
move to the last/first element.

Escape Closes element / Reverts changes Depending on your situation, you can
do the following:

● Close an additionally opened ele
ment (for example, a pop-up).

● Revert the execution to a previous
step - one step at a time.

● If you have made changes to the
content of an element (for exam
ple, a text field), pressing this key
will revert those changes.

F4 / Alt + Down / Alt + Up Opens / closes a drop-down menu You can open the options and elements
available in a drop-down menu, if the UI
element in question provides this type
of information.

F6 / Shift + F6 Skips focus of UI elements (forward /
backward)

UI elements within an application can
be grouped together (for example, all
elements in the header of an applica
tion). You can skip focusing the ele
ments within a group by using these
keys.

Table 41: Additional Keyboard Combinations for Specific UI elements

Key Combination What it does Specific Behavior

Page Up / Page Down Date modification (Days) When in input: Pressing these keys de
creases/increases the date value by
one day.

When in Calendar UI: Pressing these
keys decreases/increases the date
value by one month.

1278 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Key Combination What it does Specific Behavior

Shift + Page Up / Shift +
Page Down

Date modification (Months) When in input: Pressing these keys de
creases/increases the date value by
one month.

When in Calendar UI: Pressing these
keys decreases/increases the date
value by one year.

Ctrl + Shift + Page Up /
Ctrl + Shift + Page Down

Date modification (Years) When in input: Pressing these keys de
creases/increases the date value by
one year.

When in Calendar UI: Pressing these
keys decreases/increases the date
value by 10 years.

Ctrl + Arrow Keys When used with grouped radio buttons
- Moves selection

Pressing these keys moves the focus to
the next corresponding radio button in
the group. The currently selected radio
button does not change.

Ctrl + Arrow Keys When editing tiles in a container -
Changes tile position

Pressing these keys changes the posi
tion of the focused tile in the tile con
tainer. The remaining tiles are re-or
dered accordingly.

F2 Toggles edit mode You can toggle editing of an editable UI
element like an input field or text area.

F7 Exits edit mode When you are editing an input field in a
table or a list, pressing this key will stop
the editing and move the focus to the
parent UI element.

 Note
Pressing F7 again will move focus
back to the editable element.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1279

Screen Reader Support for SAPUI5 Controls

SAPUI5 offers screen reader support in order to aid people with visual impairments. The implementation is
based on the ARIA (Accessible Rich Internet Applications) standard.

General Information

Currently, the following libraries have screen reader support based on the ARIA standard:

● sap.f
● sap.m
● sap.suite.ui.commons
● sap.tnt
● sap.ui.commons
● sap.ui.comp
● sap.ui.core
● sap.ui.generic
● sap.ui.layout
● sap.ui.suite
● sap.ui.table
● sap.ui.unified
● sap.ui.ux3
● sap.uxap
● sap.viz

SAPUI5 controls provide the prerequisites for screen reader support based on the ARIA standard. All screen
readers that implement this standard should work fine. If there are deviations in the interpretation, these need
to be addressed to the screen reader vendor. If you need more information on our testing environment, see
SAP Note 2564165 .

 Note
● No screen reader activation settings are necessary since the accessibility mode in SAPUI5 is switched

on by default.

1280 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/2564165

High Contrast Themes for SAPUI5 Controls

SAPUI5 offers two high contrast themes for controls - High Contrast Black (HCB) and High Contrast White
(HCW). These themes support people with visual impairments and are required by the Accessibility product
standard. The themes can be switched on by adding a dedicated URL parameter.

SAPUI5 library support

Currently, the following libraries support the high contrast themes:

● sap.f
● sap.m
● sap.tnt
● sap.ui.comp
● sap.ui.layout
● sap.ui.suite
● sap.ui.table
● sap.ui.unified
● sap.uxap
● sap.viz

Switching on the HCB theme

You can switch on the High Contrast Black theme by appending the sap-ui-theme=sap_belize_hcb URL
parameter as in the following example.

 Example
HCB Theme Enablement

http://<hostname>:<port>...?<parameter>=<value>&...&sap-ui-theme=sap_belize_hcb

Switching on the HCW theme

You can switch on the High Contrast White theme by appending the sap-ui-theme=sap_belize_hcw URL
parameter as in the following example.

 Example
HCW Theme Enablement

http://<hostname>:<port>...?<parameter>=<value>&...&sap-ui-theme=sap_belize_hcw

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1281

Drag and Drop

Drag and drop allows you to easily move, rearrange, and restructure items, for example, in a list or hierarchy
structure.

Overview

Drag and drop in SAPUI5 enhances the standard browser events. A drag session (DragSession) is created
that contains all information relevant for the drag-and-drop operation.

The central DragAndDrop handler manages the drag-and-drop scenarios of an application. The handler also
creates the drag session for the data transfer and supports the custom dragging ghost element. The handler
plugs into the pre- and post-event processing of the UI area to enhance native HTML5 drag-and-drop events.

Use

You can use drag and drop in various scenarios, for example, if you want to do the following:

● Rearrange items in a list
● Rearrange items in a hierarchy structure
● Rearrange items in a calendar, such as appointments in a planning calendar
● Move items from one control to another
● Move files from one application to another, for example, during a spreadsheet export or a file upload

Details

To drag an HTML element in HTML5, the draggable attribute must be set to true. This is done by
sap.ui.core.RenderManager while the element data is being written to the Document Object Model (DOM)
tree.

When the dragging of an HTML element has started, the DragAndDrop handler determines the responsible
control and its relevant DragInfo class using the related dragDropConfig aggregation of the control.
Between the pre- and post-processing of the dragStart event, owners of a control can decide whether to
allow the dragging in their ondragstart handler.

 Note
Calling the preventDefault method on the dragStart event stops the dragging.

After that, the dragStart event is fired by the related DragInfo class of the control. At this point, application
developers can change the default to prevent the dragging. Also, the drag session is now available and can be
used to transfer data or to provide the custom dragging ghost element. After everything has been defined, the
user can start dragging the control.

1282 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

During the dragging and after the dragEnter event has been fired on an HTML element, the DragAndDrop
handler determines the responsible control and its relevant DropInfo class using the related
dragDropConfig aggregation of the control. Between the pre- and post-processing of the dragEnter event,
the owner of a control can decide whether to allow the dropping in their ondragenter handler.

 Note
Marking the dragEnter event with the NonDroppable key (using the setMark method) prevents the
dropping.

After that, the dragEnter event is fired from the relevant DropInfo class of the control. At this point,
application developers can change the default to prevent the dropping. If dropping is not allowed, the user will
see a non-droppable cursor. If dropping is allowed, the user will see a droppable cursor and the drop indicator
depending on the dropPosition, dropLayout, and dropEffect properties of the first relevant DropInfo
class of the control.

If dragEnter is allowed, the user can now drop an object by releasing the mouse. After that, the drop event
gets fired for further implementation.

 Note
The DragAndDrop handler does not provide any default drop handler implementation. This is up to the
application developers.

Related Information

API Reference: sap.ui.core.dnd
Sample

Drag-and-Drop Configuration

To use drag and drop, you have to provide the required configuration using the dragDropConfig aggregation
in sap.ui.core.Element.

Overview

The dragDropConfig aggregation with multiplicity 0..n is enabled for all controls and elements in SAPUI5.
However, it has to be defined in the metadata first.

 Note
This configuration might be ignored due to metadata restrictions of sap.ui.core.Element.extend. For
more information, see the API Reference: sap.ui.core.Element.extend.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1283

https://sapui5.hana.ondemand.com/#/api/sap.ui.core.dnd
https://sapui5.hana.ondemand.com/#/sample/sap.m.sample.TableDnD/preview
https://sapui5.hana.ondemand.com/#/api/sap.ui.core.Element/methods/sap.ui.core.Element.extend

To enable configuration, the following configuration entities for the aggregation are available:

● DragInfo
This class can be used to enable dragging if the drop target is unknown, or if you are not the owner of the
target. Additional checks can be done during the dragStart event, and the default behavior can be
changed.

● DropInfo
This class can be used as a general drop target. Incoming data might have to be validated during the
dragEnter event. Applications have to implement the drop event.

Both DragInfo and DropInfo provide the groupName property. If this property has been specified, the
DropInfo object only interacts with the relevant DragInfo classes within the same group.

● DragDropInfo
This class can be used if the drag source and the drop target are closely connected, and both are known.
The most common use case is rearranging items.

Related Information

API Reference: dragDropConfig
Drag-and-Drop Metadata [page 1284]

Drag-and-Drop Metadata

To influence the drag-and-drop behavior, use the metadata definition of a control.

Overview

You can use the dnd key for the drag-and-drop behavior of a control. Here is an example that shows you how
the dnd key can be used:

Control.extend('my.CustomControl', { metadata : {
 properties : {
 value : { type : 'string' },
 width : { type : 'sap.ui.core.CSSSize', defaultValue : 'auto' }
 }, dnd : { draggable: false, droppable: true }, aggregations : { header : { type : "sap.ui.core.Control", multiple : false, dnd :
true }, items : { type: 'sap.ui.core.Control', multiple : true, selector :
"#{id}-items", dnd : { draggable: true, dropppable: true, layout: "Horizontal"
 } },
 }
 }

1284 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.core.Element/aggregations

You can use the following attributes in the metadata of a control for drag and drop:

● draggable: Defines whether the control or aggregation is draggable
Default value of draggable is false.

● droppable: Defines whether dropping is allowed for the control or within the control and/or from one of
its aggregations to another one
Default value of droppable is false.

● layout: Defines the arrangement of the items in the aggregation
Possible values are Vertical (for example, rows in a table) and Horizontal (for example, columns in a
table). Default value of layout is Vertical.

● selector: Defines the location of the aggregation in the control DOM
This setting is recommended for the aggregation with cardinality 0..n.

Related Information

API Reference: sap.ui.core.Element.extend

Drag-and-Drop Limitations

There are some known limitations when using drag and drop.

When you use drag and drop, the following limitations apply:

● Drag and drop is not supported on mobile devices.
● The transparency of the dragging ghost element and the cursor during drag-and-drop operations is not

configurable.
● Defining constraints for the drag position is not possible.
● Texts in draggable controls cannot be selected. The text of input fields in draggable controls can be

selected, but not dragged.
● Microsoft Internet Explorer 11 only supports the plain text MIME type for the DataTransfer object (DTO).

Also, defining a custom dragging ghost element is not possible.

Note that drag and drop is not accessible. Applications must provide an alternative for users with special needs
for drag-and-drop operations.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1285

https://sapui5.hana.ondemand.com/#/api/sap.ui.core.Element/methods/sap.ui.core.Element.extend

Spreadsheet Export

The spreadsheet export allows you to export data to an Office Open XML spreadsheet.

Overview

The spreadsheet export allows you to export your data to an Office Open XML document of category
Spreadsheet (xlsx). You can export any type of content that has a tabular format, such as tables or lists.

If you use the SmartTable control to export data, you can also use different types of exports, the client export
or the SAP Gateway export.

 Tip
The SmartTable control offers you all the preconfigured content you need for the export. You can either
simply use it without having to define any configuration yourself, or you can adapt the content to make it fit
your own specific requirements. For other entitities, you have to define the configuration manually as
described below.

Prerequisites

If you want to export data manually, without SmartTable, you have to perform the following steps:

1. Load the sap.ui.export.Spreadsheet library within your controller coding.
You can load the library during the initialization of your controller or whenever needed.

2. Define the configuration for the export for the following objects:
○ Columns
○ Data sources
○ Additional properties that are used for processing the export (optional)
○ Hierarchical data, if required

3. Start the export process.

Details

Loading During Initialization
If the library is loaded during the initialization of your controller, it is available across the whole lifecycle of the
controller. All you need to do is add the library as a dependency to your existing sap.ui.define call. This
mechanism ensures that the library is already loaded every time you use it. You don't need to take care of
synchronous or asynchronous loading but the library is loaded even if an export is never triggered.

sap.ui.define(["sap/ui/core/mvc/Controller",
 "sap/ui/export/Spreadsheet"

1286 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

], function(Controller, Spreadsheet) {
 "use strict";

 return Controller.extend("sample.Spreadsheet", {

 // Place your controller coding here

 }); });

Loading On Demand

If the library is loaded on demand, it will only be available when it is actually needed (for example, when a user
presses an export button). You have to request the library every time it is needed (although it will be loaded
from the backend only once). This can be done by using sap.ui.require with a callback function. This is
necessary to ensure that the library will be loaded asynchronously, but it requires more effort to implement the
export because all the export steps need to be enwrapped by the callback function.

sap.ui.define(["sap/ui/core/mvc/Controller"
], function(Controller) {
 "use strict";

 return Controller.extend("sample.Spreadsheet", {

 onExport: function() {
 // loadLibrary is only needed when the library is not added as a
dependent in bootstrap or any other dependency mechanism used in your project.
 var oExportLibLoadPromise =
sap.ui.getCore().loadLibrary("sap.ui.export", true);

 oExportLibLoadPromise.then(function() {
 sap.ui.require(["sap/ui/export/Spreadsheet"],
function(Spreadsheet) {

 // Place your export coding here

 });
 });
 }
 }); });

For more information, see the API Reference: sap.ui.require.

Supported Data Types

The following data types are supported:

● String
● Number
● Boolean
● Date
● DateTime
● Time
● Currency
● Enumeration
● BigNumber

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1287

https://sapui5.hana.ondemand.com/#/api/sap.ui/properties

 Note
Currency values and numbers that cannot be represented in the standard format as defined by the
IEEE (Institute of Electrical and Electronics Engineers) in the spreadsheet file because they are too large
automatically use the BigNumber data type as a fallback option. The number is then stored as string
and represented using the international format with a comma as a thousands separator and a period
for the decimal point.

For more information, see Data Types for Spreadsheet Export [page 1301].

Additional Settings on Export User Interface

In addition to the regular Export dialog, the user can use the Export As dialog in the SmartTable control,
which can be selected from a dropdown list next to the Export to Spreadsheet button, to define additional
settings for the export.

The user can define the following for the exported file:

● File name
● File format

The file format has been predefined.
● Whether to show cells with more than one value in separate columns

This option is used for columns based on text arrangements, currencies, and units of measure. For
example, if both the name and the ID of a customer are displayed in one column, the exported file will show
the customer data in two separate columns. This might result in duplicate columns if the file already
contains columns with the same header name.

● Whether to show any available filter settings
If this option is selected, the exported file has an additional Filter sheet showing the filters that were set on
the columns as well as in the FilterBar control. The filters shown in the exported file currently contain
the technical property that has been extracted from the binding.

The beforeExport event also provides the additional export settings defined by the user
(userExportSettings parameter). This parameter is always available and contains the settings currently
valid for the export, so the application developers can decide which settings to use.

 Note
The dialog with additional export settings is available for the client export of SmartTable only. For the SAP
Gateway export, only the regular dialog is available with no additional options for export settings.

Related Information

API Reference: sap.ui.export.Spreadsheet
Samples
API Reference: sap.ui.export.EdmType
SAP Gateway Export versus Client Export [page 1309]

1288 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.export.Spreadsheet
https://sapui5.hana.ondemand.com/#/entity/sap.ui.export.Spreadsheet
https://sapui5.hana.ondemand.com/#/api/sap.ui.export.EdmType

Spreadsheet Export Configuration

To perform a spreadsheet export for any content other than SmartTable, you have to set up the configuration
for the columns and data sources, and you can configure some other additional properties.

Overview

If you export data from the SmartTable control, the configuration is already available. You can use it without
making any modifications. You can also adapt the configuration to make it suitable for your own requirements.
The existing export configuration is attached as an event parameter to the beforeExport event provided by
SmartTable. The event is fired once the SmartTable control has finished creating the export configuration.
To adapt the export configuration, you have to modify the event parameter by registering an event handler and
then adjusting the provided configuration.

If you want to use the export for any content other than the SmartTable control, you have to define your own
export configuration.

The export configuration is a JSON object that contains three major parts that are required to process the data
export. While the column configuration and the data source information are mandatory, additional properties
that are used for the processing are optional. The export configuration needs to be valid, otherwise the export
process will be cancelled.

Details

Column Configuration
The column configuration is an array of JSON objects that is assigned to the column property of the export
configuration.

var exportConfiguration = { workbook: {
 columns: [
 {
 // Place your column definition here
 }
]
 } }

First you need to identify all the columns you want to export, since there has to be a column definition object
for every column that is exported. Regardless of the data source (OData or JSON array), each row represents
an instance of an entity with several properties, and each row is mapped to one of these properties. It is also
possible to map multiple properties to a single column.

A column definition object is a JSON object that contains at least one property property that maps the
column to the property of the entity. Its value must be of type string or an array of strings and must not be
empty; otherwise the column definition is invalid. The string value must contain the name of a property of the
entity. If there is no property with the given name, the column in the exported Office Open XML spreadsheet will
be empty.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1289

Property Types

Apart from the property property, a column definition can have additional properties. The following
properties are used:

● Type-independent
● Type-dependent

The following table shows the different kind of properties.

Table 42: Properties

Type-Independent Properties Type-Dependent Properties

property (string) scale (number)

label (string) delimiter (boolean)

type (string) unit (string)

width (number) unitProperty (string)

textAlign (string) displayUnit (boolean)

trueValue (string)

falseValue (string)

template (string)

inputFormat (string)

valueMap (object|Map)

wrap (boolean)

In this section, you can find out more about type-independent properties.

The label property is optional, and its value must be of type string. Its value will be used as column header
for the column. If no label property has been provided, the value of the property property will be used
instead.

The optional type property defines the data type for this column and needs to match one of the values of the
sap.ui.export.EdmType enumeration. If the type property has not been defined or the enumeration does
not contain its value, the default type (sap.ui.export.EdmType.String) is used. For more information, see
the API Reference: EdmType.

The optional width property defines the column width based on the number of characters that can be visible.
The Office Open XML spreadsheet standard uses a width calculation that is not equivalent to the CSS sizes.
Therefore, the calculation is handled by the library. If no width property has been provided, or if its value is
greater than 1, the default width is used. The default width is 10 characters. If the column header text has a
length that is greater than the actual width, it will override the width with the length of the column header text.

The optional textAlign property defines the horizontal text alignment. Its value must be of type string and
either be left, right, or center. Other CSS alignments like begin or end are not supported. If no

1290 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.export.EdmType

textAlign property has been provided or its value is empty or not supported, the default alignment is used.
The default alignment is defined by the type of the column. This is done by the application using the scenario
and the generated Office Open XML spreadsheet, for example, Microsoft Excel.

 Note
If you set the alignment for a particular column, the cell content is not always aligned as originally defined
for every data type. The application that displays the spreadsheet can ignore the alignment depending on
the column's data type or even the content of the cell, for example, in right-to-left scenarios.

The following code shows you an example of a column definition:

var exportConfiguration = { workbook: {
 columns: [
 {
 property: "Firstname",
 width: 15
 },
 {
 property: "Lastname",
 width: 15
 },
 {
 property: "User",
 label: "Username",
 width: 20
 },
 {
 property: "Attempts",
 label: "Login Attempts",
 type: sap.ui.export.EdmType.Number
 },
 {
 property: "LastLogin",
 label: "Last Successful Login",
 type: sap.ui.export.EdmType.DateTime
 width: 20,
 textAlign: "center"
 }
]
 }
}

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1291

Data Source Configuration
Apart from the column configuration, data source configuration is the most important configuration for the
export process. Data source configuration is mandatory. It can either be a JSON array containing all data or a
JSON object with the following properties:

Table 43: Data Source Configuration Properties

Property Type Optional Description

type string Defines the type of the data
service that provides the
data. If it is an OData service,
the value OData must be as
signed.

dataUrl string Request URL that is needed
to request the data with all
the filters and its order. The
URL can either be relative or
absolute. If the URL is rela
tive, the current origin will be
used as a host.

serviceUrl string URL of the data service that
serves the entity which is re
quested by the dataUrl". It
is usually a substring of
dataUrl. The URL can ei
ther be relative or absolute. If
dataUrl is relative,
serviceUrl must not be
absolute.

 Note
This property is required
if OData batch requests
are enabled.

1292 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Property Type Optional Description

count number Indicator of the line items
available through the service.
During the export process
there is neither a dedicated
$count request nor is the
inlineCount request
property used. If count is
provided, it splits the re
quests so that not all data is
requested at once, and the
progress indicator can show
reliable information.

 Note
If the OData service is an
analytical service, the ra
tio of processing time
and number of queried
items is not linear. For
example, 200 items take
up about two seconds,
1,000 items about 2.2
seconds. Therefore, it
might be necessary to
configure the requested
size using the
sizeLimit property.

useBatch boolean If set to true, the export li
brary will use OData batch
requests. Once batch re
quests are enabled, you'll
have to provide the
serviceUrl and
headers properties. If
batch requests are not sup
ported by your OData serv
ice, you can disable this func
tionality by setting this prop
erty to false.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1293

Property Type Optional Description

headers object Provides additional request
headers within an OData
batch request. Every prop
erty you add to the
headers object will be put
into the HTTP header section
of the respective GET re
quest within the batch re
quest.

 Note
This property is required
if OData batch requests
are enabled.

sizeLimit number Defines the number of re
cords that are requested
from the service with a single
request. This is important to
make fine adjustments.

The following code shows you an example of data source configuration:

/* JSON array as dataSource */ var exportConfiguration = {
 dataSource: [
 // Several line items that contain actual data
]
}
/* OData service as dataSource */
exportConfiguration = {
 dataSource: {
 type: "OData",
 dataUrl: "/sap/opu/odata/sap/MM_PUR_PODWNPAYT_MNTR_SRV/
C_PurOrdDownPaymentMntr(P_DisplayCurrency=%27EUR%27)/Results?sap-client=715&
$format=json&
$select=PurchaseOrder,PurchaseOrderItem,DisplayCurrency,DownPaymentsRequest,NetAm
ount,PurchasingDocumentStatus&$filter=(Supplier%20eq%20%2710300001%27)&
$orderby=PurchasingDocumentStatus%20asc",
 serviceUrl: "/sap/opu/odata/sap/MM_PUR_PODWNPAYT_MNTR_SRV",
 count: 17491,
 useBatch: true,
 headers: {
 /* Some sample headers DO NOT copy them */
 Accept: "application/json",
 Accept-Language: "en",
 sap-cancel-on-close: "true",
 DataServiceVersion: "2.0",
 x-csrf-token: "XvR_WdN7nCw83ngZnH9lZQ=="
 },
 sizeLimit: 500
 } }

1294 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Context Information
Apart from the mandatory configuration, you can add context information to the generated Office Open XML
spreadsheet. This part of the configuration is optional. It is provided within a JSON object that is assigned to
the context property within the workbook object of the export configuration. Built-in properties are not visible
on a data sheet and stored as document properties in the generated file while custom metadata is visible on a
data sheet in the workbook.

 Note
Apart from the actual data that is exported, sometimes additional information is required in the
spreadsheet. For example, this meta information could be the URL of the system from which the data is
exported, the system ID, a timestamp of the export date, or the name of the user who exported this data.

The sap.ui.export.Spreadsheet library always exports the actual data to the main sheet of the Office
Open XML spreadsheet but it can also add an additional sheet for meta information. The consuming
applications can then assign their own specific names to both sheets.

The following code shows you an example of context configuration:

var exportConfiguration = { workbook: {
 context: {
 // Place your context information here
 }
 } }

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1295

You can use the following properties:

Table 44: Context Information Properties

Property (optional) Description Built-in Context Information
Custom Metadata Context
Information

application (string) Adds information about the
business application that cre
ated a particular file.

We recommend to use this
property because there are
often several similar apps
that work on the same data
entity but with a different
scope or view. This makes it
easier to identify where the
data comes from if the ex
ported file is shared, for ex
ample, among employees
and managers.

version (string) Identifies the application ver
sion through which a particu
lar Office Open XML spread
sheet was created. This can
be helpful for debugging be
cause you can identify the
version that caused the is
sues and compare it to previ
ous builds. The more detailed
your version information is,
the easier it will be to identify
your application changes
within your source code
management system.

title (string) Adds a self-explanatory title
to the document generated.
This can be useful if the ex
ported entity is not the main
entity of the application in
question, for example, com
pany codes within a purchase
order application.

1296 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Property (optional) Description Built-in Context Information
Custom Metadata Context
Information

modifiedBy (string) Adds information about the
user who created this docu
ment.

If you do not use this prop
erty, the
sap.ui.export.Sprea
dsheet library automati
cally adds SAPUI5 Document
Export as the author of the
document to the generated
file and generates the crea
tion timestamp.

sheetName (string) Changes the name of the
sheet that contains the ex
ported data. If this property
is not used, the default value
SAP Document Export
is used.

metaSheetName
(string)

Changes the name of the
sheet that contains the met
adata. In contrast to
sheetName, it only affects
the name of the additional
sheet that contains the met
adata. If no metadata has
been provided, the additional
sheet will not be created, and
this property will not take ef
fect.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1297

Property (optional) Description Built-in Context Information
Custom Metadata Context
Information

metaInfo (array) An array of JSON objects
that follow an exact specifi-
cation, the so-called meta in
formation groups. Each meta
information group has an ex
plicit name property which
accepts a string that is not
empty. Apart from the group
name, it contains an array
that is assigned to the
items property of the
group. This array can contain
several JSON objects that
provide the key and value
properties (type string).

 Note
Properties other than the ones listed are ignored during configuration.

The following code shows you an example of context configuration with some of the properties mentioned:

var exportConfiguration = { workbook: {
 context: {
 application: "Supplier Invoices List",
 version: "6.1.0-SNAPSHOT",
 title: "Supplier Invoices",
 modifiedBy: "Doe, John",
 sheetName: "Invoices"
 }
 } }

The following code shows you an example of context configuration with the metaInfo property:

var exportConfiguration = { workbook: {
 context: {
 metaInfo: [
 {
 name: "Application settings",
 items: [
 {
 key: "Name",
 value: "Purchase Orders"
 },
 {
 key: "Version",
 value: "1.23.8742-p"
 }
]
 }
]

1298 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 }
 } }

 Note
The reasoning behind this design is that different layers (SAPUI5 framework, SAP Fiori elements, smart
controls, and applications) can add metadata without depending on each other. As long as there is at least
one valid meta information group within the metaInfo array, the additional sheet will be shown in the
generated file.

Configuration of Additional Properties

The sap.ui.export.Spreadsheet library offers some other additional properties that you can configure.
This part of the configuration is also optional.

The following properties are available for configuration:

● count (type number)
The value of this property must be positive. It restricts the amount of exported data, which avoids browser
crashes during the transfer of very large amounts of data.

● worker (type boolean)
The export process runs in a dedicated web worker by default. The worker property allows you to disable
this functionality. A web worker runs in a separate thread and does not affect the performance of the
browser window's main thread.
Although it has some advantages to use a web worker, it can also cause some problems. Especially if
SAPUI5 is loaded from a Content Delivery Network (CDN) and is not served by the original host, it depends
on the Content Security Policy (CSP) of the server if the export can be processed in a web worker. To
resolve problems related to this scenario, you should either add a worker-src directive to your CSP or
disable the web worker functionality. If the web worker functionality is disabled, the export process will run
in the main thread of the browser window. Currently, the worker-src directive is not fully supported by all
browsers. If you can't set the worker-src directive, you can also adjust the fallback directive script-
src.

 Note
The script-src directive will also affect all other scripts that are loaded on your page.

● fileName (type string)
Defines a particular name for the generated export file. The file extension is added to the given file name
and is always xlsx. To take effect, the property must not be empty.

● showProgress (type boolean)
The export process shows a progress dialog by default.To prevent this from happening, you can set the
showProgress property to false.

Hierarchical Data

The sap.ui.export.Spreadsheet library can also handle hierarchical structures.

To get exported, each object of the relevant entity must have the following:

● A distinct property containing its absolute numerical hierarchy level
● An order in which parent nodes are followed by their direct child nodes

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1299

To enable a hierarchical representation, you have to simply assign the name of the property containing the
hierarchy level to the hierarchyLevel property of the workbook object in the export configuration.

The following code shows you an example of hierarchy data:

var exportConfiguration = { workbook: {
 hierarchyLevel: "level"
 } }

 Note
Relational hierarchy data is not supported.

Starting the Export Process

After you have created a valid configuration, you will have to create a newsap.ui.export.Spreadsheet
instance and initialize it with the previously created configuration. After the instance has been initialized, you
can start the export process by calling the build method. Everything else will be handled by the export library.
The result will be an Office Open XML spreadsheet which is automatically downloaded. The export library does
not offer you any events to which you can register. If you need to perform additional steps after the export has
been completed, you can use the Promise that is returned by the build method.

The following code sample shows the start of an export:

sap.ui.define(["sap/ui/core/mvc/Controller",
 "sap/ui/export/Spreadsheet"
], function(Controller, Spreadsheet) {
 "use strict";

 return Controller.extend("sample.Spreadsheet", {

 onExport: function() {
 var oExportConfiguration, oExportPromise, oSpreadsheet;

 /* Creates the configuration and initializes the spreadsheet export
*/
 oExportConfiguration = this.createExportConfiguration();
 oSpreadsheet= new Spreadsheet(oExportConfiguration);

 /* Starts the export and returns a Promise */
 oExportPromise = oSpreadsheet.build();

 oExportPromise.then(function() {
 // Here you can perform additional steps after the export has
finished
 });
 },

 createExportConfiguration: function() {
 var oConfiguration;

 // Create a valid export configuration

 return oConfiguration;
 }
 }); });

1300 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Data Types for Spreadsheet Export

Provides details about the data types supported by the spreadsheet export.

All data types supported by the spreadsheet export are listed in the sap.ui.export.EdmType enumeration.
During the export, the values are converted to a value that is in compliance with the Office Open XML
requirements.

String

The type string handles textual values within cells. Strings are usually not formatted. The internal type text is
the default type that gets applied if no other type is configured for a column.

It is possible to aggregate several property values into one column, for example, firstname and lastname are
combined to fullname. This can be achieved by providing an array of property names within the property
property of the column definition. In addition to that, the template property must be made available. This
additional property has to be a non-empty string and can contain placeholders. A placeholder is a numerical
index enclosed by curly brackets. The index must be greater than or equal zero and less than the length of the
array that is assigned to the property property.

Table 45: Details for string

Additional Property Type Sample Optional Description

template string "{0} (Company
code {1})"

Yes A textual template that
can be filled with multi
ple values from various
business objects. Each
placeholder is a num
ber within curly brack
ets that represents an
index of a property ar
ray.

wrap boolean Yes A Boolean value that
indicates if the text col
umn supports wrap
ping of the cell con
tent. Apart from auto
matic text wrapping
depending on the cell
width, it automatically
converts all \n to \r\n
line breaks. These
manual line breaks are
then visible in the gen
erated xlsx file.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1301

Here is an example for a string column:

var exportConfiguration = { workbook: {
 columns: [
 {
 property: ["Firstname", "Lastname"],
 label: "Full name",
 width: 25,
 template: "{1}, {0}"
 }
]
 }
}

 // This will result in "Doe, John" if the line item is {Firstname: "John",
Lastname: "Doe"}

Boolean

The type boolean handles all variations of Boolean values. It allows for displaying these Boolean values in a
pre-defined format. There are additional properties that are handled by this type to format their respective
values. Since a boolean type can be either true or false, the additional properties must be maintained for
both cases for the type to take effect.

Table 46: Details for boolean

Additional Property Type Description

trueValue string Defines the textual representation of a
Boolean type that has the value true.

falseValue string Defines the textual representation of a
Boolean type that has the value false.

Here is an example for a boolean column:

var exportConfiguration = { workbook: {
 columns: [
 {
 property: "Onstock",
 label: "Availability",
 type: sap.ui.export.EdmType.Boolean,
 trueValue: "On stock",
 falseValue: "Out of stock"
 }
]
 } }

1302 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Number

The type number represents a simple numeric value without any specific formatting. The value is displayed the
way it is. For further adjustment use the additional properties scale, delimiter, unit, and unitProperty.

Table 47: Details for number

Additional Property Output Sample Type Optional Description

scale 1,234

1,234,567

boolean Yes Specifies if the nu
meric value is shown in
groups of thousands. If
set to true, the thou
sands delimiter is
shown. Default value is
false.

delimiter 1234

1234.5

1234.56

1234.567

number Yes Sets a fixed amount of
decimals. The scale is
applied to the whole
column and displays
exactly the number of
decimals that is config-
ured. If the actual value
has fewer or more dec
imal places, it is filled
with additional zeros or
gets cut off to match
the configured amount
of decimals. This prop
erty accepts a positive
integer value. Negative
values are treated like
zero.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1303

Additional Property Output Sample Type Optional Description

unit 623 kg

89 %

120 km/h

string Yes Specifies the unit of
measurement (UoM).
The UoM is shown next
to the numeric value.

 Note
The UoM is treated
as a string and
therefore has no
influence on the
value itself. For %,
mio, or similar
UoMs this can
make a difference
if the values are
used in forms be
cause multiplying
by 150 % would
mean x * 150 in
stead of x * 1.5.

unitProperty 623 kg

89 %

120 km/h

string Yes References a business
object property that
contains the UoM for
this particular numeric
type.

Here is an example for a number column:

var exportConfiguration = { workbook: {
 columns: [
 {
 property: "Weight",
 label: "Net weight (kg)",
 type: sap.ui.export.EdmType.Number,
 unit: "kg",
 scale: 3
 },
 {
 property: "Weight",
 label: "Net weight (g)",
 type: sap.ui.export.EdmType.Number,
 unit: "g",
 scale: 0,
 delimiter: true
 }
]
 } }

1304 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Date, Time, and DateTime

The types date, dateTime, and time handle the date and time information. The application can pass
additional parameters to adjust the visible representation of these types.

Table 48: Details for date, time, and DateTime

Type Output Sample Description

date 03/24/2017

24.03.2017

Represents a date without time-related
information. Due to the use of built-in
formats, date is displayed based on
the user's locale in the operating sys
tem. This can lead to different represen
tations for different users.

dateTime 08/31/2016 23:01

31.08.2016 23:01

Represents values that contain date-
and time-related information. Due to
the use of built-in formats, dateTime
is displayed based on the user's locale
in the operating system. This can lead
to different representations for different
users.

The locale has no effect on any time
zone formatting. All values in columns
of type dateTime are related to UTC
because it is not possible to pass time
zone offset information into the Office
Open XML standard representation of
time stamps. For columns of type
dateTime, a UTC suffix is automati
cally added to the column header.

time 13:21:14 Represents values that contain time-re
lated information only. Time informa
tion can use the following units: hours,
minutes, seconds, and milliseconds.
Contrary to date and dateTime, the
built-in formats for time are the same
for every locale in the operating system.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1305

Additional Property Description

calendar Allows users to choose a calendar other than the Gregorian
calendar. The following values are possible:

● islamic
● japanese
● gregorian (default)

Choosing a calendar other than the Gregorian calendar over
rides all type settings, such as the type or format template,
for various reasons. Islamic and Japanese representation
only takes effect if the displayed date/dateTime shows
some date-related information. Therefore, it does not make
sense to use it for the type time. Due to the fact that these
special representations rely on specific formats, it is not pos
sible to merge them with built-in formats for date,
dateTime, time, or even a custom format.

format Defines a specific format that gets applied to date/
dateTime/time. The format overrides the default format
ting of the respective type which means that you can assign
a format that shows only time-related information even to a
column of type date, which usually shows no time-related
information.

The format template needs to match the following regular
expression to be valid:

/^[dhmsy\s-,.:/]+(AM\/PM)?$/

The list below shows some sample formats and their output:

Format Template Output Sample

yyyy-mm-dd h:mm 2007-12-24 18:21

h:mm:ss AM/PM 9:32:24 AM

d-mmm-yy 12-Apr-17

dddd, d.mmmm yyyy Wednesday, 22. April 2017

 Note
Office Open Spreadsheet dates can't handle time zone
offset information.

Here is an example for a date/dateTime/time column:

var exportConfiguration = { workbook: {

1306 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 columns: [
 {
 property: "Duedate",
 label: "Due date (islamic)",
 type: sap.ui.export.EdmType.Date,
 calendar: "islamic"
 },
 {
 property: "Createdat",
 label: "Created at",
 type: sap.ui.export.EdmType.DateTime,
 format: "dddd, d.mmmm yyyy"
 },
 {
 property: "Dailymeeting",
 label: "Daily meeting",
 type: sap.ui.export.EdmType.Time
 }
]
 } }

Currency

The type currency handles currencies as an aggregation of a value and a particular UoM. This type might
apply various styles on cell level because the scale of each currency cell depends on the corresponding UoM
which in turn might vary for various cells in a currency column. The currency type inherits from the number
type but provides additional properties, including the unitProperty property as a mandatory property.

Table 49: Details for currency

Additional Property Type Mandatory Description

unitProperty string Yes References the business ob
ject property that contains
the UoM for this particular
currency. This property is re
quired even if the UoM is not
displayed.

displayUnit boolean No Defines if the UoM is shown
in the column. If set to true,
the UoM is displayed after
the actual value. The default
value is true.

scale integer No Property that is equivalent to
the scale property of the
internal numeric type. It ap
plies a fixed number of deci
mals to all cells within the
currency column regardless
of the corresponding UoM.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1307

Here is an example for a currency column:

var exportConfiguration = { workbook: {
 columns: [
 {
 property: "Amount",
 label: "Price",
 unitProperty: "Currency"
 }
]
 } }

Enumeration

The type enumeration is used for mapping values to a particular key. This is useful if your SAPUI5 application
is using formatters instead of raw data to display meaningful content because formatters are not supported
directly.

Table 50: Details for enumeration

Additional Property Type Mandatory Description

valueMap object|map Yes Contains object as an as
sociative array or map, which
holds all the key value pairs
that are used for mapping
the raw data to an explicit
value. The raw data is used
as a key to look up the actual
value.

Here is an example for an enumeration column:

var exportConfiguration = { workbook: {
 columns: [
 {
 property: "Shipping",
 valueMap: {
 a: "Standard Shipping",
 b: "Premium Shipping",
 c: "Express Shipping"
 }
 }
]
 } }

1308 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

BigNumber

The type BigNumber is used to represent numbers that contain more than 15 digits. This data type is required
because of the internal number representation of Microsoft Excel as defined by the IEEE (Institute of Electrical
and Electronics Engineers). This means that all numbers that contain more than 15 digits are filled with zeros at
the end. This affects precision of the values although the difference is really small compared to the total
amount. The BigNumber type inherits from the Currency type and uses the same properties as currency
and its superordinate class Number. This type creates a textual output which is why it is not possible to do any
calculation with these values.

Related Information

API Reference: sap.ui.export.EdmType

SAP Gateway Export versus Client Export

To decide which type of export to use, have a look at the following criteria.

The SmartTable control offers the following types of exports:

● Client-side export
This type of export is the default type.

● SAP Gateway export of the SAP Gateway Foundation
For more information about this export, search for Excel Support in the documentation of your SAP
NetWeaver version on the SAP Help Portal at https://help.sap.com/viewer/p/SAP_NETWEAVER.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1309

https://sapui5.hana.ondemand.com/#/api/sap.ui.export.EdmType
https://help.sap.com/viewer/p/SAP_NETWEAVER

Comparison of Export Types

To find out which export suits your requirements best, check out the following table:

Table 51: SAP Gateway versus Client Export

Feature Description SAP Gateway Client

Cell limitation The number of cells that can
be exported without warn
ings or errors.

Shows a warning if there are
more than 100,000 cells or
up to 500,000 cells, depend
ing on the configuration of
the session time and ABAP
memory.

Shows a warning depending
on device used, for
2,000,000 cells on a desktop
and 100,000 cells on a mo
bile device.

The total number of cells is
limited only by the physical
memory of the client and
memory restrictions of the
browser.

Google Chrome and Mozilla
Firefox have memory alloca
tion limitations while Micro
soft Edge can consume as
much memory as the system
provides. More memory does
not automatically mean that
you can export more cells.

Some computers should
even be able to export a
higher number of cells, which
also depends on how much
content the cells contain.

File compression Office Open XML spread
sheets are ZIP containers
that contain a particular file
structure. To reduce the file
size, these ZIP containers
can be compressed.

Header row The exported spreadsheet
contains a header row with
the corresponding column la
bels.

Also, the exported spread
sheet uses the built-in auto
filter for all configured col
umns. This will allow the user
to apply filters directly in the
exported file without having
to change the file.

1310 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Feature Description SAP Gateway Client

Localization The location of the user ex
porting a file is taken into ac
count, and the content of the
exported spreadsheet will
contain translated column
headers and the required
date, time, and Boolean rep
resentation.

Column headers in the ex
ported file can be shown in
the user's language as de
fined in the back-end system
and might differ from what
the user sees on the UI.

The column headers in the
exported file are the same as
the ones shown on the UI.

Meta information Metadata with additional in
formation is shown in the ex
ported spreadsheet. Provides an appendix to add

information to the data
sheet.

Provides an optional sheet in
the workbook to attach addi
tional information to the ex
ported spreadsheet. This
meta information is grouped
and thus allows you to add
information in different layers
without any conflicts. A typi
cal use case would be that,
for example, SmartTable
adds some basic informa
tion, and an application de
veloper could enhance this
by adding something on top
of it.

In addition to that, the client
export allows you to add ad
ditional information that is
not part of the sheets inside
the workbook. This data is
built-in information and can
be processed by applications
like Microsoft Excel.

Hierarchies The exported file can contain
hierarchies that are visual
ized when opening the file
with Microsoft Excel.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1311

Feature Description SAP Gateway Client

Data types Office Open XML spread
sheets support various types
of data that have a different
visual and functional behav
ior. The type representation
differs from the raw data and
needs to be transformed ac
cordingly.

The types text, number,
date, time, and boolean
are supported.

The types text, number,
currency, date, time,
and Boolean are sup
ported. In addition to the
mere support for these data
types, it is possible to pass
additional configuration to
create formatted text aggre
gations, a particular date and
time output format, textual
Boolean representation (for
example, in stock/out of
stock instead of true/
false), and units of meas
urement.

Read Access Logging (RAL)
support

If configured, Read Access
Logging tracks who has ac
cess to which data at which
point in time.This information
might be required for audits.

RAL is not supported be
cause the SAP Gateway ex
port is carried out by a server
process that does not run in
a specific user context.

RAL is fully supported be
cause the client export uses
the existing OData service to
request data.

 = Supported, = Partially supported, = Not supported

Related Information

API Reference: sap.ui.comp.smarttable.ExportType
API Reference: SmartTable

Spreadsheet Export Limitations

There are some known issues and limitations when using the spreadsheet export.

When you use the spreadsheet export, there are the following known issues:

Known Issues

In Safari on iOS , the file name and file extension get lost due to a download attribute that is not supported. This issue is
caused by the iOS Safari browser in every version before iOS 13.

1312 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.comp.smarttable.ExportType
https://sapui5.hana.ondemand.com/#/api/sap.ui.comp.smarttable.SmartTable/controlProperties

Known Issues

While timestamps in SAPUI5 tables are usually shown in the time of the user's time zone, exported timestamps are always
shown in UTC. This has no effect on the types date and time because they show a date without any time information and
vice versa (independent of a specific time zone).

For columns of type dateTime, a suffix is added to the column header to indicate that the time is shown in UTC. If there
are columns of type date and time that are related to each other, you might want to combine these into a column of type
dateTime or add a UTC indication manually.

Column width is converted into an Office Open XML equivalent and may differ slightly from the original table. The column
width is at least the same as the width of the column label.

If you use the client export within the SmartTable control, you have to provide additional p13n custom data for the cus
tom columns.

Custom columns are created by the application or SAP Fiori elements and not by the SmartTable control, so the
SmartTable control does not recognize this data type.

When you use the spreadsheet export, the following limitations apply:

Limitations

The maximum number of rows that can be exported is restricted to 1,048,576.

The number of cells that can be exported has a limit of 2,000,000 on desktop and 100,000 on mobile devices.

The hierarchical depth that can be visually represented is limited to eight levels.

The following features are not supported:

Features Not Supported

Charts

Icons

Semantic cell highlighting

Custom formatters

Dates before January 1st, 1900

Aggregated rows (group headers or sum rows)

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1313

Troubleshooting

This section describes the various tools that are available for troubleshooting apps developed with SAPUI5

The first place to check for errors is the developer tools that are provided by the various browsers. They can
help you examine the details of the current web page and provide you with debugging tools. For more
information on how to debug SAPUI5 apps, see Debugging [page 1315] and Logging and Tracing [page 1319].

SAPUI5 also provides you with support tools that help you troubleshoot and solve issues.

Table 52: Support Tools Available in SAPUI5

Tool Use Case Examples How to Open

Technical Information Dialog
[page 1322]

Use the Technical Information dialog to enable
debug sources and to check which SAPUI5 ver
sion is currently running.

CTRL + SHIFT + ALT + P

Gesture on mobile device:

1. Press two fingers on a noninterac
tive screen area (for example, a
blank area) for at least 3 seconds.

2. Tap with a third finger while holding
the other two fingers on the screen.

Support Assistant [page 1339] Use the Support Assistant to check whether the
application is built according to the best practi
ces for building SAPUI5 apps.

From the Technical Information dialog or
with the URL parameter sap-ui-
support=true

Diagnostics [page 1326] Use the Diagnostics window to enable debug
sources, display the control tree, and to view
and change control properties and bindings.

CTRL + SHIFT + ALT + S

UI5 Inspector [page 1374] Use the UI5 inspector to display the control
tree, and to view and change control properties
and bindings on-the-fly.

Available as add-on for Google Chrome
browser only

Table 53: Performance Measurement Tools

Tool Use Case Examples

Performance Measurement Using sap/ui/performance/
Measurement Module [page 1377]

Measures the performance of your JavaScript code.

Interaction Tracking for Performance Measurement [page
1382]

Identifies performance issues in your application by tracking
the interaction that is performed on the UI

For help with specific problems see our First-Aid Kit [page 1386].

1314 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Get Help

If you're stuck and need help with a development task, you can also post a question in the SAPUI5-related
forums, for example in the SAP Community or on Stack Overflow.

Related Information

Troubleshooting Tutorial [page 194]

Debugging

When developing apps, searching for bugs is an inevitable part of the process. To analyze an issue, you can use
the developer tools of your browser and built-in SAPUI5 tools. In this section, we give an overview of the
SAPUI5 tools you can use when debugging. To learn more about the developer tools of your browser, check the
documentation of the browser.

 Note
For information on browser debugging for ABAP developers, see Browser Debugging for ABAP Developers
[page 1531].

Loading Debug Sources

For performance reasons, the SAPUI5 files are loaded in a minified version, this means that all possible variable
names are shortened and comments are removed. This makes debugging harder because the code is less
readable.

For debugging, you first have to load the Debug Sources. You have the following options:

● URL parameter sap-ui-debug=true
● Select the Use Debug Sources in the Technical Information Dialog

For more information, see Technical Information Dialog [page 1322].

If you only want to load the debug sources for specific packages, you have the following options:

● Add the module names to the sap-ui-debug URL parameter, separated by a comma. For example, sap-
ui-debug=sap/ui/core/Core.js,sap/m/InputType.js loads the debug sources for the
sap.ui.core.Core and sap.m.InputType libraries.

● Choose the Select specific modules link in the Technical Information Dialog.
For more information, see Technical Information Dialog [page 1322].

After reloading the page, in the Network tab of the browser’s developer tools you can see that the controls and
framework assets are now loaded individually and have a -dbg suffix. These are the source code files that
include comments, the uncompressed code of the app, and the SAPUI5 artifacts.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1315

https://www.sap.com/community/topic/ui5.html
https://stackoverflow.com/search?q=sapui5

Choose Ctrl + O (Windows) or Command + O (macOS) and type the name of an SAPUI5 artifact to view its
source code in debug mode.

 Note
Turning on debug sources also increases the log level. For more information, see Logging and Tracing [page
1319].

To improve performance, you must deactivate the debug sources once you're done with debugging.

Switching the SAPUI5 Version

Open the Diagnostics window with the shortcut CTRL + SHIFT + ALT + S .

At the top of the Debugging view, you can configure a custom URL from which the application should load
SAPUI5 the next time that the app opens.

Either select a known SAPUI5 installation from the dropdown box, or enter a different URL that points to the
sap-ui-core.js file within a complete SAPUI5 runtime.

Once you have entered the URL, press Activate Reboot URL. When you then reload the application page, the
application loads SAPUI5 from the alternative URL. This only happens for the next single reboot; after that,
SAPUI5 is loaded again from the standard URL referenced within the app.

This feature can be used to test an application against a newer or older version of SAPUI5 as part of
compatibility testing, or for verifying a bug fix or regression.

1316 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Setting Breakpoints

Breakpoints are helpful when you debug the event handling of an SAPUI5 object. You can either set breakpoints
in the developer tools of your browser, or use the Diagnostics window.

For more information, see Diagnostics [page 1326].

Breakpoints on the Class Level

In the Debugging section of the Diagnostics window, you can set breakpoints on the class level.

1. Open the Debugging view of the Diagnostics window.
2. Select a class from the dropdown list or enter the name of the class and choose Add Class.

The selected class is now visible below the dropdown list.
The number next to the method name shows the number of methods that belong to the class and the
number of methods for which a breakpoint is set.

3. Select the class. On the right side of the view, you can now select methods of the selected class from a
dropdown list.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1317

4. From the dropdown list, select the method for which you want to set the breakpoint and choose Add
breakpoint.
The selected methods are listed below the dropdown list.

5. Open the developer tools of your browser. Whenever the selected methods are called for any instance of
the selected control, the code execution is paused in the debugger.

In the call stack you find the method for which you set a breakpoint.

6. To remove a breakpoint, select the red x.

1318 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Breakpoints on the Object Level

In the Control Tree of the Diagnostics window, you can set breakpoints on the object level.

1. Open the Control Tree view of the Diagnostics window.
2. Select a control in the tree.

You can also press and hold Ctrl + Shift + Alt and select a control in your app to select it in the tree.
3. Select the Breakpoints tab on the right.
4. From the dropdown list, select the method for which you want to set the breakpoint and choose Add

breakpoint.
The selected methods are listed below the dropdown list.

5. Open the developer tools of your browser. Whenever the selected methods are called for any instance on
the control, the code execution is paused in the debugger.

6. To remove a breakpoint, select the red x.

Logging and Tracing

Use the built-in SAPUI5 logging mechanisms to debug and analyze applications or framework errors.

You can view the log in the console in the developer tools of your browser. A log entry contains a timestamp, a
log level, a message with optional details, and component information.

Log messages can be written by the framework or the application code. Which log messages are contained in
the log is defined according to their severity and the log level that is currently set.

Specific log messages only appear in the console when the severity of the issue is equal to or higher than the
currently set log level. For example, when opening an SAPUI5 app without any additional configuration, the
default log level (1 = ERROR) is applied. Only messages with severity FATAL and ERROR will be written to the
console; other messages are not logged for performance reasons.

 Tip
In productive applications, you should keep the system defaults for log levels for performance reasons.

Table 54: Severities and Log Levels

Severity Log Level Description Example

NONE -1 No messages are written to
the console

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1319

Severity Log Level Description Example

FATAL 0 Unrecoverable situations A parse error occurred while
processing a JavaScript file
or an XML view

ERROR 1 (Default) Erroneous but recoverable
situations

Loading a requested module
failed

WARNING 2 Unwanted but foreseen situa
tions

Wrong property format was
passed to a control

INFO 3 Purely informative A configuration parameter
was set

DEBUG 4 (Debug Mode) Information necessary for
debugging

A framework event was fired

TRACE 5 Tracing the program flow A certain position in the code
was reached

ALL 6 Messages of all severity cate
gories are written to the con
sole

Tracing Errors

During development, or when you're troubleshooting application errors, you can increase the log level for
debugging . When you enable debug mode, for example in the Technical Information dialog, the log level is
automatically increased to 4 (DEBUG) and you will see messages in the console that might be helpful for finding
bugs.

You can also set the log level manually, either by calling in the application code or by setting the
framework parameter <level>) setting the framework parameter <level>)sap-ui-loglevel=
(see<level sap-ui-loglevel=<level>Configuration Options and URL Parameters [page 703]). Depending on the
log level, you might get a large amount of log messages in the console. The error might not be clearly visible
from a single log message and might need further analysis.

Log entries are written to the console in chronological order. When you identify a message in the console that is
connected to the error you are tracing, there might be other related log messages written shortly before or
after the current message.

A dash separates the log message and the component (or feature) that logged it.

To find out which messages are related to a specific error, you can filter the messages in the console. Narrow
down the log messages by selecting a severity or doing a full-text search, for example for a specific keyword or
an SAPUI5 component.

1320 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Adding Your Own Log Messages

You can define your own log messages in your code to help tracing errors and understanding the application
flow. You can use the Log API to create and manage log entries (see the API Reference: sap/base/log).

Generic Log Entries

To log a message, simply call Log.* with the specific method that corresponds to the log levels described
above. The following code line issues a log statement with severity Error. The browser highlights the statement
in red to indicate an application error:

// "Log" required from module "sap/base/Log" Log.error("This should never have happened!");

The next code line issues a log statement with severity Information. The browser does not display this
statement if your log console is set to filter for errors only:

// "Log" required from module "sap/base/Log" Log.info("Something has happened");

Component Logging

The log statements above do not contain the component. A log component can be used to semantically group
log entries that belong to the same software component (or feature).

It can be specified as an additional argument to the log function or as a default for all log entries written by a
certain component. With Log.getLogger("<component>"), you can retrieve a logger that automatically
adds the given component as component parameter to each log entry.

// "Log" required from module "sap/base/Log" this._oLogger = Log.getLogger("sap.ui.demo.MyComponent"); this._oLogger.info("Something has happened");

 Note
The log entries can also be accessed programmatically. You can also register a listener to the log that will
be notified whenever a new entry is added to the log.

Assertions

For logical checks in your application flow, you can use assertions. With sap/base/assert an error message
is logged when a given condition is not met.

// "assert" required from module "sap/base/assert" assert(aValues.length === 10, "There are 10 values stored in the array")

 Note
Assertions might be removed when the JavaScript code is optimized during a build. Therefore, callers
should not rely on any side effects of this method.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1321

https://sapui5.hana.ondemand.com/#/api/module%3Asap%2Fbase%2FLog

Related Information

Debugging [page 1315]
Troubleshooting Tutorial Step 1: Browser Developer Tools [page 196]

Technical Information Dialog

The Technical Information dialog shows details of the SAPUI5 version currently being used in an app built with
SAPUI5. You can use the Technical Information dialog to enable debug resources and open additional support
tools to debug your app.

To open the technical information dialog from within a supported desktop browser, use the following shortcut:
CTRL + SHIFT + ALT + P .

The dialog contains the following information:

● The version number of the currently loaded SAPUI5 distribution and the underlying OpenUI5 version that
represent the core libraries of the framework and their build timestamps
For more information, see Versioning of SAPUI5 [page 29] and SAPUI5 vs. OpenUI5 [page 37]

● The user agent that is used for detecting the device's capabilities and device adaption
● The root URL of the currently loaded app

You can download the technical information, so that you can attach it to a ticket for example, by clicking Copy.

1322 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Loading Debug Sources

For performance reasons, the SAPUI5 files are loaded in a minified version, this means that all possible variable
names are shortened and comments are removed. This makes debugging harder because the code is less
readable.

For debugging, you first have to load the Debug Sources. You have the following options:

● URL parameter sap-ui-debug=true
● Select the Use Debug Sources in the Technical Information Dialog

For more information, see Technical Information Dialog [page 1322].

If you only want to load the debug sources for specific packages, you have the following options:

● Add the module names to the sap-ui-debug URL parameter, separated by a comma. For example, sap-
ui-debug=sap/ui/core/Core.js,sap/m/InputType.js loads the debug sources for the
sap.ui.core.Core and sap.m.InputType libraries.

● Choose the Select specific modules link in the Technical Information Dialog.
For more information, see Technical Information Dialog [page 1322].

After reloading the page, in the Network tab of the browser’s developer tools you can see that the controls and
framework assets are now loaded individually and have a -dbg suffix. These are the source code files that
include comments, the uncompressed code of the app, and the SAPUI5 artifacts.

Choose Ctrl + O (Windows) or Command + O (macOS) and type the name of an SAPUI5 artifact to view its
source code in debug mode.

 Note
Turning on debug sources also increases the log level. For more information, see Logging and Tracing [page
1319].

To improve performance, you must deactivate the debug sources once you're done with debugging.

Technical Information Dialog on Mobile Devices

On mobile devices, the Technical Information dialog provides some additional features.

● Configurations (bootstrap) - Displays a list of bootstrap parameters.
● Configurations (computed) - Displays a list of computed parameters.
● URI parameters - Displays the variables passed from the URI query string.
● End-to-End Trace - A function that traces communication to a different part of the app.
● Loaded Libraries - Displays a list of the currently loaded libraries.
● Loaded Modules - Displays a collapsible list of the currently loaded modules.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1323

Table 55: Technical Information Dialog on Mobile Devices

1324 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Accessing the Technical Information Dialog on Mobile Devices
To open the Technical Information dialog on your mobile device, proceed as follows:

1. Press two fingers on a noninteractive screen area (for example, a blank area) for at least 3 seconds.
2. Tap with a third finger while holding the other two on the screen.

 Restriction
● The Technical Information dialog can only be opened on mobile devices that support multi-touch.

Figure 221: Gesture for opening the technical information dialog

Using the End-to-End (E2E) Trace Function
The E2E Trace is used to create an XML file that traces the communication to a different part of your app.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1325

To start the E2E Trace, proceed as follows:

1. Select the detail level from the Trace Level dropdown list.
2. Choose Start.
3. Navigate to a different part of the application.

As a result, a dialog box opens indicating that your transaction has finished. Choose OK to continue running the
current trace. Choose Cancel to stop the trace and display the result in a new window.

After stopping the trace, you can view the result and (optionally) upload it to a server by entering a host name
and a port number, and then choosing Submit.

 Note
The result of the last completed trace is also visible in the XML Output field when you open the Technical
Information dialog again.

Diagnostics

The Diagnostics window available in SAPUI5 is a support tool that runs within an existing SAPUI5 app.

To open Diagnostics, use the following shortcut: CTRL + SHIFT + ALT + S in the app.

1326 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Technical Information

This section provides the same features as the technical information dialog. You can view the technical details
of the app, and turn on the debug sources. For more information, see Technical Information Dialog [page 1322].

In addition, you can see the following information:

● The jQuery version that is loaded from the server. If you want to use a specific jQuery feature, you should
check whether the feature is supported in the loaded version.

● The bootstrap configuration, where you can check, for example, the resource root, the theme, or the
libraries. The libraries should be listed in the libs configuration parameter or in the descriptor file
(recommended), see Descriptor for Applications, Components, and Libraries [page 734]. To improve
performance, remove unused libraries and add the libraries that you use and are not yet listed. These
libraries are loaded as a preload file. We recommend to also add the async configuration option to the
bootstrap. This configuration option enables asynchronous loading of modules and preload files and can,
thus, further improve performance. For more information, see Performance: Speed Up Your App [page
1434].

● The computed configuration
● The version of each library that is available and of the libraries that are loaded
● A list of all loaded modules
● URI parameters that are set
● End-to-end (E2E) trace function

The E2E Trace is used to create an XML file that traces the communication to a different part of your app.
Start the E2E trace and navigate in the app. Afterwards, a dialog opens indicating that your transaction has
finished. Choose OK to continue running the current trace. Choose Cancel to stop the trace and display the
result in a new window.
After stopping the trace, you can view the result and (optionally) upload it to a server by entering a host
name and a port number, and then choosing Submit.

Control Tree

The control tree shows all controls that are used in the app. You can select controls either directly in the app by
choosing CTRL + SHIFT + Alt and clicking on the control, or by selecting the control in the control tree.

The following functions are available in the dialog:

● On the Properties tab, you can change the defined properties of the selected control, and you can add or
remove breakpoints. Use the respective checkbox to add or remove a breakpoint for the get and set
method of a control property.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1327

● The Binding Infos tab shows all existing bindings for the selected control together with additional
information. To update the binding, choose Refresh Binding.

You can also see the binding context for the selected control. To navigate to the respective controls, use the
hyperlinks.

● On the Breakpoints tab, you can add or remove breakpoints for methods on object level. You can either
select the method from the dropdown box, or use auto-completion. To set the breakpoint, select the
method and choose Add breakpoint. To remove a breakpoint, select the red x.
For more information, see Breakpoints on the Object Level [page 1319].

● Many code samples are written in JavaScript. To facilitate the conversion of these code samples into XML
or HTML, SAPUI5 provides a generic conversion tool. To run the tool, proceed as follows:

1328 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

1. Select the root UI area in the tree on the left-hand side.
2. Open the Export tab and choose Export.
3. Open the ZIP archive and extract the files to your file system.

If your app does not contain views, the content is put in one view in the output. If your app contains views
and all views are loaded, the content is output as separate files.

 Note
The conversion captures the runtime status of the app. This can differ from the build declaration.

Breakpoints on the Object Level

In the Control Tree of the Diagnostics window, you can set breakpoints on the object level.

1. Open the Control Tree view of the Diagnostics window.
2. Select a control in the tree.

You can also press and hold Ctrl + Shift + Alt and select a control in your app to select it in the tree.
3. Select the Breakpoints tab on the right.
4. From the dropdown list, select the method for which you want to set the breakpoint and choose Add

breakpoint.
The selected methods are listed below the dropdown list.

5. Open the developer tools of your browser. Whenever the selected methods are called for any instance on
the control, the code execution is paused in the debugger.

6. To remove a breakpoint, select the red x.

Debugging

The Diagnostics window provides you with the following features that help you when debugging your app:

● You can switch the SAPUI5 version you want to debug with.
● You can set breakpoints for methods on class level.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1329

Switching the SAPUI5 Version

Open the Diagnostics window with the shortcut CTRL + SHIFT + ALT + S .

At the top of the Debugging view, you can configure a custom URL from which the application should load
SAPUI5 the next time that the app opens.

Either select a known SAPUI5 installation from the dropdown box, or enter a different URL that points to the
sap-ui-core.js file within a complete SAPUI5 runtime.

Once you have entered the URL, press Activate Reboot URL. When you then reload the application page, the
application loads SAPUI5 from the alternative URL. This only happens for the next single reboot; after that,
SAPUI5 is loaded again from the standard URL referenced within the app.

This feature can be used to test an application against a newer or older version of SAPUI5 as part of
compatibility testing, or for verifying a bug fix or regression.

1330 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Breakpoints on the Class Level

In the Debugging section of the Diagnostics window, you can set breakpoints on the class level.

1. Open the Debugging view of the Diagnostics window.
2. Select a class from the dropdown list or enter the name of the class and choose Add Class.

The selected class is now visible below the dropdown list.
The number next to the method name shows the number of methods that belong to the class and the
number of methods for which a breakpoint is set.

3. Select the class. On the right side of the view, you can now select methods of the selected class from a
dropdown list.

4. From the dropdown list, select the method for which you want to set the breakpoint and choose Add
breakpoint.
The selected methods are listed below the dropdown list.

5. Open the developer tools of your browser. Whenever the selected methods are called for any instance of
the selected control, the code execution is paused in the debugger.

In the call stack you find the method for which you set a breakpoint.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1331

6. To remove a breakpoint, select the red x.

XML View and Templating Support Tools

This section of Diagnostics shows the code of the loaded XML view exactly as you would see it in your
development environment. This way, you can check and test your XML code without the need to switch
environments. If your app is connected to a remote service or a back-end system, you can also view the XML
metadata.

Before you can use this feature, restart your app in Support Mode (with the sap-ui-support=true URL
parameter added to the URL or your app).

1332 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

XML Metadata

You can display XML metadata by expanding the related
nodes in the tree. This helps you to better understand how
the data is stored in the back end and which properties it
has. This is especially important when investigating binding
issues.

XML metadata of a service with three main entity sets:
Product, ProductCategory, and
FeaturedProduct

XML Code

When you expand an XML view in the tree, you can display
the XML code.

You can choose the following options for this view:

● You can choose which kind of IDs you want to see:
○ IDs as they are in the DOM (option Show Real IDs)
○ IDs as they are defined in the XML view (option

Show XML View ID)
If no stable ID is defined in the view, the ID tag is
empty (id=" "), if there is an ID, the value is set
to true (id="true").

● You can show or hide the namespaces to improve
readability of the code.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1333

When you select a control in the code, the following
information is displayed:

● Name of the control with a link to the API Reference
and its ID in the DOM tree

● Instances that are cloned in the control with their IDs
● Attributes and properties of the control with their

values
Similar to the Control Tree section of Diagnostics, you
can change those values here for testing purposes.

● Methods that are available for the control.

 Note
When you select, for example, an aggregation, you see
the name of the control which has this aggregation or
the name of the parent.

Visualizing User Interaction

With this feature, you can collect and visualize the performance data collected for the interaction steps in an
easy and intuitive way. In addition, you can enable statistics for OData calls that give you information about the
app processing time taken by the OData back end.

1334 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Activation

You can start the interaction data collection in the following ways:

● Enable interaction steps recording:
○ To measure the initial loading of the app, add the query string parameter sap-ui-xx-fesr=true at

the end of the application URL and reload.
○ To measure the interaction performance, choose Start recording from the Interaction panel and then

switch back to the app to do the steps that you want to record. Each user activity, such as clicking
buttons or list items or scrolling a list, triggers an interaction. The end of an interaction is when the UI
is fully updated by the app. The collected data is displayed once you choose Stop Recording.

● You can enable the OData statistics by using query string URL parameter sap-statistics=true, or from
the UI by selecting Enable OData Statistics.

Output

● Interaction details - Selecting an interaction step bar, opens a dialog with details about the selected
interaction: end-to-end duration, total number of requests, the size of the transferred data, and so on.

● Interaction requests - All interactions contain 0 to N requests, which can be displayed in a list by selecting
the expand icon.

● Request details - Selecting a request opens a dialog with details, such as request type, URI, overall
duration and how it is spread across client, server, and connection establishing processing. When OData
statistics are enabled and the request is processed by the SAP NetWeaver OData gateway, in the details
dialog there is a section with OData times – Gateway Total, Framework, and Application processing times.

 Note
The OData time (Gateway Total) is included in the total server time processing. Such requests and their

interaction are identified with a blue icon .

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1335

Additional features

● Export - Collected data can be exported as a ZIP archive for easy distribution through e-mail.
● Import - Already collected data stored as an archive can be visualized again, using the Import function. The

input can be either an already exported archive file or directly the JSON file that contains the performance
data. This enables remote analysis of app data by another team or expert.

Related Information

Interaction Tracking for Performance Measurement [page 1382]

SAP Fiori Launchpad Configuration

This feature is only available when an SAP Fiori launchpad has been loaded. You can quickly view the SAP Fiori
launchpad configuration on a specific client.

You can search for parameter names.

The parameters are displayed in a tree structure. You can filter the tree by clicking on the categories that are
displayed below the search field. These categories correspond to the first-level entries in the tree.

1336 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Note
This tool displays the complete startup configuration, including launchpad configuration parameters that
might be deprecated or that might be subject to change. Any changes that occurred after startup are not
reflected.

Back-End Infrastructure

With this feature, you can check whether and to what extend your SAP NetWeaver installation can run and
support SAPUI5 apps.

 Note
To use this feature, you need to be authorized in the back-end system (authorization object S_DEVELOP for
OBJTYPE = 'DEBUG' and 'ACTVT' = '03') and ICF node /sap/bc/ui2/check_app_infra needs to be
activated.

You can display the relevant messages for the following topics:

● Configuration and availability of the virus scanner with the profiles /UI5/UI5_INFRA_APP/
REP_DT_PUT, /SCET/GUI_UPLOAD, and /SCET/GUI_DOWNLOAD

● Status of the background job scheduled for report /UI5/APP_INDEX_CALCULATE, which calculates the
SAPUI5 application index

● Potential error messages in the log of this index
● Status of the standard ICF nodes used by SAPUI5 apps, components, and libraries

In addition, you can access the SAP NetWeaver version and software component as well as other information.

Flexibility

With this feature, you can check whether there are SAPUI5 flexibilty changes for the controls used in an app,
and you can analyze these changes.

For example, you can see the layer of the changes in the layered repository, their type, or whether they’re
active. Active and erroneous changes are only evaluated for the controls currently in the DOM, in the current
runtime.

Prerequisites

This tab only displays apps that use the sap.ui.fl library.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1337

SAPUI5 needs to be in debug mode.

List of Applications

The Flexibility panel displays a list of applications that have been handled by the sap.ui.fl library in this
session.

For each app, you can download a JSON file containing the data that has been applied to an application as well
as relevant runtime information.

The JSON file contains changes on all layers. Personalization changes that have been saved to the USER layer
are only collected for the current user.

You can send this JSON file to SAP support for further investigation, or you can open the UI Flexibility
Diagnostics application to investigate yourself.

UI Flexibility Diagnostics Application

In the UI Flexibility Diagnostics application, upload a JSON file that you downloaded from the Flexibility panel in
the Diagnostics window.

The UI Flexibility Diagnostics application displays all changes that have been loaded for the application. The
arrows visualize dependencies between these changes. You can quickly spot which changes have been applied
by checking their color:

Color Description

Green This change has been applied to the control in the current system.

Red The change could not be applied, and an error was raised.

White There was no attempt to apply the change either because required controls were not
present, or because preconditions were not fulfilled.

For more information, see SAPUI5 Flexibility: Adapting UIs Made Easy [page 1152].

SAP Fiori Elements

With this feature, the system helps you collect the data related to issues you encounter when creating an SAP
Fiori elements app.

 Note
This feature is available only in SAP Fiori elements applications. You can use it only for list report, object
page, worklist, and analytical list page applications.

1338 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

After you have opened the Diagnostics window, perform the following steps:

1. Choose Copy.
By default, the system copies plain text to the clipboard. You can also choose to copy HTML.
The system automatically collects the following relevant data and copies them to your clipboard:
○ Data collected from the application:

○ Used UI5 version and build date
○ Absolute URL to manifest.json of the current application
○ Application component (technical name)
○ Used SAP Fiori elements floorplan
○ Data sources
○ Absolute URL to metadata document
○ Absolute URLs to local and backend annotations

○ Data which is added when copying:
○ Absolute application URL
○ Date and time the data was collected
○ Status of application (for example, loading, rendered, or failed)
○ Error message if the application did not finish loading

2. Paste the data from your clipboard into a new ticket.
3. To complete the ticket, under Provide, enter the login credentials for the system, as well as the steps to

reproduce the issue.

Support Assistant

The Support Assistant enables developers to check whether their apps are built according to the SAPUI5 best
practices and guidelines.

Goals

The tool aims to reduce maintenance and consulting times and to streamline SAPUI5 app development. It uses
a set of predefined rules to check all aspects of an application, for example, accessibility, performance, data
binding, usability. With a simple click, you can check the current state of your app. After execution, you can
analyze the results and apply corrective measures based on the outcome.

Check out the Support Assistant highlights video for an overview of its main functionalities:

Getting Started

The Support Assistant can be started using a URL or a Technical Information Dialog.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1339

From a URL Parameter
The Support Assistant is enabled with the following URL parameter: sap-ui-support=true. The tool then
appears as a toolbar in the footer of the app.

 Tip
If you want to run the Support Assistant in a separate window, use the parameter sap-ui-
support=true,window

Figure 222: Support Assistant Toolbar

From the Technical Information Dialog
You can also start the Support Assistant from the Technical Information Dialog.

1. Open the Technical Information Dialog by using the following shortcut: CTRL + SHIFT + ALT + P .
2. Choose Activate Support Assistant.

Starting the Support Assistant from here allows you to run it with a different SAPUI5 version. You can find more
details on this topic in Running the Support Assistant on an Older SAPUI5 Version [page 1356].

Selecting Rules will show you the available rulesets. You can then select your rules and start the analysis of the
app.

Persisting Rules and Settings

All scopes and temporary rules can be stored in the local storage of your browser. This will allow you to
continue with your work even after you have closed the browser window. To enable this feature, choose Settings

() on the banner and select the checkbox I agree to use local storage persistency for.

 Tip
You can delete your already persisted data by choosing Delete Persisted Data.

Features

● To learn more about rules and rule management see: Rules Management [page 1341]
● To learn more about result processing and reporting see: Results and Analysis [page 1344]
● To learn more about creating your own rules see: Rule Development Guide [page 1359]

Related Information

Step 3: Support Assistant [page 202]

1340 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Using the Support Assistant

The user interface of the Support Assistant allows you to view the available rules and load additional rulesets
for an active application. You can also run an analysis and view the issues identified. The results are available in
the form of a consolidated report, generated as an HTML document.

Rules Management

The user interface of the Support Assistant lets you choose which rules you can load for a library. It also allows
you to organize your Rules view according to your preference and to import and export predefined rule
selections.

Available and Additional Rulesets

The Available Rulesets tab contains the list of the currently loaded rulesets used by your application. On the
left, there is a list of the available rules per library. On the right, you can see more details on the currently
selected rule. By selecting the checkbox in front of each rule, you determine which rules are executed in the
analysis. The list of available rulesets is dynamic and changes based on the libraries used for the current state
of your application.

Figure 223: Support Assistant Available Rulesets

The Additional Rulesets tab shows rules for libraries that are not used by the application at the particular
moment.

Figure 224: Support Assistant Additional Rulesets

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1341

You can select the rules from the Additional Rulesets tab and choose Load to move them to the set of Available
Rulesets and use them in your analysis.

Rule Presets

The Support Assistant allows you to export and import subsets of preselected rules or Rule Presets. The rule
presets are semantically grouped selection variants which you can export and save for future analyses of your
apps. There are two general types of rule presets - Custom Presets and System Presets.

Figure 225: Support Assistant Rule Presets

Custom Presets
Custom presets are rule selections which you can group according to your particular analysis purposes and
export as .json files. You can give the exported file a title, ID and description that are meaningful to you.

The ID is an alphanumeric string which, although not mandatory, is useful if you collect data and generate
reports on your rule presets. It makes it easier to identify and report on specific rule preset executions which
are of interest to you. In case you don't create an ID, the system will automatically generate one. For more
information, check Analysis Report [page 1347].

Once exported and saved, your rule presets can be imported and used again. They are listed in a dropdown
menu allowing you to easily switch between them.

 Tip
In My Selection you can find your most current selection of rules. To preserve it for your next analyses

together with your choice of imported presets, go to the settings menu on the Support Assistant
toolbar and tick the checkbox in front of I agree to use local storage persistency for.

System Presets
For your convenience, the Support Assistant is also equipped with ready-to-use system-defined rule presets.
They contain selections of rules related within the context of a scenario, functional area, or other aspects of the

1342 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

app UI that can be verified using support rules. The first system preset which has been added is for
Accessibility-related rules.

You can't delete system presets but you have the option to modify and export them as you do with your custom
ones. Although the rules selected within one system preset are grouped according to their relevance to a
certain scenario, they can belong to different categories.

 Tip
If you modify the rule selection within a system preset, an asterisk appears next to its name as an indication
of changes that haven’t been saved. You can undo these changes by selecting the refresh icon opposite the

preset name .

Columns Personalization

You have the option to personalize the Rules view by choosing which columns to be displayed. Just click on the
column header and select or deselect the columns you want to use. You can also sort the content of all four
columns or filter by keyword.

Figure 226: Support Assistant Columns Personalization

 Note

Choosing I agree to use local storage persistency for from the settings menu will also preserve your
choice of visible columns.

Creating Rules

Selecting the Create Rule button allows you to create a new rule. You can create a completely new rule (Create

Rule) or use an existing one as a template by clicking the Copy () icon next to Categories. For each rule, you
need to fill out the ID, Categories, Audiences, Title, Description, Resolution, Min version and, if available,
Resolution URLs in the Rule properties tab. You also have the option to select if the Async value should be true
or false. This value determines whether the rule check function will contain asynchronous operations. By
default, it is set to false.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1343

 Note
Keep in mind that if you set Async to true, you need to use fnResolve as the 4th parameter in your check
function to indicate that the asynchronous check function has finished. The asynchronous function waits
10 seconds before it times out.

Here is an example of the Async check function:

function(issueManager, oCoreFacade, oScope, fnResolve) { // Some async operation
 setTimeout(function () {
 …
 fnResolve();
 }, 2000);
}

Additionally you need to provide or modify the JavaScript check function that implements the rule in the Check
function tab. You can directly test the newly added or modified rule on the already loaded page.

The newly created rule remains temporary until you submit and assign it to a library.

 Remember
Don't forget to copy and paste the resulting new rule and submit it separately in the IDE of your choice. You
can select all the code from the Code tab.

Executing Rules

Once you load your rulesets or select a rule preset, you can run an analysis with them. To do this, select
Analyze. For more information about the execution scope, you can refer to Execution Scope [page 1346]

Related Information

Create a Ruleset for a Library [page 1360]
Create a Rule [page 1363]

Results and Analysis

After an analysis run, you can view a list of all triggered rules, their description, resolution steps, and a control
tree with highlighted problematic elements.

Below you can see an example of how the results are displayed.

1344 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Figure 227: Support Assistant Issues View

Issues List

The left side shows a list of the triggered rules sorted by severity (High, Medium, Low). You can use the
dropdown menus to filter on Severity, Category, or Audience. You can clear your filtering by choosing Clear

Filtering ().

Selecting Report generates an HTML report with the current set of rules and scope. You can view it in a new tab
or download it as a .ZIP file.

Issue Details

The middle part shows a detailed view of the selected rule. It contains the following:

● Description - general description of the rule
● Resolution - steps to resolve the issue
● URLs - useful links (for example, API Reference or Documentation)
● Severity - the severity of the identified issue
● Element ClassName and ID - the namespace of the element

Element Tree

The right side shows the element tree of the application. The root of the tree is called <WEBPAGE>. All rules that
are not specific for a given control are mapped to this element. If these rules are triggered, the resulting issues
will be mapped to the <WEBPAGE> element.

● Hovering on an element in the tree highlights it in the application (if it is visible).
● Selecting an element with issues in the element tree loads those issues in the issues list.
● The table in the issues list shows all other elements that have triggered the same rule. The list also shows

you the severity of each issue.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1345

Figure 228: Support Assistant DOM Tree

Execution Scope

SAPUI5 apps consist of multiple views, components and fragments. If you run the rules on the complete app
with all loaded elements and components, you may not get the desired results. Therefore, the Support
Assistant allows you to change the scope of an analysis run and thus narrow down your result set. This helps
you focus on specific issues, components or controls within your app.

Execution Scopes

To change the analysis scope, select the gears icon next to the Analyze button.

Figure 229: Support Assistant - Execution Scopes

There are three available execution scopes:

● Global - The rules are executed on the whole application, including all loaded components, elements and
previously opened pages.

1346 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

● Sub-tree - The rules are executed on the specified subtree root element and all its subelements (which are
not components themselves).

● Component(s) - The rules are executed on the specified set of loaded components/fragments.

 Note
The scoping information will also be taken into account when generating the analysis report.

Analysis Report

The information from the execution of the Support Assistant is available as a separate HTML document. It can
be viewed from the Report dropdown menu.

The report contains information from the loaded components, a detailed list of the technical information and a
list with all issues. The following image shows the report with collapsed sections.

Figure 230: Analysis Results: Collapsed View

The report contains the following elements:

1. A time stamp for when it has been generated.
2. Last analysis duration showing the time taken by the last analysis.
3. An execution scope with short description.
4. Available and selected rules.

Here you can see all available rules per library. All rules that have been selected for the analysis are marked

with a checkmark (). This section also gives you information about the used rule preset and its ID.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1347

Figure 231: Analysis Results: Rules
5. Technical information section. Here you can see the version of the Support Assistant and the location from

which it has been loaded as well as more information about the app.

Figure 232: Analysis Results: Technical Information
6. Application information section.

Figure 233: Analysis Results: Application Information
7. Issues section.

The issues are grouped by library and rule. In the following example, there is one library (sap.m) with 5
rules. They have generated 18 issues in total - 16 with medium severity and 2 with low severity.

Figure 234: Analysis Results: Issues

You can also download the report by selecting Download (below the View button). The report is going to be
downloaded in a ZIP format containing the following files:

1348 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

● The report HTML (report.html)
● A JSON file with all loaded components (appInfos.json)
● A JSON file with all issues (issues.json)
● A JSON file with all technical information (technicalInfo.json)

Integrating the Rules in OPA Tests

The Support Assistant can be used as part of an existing OPA test to cover more test aspects of the application.

Context

The Support Assistant can be used in OPA tests to check if there are issues in the different states of the
application. To do that, you need to use the Support Assistant OPA extension. This extension is available as of
version 1.48. It provides three assertions:

● noRuleFailures - Analyzes the current state of the application, and if errors are found, the assertion will
fail. A non-mandatory options object can be passed to the assertion containing the following properties:
○ failOnAnyIssues (boolean) - Determines if the assertion should fail if issues of any severity type

are found.
○ failOnHighIssues (boolean) - Determines if the assertion should fail if issues of severity type

high are found. Warning - this parameter will ignore issues of severity types: medium and low.

 Note
This parameter overrides failOnAnyIssues.

○ rules (Array) - Determines a subset of rules to check. By default if this property is not set, all rules
are checked. The rules have two properties libName (for example, sap.ui.core) and ruleId (for
example, orphanedElement).

○ executionScope (Object) - The execution scope defines the scope of the analysis. Can be of type
global, subtree, components.

 Note
If types subtree or components are selected, the selectors property should also be set to define
the IDs of the subtree/components.

● getFinalReport - If there are issues found, the assertion fails and a report is created as part of the
message of that assertion.

● getReportAsFileInFormat - Collects the past history analysis and stores it in window._$files array
for further usage. The main purpose of this assertion is to allow the OPA extension to serve the history to
external services like Jenkins job or other services so that the data can be stored on the filesystem.
The assertion can be called with two optional parameters: historyFormat - The format into which the
history object will be converted. Possible values are listed in sap.ui.support.HistoryFormats. and
fileName – the name of the file in which the history will be stored.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1349

In addition, if you pass sap-skip-rules-issues=true as a URL parameter to your OPA test, the assertion
results of noRuleFailures and getFinalReport assertions will be true, overriding the actual results.

This special URL parameter could be used temporarily in cases when you extend an existing OPA test to run
the Support Assistant rule checks initially but you don’t want the entire OPA journey to fail immediately. After
you gain experience and clean up any check issues, you can set it to false or omit passing it and use once
again the desired onError behavior.

 Note
When the sap-skip-rules-issues URL parameter is set, it affects all tests globally, unlike the
FailOnAnyIssues parameters, which only affect a specific test level.

Procedure

1. Enable the Support Assistant OPA extension in the OPA configuration file.

You need to change two parameters:
○ extensions - You need to include the Support Assistant OPA extension path (sap/ui/core/

support/RuleEngineOpaExtension).
○ appParams - You need to add sap-ui-support with a value of true,silent. This will start the

application in support mode and will start the Support Assistant in silent mode (without UI).

The configuration file will look like this:

sap.ui.define([...
], function(Opa5, Arrangement) {
...
extensions: ["sap/ui/core/support/RuleEngineOpaExtension"],
appParams: {
 "sap-ui-support": "true,silent"
}
...
});
});

2. Add additional assertions to the OPA configuration file.

Add generic or specific assertions - depending on the use case. For example:
○ iShouldSeeNoHighSeverityErrors - This assertion calls noRuleFailures with a few parameters

set, as you can see in the example code below. It checks for high issues and ignores medium and low.
The rules checked are preloadAsyncCheck, orphanedElement, deprecatedEntities and the
scope is set to global.

○ iShouldGetSupportRuleReport- This assertion calls getFinalReport and if there are any issues
after all the analysis, it fails and a report is created as part of the message.

The configuration file should look like this:

assertions: new Opa5({ ...
iShouldSeeNoHighSeverityErrors: function() {
 return this.waitFor({
 success: function() {

1350 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Opa5.assert.noRuleFailures({
 "failOnHighIssues": true,
 rules: [{
 libName: "sap.ui.core",
 ruleId: "preloadAsyncCheck"
 }, {
 libName: "sap.ui.core",
 ruleId: "orphanedElement"
 }, {
 libName: "sap.ui.core",
 ruleId: "deprecatedEntities"
 }],
 executionScope: {
 type: "global"
 }
 });
 }
 });
},
iShouldGetSupportRuleReport: function()
{
 return
this.waitFor({

 success: function()
{

Opa5.assert.getFinalReport();

 }
 });
}
...

3. The added assertions can now be used inside the journeys.

Knowing the flow of the tests, choose the right place in your OPA test journey to add the needed assertion:

... opaTest("Should see no Support Assistant issues with high severity", function
(Given, When, Then) {
 Then.iShouldSeeNoHighSeverityErrors();
});
...

 Note
Put these assertions after the web page being tested has been rendered and displayed with a stable UI.

4. Repeat the extended OPA test and see how your specific Support Assistant assertions are triggered.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1351

You can see a detailed report for each run. The report is tabular and lists all executed rules with their
details, followed by a list of the issues generated by that rule. It looks like this:

Figure 235: OPA Test Results

Related Information

Execution Scope [page 1346]
Integration Testing with One Page Acceptance Tests (OPA5) [page 1182]
Samples: Running OPA tests with Support Assistant checks

Support Assistant API

The Support Assistant can also run in silent mode and accept calls through its API. This way it can be
integrated in more complex automated scenarios.

General Information

The Support Assistant is currently separated into two main parts:

● Core plug-in in SAPUI5
● UI client running in an iFrame or separate window, or programmable clients via an API

In the following diagram you can see how the Support Assistant is connected to the individual application
layers.

1352 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.core.sample.OpaWithSupportAssistant/preview

Figure 236: Support Assistant Architecture

There are two different use cases for its integration:

● Using browser window messaging protocol for agents in other window frames;
● Using the sap.ui.support.RuleAnalyzer module (for example, from the console or as part of OPA

tests).

We will take a closer look into these use cases in the following sections.

Window Messaging API

The window messaging API is an asynchronous API based on the browser low-level postMessage/onMessage
APIs. It is enabled by using a custom generic communication bus component - WindowCommunicationBus,
delivered with the Support Assistant. The WindowCommunicationBus is used for implementing the remote UI
interaction between the Support Assistant and the application iFrame.

Programming API

This section illustrates how to use the Support Assistant programming API through specific
sap.ui.support.RuleAnalyzer API examples.

Add a Temporary Rule
After the Support Assistant has been started, if in silent mode, you can add a new temporary rule by using the
addRule method. Then you can run an analysis with this rule.

sap.ui.require(["sap/ui/support/RuleAnalyzer"], function (RuleAnalyzer) {

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1353

 var oRule = {
 id: "Temp rule id",
 title: "Temp rule title",
 ...
 };
 RuleAnalyzer.addRule(oRule); });

For more information about rule properties, see Guidelines and Best Practices [page 1369].

Run the Analysis

The Support Assistant API allows you to:

● Run a complete analysis on all components and rules. This analysis returns all issues.

sap.ui.require(["sap/ui/support/RuleAnalyzer"], function (RuleAnalyzer) {
 RuleAnalyzer.analyze().then(function() {
 var oHistory = RuleAnalyzer.getLastAnalysisHistory();
 ...
 }); });

● Run a complete analysis, using custom metadata. The analysis history will contain this metadata.

sap.ui.require(["sap/ui/support/RuleAnalyzer"], function (RuleAnalyzer) {

var oMetadata = {
 …
};

 RuleAnalyzer.analyze(null, null, oMetadata).then(function() {
 var oHistory = RuleAnalyzer.getLastAnalysisHistory();
 ...
 }); });

● Narrow down the analysis to a specific part of the app, for example only a sub-tree.

sap.ui.require(["sap/ui/support/RuleAnalyzer"], function (RuleAnalyzer) {
 var oExecutionScope = {
 type: "subtree",
 parentId: "panelId"
 };
 RuleAnalyzer.analyze(oExecutionScope).then(function() {
 var oHistory = RuleAnalyzer.getLastAnalysisHistory();
 ...
 }); });

For more information, see Execution Scope [page 1346].
● Check for issues using specific rules.

sap.ui.require(["sap/ui/support/RuleAnalyzer"], function (RuleAnalyzer) {
 var oExecutionScope = {
 type: "subtree",
 parentId: "panelId"
 };
 var aRules = [{
 ruleId: "inputNeedsLabel",
 libName: "sap.m"

1354 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 }];
 RuleAnalyzer.analyze(oExecutionScope, aRules).then(function() {
 var oHistory = RuleAnalyzer.getLastAnalysisHistory();
 ...
 }); });

● Check for specific rules using rule presets.
The rule presets are semantically grouped rules which can be custom or system defined. They can be
imported and exported as JSON files. For more information, see Rules Management [page 1341].
○ Here is an example of running an analysis by using a custom preset:

sap.ui.require(["sap/ui/support/RuleAnalyzer"], function (RuleAnalyzer) {
 var oExecutionScope = {
 type: "subtree",
 parentId: "panelId"
 };
 var oCustomPreset = {
 id: "CustomPreset",
 title: "Custom",
 description: "Custom rules",
 selections: [{
 ruleId: "inputNeedsLabel",
 libName: "sap.m"
 }]
 };
 RuleAnalyzer.analyze(oExecutionScope,
oCustomPreset).then(function() {
 var oHistory = RuleAnalyzer.getLastAnalysisHistory();
 ...
 }); });

 Note
You can get the preset definition from an available JSON file and pass it as a second parameter of
the analyze function instead of defining it in your code.

○ Here is an example of running an analysis by using a system preset:

sap.ui.require(["sap/ui/support/RuleAnalyzer"], function (RuleAnalyzer) {
 var oExecutionScope = {
 type: "subtree",
 parentId: "panelId"
 };
 RuleAnalyzer.analyze(oExecutionScope,
"Accessibility").then(function() {
 var oHistory = RuleAnalyzer.getLastAnalysisHistory();
 ...
 }); });

○ Here is an example of running an analysis with system preset by accessing it through the
sap.ui.support.SystemPresets enumeration:

sap.ui.require(["sap/ui/support/RuleAnalyzer"], function (RuleAnalyzer) {
 var oExecutionScope = {
 type: "global"
 };
 RuleAnalyzer.analyze(oExecutionScope,
sap.ui.support.SystemPresets.Accessibility).then(function() {

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1355

 var oHistory = RuleAnalyzer.getLastAnalysisHistory();
 ...
 }); });

View the Results

● RuleAnalyzer.getAnalysisHistory() - Returns all the analysis history objects.
● RuleAnalyzer.getLastAnalysisHistory() - Returns the last analysis history.
● RuleAnalyzer.getFormattedAnalysisHistory(sap.ui.support.HistoryFormats) - Returns

the history in the format that has been passed. The default format is string.

Related Information

Integrating the Rules in OPA Tests [page 1349]
API Reference: sap.ui.support
API Reference: sap.ui.support.RuleAnalyzer

Running the Support Assistant on an Older SAPUI5 Version

In some cases you may want to run the Support Assistant against a different version of SAPUI5. You can do so
by following a few steps.

Prerequisites

The minimum SAPUI5 version in which the Support Assistant is available is 1.44.17.

Procedure

1. Open the Technical Information Dialog using the shortcut CTRL + SHIFT + ALT + P .

2. Choose the settings button for the Support Assistant ().
3. Select a predefined version from the dropdown, or select Custom Location to paste a custom URL in the

input field.

1356 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.support
https://sapui5.hana.ondemand.com/#/api/sap.ui.support.RuleAnalyzer

Figure 237: Technical Information Dialog: Support Assistant Settings

 Note
When you choose a custom location, keep in mind that the URL should match the protocol of the
application. For example, if the application is HTTP, the location should also be HTTP. If it is HTTPS, the
location should be HTTPS. The URL should also end in sap/ui/support/.

○ Under Options you can select if the Support Assistant should be opened in a separate window.

 Note
Additional window popups may be blocked by your browser settings.

4. Select Activate Support Assistant.

Your application will reload and the Support Assistant will start.

In the following diagram, you can see how the different SAPUI5 versions interact with the Support
Assistant.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1357

Figure 238: Support Assistant - Multi-Version Support

Results

You are now able to run the Support Assistant on the version that you selected.

 Note
Rules with a higher minVersion than the one currently loaded are not checked.

 Remember
These settings are stored in your local storage (if selected) and are reused on consecutive runs.

Related Information

Technical Information Dialog [page 1322]

1358 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Troubleshooting the Support Assistant

There are certain scenarios in which the Support Assistant does not behave as expected. In this section you
can find tips on how to recognize and resolve some of these cases.

Support Assistant
Behavior Root Cause Solution

What does it mean
when the following
errors appear in the
browser console?

“Access to
XMLHttpRequest at
<URL> from origin
<ORIGIN> has been
blocked by the CORS
policy: No 'Access-
Control-Allow-Origin'
header is present on
the requested
resource.”

This usually happens when serving SAPUI5
from a different origin. The Support Assistant
tries to load support rule definitions from there,
but cannot load them - a 404 response is sent
by the origin server. The issue is usually caused
by missing or misconfigured CORS headers on
the 404 response specifically. Besides some
support rules not being loaded, this should not
affect normal operation of Support Assistant.

SAPUI5 library owners are encouraged to
provide a .supportrc as specified by
Support Assistant documentation to avoid
causing 404 responses.

For more information, see Create a Ruleset for
a Library [page 1360] and Content Security
Policy [page 1481].

When you choose a
custom location, you
get an error message:
'The syntax of the
location address is
incorrect. The correct
syntax is ... '.

URL doesn't match the protocol of the
application.

If the application is HTTP, the location should
also be HTTP. If it is HTTPS, the location should
be HTTPS. Also, the URL should end in sap/ui/
support/.

Rule Development Guide

The Support Assistant allows you to create custom rules and rulesets and test them on your apps.

Rules can check different aspects of an app depending on the desired result. Each rule belongs to a specific
ruleset. The ruleset is a JavaScript file named library.support.js that defines a set of rules. It consists of
all the rules for an SAPUI5 library. Before creating a rule, you first need to create the ruleset. You can only have
one ruleset per library.

The next subsections contain more detailed information on how to create new rules and test them. You can
also see examples of best practices and common types of rules.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1359

Create a Ruleset for a Library

The Support Assistant allows you to create your own ruleset.

Choose Your Ruleset Location

A ruleset is a library.support.js file that defines an object name and niceName and returns a set of rules.
Before you create a rule, you need to create a ruleset at a specific location. You can follow these steps as an
example:

1. Open the respective library project. Let's say that your library is part of OpenUI5, open the project in
openui5([openui5.git]/src/sap.ui.support/src/sap/m).

2. Create a JavaScript file with name library.support.js in the root folder where library.js is placed.
3. Add an extensions property in the initLibrary() function of the library.js file and there add

sap.ui.support extension.
If your library contains public rules it will look like this:

… extensions: {
 //Configuration used for rule loading of Support Assistant
 "sap.ui.support": {
 publicRules: true
 }
…

4. Create a folder to hold the rules. For example, if the library name is sap.m, the folder structure, if there isn’t
one already created, should be src/sap/m/rules.

Here is an example of folder structure depending on the location of your ruleset:

Table 56: Ruleset Folder Structure

Location Folder Structure

OpenUI5 [openui5.git]/src/sap.m/src/sap/m/

Reuse library [project]/src/[library path]

Add .supportrc file

Each library should have a .supportrc file placed at its root folder. It is a simple JSON file specifying
availability of public and internal rules per library. The .supportrc file defines whether to load ruleset files of
the respective library. This reduces the number of redundant requests to load the respective ruleset library
files.

Here is an example of .supportrc file:

{ "publicRules": true,

1360 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 "internalRules": true
}

 Note
If a .supportrc file doesn't exist, a library is considered not to have any rulesets. Therefore, all ruleset
developers should add a .supportrc file to their libraries root folders. Have in mind that if a ruleset
property is missing, its value is considered to be false.

Add SupportLib

Once you choose the correct location for the library.support.js, the next step is to add the SupportLib.
It provides a set of constants and enumerations you can use to define the rules inside the
library.support.js. After creating your rules, return an object holding all of them and a name/niceName
to specify their library.

Here is an example of how to add and use the SupportLib:

sap.ui.define(["jquery.sap.global", "sap/ui/support/library"], function(jQuery, SupportLib) {
 "use strict";
 var rule1 = {
 ...
 audiences: [SupportLib.Audiences.Control]
 categories: [SupportLib.Categories.Usability]
 ...
 check: function(oIssueManager, ...) {
 ...
 oIssueManager.addIssue({
 severity: SupportLib.Severity.Medium,
 ...
 });
 }
 };
 var rule2 = {…};
 return {
 name: "sap.ui.core",
 niceName: "UI5 Core Library",
 ruleset: [
 rule1,
 rule2
]
 }; }, true);

Create Helper Functions (Optional)

When creating a more complex ruleset, you may need to create helper functions. It is recommended that those
helper functions are separated into a different file that ends in .support.js and is located in the same folder
as the ruleset.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1361

 Note
Helper files must be required by a relative path such as ./CoreHelper.js so that when the Support
Assistant is loaded from a different origin, the file will be required from the correct place.

Split library.support.js (Optional)

You can also split a library.support.js into multiple files.

When creating a ruleset for a bigger library, there may be too many rules and the ruleset will become very big.
To avoid this, the rule definitions can be split into multiple files. For example, we might want to split the ruleset
of the sap.m library by creating a file with rules for each control.

If the library.support.js contains rules for sap.m.Button and sap.m.Label, you can create
Button.support.js and Label.support.js files. After that, the library.support.js can require all the
rules from those files and create a ruleset.

This is an example of a library.support.js before the split:

Example

sap.ui.define(["jquery.sap.global", "sap/ui/support/library"], function(jQuery, SupportLib) {
 "use strict";
 var buttonRule = {…};
 var labelRule1 = {…};
 Var labelRule2 = {…};
 return {
 name: "sap.ui.core",
 niceName: "UI5 Core Library",
 ruleset: [
 buttonRule,
 labelRule1,
 labelRule2
]
 }; }, true);

In this example there are three rules - one for button and two for label. Splitting these rules to different files is
done in the following way:

1. Create a Button.support.js and Label.support.js files.
Button.support.js:

sap.ui.define(["jquery.sap.global", "sap/ui/support/library"], function(jQuery, SupportLib) {
 "use strict";
 var buttonRule = {…};
 return buttonRule;
 }, true);

1362 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Label.support.js:

sap.ui.define(["jquery.sap.global", "sap/ui/support/library"], function(jQuery, SupportLib) {
 "use strict";
 var labelRule1 = {…};
 var labelRule2 = {…};
 return [labelRule1, labelRule2];
 }, true);

 Note
You can return a single rule or an array of rules, as shown in the second example.

2. Require the newly created files in library.support.js:

sap.ui.define(["jquery.sap.global", "sap/ui/support/library", "./Button.support", "./Label.support"
],
 function(jQuery, SupportLib, ButtonSupport,
 LabelSupport) {
 "use strict";
 return {
 name: "sap.ui.core",
 niceName: "UI5 Core Library",
 ruleset: [
 ButtonSupport,
 LabelSupport
]
 }; }, true);

 Note
The ruleset property is an array which can contain both rule objects and arrays of rules. In the example,
LabelSupport returns an array of two rules.

Related Information

Create a Rule [page 1363]

Create a Rule

A rule consists of properties that test and advise on how possible issues can be resolved and a check function
that tests the application for a specific issue. To create a rule, you need to set the properties and add a check
function.

For more information on how to create rules in the user interface, see Rules Management [page 1341].

You can find best practices on how to create rules in Guidelines and Best Practices [page 1369] .

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1363

Properties

You need to set the following properties :

Property Description

ID The ID of the rule. It must be a valid camelCase string consisting of between 6
and 50 alphabetic characters.

Title The name of the rule in a readable format. It must be a valid string consisting
of between 6 and 200 characters.

Audiences Describes what audiences the rule is intended for. You can have multiple audi
ences selected.

Categories Describes what the rule tests. You can have multiple categories selected.

Min version The minimum version the rule should be checked at. Possible values are
<empty string> and versions like 1.28, 1.44, etc.

Async Defines if the rule check function will contain asynchronous operations.

Description A short description of the rule.

Resolution A short advice on what to do to fix the issue generated by the rule.

Resolution URLs An array of key/value pairs of texts and URLs providing the links to documen
tation where the user can find how to fix the issue generated by the rule. You
can have multiple resolution URLs. Key is text and value is href.

Check function Function that checks the application against the rule. It is described in more
detail in the next section.

Check Function

The check function has three main and one optional parameters. The main ones are oIssueManager,
oCoreFacade and oScope, and the optional one is fnResolve. Here is more information about them:

● oIssueManager - allows you to add new issues with the addIssue() method. The issue object has the
following properties:
○ Severity - the possible values are:

○ sap.ui.support.Severity.Low
○ sap.ui.support.Severity.Medium
○ sap.ui.support.Severity.High

○ Details - free text, may include any type of details related to the issue.
○ Context - an object, which has an ID property. The ID should belong to the element, which generates

the issue.

1364 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

● oCoreFacade - gives you access to the different elements provided by the SAPUI5 core framework:
○ getMetadata()
○ getUIAreas()
○ getComponents()
○ getModels()

● oScope - retrieves elements in the scope with the following methods:
○ getElements() - returns all the elements.
○ getElementsByClassName(className) - the className can be, for example, sap.m.Button. The

function returns all elements of type sap.m.Button.
○ getPublicElements() - returns all elements that are part of public API aggregations.
○ getLoggedObjects(type) - returns all logged objects. The method provides access to the logs and

traces in the browser Console. Note that it is possible to enhance the log traces with an extra
fnSupportInfo object which you can then analyze in the rule check function. The fnSupportInfo
function is called only when support mode is turned on with the URL parameter sap-ui-support set
to true (sap-ui-support=true). For more information, see Rules for the Console Traces and
Logging [page 1367].

Prior to version 1.54, getElements was not accepting any arguments and was returning all elements
registered with the core. Now it accepts one query object parameter. This allows you to select only a
specific subset of elements valid for your use case. The three parameters of the method are type, public,
and cloned.
Here is an example format:

var queryObject = { type: "sap.m.Button", // String property specifying the type to select
 public: true, // Boolean property specifying whether only public elements
should be loaded
 cloned: false // Boolean argument specifying if cloned elements are needed }

When the public parameter is set to true, the getElements function only explores public aggregations. It
is useful if, for example, you have a composite control comprising of public and internal subelements, and
you only want to check the public ones.
The cloned parameter allows you to filter out elements that are clones of list bindings. If you don't want to
explore issues associated with multiple cloned elements, for example repeated table cell content, set
cloned: false and the results will include only one representative instance.
Here is an example of a check function that checks all Input controls which are part of the public
aggregation and have no parent set:

 function(issueManager, oCoreFacade, oScope) {
 var mElements = oScope.getElements({
 type: "sap.m.Input",
 public: true,
 cloned: false
 });
 for (var n in mElements) {
 var oElement = mElements[n];
 if (!oElement.getParent()) {
 issueManager.addIssue({
 severity: sap.ui.support.Severity.Medium,
 details: "The element " + oElement.getId() + " has no parent.",
 context: {
 id: oElement.getId()
 }
 });

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1365

https://sapui5.hana.ondemand.com/#/api/sap.ui.base.Object/methods/getMetadata
https://sapui5.hana.ondemand.com/#/api/sap.ui.core.Core/methods/getUIArea
https://sapui5.hana.ondemand.com/#/api/sap.ui.core.Core/methods/getComponent
https://sapui5.hana.ondemand.com/#/api/sap.ui.core.Core/methods/getModel

 }
 }
}

● fnResolve - an optional parameter. It is passed to the check function only when the rule property async
is set to true to allow you, as the rule developer, to resolve an asynchronous operation. The rule times out
if it takes more than 10 seconds to resolve.
Here is an async rule code example:

function(issueManager, oCoreFacade, oScope, fnResolve) { // Some async operation
 setTimeout(function () {
 …
 fnResolve();
 }, 2000);
}

 Remember
Make sure to call issueManager.addIssue() in your check function so that issues can be seen in the
analysis results.

Related Information

API Reference: sap.ui.support.ExecutionScope
Common Rule Patterns [page 1367]

Test a Rule

After you create a rule, you can test it manually on an app.

Manual Testing on an App

Test your rule on locally running apps
If you want to test a Support Assistant rule on a locally running app, there are several steps you need to follow:

1. Start your server with the Support Assistant and support rules code loaded locally.
2. Start the app from your local server and call the Technical Information Dialog (available as of version 1.44).
3. Press Activate Support Assistant and it will load from your local server. If the Support Assistant is not

loading, click the gear icon next to the button, select Recommended locations, and from the dropdown
list choose the current version app.

4. After it loads, if you have correctly entered your data when creating the rule, you should see the title of your
rule in the Available Rulesets tab.

5. To execute your rule, select it from the list and press Analyze. Your check function will be invoked and then
you can put a debugger in your code or insert a breakpoint and see if you are getting the right results.

1366 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.support.ExecutionScope.html

6. After your rule was executed, you will get the analysis of all results and the issues that it generated.

Test your locally modified rule on a remotely running app
To test your locally modified rule on other apps:

1. Start your server with the Support Assistant and support rules code loaded locally.
2. Start the app that you want to test your locally modified rule on and call the Technical Information Dialog

(available as of version 1.44).

3. Select the gear icon next to the Activate Support Assistant and select Custom Location.
4. In the input field, write the path to the Support Assistant location from your local server. For example,

http://localhost:8080/testsuite/resources/sap/ui/support/. This way you can load your
version of the Support Assistant with the newly created or modified rule. If the remote app is hosted on an
HTTPS server, the local server should run on and support HTTPS protocol.

5. Close the popup and select Activate Support Assistant. You will be able to load the local version of the
Support Assistant with the app that you want to test it on.

6. To execute your rule, select it from the list and choose Analyze. Your check function will be invoked and
then you can put a debugger in your code or insert a breakpoint and see if you are getting the right results.

7. After your rule was executed, you will get the analysis of all results and the issues that it generated.

Common Rule Patterns

The Support Assistant checks verify different aspects of your web application - from the view/elements
structure and control properties to the dynamic, data and event-driven interactions. You can traverse the DOM
tree, look at error logs during startup or check the CSS.

Rules for the Rendered HTML and the SAPUI5 Element Tree

With these rules you can check how your application is rendered and how properties of the controls affect the
rendering. Here is an example:

var mElements = oScope.getElements(); for (var n in mElements) {
 ...
}

Rules for the Console Traces and Logging

Rules that analyze the console trace allow you to react to dynamic events while the application is loading. They
can help you catch common errors in the binding and bootstrapping of the application. One such rule (Error
Logs) is already created and catches all the errors from the console.

With version 1.46, the logging API has been enhanced to allow additional objects to be added to logs produced
by any module. An additional callback function in a log statement can provide such additional objects, which
can be stored with the log entry.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1367

For more information, see the API Reference: sap/base/log.

Here is an example of how to log a warning with additional support information:

// "Log" required from module "sap/base/Log" //enable to log additional support information, this is automatically turned on
if the url parameter: sap-ui-support is set to true
Log.logSupportInfo(true)
Log.warning("Log this text", function() {
 //return additional object for further processing in support tooling
 return {
 type: "sap.mylib.supportType", //type can be used to filter the logs in
support tooling
 elementId: "sap.mylib.Class or ID" //can be given to narrow the scope of
support tooling to a certain element ID, normally used as control ID.
 mylogobject: {
 context: "Identify Context"
 }
 } });

Recommendations for Writing CSS Rules

To set custom design preferences, you need to overwrite or manipulate the CSS styling rules. However, this
bears a risk because inappropriate changes in the standard styles might provoke rendering or representation
issues.

Below, you can find examples of specific Support Assistant rules to check in such situations.

Getting all loaded style sheets

To get all loaded style sheets, you simply need to call the document.styleSheets method. This method
returns a list of all inline and external CSS rules. You can further filter or search for a specific style depending on
your needs.

Getting a list of all custom CSS file paths

By custom CSS files we mean all files and styles that are not included within a standard library.css file.
Here is an example function that filters all loaded styles and returns only those specific file paths. Once you
have a list of all custom CSS files, you can do your further analysis.

getExternalStyleSheets: function() { return Array.from(document.styleSheets).filter(function(styleSheet) {
 var themeName = sap.ui.getCore().getConfiguration().getTheme(),
 styleSheetEnding = "/themes/" + themeName + "/library.css",
 hasHref = !styleSheet.href || !styleSheet.href.endsWith(styleSheetEnding),
 hasRules = !!styleSheet.rules;
 return hasHref && hasRules;
 });
},

Determining if a specific style sheet is in an inline or external file

If you iterate over document.styleSheets elements, you will see that each element has a property href
containing the full path to the style sheet. If it's empty, it means that the style is inline. Here is an example

1368 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/module%3Asap%2Fbase%2FLog

function that returns the full path to a specific style sheet when loaded externally and inline if the applied
style is added by a <style> tag:

getStyleSheetName: function(styleSheet) { return styleSheet.href || "Inline";
},

Determining if a specific CSS rule is applied on a node

Each style sheet object contains a property called rules. This property is a CSSRuleList of all
CSSStyleRules that are inside this style sheet. Each rule has its own property selectorText that contains a
selector of a rule. To get all nodes that contain that selector, we can use
document.querySelectorAll(rule.selectorText). Here is a simple example where we get all rules and
find all nodes that contain each rule selector:

Array.from(styleSheet.rules).forEach(function(rule) { var selector = rule.selectorText,
 matchedNodes = document.querySelectorAll(selector);
});

Guidelines and Best Practices

There are some general guidelines for writing succinct and meaningful rules to ensure high quality, consistency
and better usability of the reported issues.

Rule Property Values

The following table contains guidelines and examples on how to set the rule property values.

Field Guidelines / Explanation Example / Clarification

ID ● CamelCase
● Start with small caps

hardcodedTextValues

Async Defines if the rule check function will contain asynchro
nous operations. It can be true or false. The default value
is false.

Make sure you use the resolve function
in your rule check function as a 4th pa
rameter.

Audiences ● Control - rule is relevant for control developers
● Internal - rule is relevant for an SAP internal devel

oper
● Application - rule is relevant for app developers

Choose one.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1369

Field Guidelines / Explanation Example / Clarification

Categories A list of categories checked that show which aspects of
the application are affected by the rule. Examples:

● Performance
● Model Bindings
● Memory

Choose one or more, or add your own.

Min version The minimum SAPUI5 version required so that the rule
can produce valid results. The Support Assistant consid
ers applicable rules according to their minversion
value.

If you have rules in your custom library, keep in mind that
the rule minversion will still be compared against the
underlying SAPUI5 version. If you are not aware of the ver
sion, you can put in the minversion field "*", "-" or
whitespace (" ") to make sure these rules are executed.

for example, 1.44 for SAPUI5 version
comparison or "*", "-", or whitespace ("
") to avoid version filtering.

Max version The maximum SAPUI5 version required to run the rule. (currently not taken into account)

Title ● As short as possible, as descriptive as possible.

● (Where applicable) - <Control Name (no
namespace)>: Description of issue

● Sentence case.

Page: invalid background design prop
erty

Description ● Briefly explain what the rule does/checks.
● Ideally one sentence. No period.
● Avoid explaining how to fix the issue.

Dialogs with content should have ariaLa
belledBy association set

Resolution ● Explain how to fix the issue.
● Use imperative.
● Ideally one sentence. No period.
● Could be left out if it is trivial and already explained in

the Description.

Set property upperCase to false or add
icons to IconTabFilters

Details ● Contains technical details on a rule that was trig
gered for a specific element.

● References specific errors and should not be a reso
lution hint.

Element{0} has no icon but its parent El
ement{1} has property upperCase set to
true.

1370 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Field Guidelines / Explanation Example / Clarification

URLs ● Ideally every rule should point to a topic or document
in the DevGuide, API Reference, Samples, or SAP
Fiori Design Guidelines.

● Use the following text values when referring to spe
cific parts of the documentation:

○ Developer Guide - Documentation:
<Title of topic>

○ API Reference - API Reference: <Name
of control + path to method/
property>

○ SAP Fiori Guidelines - SAP Fiori
Guidelines: <Name of control>

○ External Link - no description text, just a URL

● Documentation: Element Binding
● API Reference: ComboBox #getSe

lectedItem
● SAP Fiori Design Guidelines: Radio

Button

Check function Check function code function (issueManager,
oCoreFacade, oScope)
{ ... }

Check Function Guidelines

Here are some general guidelines that you should consider when creating a new rule:

● Create very specific rules
It is important that the rules are as specific as possible. Avoid too generic or unspecific rules that would
produce excessive number of issues difficult to digest or follow up. The rules should focus on one issue and
provide a resolution for it.

● Reduce the number of issues generated
Do not overload the user with a large number of issues. When appropriate, produce one issue where
multiple texts are concatenated with \n delimiter.

● Write clear descriptions and resolutions
Use the guidelines in Create a Ruleset for a Library [page 1360]

Test Recorder

The Test Recorder tool supports app developers who write integration and system tests.

The Test Recorder is part of the SAPUI5 framework and is available in all browsers. As of version 1.74, you can
use the tool in any SAPUI5 app to inspect the rendered user interface (UI), view the control properties, and gain
hints on writing tests. The Test Recorder is aligned with the two official SAPUI5 testing tools – OPA5 and
UIVeri5.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1371

Getting Started

There are two ways to open the Test Recorder:

● In a separate window: Press CTRL + SHIFT + ALT + T
● In an IFrame: Press CTRL + SHIFT + ALT + P to display the Technical Information Dialog and then

choose Activate Test Recorder

The main sections of the tool are Control Tree, Snippet, and Common Info.

From the navigation actions at the top bar of the Test Recorder, you can minimize, resize, open it in a new
window, or close the tool.

Control Tree and Common Information

In the Control Tree section, you can see the DOM structure of the current app page. When navigating to another
page or view, the tree is automatically updated.

1372 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

You can display more information in the Control Tree by selecting the Namespaces and Attributes checkboxes.
Entering text in the Search field highlights all elements that (partially) match by namespace, control name, or
attribute values.

 Note
Elements in the Control Tree get highlighted if there's a match by namespace or attribute value even when
the Namespaces and Attributes checkboxes aren't selected and the information isn't visible.

There are three general types of testing-relevant information that you can gather for any control:

● Position in the rendered control tree, type and ID – displayed in the Control Tree section. To see the control
type, select the Namespace checkbox. To see the ID, select the Attributes checkbox.

● Properties (either own or inherited) – displayed in the Common Info section on the Properties tab.
● Bindings (binding context, properties, and aggregations) – displayed in the Common Info section on the

Bindings tab.

 Note
● If an ID is not stable (because it was generated automatically), it's not suitable for tests. Unstable IDs

start with a double underscore.
● Many controls can have the same property or binding values. Therefore, when you use them in a

control locator, the test finds multiple controls. This is a valid scenario, but it’s always more reliable to
locate only one control with a highly specific locator.

Actions

You can perform the following actions on controls, either from the Control Tree or from the rendered UI of the
app:

● Highlight: Generates a code snippet for finding the control, which can be used to assert the control state.
● Press: Generates a code snippet for pressing on the control.
● Enter Text: Generates a code snippet for entering text into the control.

To perform an action from the Control Tree, right-click and choose Press or Enter Text in the context menu. If
you want to highlight the respective control in the rendered UI, simply select the desired element in the tree.

To perform an action from the app page, right-click on any control and select the desired action from the
context menu (the respective control is highlighted in the Control Tree).

 Note
A Press or Enter Text action snippet is generated irrespective of whether the control accepts such
interactions. Keep in mind that such a snippet is not suitable for tests.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1373

Snippets

The code snippets generated by the Test Recorder usually contain a function invocation that locates one
control on the app page. The function receives one argument – a control locator. The control location is a JSON
object containing a specific combination of conditions and matchers.

The code snippet can be directly copied and pasted into your test code and is already aligned with the
supported tools for testing – OPA5 and UIVeri5. To choose the tool for which to generate a code snippet, select
an option from the Dialect dropdown menu. The raw selector option gives you just the control locator with no
function invocations.

Related Information

Integration Testing with One Page Acceptance Tests (OPA5) [page 1182]
Stable IDs: All You Need to Know [page 1442]
API Reference: sap.ui.test.Opa5
GitHub: ui5-ui5veri5

UI5 Inspector

The UI5 Inspector is an open source Chrome DevTools extension that helps app developers to inspect, analyze,
and support SAPUI5-based apps. It is supported for apps based on SAPUI5 version 1.28 and higher.

Check out the UI5 Inspector video on YouTube for a quick overview of the most common use cases.

Key features:

● Inspect SAPUI5 controls and review their properties, bindings, and data model
● Modify control properties on the fly and see how this affects rendering and behavior
● Find relevant framework information for your SAPUI5 app

How to get it?

You can download the UI5 Inspector as a standard extension from the Chrome Web Store at https://
chrome.google.com/webstore/detail/ui5-inspector/bebecogbafbighhaildooiibipcnbngo?hl=en .

Features

Once installed, the UI5 Inspector is available in Chrome DevTools (by choosing F12). It becomes active when
an SAPUI5 app is loaded.

1374 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.test.Opa5
http://help.sap.com/disclaimer?site=https%3A%2F%2Fgithub.com%2FSAP%2Fui5-uiveri5
http://help.sap.com/disclaimer?site=https%3A%2F%2Fchrome.google.com%2Fwebstore%2Fdetail%2Fui5-inspector%2Fbebecogbafbighhaildooiibipcnbngo%3Fhl%3Den
http://help.sap.com/disclaimer?site=https%3A%2F%2Fchrome.google.com%2Fwebstore%2Fdetail%2Fui5-inspector%2Fbebecogbafbighhaildooiibipcnbngo%3Fhl%3Den

Browser Action

Clicking the browser action icon in the address bar provides you with:

● Information on the used SAPUI5 version
● Links to the What's New in SAPUI5 section and the SAPUI5 documentation

 Note
Your version of SAPUI5 may be older than the latest and the features described in the documentation may
not be available for you.

Control Inspector

This tab shows the structure and nesting of the SAPUI5 controls. You can search and filter for specific controls.
You have the options to show/hide the control's namespace and attributes in the tree.

Hovering over a specific branch of the tree highlights the corresponding control in the app.

Additionally, you can right click on any SAPUI5 control from the app and select Inspect UI5 control. This
automatically selects the control in the tree and you can review its properties directly.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1375

Properties

In this tab, you can see the properties that have been set for the selected control. Additionally, the inherited
properties are also listed.

You can change the values of the properties. The changes will be validated against the framework and rendered
on the fly.

 Note
Errors from incorrectly set values are displayed in the Chrome browser's console.

Bindings

In this tab, you can see the bindings for a specific control. The number of bindings is displayed in parentheses
in the tab title. Selecting the tab gives you more information about individual models, paths and values. The
model property holds a link to the corresponding binding file. Clicking on the link opens the Model Information
section with details about all values.

1376 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Tip
UI5 Inspector supports a dark theme in case you are using the Google Developer Tools in dark mode.

Application Information

In this tab, you can see overall information for your app – for example, the exact SAPUI5 version you are
running, the version of your browser, and the app URL. The information on the loaded libraries and modules is
collapsed by default.

Performance Measurement Using sap/ui/performance/
Measurement Module

You can use sap/ui/performance/Measurement to measure the performance of your JavaScript code.

For each measurement, the result is a time and a duration. The time are the milliseconds (ms) from starting the
measurement till its end. The duration is the effective milliseconds, pause phases are not counted here.

You can measure the categories that are used by the SAPUI5 core classes as listed in the following table:

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1377

Category Description

javascript (de
fault)

Default measurement category if no category is provided

require Identifies the duration of jQuery.sap.require for lazy loading of JavaScipt classes including
the loading and parsing times for a class

xmlhttpreques
t

Identifies the duration of an jQuery.ajax call

render Used for all rendering-related measurements that trigger core rendering of controls within the
RenderManager class

With the render category there comes an additional set of categories to distinguish between differ-
ent phases of rendering

control Identifies the duration for HTML rendering provided with the ControlRender.render method

after Identifies the duration for calls on the control's onAfterRendering method

preserve Identifies the duration needed to find out whether rendering can be preserved

Procedure

1. Activate performance measurement

By default, Measurement is disabled to avoid unnecessary code execution during runtime. Therefore, you first
have to activate the measurement using one of the following options:

● Use URL Parameter sap-ui-measure=true to measure an initial request.
● Use the diagnostics window in your app with Ctrl + Alt + Shift + S . In this window, you can also

see a visualization of the results.
● Activate measurement in the browser's console by calling Measurement.setActive(true)
● Create a measurement in your code with:

// "Log" required from module "sap/base/Log" // "Measurement" required from module "sap/ui/performance/Measurement"
Measurement.setActive(true);
Measurement.start("myId","Measurement of myId");
Log.info("foo"); Measurement.end("myId");

You can use methods as listed in the following table:

Action Method

Start measurement Measurement.start(sId,sInfo,
[categories])

1378 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Action Method

End measurement Measurement.end(sId)

Pause Measurement.pause(sId)

Resume Measurement.resume(sId)

To activate measurement for certain categories only, you have the following options:

● Provide a URL Parameter with categories sap-ui-measure=category1,category2
● Add the category as parameter to the call of the Measurement.setActive as in the following example:

// Measure only "require" category // "Measurement" required from module "sap/ui/performance/Measurement" Measurement.setActive(true,"require")

To assign a measurement to a specific category, just add the category to the start function.

// "Measurement" required from module "sap/ui/performance/Measurement" Measurement.start("myId","Measurement of myId", **\["foo"\]**);

 Note
If you also use the start or average method, make sure that the same categories are passed on,
otherwise no measurement is started.

2. Retrieve the results

You can view the results in the Performance section of the diagnostics window (Ctrl + Alt + Shift +
S). Here, you can also refresh the result list, if the performance measurement is still running.

You can retrieve the results via API with one of the following commands:

Command Returns

Measurement.getAllMeasurements() Array of all measures (running and completed)

Measurement.getAllMeasurements(true) Array of completed measures

Measurement.getAllMeasurements(false) Array of running (not completed) measures

Measurement.getMeasurement(string) One specific measurement by ID

Measurement.filterMeasurements(func) Array of all measures based on the result of the filter func
tion (running and completed)

Measurement.filterMeasurements(func,
true)

Array of completed measures based on the result of the filter
function

Measurement.filterMeasurements(func,
false)

Array of running measures based on the result of the filter
function

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1379

In Google Chrome, for example, you can also display the results in a table in the console by using:

console.table(Measurement.getAllMeasurements(true)) //table with completed
measurements

3. Interpret the results

Each entry in the resulting array provides an object of the following structure:

● id: string
The unique ID of the measurement as provided in the start or average method

● info: string
Additional information as provided in the start or average method

● duration: float
Duration or average duration in ms

● count: int
Number of calls counted of an average

● average: boolean
Indicates whether the result is an average

● categories: string[]
Categories as provided in the start or average method

4. Clear results

To clear all measurements call the Measurement.clear method.

Specific Use Cases

Averages

For repeatedly occurring operations, you can calculate an average duration with the Measurement.average
method.

// "Log" required from module "sap/base/Log" // "Measurement" required from module "sap/ui/performance/Measurement"
Measurement.setActive(true);
for (var i=0;i<1000;i++) {
 Measurement.average("myId","Average of myId");
 Log.info("Foo " + i);
 Measurement.end("myId"); }

Based on the ID, all measurement calls are counted and the average duration is calculated and provided in the
result, together with the complete duration and the number of calls:

// "Log" required from module "sap/base/Log" // "Measurement" required from module "sap/ui/performance/Measurement"
Log.info("1000 calls: " + Measurement.getMeasurement("myId").count === 1000); //
true
Log.info("Average time: " + Measurement.getMeasurement("myId").duration);

1380 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Measurement of Object Methods

You can register an average measurement without changing the original source code. For this, you use the
following APIs:

● Measurement.registerMethod
● Measurement.unregisterMethod
● Measurement.unregisterAllMethods

To measure the average time a method of an instance, you can use the following example code:

// "Button" required from module "sap/m/Button" // "Measurement" required from module "sap/ui/performance/Measurement"
var oButton = new Button();
Measurement.registerMethod("oButton.setText", oButton, "setText",
["instance"]); //register to oButton instance on method setText
Measurement.setActive(true,["instance"]); //measure only category "instance"
for (var i=0;i<1000;i++) {
 oButton.setText("MyButton" + i);
}

Measurement.unregisterMethod(oButton, "setText");
// or Measurement.unregisterAllMethods(); Measurement.getAllMeasurements();

To measure the average time a method of a class, you can use the following example code:

// "Button" required from module "sap/m/Button" // "Measurement" required from module "sap/ui/performance/Measurement"
Measurement.registerMethod("oButton.setText", Button.prototype, "setText",
["class"]); //register to Button class on method setText
Measurement.setActive(true,["class"]); //measure only category "class"
for (var i=0;i<1000;i++) {
 var oButton = new Button();
 oButton.setText("MyButton" + i);
}

Measurement.unregisterMethod(oButton, "setText");
//or Measurement.unregisterAllMethods();
 Measurement.getAllMeasurements();

Filtering

You can also use the categories listed above as filters for the result list or to define measurements for one or
more specific categories with the filterMeasurements method.

To filter the categories that are measured, you use, for example:

// Filter for category1 Measurement.filterMeasurements(function(oMeasurement) {
 return oMeasurement.categories.indexOf("category1") > -1; });

To filter the results, you can use a code like this:

// Filter for duration > 500ms Measurement.filterMeasurements(function(oMeasurement) {
 return oMeasurement.duration > 500;
});

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1381

Related Information

API Reference: jQuery.sap.measure.html
Performance: Speed Up Your App [page 1434]
Performance Issues [page 1467]

Interaction Tracking for Performance Measurement

You can identify performance issues in your application by tracking the interaction that is performed on the UI.

Interaction in this context means a closed step in a sequence of actions that a user performs on the UI, for
example, everything that happens between two clicks on two different buttons.

To start interaction tracking, use Interaction.setActive(true) from module sap/ui/performance/
trace/Interaction. To map the interaction data to the data of sap/ui/performance/Measurement, you
have to explicitly set sap-ui-measure=true.

To retrieve the result of the interaction measurement, use Interaction.getAll() from module sap/ui/
performance/trace/Interaction. This returns an array of all interactions that occurred and their
measurement.

You can use Interaction.filter from module sap/ui/performance/trace/Interaction to filter the
interaction measurements according to a filter function (fnFilter).

Example of an Interaction Measurement

InteractionMeasurement = { event: "click", // event which triggered interaction
 trigger: "Button1", // control which triggered interaction
 component: "my.Component", // component or app identifier
 start : 0, // interaction start
 end: 0, // interaction end
 navigation: 0, // sum over all navigation times on the critical
path
 roundtrip: 0, // time from first request sent to last received
response end
 processing: 0, // client processing time
 duration: 0, // interaction duration
 requests: [], // Performance API requests during interaction
 measurements: [], // sap/ui/performance/Measurement measurements
 sapStatistics: [], // SAP Statistics for OData
 requestTime: 0, // sum over all requests in the interaction
 networkTime: 0, // request time minus server time from the header
 bytesSent: 0, // sum over all requests bytes
 bytesReceived: 0, // sum over all response bytes
 requestCompression: false, // true if all responses have been sent gzipped
 busyIndication: 0 // summed GlobalBusyIndicator duration during
this interaction }

1382 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/jQuery.sap.measure.html

Properties of Interaction Measurements

Table 57: Properties of Interaction Measurements

Property Type Description

event String Event type which triggered the interaction. Allowed types are:

● mousedown
● mouseup
● click
● keydown
● keyup
● keypress
● touchstart
● touchend
● tap
● mousewheel
● scroll

trigger String ID of the element that triggered the action

component String ID of the app or name of the Component that contains the triggering element

start Number Time stamp when interaction was started (in ms)

end Number Time stamp when interaction has been finalized (in ms)

 Note
This is not always the start time plus the duration. The duration is determined de
pending on the heuristic determination of the processing time.

navigation Number Navigation time for all requests, calculated as difference from startTime to
connectEnd of a PerformanceTiming (in ms)

Requests that are started while another request is already in progress are ignored
(see figure below).

roundtrip Number Roundtrip time for a request, calculated as difference from requestStart to
responseEnd of a PerformanceTiming (in ms)

processing Number JavaScript processing time of an interaction. This is the time consumed when no re
quests are active. Although we also have JavaScript being processed while asynchro
nous requests are active, we only consider those to be relevant (in ms)

duration Number If a processing time could be determined duration is navigation plus roundtrip plus
processing time. Otherwise it is navigation time plus roundtrip time, or end time mi
nutes start time if network requests last longer than the actual interaction (in ms)

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1383

Property Type Description

requests Performa
nceTimin
g[]

All requests that occurred during the interaction, taken from the
NavigationTiming API

measurements Measurem
ent[]

Performance measurements (see Performance Measurement Using sap/ui/perform
ance/Measurement Module [page 1377])

sapStatistics Object[] Map of request URL to corresponding sap-statistics header as String (format:
{ url: "https://somehost.com/sap/data...", statistics:
"total=167,fw=167,app=0,gwtotal=167,gwhub=160,gwrfcoh=0,g
wbe=7,gwapp=0,gwnongw=0" })

requestTime Number Sum over all request durations of this interaction, from startTime to
responseEnd (in ms)

networkTime Number Average latency of the requests that occurred during the interaction, calculated using
the sap-perf-fesrec header that is sent (if available) by the back end with each
response (in ms)

bytesSent Number Sum over all bytes sent with requests (content plus headers)

bytesReceived Number Sum over all bytes received with responses (content plus headers)

requestCompres
sion

Boolean Indicates if all requests during an interaction have been received in GNU zip format
("gzipped")

busyDuration Number Time how long a GlobalBusyIndicator was rendered and hence blocking the UI
during an interaction

1384 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Calculation of Times

Related Information

API Reference: jQuery.sap.measure
Performance Measurement Using sap/ui/performance/Measurement Module [page 1377]
NavigationTiming API on https://developer.mozilla.org
Navigation Timing on https://www.w3.org/

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1385

https://sapui5.hana.ondemand.com/#docs/api/symbols/jQuery.sap.measure
http://help.sap.com/disclaimer?site=https%3A%2F%2Fdeveloper.mozilla.org%2Fen%2Fdocs%2FWeb%2FAPI%2FNavigation_timing_API
http://help.sap.com/disclaimer?site=https%3A%2F%2Fwww.w3.org%2FTR%2F2012%2FREC-navigation-timing-20121217

First-Aid Kit

This section contains the most common issues that you might face when developing SAPUI5 apps and how to
solve them.

An Empty Page Comes Up

You find yourself in one of these situations:

● The browser shows an empty page: there's no content and no error message is displayed
● An Uncaught Error message is shown in the developer console

1386 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Preview

Figure 239: The browser displays an empty page and an Uncaught Error is issued in the console

Root Cause

This can happen for one of the following reasons:

● A critical reference error is prohibiting the app from starting.
● A syntax error is stopping the execution of your application code.
● A parsing error has occurred in an XML view.
● The tag of the control is written with lowercase letters.
● The root view is missing a root control.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1387

Resolution

Console shows "ReferenceError: sap is not defined"

Have a look at the resource path in the bootstrap of the HTML page you are trying to open. The path to the file
sap-ui-core.js is probably incorrect and needs to point to the path where the SAPUI5 resources are located
(typically globally under /resources or locally under resources).

If you are running the code in SAP Web IDE, you have to configure the neo-app.json project descriptor (see
Create a neo-app.json Project Configuration File [page 46]).

Other development environments might need the resources to be copied to the server and referenced relatively
to the app (see Standard Variant for Bootstrapping [page 694]).

Alternatively, you can use the CDN version (see Variant for Bootstrapping from Content Delivery Network [page
696]).

Console shows SyntaxError: <error details>

A JavaScript error in the application code throws an exception and stops all subsequent execution. Take a look
at the error details: In most cases, the root cause is mentioned in the first line of the error message.

The stack trace can provide more context on the execution scope. Analyze it from thoroughly to find a line
referencing your application code and start debugging there.

Console shows Error: Invalid XML

If the XML view to be displayed cannot be parsed, SAPUI5 stops the execution and throws a parse error. Check
the XML view for namespace issues, typos, and missing closing tags. Do a schema validation with an XML
validator tool.

Console shows Uncaught Error: failed to load 'sap/m/xxxxx.js'

During the development on Microsoft Windows, your app works fine, but a soon as you deploy it on a Linux
system, only an empty page comes up.

This could happen if you wrote the tag of the control with lowercase letters, because Linux systems use case-
sensitive file names.

Correct Example Incorrect Example

<Button text="Click me" /> <button text="Click me" />

Error message: Uncaught Error: failed to load
'sap/m/button.js'

 Tip
Control tags always start with capital letters after the namespace like <Button>, <l:FixFlex>,
<f:SimpleForm>.

Aggregations always start with lowercase letters like <content>, <l:fixContent>, <f:content>

1388 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Console shows no error

Your root view is missing a root control. In the context of SAPUI5, sap.m.App or sap.m.SplitApp function as
root controls. Please check your root view (for example App.view.xml) and add the missing root control.

Content or Control Is Not Visible

You find yourself in the situation that a control or the content of a control is not visible, but you don't see an
error message in the console.

Root Cause

This can happen for one of the following reasons:

● The element is not properly bound
● The visible property is set to false
● The height or width dimension is set to 0

Resolution

First, you should check if your control was rendered properly by using the developer tool of your browser to
check the DOM element. For information about how to use your browser tools, see the documentation of you
browser or check our Troubleshooting Tutorial Step 1: Browser Developer Tools [page 196].

Wrong binding

If you bound your control to a source, for example, an image control, the binding may not be resolved properly.
This can be caused by minor mistakes such as typos. We recommend using Diagnostics to debug your
bindings. For more information, see Diagnostics [page 1326].

In the Diagnostics window, you can check whether you used a relative binding instead of an absolute one or vice
versa.

If you, for example, use a List control, you bind the list itself to an absolute path like items="{/Products}"
whereas the aggregations are bound to a relative path like title="{Name}". The actual path of the title
property is now {/Products/*Product_Index*/Name}.

If you used an absolute binding path like title="{/Name} for an aggregation instead of a relative one, the
result in the window would look like this:

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1389

Another common error related to binding is to refer to the default model instead of referring to a specific
model. This happens, for examples, if you forgot to add the model name to the binding declaration.

For example, you have two models in your application: the default model, which has no name and another
model named cartProducts. To bind to the cartProducts model you have to write the model name
explicitly like items="{cartProducts>/cartEntries}".

If you used the binding correctly Diagnostics displays the following:

1390 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

If the model name is missing, you see the following:

visible property set to false
If you set the visible property of a control to false, it will not be rendered at all.

Nested controls inherit the value of the visible property from their parents. Therefore, if the control that you
are missing is nested in a parent control that is set to invisible, the nested control will also not be rendered.

You can fix this by setting the visible property of the parent control to true or by moving your missing
control in the XML view so that it is not longer nested inside an invisible control.

Dimensions set to 0
Most controls have the properties width and height. If one of them is explicitly set to 0 some controls may
not be displayed at all. Similar to the visible property, the value of width and height are also inherited from
parent controls, as long as you don't set an explicit value for these dimensions. If you, for example, set one of
the dimension values for a control to 100% it will have the same size as the parent control. And if the parent's
width is 0 the nested control will also be 0.

As with the visible property, you can solve this by either increasing the size of the parent or setting fixed
values for the child (for example, 100px) instead of a relative value.

Request Fails Due to Same-Origin Policy (Cross-Origin
Resource Sharing - CORS)

If you use a remote URL in your code, for example a remote OData service, such as the publicly available
Northwind OData service, the browser may refuse to connect to a remote URL. Due to the same-origin policy,
browsers deny AJAX requests to service endpoints in case the service endpoint has a different domain/
subdomain, protocol, or port than the app.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1391

Preview

Figure 240: Violations of the same-origin policy in Google Chrome

Root Cause

Normally, the remote system would be configured to send the cross-origin resource sharing (CORS) headers to
make the browser also allow direct access to remote URLs. However, if you, for example, use a Northwind
OData service, you cannot modify the publicly available service. Then when you try to execute XHR requests
(XMLHttpRequest) the browser prevents the call due to the same-origin policy.

Resolution

To solve the issue, you have the following options:

● SAP Web IDE: Configure a destination as described below (recommended)
● Local Development: Configure a local proxy (CORS anywhere)
● Workaround: Disable the same-origin policy in the browser for local testing (not recommended, only for

testing)
● Set the CORS-relevant response headers on the remote system (if possible)

SAP Web IDE: Configure a destination

SAP Web IDE and the SAP Cloud Platform offer destinations that allow you to easily connect to remote
systems. The destination to the Northwind OData service is an internet proxy made available inside the app at
<protocol>://<domain>/destinations/northwind/*. Any request that is sent to this location is
forwarded to https://services.odata.org automatically.

Create Destination in SAP Cloud Platform Cockpit

Requested URL Forwarded To

/destinations/northwind/V2/Northwind/
Northwind.svc/$metadata

https://services.odata.org/V2/Northwind/
Northwind.svc/$metadata

1392 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Requested URL Forwarded To

/destinations/northwind/V2/Northwind/
Northwind.svc/Invoices

https://services.odata.org/V2/Northwind/
Northwind.svc/Invoices

The destination itself is configured inside the SAP Cloud Platform Cockpit. For more information, see Create a
Northwind Destination [page 49].

neo-app.json
For SAP Web IDE, a neo-app.json file is needed to make sure that the destination and resource mapping are
available in the app. It has to be located in the root folder (webapp), on the same level as the
user.project.json file that is automatically created.

If it does not exist yet, create a neo-app.json file and reference the Northwind destination there. Just copy
the content of the code into that file and try to run the app again.

{
 "routes": [
 {
 "path": "/destinations/northwind",
 "target": {
 "type": "destination",
 "name": "northwind"
 },
 "description": "Northwind OData Service"
 }
]
}

 Note
If the file already exists, for example, because you already created it to map the SAPUI5 resources, just
append the destination to the existing route definitions.

manifest.json
In the manifest.json descriptor file of your app, you can now change the data source to use the remote
destination, for example:

{ "_version": "1.12.0",
 "sap.app": {
 ...
 "dataSources": {
 "invoiceRemote": { "uri": "/destinations/northwind/V2/Northwind/Northwind.svc/", "type": "OData",
 "settings": {
 "odataVersion": "2.0"
 }
 }
 }
 },
 "sap.ui": {
 ...
 },
 "sap.ui5": {
 ...

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1393

 } }

After this change, you can run the app in SAP Web IDE without disabling the same-origin policy of your browser.
The destination now manages the connection to the remote service.

Local Development: Configure a local proxy (CORS anywhere)

A proxy is simply a service end point on the same domain of your app to overcome the restrictions. It receives
requests from the app, forwards them to another server, and finally returns the corresponding response from
the remote service.

Follow the below steps to configure such a proxy in your poject.

Prerequisites: NodeJS is installed on your machine.

package.json

{ "name": "Sample-Package",
 "version": "1.0.0",
 "description": "Sample package.json", "scripts": {
 "proxy": "node proxy.js"
 },
 "devDependencies": {
 "cors-anywhere": "^0.4.1"
 }, "dependencies": {
 } }

Add the devDependency called "cors-anywhere": "^0.4.1" to your existing package.json. Run node
install to install the npm module. Add the proxy script to the scripts section in the package.json so
that you can run a script via npm run <script_name>.

proxy.js (new)

var cors_proxy = require('cors-anywhere');

// Listen on a specific IP Address
var host = 'localhost';

// Listen on a specific port, adjust if necessary
var port = 8081;

cors_proxy.createServer({
 originWhitelist: [], // Allow all origins
 requireHeader: ['origin', 'x-requested-with'],
 removeHeaders: ['cookie', 'cookie2']
}).listen(port, host, function() {
 console.log('Running CORS Anywhere on ' + host + ':' + port);
});

Create a new file proxy.js, and copy the above script into your project directory. This is the pre-configured
proxy server we are going to use to prevent the occurrence of same-origin policy error. We can start it by
running the command node proxy.js or npm run proxy. It runs a local proxy on port in the
console.

1394 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

manifest.json

{ "sap.app": {
 ...
 "dataSources": {
 "northwind": { "uri": "http://localhost:8081/https://services.odata.org/V2/
Northwind/Northwind.svc/", "type": "OData",
 "settings": {
 "odataVersion": "2.0"
 }
 }
 }
 } }

To use a service in the local ui5 application we have to change the uri in the manifest file.

 Note
The uri must start with http://localhost:<port>.

 Note
By default, you can't run the request in your browser with the proxy.js script. It throws the following
exception: exception Missing required request header. Must specify one of:
origin,x-requested-with. If you want to test the service in your browser, you can temporarily
comment out the line requireHeader: ['origin', 'x-requested-with'] from your proxy.js.

For more information on CORS Anywhere, see https://www.npmjs.com/package/cors-anywhere

Workaround: Disable the same-origin policy in the browser (not
recommended, only for testing)

. It runs a local proxyIn Google Chrome, you can easily disable the same-origin policy of Chrome by running
Chrome with the following command: [your-path-to-chrome-installation-dir]\chrome.exe --
disable-web-security --user-data-dir. Make sure that all instances of Chrome are closed before you
run the command. This allows all web sites to break out of the same-origin policy and connect to the remote
service directly.

 Caution
This approach is not recommended for productive apps. Running Chrome this way for surfing on the
internet poses a security risk. However, it allows you to avoid the need of setting up a proxy at
development time or for testing purposes.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1395

http://help.sap.com/disclaimer?site=https%3A%2F%2Fwww.npmjs.com%2Fpackage%2Fcors-anywhere

App or Control Looks Odd

You find yourself in a situation that your app or a control looks different than you expected.

Root Cause

This can happen for one of the following reasons:

● An HTML file is missing the DOCTYPE specification (this leads, for example, to exceptionally high table
headers)

● Custom styles aren't working properly
● The theme you are using does not support the used libraries

Resolution

To solve the issue, you have the following options:

● Check whether the <!DOCTYPE html> tag is placed at the beginning of each HTML file, before the <html>
tag.

● Check if you have used a custom CSS in your app.
If you have used a custom CSS, it is probably interfering with the styling in the standard SAPUI5 theming
libraries.
Use the developer tools of your browser to inspect the element that has the wrong styling. In the HTML tab,
you can usually see which styles are applied to a DOM element. If you have styles in the list that are added
by your app, disable these styles in the debugger to see whether this solves the problem.

 Note
SAPUI5-specific CSS classes and IDs all have an sapUi prefix, for example, sapUiButton.

If this does not solve the issue, check for inline styles that are applied to the element in the HTML code. You
can also try to isolate the control from the app to see whether there is an issue with the control instead of a
collision of styles.

● Check whether the theme you that you are using is supported in combination with the libraries that you are
using in your app. For more information, see Supported Combinations of Themes and Libraries [page 27]
and Deprecated Themes and Libraries [page 34].

Developing Apps

Create apps with rich user interfaces for modern web business applications, responsive across browsers and
devices, based on HTML5.

1396 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Project Setup

Before you start developing apps with SAPUI5, you start by setting up the development environment of your
choice. You can find our recommendations under Development Environment [page 41].

After that, you define the project setup. If you work in a team, we recommend using a continuous integration
setup as described under Continuous Integration: Ensure Code Quality [page 1398]. If you work alone, you
should at the very least set up an automated testing environment.

Development

When faced with developing an app, you have several ways to get started ranging from app templates or a
make-em-completely-from-scratch approach. But which approach is right for your situation? In most cases,
it's your level of expertise or need for flexibility and freedom that will decide.

Think of the app templates described in this section as a kind of best practice for app development. They
incorporate our latest recommendations and can be used as a starting point for developing apps according to
the SAP Fiori design guidelines. They include generic application functionality and tests that can be easily
extended with custom functionality if needed. There are separate templates for Worklist and Master-Detail
application patterns, and we have an empty basic template. The templates are described under App Templates:
Kick Start Your App Development [page 1399].

If you're skilled at coding and want the freedom and flexibility, you can build an app completely from scratch. In
the chapters in this section, you will find some guidance on how to deal with crucial concepts such as
accessibility, security, device adaptation.

Be sure to check out information about things that you really should avoid doing while coding: Coding Issues to
Avoid [page 1458].

You can also use SAP Fiori elements or the reuse components of Analysis Path Framework. For more
information, see Developing Apps with SAP Fiori Elements [page 1535] and Developing Apps with Analysis Path
Framework (APF) [page 2040].

Packaging and Deployment

How you deploy your app when you're finished depends on the tools you use and the platform where your app
is going to run. See the related documentation for details.

For example, it's quite easy to deploy an app to SAP Cloud Platform with SAP Web IDE. For more information
about SAP Web IDE, see the documentation for SAP Web IDE on the SAP Help Portal at https://help.sap.com/
viewer/p/SAP_Web_IDE.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1397

https://help.sap.com/viewer/p/SAP_Web_IDE
https://help.sap.com/viewer/p/SAP_Web_IDE

 Note
For more information about packaging apps, read the blog post Optimizing OpenUI5/SAPUI5 Apps.

Continuous Integration: Ensure Code Quality

This section describes the setup of a development project where multiple developers work together on the
same code.

When you develop an app, you want, of course, to deliver high code quality. To do so, you have various tools at
hand:

● Unit and integration tests to make sure that your change doesn't break the app or other tests (see Unit
Testing with QUnit [page 1159] and Integration Testing with One Page Acceptance Tests (OPA5) [page
1182])

● Code analyzer (or "linter") to check whether the code follows the code style conventions that apply to your
project

● A code coverage analyzer to check the test coverage of your code
● A code collaboration tool to let other experts review your code
● An automation server that orchestrates the automated task

If you work in a team where you share the same code with your colleagues, or if you work in a continuous
delivery context where an app is updated on a regular basis, you need the support of automated continuous
integration processes.

Continuous integration makes sure that only code that has passed various automated and manual checks is
merged to productive use.

In an SAPUI5 project, the process, for example, can look like this:

1. When the code is ready, the developer commits the code to the source code management system (SCMS,
for example, Gerrit Code Review) and assigns experts that should review the code.

2. The SCMS calls an automation server (for example, Jenkins).
3. The developer triggers the peer code review and the automation server starts a voter job that triggers,

among others:
○ Static code checks (for example, ESLint) to check the code style
○ Unit and integration test automated by a test runner (for example, Karma)
○ Analysis to check whether all parts of the code are covered with automated tests (for example, with

Karma plug-in Istanbul Code Coverage)
4. When the voter job and the human reviewer have both given their OK, the change can be merged.

1398 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://blogs.sap.com/2015/02/18/optimizing-openui5-apps/

Figure 241: Code cannot be merged because automated tests failed

Related Information

Testing [page 1158]
Gerrit Code Review Home Page
Jenkins Home Page
ESLint Home Page
Karma Home Page
Istanbul Code Coverage Home Page

App Templates: Kick Start Your App Development

The app templates documented here are a kind of "best practice" for your app development.

They incorporate our latest recommendations and can be used for example as a starting point for developing
apps. They include generic application functionality and tests that can be easily extended with custom
functionality if needed.

There are separate templates for the Worklist and Master-Detail application patterns, which are closely
aligned with the SAP Fiori design guidelines. The subsections of this chapter explain the concepts and features
of each of these templates. See the SAP Fiori Design Guidelines .

 Note
These templates were primarily created for developing SAP Fiori apps in accordance with the SAP Fiori
design guidelines, but can also be used in any other SAPUI5 context.

The basic template serves as a starting point when you want to start from scratch, but also want to make sure
that everything is set up properly.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1399

http://help.sap.com/disclaimer?site=https%3A%2F%2Fwww.gerritcodereview.com
http://help.sap.com/disclaimer?site=https%3A%2F%2Fjenkins.io%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Feslint.org%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fkarma-runner.github.io%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fistanbul.js.org%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2F

Where Can I Find the Templates?

All templates are available under Demo Apps, in SAP Web IDE, and in the SAP Repository on GitHub .

Template Demo App Name in SAP Web IDE Name of GitHub Repository

Basic template Basic Template SAPUI5 Application openui5-basic-
template-app

Worklist template Worklist Template

Worklist (FLP) Template

SAP Fiori Worklist Applica
tion

SAP Fiori Worklist Applica
tion - OData V4

openui5-worklist-
app

Master-Detail template Master-Detail Template

Master-Detail (FLP) Tem
plate

SAP Fiori Master-Detail Ap
plication

openui5-
masterdetail-app

Related Information

Demo Apps [page 671]
Development Environment [page 41]

Worklist Template

The SAP Fiori Worklist Application template implements a typical worklist floorplan, one of the patterns that
is specified by the SAP Fiori design guidelines.

A worklist displays a collection of items to be processed by the user and usually involves reviewing details of a
list item and taking action. If the data needs to be organized into columns or the overview of the items is more
important than showing the item details directly, this template can be used as a starting point. For more
information about worklist floorplans, see the SAP Fiori Design Guidelines .

 Note
You have two options: You can use this template to build an app for the SAP Fiori launchpad (FLP) or to
build standalone apps.

● If the app runs in FLP it also contains additional features like Save as Tile or Share in SAP Jam that
depend on FLP at runtime. This app cannot be run standalone, meaning no index.html file is created
but only files for testing the app in the FLP sandbox.

● Only standalone apps contain an index.html file that is used to start the app.

1400 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#demoapps.html
http://help.sap.com/disclaimer?site=https%3A%2F%2Fgithub.com%2FSAP
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2F

Figure 242: Screenshot of the Worklist App

The Worklist view is the main view that is initially displayed in this app. When a user clicks or taps an item in the
table, the Object view is displayed, showing more details for the selected item. We use the semantic
FullscreenPage control as the page for both. A SemanticPage is an enhanced sap.m.Page that contains
controls with a semantic meaning and displays them according to the SAP Fiori Design Guidelines, for example.
For more details about semantic controls, see the sample in the Demo Kit.

The table in the Worklist view displays a header area that shows the current amount of items in the worklist and
a search field. The number of items are updated automatically and the search filters for a preconfigured
column of the table.

 Note
As the use cases for apps using a worklist pattern differ greatly, we only show a basic scenario in our
template as a starting point for your individual development activities. For more information, see How Do I
Enhance the Template? [page 1402]

Where Can I Find the Worklist Template?

You can find the template in the following places:

● SAP Fiori Worklist Application (for OData V2 models) and SAP Fiori Worklist Application - OData V4 (for
OData V4 models) templates in SAP Web IDE
For more information about SAP Web IDE, see the documentation for SAP Web IDE on the SAP Help Portal
at https://help.sap.com/viewer/p/SAP_Web_IDE.

● Worklist Template and Worklist (FLP) Template under Demo Apps.
● openui5-worklist-app in the SAP Repository on GitHub

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1401

https://sapui5.hana.ondemand.com/explored.html#/entity/sap.m.semantic.SemanticPage/samples
https://help.sap.com/viewer/p/SAP_Web_IDE
https://sapui5.hana.ondemand.com/#demoapps.html
http://help.sap.com/disclaimer?site=https%3A%2F%2Fgithub.com%2FSAP

For more information on how to clone or download the template from GitHub, refer to the template
documentation on GitHub .

Tutorial

See the Worklist App [page 447] tutorial for an example of how this application can be extended. The result of
this tutorial can be seen as the Manage Products app in the Demo Apps section of the Demo Kit.

How Do I Enhance the Template?

In our template, we use a simple layout that you can use as a basis for enhancements. For example, if you want
to use an object page with a dynamic header, you can use one of the page-type Object Page Layout samples. All
you have to do is replace the relevant content in the template with the content from the sample.

You can find more information about the possibilities of object pages at SAP Fiori Design Guidelines - Object
Page.

Related Information

Demo Apps [page 671]
Development Environment [page 41]
Worklist App [page 447]

1402 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/disclaimer?site=https%3A%2F%2Fgithub.com%2FSAP%2Fopenui5-worklist-app%2Fblob%2Fmaster%2FREADME.md
https://sapui5.hana.ondemand.com/#/sample/sap.uxap.sample.ObjectPageDynamicHeader/preview
https://experience.sap.com/fiori-design-web/object-page/
https://experience.sap.com/fiori-design-web/object-page/

Navigation

The navigation flow of the Worklist app is very simple as it only contains two main views and the not found
pages that are displayed as a message to the user in case of navigation errors.

Figure 243: Navigation Flow of the Worklist App

The two main views Worklist and Object each have a route and a target configured. When the route matches the
URL, the target is displayed and the corresponding view is created. For more information, see Routing and
Navigation [page 1072].

Here is a sample implementation for navigating from the worklist to the object page. First you have to
implement a press handler on the ListItem. Inside, you extract the current ID of the object pressed by the
user by using its bindingContext. Since we want to navigate to the “object” route, you need to supply the
mandatory objectId parameter and pass it to the navTo function, as described in the
sap.ui.core.routing.Routing#navTo section of the API Reference in the Demo Kit and shown here:

/** * Event handler when a table item gets pressed
 * @param {sap.ui.base.Event} oEvent the table selectionChange event
 * @public
 */
onPress : function (oEvent) {
 // The source is the list item that got pressed
 this.getRouter().navTo("object", {
 objectId: oEvent.getSource().getBindingContext().getProperty("ObjectID")
 });
}, // more controller code

After calling navTo, the hash of the browser is updated and you get an event on the ObjectController when
the route “object” matches the current hash. In the event handler, you extract the objectId using the
Event.getParameter function. You then bind the data to the view:

// init function of the object controller

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1403

https://sapui5.hana.ondemand.com/#/api/sap.ui.core.routing.Router/methods/navTo

 onInit : function () {
 var oView = this.getView();
 var oModel = oView.getModel();
 this.getRouter().getRoute("object").attachPatternMatched(function (oEvent) {
 var sObjectId = oEvent.getParameter("arguments").objectId;
 oModel.metadataLoaded().then(function() {
 var sObjectPath = oModel.createKey("Objects", {
 ObjectID : sObjectId
 });
 oView.bindElement({
 path: ("/" + sObjectPath)
 });
 });
 });
 …
 // more init code
},
… // more controller code

notFound (similar to an HTTP 404 "not found" status code)

The not found pages are implemented using a sap.m.MessagePage. They display an error message according
to the SAP Fiori UX specifications. There are different "not found" cases that each have a separate target and a
notFound view.

If you have the following URL, no route will match: index.html/#/thisIsInvalid. This means that the
notFound view will be displayed, as the target notFound is defined in the bypassed section.

The code sample below shows the relevant parts of the configuration. For a full implementation of a not found
page, see Step 3: Catch Invalid Hashes [page 300].

"routing": { "config": {
 …
 "bypassed": {
 "target": "notFound"
 }
 }
 …
 "targets": {
 …
 "notFound": {
 "viewName": "NotFound",
 "viewId": "notFound"
 } }

objectNotFound

If the object route matches – an ID is passed (for example #/Objects/1337) but the back end does not
contain an object with the ID 1337, then you need to display the objectNotFound page. This is achieved by

1404 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/entity/sap.m.MessagePage/samples

listening to the “change” event of a binding. Inside this, you check if there is no data and tell the router to
display the objectNotFound target, as shown in the sample code below:

// inside of a controller this.getView().bindElement({
 path: “/Objects/1337”,
 change: function () {
 // there is no data
 if (!this.getView().getElementBinding().getBoundContext()) {
 this.getRouter().getTargets().display("objectNotFound");
 return;
 }
 // code handling the case if there is data in the backend
 …
 }; });

The routing configuration for this navigation flow is set up in the descriptor for applications (manifest.json
file), as shown here:

 "routing": {
 "config": {
 "routerClass": "sap.m.routing.Router",
 "viewType": "XML",
 "viewPath": "sap.ui.demo.worklist.view",
 "controlId": "app",
 "controlAggregation": "pages",
 "bypassed": {
 "target": "notFound"
 }
 },
 "routes": [
 {
 "pattern": "",
 "name": "worklist",
 "target": "worklist"
 },
 {
 "pattern": "Objects/{objectId}",
 "name": "object",
 "target": "object"
 }
],
 "targets": {
 "worklist": {
 "viewName": "Worklist",
 "viewId": "worklist",
 "viewLevel": 1
 },
 "object": {
 "viewName": "Object",
 "viewId": "object",
 "viewLevel": 2
 },
 "objectNotFound": {
 "viewName": "ObjectNotFound",
 "viewId": "objectNotFound"
 },
 "notFound": {
 "viewName": "NotFound",
 "viewId": "notFound"
 }
 }
}

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1405

For more information, see Routing and Navigation [page 1072], the sap.m.routing.Router section of the API
Reference documentation in the Demo Kit, and the sap.ui.core.routing.Router sample within the Demo Kit.

Busy Indication

The Worklist app implements a busy indication concept as specified by the SAP Fiori Design Guidelines.

Calling the app will result in the following:

● Only initially a global busy indicator is displayed that overlays the whole app until the metadata of the
service is loaded.

● A local busy indicator is displayed on the worklist table or on the page of the object view while the data
from the service is loading.

● When controls are loading additional data or getting refreshed, a local busy indication is displayed
automatically.

By default, the busy indicator delay is set to one second for all controls. This would first show the UI for a
second, then show a busy indication until the data is loaded. To avoid this behavior initially and show the busy
indicator immediately without delay the following concept is implemented in the app: The
busyIndicatorDelay and busy properties of certain controls (AppView, Table on the Worklist page,
FullScreenPage on the Object page) are bound to the local view model and manipulated in the controllers of
the app. The delay is initially set to "0" for displaying the busy indicator immediately, and reset to the previous
value after the initial loading is done.

 Note
You can find more information about busy indicators, busy states, and busy handling in general in the SAP
Fiori Design Guidelines.

Model Instantiation

The app configures several data models that are used throughout the app to update the views or to store
additional configuration options.

The service model and the resource bundle are instantiated automatically by the app’s component during
startup and described in the first section. The local view models and helper models such as the device model
are set up as JSON models and described in the second section.

Automatic Model Instantiation

The templates instantiate the service and resource model automatically using the following configuration
entries in the descriptor. When the component of the app is initialized, these models will be made available
under the configured name throughout the app.

1406 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.routing.Router.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.ui.core.routing.Router/sample
https://experience.sap.com/fiori-design/
https://experience.sap.com/fiori-design/

An external service is defined in the dataSources section of the sap.app namespace. In the example shown
below, we configure an OData V2 model and the alias "mainService" in the manifest.json descriptor file:

 {
 …
 "sap.app": {
 …
 "i18n": "i18n/i18n.properties",
 …
 "dataSources": {
 "mainService": {
 "uri": "/here/goes/your/serviceUrl/"
 "type": "OData",
 "settings": {
 "odataVersion": "2.0",
 "localUri": "localService/metadata.xml"
 }
 }
 },
 …
 },
 … }

 Note
If you use the OData V4 template, you set the odataVersion accordingly.

In the models section of the sap.ui5 namespace we define two models that will be instantiated automatically.
The resource model is a named model (i18n) and the OData model is the default model so it has no name. The
OData model also receives additional URL parameters via the metadataUrlParams. The parameters sap-
server, sap-client, and sap-language are passed to the service automatically by SAPUI5, as shown in the
following manifest.json code snippet:

 {
 …
 "sap.ui5": {
 …
 "models": {
 "i18n": {
 "type": "sap.ui.model.resource.ResourceModel",
 "settings": {
 "bundleName": "sap.ui.demo.masterdetail.i18n.i18n"
 }
 },
 "": {
 "dataSource": "mainService",
 "preload": true
 }
 },
 …
 } }

 Note
Before SAPUI5 version 1.30, all models were defined and instantiated in the component's init method. We
recommend removing all manual model creation code and switching to the automatic model instantiation
instead. The "device model" however is still a local model that has to be instantiated manually.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1407

Additional Models for the App

The following models are created as local JSON models in the app and can be referenced by its model name
where needed:

● device
The device model provides an easy access to the device API and is used to configure certain view settings
according to the user’s device.

● FLP
The FLP model is a helper module to configure SAP Fiori launchpad (FLP) integration and is used to control
the sharing options of the app.

● worklistView
A local view model for the worklist view that stored configuration options that are bound to controls in the
view.

● objectView
A local view model for the object view that stored configuration options that are bound to controls in the
view.

Send Email

The Send Email feature is a sharing option that can be found in the share menu of each view.

This feature simply triggers a sap.m.URLHelper action that will show a new email with preconfigured texts in
the default client of the user.

The placeholder texts are located in the resource model and can be adjusted to your use case. The texts
already include the current context and the current location. The texts may vary for each view, therefore they
are configured with the local view model and updated when the business object context has changed.

For more information about sap.m.URLHelper, see the sample in the Demo Kit.

Testing

The templates include basic testing features, unit tests as well as integration tests for a basic test coverage of
the initial app. The tests are written independently of the actual data displayed in the app.

The webapp folder of the template app contains a test.html file which serves as an overview for the different
test pages. You can run the app with or without mock data and run the unit and integration tests. This section
describes which application tests are provided and how they are structured.

Custom Mock Data

To run the automated tests below, we need a stable reference between the item on the master page and the
items displayed in the line item table on the detail page. The mock server we use to simulate a backend system

1408 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/entity/sap.m.UrlHelper/samples

is capable of creating random entities suitable for testing, but it cannot foresee the dependency between the
entity sets.

After creating this template, we therefore need to create mock data to successfully run all automated tests
delivered with this template.

In SAP Web IDE, you can easily create mock data that fulfill the conditions above: Right-click on the
metadata.xml file in the localService folder of your template project, and select Edit Mock Data. Select the
entity sets that you have chosen for the master page and the detail page, and choose Generate Random Data.
The generated files will be put in the folder localService/mockdata.

Figure 244: Screenshot of the Edit Mock Data dialog

You can also manually download a set of json files from the actual service by appending $format=json to the
corresponding URL. Download the resulting files, and put them in the localService/mockdata folder within
the template project.

For more information, see Step 2: Custom Mock Data [page 456] in our Worklist App tutorial.

Integration Tests

The integration tests shipped with the template cover all basic functionality and provide several "journeys".
Journeys include a series of OPA tests that belong to the same functionality and should be executed together:

● NavigationJourney: This journey will trigger user interactions and navigate through the application. The
routing configuration, basic navigation events, and error handling are tested here.

● NotFoundJourney: Several "not found" cases of the application are tested here. Faulty navigation
scenarios are introduced intentionally to simulate errors.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1409

● WorklistJourney: A series of tests for the Worklist page that check the busy indication and sharing
features built into the app.

● ObjectJourney: A series of tests for the Object page that check the busy indication and sharing features
built into the app.

● FLPIntegrationJourney: This journey is available if you have enabled SAP Fiori launchpad (FLP) for
your app. It tests the FLP integration features Save as tile and Share on SAP Jam.

● AllJourneys: This is a convenience journey that will call all the other journeys specified above and is used
in the test suite file.

You can execute all journeys by calling the test suite file opaTests.qunit.html in the webapp/test/
integration folder or selecting the run all integration tests link in the test.html file in the app’s root folder.

For more information, see Integration Testing with One Page Acceptance Tests (OPA5) [page 1182] and
sap.ui.test.Opa5 in the Samples within the Demo Kit.

Unit Tests

In the unit subfolder you can find all unit tests for our application. They are structured similarly to the
structure of the webapp folder. For example, controller tests are located in the controller folder whereas
formatter tests are located in the model folder.

Unit tests are included for the following functionality:

● App controller tests
● Worklist controller tests
● Formatters
● Device model

As with the integration tests, you can execute all unit tests by calling the test suite file
unitTests.qunit.html in the webapp/test/unit folder or selecting the run all unit tests link in the
test.html file in the app’s root folder.

For more information, see Unit Testing with QUnit [page 1159], https://qunitjs.com/ and http://sinonjs.org/
.

Device Adaptation

The following section outlines the best practices for ensuring your worklist apps adapt to different kinds of
devices in the best way possible.

Content Density

The app templates include a mechanism to adjust the content density of the controls according to the device
features. On devices that feature touch support, the controls are automatically displayed larger. For more
information, see How to Use Densities for Controls [page 1146].

1410 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/entity/sap.ui.test.Opa5/samples
http://help.sap.com/disclaimer?site=https%3A%2F%2Fqunitjs.com%2F
http://help.sap.com/disclaimer?site=http%3A%2F%2Fsinonjs.org%2F
http://help.sap.com/disclaimer?site=http%3A%2F%2Fsinonjs.org%2F

Stable IDs

Setting stable IDs is crucial if your app is used in combination with certain functions.

Most controls in the template apps (except for aggregations that are created dynamically, such as list items)
are assigned a stable ID to identify the controls in integration tests, extensibility tools like key user adaptation,
as well as interactive inline help tools.

Related Information

SAPUI5 Flexibility: Adapting UIs Made Easy [page 1152]
Extending Apps [page 2143]
Stable IDs: All You Need to Know [page 1442]

Master-Detail Template

The SAP Fiori Master-Detail Application template implements a flexible column layout, one of the design
patterns that is specified by the SAP Fiori design guidelines.

The flexible column layout is a layout control that displays multiple floorplans on a single page. This allows
faster and more fluid navigation between multiple floorplans than the usual page-by-page navigation. The
flexible column layout offers different layouts with up to three columns. In the template, we use two colums
(master and detail). For more information about flexible columns and master-detail apps, see the SAP Fiori
Design Guidelines .

 Note
You have two options: You can use this template to build an app for the SAP Fiori launchpad (FLP) or to
build standalone apps.

● If the app runs in FLP it also contains additional features like Save as Tile or Share in SAP Jam that
depend on FLP at runtime. This app cannot be run standalone, meaning no index.html file is created
but only files for testing the app in the FLP sandbox.

● Only standalone apps contain an index.html file that is used to start the app.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1411

http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2F

Figure 245: Screenshot of the Master-Detail App

The main control of this app is the sap.f.flexibleColumnLayout control. This control first displays only
the Master view with a list of objects. When the user selects an object in the master list, the Detail view is
displayed on the right side, showing the details for the selected item.

The Master view shows the current number of items and a search field that can be used to search through the
list items. The number of items are updated automatically and the search filters for a preconfigured field of the
list. Functionality for sorting, filtering, and grouping the list is also included in the template as well.

The Detail page contains a dynamic page header displaying more details for the selected object, an
sap.m.Overflowtoolbar that can be enriched with custom content, and a table of line items that are
associated to the selected object in the data model.

The master list and the line item table are set to growing mode so that initially only the first few items are
displayed for performance reasons. Using the scrollToLoad feature, the user can display more items by
scrolling down or pressing the trigger at the end of the list.

We use the semantic MasterPage and DetailPage controls for the content aggregations of the
sap.f.FlexibleColumnLayout control. A SemanticPage is an enhanced sap.f.DynamicPage that
contains controls with semantic-specific meaning and displays them according to the SAP Fiori design
guidelines. For more details about semantic controls, see the sample in the Demo Kit.

 Note
As the use cases for apps using a master-detail pattern differ greatly, we only show a basic scenario in our
template as a starting point for your individual development activities. For more information, see How Do I
Enhance the Template? [page 1413]

1412 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.f.semantic.SemanticPage/samples

Where Can I Find the Master-Detail Template?

You can find the template in the following places:

● SAP Fiori Master-Detail Application template in SAP Web IDE
For more information about SAP Web IDE, see the documentation for SAP Web IDE on the SAP Help Portal
at https://help.sap.com/viewer/p/SAP_Web_IDE.

● Master-Detail Template and Master-Detail (FLP) Template under Demo Apps.
● openui5-masterdetail-app in the SAP Repository on GitHub

For more information on how to clone or download the template from GitHub, refer to the template
documentation on GitHub .

How Do I Enhance the Template?

In our template, we use a simple layout that you can use as a basis for enhancements. For example, if you want
to use an object page with a dynamic header, you can use one of the page-type Object Page Layout samples. All
you have to do is replace the relevant content in the template with the content from the sample. To add a third
column to your app, create a new view and have a look at the sap.f.FlexibleColumnLayout examples to
see how to configure it.

You can find more information about the possibilities of object pages at SAP Fiori Design Guidelines - Object
Page.

Related Information

Demo Apps [page 671]
Development Environment [page 41]

Navigation

The navigation flow of the Master-Detail app considers both the Master and Detail pages, and is therefore
slightly more complex than a typical full-screen scenario.

With an empty hash in the URL, only the master view is shown initially. When the user enters the app with an
object id in the hash, both views are loaded at the same time, and methods in the controller logic make sure
that the pages are in sync. Additional not found pages display a message to the user in case of any navigation
errors that occur for the master and the detail page.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1413

https://help.sap.com/viewer/p/SAP_Web_IDE
https://sapui5.hana.ondemand.com/#demoapps.html
http://help.sap.com/disclaimer?site=https%3A%2F%2Fgithub.com%2FSAP
http://help.sap.com/disclaimer?site=https%3A%2F%2Fgithub.com%2FSAP%2Fopenui5-masterdetail-app%2Fblob%2Fmaster%2FREADME.md
https://sapui5.hana.ondemand.com/#/sample/sap.uxap.sample.ObjectPageDynamicHeader/preview
https://experience.sap.com/fiori-design-web/object-page/
https://experience.sap.com/fiori-design-web/object-page/

Figure 246: Navigation Flow of the Master-Detail App

The two main views Master and Object each have a route and two targets configured. When the route matches
the URL, both targets are displayed and the corresponding views are created. The target master puts the
created view in the beginColumnPages aggregation of the sap.f.FlexibleColumnLayout control. All
other targets put their created views in the midColumnPages aggregation. For more information, see Routing
and Navigation [page 1072].

Here is a sample implementation for navigating from the Master to the Object page. The below _showDetail
method is called by the selectionChange event handler of the sap.m.List control. We need to change the
layout parameter of the sap.f.FlexibleColumnLayout to TwoColumnsMidExpanded and navigate to the
object route. Then, we extract the current ID of the object pressed by using its binding context. We supply this
parameter to the mandatory objectId parameter and pass it to the navTo function, as described in the
sap.ui.core.routing.Routing#navTo section of the API Reference in the Demo Kit and shown here:

... /**
 * Shows the selected item on the detail page
 * On phones an additional history entry is created
 * @param {sap.m.ObjectListItem} oItem selected Item
 * @private
 */
_showDetail : function (oItem) {
 var bReplace = !Device.system.phone;
 // set the layout property of FCL control to show two columns
 this.getModel("appView").setProperty("/layout", "TwoColumnsMidExpanded");
 this.getRouter().navTo("object", {
 objectId : oItem.getBindingContext().getProperty("ObjectID")
 }, bReplace);
}, ...

After calling navTo, the hash of the browser is updated, and you get an event on the DetailController when
the route object matches the current hash. In the _onObjectMatched handler that we register in the init

1414 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.core.routing.Router/methods/navTo

method of the controller, we extract the objectID from the event arguments and create a valid model path
with the help of the createKey method of our OData model. We then bind the data to the view:

... /**
 * Binds the view to the object path and expands the aggregated line items.
 * @function
 * @param {sap.ui.base.Event} oEvent pattern match event in route 'object'
 * @private
 */ _onObjectMatched : function (oEvent) { var sObjectId = oEvent.getParameter("arguments").objectId; this.getModel("appView").setProperty("/layout", "TwoColumnsMidExpanded");
 this.getModel().metadataLoaded().then(function() { var sObjectPath = this.getModel().createKey("Objects", {
 ObjectID : sObjectId });
 this._bindView("/" + sObjectPath);
 }.bind(this));
}, ...

notFound (similar to an HTTP 404 "not found" status code)

The not found pages are implemented using an sap.m.MessagePage. They display an error message according
to the SAP Fiori UX specifications. There are different "not found" cases that each have a separate target and a
notFound view.

If you have the following URL, no route will match: index.html/#/thisIsInvalid. This means that the
notFound view will be displayed, as the target notFound is defined in the bypassed section.

The code sample below shows the relevant parts of the configuration. In addition, we set the layout property for
the sap.f.FlexibleColumnLayout to OneColumn in the controller of the notFound page so that only a
single column is displayed in this case. For a full implementation of a not found page, see Step 3: Catch Invalid
Hashes [page 300].

"routing": { "config": {
 …
 "bypassed": {
 "target": "notFound"
 }
 }
 …
 "targets": {
 …
 "notFound": {
 "viewName": "NotFound",
 "viewId": "notFound"
 } }

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1415

https://sapui5.hana.ondemand.com/explored.html#/entity/sap.m.MessagePage/samples

detailObjectNotFound

If the object route matches – an ID is passed (for example #/Objects/1337) but the back end does not
contain an object with the ID 1337, then you need to display the detailObjectNotFound page. This is achieved by
listening to the “change” event of a binding. Inside this, you check if there is no data and tell the router to
display the detailObjectNotFound target, as shown in the sample code below:

// inside of a controller this.getView().bindElement({
 path: "/Objects/1337",
 change: function () {
 // there is no data
 if (!this.getView().getElementBinding().getBoundContext()) {
 this.getRouter().getTargets().display("detailObjectNotFound
");
 return;
 }
 // code handling the case if there is data in the backend
 …
}; });

Busy Indication

The Master-Detail app implements a busy indication concept as specified by the SAP Fiori Design Guidelines.

Calling the app will result in the following:

● Only initially a global busy indicator is displayed that overlays the whole app until the metadata of the
service is loaded.

● Afterwards, a local busy indicator is displayed on the master list and the detail page.
● When the detail page is loaded, the line item table on the detail page is set to busy until the line items are

loaded with a separate service call.
● When controls are loading additional data or getting refreshed, a local busy indication is displayed

automatically.

By default, the busy indicator delay is set to one second for all controls. This would first show the UI for a
second, then show a busy indication until the data is loaded. To avoid this behavior initially and show the busy
indicator immediately without delay, the following concept is implemented in the app: The
busyIndicatorDelay and busy properties of certain controls (AppView, List on the Master page,
DetailPage and Table on the Detail page) are bound to the local view model and manipulated in the
controllers of the app. The delay is initially set to "0" for displaying the busy indicator immediately, and reset to
the previous value after the initial loading is done.

You can simulate server delays to test this implementation running with mocked application data by using the
URL parameter serverDelay=true in the hash. The default is set to 1000ms.

 Note
You can find more information about busy indicators, busy states, and busy handling in general in the SAP
Fiori Design Guidelines.

1416 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://experience.sap.com/fiori-design/
https://experience.sap.com/fiori-design/

Model Instantiation

The app configures several data models that are used throughout the app to update the views or to store
additional configuration options.

The service model and the resource bundle are instantiated automatically by the app’s component during
startup and described in the first section. The local view models and helper models such as the device model
are set up as JSON models and described in the second section.

Automatic Model Instantiation

The templates instantiate the service and resource model automatically using the following configuration
entries in the descriptor. When the component of the app is initialized, these models will be made available
under the configured name throughout the app.

An external service is defined in the dataSources section of the sap.app namespace. In the example shown
below, we configure an OData V2 model and the alias "mainService" in the manifest.json descriptor file:

 {
 …
 "sap.app": {
 …
 "i18n": "i18n/i18n.properties",
 …
 "dataSources": {
 "mainService": {
 "uri": "/here/goes/your/serviceUrl/"
 "type": "OData",
 "settings": {
 "odataVersion": "2.0",
 "localUri": "localService/metadata.xml"
 }
 }
 },
 …
 },
 … }

 Note
If you use the OData V4 template, you set the odataVersion accordingly.

In the models section of the sap.ui5 namespace we define two models that will be instantiated automatically.
The resource model is a named model (i18n) and the OData model is the default model so it has no name. The
OData model also receives additional URL parameters via the metadataUrlParams. The parameters sap-
server, sap-client, and sap-language are passed to the service automatically by SAPUI5, as shown in the
following manifest.json code snippet:

 {
 …
 "sap.ui5": {
 …
 "models": {
 "i18n": {

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1417

 "type": "sap.ui.model.resource.ResourceModel",
 "settings": {
 "bundleName": "sap.ui.demo.masterdetail.i18n.i18n"
 }
 },
 "": {
 "dataSource": "mainService",
 "preload": true
 }
 },
 …
 } }

 Note
Before SAPUI5 version 1.30, all models were defined and instantiated in the component's init method. We
recommend removing all manual model creation code and switching to the automatic model instantiation
instead. The "device model" however is still a local model that has to be instantiated manually.

Additional Models for the App

The following models are created as local JSON models in the app and can be referenced by its model name
where needed:

● device
The device model provides an easy access to the sap.ui.Device API and is used to configure certain view
settings according to the user’s device.

● FLP
The FLP model is a helper module to configure SAP Fiori launchpad (FLP) integration and is used to control
the sharing options of the app.

● masterView
A local view model for the master view that stored configuration options that are bound to controls in the
view.

● detailView
A local view model for the detail view that stored configuration options that are bound to controls in the
view.

● appView
A local view model for the app view that stored configuration options that are bound to controls in the view.

Related Information

Resource Bundle API
ODataModel V2
OData V2 Model [page 883]
Descriptor for Applications, Components, and Libraries [page 734]

1418 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.Device.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.resource.ResourceModel.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.odata.v2.ODataModel.html

Master List Filtering

You can use the following best practices when implementing search, sorting, filtering and grouping functions
for a master list in your Master-Detail apps.

A search field is displayed in the master list to filter the list items for a custom keyword. In the header toolbar of
the master list, options for sorting, filtering, and grouping are displayed. When searching or using one of the
options in the header, the list content is updated automatically, and the search result is displayed.

All four options adjust the master list content (search, sort, filter, group) and are managed and applied in the
logic of the master controller. This section describes the implementation details for these four options.

Search

The search is implemented in a manual mode and the list operation mode is "server". This means that the
search has to be triggered explicitly by pressing enter or the search button, and the results are always fetched
from the server.

The search function is implemented using the standard SAPUI5 sap.ui.model.Filter objects. The options
are added to an internal state object of the controller and applied together with the filters that can be selected
in the filter options. The type of these filters is "Application", and these filters are added on top of the
predefined filters from the framework of type "Control".

The Search field also displays a Refresh button. Pressing this button triggers a simple refresh for the list
binding.

Sorting, Filtering and Grouping

Sorting, filtering, and grouping can be implemented by using a semantic button that opens a
sap.m.ViewSettingsDialog containing options for sorting, grouping, and filtering.

The event handlers that are called when selecting a sorting and grouping option are similar. They are
implemented as an XML fragment with a sap.m.ViewSettingsDialog in a fragment. Therefore, we process
the selected options in the handler of the dialog's confirm event. The event handlers create a
sap.ui.model.Sorter object on the key field of the selected item. For the grouping functionality, a custom
grouper is loaded and applied to the selected entry. Both sorting and grouping options are applied together on
the binding of the master list. A sap.ui.model.Filter object is created for each filter option that has been
selected in the dialog and applied together with the search option on the master list.

The filter message is automatically updated with the chosen filter texts. It is displayed on top of the master list
and can be clicked to reopen the filter settings.

Related Information

SAP Fiori Design Guidelines: Master List

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1419

https://experience.sap.com/fiori-design/floorplans/master-list/

Send Email

The Send Email feature is a sharing option that can be found in the share menu of each view.

This feature simply triggers a sap.m.URLHelper action that will show a new email with preconfigured texts in
the default client of the user.

The placeholder texts are located in the resource model and can be adjusted to your use case. The texts
already include the current context and the current location. The texts may vary for each view, therefore they
are configured with the local view model and updated when the business object context has changed.

For more information about sap.m.URLHelper, see the sample in the Demo Kit.

Testing

The templates include basic testing features, unit tests as well as integration tests for a basic test coverage of
the initial app. The tests are written independently of the actual data displayed in the app.

The webapp folder of the template app contains a test.html file which serves as an overview for the different
test pages. You can run the app with or without mock data and run the unit and integration tests. This section
describes which application tests are provided and how they are structured.

Custom Mock Data

To run the automated tests below, we need a stable reference between the item on the master page and the
items displayed in the line item table on the detail page. The mock server we use to simulate a backend system
is capable of creating random entities suitable for testing, but it cannot foresee the dependency between the
entity sets.

After creating this template, we therefore need to create mock data to successfully run all automated tests
delivered with this template.

In SAP Web IDE, you can easily create mock data that fulfill the conditions above: Right-click on the
metadata.xml file in the localService folder of your template project, and select Edit Mock Data. Select the
entity sets that you have chosen for the master page and the detail page, and choose Generate Random Data.
The generated files will be put in the folder localService/mockdata.

1420 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/entity/sap.m.UrlHelper/samples

Figure 247: Screenshot of the Edit Mock Data dialog

You can also manually download a set of json files from the actual service by appending $format=json to the
corresponding URL. Download the resulting files, and put them in the localService/mockdata folder within
the template project.

For more information, see Step 2: Custom Mock Data [page 456] in our Worklist App tutorial.

Integration Tests

The integration tests shipped with the template cover all basic functionality and provide several "journeys".
Journeys include a series of OPA tests that belong to the same functionality and should be executed together.
Some of the journeys are implemented for both phone and desktop use cases to test device-specific
interaction steps:

● BusyJourney / BusyJourneyPhone: This journey tests the busy indication features of the app for phone
and other devices.

● NavigationJourney / NavigationJourneyPhone: This journey will trigger user interactions and
navigate through the application. The routing configuration, basic navigation events, and error handling are
tested here.

● NotFoundJourney/NotFoundJourneyPhone: Several "not found" cases of the application are tested
here. Faulty navigation scenarios are introduced intentionally to simulate errors.

● MasterJourney: Tests for the Master page that check the search, sorting, filtering and grouping features
built into the app.

● FLPIntegrationJourney: This journey is available if you have enabled SAP Fiori launchpad (FLP) for
your app. It tests the FLP integration features Save as tile and Share on SAP Jam.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1421

● AllJourneys: This is a convenience journey that will call all the other journeys specified above and is used
in the test suite file.

You can execute all journeys by calling the test suite file opaTests.qunit.html or
opaTestsPhone.qunit.html in the webapp/test/integration folder or selecting the run all integration
tests link in the test.html file in the app’s root folder.

For more information, see Integration Testing with One Page Acceptance Tests (OPA5) [page 1182] and
sap.ui.test.Opa5 in the Samples within the Demo Kit.

Unit Tests

In the unit subfolder you can find all unit tests for our application. They are structured similarly to the
structure of the webapp folder. For example, controller tests are located in the controller folder whereas
formatter tests are located in the model folder.

Unit tests are included for the following functionality:

● ListSelector tests
● Formatters
● Device model

As with the integration tests, you can execute all unit tests by calling the test suite file
unitTests.qunit.html in the webapp/test/unit folder or selecting the run all unit tests link in the
test.html file in the app’s root folder.

For more information, see Unit Testing with QUnit [page 1159], https://qunitjs.com/ and http://sinonjs.org/
.

Device Adaptation

The following section outlines the best practices for ensuring your master-detail apps adapt to different kinds
of devices in the best way possible.

Content Density

The app templates include a mechanism to adjust the content density of the controls according to the device
features. On devices that feature touch support, the controls are automatically displayed larger. For more
information, see How to Use Densities for Controls [page 1146].

1422 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/entity/sap.ui.test.Opa5/samples
http://help.sap.com/disclaimer?site=https%3A%2F%2Fqunitjs.com%2F
http://help.sap.com/disclaimer?site=http%3A%2F%2Fsinonjs.org%2F
http://help.sap.com/disclaimer?site=http%3A%2F%2Fsinonjs.org%2F

Stable IDs

Setting stable IDs is crucial if your app is used in combination with certain functions.

Most controls in the template apps (except for aggregations that are created dynamically, such as list items)
are assigned a stable ID to identify the controls in integration tests, extensibility tools like key user adaptation,
as well as interactive inline help tools.

Related Information

SAPUI5 Flexibility: Adapting UIs Made Easy [page 1152]
Extending Apps [page 2143]
Stable IDs: All You Need to Know [page 1442]

Basic Template

The basic template is intended for all developers who want to start developing their own SAPUI5 app from
scratch.

With this basic template you have a blank canvas to start coding right away. The basic file structure is set up
according to our best practices.

 Note
This template does not include SAP Fiori launchpad (FLP) features and is intended for standalone use. If
you want to convert it to a launchpad app you have to add some features manually, such as the Save as Tile
feature.

Figure 248: Screenshot of the Basic App

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1423

The index.html file defines the page that is displayed when the app is started. It is located in the webapp
folder. It contains an XML view with a header and a title from the sap.m library as a starting point. You can
easily modify the app to add more functionality.

Integrated Tests

Figure 249: Test for the Basic App

An important best practice is to have unit and integration tests for your app. With this template, we have
included sample tests that you can use: Tests on formatters and the app controller are the basic tests any app
should cover. You can find them in the test subfolder of the webapp folder.

Where Can I Find the Basic Template?

You can find the template in the following places:

● SAPUI5 Application in SAP Web IDE
For more information about SAP Web IDE, see the documentation for SAP Web IDE on the SAP Help Portal
at https://help.sap.com/viewer/p/SAP_Web_IDE.

1424 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://help.sap.com/viewer/p/SAP_Web_IDE

● Basic Template under Demo Apps.
● openui5-basic-template-app in the SAP Repository on GitHub .

For more information about how to clone or download the template from GitHub, refer to the template
documentation on GitHub .

Related Information

Demo Apps [page 671]
Development Environment [page 41]

App Overview: The Basic Files of Your App

We recommend creating at least three files for your app: the descriptor (manifest.json), the component
(Component.js), and the main view of the app (App.view.xml).

Descriptor (manifest.json)

We recommend that you use the manifest.json file to configure the app settings and put all important
information needed to run the app in there. Using this approach means you need to write less application code,
and you can already access the information before the app is instantiated.

Some attributes in the descriptor are just for information purposes, such as the minimum SAPUI5 version
(minUI5version), others help external components (for example the SAP Fiori launchpad (FLP)) to integrate

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1425

https://sapui5.hana.ondemand.com/#demoapps.html
http://help.sap.com/disclaimer?site=https%3A%2F%2Fgithub.com%2FSAP
http://help.sap.com/disclaimer?site=https%3A%2F%2Fgithub.com%2FSAP%2Fopenui5-basic-template-app%2Fblob%2Fmaster%2FREADME.md

the application correctly, but most of the attributes are actually used to configure specific aspects of the app
that are needed frequently.

The most important configuration settings are:

● Models. Examples of models are the configuration of the OData service (default model) and language files
(i18n model). All models described in the manifest.json file are automatically instantiated when the app
is started.

● Libraries and components that are used in the app and have to be loaded during app initialization.
● The root view of your application.
● Routing configuration that defines the navigation between views.

Root View (App.view.xml)

The App.view.xml file defines the root view of the app. In most cases, it contains an App control or a
SplitApp control as a root control.

SAPUI5 supports multiple view types (XML, HTML, JavaScript, JSON). We recommend using XML views, as for
these you have to separate the controller logic from the view definition in a controller file (for example
App.controller.js).

We also recommend creating a separate view file for each view you want to use in your app.

Component (Component.js)

The Component.js file holds the app setup. The init function of the component is automatically started by
SAPUI5 when the component is instantiated.

 Caution
Your component extends UIComponent. If you are overriding the init function of your component, you have
to make sure that you call the init function of UIComponent and initialize the router afterwards.

In the metadata section of the component, you define a reference to the descriptor file. When the component is
instantiated, the descriptor is loaded and parsed automatically.

HTML Page

All apps are started using an HTML page that loads SAPUI5 and the component. You have two options: You can
build an app for the FLP or build a standalone app.

● App for FLP
The FLP instantiates the component based on the information given in the descriptor file. The FLP can
contain multiple apps at the same time. Each app can define local settings, such as supported themes or
supported devices.

1426 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

This app cannot be run standalone, meaning no index.html file is created but only HTML files for testing
the app in the FLP sandbox.
For more information, search for Embedding SAPUI5 Applications in the documentation of your SAP
NetWeaver version on the SAP Help Portal at https://help.sap.com/viewer/p/SAP_NETWEAVER.

● Standalone app
If you want to run your app standalone, you need to create an index.html file. Within this file, you
instantiate the component.

Related Information

Folder Structure: Where to Put Your Files [page 1428]
App Initialization: What Happens When an App Is Started? [page 1427]
Descriptor for Applications, Components, and Libraries [page 734]
Model View Controller (MVC) [page 784]
Controller [page 807]
Views [page 787]
Models [page 882]
Routing and Navigation [page 1072]
Components [page 720]

App Initialization: What Happens When an App Is Started?

When a user starts an app (in the SAP Fiori launchpad (FLP) or using an HTML page), several steps will be
performed in the background.

1. Component container loads the component (Component.js) of the app.
2. Component loads descriptor (manifest.json) that is referenced in the Component.js file.
3. Component creates models that are defined in the descriptor (default model and resource models (i18n)).
4. init function of Component.js is executed.
5. init function of the component calls init function of parent UIComponent. (This has to be implemented

by the app developer!)
init function of UIComponent creates router and root view as defined in descriptor.

6. Root view creates root control.
7. init function of component initializes router. (This has to be implemented by the app developer!)
8. Router creates necessary views depending on the hash in the URL with which the app has been started.
9. View loads corresponding controller.
10. init function of controller is executed.
11. Router places views in root control, now also models available within the view and its controller.
12. Bindings of views are evaluated.
13. Data is retrieved from model.
14. Views are updated.
15. User can interact with the app.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1427

https://help.sap.com/viewer/p/SAP_NETWEAVER

 Note
When a user closes the app, the destroy function of the component is called. All models and the router
are destroyed. The router will take care of destroying the views.

If a controller has created resources that need to be destroyed explicitly, for example non-aggregated
controls, the app developer has to use the onExit function of the controller to free up resources. For more
information, see Controller [page 807].

Related Information

App Overview: The Basic Files of Your App [page 1425]

Folder Structure: Where to Put Your Files

The details described here represent a best practice for structuring an application that features one
component, one OData service and less than 20 views. If you're building an app that has more components,
OData services and views, you may have to introduce more folder levels than described here.

The 3 Main Folders

The 3 main folders in an application are the root folder, the webapp folder and the test folder. Regarding their
structure, the webapp folder should be inside the root folder, and the test folder should be located inside the
webapp folder, as shown below:

1428 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Note
The image above shows a screenshot taken from SAP Web IDE, and is only meant to serve as an example.
This applies to all images contained within this topic.

The root Folder

The root folder should contain files that are not part of your application coding. Examples are build
configuration files, such as a pom.xml for maven or a Gruntfile.js for node/grunt, and documentation files
like readme.md or txt. These files may also be grouped in folders if needed. For example, you could group all
documentation files into a doc folder.

The webapp Folder

The webapp folder contains all the code that is related to the application. This means running and extending
the application using the extensibility mechanism offered by SAPUI5. This includes the JavaScript files for the
logic, view files written in xml, html, json or js format, and also files for localization, such as
i18n.properties files. Any files that are only relevant for testing should be put inside the test folder. For
more details about the webapp folder, see the section below. For more information about extensibility and
localization, see Extending Apps [page 2143] and Localization [page 1269] respectively.

The test Folder

The test folder contains all of the files needed for running automated tests for your application, as well as for
launching your application in a sandbox mode so that you can do manual testing. For more details about the
test folder, see the section below.

Why Use 3 Separate Folders?

To achieve sound performance when loading your application, the code you deploy to your production servers
should only contain a component-preload.js and a manifest.json file. This means that when you create
a package with a build, it is easier if all the files you really want to deploy are inside one folder. This is true no
matter which build framework you use. We recommend using the webapp folder for this. Nothing inside the
root folder is needed for running the app, so it's not included on a production server serving your application.
The content of the test folder has to be executed in design time and during the automated test execution on a
central server. We choose to include it inside the webapp folder, to be able to reference resources of the
webapp folder relatively to the test folder. This folder has to be excluded when you are building a component-
preload.js. You should never reference resources of the test folder from your application, because when
you deploy to a productive environment, the resource cannot be loaded. For more information about the
manifest.json file, see Descriptor for Applications, Components, and Libraries [page 734].

The webapp Folder in Detail

Aside from the test folder, the webapp folder contains 3 folders related to the MVC (model, view, controller)
pattern used in SAPUI5, as well as a localization folder and a local-services folder used for emulating OData
services. Each of these folders is outlined below.

For standalone app, this folder also contains an index.html file that is used to start the app and to instantiate
the component. If your apps is built for the SAP Fiori launchpad no index.html file is created but only files for
testing the app in the FLP sandbox.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1429

The view Folder

In the view folder, you should put all SAPUI5 views and fragments. This folder should not contain any
application logic, so no JavaScript files unless you are using JavaScript views. JavaScript views are not
recommended because it is easier to mix controller logic when building up a view. In declarative views this is
not possible. In the example shown below, the view folder contains a mixture of views and fragments. If this
folder gets too big, you might consider adding subfolders to group views by their semantics. In this example for
instance, you could add a detail folder and move all views that are related to the detail area of your
application to this subfolder.

For more information about views and fragments, see Views [page 787] and Reusing UI Parts: Fragments [page
1004] respectively.

The controller Folder

The controller folder contains all the controllers used by your views, and might also contain additional logic
files that are used by one or more controllers. The structure of the controller folder should mirror the view
folder. If a view is in a subfolder, the controller of the view should also be in the corresponding subfolder.

The model Folder

The model folder is where you put any files needed for creating models and logic relating to model data. This
includes grouping, filtering and formatting data.

1430 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

In the above example, models.js is a factory for creating models that are used by our application.

Localization Folder - i18n

We also have one dedicated folder for localization files. An SAPUI5 app will potentially be translated into many
languages. Each of those languages has its own .properties file. Note that although the ResourceModel is
an SAPUI5 model from a technical point of view, the localization folder is not part of the model folder. This is
because the .properties files have a different semantic since they are used for translation. The code needed
to instantiate the ResourceModel is located in the model folder. For more information about localization, see
Localization [page 1269]. For more information about the ResourceModel, see the API Reference in the Demo
Kit.

 Note
The path to the i18n file must not exceed 100 characters.

The localService Folder

The localService folder is used to emulate OData services for tests or as a preview mode for your
application. It is also intended for design-time tools since it contains the metadata.xml file, which describes
the backend connection of your application. You need to have one metadata.xml file per OData service, which
exactly matches the remote service’s metadata. The location of this file also needs to be maintained in the data
sources section of the manifest.json file. For more information, see Descriptor for Applications,
Components, and Libraries [page 734].

For integration tests, it is helpful if you are able to mock your backend with stable data. A second use case for
this is for running an application in a preview mode so that it serves data locally instead of connecting to a
backend. This is why this folder also contains files necessary for starting up a mock server. The data served by
the mock server is put inside the mockdata folder. If you need to, you can also include multiple sets of mock
data here, by giving each set its own folder. For more information about mock servers, see the API Reference in
the Demo Kit.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1431

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.resource.ResourceModel.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.util.MockServer.html

The test Folder in Detail

test folder for apps that are build for the SAP Fiori
launchpad test folder for standalone apps

The test folder contains three sets of files: files related to unit tests, files related to integration tests, and html
files for either launching the tests or for testing the application manually. Inside the unit folder, the structure
of the webapp folder is replicated for the files that are being tested.

In this example shown above, the files being tested are webapp/model/formatter.js and webapp/model/
models.js. You may be using JavaScript files or html files to run your tests, depending on the runners you are
executing your tests with. We recommend using .js files for writing your tests, so that you can run them with
tools such as karma for instance.

1432 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

The integration folder contains the OPA tests of your application. We decided to separate our unit and
integration tests, since the execution time of the integration tests is much longer. While the unit tests run in less
than 10 seconds, the integration tests run for over 2 minutes. These times will vary a lot depending on the size
of your project. If the project grows and grows, the difference in the execution time will also grow. For this
reason, we recommend making both kind of tests separately executable so that developers can choose which
sets of tests they want to run during design time.

Device Adaptation: Using Device Models for Your App
Depending on the capabilities of the device on which the app is running, the functionality and the design of the
application might differ. By introducing a local JSON model holding the device-dependent data, we can bind
properties of our views to the device's capabilities.

As an example, on big screens (if the device is detected as a desktop device), it is not necessary to show the
Back button on a detail view in a master-detail scenario, because the master and detail view are shown at the
same time. You can control the visibility of the Back button with a property from the device model.

You need to make the sap.ui.Device API available in a JSON model once in your component to allow
controls to be adapted to the current platform using data binding. The code below shows an example of how to
achieve this:

Component.js
 sap.ui.define([
 "sap/ui/core/UIComponent",
 "sap/ui/model/json/JSONModel", "sap/ui/Device"], function (UIComponent, JSONModel, Device) { […]
init: function () {
// set the device model var oDeviceModel = new JSONModel(Device);
 oDeviceModel.setDefaultBindingMode("OneWay");
 this.setModel(oDeviceModel, "device"); […] }

This instantiates a named JSONModel ("device") which contains all of the properties of the sap.ui.Device
class, like browser, device type, or the current orientation of the screen. You can then bind the model properties
in your views as follows:

Master.view.xml
 <Page showNavButton="{device>/system/phone}" />
... <PullToRefresh visible="{device>/support/touch}" />

If you want to negate a value of the device model or make a simple case decision, you can use the expression
binding syntax as shown below:

Master.view.xml
 <SearchField showRefreshButton="{= !${device>/support/touch} }" />

For more information, see sap.ui.Device in the API Reference in the Demo Kit, and the documentation under
The Device API [page 1137].

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1433

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.Device.html

Performance: Speed Up Your App

If a web app has performance issues, finding the cause can be both a time-consuming and nerve-consuming
task. To help you avoid and solve performance issues in your app, here are some good practices we've
discovered while dealing with SAPUI5 apps.

SAPUI5 apps are basically JavaScript files sent to a client by a server and interpreted by the browser. So it's not
only the coding of the app that can cause slow performance. It often turns out, for example, that the
configuration is wrong. Slow networks or servers may also have a heavy impact on the performance of a web
app. Let's have a look at the most common issues that impact performance.

Enable Asynchronous Loading in the Bootstrap

Configuration issues are often caused by an old bootstrap or a wrong usage of the activated features. Here's an
example of what a bootstrap should look like for an up-to-date SAPUI5 app:

<script id="sap-ui-bootstrap"
 src="/resources/sap-ui-core.js"
 data-sap-ui-theme="sap_belize"
 data-sap-ui-compatVersion="edge" data-sap-ui-async="true" data-sap-ui-onInit="module:my/app/main"
 data-sap-ui-resourceroots='{"my.app": "./"}' >

The most important setting is data-sap-ui-async="true". It enables the runtime to load all the modules
and preload files for declared libraries asynchronously, if an asynchronous API is used. Setting async=true
leverages the browser's capabilities to execute multiple requests in parallel, without blocking the UI.

The attribute data-sap-ui-onInit defines the module my.app.Main, which will be loaded initially.

 Note
Configuration of the bootstrap can only be done for standalone applications and when the bootstrap is
under control of the developer. The bootstrap of applications from a Fiori Launchpad is managed by the
Launchpad.

 Note
The data-sap-ui-async="true" configuration option requires extensive testing as well as cooperation
on the application side to ensure a stable and fully working application. It is, therefore, not activated
automatically, but needs to be configured accordingly. If you encounter issues or want to prepare your
application for asynchronous loading, see Is Your Application Ready for Asynchronous Loading? [page 689]
The bootstrap attribute data-sap-ui-async="true" affects both modules and preload files. If it is not
possible to load the modules asynchronously (e.g. for compatibility reasons), use data-sap-ui-
preload="async" to configure at least the preloads for asynchronous loading. For further information,
see Standard Variant for Bootstrapping [page 694].

1434 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

If you listen to the init event as part of your index.html page, make sure that you implement the
asynchronous behavior also here, as shown in the following code snippet:

<script> sap.ui.getCore().attachInit(function() {
 sap.ui.require(["sap/ui/core/ComponentContainer"],
function(ComponentContainer) {
 new ComponentContainer({
 name: "your.component",
 manifest: true,
 height: "100%",
 componentCreated: function(oParams) {
 var oComponent = oParams.getParameter("component");
 // do something with the component instance
 }
 }).placeAt("content");
 });
 }); </script>

 Note
Please note that this variant with inline scripting is not CSP-compliant. It is better to create a module with
sap.ui.define which contains the startup code and load it via data-sap-ui-
onInit="module:my/app/main" (this usually also requires a declaration of data-sap-ui-
resourceroots, e.g.: data-sap-ui-resourceroots='{"my.app": "./"}).

 Note
Applications without a descriptor file can declare additional dependencies explicitly via the bootstrap
parameter data-sap-ui-libs. If those dependencies are not listed, such as transitive dependencies that
are inherited from a listed library, SAPUI5 will load them automatically, but then has to first read the
configured libraries and find out about these dependencies. This can take time as the application might
benefit less from parallel loading.

Additional Information:

● For more information about bootstrap attributes, see Bootstrapping: Loading and Initializing [page 692]
● Walkthrough tutorial, Step 2: Bootstrap [page 72]
● Standard Variant for Bootstrapping [page 694]
● Best Practices for Asynchronous Loading in UI5

Ensure that Root View and Routing are Configured to Load Targets
Asynchronously

Please check the rootView of the application's manifest.json file for an async=true parameter. This
allows the root view to be loaded asynchronously.

To configure the targets for asynchronous loading, please also check the Routing Configuration [page 1074] for
the async=true parameter.

"sap.ui5": { "rootView": {

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1435

http://help.sap.com/disclaimer?site=https%3A%2F%2Fblogs.sap.com%2F2018%2F12%2F18%2Fui5ers-buzz-41-best-practices-for-async-loading-in-ui5%2F

 "viewName": "sap.ui.demo.walkthrough.view.App",
 "type": "XML",
 "id": "app", "async": true },
 "routing": {
 "config": {
 "routerClass": "sap.m.routing.Router",
 "viewType": "XML",
 "viewPath": "sap.ui.demo.walkthrough.view",
 "controlId": "app",
 "controlAggregation": "pages", "async": true }
 }, ...

Additional Information:

● Walkthrough tutorial, Step 10: Descriptor for Applications [page 91]

Make Use of Asynchronous Module Loading (AMD Style)

If modules follow the Asynchronous Module Definition (AMD) standard and the bootstrap flag data-sap-ui-
async is set to true, custom scripts and other modules can also be loaded asynchronously when a preload is
not available. It will help you in the future to enable asynchronous loading of individual modules combined with
the usage of HTTP/2 or AMD-based module bundlers. It also ensures proper dependency tracking between
modules.

But it isn't enough to write AMD modules. You also need to prevent access to SAPUI5 classes via global names.
For instance, do not use global namespaces like new sap.m.Button() but require the Button and call its
constructor via the local AMD reference instead.

For more information, see the API Reference: sap.ui.define.

Always avoid usages of sap.ui.requireSync and jQuery.sap.require ! In order to enable modules to
load asynchronously, use sap.ui.define to create modules (e.g. controllers or components) or
sap.ui.require in other cases.

Please follow the Best Practices for Loading Modules [page 1100].

Use manifest.json Instead of the Bootstrap to Define Dependencies

Don't specify a link to the CSS in the bootstrap of your app; use the manifest.json descriptor file instead.

Please use the manifest.json application descriptor file to declare dependencies. This has several
advantages:

● In the manifest, the dependency information is reusable; it works when the app runs standalone and when
it is embedded in the Fiori Launchpad or some other launcher.

● Moving the dependencies to the manifest loads them later and can therefore make the first rendering
happen earlier. Obviously, that first rendering cannot come from the component then.

1436 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui/methods/sap.ui.define

● Design-time tools or runtime back-end services (e.g. AppIndex in ABAP systems) can use the manifest
entries to determine the transitive closure of dependencies and thereby further optimise the parallel
loading of dependencies. If the dependencies are maintained in the bootstrap, developers can do this by
hand, but will have to update the information on each version upgrade.

Make sure that you don't load too many dependencies. In most apps it's enough to load the libraries
sap.ui.core and sap.m by default, and add additional libraries only when needed.

If you want to make additional libraries generally known in your app, without directly loading them during the
app start, you can add them to the dependency declaration in the manifest.json file with the lazy loading
option. This makes sure that the libraries are only loaded when they are needed:

"sap.ui5": { "dependencies": {
 "minUI5Version": "1.70.0",
 "libs": {
 "sap.ui.core": {},
 "sap.m": {},
 "sap.ui.layout": { "lazy": true }
 }, ...

If a library preload contains reuse components and this preload is configured to be loaded lazily (via "lazy":
true in the dependencies of the manifest.json), the library is not available upon creation of the related
component.

In this case you need to use sap.ui.getCore().loadLibrary("my.library") before creating the
component (e.g with Component.create({ name: "my.component" }) or component usage
myComponent.createComponent("myUsage")).

An indicator that a component is inside a library is the existence of an entry sap.app/embeddedBy in its
manifest.json file.

Additional Information:

● Descriptor for Applications, Components, and Libraries [page 734]

Load SAPUI5 from the Content Delivery Network (CDN)

In order to ensure that all static SAPUI5 resources are served with the lowest possible latency in SAP Cloud
Platform scenarios, you can load the resources from the Content Delivery Network (CDN) cached by AKAMAI.
Especially when running your app in the cloud, you benefit from the global distribution of servers. For other
scenarios, it is possible to configure a custom CDN of choice as an external location.

Additional Information:

● Variant for Bootstrapping from Content Delivery Network [page 696]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1437

Ensure that all Resources are Available to Avoid 404 Errors

Provide i18n files for all languages used in your application. See: Identifying the Language Code / Locale [page
1269]

Use "manifest first" to Load the Component

Load the manifest.json descriptor file of the component first to analyze and preload the dependencies when
loading the component. For more information, see Manifest First Function [page 735].

// "Component" required from module "sap/ui/core/Component" // load manifest.json from default location and evaluate it before creating an
instance of the component
Component.create({
 name: "my.component", });

Ensure that Library Preloads are Enabled

If the library preloads are disabled or not found, every module is loaded separately by an own request.
Depending on the server and network infrastructure, this can take a lot of time. Except for debugging reasons,
it is always recommended to make sure library preloads are used. Fortunately, the library preloads are active by
default if the files are present.

In some cases it may happen that preloads are disabled:

● The data-sap-ui-preload bootstrap attribute is empty or set to an invalid value. The attribute is
optional and only necessary if the loading behavior (sync / async) needs to be overwritten manually.

● Debug sources are enabled in the bootstrap (data-sap-ui-debug=true) or via the URL (sap-ui-
debug=true).

Ensure that Application Resources are Loaded as Component Preload

Application modules (e.g. components, controllers, views or resource bundles) should be loaded
asynchronously via the component preload file. Check (e.g. via the Network tab in the Google Chrome
developer tools) if a component preload (Component-preload.js) is missing. If the application is not
configured to load modules asynchronously, required application files may be loaded synchronously.

 Note
If a component preload does not exist yet, the bundle needs to be created. For example, you may use the
UI5 Build Tooling .

1438 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/disclaimer?site=https%3A%2F%2Fgithub.com%2FSAP%2Fui5-tooling

Check the Network Requests

To quickly check the network load caused by your app, look at your browser's developer tools, for example the
Network tab in the Google Chrome developer tools (F12). You'll see an overview of all requests being sent.
Possible issues here may be:

Synchronous requests that block each other

In this case, use the data-sap-ui-async="true" setting in the bootstrap.

Too many requests

You can use the UI5 Build Tooling to bundle and minimize all relevant component files by creating a
component-preload file.

If you're using apps with grunt as a web server, you can use the openui5_preload task; for more information
see Optimizing OpenUI5/SAPUI5 Apps in the SAPUI5 Developer Center on SAP SCN.

If you're using SAP Web IDE, refer to Application Build in the SAP Web IDE documentation.

Back-end related performance issues

● Slow database service (e.g. OData)
● Slow web server or CDN issues (e.g. serving of static resources)
● Slow network infrastructure (e.g. mobile network)
● The h2 protocol is not supported (only HTTP/1.1); ideally, the h2 protocol should be supported by the web

server

Additional Information:

● To determine the minimum required bandwidth when using UI5-based applications, you can find further
information in SAP Note 2240690 on front-end network bandwidth sizing.

Migrate jquery.sap.* Modules to their Modularised Variants

Since UI5 version 1.58, the global jquery.sap.* modules are deprecated. Please use the modularised variant
of the module. If you are still using the jquery.sap.* variants, a so-called "stubbing layer" may load the old
module synchronously!

You can find a list of modules in the Legacy jQuery.sap Replacement [page 1109] documentation.

The usages can either be replaced manually or by the UI5 Migration Tool .

 Note
Please make sure to declare the required modules in sap.ui.define or sap.ui.require to ensure that
they get loaded asynchronously.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1439

http://help.sap.com/disclaimer?site=https%3A%2F%2Fgithub.com%2FSAP%2Fui5-tooling
http://help.sap.com/disclaimer?site=http%3A%2F%2Fscn.sap.com%2Fcommunity%2Fdeveloper-center%2Ffront-end%2Fblog%2F2015%2F02%2F18%2Foptimizing-openui5-apps
https://help.hana.ondemand.com/webide/frameset.htm?dfb26ef028624cf486a8bbb0bfd459ff.html
http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/2240690
http://help.sap.com/disclaimer?site=https%3A%2F%2Fgithub.com%2FSAP%2Fui5-migration

Migrate Synchronous Variants of UI5 Factories to Asynchronous Variants

Check if the application uses synchronous UI5 factories. Many asynchronous variants are available, e.g. for
Components, Resource Bundles, Controllers, Views and Fragments. Please visit the following overview:Legacy
Factories Replacement [page 1124].

Use the OData V2 Model Preload

Components can preload models for which modules are already loaded; otherwise a warning will be shown. The
ODataModel V2 benefits especially, because the metadata can be loaded in parallel during a component load.

"sap.ui5": { ...
 "models": {
 "mymodel": {
 "preload": true, ...

For more information, see Manifest Model Preload [page 781].

Use OData V2 Metadata Caching

To ensure fast loading times for SAP Fiori applications started from the SAP Fiori launchpad, the OData
metadata is cached on the web browser using cache tokens. The tokens are added with the parameter sap-
context-token to the URL of metadata requests. Please check via the developer tools of your browser (e.g.
the Network tab in the Google Chrome developer tools) if the token has been appended to the request URL.

 Note
This feature is only supported by OData V2 for SAP Fiori applications.

 Note
Please consider switching to the OData V4 Model [page 918] for improved performance.

Additional Information:

● Cache Buster for OData Metadata of SAP Fiori Apps
● Scheduling Update of OData Metadata Caching

Check Lists and Tables

The performance limits are reached differently depending on the used browser, operating system and
hardware. Therefore, it is important to be mindful about the amount of controls and data bindings. This applies
especially to lists and their variants (e.g. sap.m.Table or sap.ui.table.Table):

1440 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://help.sap.com/viewer/a7b390faab1140c087b8926571e942b7/7.52.0/en-US/876e43a272cc45cb82dea640edff0ab2.html
https://help.sap.com/viewer/a7b390faab1140c087b8926571e942b7/7.52.0/en-US/2439967f0c284f6caf05e4323dd9292e.html

● If a table needs to display more than 100 rows, please use sap.ui.table.Table instead of
sap.m.Table The reason for this is that sap.m.Table keeps every loaded row in memory, even if not
visible after scrolling. To choose the right table variant for your requirements, check out the documentation
about Tables: Which One Should I Choose? [page 2286]

● If the table rows contain multiple controls and/or custom-data fields, please check if they are required, or if
another control can replace them. For example, another list like a ComboBox inside of a table cell may
create many controls for every row, which can be very expensive.

● Check tables for hidden columns and load only the visible ones, if possible.

Additional Information:

● Performance of Lists and Tables [page 2350]

Further Code Optimization

You can further optimize your code by doing the following:

● Use asynchronous view loading as described here: Instantiating Views [page 805].
● Use the OData V4 model, which has an improved performance over the OData V2 model.

Visit the OData V4 Model [page 918] documentation and ensure that all required features are available.
For a quick start, follow the OData V4 [page 261] tutorial.

● If you use data binding with an OData V2 service as a back end, you should consider switching your OData
model to our more updated OData V2 model. For more information, see OData V2 Model [page 883].

● Optimize dependent bindings as described here: Optimizing Dependent Bindings [page 893].
● Avoid the usage of setTimeout() calls with values greater than 0. This usually indicates an anti-pattern in

application code that is used as a workaround and should be avoided. For more information, see also
JavaScript Code Issues: Don't use timeouts [page 1463].

● Don't use visibility for lazy instantiation. For more information, see Performance Issues: Don't use visibility
for lazy instantiation [page 1467].

● Please ensure the application does not block the rendering while waiting for back-end requests to respond.
Waiting for data before rendering anything is not the favored user experience. It is recommended to load
data asynchronously and already render the page while the request is pending. Mostly, the requests won't
fail, and if they do, it is better to show an error or to navigate to an error page.

● If an XML Preprocessor is used, we recommend to use the XML View Cache [page 797]. If configured in
the XML View and with a properly implemented key provider (for invalidation), it is able to cache already
processed XML View Preprocessor results.

Related Information

Coding Issues to Avoid: Performance Issues [page 1467]
Performance Measurement Using sap/ui/performance/Measurement Module [page 1377]
Blog: SAPUI5 Application Startup Performance – Best Practices
Blog: SAPUI5 Application Startup Performance – Advanced Topics

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1441

https://blogs.sap.com/2016/10/29/sapui5-application-startup-performance-best-practices/
https://blogs.sap.com/2016/11/19/sapui5-application-startup-performance-advanced-topics/

Stable IDs: All You Need to Know

Stable IDs are IDs for controls, elements, or components that you set yourself in the respective id property or
attribute as opposed to IDs that are generated by SAPUI5. Stable means that the IDs are concatenated with the
application component ID and do not have any auto-generated parts.

Background

If you don't define IDs, SAPUI5 generates them dynamically. These IDs are not static and might differ from
program run to program run. For example, the page and table in the following XML view could have the
generated IDs __page0 and __table0 at runtime:

<mvc:View xmlns="sap.m"
 xmlns:mvc="sap.ui.core.mvc">
 <Page>
 <content>
 <Table>
 </Table>
 </content>
 </Page>
</mvc:View>

The generated IDs change whenever the control structure of the app changes. The sequence of instantiation
also plays a role: If there are two views with unstable IDs in the app, depending on the order the views are
opened, they get the generated IDs __view0 and __view1. This is an issue for the following features that
require stable IDs:

● SAPUI5 flexibility
Allows you to adapt apps based on your requirements, for example, by creating variants or changing the
user interface at runtime. Stable IDs are used to identify the controls that are to be adapted. For more
information, see SAPUI5 Flexibility: Adapting UIs Made Easy [page 1152].

● Automated tests
To check the behavior of apps at runtime, these tests find controls by searching for stable IDs. If you use
OPA in SAPUI5, you're able to find controls via other criteria like control type, display name and others. For
more information, see Integration Testing with One Page Acceptance Tests (OPA5) [page 1182].

● Inline help tools
These tools display user assistance information directly in the app and depend on stable IDs (example:
Web Assistant).

 Tip
Stable IDs are an important prerequisite for SAPUI5 flexibility services, automated testing, and inline help
tools, such as Web Assistant. Apps with stable IDs are of high quality and offer customers more
functionality. Therefore, we strongly recommend that you use stable IDs whenever possible (some
technical controls don't need stable IDs, such as CustomData).

1442 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

How to Set IDs Manually to Keep Them Stable

 Tip
Using the rule Stable control IDs are required for SAPUI5 flexibility services in the Support Assistant, you can
check whether all controls use stable IDs. For more information, see How to Check If All Your IDs Are Stable
[page 1449].

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1443

Views ● Views in the descriptor for applications, components, and libraries
The standard use case is that you use stable IDs for the view that the router navigates to. Ide
ally, instead of creating the views yourself, you create them with routing targets and declare
the view ID in the manifest.json file as shown in the example below. For more information, see
Routing and Navigation [page 1072] and Descriptor for Applications, Components, and Libra
ries [page 734].
Example:

{ "sap.ui5": {
 "rootView": {
 "viewName": "<your namespace>.view.Root",
 "id" : "rootView",
 "async": true,
 "type": "XML"
 }
 ...
 "routing": {
 ...
 "targets": {
 "myTarget": {
 "viewName": "MyView",
 "viewId": "myView"
 }
 }
 }
 }
}

● Embedded views
If you embed your view, set its ID (such as myEmbeddedView).
Example:

<mvc:View xmlns="sap.m" xmlns:mvc="sap.ui.core.mvc">
 <Page id="page">
 <mvc:XMLView id="myEmbeddedView" viewName="MyView"
async="true" />
 </Page>
</mvc:View>

● Programmatic creation
If you create the view programmatically, provide the ID as one of the parameters to the con
structor or factory function. Make sure to prefix the view ID with the component ID using the
createId method of the owner component.
Example:

// "XMLView" required from module "sap/ui/core/mvc/XMLView" XMLView.create({
 id: <component>.createId("myProgrammaticView"),
 viewName : "<your namespace>.view.ProgrammaticView"
}).then(function(oView){
 // code
});

For more information, see namespace sap.ui.

Extension points If you use extension points, use stable IDs for nested views and prefixes for nested controls of a
fragment.

1444 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui/methods/view

Controls ● Controls in XML views
The XML view prefixes the control IDs (only the defined IDs, not the automatically created
ones) with its own ID. This allows you to use the same control ID for different views and the
same view multiple times. For more information, see Support for Unique IDs [page 814].
If the following XML view is instantiated using the ID myView, the contained page and table
would have the IDs myView--page and myView--table at runtime:

<mvc:View xmlns="sap.m" xmlns:mvc="sap.ui.core.mvc"> <Page id="page">
 <content>
 <Table id="table">
 </Table>
 </content>
 </Page>
</mvc:View>

● Programmatic creation
For JavaScript views and JavaScript-generated controls you must use the createID
method of the view or component. Here's how it could look like when you're creating a control
directly in the control code:

// "Button" required from module "sap/m/Button" new Button({
 id : oView.createId("ConfirmButton"),
 text : "Confirm" });

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1445

Components
 Note
The following is only relevant if you do not use the SAP Fiori launchpad because it instantiates
components for you and provides IDs.

For example, if you instantiate a component inside an HTML page, set the ID of the component as
shown below. The reason for this is that components could be displayed more than once on a
page. To get unique IDs for the views and controls inside the component, they must be prefixed
with the component ID. All views in the component that are created by the framework are auto
matically prefixed with the component ID. As described above, for the programmatically generated
components, you must do it yourself.

Example:

// "Shell" required from module "sap/m/Shell" new Shell({
 app: new ComponentContainer({
 height : "100%",
 name : "sap.ui.demo.worklist",
 settings: {
 id: "worklist"
 }
 })
}).placeAt("content");

 Note
Only if there's more than one component in an app, the component container requires a sta
ble ID by setting the component container to autoPrefixId. For more information, see
sap.ui.core.ComponentContainer.

1446 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.ComponentContainer.html

Embedded Compo
nents

If you want to add an embedded component with a stable ID, you have two options:

1. Option: Add a component re-use entry in the application component's manifest.json. Let's
say you want to add an embedded component with the name
embeddedComponent.name. You define it as follows in the application component's man
ifest.json file:

"sap.ui5": { "componentUsages": {
 "reuseName": {
 "name": "embeddedComponent.name",
 "settings": {
 "id": "embeddedComponentID"
 }
 }
 }
}

Now you can use the re-use entry name defining the component container in XML:

<core:ComponentContainer usage="reuseName"
 async="true"
 id="embeddedComponentContainerID"
 propagateModel="true" //to propagate models from the
application component
/>

2. Option: Add an embedded component independently from the manifest and mention the cor
rect namespace using the name property. Also, when instantiating the component, make
sure that the id property is set during component instance creation:

<core:ComponentContainer name = "embeddedComponent.name"
 async="true"
 id="embeddedComponentContainerID"
 propagateModel="true" //to propagate models from the
application component
/>

Inside the embedded component's constructor() (with the
embeddedComponent.name namespace) add :

[...] constructor: function() {
 arguments[0].id = "embeddedComponentID";

UIComponent.prototype.contructor.apply(this, arguments);
} [...]

Alternatively, you could use sap.ui.core.Component.create() and specify the id
property as part of the arguments. For more information, see the API Reference:
sap.ui.core.Component/methods/sap.ui.core.Component.create.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1447

https://sapui5.hana.ondemand.com/#/api/sap.ui.core.Component/methods/sap.ui.core.Component.create
https://sapui5.hana.ondemand.com/#/api/sap.ui.core.Component/methods/sap.ui.core.Component.create

 Note
In order to support SAPUI5 flexibility features, all embedded components should have a stable
ID. For more information, see SAPUI5 Flexibility: Adapting UIs Made Easy [page 1152].

XML fragments If you are using XML fragments in your app, make sure they are instantiated using the correct view
ID prefix.

Example:

// "Fragment" required from module "sap/ui/core/Fragment" Fragment.load({
 id: this.getView().getId(),
 name: "my.fragment.SampleFragment" });

 Note
If some controls have disappeared after a software upgrade or the way in which they can be identified has
been changed, this has a direct impact on the functions that depend on stable IDs. For this reason, the IDs,
which are part of the public API of the app, must be kept stable over the life cycle of the app.

How to Name Stable IDs

Choose names for your stable IDs that describe the semantics of your views and controls, such as page or
table.

 Note
For the allowed sequence of characters, see the namespace sap.ui.core.ID. But bear in mind not use
hyphens (-) as separators in your names as they would interfere with the ones that are added automatically
by the framework.

Example:

If you build an app using the following stable IDs for the component and the views using the SAP Fiori Worklist
Application template, here's what the concatenated IDs that are generated at runtime look like:

Component Views Contained views Concatenated IDs

myProducts worklist page myProducts---
worklist--page

table myProducts---
worklist--table

1448 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.ID.html

Component Views Contained views Concatenated IDs

product page myProducts---
product--page

objectHeader myProducts---
product--
objectHeader

For more information about the SAP Fiori Worklist Application template, see Worklist Template [page 1400].

How to Check If All Your IDs Are Stable

With the Support Assistant, you can analyze whether there are any issues with the stable IDs used in your app.
Here's how you can check this:

1. Open your app in a browser.
2. Choose CTRL + SHIFT + ALT + P to start the Support Assistant.
3. In the Technical Information Dialog, choose Activate Support Assistant.
4. In the table on the left, deselect all rules.
5. Click on the Rules column.
6. Filter for stable and choose Enter.
7. Select the Stable control IDs are required for SAPUI5 flexibility services rule.
8. Choose Analyze.

If any generated IDs are found, set the IDs for these controls manually as described here [page 1443].

Related Information

Support Assistant [page 1339]

Reacting on User Input Events

A handler can be used to validate, parse, and format issues.

You register the handler and can then use the following functions of sap.ui.getCore():

● attachFormatError
● attachParseError
● attachValidationError
● attachValidationSuccess

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1449

You can also register for these events directly on the control or any parent control where the event is fired. The
corresponding event bubbles up to the Core if it is not canceled in the event handler.

Related Information

Validation Messages [page 1065]

SAPUI5 Flexibility: Enable Your App for UI Adaptation

Here's what you have to consider when developing apps that support UI adaptation.

UI adaptation is a feature of SAPUI5 flexibility that allows key users without technical knowledge to easily make
UI changes for all users of an app, end users to personalize controls, and developers to extend the UIs of
SAPUI5 applications. For more information, see SAPUI5 Flexibility: Adapting UIs Made Easy [page 1152].

You can enable your application for UI adaptation by following a few simple steps.

Use the flexEnabled flag

This flag in the manifest.json indicates that your application is enabled for UI adaptation. As of app
descriptor schema version 12 (_version: 1.11), which was introduced with SAPUI5 version 1.56, the
flexEnabled flag in the sap.ui5 section of the manifest.json indicates if the application supports UI
adaptation.

If you set this flag, make sure that you provide stable IDs and follow the rules and guidance on this page.

Example

Please note that the _version property must be at least 1.11.0.

{ "_version": "1.11.0"
 […]
 "sap.ui5": {
 "flexEnabled": true,
 […]
}

 Caution
If you set the flag to false, your application won’t work with any UI adaptation tool. In certain scenarios it
can make sense to do this, for example, for a beta release when you still expect major changes for the app.
However, do not change the flexEnabled flag to false after your application has been delivered. This
would lead to incompatibilities and regressions if a key user has adapted the UI in the meantime.

1450 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Tip
In case you want certain parts of your app to remain unchanged, you can restrict adaptation for the
corresponding controls, see Restrict Adaptation for Certain Controls [page 1455].

Very important: Use stable IDs

Stable IDs are used to identify the controls that can be changed via UI adaptation or personalization. For this
reason, every control and view that you use must have a stable ID. For more information, see Stable IDs: All You
Need to Know [page 1442]. Here, you also find information on how to check if all your IDs are stable.

If your app is based on SAP Fiori elements, it automatically generates IDs for its controls. You only have to set
stable IDs if you use extension points to modify it, for example to add an additional view.

 Caution
Never change the IDs when you're creating the next version of your app if the app was already delivered.
Otherwise you'd risk inconsistencies and the loss of UI changes that a key user might have done in the
delivered version.

 Tip
With the Stable control IDs are required for SAPUI5 flexibility services rule in the
Support Assistant, you can check whether all controls have stable IDs. For more information, see Stable
IDs: All You Need to Know [page 1442].

Use SAPUI5 controls supported by UI adaptation

More than 60 controls, such as forms, pages, tool bars and input elements support UI adaptation, and the
number is growing.

If you want to know whether a control is enabled for key user adaptation, go to the Samples. Pick a control,
open the sample, and choose (Adapt UI) at the top right. If UI elements in the sample are highlighted when
you hover over or select them, it's an indicator that the control is enabled for UI adaptation. You can also try out
the UI adaptation features directly in the sample.

 Note
The table, filter bar and chart controls from the sap.ui.comp library do not support key user adaptation.
However, end users can personalize these controls on the UI and save individual views. If you use a
sap.ui.comp.VariantManagement control, your users can also share personalized views with other end
users. For more information see Smart Variant Management [page 2457].

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1451

https://sapui5.hana.ondemand.com/#/controls

Controller Code

Normally, UI changes should win over binding and application coding. However, there is no distinct point in time
when all controls are available. This consequently means that there is also no single event when all changes
have been applied, because, for example, new changes can be introduced through user interactions.

The following mechanisms ensure that changes usually win over application coding:

● For controls in the XML view, changes are applied during the XML view processing.
● For controls that are created by your controller code, for example controls that are part of a group and are

later placed inside an existing control, the changes are applied when the control is added to the SAPUI5
control tree.

However, with too many complexities or dynamics in the controller code, you can inadvertently overrule
changes done by the key user. Example: If a key user removes (i.e., hides) a control and your controller code
overwrites its visibility property afterwards, the key user change doesn't have an effect. If you cannot avoid this
case because of some app-specific reasons, you should at least restrict the availability of certain actions as
described under Restrict Adaptation for Certain Controls [page 1455].

Keep in mind that the positions of controls can change if the key user moves them on the UI. Controls might
end up in different aggregations and at different index positions from what you specified. Therefore, you should
only access controls by their ID.

 Note
If you access ObjectPageSections and controls within ObjectPageSections, they might be stashed
when the key user removes them. This means that the control is not processed and therefore not
instantiated. Your code shouldn’t break in this case.

It's okay to create additional controls dynamically, for example, as a result of user interaction. If you
dynamically add controls to the UI, make sure to set all properties before you add them to an aggregation of a
parent control, ideally as part of the constructor. With this, you prevent that changes that key user made to the
control are overridden.

 Tip
Use data binding whenever possible to express UI state changes.

How can I change my app without breaking the key user's changes?

In general, you can change your app without any problems, as long as you keep the following in mind:

● Don’t change control IDs. If you change control IDs, the app will still start, but any existing changes related
to this ID will not be applied anymore.

● Don’t change view hierarchies, because the control IDs depend on the view IDs or fragment IDs.
● Don’t remove controls that had a stable ID before.

1452 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Something isn’t working like it should?

Please check the troubleshooting information.

 Caution
UI changes, similar to any UI coding, cannot replace back-end validations and authorizations. For example,
when an action is hidden via a change, the change processing could be blocked or the action could be
reached by the browser console, so that the action could still be triggered.

For more information, see Troubleshooting [page 1457].

You can also check out our Enabling UI Adaptation: Other Things to Consider [page 1453] page for additional
tips and tricks..

For more information about how key user adaptation works for key users and how it gets enabled in the SAP
Fiori launchpad, search for Adapting SAP Fiori UIs at Runtime and Enabling UI Adaptation at
Runtime in the documentation for your SAP NetWeaver version on the SAP Help Portal.

Related Information

SAPUI5 Flexibility: Adapting UIs Made Easy [page 1152]
Descriptor for Applications, Components, and Libraries [page 734]
Stable IDs: All You Need to Know [page 1442]
Adaptation Projects for SAP Fiori Elements-Based Applications

Enabling UI Adaptation: Other Things to Consider

Find out how you can enable UI adaptation exactly how you need it.

How to improve the performance

Use asynchronous loading of views

To enable processing of UI changes directly on XML views, use the asynchronous loading of views. For more
information, see Instantiating Views [page 805].

 Tip
Using the rule Asynchronous XML views in the Support Assistant, you can check whether
asynchronous loading is used for all views. For more information, see Support Assistant [page 1339].

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1453

https://help.sap.com/viewer/p/SAP_NETWEAVER
https://help.sap.com/viewer/825270ffffe74d9f988a0f0066ad59f0/CF/en-US/94f024b04a6245d8ba9e02ee2facc527.html

Use view caching

If you use view caching, our views are stored in the cache after UI changes have been applied. The view
(including the UI changes) is then loaded from the cache. For more information, see XML View Cache [page
797].

Configure the variant management control

If users should be able to save their UI changes as different views (control variants), you have to configure the
sap.ui.fl.variants.VariantManagement control.

All you have to do is add this control to an appropriate location in your app, and assign the desired UI container
as a target in a for association.

Enable the key user to add additional UI elements

To enable the key user to make additional properties of an OData entity visible (typically when the key user
adds fields or custom fields), you have to do the following:

● Use data binding in the container where you want to enable this.
● Make sure that the related OData model is the default model of your app component. For more

information, see Assigning the Model to the UI [page 998].
● If a property of an OData entity shouldn't come up in key user adaptation, for example, because it’s a

technical field, you should set the annotation sap:visible=false. If the property is only relevant under
certain circumstances, you can provide the field-control property and set the field to be hidden. For
more information, see the official annotations documentation .

● If you don’t have OData models or if you want to give the key user the option to enable more complex UI
parts, you can deliver hidden controls (visible="false"). These can then be made visible via key user
adaptation.

Reuse Components

If you are using reuse components, dialogs or popovers inside your application, they must have the application
component as owner component (type=component). Make sure to instantiate it using a runAsOwner
function.

About Reuse Components

During key user adaptation, only the specific UIs/applications are adapted, but not the reuse components
themselves. Key user adaptation follows a WYSIWYG approach. Since the use cases can vary from app to app,
the UI changes done inside a reuse component of one app won't be applicable for another app where the same
reuse component is used. Therefore, any changes to the UIs inside a reuse component will be stored only in the
context of the app in which it was embedded.

1454 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.fl.variants.VariantManagement
http://help.sap.com/disclaimer?site=https%3A%2F%2Fwiki.scn.sap.com%2Fwiki%2Fdisplay%2FEmTech%2FSAP%2BAnnotations%2Bfor%2BOData%2BVersion%2B2.0%23SAPAnnotationsforODataVersion2.0-Property_field_controlAttributesap%3Afield-control

Restrict adaptation for certain controls

It can be a good idea to exclude certain controls from key user adaptation. Examples:

● Controls for standard actions that should not be removed (for example, the Close button)
● Controls that should not be changed, because their properties are changed dynamically by the application

coding, which will consequently overwrite key user changes

To achieve this, you need instance-specific design time metadata. You attach these metadata via the
sap.ui.dt namespace and the designtime attribute to the xml node of the control you want to restrict, or
via CustomData. There are three types of restrictions:

● The control cannot be changed on the respective instance level (recommended, for example, if the control
properties are changed dynamically by the application coding).
Required metadata: not-adaptable

● The control cannot be changed on the respective instance level as well as on all children of that instance.
Required metadata: not-adaptable-tree

● The control cannot be removed or revealed (i.e. added) (recommended, for example, for standard
actions).
Required metadata: not-adaptable-visibility

 Note
Controls that have already been delivered with previous app versions should not be switched to not-
adaptable, not-adaptable-tree, or not-adaptable-visibility later. Reason: Setting these
metadata later will not affect existing changes and might even cause regressions.

The process to define the design time metadata depends on your scenario:

XML View
In this case, you need to specify metadata via the sap.ui.dt namespace. Example:

<core:View ...
 xmlns:sap.ui.dt="sap.ui.dt"
>
 ...
 <SomeControl sap.ui.dt:designtime="<path>/<name.designtime" />
 <SomeOtherControl sap.ui.dt:designtime="not-adaptable" />
 <AnotherControl sap.ui.dt:designtime="not-adaptable-visibility" />
 <ContainerControl sap.ui.dt:designtime="not-adaptable-tree" />
 <ChildControl> <!-- this is also not adaptable -->
 <AnotherChildControl /> <!-- this is also not adaptable -->
 </ChildControl>
 </ContainerControl>
 ... </core:View>

Control is instantiated by JavaScript code
In this case, you need to provide the instance-specific design time metadata as custom data. Example:

new SomeControl({ //other settings
 customData : [new CustomData({
 key : "sap-ui-custom-settings",

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1455

 value : {
 "sap.ui.dt" : {
 "designtime": "not-adaptable" || "not-adaptable-visibility" ||
"not-adaptable-tree"
 }
 }
 })]; });

When are key user changes applied?

As described under Controller Code [page 1452], two mechanisms apply:

● For controls in the XML view, changes are applied during the XML view processing.
● For controls that are created by your controller code, such as controls that are part of a group and are later

placed inside an existing control (e.g. placeAt to place a control inside a node of the DOM), the changes
are applied when the control becomes part of the SAPUI5 control tree.

Can I check for stable IDs during automatic testing?

Yes. You can integrate corresponding check from the Support Assistant rule into your Opa5 tests as described
in Integrating the Rules in OPA Tests [page 1349].

Can I do manual testing?

To test key user adaptation in your SAP Fiori launchpad sandbox (locally or in the SAP Web IDE preview),
include the following script in the HTML file that you use for sandbox testing. With these configurations, you
should be able to start key user adaptation as usual.

<script type="text/javascript"> window["sap-ushell-config"] = {
 defaultRenderer : "fiori2",
 bootstrapPlugins: {
 "RuntimeAuthoringPlugin" : {
 "component": "sap.ushell.plugins.rta",
 config: {
 validateAppVersion: false
 }
 }
 }
 }
</script>

1456 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://help.sap.com/viewer/825270ffffe74d9f988a0f0066ad59f0/CF/en-US/6609d3ba857742ef99432b6b0472ade0.html

Troubleshooting

Click the sections below, to find tips and solutions to the most common problems.

Cannot add OData property

Check the following:

● Is the field control invisible? If yes, the field doesn't get displayed in the list of available fields.
● Ensure that the appropriate entity type is bound to the control.

I’ve changed an UI element, but the change is not everywhere applied

UI elements that you change in one place might not be changed in all other places where they are used.
Reason: Key user adaptation allows to change controls, not data or metadata. For example, if you rename a
label defined in the oData metadata (annotations), the label is not changed everywhere in the app, and you
must rename each occurrence individually.

The control has a stable ID, but the new group I've created doesn't

If you create a control ID within fragments or controller code, the ID of the parent view might not be part of the
control ID. Thus, the control can have a stable ID, but the view doesn't. As the view ID is needed to create the ID
for a new container when using Create Group, the view ID has to be stable (otherwise the container ID is not
stable).

UI Adaptation cannot be started, because the application version is missing
or incorrect

This error refers to the applicationVersion attribute in the app descriptor (manifest.json file). If this
mandatory attribute is missing or invalid, the UI cannot be adapted.

For more information about the app descriptor and its attributes, see Descriptor for Applications, Components,
and Libraries [page 734]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1457

My key users and/or end users get a message that says the app is not
enabled for adaptation or personalization

Reason: In the sap.ui5 section of the manifest.json, the flexEnabled flag is set to false. To enable
adaptation/personalization for your users, set this flag to true.

 Tip
For more information about the FAQ for users of key user adaptation, search for Something Isn’t
Working like It Should? in the documentation for your SAP NetWeaver version on the SAP Help
Portal.

Related Information

SAPUI5 Flexibility: Enable Your App for UI Adaptation [page 1450]

Coding Issues to Avoid

This section lists some of the most important issues that should be avoided when creating applications using
SAPUI5, split into different categories for reasons of simplicity.

JavaScript Code Issues

This section lists some of the most important issues that should be avoided when writing JavaScript code in
SAPUI5.

Don't use methods or properties that are not public

Don't use or override "private" methods or properties. Private functions are typically (but not always) prefixed
with "_".

Use "protected" methods or properties only if you access it from the object itself or an object that extends that
object. (For example as we do in Step 19: Reuse Dialogs [page 114] of the Walkthrough tutorial.) In the API
Reference, protected functions are indicated by a label Visibility: protected below the description of the
function.

Always double check in the API Reference. If SAPUI5 changes the implementation in a future release, your code
will break if you fail to follow this guideline.

1458 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://help.sap.com/viewer/p/SAP_NETWEAVER

Table 58: Examples

Bad Examples Good Example

var sText =
oControl.mProperties["text"];

var sText = oControl.getText();

oSelectDialog._oList.setGrowing(false);

var sPart =
oEvent.oSource.oBindingContexts.descript
ion.sPath.split('/')[3];

For more information, see Compatibility Rules [page 17] and the API Reference.

Don't use references to global names

Use only local variables inside the AMD factory function, do not access the content of other modules via their
global names, not even for such fundamental stuff like jQuery or sap.ui.Device. You can't be sure that the
modules are already loaded and the namespace is available.

Bad Example Good Example

Access the modules directly:

sap.ui.define(['sap/m/Button'],
function(Button) { var fnCreateContent = function() {
 // global reference on
sap.m.Input, which might not be
loaded yet
 return new sap.m.Input({
 color: ...,
 });
 }; });

Declare a dependency to sap.m.Input within
sap.ui.define:

sap.ui.define(['sap/m/Input'],
function(Input) {
 var fnCreateContent = function() {
 // reference sap.m.Input via
a dependency
 return new Input({
 color: ...,
 });
 }; });

Exceptions

SAPUI5 provides a couple of static modules and (factory) functions that can be referred to via their global
name:

● sap.ui.define
● sap.ui.require
● Factory functions and core references:

○ sap.ui.getCore
○ sap.ui.component
○ sap.ui.fragment
○ sap.ui.htmlfragment
○ sap.ui.jsfragment
○ sap.ui.jsview

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1459

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.html

○ sap.ui.template
○ sap.ui.view
○ sap.ui.xmlfragment
○ sap.ui.xmlview

● Commonly used names (However they can also be used as AMD references via sap/ui/Global):
○ sap.ui.getVersionInfo (Global.getVersionInfo())
○ sap.ui.lazyRequire
○ sap.ui.resource
○ sap.ui.version

Don't use deprecated APIs

Entities marked as “deprecated” in the API Reference documentation (this includes properties, methods,
events, and their parameters as well as entire controls and other APIs) are no longer intended to be used. They
will not get feature updates in the future. Alternatives, if available, are described in the API Reference
documentation.

One prominent example is the old jQuery.sap.device API that has been replaced with sap.ui.Device.

For more information, see the Deprecated APIs.

Don't override or add control methods

If you override methods like onBeforeRendering, onAfterRendering, or getters and setters, the original
methods will no longer be called. You have to make sure that you call them in your method explicitly. Even if
they are not implemented right now, they could be added in the future. This applies to control inheritance in
particular.

Instead, you should consider using delegates.

Table 59: Examples

Bad Examples Good Example

 oControl.onAfterRendering =
function() {
 // do something };

 oControl.addEventDelegate({
 onAfterRendering:function() {
 // do something
 } });

oControl.prototype.setText = function()
{ ... };

See also: sap.ui.core.Element - addEventDelegate.

1460 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/deprecation.html
https://sapui5.hana.ondemand.com/#/api/sap.ui.core.Element/methods/addEventDelegate

Don't manipulate the DOM structure within controls

Manipulating the DOM structure of controls rendered by SAPUI5 can result in undesired behavior and only has
a temporary effect. Changes will be overridden after the next rerendering or the DOM might change in a future
version of SAPUI5, which can break your code. In addition, your DOM changes could break the code of the
SAPUI5 control if it relies on a certain structure.

If you need to manipulate the DOM of an SAPUI5 control, attach a delegate to the afterRendering hook of
the control, safeguard your code against DOM changes, but still be prepared to have to rework your code at any
time when the DOM structure (which is in no way guaranteed to remain stable!) changes. The adaptation
should be covered by your automated tests.

Even onAfterRendering may not be called when a control handles certain property changes without
complete rerendering.

Table 60: Examples

Bad Examples Good Example

oControl.$().find(".sapMLabel")
[0].innerHTML = "reallybad";

 oControl.addEventDelegate({
 "onAfterRendering": function() {
 var $label = oControl.$
().find(".sapMLabel");
 if (/* sanity check whether
the change still makes sense */) {
 // TODO: re-test after
UI5 updates, create automated test
 $label.text("Better");
 }
 } });

oControl.$
().find(".sapMLabel").remove();

Don't attach DOM event handlers

Use attachBrowserEvent() if you need to listen to any DOM event on SAPUI5 controls. An even better
approach is to use addEventDelegate() for the most important event types instead, as it avoids additional
event registrations and listens to the regular SAPUI5 event dispatching.

If you are creating event handlers in custom controls, you can use listen to DOM events directly, but make sure
that the listeners are properly deregistered in onBeforeRendering() and in exit(), and registered in
onAfterRendering().

Good example for arbitrary events:

 oControl.attachBrowserEvent("mousemove", function() {
 // do something });

Good example for wide but limited selection of browser events:

 oControl.addEventDelegate({

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1461

 onmouseover:function() {
 // do something
 } });

See also: sap.ui.core.Control - attachBrowserEvent and sap.ui.core.Element - addEventDelegate.

Don't create global IDs (when running with other views or apps)

When you create JSViews or applications that will be running together with views or applications from other
sources (that are not owned by you), or JSViews that will be instantiated several times in parallel, you must not
create stable IDs for your controls, fragments, or views in SAPUI5. Doing so might result in duplicate ID errors
that will break your app. Especially when running together with other apps, there could be name clashes or
other errors.

Use the createId() function of a view or controller instead. This is done automatically in XMLViews and
JSONViews. The createId() function adds the View ID as a prefix, thus recursively ensuring uniqueness of
the ID (for example: __page0--__dialog0).

Table 61: Examples

Bad Example (Inside a JSView) Good Example (Inside a JSView)

 createContent: function(oController) {
 var btn = new
sap.m.Button("myBtn", {text:
"Hello"});
 return btn; }

 createContent: function(oController) {
 var btn = new
sap.m.Button(this.createId("myBtn"),
{text: "Hello"});
 return btn; }

See also: sap.ui.core.mvc.View - createId.

Don't forget about control lifecycle management

SAPUI5 controls are kept alive until they are destroyed, so lifecycle management of controls is important since
multiple apps can be opened and closed in the same user session. Controls that are not destroyed cause
memory leaks and may slow down the browser after prolonged use.

Also clean up internal structures in controllers, views and your custom controls.

See also: sap.ui.core.Element - destroy (for applications) and sap.ui.core.Element - exit (for custom control
implementation).

Don't hard code or concatenate strings that need to be translatable

Hard coding UI strings will exclude them from translation. In addition, concatenating translatable strings in
applications might lead to errors in internationalization: the texts in question might have a different translation
order in other languages and will then be syntactically wrong.

1462 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.core.Control/methods/attachBrowserEvent
https://sapui5.hana.ondemand.com/#/api/sap.ui.core.Element/methods/addEventDelegate
https://sapui5.hana.ondemand.com/#/api/sap.ui.core.mvc.View/methods/createId
https://sapui5.hana.ondemand.com/#/api/sap.ui.core.Element/methods/destroy
https://sapui5.hana.ondemand.com/#/api/sap.ui.core.Element/methods/exit

Table 62: Examples

Bad Example Good Example

Using separate texts like " you selected " and " items " in the
translation file to construct sentences like: " you selected "
+ 10 + "items ". This would lead to a wrong word order in lan
guages where the verb needs to be at the end of the sen
tence, for example.

Using a complete sentence including a placeholder in the
translation file: " you selected {0} items ". This allows trans
lators to change the word order and the position of the in
serted placeholder value.

Don't forget about proper "this" handling

For developers new to JavaScript, it is often confusing to understand how the "this" keyword behaves. In event
handlers in particular, but also for other callback functions, the "this"-pointer must be used correctly, so make
sure you check what it actually refers to. Without proper usage of the execution context, unexpected results
can occur (this-pointer might be the global window object or a different control).

Don't use console.log()

There is a native browser API available for logging errors and warnings in the developer console of your browser
(console). Calling it directly is not recommended as it doesn't allow control over the amount of log entries that
are created and it provides no criteria to associate a log entry with a specific topic or software component.
Instead, add a dependency to the sap/base/Log module and use its methods to write log entries, for example
Log.error or Log.warning. Create a dedicated logger for a topic or use the sComponent parameter of the
log calls to assign the log entry to a topic. Use Log.setLevel() to define the minimum severity to be logged.

Note that most errors and warnings in the developer console thrown by the SAPUI5 framework are potential
bugs in your application and must be analyzed thoroughly!

Table 63: Examples

Bad Example Good Example

console.error("Logon failed"); Log.error("Logon failed", "",
"connectivity";)

See also: Namespace sap/base/Log.

Don't use timeouts

Executing logic with timeouts is often a workaround for faulty behavior and does not fix the root cause. The
timing that works for you may not work under different circumstances (other geographical locations with
greater network latency, or other devices that have slower processors) or when the code is changed. Use
callbacks or events instead, if available.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1463

https://sapui5.hana.ondemand.com/#/api/module%3Asap%2Fbase%2FLog

Table 64: Examples

Bad Example Good Example

jQuery.ajax("someData.json"); setTimeout(fnProcessResults, 300);
jQuery.ajax("someData.json").done(fnPr
ocessResults);

Don't build apps without reasonable automated tests

This should not come as surprise, but it is very difficult to refactor or modify apps that do not have any (or have
bad) automated test cases. There are substantial risks when QUnit and OPA tests are missing in applications.

CSS Styling Issues

This section lists some of the most important rules relating to CSS styling in SAPUI5.

SAPUI5 controls are styled with CSS, and as applications can provide their own CSS, they can adapt the styling.
However, the deeper such adaptations are, the more likely is it that they break with future SAPUI5 updates or
with other libraries and apps getting involved. If you follow the rules listed below, you will reduce the risk of this
happening.

Don't override control class styling directly

SAPUI5 does not guarantee the stability of style class names across versions. If the naming of style classes is
changed in future versions, styling rules will no longer be applied to targeted elements. In addition, overriding
control class styles directly might lead to style clashes when applications are run in shared runtime
environments (like SAP Fiori launchpad).

Add your own namespaced classes instead.

Table 65: Examples

Bad Example Good Example

 .sapMInputBaseError {
 font-weight: bold; }

Add a custom CSS class to the control in those situations
where you want additional styling:

oButton.addStyleClass("poaAppError");

Then provide the style for this class:

 .poaAppError {
 font-weight: bold;
}

1464 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Don't style DOM element names directly

Styling DOM elements directly will lead to unpredictable results, as SAPUI5 does not guarantee the stability of
the inner-control DOM-tree over time. In addition, this might lead to styling clashes when applications run in
shared runtime environments (like SAP Fiori launchpad) or when custom HTML is added. It is better to limit
styling changes to specifically used CSS classes.

Table 66: Examples

Bad Example Good Example

 div {
 width: 120px; }

 .myStyleClass {
 width: 120px; }

Don't use generated IDs in CSS selectors

SAPUI5 applications can create dynamic IDs for elements. Do not use these IDs as selectors in custom CSS as
they can change over time. It is better to add and use CSS classes instead.

Table 67: Examples

Bad Example Good Example

 #__view1__button0 {
 font-weight: bold; }

Add a style class as described above and then define the fol
lowing:

 .myEmphasizedButton {
 font-weight: bold; }

Don't create selectors that are not namespaced

Custom selectors and CSS classes that are not namespaced might lead to style clashes in shared runtime
environments like SAP Fiori launchpad, or when other JavaScript libraries are included that might use the same
CSS class names.

Table 68: Examples

Bad Example Good Example

 .title {
 font-weight: bold; }

 .poaAppTitle {
 font-weight: bold; }

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1465

Don't use hard-coded colors, font sizes and images if the app should be
themable

Themability of applications relies on LESS calculations within the SAPUI5 theme CSS. Hard-coding colors,
fonts and images in applications and custom controls means that these colors are not modified by theming,
which leads to design issues or accessibility issues (for example, in the High Contrast Black (HCB) theme). You
can use special CSS classes instead that are supplied by these LESS calculations.

Table 69: Examples

Bad Example Good Example

 .myCustomHTML {
 color: #FFF;
 background-color: blue; }

Add the CSS classes sapThemeTextInverted and
sapThemeHighlight-asBackgroundColor to your
custom HTML element.

See also: CSS Classes for Theme Parameters [page 1262].

Don't use theming parameters for attributes they were not intended for

SAPUI5 applications come with a built-in set of parameters which are used for theme-dependent styling,
mainly for colors. They are accessible using the sap.ui.core.theming.Parameters.get() API (and for
library builds using the OpenUI5 build mechanism, also in the *.less files in control libraries). These theme
parameters have descriptive names, meaning that by looking at a parameter name, you can see the usage it
has been defined for.

To ensure that you do not use combinations of theme colors which may clash after future theme changes, do
not use background colors for fonts or vice versa, for example, and do not use border colors for anything else
but borders.

Table 70: Examples

Bad Example Good Example

 var sColor =
sap.ui.core.theming.Parameters.get("sa
pUiButtonBorderColor"); $(oSomeDomElement).css("background-
color", sColor);

 var sColor =
sap.ui.core.theming.Parameters.get("sa
pUiButtonBorderColor"); $(oSomeDomElement).css("border-
color", sColor);

See also: Namespace sap.ui.core.theming.Parameters.

1466 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.theming.Parameters.html

Performance Issues

This section lists some of the most important issues that should be avoided to improve performance in SAPUI5
applications.

Don't use visibility for lazy instantiation

When an application has areas that are not visible initially, or if only one of multiple options is visible at a time,
do not create all UI controls and set most of them to non-visible! If you do, SAPUI5 will instantiate and initialize
all of those controls, which consumes unnecessary time and memory, even when they are not rendered. On top
of this, the data binding will also be initialized, which may trigger back-end requests that are not needed at this
stage. The impact is particularly big when the parts of the UI that are not visible initially are complex or
numerous.

Please note that lazy loading of views can be achieved with routing. For more information, see Routing and
Navigation [page 1072] and Step 10: Implement “Lazy Loading” [page 338] of the Navigation and Routing
tutorial.

 Example
An application needs to display a Panel containing a Table in display mode, but the user can switch to
edit mode to modify data, in which case a different Panel needs to be shown. Especially when using XML
views, it is tempting for application developers to specify two panels in the view XML and set the Panel
with the editable table to visible="false". The Edit button could then just toggle visibility of both
panels.

The following XML view is easy to handle, but leads to suboptimal performance when the editPanel has a lot
of content.

View:

<mvc:View xmlns:mvc="sap.ui.core.mvc" xmlns="sap.m"
controllerName="my.own.controller"> <Page>

 <Panel id="displayPanel" headerText="Display Data">
 <Table...>
 </Panel>

 <!-- edit panel is initially hidden, but still instantiated -->
 <Panel id="editPanel" headerText="Edit Data" visible="false">
 <Table...>
 </Panel>

 <Button text="Edit" press="toEditMode"/>
 </Page> </mvc:View>

Controller code:

toEditMode: function() { this.byId("displayPanel").setVisible(false);
 this.byId("editPanel").setVisible(true); }

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1467

The following code is better in terms of initial performance because the second table is created lazily when the
user switches to edit mode.

View:

<mvc:View xmlns:mvc="sap.ui.core.mvc" xmlns="sap.m"
controllerName="my.own.controller"> <Page>

 <!—only the initially needed display panel -->
 <Panel id="displayPanel" headerText="Display Data">
 <Table...>
 </Panel>

 <Button text="Edit" press="toEditMode"/>
 </Page> </mvc:View>

Additional fragment named EditPanel.fragment.xml for content that is initially hidden:

<Panel xmlns="sap.m" id="editPanel" headerText="Edit Data" visible="false"> <Table...> </Panel>

Controller code:

toEditMode: function() { this.byId("displayPanel").setVisible(false);

 var oEditPanel = this.byId("editPanel");
 if (!oEditPanel) { // load and instantiate the edit panel lazily
 // instantiate the Fragment:
 // giving the View ID as ID will prefix the IDs in the Fragment and
allows using this.byId(…) in the Controller
 // giving “this” (the Controller) allows using controller methods from
within the Fragment
 oEditPanel = sap.ui.xmlfragment(this.getView().getId(),
"myApp.EditPanel", this);
 this.byId("myPage").insertContent(oEditPanel, 0); // for sake of
simplicity inserts at position 0
 }
 oEditPanel.setVisible(true); }

In other scenarios, at the time of developing you may not know which UI part is displayed initially. In this case,
you can define that the UI is empty (showing none of the panels) in the view definition, and the controller’s
onInit() method decides which fragment to instantiate and display initially:

onInit: function() { var oPanel;
 if (bEditMode) {
 oPanel = sap.ui.xmlfragment("myApp.EditPanel");
 } else {
 oPanel = sap.ui.xmlfragment("myApp.DisplayPanel");
 }
 this.byId("myPage").insertContent(oPanel, 0); }

 Note
Although the example above shows an XML view and an XML fragment, the problem and the solution apply
to all view types.

1468 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Please also note that this guideline is not set in stone: If the hidden UI elements are just small or few in
number, using fragments would not help but add additional overhead instead. Having said that, creating
several big tables and displaying only one of them is not a good idea. There is no definite rule where to draw
the line, it depends on many factors like application size, number of libraries being loaded, and additional
data requested by those hidden controls. If in doubt, you can test the performance using the performance
tracing tools in the browser’s developer console with the controls in question being hidden, against them
being removed.

See also: Reusing UI Parts: Fragments [page 1004].

Related Information

Performance: Speed Up Your App [page 1434]

Securing Apps

The following section provides information about security aspects of SAPUI5. The information is intended for
SAPUI5 application and control developers, as well as to system administrators running applications based on
SAPUI5.

SAPUI5 is a client-side JavaScript library, so while the library itself is designed and tested to be secure, it
cannot ensure the application to be secure. Unlike WebDynpro, where the application is built against an
abstract programming model and the framework handles the HTML rendering, JavaScript code and
communication with the browser, in SAPUI5 the application controls the HTML output and provides its own
JavaScript code. This code is executed on the client and it handles client/server communication.

While this brings a lot of freedom and possibilities for the application, it comes with a lot of responsibility with
regards to security. Application developers need to understand the security threats and actively prohibit
exploitation. Also important is the correct configuration of the used HTTP server.

Moreover, common security mechanisms, which are usually taken for granted, like user authentication, session
handling, authorization handling, or encryption are not part of SAPUI5 and need to be handled by the server-
side framework and/or custom code of the application.

Further Reading

SAPUI5 is not bound to any server implementation or server-side programming language and can, thus, be
used with SAP NetWeaver AS for ABAP, Java, HANA XS Engine, or any standard web server. Therefore, the
corresponding Security Guides also apply to SAPUI5.

 Note
We highly recommend that you implement SAP Note 1582870 for ABAP XSS escaping support.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1469

http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/1582870

Browser Security

Browser security comprises several topics such as cross-site scripting, clickjacking, and local storage.

A browser is, by design, an untrusted client: A server cannot rely on any information sent from a browser, as a
malicious user can use a JavaScript debugger to tamper with the client code, or a proxy server like fiddler to
modify request data. Input validation on the client is just for convenience purposes as the server always has to
validate the data again that is received from the client.

Browsers also offer possible attack vectors, such as Cross-Site-Scripting (XSS). The application has to take
care of these.

Cross-Site Scripting

Cross-Site-Scripting has become the most prominent security issue of web applications within the last years
and also the most dangerous one, as it allows several ways of exploitation. Once malicious code is running
within your browser, it can be used to steal your session cookies, to trigger requests within the current session,
or even to exploit a known browser vulnerability to do native code execution.

For SAPUI5 applications, XSS vulnerabilities can exist on different levels:

● Within the HTML page or custom data transports sent to the browser from the server
● Within the JavaScript code of the application, which is processing server responses
● Within the HTML renderers of SAPUI5 controls

SAPUI5 can only prevent cross-site scripting in the processing and rendering of controls. For that purpose,
input validation exists for all typed element properties and output encoding is done in the renderer class of
controls. However, there are exceptions for controls that are especially built to include arbitrary HTML, for
example, sap.ui.core.HTML.

The application is responsible for the following tasks:

● Proper output encoding of all content embedded in the HTML page itself
● Encoding JSON or XML data sent to the client
● Secure processing of the JSON/XML data
● Security of custom controls provided by the application

For more information, see Cross-Site Scripting [page 1475].

Clickjacking

Clickjacking, or UI redressing, tricks the user into triggering actions within an application by redirecting clicks.
This is done, for example, by using an invisible iFrame that is positioned above a fake UI. When the user clicks
on something on the fake UI, the content of the invisible iFrame handles the click.

SAPUI5 provides a way to prevent clickjacking since version 1.28.0. This has to be configured, as needed, by the
application. For more information, see Frame Options [page 1478].

1470 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Note
As of version 1.28.0, you no longer need to use the Business Add-In /UI5/BADI_CONFIG_HTTP_HANDLER
to configure the X-Frame-Options response header (SAP Note 2075016). The SAPUI5 framework now
handles clickjacking prevention and the add-in solution won't work on all browsers.

For more detailed information on clickjacking, refer to the following SAP Note: 2319727

HTML5

HTML5 offers a lot of new functionality, which also brings a lot of potential new security issues. This is just an
overview of some of the new features and possible security issues when they are used.

Local Storage

All browsers are now offering a local storage API. This API can be used to store a limited amount of data on the
browser. Access to this data is limited to JavaScript code running from the same domain as it has been stored.
SAPUI5 offers helper functions to access the local storage on different browsers.

The local storage of browsers is not a secure storage, so while it can be used for static data, like enumerations,
applications must not store any user or application data within the local storage.

SAPUI5 is using the local storage of the browser for the history-capability of dropdown boxes and combo boxes.

WEBGL

While more and more browsers are supporting WEBGL by default, WEBGL allows accessing the graphics API of
the computer on a very low level, which may also lead to low level exploits. This is the main reason why some
browsers have no support for WebGL at all.

SAPUI5 is currently not using WEBGL.

WebSockets

While WebSockets offer great new possibilities for the client/server communication of web applications, there
have been many security issues rising while the first implementations were done by the browser vendors.
Standardization of WebSockets has reached a stable state with RFC 6455 and is now implemented beginning
with Chrome 16, Firefox 11 and Internet Explorer 10. Even if the browser implementations themselves prove to
be secure, using WebSockets may require additional security measures on the client.

SAPUI5 is currently not using WebSockets.

Postmessage/Onmessage

This is another feature in the HTML5 area, which can lead to massive security issues when not used correctly.
postMessage allows inter-window-communication between windows from different domains. This opens a
hole in the same origin policy currently implemented in the browser. As soon you subscribe to the onMessage
event, you can receive messages from any other browser window. The application is responsible to check the
originating domain and to process only messages that have been sent by trusted domains.

SAPUI5 uses postMessage for its debugging and tracing functionality.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1471

http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/2319727

Transport Security

Transport security comprises topics such as encryption and session security.

Security on the client and server side is not sufficient if the data transport between client and server can be
read, intercepted, or even modified by an attacker. Per default, HTTP communication is stateless and
unencrypted and this makes it necessary to configure it in a way that it uses encrypted connections and to add
session handling on top using either cookies or URL rewriting.

Encryption

Sending the HTTP protocol over a SSL secured connection is not only standardized, but also required for SAP
applications.

SAPUI5 fully supports the use of HTTPS, but there are some restrictions regarding the CDN version of SAPUI5
when HTTPS is used. It is recommended to enable or at least to test SSL connections in an early stage of
application development, as usually switching to HTTPS causes some issues. First of all, when the application
is started using HTTPS, the SAPUI5 library also has to be loaded from an HTTPS server. Second, Internet
Explorer 8 and 9 have some additional restrictions regarding cross-origin requests with HTTPS, which are
related to the security zone concept.

Session Security

Even if the data transport is secured using SSL or TLS, there are possibilities to hijack such a secure connection
and send malicious requests from the client. Cross-site request forgery and session fixation are two of the
prominent examples of this class of attacks.

SAPUI5 does only provide XSRF prevention for the data, which is sent to the server by SAPUI5. Currently this
only happens in the OData Model, where a XSRF token is read from the server and used for subsequent write
requests.

The application is responsible for using the XSRF header or other mechanisms to prevent XSRF for all other
server communication triggered by the application.

Server Security

Server security comprises topics such as cross-origin resource sharing and resource handlers.

SAPUI5 contains only a small server-side part to support loading of resources by the client framework. The use
of the resource handlers is not mandatory, SAPUI5 also offers a static version of the libraries, which can be
used with an arbitrary HTTP server.

1472 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Cross-Origin Resource Sharing

Usually the XMLHttpRequest for security reasons only allows accessing resources from the same domain as
the originating document. As there are a lot of web-based services available today, starting with RSS or Atom
feeds, WebServices or OData services, there is a need to be able to also access data sources from different
domains within the browser, which was addressed with the CORS (Cross-Origin Resource Sharing) standard.
This allows the server to set special headers on their responses, which are telling the XMLHttpRequest object,
whether it is allowed to process the requested data or not.

This CORS capability also plays an important role in SAPUI5 based applications. In case the application itself
and the data visualized are coming from different servers, the CORS header has to be configured correctly on
the data providing server, to allow the application server domain to access the data.

SAPUI5 is using CORS header on its CDN based library to be able to load additional scripts, styles, and
resources from the CDN server.

Third-Party Libraries

For the third party libraries shipped with SAPUI5, security-related issues have to be observed.

SAPUI5 ships with third-party libraries. jQuery is mandatory as SAPUI5 is based on it, and datajs is needed in
case OData services should be used.

jQuery

jQuery does not have any security-related documentation on their site, but they are known to be aware of
security and usually reacting quickly in case security issues are found within their library.

SAPUI5 includes different versions of jQuery together with their own libraries, so also has the possibility to add
custom security fixes to jQuery, if necessary.

datajs

datajs does not have any security-related documentation on their site.

SAPUI5 includes the datajs library and can add custom security fixes, if necessary.

Libraries Included by the Application

Applications based on SAPUI5 are allowed from a technical point of view to include arbitrary custom libraries
within their application. SAPUI5 can, of course, not give any statement about the security of third-party
libraries and can not ensure security of third-party libraries. The application has full responsibility for doing a

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1473

security assessment of third-party libraries before using them and for embedding and using them in a secure
manner.

Secure Programming Aspects

The secure programming guide introduces topics that developers should note.

Input Validation

From the application point of view, the validation of user input must be done on the server and, optionally, on
the client. This can be achieved by using two-way data binding and model types.

From the control point of view, the input of control properties must be validated, so that integer properties only
accept integers and enumeration properties only accept an existing enumeration value. While this sounds
obvious, in JavaScript it is not. The type system of JavaScript does not do type validation on assignment.

Output Encoding

All data sent from the server must be properly output encoded according to the context they are contained in.
For more information, see Cross-Site Scripting [page 1475].

Content, which is created on the client side either for display within the browser or for data transport, needs to
be properly output encoded with the encoding methods provided by SAPUI5. There are methods for encoding
HTML, XML, JavaScript, CSS and URI components.

All controls in SAPUI5 libraries properly encode their data, except for HTML-control and XMLView. The latter
two are explicitly built to display arbitrary HTML content. If applications use these two controls and provide
unsecure HTML content, they have to check/validate the content on their own.

 Note
Using an XMLView with application controlled secure HTML content together with standard SAPUI5
controls (other than HTML and XMLView) containing potentially unsecure data is also safe. Only untrusted
HTML content is critical.

For more information on SAPUI5 HTML code cleanup, see HTML5 Sanitizer [page 1476].

URL Validation

URL validation should take place on the server-side when possible. In case URLs are entered on the client-side
or are loaded from an external service, SAPUI5 offers a URL validator, which can be used to validate whether a
URL is well formed and properly encoded. It also contains a configurable whitelist to restrict URLs to certain

1474 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

protocols or certain hosts. Initially, the whitelist only checks for the http, https, and ftp protocols, but
nothing else. Applications should define their own whitelist.

Cache Settings

The application has to take care that caching of data is disabled by setting appropriate HTTP headers on the
server-side.

Static resources from SAPUI5 or from the application are not security relevant and are excluded from this rule,
so they can safely be cached on the client.

User Management / Authentication

SAPUI5 does not provide any authorization or user management. An application, which implements such
facilities based on SAPUI5 has to make sure that SSL/TLS is enabled to prevent cleartext passwords sent over
the wire. Applications must not store any logon information on the client.

Local Storage

The local storage of browsers is not a secure storage, so while it can be used for static data, like enumerations,
applications must not store any user or application data within the local storage.

Cross-Site Scripting

Cross-site scripting (XSS) is a widely known vulnerability most web sites have. This page does not provide
general information about cross-site scripting but focuses on what you as an application developer using
SAPUI5 can do to avoid these security issues.

To give a short info on XSS: It is about injecting script code into a web page, which is then executed in the
context of the page and therefore not only can access any information which currently displayed on the screen
but can either access session information contained in cookies, or send new requests to the server within the
current session, or even try to exploit browser vulnerabilities to get full access to the machine the browser is
running on.

Cross-site Scripting in SAPUI5-based Web Applications

AJAX frameworks in general are an interesting target for XSS exploits, as not only the HTML which is initially
sent to the browser may contain vulnerabilities, but also the code which is used to visualize content on the
client side may have bugs which can be exploited to get the JavaScript coding executed on the client side. In

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1475

addition to that, once a script has injected an AJAX application, it will be alive for a long time, as usually
navigation will not reload the whole page which would also clean up any running JavaScript code, but stays
within the same HTML document and uses a delta update mechanism to show new content.

It is important to understand that SAPUI5 is not involved in creating the HTML page which is sent to the client,
so there is no way SAPUI5 can prevent XSS vulnerabilities which are contained in the HTML page itself. The
application which is using the SAPUI5 rendering has to take care, according to the documentation of their
server-side rendering framework, to properly escape user data, in a way that no JavaScript can be injected.

The SAPUI5 framework will take care of proper escaping for all content which is created and displayed on the
screen using the controls provided by SAPUI5. There is no need for the application to HTML-escape user data,
but the control API expects all data to be unescaped, so that it can be escaped as needed for the context it will
be visualized.

HTML Sanitizer

SAPUI5 reuses the HTML4 sanitizer by Google by adapting it for the use of HTML5 coding. The Google sanitizer
also supports CSS3 coding. In addition, the HTML5 sanitizer uses the URL whitelist which checks embedded
URLs for correct formatting or against a given whitelist.

For adapting the sanitizer to support HTML5, the HTML attributes and elements have been reorganized
according to the current HTML5 specification from W3C. All types and flags have been reviewed as accurately
as possible and HTML4 elements that are no longer used in HTML5 have been removed. You can, however, still
see them as comments. New or changed rules for HTML5 have been marked are "new" within the comments.
The comments also state which attributes and elements are assigned to respective types and flags. All rules
which were not 100% clear were analyzed in a way of similarity, so for example "audio" and "video" content
behaves like images etc. URIEFFECTS state if a URL is loaded inplace within a tag where the actual document is
in control of what type of content is loaded like "image" or if a new document is loaded like with "a href".
LOADERTYPES state if content is loaded as sandboxed which means it is loaded within a specific surrounding
player like with video content for example or if it is loaded freely without restrictions. Internally controls which
accept arbitrary HTML content like the sap.ui.richttexteditor.RichTextEditor or the
sap.ui.core.HTML use the HTML5 Sanitizer to sanitize the HTML code of their content and value to not
infiltrate any dangerous coding. The option to sanitize the value can be enabled or disabled in the respective
control properly via property: RichTextEditor.sanitizeValue or HTML.sanitizeContent. For the
HTML control, it is disabled by default whereas for the RichTextEditor the sanitize option is enabled.

Related Information

Prevention of Cross-site Scripting [page 2213]

1476 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

URL Whitelist Filtering

The SAPUI5 framework provides a client-side API to manage a white list for URLs. This whitelist can be used to
validate arbitrary URLs if they are permitted or not.

Internal examples of how controls can use this feature are those controls which accept arbitrary HTML content
like the sap.ui.richttexteditor.RichTextEditor and the sap.ui.core.HTML. These controls use the
URL white list when a check (sanitization) is performed on the content. URLs inside their content are then
automatically removed, except if they are listed in the URL whitelist. The option to sanitize the value can be
enabled or disabled in the respective control properly via the RichTextEditor.sanitizeValue or the
HTML.sanitizeContent property. For the HTML control it is disabled by default whereas for the
RichTextEditor the sanitize option is enabled. When adding a path to the white list be aware to add a “/” at the
start of the path if necessary, so “/index.epx” would be the correct entry instead of “index.epx”. The last
example below shows this.

Maintaining the URL Whitelist

The whitelist can be maintained with the following API:

● jQuery.sap.addUrlWhitelist
● jQuery.sap.clearUrlWhitelist
● jQuery.sap.getUrlWhitelist
● jQuery.sap.removeUrlWhitelist

Here is an example how valid URLs can be added to the white list:

// jQuery.sap.addUrlWhitelist(/* protocol */ undefined, /* host */ undefined, /*
port */ undefined, /* path */ undefined); jQuery.sap.addUrlWhitelist(undefined, "www.sap.com");
jQuery.sap.addUrlWhitelist("https", "sdn.sap.com"); jQuery.sap.addUrlWhitelist(undefined, "sap.de", "1080");

Validating a URL

A URL can be validated by using the following API: jQuerysapvalidateUrl.

Here is an example how a given URL is validated against the before maintained white list:

jQuery.sap.validateUrl("http://www.sap.com"); // => true jQuery.sap.validateUrl("http://sdn.sap.com"); // => false (wrong protocol)
jQuery.sap.validateUrl("https://sdn.sap.com"); // => true jQuery.sap.validateUrl("ftp://sap.de:1080/anyftpfolder"); // => true

If no whitelist is maintained the URL validity check also basically checks the URL for being defined in a valid
format.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1477

Whitelist Service

SAPUI5 supports the configuration of a central whitelist service.

frameOptions uses the whitelist service to determine whether the application should run in the parent origin
or not. The whitelist service call uses the parent origin as URI parameter (URL encoded) as follows:

GET url/to/whitelist/service?parentOrigin=https://parent.domain.com

The service responds to the request with a valid JSON:

 {
 "version" : "1.0",
 "active" : true | false, // defines if entry is active
(if not, framing will be allowed per default)
 "origin" : "<same as passed to service>",
 "framing" : true | false // if active, describes if
framing should be allowed (see FrameOptions) }

Related Information

Frame Options [page 1478]
Configuration Options and URL Parameters [page 703]

Frame Options

frameOptions is used to prevent security vulnerabilities like clickjacking. With the frameOptions
configuration you define whether SAPUI5 is allowed to run embedded in a frame or only from trusted origins or
not at all.

SAPUI5 provides the following configuration options for frameOptions:

Mode Default Description

allow X Allows to be embedded from all origins

deny Denies to be embedded from all origins

trusted Allows to be embedded from trusted
origins according to the same-origin
policiy and to be embedded to origins
allowed by the whitelist service

1478 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

With frameOptionsConfig the following additional configuration options can be set:

Parameter Type Default Description

callback function(bSuccess) Function that is called with
the success state

 Note
The function can be
synchronously called
from the SAPUI5
bootstrap script. The
DOM
(document.body)
may not be accessible.

timeout number 10000 After the delay, the page
remains blocked and the
provided callback is invoked
(milliseconds)

blockEvents boolean true Defines whether keyboard,
mouse and touch events are
blocked

showBlockLayer boolean true Defines whether an invisible
block layer is rendered to
prevent interaction with the
UI

allowSameOrigin boolean true Defines whether same origin
domains are allowed or not

whitelist string Contains the domain
whitelist (comma-separated)

Example: deny

If the application is not intended to run in a frame, set frameOptions to deny:

<script id='sap-ui-bootstrap' src='resources/sap-ui-core.js'
 data-sap-ui-frameOptions='deny'> </script>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1479

Example: trusted with callback

To restrict the embedding to same-origin domains, set frameOptions to trusted. The callback in the
following code sample is called with a boolean as success state and can be used to implement an application-
specific behavior.

 <script>
window["sap-ui-config"] = {
 frameOptions: 'trusted',
 frameOptionsConfig: {
 callback: function(bSuccess) {
 if (bSuccess) {
 alert("App is allowed to run!");
 } else {
 alert("App is not allowed to run!");
 }
 }
 }
};
</script>
<script id='sap-ui-bootstrap'
 src='resources/sap-ui-core.js'> </script>

Example: Whitelist Service

To allow that the SAPUI5 application is embedded in cross-origin domains, configure a whitelist service. The
whitelist service checks whether the application can run in the parent origin, or not.

<script> window["sap-ui-config"] = {
 whitelistService: 'url/to/whitelist/service',
 frameOptions: 'trusted',
 frameOptionsConfig: {
 callback: function(bSuccess) {
 if (bSuccess) {
 alert("App is allowed to run!");
 } else {
 alert("App is not allowed to run!");
 }
 }
 }
};
</script>
<script id='sap-ui-bootstrap'
 src='resources/sap-ui-core.js'> </script>

1480 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Example: Whitelist Service via <meta> Tag

Alternatively, a <meta> tag can be used to configure the whitelistService and set the frameOptions to
trusted. This only applies if the whitelistService or frameOptions configuration is not set in the
SAPUI5 configuration.

<meta name="sap.whitelistService" content="url/to/whitelist/service" /> <script id='sap-ui-bootstrap'
 src='resources/sap-ui-core.js'> </script>

Related Information

Whitelist Service [page 1478]
Configuration Options and URL Parameters [page 703]

Content Security Policy

Content Security Policy (CSP) adds an additional layer of security that enables the detection and mitigation of
certain types of attacks including cross site scripting and data injection.

CSP restricts the sources from which the browser is allowed to load resources, such as scripts, fonts, and
images:

● CSP mitigates and reports XSS attacks; CSP compatible browsers only execute scripts loaded in source
files that are received from whitelisted sources.

● CSP also mitigates packet sniffing attacks by specifying the protocols that are allowed to be used in the
web server, for example, specifying that content must only be loaded from HTTPS.

CSP is either enabled via a configuration in the web server to return the Content-Security-Policy HTTP header
(preferred solution), or via the <meta> element in the meta tags of an HTML page.

For generic information about CSP, see https://www.w3.org/TR/CSP2/ .

For SAPUI5, we recommend that developers build their apps CSP-compliant, in particular regarding the loading
of resources and the use of inline scripts. eval() is currently still required in SAPUI5 for synchronous loading.
However, we recommend to load JavaScript resources asynchronously and this also avoids the use of eval().
For more information about asynchronous loading, see Modules and Dependencies [page 1094]. For more
information about avoiding synchronous APIs which might lead to synchronous loading, see Legacy Factories
Replacement [page 1124].

To build CSP-compliant applications without inline scripts, you must avoid the following when developing
SAPUI5 apps:

● Script element with inlined source code
● Inline event handler
● javascript: URL

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1481

http://help.sap.com/disclaimer?site=https%3A%2F%2Fwww.w3.org%2FTR%2FCSP2%2F

● document.write(), createElement('script'), and so on, if they are used to create inline scripts.
Creating script references, such as <script src="..."></script> or non-script content with them is
okay.

To be prepared for a CSP policy, which does not allow eval(), you must also avoid the following elements
when developing SAPUI5 apps:

● new Function()
● setTimeout(<non-fn>)

This will be ignored silently and not create a timer without 'unsafe-eval', that is, <non-fn> is never
executed. setTimeout(<fn>) will work with and without 'unsafe-eval'.

● setInterval(<non-fn>)
This will be ignored silently and not create a repeated timer without 'unsafe-eval', that is, the <non-
fn> is never executed. setInterval(<fn>) will work with and without the 'unsafe-eval'.

To run in an environment in which CSP has been enabled, SAPUI5 requires the following directives:

● script-src 'self' 'unsafe-eval' <source hosting UI5>;
SAPUI5 itself does not require ‘unsafe-inline’, but still requires ‘unsafe-eval’ for synchronous
loading of JavaScript resources. ‘self’ is required for loading application resources. If SAPUI5 is not
hosted with the application, an additional source entry (<source hosting UI5>) is required.

● style-src 'self' 'unsafe-inline' <source hosting UI5>;
SAPUI5 requires 'unsafe-inline' as it is used by many controls. In addition, 'self' may be needed for
loading styles from the application. If SAPUI5 is hosted with the application, 'self' is required for loading
the SAPUI5 styles. Otherwise, an additional source entry (<source hosting UI5>) is required. Similarly,
the location of custom themes needs to be added.

● font-src 'self' <source hosting UI5>;
'self' may be needed for loading fonts from the application. If SAPUI5 is hosted with the application,
'self' is required for loading the SAPUI5 fonts, otherwise an additional source entry (<source hosting
UI5>) is required. Similarly, the location of custom fonts needs to be added.
Some specific SAPUI5 functionality may require specifying data: as source.

● img-src 'self' <source hosting UI5>;
'self' may be needed for loading images from the application. If SAPUI5 is hosted with the application,
'self' is required for loading the SAPUI5 images, otherwise an additional source entry (<source
hosting UI5>) is required. Similarly, the location of custom themes needs to be added, if they contain
images.
If the backend provides additional links to images, their location needs to be added as well.
Some specific SAPUI5 functionality may additionally require data: and/or blob:.

● frame-src <source hosting UI5>;
For using the support assistant and/or the diagnostics tool, the location of the SAPUI5 framework (could
be 'self') needs to be added as a source entry.
Additional entries may be required depending on the integration, application, or test scenario.
Some specific SAPUI5 functionality may additionally require data: and/or blob:.

● worker-src <source hosting UI5>;
Some specific SAPUI5 functionality may require the source hosting SAPUI5 (could be 'self'), data:
and/or blob:.

● child-src ;
For browsers not supporting worker-src, the corresponding entries need to be done here. This is the
deprecated predecessor of worker-src and frame-src.

1482 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

● connect-src 'self' <source hosting UI5>;
‘self’ is required for loading application resources. If SAPUI5 is not hosted with the application, an
additional source entry (<source hosting UI5>) is required.
Some specific SAPUI5 functionality may require wss:.

To setup a most restrictive policy, setup CSP in report-only mode and start with a minimal policy. Monitor the
reports to add missing sources. Finally switch CSP to enforcing the policy.

Right-to-Left Support

SAPUI5 application developers need to be aware of how applications behave when right-to-left (RTL)
directionality is selected. Changing the directionality has a big impact on text-displaying controls, images and
the alignment of the whole application.

The default text direction is left-to-right (LTR). This can be changed to right-to-left mode (RTL) by using one of
the following configuration switches:

● URL parameter sap-ui-rtl=true
● Configuration object: window["sap-ui-config"].rtl = true;
● Script tag configuration: data-sap-ui-rtl="true"
● Setting an RTL language as default language for the application.

SAPUI5 then sets the overall page direction to RTL. All SAPUI5 content is then displayed in RTL mode. Self-
written controls and content has to be tested separately. If you require manual styles, provide a style
specifically for the RTL case by using html[dir=rtl].

API Properties for Right-to-Left Support in Text-Displaying
Controls

Languages with right-to-left (RTL) text directionality keep the default directionality of numeric values and texts
in left-to-right (LTR) mode. To ensure correct handling, two API properties have been introduced -
textDirection and textAlign.

Introduction

In Arabic, Hebrew and other languages that use the RTL text direction, when you see numerals or text from left-
to-right languages (like symbols) on the UI, they are flipped to match the text direction. This common pitfall is
visible when representing numerals (phone numbers, dates, currency values, etc.), which actually need to be
displayed in LTR mode within the context of an RTL page.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1483

Solution

Two new properites have been introduced to determine the directionality of the target content.

● textDirection
● textAlign

textDirection adds an HTML dir attribute to the part of the control that displays the target content.

textAlign and is used for reversing the text alignment. Adding the textAlign property is only needed if the
control doesn’t force the correct alignment.

The naming of the properties varies based on the actual use case of the control. For example, the
sap.m.DisplayListItem control has label and value properties for text representation and the most
common use case is to display numeric data in the value part of the control. The naming of the new property
is valueTextDirection and since the control forces text alignment, the valueTextAlign property is not
needed.

Examples

The examples below illustrate the default behavior of numeric data in an RTL page context – the individual
parts of the text are mixed:

After setting the textDirection and textAlign properties of the control (inherited from
sap.m.InputBase), the numeric data is displayed in LTR mode, despite the RTL page context. When in LTR
mode, the default text alignment (begin) is kept, which differs from the page text alignment. Because of this,
we should use textAlign: end as the control doesn’t force the alignment of the text. Here is how this looks
in an sap.m.Input control:

 sap.m.Input ({
 value: "(+359) 111 222 333 + (Some) text",
 textDirection: sap.ui.core.TextDirection.LTR,
 textAlign: sap.ui.core.TextAlign.End });

And here is how it looks on the screen:

This second example shows the behavior of a control that enforces correct text alignment -
sap.m.DisplayListItem. In this case, you don't need to set the textAlign property.

 new sap.m.DisplayListItem({

1484 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 label: "Phone Correct",
 value: "(+359) 111 222 333",
 valueTextDirection: sap.ui.core.TextDirection.LTR });

And here is how it looks on the screen:

 Tip
To ensure that your application displays the data correctly, always test your application using RTL mode
and real data.

Check the API Reference to see if your controls have these properties implemented.

Accessibility

In this guide we cover the most important accessibility aspects for application development, based on SAPUI5.

As an application developer, you need to be aware of accessibility in every step of the process. SAPUI5 controls
have built-in accessibility features, but you need to take care when building and combining them into an
application. Even though features like keyboard handling come out of the box, you need to pay attention to
proper focus handling, so that all parts of the app are reachable with key commands. The following chapters
showcase different aspects and offer tips how to test your app.

General Recommendations

When developing SAPUI5 applications, you need to pay attention to the correctness of the resulting HTML.
Some vital accessibility features (screen reader and keyboard support) rely on a correct and meaningful
structure of the application.

Rules and Guidelines

Don't change the HTML

Theming (CSS selectors), keyboard handling (tab order) and screen reader support are tightly coupled with the
HTML structure of the generated pages. If you change the structure of the elements (for example, from custom
JavaScript, HTML or CSS), this could break some or all of the accessibility aspects. In addition, it makes
debugging the application more difficult.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1485

Check the focus persistence
When opening or closing a dialog or navigating between pages, the focus should stay on the same control as it
was on before opening or navigating. If the control no longer exists, the focus should be put on its parent (for
example, if the control was inside an action sheet, set the focus on the button which opened the action sheet).

 Note
When the parent control cannot receive focus or is no longer available, the focus should go to a control
nearby.

For more information, see sap.ui.core.Element/methods/focus API documentation in the Demo Kit.

Initial focus position
Within an application, the initial focus should be placed on the element that is most likely to be edited or
interacted with first (for example, mandatory fields on a form).

When opening dialogs or new pages, the focus should be on the first focusable element inside the content area.

 Tip
On touch devices, if the first focusable element is a control that would open the soft keyboard, it is better to
place the focus elsewhere - on the footer of the dialog or on a control that requires no keyboard input.

A good practice is to set the focus on the first mandatory element.

Don't interfere with existing accessibility features
Overriding code, for example the keyboard tab order or SAPUI5 key handlers, will impact the correct handling
and may break the accessibility of the whole application.

Make sure that each component has a unique ID
The SAPUI5 framework handles the creation of unique IDs automatically. If you pass IDs yourself, make sure
that they are unique within the whole application. For more information, see the Related Information section.

Provide meaningful tooltips for icons, icon buttons and where otherwise appropriate
Provide a text alternative for non-text elements and the necessary additional information, in case the text
space is insufficient. You should use a tooltip as a label for unlabeled elements only. Additionally, a
Placeholder can be used as a label if it is not a formatting hint.

 Example

Tooltips for container controls
Container and layout controls such as VerticalLayout or Grid inherit the tooltip property from
sap.ui.core.Element.

1486 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.core.Element/methods/focus

 Tip
We do not recommend setting a tooltip for the whole layout control, as it will not be displayed. You can set
the needed tooltips for the individual controls which the container holds.

 Tip
If you are developing your own controls, follow the guidelines listed under Related Information.

Tips for Testing

Start the application and check each screen element. Check the following:

● Does it have a label or a tooltip (hover with the mouse)?
● Are the labels and tooltips (fully) visible, clear, accurate, and meaningful?

○ Is this also true for each input field or for a sequence of input fields? (For example: street and
number)?

○ Is this also true for buttons, icons and images?
○ Is this also true for grouped information?

● Is the user informed about the required entries and input?

Related Information

Support for Unique IDs [page 814]
Keyboard Handling for SAPUI5 Controls for Developers [page 2237]
Screen Reader Support for SAPUI5 Controls [page 2244]
Theming [page 1254]

Text Size and Fonts

The size of the text and the font choice greatly impact the visibility and readability of an application.
Additionally, your application also has to still be usable at high zoom levels.

Rules and Guidelines

As an application developer, you should always consider the fact that the application could be zoomed to
200%, and everything should still be visible. For that reason, any style that involves disabling zooming or
setting fixed weight or height should be avoided. Properties that affect the zooming have to be set accordingly.

Here are some of the most common JavaScript properties that you should bear in mind:

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1487

● user-scalable
● initial-scale
● maximum-scale
● minimum-scale
● width
● height
● target-densitydpi

 Caution
Setting inappropriate values for these properties can completely disable the zooming of an application.
Here is an example of such incorrect values:

<meta name="viewport" content="user-scalable=no, initial-scale=1, maximum-
scale=1, minimum-scale=1, width=device-width, height=device-height, target-densitydpi=device-dpi" />

Additionally, you can also make zoom adjustments or disable zoom completely in CSS. For example:

zoom { zoom: 150%; }

Or

#elementId { -ms-transform: scale(2,3); /* Internet Explorer 9 */
 -webkit-transform: scale(2,3); /* Safari */
 transform: scale(2,3);
}
html {
 -ms-content-zoom-limit-min: 1;
 -ms-content-zoom-limit-max: 1;
}
html {
 touch-action: none;
}

Tips for Testing

Enlarge the application UI text by zooming up to 200%.

● Is each text element and each image enlarged to double width and double height?
● Is the text still readable (no overlaps)?
● Are text alternatives for non-text content magnified in the same way?
● Is the full content and functionality still available?
● Does the layout still look OK?

1488 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Colors and Theming

Theming is an important aspect for an SAPUI5 application. The different colors shown on the UI need to have a
good contrast to each other in order to be easily distinguishable.

General Recommendations

Different people perceive and interpret colors in different ways, which is something you must take into account
when developing your applications. High-contrast themes are already available for all SAPUI5 controls.

● Applications need to provide the user with an option to switch themes.
○ If the application runs in the SAP Fiori launchpad, this is covered automatically.

● There are two possible ways to change the theme:
○ With the URL parameter sap-ui-theme

sap-ui-theme=sap_belize_hcb

and

sap-ui-theme=sap_belize_hcw

○ From the API using the core method applyTheme

sap.ui.getCore().applyTheme(“sap_belize_hcb”);

or

sap.ui.getCore().applyTheme(“sap_belize_hcw”);

● You should avoid writing custom CSS. If you do need custom CSS for some reason, check to make sure
everything is working fine on all available themes.

● If a new theme is created, the color contrast between the elements should be checked. People with visual
impairments and people using the application under less than ideal circumstances (bad monitor, sunlight
hitting the screen, window reflections) may not be able to read the text easily if the contrast levels are
insufficient. Specialized tools can help you to measure the color contrast.

DOs and DON'Ts

DOs
● Use predefined CSS parameters in your CSS. You can find them in the following files within the SAPUI5

library:
○ resources/sap/m/themes/base/library-parameters.json
○ resources/sap/m/themes/sap_hcb/library-parameters.json

● Use REM/EM instead of PX as a unit.
● Use the flexible layout concept in CSS.
● Use media-queries when flexible layouts do not meet UX expectations.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1489

● Don't forget the Retina display. You need to provide 2 versions for an icon (icon.png and icon@2x.png).

DON'Ts

● Define a custom color.
● Define a custom font family.
● Set fixed width/height (except for some exceptions like images).
● Define writing-modes (left-to-right or right-to-left), as this is handled by the SAPUI5 control itself.

Tips for Testing

Check the color contrasts.

● Take a screenshot, put it into an image tool and convert it to black and white
○ Are there screen elements, lines or texts that are disappearing?
○ Check the color contrast for elements that disappear.

● If time allows, check all contrasts of all elements.

Keyboard Handling

Keyboard handling enables users to access every UI element of the application with the keyboard and is
therefore tightly connected to accessibility. Additionally, this aspect is coupled to the screen reader
functionality.

General Recommendations

Accessibility of UI elements

Make sure that all available features of the application can be accessed by using only the keyboard - TAB ,
arrows, ENTER , and SPACE . The user should be able to activate the functionality of all active elements.

Tab order and reading order

The reading order of the page is very important for the application user experience. Those who use keyboard
only should be able to navigate easily through every single element. You should always have in mind the fact
that the page should have a logical reading order. This is especially important for those who use screen reader
software, because in most cases they will follow exactly the tab order of the application and illogical tab orders
can confuse them.

 Example
When you have to select a country and city from select boxes, the country should be focused first and after
that the city.

1490 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Tips for Testing

Start the application and put away your mouse.

● Can you reach every active screen element just by using the keyboard?
○ Is this true also for dynamically created texts or control elements?

● Can you navigate within control elements (for example, list, table, tabstrip) using arrow keys?
● Can you also navigate away from each UI element using the keyboard?
● Does the visible focus follow the exact keyboard commands? Is it always identifiable and in the visible

area?
● Can you execute all actions? (Compare with what you can do with the mouse)

Fast Navigation

Adjacent controls within the tab chain can be grouped. Within such a group, F6 skips all controls of the group
and moves the focus to the first control in the tab chain of the next group. Shift + F6 moves the focus to the
first control of the previous group. Adjacent tab chain elements between groups are automatically handled as
one group. For nested groups, the most concrete group is used.

The following image describes this behavior. Groups are highlighted in blue, elements in the tab-chain are grey.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1491

The F6 navigation cycles. This means if the focus is within the last group in the group chain, the focus moves
to the first control in the first group. This leads to an additional F6 chain, which allows fast navigation through
applications. Larger controls like the Table, Panel, and Form provide their own groups by default. The
application developer defines further groups.

As described, some larger controls or containers already define F6 groups. If a group is defined on root level of
a control or element, the group can be removed by using the CustomData mechanism.

Coding Example:

oControl.data("sap-ui-fastnavgroup", "false", true/*Write into DOM*/);

XML View Example:

<mvc:View xmlns:core="sap.ui.core"
 xmlns:mvc="sap.ui.core.mvc"
 xmlns="sap.m">
 <Panel>
 <headerToolbar>
 <Toolbar>
 <Button icon="sap-icon://settings" />

1492 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 </Toolbar>
 </headerToolbar>
 <content>
 <Text text="Lorem ipsum dolor st amet..." />
 </content>
 <customData>
 <core:CustomData key="sap-ui-fastnavgroup" value="false"
writeToDom="true" />
 </customData>
 </Panel>
</mvc:View>

The same way it is possible to make a control or element to be an F6 group. However, keep in mind that not all
elements are represented in the DOM.

Coding Example:

oControl.data("sap-ui-fastnavgroup", "true", true/*Write into DOM*/);

XML View Example:

<mvc:View xmlns:core="sap.ui.core"
 xmlns:mvc="sap.ui.core.mvc"
 xmlns="sap.m">
 <Panel>
 <headerToolbar>
 <Toolbar>
 <Button icon="sap-icon://settings" />
 </Toolbar>
 </headerToolbar>
 <content>
 <Text text="Lorem ipsum dolor st amet..." />
 </content>
 <customData>
 <core:CustomData key="sap-ui-fastnavgroup" value="true"
writeToDom="true" />
 </customData>
 </Panel>
</mvc:View>

Also, DOM elements that are not controlled by SAPUI5 controls can be grouped by setting data-sap-ui-
fastnavgroup="true".

Screen Reader Support

SAPUI5 application developers need to be aware of how the screen reader reads out the contents of the UI.
Labels, headings, and descriptions help you describe the contents and visual elements of an application.

General Recommendations

The following rules and guidelines will help you avoid common pitfalls and show you best practices. You still
need to be aware that there may be deviations between the interpretation of the markup by the different screen
readers.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1493

Generate valid HTML
The screen reader software gets the information about the page directly from the DOM. Therefore, if the DOM
is invalid, the information presented to the user might be invalid as well. Ideally, if the DOM is correct, the
screen reader software will interpret it correctly. When you need to create new controls or change the HTML
structure of existing ones for some reason, you have to check the validity of the resulting HTML.

Use titles for complex components
Complex controls like pages, panels, and tables need a title to summarize the contents they hold. If you use the
standalone Title control, make sure that it is associated with the element that needs the title.

 Example

<mvc:View xmlns:mvc="sap.ui.core.mvc"
 xmlns="sap.m"> <Title id="rbGroupTitle" text="Select an option" textAlign="Center"/> <RadioButtonGroup columns="2" selectedIndex="2"
ariaLabelledBy="rbGroupTitle"> <buttons>
 <RadioButton id="RB2-1" text="Option 1"/>
 <RadioButton id="RB2-2" text="Option 2" editable="false"/>
 <RadioButton id="RB2-3" text="Option 3"/>
 </buttons>
 </RadioButtonGroup>
</mvc:View>

Result:

Use labels
Make sure that all edit boxes, search fields, and column headers have labels. If not, use the Label control and
add one. Labels have to be connected to each control, for example by using one of the following:

● labelFor=”…”
● aria-label=”…”
● aria-labelledby=”…”
● placeholder=”…”
● title=”…”

Titles in headings
For headings (table toolbar, page header, form toolbar, panel toolbar) the text should be in a sap.m.Title
control (make sure that it is associated with the element that needs the title and, if not, add the reference using
aria-labelledby).

1494 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Example

<mvc:View xmlns:mvc="sap.ui.core.mvc"
 xmlns="sap.m">
 <Panel expandable="true">
 <headerToolbar>
 <Toolbar height="3rem"> <Title text="Header"/> <ToolbarSpacer/>
 <Button icon="sap-icon://settings"/>
 <Button icon="sap-icon://drop-down-list"/>
 </Toolbar>
 </headerToolbar>
 <content>
 <Text text="Lorem ipsum"/>
 </content>
 </Panel>
</mvc:View>

Labels and descriptions for input controls
When using the Input control, always provide a label (make sure it is connected with the input). You can also
use the description property to add additional information. For the input, the description is usually used for
showing the unit of measurement (for example. "EUR").

 Example

<mvc:View xmlns:l="sap.ui.layout"
 xmlns:mvc="sap.ui.core.mvc"
 xmlns="sap.m">
 <l:VerticalLayout
 class="sapUiContentPadding"
 width="100%">
 <l:content>
 <Label text="Product price" labelFor="productPriceInput"/>
 <Input
 id="productPriceInput"
 value="220"
 description="EUR / 5 pieces"
 width="200px"
 fieldWidth="60px" />
 </l:content>
 </l:VerticalLayout>
</mvc:View>

Result:

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1495

Empty labels in drop-down lists
In some cases, you may need to provide an empty option in a drop-down field such as Select. This way you
want to indicate that none of the items in the drop-down is applicable, or offer the empty option as a way to
clear the selection. In this case, you should properly label the empty option with (None) and not leave it blank.

The labeling on the empty option will be read by the screen reader and the end user will be correctly informed
about the semantics of the empty option.

 Tip
The empty label (None) should always be the first item in the drop-down.

List with info toolbar
When using the List control with visible non-active info toolbar with plain text content, you need to associate
the aria-labelledby of the list with the text content of the infoToolbar aggregation.

 Example

... <List ariaLabelledBy="textInInfoToolbarId">
 <infoToolbar>
 <OverflowToolbar active="false">
 <Label
id="textInInfoToolbarId" text="Announce this text when the first list item is
focused" />
 </OverflowToolbar>
 </infoToolbar>
 <items>
 ...
</List> ...

Provide additional information when there are changes in the screen
Make sure to provide additional information to the user, when changes in the screen are done, based on user
interaction. You can use one of the following informative techniques:

● Include additional text description via ariaDescribedBy/ariaLabelledBy API for the control triggering
the update (Button, Search Field, or other interactive control). For example: When search results will be
placed in the area below, you can add a text describing how/where the users can locate the results.

● Include additional text description via ariaDescribedBy/ariaLabelledBy on the parent control level.
For example: In the case of apps using the master-detail pattern, where the list is on the left side and
results are presented on the right side, you should add additional text describing that upon selection in the
list, the details will be loaded in the details panel.

● When something is opening on the screen, you can move the focus there, if your use case requires it. For
example, for apps using the master-detail pattern when the user needs to browse the available items, the
focus should stay in the master list area. And in cases when the user has selected an item from the master
list and needs to perform an action, the focus should move to the details area.

 Note
For controls that are toggling/opening regions and are still present after the toggling, then the focus
should remain on them. But if the control is hidden afterwards – the focus needs to be moved, into the
default focus position in the toggled/opened region.

1496 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Tips for Testing

Start a screen reader, start the application, walk through the application using the keyboard and listen. For
example, you can also use Virtual Cursor mode or similar functions of your screen reader because some
elements do not need to have the focus to be readable by screen readers.

● Is everything that you need to use the application read correctly?
○ Each element’s role, name, state, label, tooltip, further information (attached errors, usage hints)?
○ Is this the case for interactive and semantic/non-semantic elements?
○ Actively check that all visible UI elements are read.

● Is it read correctly?
○ No duplicates?
○ No strange pronunciation, like reading English with German words or vice versa?
○ No nonsense, wrong values, another element’s attributes?

● Are screen updates like application messages, dialogs (popups), and similar dynamic content read
correctly and at the right time?

Control-Specific Behavior

Screen readers need to handle SAPUI5 controls with similar functionality in a similar way. Still there are
differences, and application developers need to know them, in order to use the correct control for the desired
task.

The first thing that should be read upon entry for any control has to be its ARIA role. What is read afterwards for
each control is different, but similar types of controls will read similar elements.

Dialog Controls

SAPUI5 dialog controls can serve different purposes within the application and are therefore handled differently
by the screen reader.

General Behavior

Dialog controls are used to interact with the user in two main ways. Popups, message boxes, and busy dialogs
interrupt the user and require some additional interaction. Message toast and message strip are used to just
display some status information without interrupting the user. Interrupting dialogs have a more complex
structure, but all generally follow the same structure - a title, content area and some actions. The title should
be the first thing read by the screen reader. It should explain the general purpose of the dialog (i.e. Data
confirmation, Interruption). If the dialog contains initially focused elements, like action buttons, those should
be read after the title announcement. The contents of the dialog should be read in their respective order.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1497

Titles and Labels

The behavior of controls based on Dialog/Popup (role="dialog") changes depending on their aria-
labelledby attribute.

If the the control has an aria-labelledby attribute, the screen reader will announce the following elements:

● The provided label
● The role of the dialog
● The currently focused element

If the the control does NOT have an aria-labelledby attribute, the screen reader will announce the following
elements:

● All elements in the dialog (regardless if interactive or not)
● The role of the dialog
● The currently focused element

The title property of a Popover/Dialog is used to display the title of the dialog. If the dialog has no visible title,
but one is needed, it can be provided as a reference to another control in aria-labelledby. All other text that
needs to be read before the title, can be added there as well.

 Note
A dialog without a title will be read completely when it appears. Users with screen readers will not be able to
differentiate it from the rest of the application.

 Example
Dialog with ariaLabelledBy

 var oDialog = new sap.m.Dialog({ title: "Dialog Title",
 ariaLabelledBy: "textId",
 content: [
 new sap.m.Text({id: "textId", text: "A sample text that
will be annoucned by JAWS after the title, when the dialog is opened."})
]
 });

 var btn = new sap.m.Button({
 text:'Hello World',
 press: function(){
 oDialog.open();
 }
 }); btn.placeAt('content');

More detailed behavior is described in the table below.

Detailed Behavior

In the following table you can see how the different dialog controls are read by the screen reader.

1498 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Table 71: Screen Reader Behavior in Dialog Controls

SAPUI5 Control What is read by default

Dialog / Select Dialog ● Dialog title
● Initially focused element

Busy Dialog ● Dialog header
● Dialog message
● Progress bar

Message Box ● Dialog title
● Dialog message

Message Toast ● Message text when the toast appears

Message Popover / Popover ● No specific element needs to be read or focused.

Message Strip ● The complete content including text, icons and links
● Message type
● Associated headings (if any)

 Note
The Close button should not be read initially.

User Action Controls

SAPUI5 action controls are used for triggering interactions with the application. Therefore it is important that
screen readers read the correct set of properties for them in order to insure their proper usage.

Table 72: Screen Reader Behavior in Input Controls

SAPUI5 Control What is read by default

Button ● Button text
● Custom types
● Tooltip (if the button is only an icon)

Link ● Link text
● Link label
● Tooltip

Breadcrumbs ● In Virtual Cursor mode - upon entry announce the label
Breadcrumb Trail

● For each breadcrumb - text, label and tooltip
● For separators - announce textual descriptions if icons

are used

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1499

SAPUI5 Control What is read by default

Menu Button ● Button text
● Statement that button opens a menu
● Custom types
● Tooltip (if the button is only an icon)

Split Button ● Button text
● Statement that button opens a menu
● Custom split button types
● Tooltip (if the button is only an icon)

Toggle Button ● Button text
● Toggle state
● Custom button types
● Tooltip (if the button is only an icon)

User Input Controls

SAPUI5 input controls are used to get and store user data. The most common use of these controls is as part of
a form.

Table 73: Screen Reader Behavior in Input Controls

SAPUI5 Control What is read by default

Check Box ● Checkbox label
● Checkbox state
● Checkbox value
● Tooltip

Combo Box ● Combobox label
● Combobox placeholder text (if any)
● Combobox state
● Combobox value
● Tooltip

Other interactions that need to be announced:

● Expanding\collapsing the combobox
● Value changes that happen without expanding
● When navigating the dropdown items: item text, item

state, position in the list, total number of items

1500 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

SAPUI5 Control What is read by default

Date Picker ● Picker text
● Picker placeholder text (if any)
● Picker state
● Picker value
● Tooltip

Facet Filter Light Variant (only one button):

● Label for the filter
● Default statement: "no filter selected"

Simple Variant (several buttons):

● Labels for the filters

Input ● Input state
● Input value
● Input label
● Tooltip
● Associated descriptions
● Associated messages

● Additional properties like valueHelp

Mask Input Basic behavior is like Input. Additionally the screen reader
should read:

● Masked input characters/symbols
● Symbols that have already been entered

Container Controls

SAPUI5 container controls do not directly interact with the application user. Still they play an important role in
the application navigation and structure.

SAPUI5 Control What is read by default

Bar/Toolbar ● Upon entry in Virtual Cursor mode - ARIA role
● In Virtual Cursor mode - Type of the contained labels

(header, subheader, footer)

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1501

SAPUI5 Control What is read by default

Icon Tab Bar ● Element role (tapstrip or tabpanel)
● Sub-element role (tab)
● Textual descriptions for icon tabs
● Actual position of the selected tab in the set
● Total size of the tab set
● Current state of the selected tab

Message Page ● In Virtual Cursor mode - all text on the page

Page ● Landmark roles for the substructure elements (header,
content, footer)

Panel ● Button text
● Toggle state
● Custom button types
● Tooltip (if the button is only an icon)

Object Header ● The Object Header title
● In Virtual Cursor mode - all content of the region

 Note
The whole region should be available as a landmark

Display Controls

SAPUI5 display controls are used to indicate the progress of some action or to show visual elements like
images and text.

Table 74: Screen Reader Behavior in Display Controls

SAPUI5 Control What is read by default

Busy Indicator ● Duration - indeterminate

Image ● Textual description of the image content

 Note
Decorative images need not be read out.

 Note
Interactive icons, that are used as buttons, should be
read as such (role=”button”).

1502 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

SAPUI5 Control What is read by default

Label ● Label text

Numeric Content ● Description of the numeric value

Object Identifier In Virtual Cursor mode:

● Content

Object Number In Virtual Cursor mode:

● Content
● Status

Object Status In Virtual Cursor mode:

● Content
● Status
● Textual description of the icons used

Progress Indicator ● Progress state
● Current value
● Minimal value
● Maximal value
● Value changes

Text In Virtual Cursor mode:

● Text content

List Controls

List controls are used to store entities

SAPUI5 Control What is read by default

Breadcrumbs ● Upon entry in Virtual Cursor mode - ARIA role
● In Virtual Cursor mode - Type of the contained labels

(header, subheader, footer)

Icon Tab Bar ● Element role (tapstrip or tabpanel)
● Sub-element role (tab)
● Textual descriptions for icon tabs
● Actual position of the selected tab in the set
● Total size of the tab set
● Current state of the selected tab

Message Page ● In Virtual Cursor mode - all text on the page

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1503

SAPUI5 Control What is read by default

Page ● Landmark roles for the substructure elements (header,
content, footer)

Panel ● Button text
● Toggle state
● Custom button types
● Tooltip (if the button is only an icon)

Object Header ● The Object Header title
● In Virtual Cursor mode - all content of the region

 Note
The whole region should be available as a landmark

Composite Controls

Composite SAPUI5 controls, like Wizard or Semantic Page, are read based on the specific behavior of their
parts. Still these controls require additional ARIA labels to correctly separate the areas within the control. Here
are some examples:

● Wizard Navigation Area - needs to be marked as a navigation landmark
● Dynamic Side Content - needs to be marked as a complementary landmark

When creating new composite controls, you need to make sure to properly assign your controls to regions and
label these regions correctly.

sap.m.Page Custom Landmarks

The sap.m.Page control is used in a lot of applications. As a container control it has three distinct regions that
hold content - header, content area and footer. There is also an additional role for the whole page. Each of these
areas needs to have a clearly defined ARIA role that explains what the region does. The ARIA roles for all these
regions can be set to custom values using the properties of sap.m.PageAccessibleLandmarkInfo.
Possible values for these roles are stored in the AccessibleLandmarkRole enumeration. In the example
below you can see how this is done in the landmarkInfo property of sap.m.Page.

<App> <Page title="Hello World" height="100%">
 <headerContent>
 <Title text="Just Page" />
 </headerContent>
 <subHeader>
 <Bar>
 <contentLeft>
 <Text text="Text in content left bar subheader "/>

1504 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 </contentLeft>
 </Bar>
 </subHeader>
 <footer>
 <Bar>
 <contentLeft>
 <Text text="Text in content left bar footer "/>
 </contentLeft>
 </Bar>
 </footer>
 <content>
 <Text text="Text in page content"/>
 </content>
 <landmarkInfo>

 <PageAccessibleLandmarkInfo
 rootRole="Region"
 rootLabel="Root Label"
 contentRole="Region"
 contentLabel="Content Label"
 footerRole="Region"
 footerLabel="Footer Label"
 headerRole="Region"
 headerLabel="Header Label"
 subHeaderRole="Region"
 subHeaderLabel="SubHeader Label" />
 </landmarkInfo>
 </Page> </App>

Labeling and Tooltips

The following guidelines help you properly label your controls in order to have good accessibility.

General Considerations

Top 5 things to do for better screen reader support for labels

1. Label all elements and element containers correctly and completely.
2. Provide text alternatives for visual labels

Use tooltips only in rare cases. They should not be used as a replacement for a label.
Use the alt attribute for images

3. Describe controls and give additional information as part of the UI
Use ariaDescribedBy where needed.

4. Identify regions correctly according to their purpose.
Use containers with a correct meaning and Landmark roles.

5. Provide accessible alternatives and describe how to use them (for example in the documentation of the
application).

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1505

Table 75: Rules and Guidelines for Labeling and Tooltips

Rules and Guidelines Examples/Clarification

Non-decorative sap.m.Image/sap.ui.core.Icon
should provide a meaningful alternative description in the
alt property.

 Example

<Image id="image_not_decorative"
src="IMAGE_PATH" alt="This is an
image showing an elephant"
decorative=false>

Interactive sap.m.Image/sap.ui.core.Icon (that
has a press handler) should not be decorative. Example

<Image src="IMAGE_PATH" alt="This
is an image with a press handler"
decorative=false
press=onImagePress>

Icon-only sap.m.Button should have a tooltip.
 Example

<Button icon="sap-icon://action"
press="onPress" alt="An action
button"
ariaLabelledBy="actionButtonLabel"/
>

Labels should not have a tooltip. This could lead to ambiguity.

Input elements should have labels. Every input needs a label for its description and purpose.
Even if the app doesn't include one, you can set one in
sap.ui.core.InvisibleText. The placeholder text
should not be used as a label.

Tables should have titles Tables with hidden titles or in containers with titles (for ex
ample,single tables in tab strip panels) should be labeled
with sap.ui.core.InvisibleText in combination
with arialabelledby.

Button that has a text, should not have a tooltip.
 Example

<Button text="Default"
press="onPress" />

1506 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Rules and Guidelines Examples/Clarification

Aria-labelledby and aria-describedby associa
tions should point to existing DOM elements.

 Example

 <Page title="Page"> <content>
<Button text="Home"
ariaLabelledBy="invisibleId"/>
<core:InvisibleText
id="invisibleId" text="I am a
hidden label"/>
</content>
</Page>

Labels should be connected with the labelled elements via
labelfor.

 Example

<Label text="Name" labelFor="I1"> <Input id="I1">

 Note
If you want to enlarge the size of the standard tooltips, you need to change the system font size. Tooltips are
rendered by the browser using native window API and thus their size cannot be influenced by the SAPUI5
framework.

The SAPUI5 ABAP Repository and the ABAP Back-End
Infrastructure

The SAPUI5 ABAP repository is used to store SAPUI5 apps, components, and libraries. SAP uses it for
delivering various types of SAPUI5 apps, for example SAP Fiori or High Performance Analytics (HPA) apps. The
SAPUI5 ABAP repository can also be used by customers to store their own SAPUI5 apps and extension
projects.

 Note
This chapter is only relevant if you're using the SAPUI5 ABAP repository and the ABAP back-end
infrastructure.

The SAPUI5 ABAP repository is part of the SAPUI5 ABAP back-end infrastructure and is the umbrella term for
the single SAPUI5 repository of each application. Technically, this infrastructure is based on the Business
Server Page (BSP) repository and each SAPUI5 repository is represented by an individual BSP application.

 Caution
For data integrity reasons, don't modify content of the SAPUI5 ABAP repository directly by editing the
corresponding BSP applications in ABAP Workbench (transaction SE80). For more information, see
Technical Remarks [page 1510].

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1507

The BSP runtime is not used at runtime and SAPUI5-specific request handlers are used instead. Therefore, the
flow logic ABAP parts cannot be used as they are not executed at runtime.

The SAPUI5 text repository is part of the SAPUI5 ABAP repository. It's intended to be used as fallback
mechanism if translation by properties files is not possible.

 Note
SAPUI5 distribution layer artifacts, such as control libraries, are not stored in the SAPUI5 ABAP repository,
but in a separate repository (technically based on the MIME repository). The runtime access is realized by
SAPUI5-specific request handlers.

The following design time tools use the SAPUI5 ABAP repository:

● SAP Web IDE
● Special SAPUI5 repository upload and download reports
● OData services

For more information, see Design Time Aspects [page 1511].

Further Features of the SAPUI5 ABAP Back-End Infrastructure

● SAPUI5 application index addressing the following:
○ Indexing content of the descriptor for applications, components, and libraries (for example, used by

SAP Fiori apps)
○ Cache busting on the level of single and multiple application resources

Fore more information, see SAPUI5 Application Index [page 1525].
● Cache busting on the level of single and multiple application resources

Which cache busting mechanisms are used, and in which cases, depends on the SAPUI5 app.
For more information, see Cache Behavior for Application Resources [page 1516] and Cache Buster for
SAPUI5 Application Resources [page 1516].

Availability

What? Available with ...

SAPUI5 ABAP repository SAP Business Suite systems from version 7.00 containing
the user interface (UI) add-on for SAP NetWeaver, which
contains the software component UI_INFRA

Team repository provider (available in Eclipse) SAP Business Suite systems from version 7.31 containing the
UI add-on for SAP NetWeaver, which contains the software
components UI_INFRA and UI5_731

 Note
The team repository provider, which is part of the
SAPUI5 tools for Eclipse, is no longer updated after
SAPUI5 release 1.71. For more information, see SAPUI5
Tools for Eclipse – Now is the Time to Look for Alterna
tives .

1508 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/disclaimer?site=https%3A%2F%2Fblogs.sap.com%2F2019%2F11%2F26%2Fsapui5-tools-for-eclipse-now-is-the-time-to-look-for-alternatives%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fblogs.sap.com%2F2019%2F11%2F26%2Fsapui5-tools-for-eclipse-now-is-the-time-to-look-for-alternatives%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fblogs.sap.com%2F2019%2F11%2F26%2Fsapui5-tools-for-eclipse-now-is-the-time-to-look-for-alternatives%2F

What? Available with ...

SAPUI5 repository upload and download reports (alternative
for the team repository provider with similar functions)

SAP Business Suite system from version 7.00

For more information, see Using the SAPUI5 ABAP Reposi
tory Upload and Download Reports to Synchronize [page
1515].

SAPUI5 control libraries SAP Business Suite systems from version 7.00 containing
the UI add-on for SAP NetWeaver in the software component
UISAPUI5

 Note
From SAP NetWeaver 7.4 SP1, all required SAPUI5 parts listed above are already part of software
component SAP_UI.

Big Picture: How Does it All Work?

The following image shows an overview of the main tools, repositories, APIs, and parts of the ABAP back end.

● The SAPUI5 ABAP repository contains single SAPUI5 repositories (each represented by a BSP
application). The SAPUI5 ABAP repository is used to store SAPUI5 application resources.

● At design time, you can access the SAPUI5 ABAP repository through the design time API using three
different design time tools: SAP Web IDE, special SAPUI5 repository upload and download reports, and
OData services.

● When applying SAP Notes with transaction SNOTE and using the transport system to transport your
changes, for example to quality systems, the BSP applications that represent single SAPUI5 repositories
are directly accessed (passing over the design time API).

● After carrying out content changes using the design time API, the index processor recalculates the
SAPUI5 application index.

 Note
This doesn't happen for changes carried out using transaction SNOTE or the transport system. To
ensure periodic recalculations of the SAPUI5 application index for these changes too, use transaction

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1509

SM36 to schedule periodic runs of the index processor triggered by the report /UI5/
APP_INDEX_CALCULATE.

● The SAPUI5 application index contains information related to the supported cache busting mechanisms
and the content of the descriptor for SAPUI5 apps, components, and libraries. The content of the SAPUI5
application index can be consumed by an API, for example, by SAP Fiori launchpad. Cache busting-related
information of the SAPUI5 application index can also be used by the request handlers (at runtime, for
SAPUI5 apps that are using this mechanism).

● At runtime, the application resources needed by SAPUI5 apps are accessed through a specific runtime API
from the SAPUI5 ABAP repository, whereas the SAPUI5 distribution layer artifacts (such as controls) are
retrieved from the MIME repository. The application resources and the SAPUI5 distribution layer artifacts
are served through SAPUI5-specific request handlers assigned to the respective ICF nodes.

● Another part of the SAPUI5 ABAP repository is the SAPUI5 text repository.

Technical Remarks

Here are more details about the SAPUI5 ABAP repository, the runtime handler, and content-specific
functionality.

SAPUI5 ABAP Repository

The SAPUI5 ABAP repository uses BSP applications to store SAPUI5 apps, components, and libraries. To be
precise, for text files it uses the page fragments and pages with flow logic of the BSP applications, and for
binary files the MIME objects of the BSP applications.

As mentioned above, don't edit the BSP applications in transaction SE80. Instead use the appropriate
development tools which use the SAPUI5 ABAP repository APIs to ensure the integrity of the data.

The SAPUI5 ABAP repository supports explorer-like file and folder structures. Therefore the BSP repository is
enhanced accordingly to also support file and folder structures. This means that the sources of an app might
look different in a BSP application compared to the corresponding single SAPUI5 repository when viewing it in
SAP Web IDE or Eclipse:

● Path mapping in XML (UI5RepositoryPathMapping.xml)
● GUID-like or hash-like names
● Texts looking different to the version in Eclipse or at runtime:

○ Trailing spaces in text lines are escaped with in the respective BSP pages.
○ Lines longer than 254 characters are broken into multiple lines and get a plus (+) on position 255.

● A BSP application representing a single SAPUI5 repository uses the application class /UI5/
CL_UI5_BSP_APPLICATION.

1510 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Runtime Handler

● For runtime access, each single SAPUI5 repository has an ICF node beneath node /sap/bc/ui5_ui5.
● Handler classes are assigned to node /sap/bc/ui5_ui5 for the following purposes:

○ Accessing SAPUI5 ABAP repository content
○ SAPUI5 distribution layer including SAPUI5 core libraries

Content-Specific Functionality

In general, the SAPUI5 ABAP repository and runtime access to resources do not make assumptions regarding
its content. However, there are the following exceptions:

● The index.html files are realized as pages with flow logic in the BSP application (whereas all other text
files are realized as page fragments). In this way, they can be tested directly in transaction SE80. (For
example, SAPUI5 application projects created with SAPUI5 tools for Eclipse have a file of this type.)

● There is a special logic for runtime handling that deals with the WebContent folder and web.xml that are
used in dynamic web projects in Eclipse. (SAPUI5 application projects created with SAPUI5 tools for
Eclipse are based on dynamic web projects.)

● There is a special logic for runtime handling of properties files (resource bundles) in the form of a server-
side locale fallback. This means that if a properties file for a specific locale is requested and does not exist,
the next matching properties file is returned.

Design Time Aspects

You can upload and download files from and to the SAPUI5 ABAP repository with the following tools:

● SAP Web IDE
● SAPUI5 repository upload and download reports
● OData service (upload only)

We recommend to use SAP Web IDE for developing complex apps with the latest innovations. Some
advantages of SAP Web IDE:

● Uses Git for version control of the sources
● Supports a client-side build that generates minified files and packages preload bundles to optimize start-

up performance
● Pushes the SAP Web IDE state to the ABAP system in a one-way, overwrite-all operation

Don't manually edit the BSP application representing a single SAPUI5 repository.

The SAPUI5 ABAP repository supports typical code pages for transferring of text files. However, there are some
code pages that are not supported, for example code page CP932 containing Japanese characters. If in doubt,
we recommend that you encode the files transferred to the SAPUI5 ABAP repository in UTF-8.

Related Links

● SAP Web IDE

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1511

https://help.hana.ondemand.com/webide/frameset.htm

● Using the SAPUI5 ABAP Repository Upload and Download Reports to Synchronize [page 1515]
● Using an OData Service to Load Data to the SAPUI5 ABAP Repository [page 1513]

View and Change Content of the SAPUI5 ABAP Repository

You can create and change customer content in the SAPUI5 ABAP repository. You can also retrieve content
from the SAPUI5 ABAP repository to view it.

 Note
Changes to content that is delivered by SAP in the SAPUI5 ABAP repository in customer systems are not
supported. Extension concepts exist that allow custom enhancements of content that is delivered by SAP.
This depends on the type of the content (see the documentation in question). For example, see the
extensibility information for SAP Fiori for SAP Business Suite on SAP Help Portal at http://help.sap.com/
fiori under SAP Fiori Implementation Information Extensibility Information .

Virus Scan During Uploads to the SAPUI5 ABAP Repository

From SAP NetWeaver 7.0, SAP delivers the virus scan profile /UI5/UI5_INFRA_APP/REP_DT_PUT for ABAP
with the user interface add-on for SAP NetWeaver. This virus scan profile is used to store files in the SAPUI5
ABAP repository.

Examples:

● Upload using SAPUI5 ABAP repository API /UI5/CL_REP_DT, method /UI5/IF_UI5_REP_DT~PUT_FILE
from SAP NetWeaver 7.0

● SAPUI5 team repository provider in SAP NetWeaver 7.3 EHP1, or from SAP NetWeaver 7.40

Perform Static Checks on SAPUI5 Apps

As of SAP Fiori technology release 1911, you can perform static checks on SAPUI5 apps that you have created.

The static checks verify the following:

● Does the SAPUI5 app exist in the SAPUI5 ABAP repository?
● Is the SAPUI5 app active?
● Does the corresponding ICF node exist under /sap/bc/ui5_ui5?

These checks have been delivered via the Code Inspector. For more information, call transaction SCI and click
on the button. In the Performace Assistant window, click on the link in For more information, see the
extended help in Code Inspector. The extended help describes how you can perform the above checks for
your own SAPUI5 apps.

1512 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/fiori
http://help.sap.com/fiori

Using an OData Service to Load Data to the SAPUI5 ABAP
Repository

You can use the OData service /UI5/ABAP_REPOSITORY_SRV to upload a SAPUI5 app, component, or library
to the SAPUI5 ABAP repository.

If you use a repository, for example git, and a build server, for example Jenkins, for the central coordination of
your SAPUI5 developments, you can use the OData service /UI5/ABAP_REPOSITORY_SRV to upload the
respective files that are collected in a zip file to the SAPUI5 ABAP repository. The OData service uploads the zip
file to the SAP NetWeaver AS ABAP into a BSP application that is created or updated during the upload. This
BSP application represents the SAPUI5 ABAP repository. From there, the app, for example, can be used in the
SAP Fiori launchpad. The OData service /UI5/ABAP_REPOSITORY_SRV uses the SAP Gateway service builder
project /UI5/ABAP_REPOSITORY.

The OData service offers the basic entity Repository and supports GET, CREATE, UPDATE, and DELETE
operations. On return, the HTTP status reports either success or errors which may have occurred during the
operation. The response header or the response body contain additional information.

The base64-encoded zip archive that contains the app, component, or library files is provided in the
ZipArchive property. The operations CREATE and UPDATE use the file provided in the property for the
operation. You use the GET method of the OData service to retrieve a basic XML form that you can use for the
CREATE and UPDATE operations. To remove a SAPUI5 ABAP repository, you use the DELETE method that, if
successful, deleted the corresponding BSP application and its SICF service and updates the SAPUI5
application index.

URL Parameters

The following URL parameters are provided for the communication of mandatory or optional parameters for
the operations that are not part of the Repository entity itself:

● CodePage: Contains the information about the code page of your text files, for example,
CodePage='UTF8'

● TestMode: If set to TRUE, the operation runs as a test and no upload takes place.
● TransportRequest: Specifies an ABAP transport request

URL Parameters to Reduce the HTTP Response Header Size
If you want to reduce the HTTP response header size, for example because of the error message mentioned
below, you can use the following URL parameters to the OData call:

● CondenseMessagesInHttpResponseHeader=X
This limits the number of detail messages for the load operation to 6. Any additional messages are omitted.

● DetailMessagesInHttpResponseHeaderUpTo=<number of detail messages>
Enter the number of detail messages to be listed in the HTTP response header.

If you upload a zip archive containing a SAPUI5 app, component, or library into the SAP NetWeaver AS ABAP
for deployment or for delivery, a SAPUI5 ABAP repository is created or updated and the Business Add-In
(BAdI) SAPUI5 Repository Load (/UI5/BADI_REPOSITORY_LOAD) is called. You need to implement this BAdI
on the SAP NetWeaver AS ABAP and use it to check and adjust the parameters that control the OData service,

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1513

for example, if you want to determine or create an ABAP transport request automatically. For more information
about the Business Add-In, see the BAdI documentation in the SAP system.

To further control the upload operation of the OData service, you can use the following text files in the archive:

● '.Ui5RepositoryIgnore': Each line in this text file describes a file pattern that indicates which files
shall be ignored during the upload. The line contains a substring of the file path or a regular expression
starting with '^' and ending with '$'. This setting overwrites the build-in default.

● '.Ui5RepositoryTextFiles' and '.Ui5RepositoryBinaryFiles': These text files are used to
identify text and binary content in addition to the build-in default. If it is not clear whether a file is text or
binary, a warning is issued in the log and the file is not uploaded.

For testing the OData service, you can use the SAP NetWeaver AS ABAP with the SAP Gateway client
(transaction /IWFND/GW_CLIENT).

 Note
For operations on a SAPUI5 ABAP repository, you need the S_DEVELOP authorization.

Error Message io.netty.handler.codec.TooLongFrameException: HTTP header is larger
than 8192 bytes
You get this message if you use the SAP Cloud Connector to call /UI5/ABAP_REPOSITORY_SRV and your SAP
Cloud Connector Configuration doesn't allow HTTP response headers larger than 8 kB (which is the default
setting). You have two options to solve this:

● Change the configuration of SAP Cloud Connector: Go to the installation directory of SAP Cloud Connector
and open the XML file <sccdir>\scc_config\scc_config.ini. Change the value for the parameter
httpProtocolProcessorMaxResponseHeaderSize from 8 to 30 (kB). Restart the SAP Cloud
Connector.

● Use the URL parameters mentioned above to reduce the HTTP response header size.

For more information, see SAP Note 2875647 .

Related Information

Activate and Maintain Services
SAP Note 2875647

1514 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/2875647
https://help.sap.com/viewer/68bf513362174d54b58cddec28794093/7.52.latest/en-US/bb2bfe50645c741ae10000000a423f68.html
http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/2875647

Using the SAPUI5 ABAP Repository Upload and Download
Reports to Synchronize

You can upload an SAPUI5 app to or download it from the SAPUI5 ABAP repository by using the SAPUI5 ABAP
repository upload and download reports.

Single SAPUI5 App

To upload, download, or delete a single SAPUI5 app, use the report /UI5/UI5_REPOSITORY_LOAD. Enter the
name of the SAPUI5 app and specify whether you want to update, download, or delete it. You can also specify
whether or not the line endings are adjusted automatically during the upload. In contrast to the ABAP team
repository provider, the report does not offer a built-in code merge.

Uploading SAPUI5 Apps From an Archive

Prerequisite: The files to be uploaded are located on an HTTP web server.

● To upload an SAPUI5 app from a zip or war archive, use the report /UI5/UI5_REPOSITORY_LOAD_HTTP.
● To upload multiple SAPUI5 apps from a zip or war archive at once, use the report /UI5/

UI5_REPOSITORY_LOAD_HTTPN.

Enter the relevant parameters and specify whether or not the line endings are adjusted automatically during
the upload. You can also provide the parameters in the file .Ui5RepositoryUploadParameters located in
the archive. Each line represents a parameter. The format is <parameter name> = <parameter value>.

If you use the SAP Web IDE for developing apps, we recommend that you use the Deploy to ABAP Repository
function in SAP Web IDE. For more information, see Deploy Applications to the SAPUI5 ABAP Repository in the
SAP Web IDE Full-Stack documentation on SAP Help Portal underhttps://help.sap.com/viewer/product/
SAP_Web_IDE/ → SAP Web IDE Full-Stack Developer Guide. If you use the /UI5/
UI5_REPOSITORY_LOAD_HTTP and /UI5/UI5_REPOSITORY_LOAD_HTTPN reports to upload your project to
the SAPUI5 ABAP repository instead, make sure that you upload only the content of the webapp or dist folder
without the folder itself. This ensures that the manifest.json is in the root of the structure in the SAPUI5
ABAP repository and the app index can be loaded.

You can also specify whether the reports run in delta or in test mode:

● Delta mode: You only want to upload the files that are new or that have been modified.
● Test mode: You want to see a log file displaying what the report is doing.

 Note
If you use the reports, the SAPUI5 application index is updated automatically and any errors are displayed.
For more information, see SAPUI5 Application Index [page 1525].

The functions of the reports are also available in the RFC-enabled function module /UI5/
REPO_LOAD_FROM_ZIP_URL. It can be called remotely, for example, from Maven builds. For more information,
see the documentation of the reports and of the function module /UI5/REPO_LOAD_FROM_ZIP_URL.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1515

https://help.sap.com/viewer/product/SAP_Web_IDE/
https://help.sap.com/viewer/product/SAP_Web_IDE/

Runtime Aspects

The BSP runtime is not used. Instead there's an SAPUI5-specific handler to that gets the resources from the
SAPUI5 ABAP repository. This handler is assigned to the corresponding ICF nodes.

Accessing Resources

In general, you access a resource in the SAPUI5 ABAP repository at runtime with the following URL:

- <protocol>://<host name>:<port number>/sap/bc/ui5_ui5/<namespace>/<application
name>/<resource name>

Launching SAPUI5 Apps on an ABAP Server

You launch an SAPUI5 app located in the SAPUI5 ABAP repository by using its public URL in a browser.

Cache Behavior for Application Resources

By default, the application files are stored in the browser cache for one year to speed up the performance of an
SAPUI5 app in a productive environment. To get the latest changes, you need to force your SAPUI5 start page
to refresh, for example, with CTRL + F5 on Windows systems. (If the refresh doesn't work, clear your browser
cache.)

If you are in development mode and want to get the latest changes immediately without refreshing your
SAPUI5 start page, you can add the URL parameter sap-ui-xx-devmode to the SAPUI5 start page to force
the browser to check whether there's a newer version of the application files available.

Cache Buster for SAPUI5 Application Resources

To avoid the need for end users to clean up the browser cache after a software update on the server, you can
activate the cache buster for the following:

● SAPUI5 application resources (see Application Cache Buster [page 1134])
● SAPUI5 core resources (see Cache Buster for SAPUI5 [page 1132])

To activate cache busting on the level of single application resources and cache busting for SAPUI5 core
resources, change the script tag with the ID sap-ui-bootstrap in the start page of the underlying SAPUI5
app:

● Change the value of the src attribute pointing to the SAPUI5 core to resources/sap-ui-
cachebuster/sap-ui-core.js.

1516 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

● Add the attribute data-sap-ui-appCacheBuster="./".

Example (snippet from the sample app /UI5/SIMPLETEST):

 <html>
 <head>
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <script src="resources/sap-ui-cachebuster/sap-ui-core.js"
 id="sap-ui-bootstrap"
 data-sap-ui-libs="sap.m"
 data-sap-ui-theme="sap_belize"
 data-sap-ui-appCachebuster="./">
 </script>
 … </html>

For more information, see Application Cache Buster: Enhanced Concept [page 1136].

Both the ICM server cache on the ABAP front-end server as well as the browser cache are used to optimize the
performance of your SAPUI5 app. The cache buster mechanisms ensure that all application and core resources
are up to date at any time and are requested only if needed.

Further Technical Information

● For proper operation you need to schedule the report /UI5/APP_INDEX_CALCULATE (replacing the
report /UI5/UPDATE_CACHEBUSTER used in the user interface add-on 1.0 for SAP NetWeaver)
periodically. Then the recalculation and caching of meta data for SAPUI5 apps potentially needed after any
system and language import for an SAPUI5 app are done automatically in the background.

● Under typical conditions, for example when using SAPUI5 apps or when developing with the SAPUI5
repository team provider or the SAPUI5 repository upload and download reports, the application cache
buster and the cache buster of the SAPUI5 core work fully automatically.

● You can trigger a refresh of the cache buster and application meta data for a specific SAPUI5 repository
(and the application or component inside) manually by calling the URL <URL to SAPUI5 application
or component>/do-update-meta-data in the browser. See SAP Note 2187043.

● In addition to cache busting on the level of a single application resource mentioned above, the cache buster
for SAPUI5 application resources supports also cache busting on the level of multiple and all application
resources.

● The cache buster technology is used by SAP Fiori launchpad, and SAP Fiori and High Performance Analytic
(HPA) apps.

● Fore more information, see SAP Notes 2075016 and 2085648.

Fallback: Translating Apps Using the SAPUI5 Text Repository

As a fallback mechanism for translating apps, you can use the SAPUI5 text repository for storing the target
texts.

What's the recommended translation approach?

The recommended translation approach is to store your target texts in properties files (resource bundles), a
<identifier>_<locale>.properties file for every language the app is translated to (<locale> containing

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1517

the language and an optional country code). For example, i18n_en_US.properties would contain the
American English texts of the i18n.properties source file. For more information, see Resource Bundles
[page 1272].

When can I use the SAPUI5 text repository?

You can use the SAPUI5 text repository as a fallback if you cannot use the recommended approach. Please only
use it in this case.

What's the fallback all about?

When you use the SAPUI5 text repository, the source texts are stored in the default properties file
<identifier>.properties (that is, there are not n properties files as with the recommended approach).
The SAPUI5 text repository writes the texts that are stored in the default properties file to a language-
dependent database table. As usual, the texts can then be translated using transaction SE63 (usually in a
separate system). The master language of the SAPUI5 ABAP repository is taken as the master language for the
submitted texts. Once the translated texts are transported back to the respective systems, they can be
accessed at runtime when texts in a certain language are requested.

What do I have to do to use the SAPUI5 text repository?

You have to set up the default properties file in a special way by adding the following key as the first line in the
properties file with texts that you submit to the SAPUI5 ABAP repository:

SAPUI5 TRANSLATION-KEY <GUID with 32 characters>

You can create the GUID with the ABAP function module GUID_CREATE, or you can create the complete line
with the ABAP report /UI5/TEXT_FILE_GEN_TRANS_KEY. (A UUID as used in Java is also supported.)

 Caution
The GUID serves as a unique identifier for the properties file. Never change the GUID or copy it to other
properties files.

The properties file has to fulfill the following rules:

● It doesn't contain any duplicate text elements.
● The text must be on one line and can have a maximum of 255 characters.
● A text type is assigned to every text element.

Accidental overwriting of texts in the SAPUI5 text repository with texts from other properties files is prevented.
If a duplicate GUID is detected, the properties files cannot be synchronized. It's not possible to rename or
relocate a properties file and to submit it once it's contained in the SAPUI5 text repository. Before you can
rename or relocate a properties file, you have to remove the texts from the SAPUI5 text repository by using the
report /UI5/TEXT_ENTRIES_DELETE.

1518 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Caution
If you run this report, all translated texts get lost. Therefore, only use it for texts that are not yet translated.

After running the report, submit the renamed or relocated properties file again.

If you reassign the BSP application on the ABAP server (representing a single SAPUI5 repository) from a local
($TMP) package to a non-local package, you also need to resubmit the properties file. All text elements are
generated again with the new creation time stamp.

 Note
Since the master language of the SAPUI5 ABAP repository serves as the master language of the texts, it's
important that you use the same language for the creation of the repository that was used for the
properties files. When you use the SAPUI5 repository team provider and create the BSP application
manually, you have to choose the correct language on the logon screen.

Text Classification

Texts in a properties file are simple value key pairs separated by an equal sign (=) or a comma (,). However, to
enable proper translation for these texts, you have to classify the texts with additional information, at least with
the text type. You must place the additional information in the line directly above the text element, beginning
with the number sign (#).

The complete line must have one of the following patterns (text type is mandatory, maximum length and
additional context information are optional):

● #<TextType>
● #<TextType>,<MaximumLength>
● #<TextType>,<MaximumLength>:<AdditionalContextInformation>
● #<TextType>:<AdditionalContextInformation>

Text Type (Mandatory)

We recommend that you assign a text type to each text. The text type indicates to which user interface element
the text is related. You can use the following main text types:

● For short texts (less than 120 characters) :

Text Type Description

XACT Accessibility

XBUT Button

XCKL Checkbox

XCOL Column header

XFLD Label

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1519

Text Type Description

XGRP Group title

XLNK Hyperlink

XLOG Log entry

XLST List box item

XMIT Menu item

XMSG Message

XRBL Radio button

XSEL Selection

XTIT Table title

XTOL Tooltip

● For long texts (more than 120 characters):

Text Type Description

YINS Instruction

YMSG Message

● For text elements that are not supposed to be translated, use the text type NOTR.

Maximum Length (Optional)

You can provide the maximum text length for translation. It must be greater than the source text length and
must never exceed 255.

To ensure that translators have enough space for the translated texts, set an appropriate maximum text length
for translation according to the source text length:

Length of Source Text in Characters
How Is the Maximum Text Length for Translation Calcu
lated?

< 8 Multiply by 5; minimum 12 characters

8 - 30 Multiply by 3

> 31 Multiply by 1.5

Additional Context Information (Optional)

You can also add a comment for the translator.

1520 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

How Translated Texts Are Accessed at Runtime

At runtime, the translated texts are read directly from the table of the SAPUI5 text repository and sent to the
browser.

● The browser sends a request for the relevant properties file with a language extension to the back end, for
example i18n_en_US.properties.

● The handler class in the back end analyzes the name of the properties file and extracts the language key.
● All texts that fit to this language key are read, collected, and sent back to the browser. The following access

sequence applies:
1. If a text is not available in the requested language, the English text is retrieved.
2. If the English text is not available, the text in the default language is retrieved.
3. If the text in the default language is not available, the default properties file from the SAPUI5 ABAP

repository is retrieved.

Information for Translators

The following information is relevant for translators.

● Texts are treated as ABAP short texts with translation object type UI5T. You can translate them in
transaction SE63.

● The translation object name is a GUID, which is the key taken from the first line of the original properties
file containing the text elements (# SAPUI5 TRANSLATION-KEY <GUID>, as mentioned above).

● The text key of each text element consists of the text type and an individual GUID, separated by a blank.
● The texts are stored in the following database tables which are stored with an SAP or customer

namespace:

Database Table What Does it Contain?

/UI5/TREP_TEXT (master table) ○ Text name
○ Unique text GUID
○ Text type
○ Additional context information
○ Translation object name GUID (from the properties

file)

/UI5/TREP_TEXT_T (language-dependent table) ○ Source and translated text

○ Keys: text GUID as in table /UI5/TREP_TEXT, and
language key

/UI5/TREP_FILES ○ Translation object name (GUID from the properties
file)

○ Path information for the properties file

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1521

Placeholder Handling in Transaction SE63

Source texts with placeholders are transformed when displayed in transaction SE63.

Type What is it?
How is it Displayed in Transaction
SE63?

Placeholder Number in braces

Example: {0}

With an additional ampersand

Example: {&0}

Escaped placeholder Placeholder enclosed in apostrophes

Example: '{0}'

Without apostrophes

Example: {0}

When the texts are written back to the database, the placeholders and escaped placeholders are transformed
back to the original state. If a text contains a placeholder, you need to double any apostrophe (') in the text.
Otherwise the apostrophe doesn't appear on the user interface during runtime.

 Note
Translators don't need to take care of this, as transaction SE63 automatically doubles apostrophes (') when
writing the text to the database. Therefore, translators do not need to change placeholder characters or
character sequences, such as {&0}, {0}, or '{&0}'. Double apostrophes ('') in the source text, however,
are displayed only as one apostrophe (') in transaction SE63. Examples:

Source Text How is it Displayed in Transaction SE63?

Mark''s placeholder is used {0} times. Mark's placeholder is used {&0} times.

Note that '{0}' is an escaped placeholder. Note that {0} is an escaped placeholder.

As a developer, you must ensure that the source text is formally correct, for example by using the notation {0}
for placeholders and enclosing placeholders in double apostrophes. Bear in mind that &0 is not a valid
placeholder.

Securing the SAPUI5 ABAP Repository

Here's everything you need to know about securing the SAPUI5 ABAP repository when using the team
repository provider and the repository upload and download reports, when executing apps from the repository,
when tracking code changes or text changes, or when using the SAPUI5 application index REST API.

Using the Team Repository Provider or the SAPUI5 ABAP Repository Upload
and Download Reports

Using the team repository provider, you can synchronize the application resources between the team provider
REST API and the SAPUI5 ABAP repository. Alternatively, you can use the interactive ABAP reports /UI5/

1522 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

UI5_REPOSITORY_LOAD or /UI5/UI5_REPOSITORY_LOAD_HTTP, which offer a similar functionality.
Compared to the team repository provider, these interactive reports do not offer a built-in code merge. You can
use a separate source code repository such as Git or Subversion (SVN).

Authorization Objects for Team Repository Provider

Authorization Object What Is It for?

S_DEVELOP Create, update, and delete applications in the SAPUI5 ABAP
repository

S_ICF_ADM Create the application-specific ICF node under /sap/bc/
ui5_ui5/

S_TRANSPORT Create a new transport request or new task

S_CTS_ADMI Transport applications

S_CTS_SADM Transport applications

S_ADT_RES Communication between the team provider REST API (for
example used in SAP Web IDE) and the ABAP backend
using the team repository provider

S_RFC, Activity 16 (Execute), with
RFC_NAME=SADT_REST_RFC_ENDPOINT and
RFC_TYPE=FUNC

Communication between the team provider REST API (for
example used in SAP Web IDE) and the ABAP backend

 Note
In addition to assigning these authorization objects, you also have to activate certain ICF services . For
more information, see Configuring the ABAP Back-end for ABAP Development Tools

Delivered Virus Scan Profiles

When uploading files to the SAPUI5 ABAP repository, you can perform a virus scan. SAP delivers virus scan
profile/UI/UI5_INFRA_APP/REP_DT_PUT, which is used to store files in theSAPUI5 ABAP repository. This
profile is deactivated when delivered. To activate it, create at least one basis profile and save it as the default
profile. You can then activate one of the delivered profiles.

By default, it links to a reference profile that is the default profile. For more information, search for ABAB-
Specific Configuration in the documentation of your SAP NetWeaver version on the SAP Help Portal.

Executing SAPUI5 Applications from the SAPUI5 ABAP Repository

Using an ICF handler, you can execute SAPUI5 applications by retrieving their resources from the SAPUI5 ABAP
repository.

Delivered ICF Nodes

For the execution of SAPUI5 applications from the SAPUI5 ABAP repository, SAP delivers ICF node /sap/bc/
ui5_ui5/. This node contains sub nodes for each application.

 Note
Since all services delivered by SAP are inactive initially, please activate all required services.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1523

https://help.sap.com/doc/2e65ad9a26c84878b1413009f8ac07c3/latest/en-US/config_guide_system_backend_abap_development_tools.pdf
https://help.sap.com/viewer/p/SAP_NETWEAVER

For more information, search for Activating and Deactivating ICF Services in the documentation of
your SAP NetWeaver version on the SAP Help Portal.

Authorization Objects

There are no specific authorization objects needed to execute SAPUI5 applications from the SAPUI5 ABAP
repository.

As for ICF service nodes in general, authorization for specific ICF service nodes can be restricted. For more
information, search for Defining Service Data in the documentation of your SAP NetWeaver version on
the SAP Help Portal.

Tracking Coding Changes and Text Changes in the SAPUI5 ABAP Repository

You can track code changes by using the general ABAP version control of the corresponding resource file. A
new version is created when a new transport is written.

You can track text changes by using Table History (transaction SCU3). The relevant tables for texts are /UI5/
TREP_TEXT and /UI5/TREP_TEXT_T (for translated text). Bear in mind that you have to activate table logging
in the system for this feature.

Using the SAPUI5 Application Index REST API

The SAPUI5 application index REST API can be executed from ABAP systems with an ICF handler to get the
transitive dependencies of an app.

 Note
This API is not for public use. It's only used when packaging SAP Fiori apps with SAP Mobile Platform
Hybrid SDK plugins.

Delivered ICF Nodes

For the execution of the SAPUI5 application index REST API, SAP delivers ICF node /sap/bc/ui2/
app_index.

 Note
Since all services delivered by SAP are inactive initially, please activate all required services.

For more information about ICF services and security, search for Activating and Deactivating ICF
Services and RFC/ICF Security Guide in the documentation of your SAP NetWeaver version on the SAP
Help Portal.

For more information about the SAPUI5 application index, see SAPUI5 Application Index [page 1525].

1524 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://help.sap.com/viewer/p/SAP_NETWEAVER
https://help.sap.com/viewer/p/SAP_NETWEAVER
https://help.sap.com/viewer/p/SAP_NETWEAVER

SAPUI5 Application Index

This index provides an indexing and caching mechanism for information related to apps, components, and
libraries in the SAPUI5 ABAP repository and related to components and libraries in the SAPUI5 distribution
layer.

 Caution
The index is used by several different services such as the SAP Fiori launchpad and cache buster. This
means you have to make sure that the index is updated using the calculation report whenever the content
of the SAPUI5 ABAP repository has changed. For more information whether the report is executed
automatically or you have to run it manually, see Calculation Report - Automatic Run vs. Manual Scheduling
[page 1526].

Also descriptor and component IDs used in single SAPUI5 repositories have to be unique and valid. Fore
more information, see Component IDs - Are They Unique and Valid? [page 1528].

The index makes it possible to retrieve and find this information significantly faster than when carrying out the
calculations each time it's requested. The index is also required, for example, for finding the paths to SAP Fiori
libraries.

The index contains the following:

● Cache busting information on the level of single and multiple application resources
● Certain properties or attributes (for example, component ID, used library, or dependencies) stored in the

descriptor for apps, components, and libraries
For more information, see Descriptor for Applications, Components, and Libraries [page 734].

Also in this section:

How is the Index Calculated? [page 1525]

Calculation Issues [page 1529]

Monitoring [page 1530]

How is the Index Calculated?

The index is calculated by the report Calculation of SAPUI5 Application Index for SAPUI5 Repositories (/UI5/
APP_INDEX_CALCULATE). The index is empty initially and needs to be calculated from scratch.

The report /UI5/APP_INDEX_CALCULATE has to be executed in every system whenever the content of the
SAPUI5 ABAP repository has changed. It's enough to run the report for one client per system. For more
information whether the report is executed automatically or you have to run it manually, see Calculation Report
- Automatic Run vs. Manual Scheduling [page 1526].

The report allows you to specify the basis for the calculation of the index. Here’s what you can choose from:

● Full update of all SAPUI5 repositories and the distribution layer regardless of any expiration dates
This mode is active when you use the provided variant SAP&ALL.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1525

 Note
The Full Calculation option should only be used in exceptional cases. This will calculate the index of the
entire SAPUI5 ABAP repository, even for content that hasn't changed.

● Calculation for those repositories and the distribution layer for which either the expiration period you
specified (in hours and minutes) has expired or where a transport changed the content of the repositories
and the distribution layer since the last update (delta mode)
This is the recommended mode. The default value for the expiration period is 24 hours.

● A single repository
● The SAPUI5 distribution layer only

 Note
The report /UI5/APP_INDEX_CALCULATE replaces the report /UI5/UPDATE_CACHEBUSTER used in the
user interface add-on 1.0 for SAP NetWeaver.

Calculation Report - Automatic Run vs. Manual Scheduling

Changes to the content of the SAPUI5 ABAP repository require the index to be updated using the calculation
report /UI5/APP_INDEX_CALCULATE. Depending on how the content of the repository is changed, the report
is executed automatically or you have to run it manually.

Changes to Content in the Repository

This scenario usually happens in development systems. The content is changed, for example, by uploads from
development tools like SAP Web IDE, the available SAPUI5 repository upload and download reports, the
implementation of an SAP Note, or manual changes using transaction SE80 (the latter is not supported and
therefore not recommended at all).

The execution of the report to update the index is in most cases triggered automatically. Exceptions:
implementation of SAP Notes, support package updates, release upgrades, changes to texts in the text
repository with ABAP translation tools, and manual changes using transaction SE80 (not supported and
therefore not recommended). In these cases, you have to trigger an update for the applications in question
manually or schedule a calculation of the index with a reasonable time interval. Here’s an overview:

Type of Change to the SAPUI5 ABAP Repository Manual Execution of the Calculation Report Required?

Deployment with SAP Web IDE No, the report is executed automatically.

Upload with report /UI5/UI5_REPOSITORY_LOAD

Installation of a new version of the SAPUI5 distribution layer

1526 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Type of Change to the SAPUI5 ABAP Repository Manual Execution of the Calculation Report Required?

Implementation of an SAP Note containing changes for an
SAPUI5 app

Yes, run the report manually to update the index for the app
or distribution layer in question.

Support package updates and release upgrades

Manual changes using transaction SE80 (not supported and
therefore not recommended)

 Note
If you run the report manually, it is strongly recommended to use the Depending on Expiry Period of
Transport Requests option with reasonable values. This option calculates the SAPUI5 application index for
affected content only. A full calculation should only be used in exceptional cases.

Import of Content to the Repository

This scenario usually happens in test and production systems. The system automatically updates the index
after transports which have been imported under certain conditions, for example, which version of the user
interface add-on for SAP NetWeaver is installed and whether the Business Add-In (BAdI)
CTS_IMPORT_FEEDBACK is called after an import. For more information, see SAP Note 2253480 .

If you are unsure whether the BAdI is called, you can verify this in the import log of a transport. The BAdI is
called if the import log contains a Feedback after import or export entry (there might be one after import and
one after export entry) and the after import entry contains the following logs:

● Start: Executing method FEEDBACK_AFTER_IMPORT for business add-on CTS_IMPORT_FEEDBACK
● Scheduled index update after finished import of transports

You can access the job /UI5/APP_IDX_UPD_AFTER_IMPORT that is automatically scheduled by the BAdI in
transaction SM37.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1527

http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/2253480

Here’s how you can decide whether you need to schedule the report after transports:

If the import is triggered by ABAP, report /UI5/APP_INDEX_CALCULATE is executed automatically. If the
import is triggered by OS command line and the transport profile parameter FEEDBACK_IMPORT is set (see
SAP Note 2253480), the report is also executed automatically. If the transport profile parameter is not set,
the report is not executed automatically.

If you have to schedule the report, there are three options for this:

● With a periodic time interval
This is the easiest way. However, it has the small disadvantage that some time might elapse between the
import of a transport and the start of the update depending on the interval you choose.

● Starting after event SAP_IMPORT_STO
This triggers the report automatically after all transports of the import queue have been imported.
However it doesn’t trigger the report in cases where you perform a special import of a single transport.

● Schedule the report in both ways
This is the most secure and fast way to ensure the index is up-to-date. The report ensures that no
problems occur in cases where multiple executions are triggered in parallel.

Component IDs - Are They Unique and Valid?

Component IDs used in single repositories have to be unique and valid. Using the ABAP Test Cockpit (ATC), you
can check if they are.

Unique means that the same component ID must not be contained in more than one single repository. Valid
means that the component ID fulfills the following rules:

● Consists only of alphanumeric characters
● Contains only lowercase letters in all segments except the last segment; the last segment may contain

camel case letters
● Does not begin with a number
● Does not contain special characters
● Contains a dot (.) as a separator of the namespace

1528 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/2253480

● Is no longer than 70 characters; each individual segment is no longer than 40 characters (separated by a
dot)

To check whether a component ID is unique and valid, you can use the ATC check UI5 Component
Consistency Check (UI5_COMP). To check a component manually, select it in ABAP Workbench (transaction
SE80) and choose Check ABAB Test Cockpit with… from the context menu. Choose the Checks tab and
under Functionality select UI5 Component Consistency Check. Choose Execute Checks (F8).

 Note
We recommend that your administrator defines the UI5_COMP check as a default check for all transports to
the SAPUI5 ABAP repository.

The UI5_COMP check also indicates any errors that occurred when the manifest.json file was parsed.

Calculation Issues

Any issues during the calculation of the index are written as messages to the application log.

Message Type Classification What's the Issue?

Error Very high Exception because manifest.json file is
not valid or cache buster token could
not be calculated

Error High Component ID occurs or is used more
than once

Warning Medium Component ID is potentially not valid

To access the application log, choose View … Logs in the report /UI5/APP_INDEX_CALCULATE. The
application log is also persisted in client 000 by default and can be analyzed using transaction SLG1.

Technically, the application log is referenced by the object /UI5/APPIDX. This object has the following
subobjects:

Subobject What Does It Contain?

GENERAL General information like time and duration of the last calcu
lation of the index, number of single repositories, and num
ber of updated table entries

UI5REP Error messages that occurred when a single repository was
processed

The external ID is the name of the single repository.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1529

Subobject What Does It Contain?

UI5COMP Component-related messages from a consistency check car
ried out at the end of the calculation of the index

The consistency check includes the following:

● Whether the same component ID is contained in more
than one repository

● Whether the component ID is valid
● Whether a reuse component defined in the dependen

cies is not contained in the application index

The external ID is the component ID.

The application log contains only entries of the last run of the report /UI5/APP_INDEX_CALCULATE and any
older entries are removed automatically. For more information, search for Analyze Logs in the
documentation for your SAP NetWeaver version on the SAP Help Portal.

Monitoring

To monitor the execution of the report /UI5/APP_INDEX_CALCULATE and the calculation results, you can use
Computing Center Management System (CCMS).

Monitor What? How?

Execution of the report Set up alerts for the report by using the data collection
method CCMS_BATCH_MONITORING and the analysis
method CCMS_BP_MON_ANALYZE.

 Note
This monitoring refers only to the execution of the job it
self. It does not detect any application log entries with
problems created by the report.

For more information, search for Monitoring Jobs
with the Alert Monitor and Setting Up the
Monitoring of Jobs with the Alert
Monitor in the documentation for your SAP NetWeaver
version on the SAP Help Portal.

1530 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://help.sap.com/viewer/p/SAP_NETWEAVER
https://help.sap.com/viewer/p/SAP_NETWEAVER

Monitor What? How?

Calculation results Build CCMS methods that evaluate the application logs for
the object /UI5/APPIDX and the subobjects GENERAL,
UI5REP, and UI5COMP.

For more information, search for Creating a Data
Supplier for the CCMS Alert Monitor and
Application Log (BC-SRV-BAL) in the documenta
tion for your SAP NetWeaver version on the SAP Help Portal.

Creating a Login Screen

Here's how you configure a login screen for SAP Fiori launchpad.

For more information, search for Login Screen for the Launchpad in the documentation for your SAP
NetWeaver version on the SAP Help Portal. Replace your namespace and your app name in step 3 of this topic:

Navigate to default_host sap bc ui5_ui5 <your namespace> and double-click <your app name>

Browser Debugging for ABAP Developers

To debug in SAPUI5, use your browser's debugging tool.

When you debug code in SAPUI5, keep in mind that you can not debug SAPUI5 in your IDE. If you use SAP Web
IDE, for example, a breakpoint set in SAP Web IDE does not stop your script when it is executed in your
browser, unless you use the debugger; statement explicitly in your code. The browser does not know about
your IDE and does not communicate directly with it.

ABAP Debugger vs. Browser Debugger

This section explains how you use the debugging tool of a Chrome browser. Keep in mind that you have to test
your application on all browsers that are officially supported by SAP, because the implementation differs
depending on the browser used, seeChoose your Browser [page 20]. To start the debugger, use the browser
menu or choose F12 (valid for most browsers).

The following explanations assume that your application is up and running on your web server, either a local
Tomcat, or a remote server.

In a first step, locate the lines of code you would like to inspect and set breakpoints. The following figure shows
an application that is opened in the Chrome debugger. The default tab Elements is opened, and a small bell
icon with a number located at the right border of the footer indicates the number of messages from the
console.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1531

https://help.sap.com/viewer/p/SAP_NETWEAVER
https://help.sap.com/viewer/p/SAP_NETWEAVER
https://help.sap.com/viewer/p/SAP_NETWEAVER

On the Elements tab, the HTML elements of the DOM are displayed in a tree structure. To see the JavaScript
code within the application and to set a breakpoint there, open the Sources tab. From there, you can open any
source files that is included. When you open the tools the first time, you ususally have to click the arrow icon on
the left hand side of the Sources tab (as indicated in the following figure) to open the sources tree.

1532 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

To see the actual content of the HTML page and to set a breakpoint, open the HTML page from the sources
tree. This is similar to the ABAP debugger when you execute and debug an application from the workbench.
The following figures show the ABAP workbench debugger and the Chrome debugger.

The following figure shows the ABAP workbench debugger. The bubbles indicate the opened application and its
location (1), the call stack (2), and the tab where you enter the variables you want to watch (3).

The next figure shows the Chrome debugger. Here, the bubbles indicate the script you are looking at (1), the
watch expressions where you can add the variables you want to watch (3), the call stack that indicates if the
code execution stops on a breakpoint (2), and the breakpoint (4). The call stack is only visible when the code
execution is on hold.

 Note
JavaScript does not support a forward navigation, meaning that you can not jump to a method by double
clicking. Instead, you either have to jump to the method during execution, or you open the file containing
the method.

If you are not sure in which file exactly a piece of code is located, Firefox offers you an option to search through
several files included in your page. Chrome, however, does not support this option.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1533

Setting Breakpoints

The browser debugger supports several options for setting breakpoints. You can, for example, click once on the
line number where you would like to break. To remove the breakpoint, click the respective line again. To
temporarily disable or edit the breakpoint, right click on an existing breakpoint. To set a conditional breakpoint,
right click on a line without breakpoint. You can also set breakpoints on a certain event or event listeners, see
the option in the lower right screen area of the figure above. For more information, see the tutorials for your
respective browser that are available in the internet.

 Note
In most cases after setting a breakpoint, you have to reload the page to execute the code again and to make
it stop at the respective line. If you use Internet Explorer, choose Start Debugging in the developer tools to
activate your breakpoint.

Adding Variables to Watch

To add a variable to the list of watched variables, open the context menu for the variable in the code line and
choose Add to watch. Another option is to choose the + button at the top of the watch list to add a new line, in
which you can then enter the name of the variable you want to watch.

Modifying Variables

If you want to modify a variable to find out if the code works correctly with a different value, open the console,
for example by choosing ESC in the debugging tool and enter the new value manually directly in the JavaScript
code. To confirm the change, choose ENTER in Chrome and Execute in Firefox.

Stepping Through Executed Code

In ABAP, a yellow arrow indicates the line of code that is currently being executed. In Chrome, the arrow is red
and the code line is highlighted. The following table gives an overview of the function keys for the ABAP
workbench and Java Script:

Function ABAP JavaScript

Step-by-step execution, also stepping
into functions and loops

F5 F11

Step-by-step execution, stepping over
functions

F6 F10

1534 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Function ABAP JavaScript

Skipping the rest of the current
function and stepping out to the last
cursor position

F7 SHIFT+F11

Resume execution F8 F8

(Internet Explorer: F5)

Developing Apps with SAP Fiori Elements

This section contains information about developing SAP Fiori apps using SAP Fiori elements.

SAP Fiori elements provide designs for UI patterns and predefined templates for common application use
cases. App developers can use SAP Fiori elements to create SAP Fiori applications based on OData services
and annotations that don't need JavaScript UI coding. The resulting app uses predefined views and controllers
that are provided centrally. This means no application-specific view instances are required. The SAPUI5
runtime interprets metadata and annotations of the underlying OData service and uses the corresponding
views for the SAP Fiori app at startup.

Why use SAP Fiori elements?

● High development efficiency to cover what 80% of all apps need
You do not need to build the UI over and over again. Just reuse the common features required by most
applications. They are provided by the SAP Fiori elements floorplans.

● Design consistency
Predefined floorplans, views, and controllers ensure UI consistency within and across similar apps. Apps
created using SAP Fiori elements are kept up-to-date as they are automatically adapted to the most recent
design guidelines.

● Decoupling of UI and business logic
The metadata-driven development model uses semantic annotations and significantly reduces the amount
of front-end code. Developers can focus on the business logic.

 Note
The initial effort for creating an app using SAP Fiori elements might be higher than creating a freestyle SAP
Fiori app. However, you will be richly rewarded for this effort after you've created more apps this way
because your apps will benefit from using the framework and the included features, as described below.

You can create apps using the following SAP Fiori elements floorplans:

● List Report and Object Page [page 1622]
SAP Fiori elements contain predefined templates for list reports and object pages. A list report lets users
filter, view, and work with items (objects) organized in list (table) format. The list report is typically used in
conjunction with an object page. This object page lets users work with objects, providing functions for
viewing, editing, and creating objects.

● Worklist [page 1866]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1535

A worklist displays a collection of items to be processed by the user. There is no need for sophisticated
filtering. Working through the item list usually involves reviewing details of the list items and taking action.
In most cases, the user has to either complete a work item or delegate it.

● Overview Pages [page 1930]
An overview page is a data-driven SAP Fiori app for organizing large amounts of information. Information is
visualized in a card format in an attractive and efficient way. Different cards are used for different types of
content. The user-friendly experience makes viewing, filtering, and acting on data quick and easy. While
presenting the big picture, business users can focus on the most important tasks enabling faster decision
making as well as immediate action.

● Analytical List Page [page 1868]
Analytical list page is a SAP Fiori elements application for detailed analytics. It lets you analyze data from
different perspectives, to investigate a root cause, and to act on transactional content. You can identify
relevant areas within data sets or significant single instances using data visualization and business
intelligence. All this can be done seamlessly on one page.

Getting Started

To find out if and when to use SAP Fiori elements, read this guide. It is aimed at designers, product managers,
developers, or anyone involved with application development, from inception to execution: When to use SAP
Fiori elements: Usage guide .

You can find even more information on YouTube at Getting Started with SAP Fiori elements .

Features

SAP Fiori elements provide the following default floorplan features:

● Edit mode control, switching between display and edit, and submitting changes
● Handling of draft documents (draft saving is available)
● Message handling, including message lifecycle and message display
● Multi-device support
● Support of value help
● Storing and restoring of application states, for example, saving filter fields with their content in the list

report
● Back navigation that takes the history into account
● Busy handling and prevention of accidental double-clicks

The following features come with every SAP Fiori app:

● SAP Fiori launchpad integration
● Reuse functions that do not require specific programming

Tool Support

You can use SAP Web IDE to create and maintain SAP Fiori element apps. This includes the following tools:

● Wizard for the initial creation of an app

1536 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/disclaimer?site=https%3A%2F%2Fd.dam.sap.com%2Fa%2F21EPJi8
http://help.sap.com/disclaimer?site=https%3A%2F%2Fd.dam.sap.com%2Fa%2F21EPJi8
http://help.sap.com/disclaimer?site=https%3A%2F%2Fwww.youtube.com%2Fplaylist%3Flist%3DPLo17W6sWsxWP4RMYXd7l824ss5KriAbwm

● Annotation modeler for maintaining annotations
● Wizard to support the creation of app extensions

System Requirements

● SAP Web IDE 1.17 or higher (for more information see the Annotation Modeler in the SAP Web IDE
documentation)

● The development of new transactional apps with draft capabilities requires ABAP Application Server as of
SAP NetWeaver AS for ABAP 7.51 innovation package SP02 or higher. Draft capabilities are not available
with SAP NetWeaver AS for ABAP 7.50. For more information, see Draft Handling [page 1631].

● If you want to use annotations in CDS: SAP NetWeaver 7.5 SP01 or higher.

 Note
We recommend that you download the most up-to-date version to ensure that you have the latest
features.

More Information

SAP Fiori Design Guidelines

SAP Fiori Elements Feature Map

This topic lists UI elements, controls, and features that are supported by SAP Fiori elements.

You can search, filter, and sort content in the table below. Use your mouse to hover over the links in the Help
column to display a short description of the feature.

 Note
This table provides a basic overview of UI elements, controls, and features in SAP Fiori elements. More
information and implementation guidance are available in the detailed documentation for the SAP Fiori
elements floorplans:

● List Report and Object Page [page 1622], List Report Elements [page 1623] and Object Page Elements
[page 1625]

● Analytical List Page [page 1868]
● Overview Pages [page 1930]
● Worklist [page 1866]

Generic information that applies to all floorplans can be found under How To Use SAP Fiori Elements [page
1550].

For an overview of all available SAPUI5 versions and their maintenance status, see SAPUI5 Versions
Maintenance Status.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1537

https://help.hana.ondemand.com/webide/frameset.htm?fe8ba75588964d3bbfc5c1bf96b04d1e.html
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fsmart-templates%2F
https://sapui5.hana.ondemand.com/versionoverview.html
https://sapui5.hana.ondemand.com/versionoverview.html

Extending SAP Fiori Elements-Based Apps

You can use extension points to extend your generated app during the creation process. For more information,
see the following resources:

● Cross-floorplan extension points and general information: Extending Generated Apps Using App
Extensions [page 1585]

● Extending List Reports and Object Pages Using App Extensions [page 1799]
● Configuring Analytical List Page App Extensions [page 1915]
● Configuring Overview Page App Extensions [page 2024]

Table 76: Feature List

Controls, UI
Elements,
Features

Supported
Floorplans

UI Design
Guidelines Help

Analytical
card

Analytical
list page
Overview
page

Analytical
Card

Creating Key Performance Indicator Tags [page 1873]

Analytical Cards [page 1976]

Analytical
table

Analytical
list page
List report
Object
page

Analytical
Table (ALV)

Configuring Tables [page 1735]

Table Cards [page 1937]

Table-Only View [page 1902]

Area micro
chart

Analytical
list page
List report
Object
page
Overview
page

Area Micro
Chart

Adding a Smart Micro Chart to a Table [page 1749]

List Cards [page 1953]

Avatar List report
Object
page

Avatar Using Images, Initials, and Icons [page 1618]

Breadcrumb Analytical
list page
Object
page
Overview
page

Breadcrumb Object Page Classic Header [page 2490]

Bullet chart Analytical
list page
Object
page

Bullet Chart Smart Chart Facet [page 1705]

Chart-Only View [page 1910]

1538 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fanalytical-card%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fanalytical-card%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fanalytical-table-alv%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fanalytical-table-alv%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fanalytical-table-alv%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Farea-micro-chart%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Farea-micro-chart%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Favatar%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fbreadcrumb%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fbreadcrumb%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fbullet-chart%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fbullet-chart%2F

Controls, UI
Elements,
Features

Supported
Floorplans

UI Design
Guidelines Help

Bullet micro
chart

Analytical
list page
List report
Object
page
Overview
page

Bullet Micro
Chart

Adding a Smart Micro Chart to a Table [page 1749]

Smart Micro Chart Facet [page 1673]

Smart Micro Chart [page 2424]

Busy indica
tor

Analytical
list page
List report
Object
page
Overview
page

Busy Indica
tor

Button/
Action

Analytical
list page
List report
Object
page
Overview
page

Button Actions [page 1605]

Card filter Overview page Configuring Card Filters [page 2000]

Chart/
Smart chart

Analytical
list page
List report
Object
page
Overview
page

Chart

Smart Chart

Chart-Only View [page 1910]

Smart Chart Facet [page 1705]

Chart Cards Used in Overview Pages [page 1979]

Checkbox Analytical
list page
List report
Object
page
Overview
page

Checkbox Table-Only View [page 1902]

Enabling Multiple Selection in Tables [page 1741]

Coloring
cards based
on threshold
values

Overview page Coloring Cards Based on Threshold Values [page 2007]

Column
chart

Analytical
list page
Overview
page

Column
Chart

Chart-Only View [page 1910]

Chart Cards Used in Overview Pages [page 1979]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1539

http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fbullet-micro-chart%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fbullet-micro-chart%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fbusy-indicator%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fbusy-indicator%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fbutton%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fchart%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fsmart-chart%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fsmart-chart%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fcheckbox%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fcheckbox%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fcolumn-chart%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fcolumn-chart%2F

Controls, UI
Elements,
Features

Supported
Floorplans

UI Design
Guidelines Help

Combo box Analytical
list page
List report
Object
page
Overview
page

Combo Box Value Help as a Dropdown List [page 1617]

Configuring View Switch [page 2003]

Contact
quick view

List report
Object
page

Adding a Contact Quick View to a Table [page 1756]

Copy and
paste from
Microsoft
Excel to edit
able tables

Object page Copying and Pasting from Microsoft Excel to Editable Tables [page 1774]

Cumulation
(Waterfall
chart)

Analytical
list page
Object
page

Cumulation
(Waterfall
Chart)

Chart-Only View [page 1910]

Smart Chart Facet [page 1705]

Currency Analytical
list page
List report
Object
page
Overview
page

Currency

Custom card Overview page Custom Cards [page 2028]

Date/time
picker

Analytical
list page
List report
Object
page
Overview
page

Date/Time
Picker

Smart Field [page 2410]

Date picker Analytical
list page
List report
Object
page
Overview
page

Date Picker Smart Filter Bar [page 2413]

Smart Field [page 2410]

1540 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fcombo-box%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fcombo-box%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fwaterfall-chart%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fwaterfall-chart%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fwaterfall-chart%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fcurrency%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fdatetime-picker%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fdatetime-picker%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fdate-picker%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fdate-picker%2F

Controls, UI
Elements,
Features

Supported
Floorplans

UI Design
Guidelines Help

Date range
selection

Analytical
list page
List report
Object
page
Overview
page

Date Range
Selection

Default sort
order in a ta
ble

List report
Object
page

Defining the Default Sort Order [page 1737]

Dialog box Analytical
list page
List report
Object
page

Dialog Adapting Texts in the Delete Dialog Box (List Report) [page 1843]

Adapting Texts in the Delete Dialog Box (Object Page Header) [page 1846]

Adapting Texts in the Delete Dialog Box (Object Page with Nested Smart Ta
ble) [page 1848]

Adding Action-Specific Messages to Confirmation Dialog Boxes [page 1782]

Adapting Text for Confirmation Dialog Box When Deleting Lines in a Table
[page 1776]

Configuring a Confirmation Popup for Messages [page 1718]

Draft han
dling

List report
Object
page

Draft Han
dling

Draft Handling [page 1631]

Dynamic
page layout

Analytical
list page
List report
Overview
page

Dynamic
Page Layout

Descriptor Configuration [page 1931]

Editing sta
tus

List report
Object
page

Editing Status [page 1630]

Disabling the Editing Status Filter [page 1660]

Displaying the Editing Status [page 1763]

Filter bar Analytical
list page
List report
Overview
page

Filter Bar Compact Filter Setup [page 1884]

Defining ValueList Annotation [page 1896]

Adapting the Smart Filter Bar [page 1661]

Disabling the Editing Status Filter [page 1660]

Adding Custom Fields to the Smart Filter Bar [page 1839]

Configuring the Global Filter [page 1934]

Custom Filters [page 2030]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1541

http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fdate-range-selection%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fdate-range-selection%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fdialog%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fdraft-handling%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fdraft-handling%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fdynamic-page-layout%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fdynamic-page-layout%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fdynamic-page-layout%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Ffilter-bar%2F

Controls, UI
Elements,
Features

Supported
Floorplans

UI Design
Guidelines Help

Flexible col
umn layout

Analytical
list page
List report
Object
page

Flexible Col
umn Layout
(Layout +
SAP Fiori El
ements)

Enabling the Flexible Column Layout [page 1611]

Footer tool
bar

Analytical
list page
List report
Object
page
Overview
page

Footer Tool
bar

Quick View Cards [page 1974]

Form List report
Object
page

Form Defining and Adapting Sections [page 1698]

Formatting
numeric val
ues

Overview page Formatting Numeric Values [page 2006]

Generic tag Analytical list
page

Generic Tag Creating Key Performance Indicator Tags [page 1873]

Grid table Analytical
list page
List report
Object
page

Grid Table Table-Only View [page 1902]

Setting the Table Type [page 1735]

Header tool
bar

Analytical
list page
List report
Object
page
Overview
page

Header Tool
bar

Actions [page 1605]

Enabling Actions in Object Page Header [page 1693]

Adding Custom Actions Using Extension Points [page 1831]

Custom Actions [page 2025]

Defining Custom Actions [page 1923]

Highlighting
line items
based on
criticality

List report
Object
page

Highlighting Line Items Based on Criticality [page 1745]

Icon tab bar Analytical
list page
List report
Object
page

Icon Tab Bar Defining and Adapting Sections [page 1698]

Multiple Views on List Report Tables [page 1645]

1542 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fflexible-column-layout%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fflexible-column-layout%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fflexible-column-layout%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fflexible-column-layout%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fflexible-column-layout%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Ffooter-toolbar%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Ffooter-toolbar%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fform%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fgeneric-tag%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fgeneric-tag%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fgrid-table%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fgrid-table%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fheader-toolbar%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fheader-toolbar%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Ficontabbar%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Ficontabbar%2F

Controls, UI
Elements,
Features

Supported
Floorplans

UI Design
Guidelines Help

Image Analytical
list page
List report
Object
page
Overview
page

Image Displaying Images in Tables [page 1763]

Setting up the Object Page Header [page 1665]

List Cards [page 1953]

Link List Cards [page 1963]

Using Images, Initials, and Icons [page 1618]

Inline crea
tion of table
entries

Object page Enabling Inline Creation of Table Entries on Object Page [page 1769]

Input field Analytical
list page
List report
Object
page
Overview
page

Input Field Adapting the Smart Filter Bar [page 1661]

Defining and Adapting Sections [page 1698]

Interactive
chart

Analytical list
page

Interactive
Chart

Visual Filter Setup [page 1885]

Label List report
Object
page
Overview
page

Label Defining and Adapting Sections [page 1698]

Line chart Analytical
list page
Object
page

Line Chart Chart-Only View [page 1910]

Smart Chart Facet [page 1705]

Line micro
chart

Analytical
list page
List report
Object
page
Overview
page

Line Micro
Chart

Adding a Smart Micro Chart to a Table [page 1749]

Smart Micro Chart Facet [page 1673]

List Cards [page 1953]

Link Analytical
list page
List report
Object
page
Overview
page

Link Adding a Contact Quick View to a Table [page 1756]

Configuring the List Area [page 1957]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1543

http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fimage%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Finput-field%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Finput-field%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Finteractive-chart%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Finteractive-chart%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Flabel%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fline-chart%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fline-chart%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fline-micro-chart%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fline-micro-chart%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Flink%2F

Controls, UI
Elements,
Features

Supported
Floorplans

UI Design
Guidelines Help

Link list card Overview page Link List
Card

Link List Cards [page 1963]

List card Overview page List Cards List Cards [page 1953]

Manage
cards

Overview page Customizing Overview Pages Using Runtime Capabilities [page 2038]

Menu button List report
Object
page

Menu But
ton

Message box Analytical
list page
List report
Object
page
Overview
page

Message
Box

Adding Confirmation Popovers for Actions [page 1782]

Message
page

Analytical
list page
List report
Object
page
Overview
page

Message
Page

Message po
pover

List report
Object
page

Message Po
pover

Using Messages [page 1610]

Message
toast

Analytical
list page
List report
Object
page
Overview
page

Message
Toast

Micro chart/
Smart micro
chart

Analytical
list page
List report
Object
page
Overview
page

Micro Chart Adding a Smart Micro Chart to a Table [page 1749]

Smart Micro Chart Facet [page 1673]

List Cards [page 1953]

Smart Micro Chart [page 2424]

1544 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Foverview-page-list-cards%2F%23link-list-card
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Foverview-page-list-cards%2F%23link-list-card
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Foverview-page-list-cards%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Foverview-page-list-cards%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fmenu-button%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fmenu-button%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fmessage-box%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fmessage-box%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fmessage-page%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fmessage-page%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fmessage-popover%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fmessage-popover%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fmessage-toast%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fmessage-toast%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fmicro-chart%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fmicro-chart%2F

Controls, UI
Elements,
Features

Supported
Floorplans

UI Design
Guidelines Help

Multi-combo
box

Analytical
list page
List report
Object
page

Multi-
Combo Box

Multi-input
field

Analytical
list page
List report
Object
page
Overview
page

Multi-Input
Field

Using the Smart MultiInput Control on the Object Page [page 1720]

Multiple se
lection of
lines in ta
bles

List report
Object
page

Enabling Multiple Selection in Tables [page 1741]

Multiple
views on list
report tables

List report Multiple Views on List Report Tables [page 1645]

Navigation Analytical
list page
List report
Object
page
Overview
page

Navigation Configuring Navigation [page 1563]

P13n dialog Analytical
list page
List report
Object
page

P13n Dialog

Popover Analytical
list page
List report
Object
page
Overview
page

Popover Value Help as a Dropdown List [page 1617]

Prefilling
fields when
creating a
new entity

List report
Object
page

Prefilling Fields When Creating a New Entity [page 1783]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1545

http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fmulti-combobox%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fmulti-combobox%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fmulti-combobox%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fmultiinput%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fmultiinput%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fnavigation%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fnavigation%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fp13n-dialog%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fp13n-dialog%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fpopover%2F

Controls, UI
Elements,
Features

Supported
Floorplans

UI Design
Guidelines Help

Progress in
dicator

Analytical
list page
List report
Object
page

Progress In
dicator

Adding a Progress Indicator to a Table [page 1747]

Progress Indicator Facet [page 1686]

Quick view Overview page Quick View Quick View Cards [page 1974]

Quick views
for smart
link naviga
tion

List report
Object
page

Enabling Quick Views for Smart Link Navigation [page 1567]

Radial micro
chart

Analytical
list page
List report
Object
page
Overview
page

Radial Micro
Chart

Adding a Smart Micro Chart to a Table [page 1749]

Smart Micro Chart Facet [page 1673]

List Cards [page 1953]

Smart Micro Chart [page 2424]

Rating indi
cator

Analytical
list page
List report
Object
page

Rating Indi
cator

Adding a Rating Indicator to a Table [page 1746]

Related
apps button

Object page Enabling the Related Apps Button [page 1697]

Resizing
cards

Overview page Customizing Overview Pages Using Runtime Capabilities [page 2038]

Responsive
table

Analytical
list page
List report
Object
page
Overview
page

Responsive
Table

Table-Only View [page 1902]

Setting the Table Type [page 1735]

Table Cards [page 1937]

Reuse com
ponents

Object page Including Reuse Components on an Object Page [page 1721]

Side effects List report
Object
page

Side Effects [page 1785]

1546 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fprogress-indicator%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fprogress-indicator%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fquickview%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fquickview%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fradial-micro-chart%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fradial-micro-chart%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Frating-indicator%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Frating-indicator%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fresponsive-table%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fresponsive-table%2F

Controls, UI
Elements,
Features

Supported
Floorplans

UI Design
Guidelines Help

Search Analytical
list page
List report
Object
page
Overview
page

Search Enabling the Search Function [page 1662]

Segmented
buttons

Object page Segmented
Buttons

Adding Segmented Buttons to a Table Toolbar [page 1766]

Smart filter
bar

Analytical
list page
List report
Overview
page

Filter Bar Compact Filter Setup [page 1884]

Defining ValueList Annotation [page 1896]

Adapting the Smart Filter Bar [page 1661]

Disabling the Editing Status Filter [page 1660]

Adding Custom Fields to the Smart Filter Bar [page 1839]

Configuring the Global Filter [page 1934]

Custom Filters [page 2030]

Smart link Analytical
list page
List report
Object
page
Overview
page

Smart Link Adding a Contact Quick View to a Table [page 1756]

Enabling Quick Views for Smart Link Navigation [page 1567]

Smart table Analytical
list page
List report
Object
page
Overview
page

Smart Table Table-Only View [page 1902]

Setting the Table Type [page 1735]

Table Cards [page 1937]

Sorting on
cards

Overview page Configuring Sort Properties [page 2001]

Stack card Overview page Stack Card Stack Cards [page 1970]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1547

http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fsearch%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fux.wdf.sap.corp%2Ffiori-design-web%2Fv1-52%2Fbutton%2F%23segmented-buttons
http://help.sap.com/disclaimer?site=https%3A%2F%2Fux.wdf.sap.corp%2Ffiori-design-web%2Fv1-52%2Fbutton%2F%23segmented-buttons
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Ffilter-bar%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fsmart-link%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fsmart-link%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fsmart-table%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fsmart-table%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Foverview-page-stack-card-quick-view-card%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Foverview-page-stack-card-quick-view-card%2F

Controls, UI
Elements,
Features

Supported
Floorplans

UI Design
Guidelines Help

Stacked bar
micro chart

Analytical
list page
List report
Object
page
Overview
page

Stacked Bar
Micro Chart

Adding a Smart Micro Chart to a Table [page 1749]

Smart Micro Chart Facet [page 1673]

List Cards [page 1953]

Smart Micro Chart [page 2424]

Status col
ors and
icons

List report
Object
page

Status Colors and Icons [page 1784]

Table card Overview page Table Cards [page 1937]

Table per
sonalization

Analytical
list page
List report
Object
page
Overview
page

Table Per
sonalization
(Overview)

Tables Analytical
list page
List report
Object
page
Overview
page

Tree Table

Responsive
Table

Grid Table

Analytical
Table (ALV)

Configuring Tables [page 1735]

Table-Only View [page 1902]

Setting the Table Type [page 1735]

Table Cards [page 1937]

Table toolbar Analytical
list page
List report
Object
page

Table Tool
bar

Adding Segmented Buttons to a Table Toolbar [page 1766]

Adaptation Extension Example: Adding a Button to the Table Toolbar in the
List Report [page 1856]

Text Analytical
list page
List report
Object
page
Overview
page

Text Plain Text Facet [page 1669]

1548 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fstacked-bar-micro-chart%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fstacked-bar-micro-chart%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fstacked-bar-micro-chart%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Foverview-table-personalization%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Foverview-table-personalization%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Foverview-table-personalization%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Foverview-table-personalization%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Ftree-table%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Ftree-table%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fresponsive-table%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fresponsive-table%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fgrid-table%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fgrid-table%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fanalytical-table-alv%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fanalytical-table-alv%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fanalytical-table-alv%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Ftable-bar%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Ftable-bar%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Ftext%2F

Controls, UI
Elements,
Features

Supported
Floorplans

UI Design
Guidelines Help

Text area Analytical
list page
List report
Object
page
Overview
page

Text Area

Title Analytical
list page
List report
Object
page
Overview
page

Title Adding Titles to Object Page Tables [page 1765]

Adapting the Object Page Title and Subtitle [page 1667]

Changing Default Titles for Unnamed Objects [page 1792]

Configuring the Table Card Header Area (Optional) [page 1949]

Token Analytical
list page
List report
Object
page
Overview
page

Token

Tree table Analytical
list page
List report
Object
page

Tree Table Setting the Table Type [page 1735]

Example: Adding Columns to a Tree Table in the List Report [page 1829]

Unit of
measure on
cards

Overview page Setting Units of Measure [page 2004]

Value help Analytical
list page
List report
Object
page
Overview
page

Value Help
Dialog

Defining ValueList Annotation [page 1896]

Value Help as a Dropdown List [page 1617]

Variant man
agement

Analytical
list page
List report
Object
page
Overview
page

Variant Man
agement

Managing Variants [page 1616]

Descriptor Configuration [page 1869]

Enabling Variant Management [page 1637]

Creating a List Report Without Variant Management [page 1639]

Descriptor Configuration [page 1931]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1549

http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Ftext-area%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Ftitle%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Ftoken%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Ftree-table%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Ftree-table%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fvalue-help-dialog%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fvalue-help-dialog%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fvariant-management%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fvariant-management%2F

Controls, UI
Elements,
Features

Supported
Floorplans

UI Design
Guidelines Help

Visual filter
bar

Analytical list
page

Visual Filter
Bar

Visual Filter Setup [page 1885]

How To Use SAP Fiori Elements

Creating an app with SAP Fiori elements generally consists of the following steps:

● Prepare OData services
You access the required back-end system information in your app using OData services.
For more information, see Preparing OData Services [page 1550].

● Prepare UI annotations
You use annotations to enable or modify certain default features and functionality.
For more information, see Working With UI Annotations [page 1551].

● Build UI applications
You create your project using the wizard in the SAP Web IDE.
For more information including details about mandatory and optional post-generation tasks, see Building
an App Using SAP Web IDE [page 1553].

● Extend SAP Fiori elements-based apps
As an optional step, you can extend your app if needed, that is, in cases in which the manifest settings or
annotations do not allow you to achieve the desired app behavior.
For more information, see Extending SAP Fiori Elements-Based Apps [page 1585].

Preparing OData Services

You access the back-end system information using OData services. SAP Fiori elements support OData version
2 with vocabulary-based annotations.

The qualities that your service requires depend on the template you are using and how you want to use it, for
example, whether it is read-only or editable. If it is editable, your service must support create, read, update, and
delete (CRUD) operations and draft document handling.

Implement additional actions that must be supported as part of your OData service. If the data is represented
in a list page, $count must be supported as well as $filter (for all filterable properties).

Creating a New OData Service

The easiest way to create a new OData service in an ABAP back-end system is to establish a Core Data Services
(CDS) consumption view and generate the OData service from this view (data-source driven service creation).
Combined with Service Adaptation Description Language) (SADL) this provides the following advantages:

1550 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fvisual-filter-bar%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fvisual-filter-bar%2F
http://help.sap.com/saphelp_nw75/helpdata/en/13/d9849973dd4174adaa375f568984bf/content.htm

● CRUD request handling is covered by a Business Object Processing Framework (BOPF) model that can be
implicitly generated and controlled by the following annotations:

@ObjectModel.writeEnabled: true @ObjectModel.writeDraftPersistance: '<BO name>'
● Locking is handled by BOPF (implicit lock with modification requests)
● Paging is implicitly handled by SADL
● Draft document handling is implicitly covered if @ObjectModel.writeDraftPersistance is specified.

However, you must also specify annotations, as defined in the draft specification.

For more information, see the SAP - ABAP Programming Model for SAP Fiori.

As an alternative, SADL support is also available in the SAP Gateway Service Builder (transaction SEGW).

This option is described in detail in Generating an OData Service Based on a Referenced Data Source.

More Information

● For more information about the BOPF model, see SAP - BOPF Developer Guide.
● For more information about ABAP CDS development, see UI Annotations.

Working With UI Annotations

Vocabularies and annotations allow you to extend OData services by adding information about how to interpret
the OData service and its data. For a general introduction to vocabularies and annotations, see the following
links:

● Vocabulary Based Annotations
● Vocabularies

On the SAP Gateway front-end server, you can find SAP-specific vocabularies in the SAP Gateway Service
Builder (transaction SEGW) under Extras Vocabulary Repository .

The following types of vocabulary-based annotations are available:

● In-place: These are part of the service's metadata document.
● Ex-place: These are composed of an Annotation Provider Class (APC) outside the metadata document.

The APC is bound to the service using a registration in transaction /IWBEP/REG_VOCAN.

These annotations are available using a query to the SAP Gateway catalog service, /sap/opu/odata/IWFND/
CATALOGSERVICE;v=2/. Entity Set: ‚Annotations‘.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1551

http://help.sap.com/saphelp_nw75/helpdata/en/31/d2958acf714f4e9aeb42d85c517523/frameset.htm
http://help.sap.com/saphelp_nw75/helpdata/en/d9/bc687d35fa42ccbb0b9256ce786d51/frameset.htm
http://help.sap.com/saphelp_nw75/helpdata/de/cd/dd22512c312314e10000000a44176d/content.htm
http://help.sap.com/saphelp_nw75/helpdata/en/d5/158579c02c468d874d63e6c1dcf624/frameset.htm
http://help.sap.com/saphelp_nw75/helpdata/en/31/d2958acf714f4e9aeb42d85c517523/frameset.htm
http://help.sap.com/saphelp_nw75/helpdata/en/f8/af07bb0770414bb38a25cae29a12e9/frameset.htm
http://scn.sap.com/community/gateway/blog/2013/10/07/vocabulary-based-annotations
http://www.odata.org/vocabularies/

Reusability

If the OData service is editable instead of read-only, add annotation elements as needed to activate or control
the draft infrastructure. Existing read-only OData services that are annotated, such as fact sheets, can be
reused for the list report and object page templates under these circumstances:

● The annotations have to be stored in the back-end system. They also need to have the life cycle of the data
model in the back-end system. Note that facet texts need to be defined in a front-end file after generation.

● The OData service models (entity sets and entity types) are derived from CDS views. The CDS entities are
the primary artifacts for the data model. The transactional runtime model (based on the BOPF) is
generated based on annotations.

● The UI annotations are attached to CDS views using the tags as defined by the SAP - ABAP Programming
Model for SAP Fiori.

● In the front end, CDS UI annotations are exposed generically and dynamically through SAP Gateway APIs
(APC) as OData Version 4.0 annotation documents that can be addressed separately.

● Although you can use any annotation source, we recommend using CDS annotations in metadata
extensions and exposing them using SAP Gateway and SADL. The exposure generates OData annotations
(XML format) from the CDS annotations. The following sections explain which OData annotation controls
each UI element.
For more information, search for SAP-ABAP Programming Model for SAP Fiori and for CDS Annotations in
the documentation for your SAP NetWeaver version on SAP Help Portal at https://help.sap.com/viewer/p/
SAP_NETWEAVER.

Actions

General actions are available for draft-enabled documents (edit, save, cancel/discard). You can also define
additional actions using annotations.

The draft-handling actions are handled by the Business Object Processing Framework (BOPF). However, you
must back up the application-specific actions using an implementation in the OData service. For general
information about actions and how to set them up, see Actions [page 1605].

Each action corresponds to an OData function import.

Field Control

 Note
This is relevant only for list report and object pages, worklists, and analytical list pages.

Field controls are omitted from the list report page since it is a read-only page. In a list report page, field
controls are conisdered only if there are custom actions that reference field controls.

You can use field controls to display a UI field as mandatory or read-only, and to hide the field. Field control
information is partly static information and valid for all business document instances. However, most use cases

1552 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/saphelp_nw75/helpdata/en/d9/bc687d35fa42ccbb0b9256ce786d51/frameset.htm
http://help.sap.com/saphelp_nw75/helpdata/en/d9/bc687d35fa42ccbb0b9256ce786d51/frameset.htm
https://help.sap.com/viewer/p/SAP_NETWEAVER
https://help.sap.com/viewer/p/SAP_NETWEAVER
http://help.sap.com/saphelp_nw75/helpdata/en/31/d2958acf714f4e9aeb42d85c517523/frameset.htm

are dynamic and reflect the state of the UI application, business document, or user context and must be
controlled by the business logic.

As business logic is implemented in the OData service, the OData service also has to provide the relevant field
control information. This is valid for the static information the service metadata contains, as well as for
dynamic information that is part of the entity data. There is a specification for an SAP extension of the OData
protocol based on annotations for OData Version 2.0 that also covers field control. For more information, see
SAP Annotations for OData Version 2.0 .

The controls interpret and apply field control information automatically provided by the OData service. When
using a smart field, binding the control’s value-Property to a property in the OData model to achieve field
control as defined by the OData service is sufficient. Field control of the OData service may be overruled by
setting more restrictive properties for the smart field.

 Sample Code
Snippet of XML-View definition

 ...
<!-- Field-control as defined in OData service -->
<SmartField value="{Description}" />

<!-- Overrule field-control of OData service - read-only here -->
<SmartField value="{Name}" editable="false" />
...

Building an App Using SAP Web IDE

You use SAP Web IDE to build UI applications using the SAP Fiori elements.

This video shows the step-by-step procedure for building an app. In this example, a list report and object page
are created: .

For more information about creating apps, see the following detailed procedures:

1. Creating a Project [page 1554]
2. Checking Folder Structure and Project Artifacts [page 1555]
3. Replacing Standard UI Texts [page 1557]
4. Adding Cards to an Overview Page [page 1561] (only relevant for overview page)
5. Further Post-Generation Steps [page 1562]
6. Using the Extension Wizard [page 1562]

For more information about SAP Web IDE, see Getting Started with SAP Web IDE.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1553

http://help.sap.com/disclaimer?site=http%3A%2F%2Fscn.sap.com%2Fdocs%2FDOC-44986
http://hcp.sap.com/developers/TutorialCatalog/wide100_01_getting_sap_web_ide.html

Creating a Project

You use SAP Web IDE to create an SAP Fiori app using SAP Fiori elements.

As an app developer, you must define a configuration in the SAP Web IDE. The main aspects are the
destinations to the back-end metadata, navigation between pages, and page design (as pages may contain
several templates).

The following figure shows the application in SAP Web IDE that starts the wizard for creating a new project:

Figure 250: Template Selection Screen in SAP Web IDE

Prerequisites

● You have created an OData service in your ABAP back-end system. For more information, see Preparing
OData Services [page 1550].

● You have created annotation files, if required.
● You have access to SAP Web IDE 1.17 or higher. For information about how to access SAP Web IDE, see App

Development Using SAP Web IDE [page 44].
● You have an aggregate based entity sets for creating an analytical list page application.

Procedure

1. In the SAP Web IDE, go to the File menu, then choose New Project from Template . The system starts
the wizard for new projects.

2. Follow the guided procedure:

Step Action

1. Template Selection Select one of the SAP Fiori element floorplans and choose
Next.

1554 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Step Action

2. Basic Information Enter the data that is relevant for your floorplan.

Choose Next.

3. Data Connection 1. Choose Service Catalog and select the required data
source from the list.

2. Choose a service and then choose Next.

4. Annotation Selection Select the required annotation file and then choose Next.

5. Template Customization 1. Enter the data that is relevant for your floorplan.
2. Choose Next and then Finish.

3. Open your project (already selected in the project list).
4. Open the webapp folder.
5. Select Component.js and choose Run.

If you get a message that variants can't be loaded, choose OK to continue.

More Information

For more information about deploying new applications from SAP Web IDE to different servers, see Deploying
Applications.

Checking Folder Structure and Project Artifacts

Once you have applied the template, the generated application is ready to run.

The new app or component reuses the views and controllers from sap.suite.ui.generic.template. You
can find the destinations in the neo-app.json file. The resource links and route definitions for navigation are
in the app descriptor file (manifest.json).

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1555

https://help.hana.ondemand.com/webide/frameset.htm?4478283a220b46d9a46bb28d6a9140e8.html
https://help.hana.ondemand.com/webide/frameset.htm?4478283a220b46d9a46bb28d6a9140e8.html

The following artifacts are generated:

Figure 251: Folder Structure for List Report and Object Page

Component.js

After you generate the application, the SAPUI5 component Component.js that represents the application, can
be executed. This component links to the manifest where further information can be found at runtime. This
informations includes the OData resource links or the reference to the template.

 Caution
Do not edit or change this file.

The generated app uses the reuse component controller by referencing a template that uses transactional
processing including draft-save. Similarly, the generated app uses the generic view in the template's folder,
which is based on the XML templating [page 1018] approach.

Manifest.json

You can find the service and annotation resource links that you have entered in the configuration wizard in the
app descriptor (manifest.json file).

Here, the annotations are read using the catalog service of SAP Gateway. This is the standard method when
using the auto-exposure feature of the application infrastructure.

The local resources localService/metadata.xml and localService/SMART_PROD_MAN_ANNO_MDL.xml
are generated for local tests that want to simulate back-end access.

1556 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Besides the annotations that are retrieved from the back-end system, the local resource annotations.xml
plays a role at runtime, as this file contains the facet descriptions for the object page. This is where you have to
maintain the labels for the different facets.

We recommend that you use i18n properties, for example, to maintain the texts in the related i18n resource
file. For more information, see Replacing Standard UI Texts [page 1557] and Maintaining Section Texts for the
Object Page [page 1559].

 Note
You can use the annotation modeler to maintain UI.facets. For more information, see Annotation
Modeler.

Neo-app.json

You can find the routing information in the neoapp.json file that is based on the destination you have chosen:

{ "welcomeFile": "index.html",
 "routes": [
 {
 "path": "/sap/opu/odata",
 "target": {
 "type": "destination",
 "name": "<DestinationName>",
 "entryPath": "/sap/opu/odata"
 },
 "description": "<YourDescription>"
 },
 {
 "path": "/sap/bc/lrep",
 "target": {
 "type": "destination",
 "name": "<DestinationName>",
 "entryPath": "/sap/bc/lrep"
 },
 "description": "<DestinationName>"
 },

You can adapt the destinations in order to address a different back-end system. This option is also available
under Run Configurations Advanced Settings .

Replacing Standard UI Texts

If required, you can replace standard UI texts for apps that you have created with SAP Fiori elements.

Standard texts are available in the generic framework (for example, the button texts for draft concepts) and
belong to the template components (for example, list report and object page). The following sections describe
how you replace texts in your generated apps.

When you have created your specific application component, for example, in the SAP Web IDE, standard texts
are available from a specific template component (sap.suite.ui.generic.template) and from the
generic template component.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1557

https://help.hana.ondemand.com/webide/frameset.htm?fe8ba75588964d3bbfc5c1bf96b04d1e.html
https://help.hana.ondemand.com/webide/frameset.htm?fe8ba75588964d3bbfc5c1bf96b04d1e.html

Standard texts can be overwritten by application-specific texts. Texts from the Generic Application Component
cannot be replaced.

Perform the following steps to replace the standard UI texts:

1. Find the resource file for your application.
2. Get the standard UI texts for your application.
3. Copy and paste the standard UI texts to your i18n property file and adapt them as needed.

How to Find the Resource File of Your Application Component

The SAP Web IDE automatically generates the following folders and files when you create an app with SAP Fiori
elements:

● <root-folder>
● |—i18n
● |—<shortened template component name>, for example, List Report and Object Page
● |—<entitySet>
● |—i18n.properties

 Note
This file contains instructions on how to find the standard UI texts for your application. You need them
for the step How to Replace the Standard UI Texts with Application-Specific Texts [page 1559].

The folder path to the resource model appears as shown below. Since the manifest.json file also refers to
the title and description of the app, there is a general i18n.properties file on the top level:

● i18n.properties
● i18n/ListReport/<entitySet>/POHeaders/i18n.properties
● i18n/ObjectPage/<entitySet>/i18n.properties
● i18n/ObjectPage/<subEntitySet>/i18n.properties

 Note
For object pages, the number of i18n files corresponds to the number of object pages defined in the
app.

The app descriptor (manifest.json file) of a purchase order application, for example, specifies the SAP UI5
models.

Example:

"sap.ui5": {
 ...
 "models": {
 "i18n": {
 "type": "sap.ui.model.resource.ResourceModel",
 "uri": "i18n/i18n.properties"
 },

 "i18n|sap.suite.ui.generic.template.ListReport|POHeaders": {

1558 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 "type": "sap.ui.model.resource.ResourceModel",
 "uri": "i18n/ListReport/POHeaders/i18n.properties"
 },
 "i18n|sap.suite.ui.generic.template.ObjectPage|POHeaders": {
 "type": "sap.ui.model.resource.ResourceModel",
 "uri": "i18n/ObjectPage/POHeaders/i18n.properties"
 },
 "i18n|sap.suite.ui.generic.template.ObjectPage|POItems": {
 "type": "sap.ui.model.resource.ResourceModel",
 "uri": "i18n/ObjectPage/POItems/i18n.properties"

The URL reflects the folder path to the resource model. The model's name, i18n|
sap.suite.ui.generic.template.ObjectPage|POHeaders, is separated by lines used to identify the
specific template component and entity set for which the resource model can be enhanced by editing the
i18n.properties file.

How to Replace the Standard UI Texts with Application-Specific Texts

To replace the standard UI texts, perform the following steps:

1. Go to the final block of the standard UI texts that starts as follows: #---Final block: texts to be
redefined by the application -------

2. Copy this block to the corresponding i18n property file of your app under webapp/i18n.
Consider the detailed instructions that you may find as comments in the original property file: For example,
a text might be relevant only for the root object, or it might also be relevant for detail pages of subitems. In
the latter case, if you have defined multiple object pages in your app, you have to copy and adapt each of
them.

3. After copying the blocks to the relevant files, adjust the texts as described in the comment. For example,
replace the generic text object by your entity type name.

 Note
To save translation costs, do not copy and redefine more texts than needed.

Maintaining Section Texts for the Object Page

If you have created sections in the local annotations file, you need to use the i18n properties file to edit the
texts in the related i18n resource file.

 Note
This step is necessary only if you do not maintain sections as CDS annotations, for example, because your
backend system does not allow you to do so.

If your back-end system is based on SAP NetWeaver 7.52 or higher (SAP S/4HANA) or on SAP NetWeaver
7.68 or higher (SAP S/4HANA Cloud) respectively, you can maintain sections as CDS annotations.

Sections or facets are stored in the local annotations file. You have to add labels manually after the app has
been generated. They should refer to the i18n.properties file.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1559

Figure 252: Object Page: Sections = com.sap.vocabularies.UI.v1.Facets

You define the labels in the i18n.properties file:

… #XTIT: Facet Label
@GeneralInformation=General Information
#XTIT: Facet Label
@TechnicalData=Technical Data
#XTIT: Facet Label
@ProductCategory=Product Category
#XTIT: Facet Label
@ProductDescription=Product Description
#XTIT: Facet Label
@ProductDescriptions=Product Descriptions
#XTIT: Facet Label
@Supplier=Supplier
#XTIT: Facet Label
@Contacts=Contacts …

For more information about resources or i18n.properties files, see Replacing Standard UI Texts [page
1557].

Maintaining Standard Text for Smart Tables on the Object
Page

In a smart table, if the system does not find any entries when using the smart filter, a standard UI text that you
can adapt in the i18n file of your app is displayed.

If you want to display your own text instead of the standard text, use the NOITEMS_SMARTTABLE key. If there
are multiple tables on the object page, you can provide separate texts for each table using the following key:
NOITEMS_SMARTTABLE|<EntitySetName>|<SmartTableId>.

1560 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Note
This text is not in the i18n file by default. You have to insert it if you want to change the standard text.

Adding Cards to an Overview Page

Add cards to populate the overview page that you created.

Procedure

1. On the Development tab, select the overview page project that you created, and choose File New
Card .

 Note
If you have created a Multi-Target Application, select the Multi-Target Application project that you
created and choose File New Card .

2. Select an existing data source or create a new data source for the card.
3. Select one of the following card types:

Option Description

List Card Displays an array of items in a vertical list. A number of list types is available.

Link List Card Displays an array of items in a vertical list with title, picture, icon, or subtitle.

Table Card Displays items in a table with three-columns.

Stack Card A collection of single-object cards. When opened, users can perform actions on the individual items
in the stack.

Analytic Chart
Card

This type of chart card show data in a variety of formats. For example, they can be cards that display
data in a series of data points connected by straight lines that use bubbles to visualize the data di
mension, or in columns or stacked columns to help view multiple measures or dimensions.

 Note
Overview Page lets you configure view switch and KPI header section for List, Table, and Analytic Chart
cards. Selecting the checkbox:
○ Select to enable view switch for this card lets you configure multiple views, apply different filtering,

and sorting options in the card.
○ Select to add KPI header for this card lets you configure KPI header information in the card. If you

are using an SAP Smart Business Modeler Apps for SAP S4HANA, click Next and choose Select
KPI Annotation step to configure KPI information.

For more information about the different card types, see Cards Used in Overview Pages.

4. Different card types require different configuration details. Fill in the required details for the selected card
type.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1561

https://sapui5.hana.ondemand.com/#docs/guide/8ed3f76b5f62419eb0408c0dba4b2e47.html

5. Choose Finish to complete the wizard.
6. Build and run your application.

○ Open your project (already selected in project list).
○ Open the webapp folder.
○ Select Component.js and choose Run.

Further Post-Generation Steps

To enable or modify certain default features for apps based on SAP Fiori elements, you can modify the
manifest.json file and adapt the annotations, after you have generated the app.

Apart from this, you can also extend generated apps using the extension wizard in SAP WebIDE, or manually.
For more information, see Using the Extension Wizard [page 1562].

To extend generated apps manually, see Extending SAP Fiori Elements-Based Apps [page 1585].

You have several options with which to manually enhance the generated app. They are described in the
floorplan-specific configuration sections:

● List Report and Object Page [page 1622]
● Worklist [page 1866]
● Analytical List Page [page 1868]
● Overview Pages [page 1930]

Using the Extension Wizard

For list reports, object pages, and analytical list pages, you can use the extension wizard in the SAP Web IDE to
create app extensions.

Context

For information about the extensions you can add using the extension wizard and how to manually extend
apps, see Extending SAP Fiori Elements-Based Apps [page 1585].

Procedure

1. In the SAP Web IDE, select your generated app, and choose File New Extension . The system starts
the extension wizard.

2. Select your SAP Fiori elements template and follow the guided procedure.

1562 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Configuring Navigation

SAP Fiori elements control the navigation within an app (internal navigation) and the navigation to and from an
app (external navigation).

General navigation aspects are listed in the Navigation section of the SAP Fiori Design Guidelines. For
information about navigation options for the overview page, see Configuring Card Navigation [page 1998].

With SAP Fiori elements, the following navigation options are available and can be configured:

● Internal navigation
○ Standard navigation within an app
○ Navigation after executing a function

For more information, see Configuring Internal Navigation [page 1581].
● External navigation

A SAP Fiori elements app can be the app from which the navigation is triggered (outbound) or the target of
the navigation (inbound). Of course, both can also be the case in the same navigation.
○ Outbound navigation

○ Using a URL
○ Using a semantic object (intent-based navigation)

○ Inbound navigation
For more information, see Configuring External Navigation [page 1563].

Configuring External Navigation

This section describes the configuration options for navigating from an app (outbound) and navigating to an
app (inbound).

Outbound Navigation

You can either specify a URL or associate a semantic object (= intent-based navigation) for external navigation
targets.

Using a URL
You have two annotation options: You can either specify the absolute URL explicitly, or you can use a path
reference to a property using the annotation DataFieldWithUrl as follows:

 Note
This option is supported only by the list report and the object page.

Example DataFieldWithURL:

 <Record Type="UI.DataFieldWithUrl">
 <PropertyValue Property="Value" Path="URL"/>
 <PropertyValue Property="Url" Path=""/>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1563

https://experience.sap.com/fiori-design/concept/navigation/

</Record>

An m.Link control is rendered for the property on the list report or object page (if it's in Display mode).

Navigation to a Semantic Object (Intent-Based Navigation)
If you associate a semantic object annotation with any property, this establishes Intent-Based Navigation.

An intent is a mechanism that lets users perform actions on semantic objects (such as navigating to a sales
order or displaying a fact sheet), without having to worry about the UI technology or technical implementation
of the navigation target. Intent-based navigation is necessary in the following cases:

● Depending on the user’s role, a different application or view of an application must be displayed.
● You want to define an ambiguous navigation target. This means that, at runtime, a list of potential targets is

suggested to the user.

This is an example of a cost center as a semantic object:

 <Annotations xmlns="http://docs.oasis-open.org/odata/ns/edm"
Target="ZFAR_CUSTOMER_LINE_ITEMS2_SRV.Item/CostCenter">
 <Annotation Term="com.sap.vocabularies.Common.v1.SemanticObject"
String="CostCenter"/>
</Annotations>

These are your options for intent-based navigation:

● Using a smart link control
To render a field as a smart link control, you must associate a semantic object annotation with the
property. Note that a smart link control is only rendered on the list report or object page if it's in display
mode.

 Sample Code
 <Annotations xmlns="http://docs.oasis-open.org/odata/ns/edm"
Target="ZFAR_CUSTOMER_LINE_ITEMS2_SRV.Item/CostCenter">
 <Annotation Term="com.sap.vocabularies.Common.v1.SemanticObject"
String="CostCenter"/>
</Annotations>

When a user chooses the link, and only one navigation target is found, direct navigation to the target is
triggered. If more than one target is found, the system displays a popover containing some text and links to
the targets for the user to choose from. You can enhance the content of this popover and display a quick
view containing more information about the navigation target. For more information, see Enabling Quick
Views for Smart Link Navigation [page 1567].

● Using a button
To provide a button for navigation, you annotate a property as a
DataFieldForIntentBasedNavigation.

 Sample Code
 <Record Type="UI.DataFieldForIntentBasedNavigation">
 <PropertyValue Property="Label" String="My Button for navigation"/>
 <PropertyValue Property="SemanticObject" String="MySemanticObject"/>
 <PropertyValue Property="Action" String="manage"/>
</Record>

● Using a link

1564 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/saphelp_nw75/helpdata/en/bd/8ae3d327ab4541bcce8e7353c046fc/content.htm

To provide a link for navigation, you annotate a property as a DataFieldWithIntentBasedNavigation.
You can use this type of link in tables and forms, that is, a DataFieldWithIntentBasedNavigation can
be added to LineItem or FieldGroup annotations. The link text is set according to the "Value" property
(in the example below this is the value of SomePath). Note that sap:unit annotations are currently not
evaluated in this context.

 Sample Code
 <Record Type="UI.DataFieldWithIntentBasedNavigation">
 <PropertyValue Property="Label" String="My Link for navigation" />
 <PropertyValue Property="Value" Path="SomePath" />
 <PropertyValue Property="SemanticObject" String="MySemanticObject"/>
 <PropertyValue Property="Action" String="manage"/>
</Record>

For examples of how to use the DataFieldWithIntentBasedNavigation annotation, see Form Facet
[page 1690] and Adding Line Item Actions in Tables [page 1743].

You can replace standard internal navigation with external navigation by using intent-based navigation. For
more information, see Changing Navigation to Object Page [page 1583].

Navigation to the App (Inbound Navigation)

Navigation to the app uses deep linking. For more information, see Navigation in the SAP Fiori Design
Guidelines and go to the Deep Links section.

For the SAP Fiori launchpad, the configuration steps for Intent-Based Navigation are also relevant since it's the
same mechanism.

 Note
You need the SAP Fiori launchpad for this type of navigation. For a stand-alone app, you need to change the
links in the annotations as required.

SAP Fiori elements automatically process inbound navigation. Since SAP Fiori elements apps are capable of all
modes (create, display, edit), you should define "manage" as the action for inbound navigation . If the
parameters provided are specific enough to define an instance, the app navigates directly to the object page.
Otherwise, the list report is shown with filters set according to the provided parameters.

Enter the preferredMode parameter to specify the mode in which the object page should be opened:

PreferredMode Parameter Results in the following mode

display Object page opens in display mode unless the user is already working on a draft. In this case,
the draft is opened in edit mode.

edit A draft is created if one doesn't exist yet. If an outdated draft by another user exists ("un
saved changes"), the user can decide to cancel this draft and create their own, or to keep the
other user's draft and open it in display mode. If another user's draft exists and is not out
dated, the page is opened in display mode.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1565

https://experience.sap.com/fiori-design/concept/navigation/
http://help.sap.com/saphelp_nw75/helpdata/en/bd/8ae3d327ab4541bcce8e7353c046fc/content.htm

PreferredMode Parameter Results in the following mode

create A new document is created.

You can use URL parameters to prefill specific values. Example: To set the value 01 for the
DefectCategory field, enter the URL …#Defect-displayWorklist?
preferredMode=create&DefectCategory=01.

 Note
The target application must specify in its manifest.json which parameters are to be used
from the incoming URL. In the following example, only the Supplier parameter is
used.

"sap.ui.generic.app": { "_version": "1.2.0",
 "settings": {
 ...
 "inboundParameters": {
 "DefectCategory": {
 "useForCreate": true
 }
 }
 },
 "pages": [
 { ...

mode If the specified mode isn't suitable for the current draft state, there is no silent fallback. How
ever, the user gets an error message before the object page is opened in the potentially avail
able mode.

 Note
There is no double navigation. If no object page is defined in the target app's manifest or the (usually
internal) navigation to the object page is overridden by external navigation, the list report is shown.

Inbound Navigation to Subobject Pages

You can configure inbound navigation to any subobject page belonging to an app by using deep linking.

To do so, make the following settings:

1. In the target application's manifest, for the corresponding subobject page, set allowDeepLinking:
true. The example below shows the subobject page section of the manifest.json:

"pages": [{ "navigationProperty": "to_ProductText",
 "entitySet": "STTA_C_MP_ProductText",
 "component": {
 "name":
"sap.suite.ui.generic.template.ObjectPage",
 "settings": {
 "allowDeepLinking": true
 }
 }
 },

1566 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 {
If multiple pages on the same level have this property set to true, the entry that comes first in the manifest
is used.
Navigation to any level is possible by setting allowDeepLinking: true for each level. Note that each
level needs to have the setting allowDeepLinking: true. In the following example, the navigation goes
to subobject level 3:

Object Page1: { SubObjectPage1:{
 allowDeepLinking:true
SubObjectPage2:{
 allowDeepLinking:true
SubObjectPage3:{
 allowDeepLinking:true
}
}
}
}

2. Provide the URL parameters for navigation, as described under https://help.sap.com/viewer/
cc1c7615ee2f4a699a9272453379006c/7.5.5/en-US/bd8ae3d327ab4541bcce8e7353c046fc.html.

 Note
● Navigation to any subobject page is only possible using semantic keys. The technical key is used only

for the root object page if the semantic key is not available.
● If the relevant keys (semantic or technical keys) are used for the root object page, along with its values

in startup parameters, deep linking to the first-level object page is automatic.

Enabling Quick Views for Smart Link Navigation

You can enrich the popovers for smart link navigation with additional information to display quick views.

Context

You can display information about the navigation target already on the source entity. This information - the
quick view - is stored in the association end type. To enable the quick views, you have to annotate
com.sap.vocabularies.UI.v1.QuickViewFacets at the association end type of the property that has
been annotated as a semantic object. If you annotate QuickViewFacets for the popover, a new title area and
additional information, such as, a field group, are displayed according to the QuickViewFacets.

 Note
QuickViewFacets can only be annotated for those EntityTypes that are in the same service. Only these
are referenced with referential constraints in the metadata document.

This video shows the step-by-step procedure for enabling quick views for smart link navigation:

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1567

https://help.sap.com/viewer/cc1c7615ee2f4a699a9272453379006c/7.5.5/en-US/bd8ae3d327ab4541bcce8e7353c046fc.html
https://help.sap.com/viewer/cc1c7615ee2f4a699a9272453379006c/7.5.5/en-US/bd8ae3d327ab4541bcce8e7353c046fc.html

To do so, perform the following steps:

Procedure

1. Identify the property that has been annotated as a semantic object.

 <Annotations Target="STTA_PROD_MAN.STTA_C_MP_ProductType/Supplier">
 <Annotation Term="Common.SemanticObject" String="EPMProduct"/>
</Annotations>

2. In the metadata document, you can find the reference to the association end type. Check for a referential
constraint that includes the identified property as Dependent. For the Supplier property in the entity
type STTA_C_MP_ProductType, which has a set of navigation properties, only to_Supplier includes the
Supplier property as Dependent.

 <Association Name="assoc_2CCAF987BA334B3BD1DF2404F50BC9C5" sap:content-
version="1">
 <End Type="STTA_PROD_MAN.STTA_C_MP_ProductType" Multiplicity="1"
Role="FromRole_assoc_2CCAF987BA334B3BD1DF2404F50BC9C5"/>
 <End Type="STTA_PROD_MAN.STTA_C_MP_SupplierType" Multiplicity="0..1"
Role="ToRole_assoc_2CCAF987BA334B3BD1DF2404F50BC9C5"/>
 <ReferentialConstraint>
 <Principal Role="ToRole_assoc_2CCAF987BA334B3BD1DF2404F50BC9C5">
 <PropertyRef Name="Supplier"/>
 </Principal>
 <Dependent Role="FromRole_assoc_2CCAF987BA334B3BD1DF2404F50BC9C5">
 <PropertyRef Name="Supplier"/>
 </Dependent>
 </ReferentialConstraint>
</Association>

3. Annotate UI.QuickViewFacets under the association end type of the Dependent property as follows:

 <!-- QuickViewFacets annotation for Supplier-->
<Annotations Target="STTA_PROD_MAN.STTA_C_MP_SupplierType">
 <Annotation Term="UI.QuickViewFacets">
 <Collection>
 <Record Type="UI.ReferenceFacet">
 <PropertyValue Property="Target"
AnnotationPath="@UI.FieldGroup#SupplierQuickViewPOC_FieldGroup_1" />
 </Record>
 </Collection>
 </Annotation>
 <Annotation Term="UI.FieldGroup"
Qualifier="SupplierQuickViewPOC_FieldGroup_1">
 <Record>
 <PropertyValue Property="Data">
 <Collection>
 <Record Type="UI.DataField">
 <PropertyValue Property="Label" String="Company
Name" />
 <PropertyValue Property="Value" Path="CompanyName"/>
 </Record>
 <Record Type="UI.DataField">
 <PropertyValue Property="Label" String="Supplier" />
 <PropertyValue Property="Value" Path="Supplier"/>
 </Record>
 <Record Type="UI.DataField">
 <PropertyValue Property="Label" String="Email
Address" />

1568 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 <PropertyValue Property="Value" Path="EmailAddress"/>
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
 </Annotation>
</Annotations>

4. Ensure that you have defined FilterFacets.

If you do not define FilterFacets, all field groups are displayed in the smart filter bar.

Below, find an example of a FilterFacets annotation on the target entity type:

 <Annotations Target="STTA_PROD_MAN.STTA_C_MP_SupplierType">
 <Annotation Term="UI.FilterFacets">
 <Collection>
 <Record Type="UI.ReferenceFacet">
 <PropertyValue Property="Target"
AnnotationPath="@UI.FieldGroup#MyFilterGroup"/>
 </Record>
 </Collection>
 </Annotation>
</Annotations>

Results

A quick view for smart link navigation is generated and can look like this:

For more information about the system behavior and configuration options, see Configuring Quick Views for
Smart Link Navigation [page 1570].

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1569

Configuring Quick Views for Smart Link Navigation

You can configure the content area of the quick views to display specific data.

The content area, consisting of a title and additional information, for example, a field group, has a default
behavior and can be adapted to your needs.

Title Area

● Images
○ To display an image, annotate HeaderInfo.ImageUrl or HeaderInfo.TypeImageUrl. If you don't,

no image is displayed.
○ If you annotate HeaderInfo.ImageUrl and HeaderInfo.TypeImageUrl, ImageUrl is evaluated

first, and TypeImageUrl second. The ImageUrl/TypeImageUrl string and path including navigation
properties are evaluated.

● Title
○ Enter the title according to the TextArrangement annotation. See the figure below:

TextArrangementType/TextLast. Note that Computer Systems is declared as TextLast here.

1570 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

○ If a main navigation has been defined, the title is displayed as a link. In the example below, see the Asia
High tech link:

● Description
○ The description is always displayed beneath the title and must be filled according to the

TextArrangement annotation.
○ If the description is not filled, the title size is increased automatically and the description field remains

empty, as shown below (TextArrangementType/TextOnly).

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1571

Content Area

The content area can contain field groups, contacts, and Data.Points.

Field Groups
● You can include any number of field groups or none at all. The example below shows a quick view with no

reference facet, however, a header image included:

● A field group can have a label. It is taken from the from within the <Record
Type="UI.ReferenceFacet">.

● For fields, the path including navigation properties is evaluated.
● Fields in the field group are smart fields. They support annotations such as: IsEmailAddress, IsUrl, and

IsPhoneNumber. Note that any links that would create a popover on the quick view are ignored by the
system.

1572 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

● There are different types of content for field groups:
○ Interpreted by SmartField: DataField including criticality, DataFieldWithUrl
○ Interpreted by SAP Fiori elements: DataFieldWithIntentBasedNavigation

Contacts

You can display any number of contacts or none at all. See the example below:

The following applies:

● You can place the contact anywhere. It is specified by the position of the reference facet in the collection.
● If the picture, title, and description belonging to a contact (contact title area) correspond with the content

of the title area , the contact title area is not displayed.
● The reference facet must point to a com.sap.vocabularies.Communication.v1.Contact.

DataPoints

● You can place an existing DataPoint in your annotation.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1573

● You can place the DataPoint anywhere. It is specified by the position of the reference facet in the collection.
● A DataPoint can have a label. It is taken from within the <Record Type="UI.ReferenceFacet">.

The sample code shows a quick view facet containing field group, contact and DataPoint:

<Annotations Target="STTA_PROD_MAN.STTA_C_MP_SupplierType"> <Annotation Term="UI.QuickViewFacets">
 <Collection>
 <Record Type="UI.ReferenceFacet">
 <PropertyValue Property="Target"
AnnotationPath="@UI.FieldGroup#SupplierQuickViewPOC_FieldGroup_1" />
 </Record>
 <Record Type="UI.ReferenceFacet">
 <PropertyValue Property="Label" String="Main Contact Person" />
 <PropertyValue Property="Target"
AnnotationPath="@Communication.Contact#KeyAccount"/>
 </Record>
 <Record Type="UI.ReferenceFacet">
 <PropertyValue Property="Label" String="DataPoint in QV"/>
 <PropertyValue Property="Target"
AnnotationPath="@UI.DataPoint#Product"/>
 </Record>
 </Collection>
 </Annotation>
</Annotations>

1574 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Quick Views for Smart Link Navigation: Further Configuration
Examples

You have various options for configuring the quick view. This documentation provides some examples.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1575

Example 1

1576 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 <!-- QuickViewFacets annotation for Supplier-->
 <Annotations Target="STTA_PROD_MAN.STTA_C_MP_SupplierType/
EmailAddress" xmlns="http://docs.oasis-open.org/odata/ns/edm">
 <Annotation
Term="com.sap.vocabularies.Communication.v1.IsEmailAddress" Bool="true"/>
 </Annotations>
 <Annotations Target="STTA_PROD_MAN.STTA_C_MP_SupplierType/URL"
xmlns="http://docs.oasis-open.org/odata/ns/edm">
 <Annotation Term="Org.OData.Core.V1.IsUrl" Bool="true"/>
 </Annotations>
 <Annotations Target="STTA_PROD_MAN.STTA_C_MP_SupplierType/
PhoneNumber" xmlns="http://docs.oasis-open.org/odata/ns/edm">
 <Annotation
Term="com.sap.vocabularies.Communication.v1.IsPhoneNumber" Bool="true"/>
 </Annotations>
 <Annotations
Target="STTA_PROD_MAN.STTA_C_MP_SupplierType">
 <Annotation Term="UI.QuickViewFacets">
 <Collection>
 <Record Type="UI.ReferenceFacet">
 <PropertyValue Property="Target"
AnnotationPath="@UI.FieldGroup#SupplierQuickViewPOC_FieldGroup_1" />
 </Record>
 <Record Type="UI.ReferenceFacet">
 <PropertyValue Property="Target"
AnnotationPath="@UI.FieldGroup#SupplierQuickViewPOC_FieldGroup_2" />
 </Record>
 </Collection>
 </Annotation>
 <Annotation Term="UI.FieldGroup"
Qualifier="SupplierQuickViewPOC_FieldGroup_1">
 <Record>
 <PropertyValue Property="Label" String="The first field
group label" />
 <PropertyValue Property="Data">
 <Collection>
 <Record Type="UI.DataField">
 <PropertyValue Property="Label"
String="Supplier" />
 <PropertyValue Property="Value"
Path="Supplier"/>
 </Record>
 <Record Type="UI.DataField">
 <PropertyValue Property="Label"
String="Company Name" />
 <PropertyValue Property="Value"
Path="CompanyName"/>
 </Record>
 <Record Type="UI.DataField">
 <PropertyValue Property="Label"
String="Email Address" />
 <PropertyValue Property="Value"
Path="EmailAddress"/>
 </Record>
 <Record Type="UI.DataField">
 <PropertyValue Property="Label"
String="to_Address / FormattedAddress" />
 <PropertyValue Property="Value"
Path="to_Address/FormattedAddress"/>
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
 </Annotation>
 <Annotation Term="UI.FieldGroup"
Qualifier="SupplierQuickViewPOC_FieldGroup_2">
 <Record>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1577

 <PropertyValue Property="Label" String="The second field
group label" />
 <PropertyValue Property="Data">
 <Collection>
 <Record Type="UI.DataField">
 <PropertyValue Property="Label"
String="Phone Number" />
 <PropertyValue Property="Value"
Path="PhoneNumber"/>
 </Record>
 <Record Type="UI.DataField">
 <PropertyValue Property="Label"
String="URL" />
 <PropertyValue Property="Value" Path="URL"/>
 </Record>
 <Record Type="UI.DataField">
 <PropertyValue Property="Label"
String="to_Address / AddressValidityStartDate" />
 <PropertyValue Property="Value"
Path="to_Address/AddressValidityStartDate"/>
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
 </Annotation>
 </Annotations>

Example 2: Quick View in Object Page Table

 Note
Not all columns that are supported in a table support the display of a quick view.

1578 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

For the currency, no referential constraint is defined by the service. This is why you need to make the following
entry:

 <Association Name="assoc_6D52161C1362D99A31996E5BB23202E8" sap:content-
version="1">
 <End Type="STTA_PROD_MAN.STTA_C_MP_ProductSalesDataType" Multiplicity="1"
Role="FromRole_assoc_6D52161C1362D99A31996E5BB23202E8"/>
 <End Type="STTA_PROD_MAN.I_CurrencyType" Multiplicity="0..1"
Role="ToRole_assoc_6D52161C1362D99A31996E5BB23202E8"/>
 <ReferentialConstraint>
 <Principal Role="FromRole_assoc_6D52161C1362D99A31996E5BB23202E8">
 <PropertyRef Name="Currency"/>
 </Principal>
 <Dependent Role="ToRole_assoc_6D52161C1362D99A31996E5BB23202E8">
 <PropertyRef Name="Currency"/>
 </Dependent>
 </ReferentialConstraint>
</Association>

Quick view facets annotation:

 <!-- QuickViewFacets annotation for Currency-->
<Annotations Target="STTA_PROD_MAN.STTA_C_MP_ProductSalesDataType/Currency">
 <Annotation Term="Common.SemanticObject" String="EPMProduct"/>
</Annotations>
<Annotations Target="STTA_PROD_MAN.I_CurrencyType">
 <Annotation Term="UI.QuickViewFacets">
 <Collection>
 <Record Type="UI.ReferenceFacet">
 <PropertyValue Property="Target"
AnnotationPath="@UI.FieldGroup#CurrencyQuickViewPOC_FieldGroup_1" />
 </Record>
 </Collection>
 </Annotation>
 <Annotation Term="UI.FieldGroup"
Qualifier="CurrencyQuickViewPOC_FieldGroup_1">
 <Record>
 <PropertyValue Property="Data">
 <Collection>
 <Record Type="UI.DataField">
 <PropertyValue Property="Label" String="Decimals" />
 <PropertyValue Property="Value" Path="Decimals"/>
 </Record>
 <Record Type="UI.DataField">
 <PropertyValue Property="Label"
String="CurrencyISOCode" />
 <PropertyValue Property="Value" Path="CurrencyISOCode"/>
 </Record>
 <Record Type="UI.DataField">
 <PropertyValue Property="Label"
String="AlternativeCurrencyKey" />
 <PropertyValue Property="Value"
Path="AlternativeCurrencyKey"/>
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
 </Annotation>
</Annotations>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1579

Passing Variant IDs as URL Parameters

You can pass the variant ID as part of the navigation context (or as a URL parameter) while navigating from an
application to the analytical list page or to the list report, or vice versa.

You can choose to pass a page variant or a control variant using these parameters:

● sap-ui-fe-variant-id: Page variant ID you want to set

 Example
https://abc.com/ui#SalesOrder-analyze_deliv_perf?sap-ui-fe-variant-id=myVariantId

● sap-ui-fe-filterbar-variant-id: Parameter for the filter bar control variant

 Example
https://abc.com/ui#SalesOrder-analyze_deliv_perf?sap-ui-fe-filterbar-variant-id=myFilterbarId

● sap-ui-fe-chart-variant-id: Parameter for the chart control variant

 Example
https://abc.com/ui#SalesOrder-analyze_deliv_perf?sap-ui-fe-chart-variant-id=myChartId

● sap-ui-fe-table-variant-id: Parameter for the table control variant

 Example
https://abc.com/ui#SalesOrder-analyze_deliv_perf?sap-ui-fe-table-variant-id=myTableId

When both the chart variant and table variant are passed:

 Example
https:/abc.com/ui#SalesOrder-analyze_deliv_perf?sap-ui-fe-chart-variant-id=myChartId&sap-ui-fe-
table-variant-id=myTableId

 Sample Code

... "crossNavigation": {
 "inbounds": {
...
 },
"outbounds": {
 "EPMProductManage": {
 "parameters": {
 "sap-ui-fe-variant-id":"id_1542011587281_980_page"
 }
 }
} }

1580 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Note
● If you add both a page variant and a control variant to a URL:

○ The page variant-based analytical list page or list report ignores the control variant ID and applies
the page level variant

○ The control variant-based analytical list page or list report applies the control variant ID. If the
control variant ID is missing, the page variant ID applies to the control

○ If the variant ID passed is invalid, the default or standard variant is considered.
● Adding the variant ID to the URL overrides the user's default variant ID

Related Information

Managing Variants [page 1616]

Configuring Internal Navigation

SAP Fiori elements control the navigation within an app (internal navigation). This section describes the
configuration options that you have.

Standard Navigation Within an App

In the manifest.json, you define which pages are available in the app. At the top level, a "pages" map is defined.
This map should have only one point of entry. This is the main point of entry to the app and should always be a
list report. Each page can have a "pages" map containing all subpages of the given page. Only one subpage is
allowed in the list report. This should be an object page for the same entity set. An object page can have several
subpages.

You can control whether it is possible to navigate to a detail page. It simply depends on whether you keep the
predefined definition of a subpage:

 Sample Code

"sap.ui.generic.app": { "pages": {
 "MyListReport": {
 "entitySet": "MyEntitySet",
 "component": {
 "name": "sap.suite.ui.generic.template.ListReport",
 "list": true
 },
 // Navigation to detail page: eliminate this block if no navigation is
needed
 "pages": {
 "MyObjectPageOnFirstLevel": {
 "entitySet": "MyEntitySet",
 "component": {
 "name": "sap.suite.ui.generic.template.ObjectPage"

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1581

 },
 "pages": {
 "MyFirstObjectPageOnSecondLevel": {
 "navigationProperty": "to_MyOtherEntitySet",
 "entitySet": "MyOtherEntitySet",
 "component": {
 "name": "sap.suite.ui.generic.template.ObjectPage"
 },
 },

"MySecondObjectPageOnSecondLevel": {
 "navigationProperty": "to_MyOtherEntitySetAlternateNavigation",
 "entitySet": "MyOtherEntitySet",
 "component": {
 "name": "sap.suite.ui.generic.template.ObjectPage"
 },
 },

"MyThirdObjectPageOnSecondLevel": {
 "navigationProperty": "to_MyThirdEntitySet",
 "entitySet": "MyThirdEntitySet",
 "component": {
 "name": "sap.suite.ui.generic.template.ObjectPage"
 }
 }
 }
 }
 }
 }
 }
}

The same holds true for the navigation to a second object page. This is possible only when the definition is kept
in the manifest. If you want to have multiple subpages on the same level, you need to have multiple definitions.
The subpages are identified by the corresponding entity set and the navigation property.

A chevron indicates the navigation options. The user can navigate by clicking on the line.

 Note
In a non-draft app, if the user is in edit mode on an object page and has made changes before the
navigation has been executed, the system displays a message indicating that the changes will be lost if the
user navigates without saving first.

Navigation Between Entities of an App

You can link entities within an app. This allows users to navigate between the entities within the application. You
can use this app-internal linking in the object header, in sections, and in tables. For example, within a sales
order app, you can link from a sales order to another sales order, from a sales order item to the sales order
header, or from a sales order schedule line to a schedule line of another sales order.

 Note
This feature is available only on the object page.

1582 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

The following example shows how to use the DataFieldWithNavigationPath annotation to link entities:

<Annotation Term="UI.FieldGroup" Qualifier="NavExample"> <Record>
 <PropertyValue Property="Data">
 <Collection>
 <Record Type="UI.DataFieldWithNavigationPath">
 <PropertyValue Property="Label" String="Ref. Sales Order" />
 <PropertyValue Property="Value" Path="RefSalesOrderID" />
 <PropertyValue Property="Target"
NavigationPropertyPath="to_SalesOrder" />
 </Record>
 </Collection>
 </PropertyValue>
 </Record> </Annotation>

Navigation after Executing a Function

Navigation may also be required after running a regular FunctionImport that is not tagged as a
DataFieldForIntentBasedNavigation. The behavior after the execution of the function is controlled by
the application as follows: If the FunctionImport returns multiplicity 1 and ReturnType=EntityType
+ EntitySet, then the SAP Fiori element navigates to the instance that is returned by the function import.

Changing Navigation to Object Page

Navigation from the list report view to the object page in the same app is enabled by default. If required, you
can disable this navigation or replace it with navigation to another app (external navigation).

Disable Navigation

You can use the manifest.json file to control whether it is possible to navigate to a detail page by keeping the
predefined definition of a subpage. If you wish to disable navigation, follow the instructions in the example
below to remove the appropriate code.

Example with Navigation

"sap.ui.generic.app": { "pages":[{
 "entitySet": "Zfarvd_Bs_Hd_Bo",
 "component": {
 "name": "sap.suite.ui.generic.template.ListReport",
 "list": true,
 "settings": {
 "gridTable": false,
 "hideTableVariantManagement": false
 }
 },
//Navigation to detail page: eliminate this block if no navigation is needed
 "pages": [{

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1583

 "entitySet": "Zfarvd_Bs_Hd_Bo",
 "component": {
 "name": "sap.suite.ui.generic.template.ObjectPage" },

Enable External Navigation

You can define an external navigation target using intent-based navigation in the manifest.json file by
modifying the navigation > display entry. This allows you to overwrite existing internal navigation with
external navigation, for example, from a line item in the list report to an object page in a different app, or from
an object page to a subpage in another app. The navigation can only be set up from a line in a responsive table,
or from the Show Details link in a grid table.

In the example below, the standard navigation from the list report to the object page has been replaced with
navigation to an object page in another app.

 "sap.app": { "_version": "1.2.0",
 ...
 "crossNavigation": {
 "inbounds": {},
 "outbounds": {
 "ExampleNavigationTarget":
 {
 "semanticObject": "EPMProduct",
 "action": "manage_st"
 }
 }
 }
 ...
...
 "sap.ui.generic.app": {
 "_version": "1.2.0",
 "pages": [{
 "entitySet": "STTA_C_MP_Product",
 "component": {
 "name": "sap.suite.ui.generic.template.ListReport",
 "list": true
 },
 "pages": [{
 "entitySet": "STTA_C_MP_Product",
 "component": {
 "name": "sap.suite.ui.generic.template.ObjectPage"
 },
// Navigation to an external target instead of a detail page: Add this block to
set up external navigation.
 "navigation": {
 "display": {
 "path": "sap.apps.crossNavigation.outbounds",
 "target": "ExampleNavigationTarget"

 Note
● The example above applies to sap.ui.generic.app->_version 1.2.0.
● The path and target you specify for external navigation must point to an existing outbounds entry.

1584 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

For more information about the crossNavigation attribute in the sap.app namespace, see
Descriptor for Applications, Components, and Libraries [page 734]. In Table 2: Attributes in the sap.app
namespace, go to the crossNavigation attribute and see the description for outbounds.

Extending SAP Fiori Elements-Based Apps

You can extend your application if needed.

There are two options to extend your app:

● App extensions: Are made by developers during the creation of an SAP Fiori elements-based app, using
framework extension points provided by SAP Fiori elements. The extensions are made, for example, using
manifest changes or SAPUI5 extension points, depending on the floorplan. For more information, see
Extending Generated Apps Using App Extensions [page 1585].

● Adaptation extensions: Let customers and partners introduce their own functionality to an existing app, as
part of an adaptation project, in a consistent and upgrade-safe manner. For more information, see
Extending Delivered Apps Using Adaptation Extensions [page 1596].

 Note
This option is possible only for list report, object page, and analytical list page.

Extending Generated Apps Using App Extensions

You can use framework extension points to extend your generated app during the creation process.

The extensions are made, for example, using manifest changes or SAPUI5 extension points, depending on the
floorplan.

 Note
Make sure you have read the following information: Read Before Extending a Generated App [page 1586].

 Caution
Use app extensions with caution and only if you cannot produce the required behavior by other means,
such as manifest settings or annotations. To correctly integrate your app extension coding with SAP
Fiori elements, use only the extensionAPI of SAP Fiori elements. For more information, see Using the
ExtensionAPI [page 1588].

After you've created an app extension, its display (for example, control placing, CSS) and system
behavior (for example, model and binding usage, busy handling) of the app extension lies within the
application's responsibility. SAP Fiori elements provides support only for the official extensionAPI
functions. Don't access or manipulate SAP Fiori elements' internal coding.

For list reports, object pages, and analytical list pages, you can either use the extension wizard in the SAP Web
IDE to create app extensions or you can create them manually.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1585

You can use SAP WebIDE to add the following app extensions:

● List report
○ Filter
○ Action
○ Column

● Object page
○ Action
○ Facet
○ Column
○ Header
○ Form

● Analytical list page
○ Filter
○ Action
○ Column

Related Information

Extending List Reports and Object Pages Using App Extensions [page 1799]
Configuring Analytical List Page App Extensions [page 1915]
Configuring Overview Page App Extensions [page 2024]
Extending Apps [page 2143]

Read Before Extending a Generated App

Before you start creating an extension for your app, make sure you have read the following information.

 Caution
Use app extensions with caution and only if you cannot produce the required behavior by other means,
such as manifest settings or annotations. To correctly integrate your app extension coding with SAP Fiori
elements, use only the extensionAPI of SAP Fiori elements. For more information, see Using the
ExtensionAPI [page 1588].

After you've created an app extension, its display (for example, control placing, CSS) and system behavior
(for example, model and binding usage, busy handling) of the app extension lies within the application's
responsibility. SAP Fiori elements provides support only for the official extensionAPI functions. Don't
access or manipulate SAP Fiori elements' internal coding.

Take into account that:

● Implementing an extension in your app means that the coding lies withing the application's responsibility.
● For the extension of any system logic or functions that are related to existing controls or components

provided by SAP Fiori elements, always use the extensionAPI. It is the official interface between the actual
extension and the functions provided by SAP Fiori elements. SAP guarantees implemented system

1586 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

behavior, functions, and compatibility only if the official interface is used correctly. This is the prerequisite
for receiving the necessary support and quality assurance.

● If you interact only with controls that were generated within your extension, you don't need the
Extension.API.

● Create extensions based only on the use cases described in this documentation.

Using the Standard SAPUI5 API

In extension coding, you can use the standard SAPUI5 programming API. However, you should do so with care.

After you have defined a view extension, you can access and modify the properties of all UI elements defined
within these extensions (such as changing the visibility). You can access the elements you have created by their
ID. However, you must not access any UI elements that are not defined within your view extensions.

 Caution
If you do not adhere to this guideline, your app may not work with future SAP UI5 versions because SAP
Fiori elements might exchange controls for new ones that have a different API.

Make sure you also do not use the following:

● Services provided by the namespace sap.ui.generic.app, since these services are intended for use
only by freestyle-apps or within the generic list report and object page and analytical list page template
implementation.

● Services provided directly by the namespace sap.ui.generic.template. Unwanted side effects may
occur if two layers (template coding and extension coding) access these services at the same time.

Notes on Models

Several models (instances of sap.ui.model.Model) are attached to the list report and object page, and
analytical list page template artifacts.

● OData Model
The most prominent is the default model. This is the OData model specified in the manifest.json file.
You can use this model for data-binding in your own view extensions.
Access the model (through the standard SAPUI5 API methods) with care, since side effects may interfere
with the template coding that also uses this model.
This applies in particular to function imports. Therefore, use method invokeActions of the extension API
to call function imports.

● UI Model
Each view has its own model attached that has the name ui. This model can be used in view and controller
extensions for read purposes.
This model contains the following properties, all of which have Boolean values:
○ enabled: Indicates whether active UI elements (such as buttons) should be enabled.
○ editable: Indicates whether input fields or similar UI elements should be in an editable state.
○ createMode: Indicates whether the UI displays an entity that is about to be created (no active version

exists yet).

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1587

Note that it is also possible to register changes to these properties. However, the logic that determines at
which point in time these properties are set and reset can still be changed.

 Caution
It is strictly forbidden to perform any change operations on the properties of the UI model.

● SAP Fiori Elements Private Model
Additional model that is attached to each view that contains properties used for internal purposes within
the templates.

 Caution
It is strictly forbidden to access this model in any way. Do not access any model other than the default
model and the ui model unless you have attached it to the ManagedObject yourself.

● Application-Specific Models
You may want to define your own JSON model and attach it to UI elements. You can do this easily if the
model is attached to a UI element that exists only within the scope of an extension. However, use models
that are attached to a higher level (for example, to the whole view) only if absolutely necessary. In this case,
you should use a name containing your own namespace to clearly separate this model from models
defined by other parts of the framework.

Using the ExtensionAPI

This API consists of several elements that are described below. It can be used for the analytical list page, list
report, and object page.

API Methods

When coding the implementation of an extension hook or an event handler used in a view extension, you can
use the public methods of sap.ui.core.mvc.Controller. For information about using standard SAPUI5
programming APIs, see the relevant section above.

You can also access a service provided by the template framework. From the controller, you can access these
services through <YourController>.extensionAPI.

This gets you an object that is specific to the template you are currently enhancing, as shown in the examples
below:

Template Instance

List Report sap.suite.ui.generic.template.ListReport.extensionAPI.Exten
sionAPI

Object Page sap.suite.ui.generic.template.ObjectPage.extensionAPI.Exten
sionAPI

1588 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Template Instance

Analytical List Page sap.suite.ui.generic.template.AnalyticalListPage.extensionA
PI.ExtensionAPI

 Note
Do not rely on the names of these classes in your coding, as they can still be changed. However, the set of
methods provided by these objects will only be extended in a compatible way.

For more information, see ExtensionAPI, ExtensionAPI for list report extensions and ExtensionAPI for object
page extensions.

Any other methods or properties of the controller (in particular any components whose names start with ‘_’)
should be considered private and therefore not be used.

 Caution
Do not create any instances of classes in the namespace sap.suite.ui.generic.template. This
namespace is not intended for public use.

 Sample Code

/* * Assumed use case: When the price is changed to a critical value (more than
1000), an email should be generated and sent.
 * This should not happen for changes to the draft but only after activation
has been successfully processed in the
 * back-end system.
 */

 (function() {
 "use strict";

 function onAfterActivate(oEvent) {
 /*
 * AfterActivate event is raised at the end of front-end processing
for activation. The object handed into the
 * handler contains a promise that is resolved after a successful
response from the back-end system.
 */
 oEvent.activationPromise.then(function(oResponse) {
 if (oResponse.data.Price > 1000) {
 sap.m.URLHelper.triggerEmail(null, "critical price change",
"changed price of " + oResponse.data.Product_Text
 + " to " + oResponse.data.Price + " " + oResponse.data.Currency);
 }
 }); }

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1589

https://sapui5.hana.ondemand.com/#/api/sap.suite.ui.generic.template.extensionAPI.extensionAPI
https://sapui5.hana.ondemand.com/#/api/sap.suite.ui.generic.template.ListReport.extensionAPI.ExtensionAPI
https://sapui5.hana.ondemand.com/#/api/sap.suite.ui.generic.template.ObjectPage.extensionAPI.ExtensionAPI
https://sapui5.hana.ondemand.com/#/api/sap.suite.ui.generic.template.ObjectPage.extensionAPI.ExtensionAPI

Using the SecuredExecution Method

The API for developers of extensions for SAP Fiori elements provides the securedExecution method that can
be used for various purposes.

Use the securedExecution method whenever one of the following operations should be performed by
extension coding:

● An asynchronous operation
● An operation that needs to be synchronized with other operations that are potentially triggered by the user
● An operation that could result in losing the data entered by the user. Note that this is only relevant in non-

draft scenarios.
● Displaying custom messages to the user, as described in Adding Custom Messages [page 1590]
● Changing the title of the message popup after a quick action has been performed by the system. For

examples, see Adding Custom Messages [page 1590]. For more information, see the API Reference for
securedExecution.

The function that is to be executed must be encapsulated in a fnFunction function. In most use cases, the
operation performed by this method is executed asynchronously. Therefore, fnFunction is to return a
Promise that indicates that the operation has finished.

 Note
fnFunction must not perform any user interactions.

Depending on the state of the user interaction, fnFunction may or may not be executed. For example,
fnFunction is not executed if a user has entered data before the operation starts. The user cancels the
operation in the dataloss confirmation dialog and would lose the entered data. Note that the
securedExecution method also returns a Promise. This Promise is rejected if fnFunction is not executed
for any reason. If fnFunction is executed, the Promise returned by securedExecution behaves like the
Promise returned by fnFunction.

As a consequence, if you need data to be returned by fnFunction, you should pass this data to the Promise
returned by fnFunction.

 Note
In most cases, it is not necessary to return data from within fnFunction, since you can also perform the
evaluation in fnFunction. However, if the code that handles this data is used for a user interaction, this is
not possible due to the restriction explained above.

For more information, see the API Reference for securedExecution.

Adding Custom Messages

You can use the securedExecution method from the API for developers of template extensions to add and
display custom messages.

This concept for message handling is based on the SAPUI5 MessageManager. For more information, see the
API Reference for MessageManager.

1590 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.suite.ui.generic.template.ListReport.extensionAPI.ExtensionAPI/methods/securedExecution
https://sapui5.hana.ondemand.com/#/api/sap.suite.ui.generic.template.ListReport.extensionAPI.ExtensionAPI/methods/securedExecution
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.message.MessageManager.html

When a busy session starts, all transient messages that are still in the MessageManager are removed
automatically since the system assumes that they belong to previous user interaction.

When the busy session ends, all transient messages that have been collected by the MessageManager are
automatically displayed to the user in a well-defined way, based on the severity of the message. This applies to
(transient) messages that have been pushed into the MessageManager automatically (for example, because
they come from the OData model). This also applies to transient messages that are pushed to the
MessageManager explicitly by way of application coding. See the sample coding below for more details:

 Sample Code

onCustomButtonPressed: function(oEvent){ var oSource = oEvent.getSource();
 var oModel = oSource.getModel();
 var sBindingPath = ...; // binding path to retrieve some information
 var fnFunction = function(){
 return new Promise(function(fnResolve, fnReject){
 oModel.read(sBindingPath, {
 success: function(oResponse){
 var oMessage = new sap.ui.core.message.Message({
 message: "We have received the following response: " + oResponse,
 persistent: true, // make message transient
 type: sap.ui.core.MessageType.Success
 });
 var oMessageManager = sap.ui.getCore().getMessageManager();
 oMessageManager.addMessages(oMessage);
 fnResolve();
 },
 error: fnReject
 });
 };
 var mParameters = {
 "sActionLabel": oEvent.getSource().getText() // or "Your custom text"
 };
 this.extensionAPI.securedExecution(fnFunction, mParameters); }

You can use this option for sending messages without performing an asynchronous operation. If you do, the
busy session is stopped immediately after the start. The only visible consequence of the busy session is the
display of all transient messages that have been pushed to the MessageManager within this session.

 Note
The sample code above shows that a message is marked as transient, by setting the attribute persistent
to true. This attribute describes the lifetime of this message from the perspective of the SAP UI5
MessageManager. The lifecycle of transient messages is not relevant to the MessageManager. This means
that they are persisted until another agent deletes them from the MessageManager. The SAP Fiori
elements framework triggers the deletions, which effectively limits the lifetime of these messages.

The lifecycle of messages with the attribute persistent : false is controlled by the MessageManager.
This kind of message is automatically removed when the entity this message has been bound to is reloaded
from the backend.

The sActionLabel parameter is used to show a custom title for the message popup which is displayed if
multiple messages come from the backend. The default title is Messages. For a single transient info
message, sActionLabel has no effect, since a message toast is shown.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1591

For more information on the securedExecution method, see Using the SecuredExecution Method [page
1590] and the API Reference for securedExecution.

For general information on messages, see Using Messages [page 1610].

Adapting Transient Messages that Come from the Backend

You can use an extension point to adapt transient messages that come from the backend system for the list
report and object page as well as for the analytical list page.

 Caution
Use app extensions with caution and only if you cannot produce the required behavior by other means,
such as manifest settings or annotations. To correctly integrate your app extension coding with SAP Fiori
elements, use only the extensionAPI of SAP Fiori elements. For more information, see Using the
ExtensionAPI [page 1588].

After you've created an app extension, its display (for example, control placing, CSS) and system behavior
(for example, model and binding usage, busy handling) of the app extension lies within the application's
responsibility. SAP Fiori elements provides support only for the official extensionAPI functions. Don't
access or manipulate SAP Fiori elements' internal coding.

The extension point (adaptTransientMessageExtension) is hit always before the transient message is
displayed. If your app uses the flexible column layout, the extension point of the list report, the extension point
of the object page, and the analytical list page extension point are hit. Note that you have to ensure that the
message model has been adapted for list report, object page, and analytical list page.

Perform these steps:

1. Register your extension in the manifest.json, as follows:

"extends": { "extensions": {
 ...
 "sap.ui.controllerExtensions": {
 ...
 "sap.suite.ui.generic.template.ListReport.view.ListReport": {
 ...
 "controllerName": "STTA_MP.ext.controller.ListReportExtension",
 ...
 }
 }
 ...

2. Implement your controller extension.
You have to implement the adaptTransientMessageExtension function within the list report controller
extension, the object page controller extension, or the analytical list page extension, respectively.

adaptTransientMessageExtension:function() {
if(sap.ui.getCore().getMessageManager().getMessageModel().oData.length) {
 var msgText = "This message has beed added through List
Extension" ;
 var consolidatedMessage = new sap.ui.core.message.Message({
 message: msgText,
 type: sap.ui.core.MessageType.Information,

1592 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.suite.ui.generic.template.ListReport.extensionAPI.ExtensionAPI/methods/securedExecution

 target: '',
 persistent: true
 });

sap.ui.getCore().getMessageManager().addMessages(consolidatedMessage);
 }
}

 Note
The extension point is only available for transient messages. Do not make any changes to state messages
from the message model (sap.ui.getCore().getMessageManager().getMessageModel()).

Do not alter the target of any message from the message model as this may cause the message model
services to stop working.

Extending the Bookmark Function to Save Static Tiles to the
SAP Fiori Launchpad

You can extend the standard bookmark function by adding an extension point to the list report or analytical list
page controller extension. Static tiles are then saved to the SAP Fiori launchpad instead of dynamic tiles.

Users can use the bookmark function via the Share button to make list reports, object pages, or analytical list
pages directly accessible from the SAP Fiori launchpad while preserving all filter values they have set before.
The bookmark is added as a tile to the SAP Fiori launchpad.

For the list report and the analytical list page, per default, a dynamic tile is created. For the object page, a static
tile is created. Dynamic tiles fetch data from a web service which may result in the following issues:

● They can access a different service URL and thus retrieve a wrong value
● They might fetch data that does not correctly represent the tile’s purpose
● They might be inconsistent if the original tile is static

If you want to enforce the creation of a static tile, add the extension point onSaveAsTileExtension to the list
report or analytical list page controller extension.

 Note
This extension point can only be used for tiles that are added to the launchpad using the bookmark
function.

As a prerequisite, you have already added the controller extension to the manifest.json of your app.

Overwrite the value in the serviceUrl field of the relevant oShareInfo object that can either be an empty
string to enforce usage of a static tile, or any other service URL string, as follows:

 Sample Code

sap.ui.controller("ListReportExtension", { onSaveAsTileExtension: function(oShareInfo) {
 oShareInfo.serviceUrl = ""; // Force static tile
 }
});

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1593

Modifying Startup Parameters Using an Extension

You can modify startup parameters using an extension method.

You can use the extension method modifyStartupExtension to:

● Modify selection variants: You can modify the filter context while navigating from the SAP Fiori launchpad
or from another application to the list report, the overview page, or the analytical list page.
○ List report

A source app may provide parameters which need to be modified so that they can be applied to the
SmartFilterBar in the target app. For example, the source app provides the parameters FiscalYear
and FiscalPeriod, but the target app only understands the FiscalYearPeriod parameter. This
means that the two source app parameters need to be combined into one parameter,
FiscalYearPeriod, in the target app before the paramaters can be applied to the SmartFilterBar.
In some cases, parameters need to be added, deleted, or renamed.

○ Analytical list page and overview page
The filter context is passed to the application using the standard SelectionVariant annotation
format.
In addition, the filter context may contain:
○ Values from a default variant (such as DisplayCurrency)
○ SAP Fiori launchpad user default values
○ CDS default values that come from Common.FilterDefaultValue

 Note
The analytical list page ensures that the SelectionVariant passed to the application via the
extension is filled with the filter context that would otherwise be set to the filter bar. This filter
context can have different values based on the scenario:
○ External navigation to the analytical list page: The SelectionVariant will have the navigation

context passed by the source application. It could have the DisplayCurrency value set in the
SAP Fiori launchpad user default settings.

○ Navigation to the analytical list page via SAP Fiori launchpad tile: If a default variant is
maintained, the SelectionVariant has values from the default variant. If not, it has the
values from the SAP Fiori launchpad user default values. If these values are also missing, the
SelectionVariant has the CDS defaults that come from the
Common.FilterDefaultValue.

● Dynamically choosing a particular tab when starting a list report with multiple views and multiple tables
This can be relevant, for example, when launching an app from the SAP Fiori launchpad or during external
navigation to a list report with multiple views and multible tables. For example, when navigating from an
overview page, depending on the card clicked, a particular tab should be selected in the list report.

The object oStartupObject passed in this method has the following properties:

● selectionVariant: Contains the selection variant object that is passed from source app. You can modify
this object in the target app.

● urlParameters: Is used to decide which tab is to be loaded dynamically. The data in urlParameters is
used only as a deciding factor for dynamically selecting a tab (relevant for list report only).
For example, if urlParameters contains the sales order status "paid", the system chooses the tab that
contains the sales order status "paid" in the multiple views application.

1594 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

● selectedQuickVariantSelectionKey: Optional string that is the key provided while creating the tabs
in the manifest. By setting this value, the default tab is set (relevant for list report only).

 Note
The call to the extension point is performed only if there's initial navigation to the analytical list page. It is
not triggered at other times (for example, when the user changes variants or when the user makes changes
to selections in the filter bar, or when navigating back/ refreshing an analytical list page app that has an
iappState.

Code Samples

List Report
To pass the filter context during navigation, overwrite the modifyStartupExtension extension method in the
list report.

 Sample Code
 modifyStartupExtension: function(oStartupObject) {
 oSelectionVariant = oStartupObject.selectionVariant;
 if (oSelectionVariant) {
 oSelectionVariant.removeSelectOption("TaxAmount");
 oSelectionVariant.addSelectOption("Product", "I", "EQ",
"EPM-2365436");
 }
 oStartupObject.selectedQuickVariantSelectionKey = "_tab2";
 }

Analytical List Page
To pass the filter context during navigation, define the oStartupObject object in your application
extension.controller.js file as shown here:

 Sample Code

modifyStartupExtension: function (oStartupObject) { var oSelectionVariant = oStartupObject.selectionVariant;
 if (oSelectionVariant.getSelectOption("CustomerCountry")
&oSelectionVariant.getSelectOption("CustomerCountry")["0"].Low === "AR") {
 oSelectionVariant.addSelectOption("WBSElement", "I", "EQ", "BLUE
PRINT VALIDATION");
 oSelectionVariant.addSelectOption("CompanyCode", "I", "EQ", "EASI");
 }
}

Overview Page
To pass the filter context during navigation, define the oCustomSelectionVariant object in your application
extension.controller.js file as shown here:

 Sample Code

modifyStartupExtension: function (oCustomSelectionVariant) {

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1595

 oCustomSelectionVariant.addSelectOption("SupplierName", "I", "EQ",
"Talpa");
}

Extending Delivered Apps Using Adaptation Extensions

You can extend delivered apps based on SAP Fiori elements by using the SAPUI5 Visual Editor.

Context

You can implement extensibility functions as part of a UI adaptation project by using the SAPUI5 Visual Editor.
The adaptation project references the applications delivered by SAP as base or parent applications.

 Note
This procedure is relevant only for list reports, object pages, overview pages, and analytical list pages.

The flexible column layout is not supported by the SAPUI5 Visual Editor.

You can use adaptation extensions for these extensibility points:

● List report and analytical list page
○ Add additional fields to the smart filter bar
○ Add additional columns to tables
○ Add additional table toolbar buttons and extension controller logic
○ Override extensibility functions

○ onInitSmartFilterBar
○ provideExtensionAppStateData
○ restoreExtensionAppStateData
○ ensureFieldsForSelect
○ addFilters

1596 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Figure 253: Adaptation Extension Options in the List Report
● Object page

○ Global actions
○ Additional sections
○ Add additional fields to the header facet
○ Add additional fields and field groups to forms
○ Override extensibility functions

○ provideExtensionStateData
○ restoreExtensionStateData
○ ensureFieldsForSelect
○ addFilters

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1597

Figure 254: Adaptation Extension Options on the Object Page
● Overview page

○ Add additional fields to the smart filter bar
○ Add global actions to filter bar
○ Add additional extensions controller logic
○ Add cards
○ Clone cards
○ Edit cards
○ Override extensibility functions

○ provideExtensionAppStateData
○ restoreExtensionAppStateData
○ addFilters
○ provideStartupExtension
○ provideExtensionNavigation
○ provideCustomActionPress
○ provideCustomParameter

In SAP Web IDE, here's what you do:

Procedure

1. Choose File New Adaptation Project .
2. Enter the project name and the application title and choose Next.
3. Select the system and the base application. Make sure you deselect Enable Safe Mode and choose Finish.

The system generates the adaptation project in your workspace.

1598 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

4. Right-click your adaptation project and choose SAPUI5 Visual Editor.

The system starts the editor. You can make your adaptations on the Edit tab page. For an example, see
Adaptation Extension Example: Adding a Button to the Table Toolbar in the List Report [page 1856].

For information about adapting the UI in the SAP Web IDE, choose Help Documentation Developing
Developing Web Applications SAPUI5 Visual Editor .

Extending Apps Using a Canvas Page

You can embed content into a canvas page within an app.

A canvas page is an empty custom page in a SAP Fiori elements-based app. The content needs to be provided
by an embedded implementing component.

The corresponding section in the manifest looks like this:

 Sample Code
 ...
 "sap.ui.generic.app": {
 ...
 "pages": {
 "thePageName": {
 "component": {
 "name": "sap.suite.ui.generic.template.Canvas",
 "settings": {
 }
 },
 "implementingComponent": {
 "componentName": "theImplementingComponentQualifiedName",
 "settings": {
 ...
 }
 }
 }
 },
 ...
}
...

You can use the componentUsage property instead of componentName to faciliate a component usage that
has been defined in the corresponding section of the manifest.

There are two settings sections:

● The settings section placed in the component section contains properties which are specific to the canvas
component.

● The settings section placed in the implementingComponent section can be used to define a data binding
between public properties of the embedding component and context information. This corresponds to
embedding a reuse component on an object page. See Including Reuse Components on an Object Page
[page 1721].

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1599

https://sapui5.hana.ondemand.com/#/api/sap.ui.core.Component/methods/createComponent

For example, the following snippet allows the implementing component to use the addFooterBarToPage
method to add the standard footer bar to the canvas page:

 Sample Code
 ...
"sap.ui.generic.app": {
 ...
 "pages": {
 "thePageName": {
 "component": {
 "name": "sap.suite.ui.generic.template.Canvas",
 "settings": {
 "requiredControls": {
 "footerBar": true
 }
 }
 },
 "implementingComponent": {
 "componentName": "theImplementingComponentQualifiedName",
 "settings": {
 ...
 }
 }
 }
 },
 ...
}
...

If the canvas page is to include flexible column action buttons (via getFlexibleColumnLayoutActionButtons),
replace the footerBar setting by flexibleColumnLayoutActions in the snippet above. You can also use
both controls.

Navigating to a Canvas Page

To implement navigation to a canvas page, you need to add an additional section to the manifest:

 Sample Code
 ...
"sap.ui.generic.app": {
 ...
 "pages": {
 "thePageName": {
 "component": {
 "name": "sap.suite.ui.generic.template.Canvas",
 "settings": {
 "requiredControls": {
 "footerBar": true
 }
 }
 },
 "implementingComponent": {
 "componentName": "theImplementingComponentQualifiedName",
 "settings": {
 ...
 }
 },

1600 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.suite.ui.generic.template.Canvas.extensionAPI.ExtensionAPI/methods/addFooterBarToPage
https://sapui5.hana.ondemand.com/#/api/sap.suite.ui.generic.template.Canvas.extensionAPI.ExtensionAPI/methods/getFlexibleColumnLayoutActionButtons

 "routingSpec": {
 "noOData": true,
 "noKey": true,
 "routeName": "theRouteName"
 }
 }
 },
 ...
}
...

theRouteName is used to build a route name within the app. Therfore, the same name must not be used twice
within an app. Additionally, the name of this route must not be identical with the name of any entity set or any
navigation property within the OData service on which the app is based. Below, finde an exception from this
rule.

The routingSpec as defined above enables navigation to the canvas page. You must use the extension API to
trigger navigation, as shown in the following code snippet. Place this piece of code in an appropriate event
handler (for example, in the press-handler of a button) in the controller extension of the source page of the
navigation.

 Sample Code
 ...
var oApi = this.extensionAPI;
var oNavigationController = oApi.getNavigationController();
oNavigationController.navigateInternal("", { routeName:
"theRouteName" });
...

 Note
The instance of the extension API used for this purpose must belong to the parent page of the canvas page
the navigation leads to.

For example, the corresponding structure in the manifest might look like this:

 Sample Code
 ...
"sap.ui.generic.app": {
...
 "pages": {
 "theParentPageName": {
 "entitySet": "theMainEntitySet",
 "component": {
 "name": "sap.suite.ui.generic.template.ObjectPage",
 "settings": {
 ...
 }
 }
 "pages": {
 "thePageName": {
 "component": {
 "name":
"sap.suite.ui.generic.template.Canvas",
 "settings": {
 ...
 }
 },

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1601

 "implementingComponent": {
 "componentName":
"theImplementingComponentQualifiedName",
 "settings": {
 ...
 }
 },
 "routingSpec": {
 "noOData": true,
 "noKey": true,
 "routeName": "theRouteName"
 }
 },
 ...
 }
 },
 ...
 }
...
}

In this case, only the the extension API that belongs to the theParentPageName page can be used to navigate
to the thePageName canvas page. Note that the context of the parent page is passed to the canvas page in this
scenario. In this example, this means that controls that are embedded in the
theImplementingComponentQualifiedName component can be directly bound to properties of
theMainEntitySet. This context is also passed to the standard lifecycle methods stStartand stRefresh
of the theImplementingComponentQualifiedName component.

Navigating to a Canvas Page with an Additional Key
The navigation techniques described above enable you to add a canvas page that shows additional information
for the same object as its parent page.

If you want the canvas page to display information that depends on what a user has chosen on the parent page,
you need to set the noKey parameter in the routingSpec to false. The manifest of the app then looks like this:

 Sample Code
 ...
"sap.ui.generic.app": {
...
 "pages": {
 "theParentPageName": {
 "entitySet": "theMainEntitySet",
 "component": {
 "name": "sap.suite.ui.generic.template.ObjectPage",
 "settings": {
 ...
 }
 }
 "pages": {
 "thePageName": {
 "component": {
 "name":
"sap.suite.ui.generic.template.Canvas",
 "settings": {
 ...
 }
 },
 "implementingComponent": {
 "componentName":
"theImplementingComponentQualifiedName",
 "settings": {

1602 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 ...
 }
 },
 "routingSpec": {
 "noOData": true,
 "noKey": false,
 "routeName": "theRouteName"
 }
 },
 ...
 }
 },
 ...
 }
...
}

In this case, the information about the users' choice can be passed as a parameter in the navigation.

You can place the code in a suitable event handler, as described above. Alternatively, if the canvas page is the
target of the standard navigation provided in one of the tables displayed on the source page, the
onListNavigationExtension (list report, object page) function should be used to place this code.

In this alternative scenario, choose the value of the routeName manifest property carefully, based on the
following decision options:

● The standard object page for the corresponding entity is still in place. This means that the standard
navigation is only redirected to the canvas page on a case-by-case basis. In this case, the normal rules for
choosing theRouteName apply.

● The standard object page for the corresponding entity set is not there. In this case, choose the name of the
corresponding entity set as the theRouteName. This overrules the guideline that theRouteName should
be different from all entity set names. If there is more than one canvas page (and the correct one is chosen
on a case-by-case basis), only one value of the routeName property should be set to the name of the entity
set.

In all scenarios, the code for executing the navigation should look like this:

 Sample Code
 ...
var oApi = this.extensionAPI;
var oNavigationController = oApi.getNavigationController();
var sUsersChoice = ... // do whatever is necessary to determine the users
choice
oNavigationController.navigateInternal(sUsersChoice, { routeName:
"theRouteName" });
...

Note that only one string can be passed to the canvas page in this fashion. If the information to be passed to
the canvas page is complex, the application needs to encode this information in one string.

The following piece of code shows how the information about the user's choice can be evaluated in the
implementing component of the canvas page:

 Sample Code
 ...
 stRefresh: function(oModel, oBindingContext, oExtensionAPI) {
 var oNavigationController = oExtensionAPI.getNavigationController();

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1603

 var aKeys = oNavigationController.getCurrentKeys();
 var sUserChoice = aKeys[aKeys.length - 1];
 var oComponentModel = this.getComponentModel();
 oComponentModel.setProperty("/UsersChoice", sUserChoice);
}
...

Related Information

Developing Reuse Components [page 1726]

Adapting the UI

You can extend and customize your SAP Fiori application using the SAPUI5 Visual Editor in the SAP Web IDE.

For information about the features that you can adapt, see:

● Adapting the UI: List Report and Object Page [page 1860]
● Creating a Binding Change [page 1864]
● Adapting the UI: Analytical List Page [page 1925]

 Note
Adapt the UI only for the use cases described here. Otherwise, issues regarding consistency, compatibility,
or other problems may occur immediately or in future releases.

For information about adapting the UI, in the SAP Web IDE, choose Help Documentation Developing
Developing Web Applications SAPUI5 Visual Editor .

General Concepts and Configuration

Related Information

Actions [page 1605]
Using Messages [page 1610]
Enabling the Flexible Column Layout [page 1611]
Adapting the Application Header [page 1615]
Managing Variants [page 1616]
Responsiveness Options: Example [page 1617]
Value Help as a Dropdown List [page 1617]

1604 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Using Images, Initials, and Icons [page 1618]
Keyboard Shortcuts [page 1619]
Initial Expansion Level for Tables in List Reports & Analytical List Pages [page 1620]

Actions

You can use generic actions provided by SAP Fiori elements, and you can implement application-specific
actions using annotations or extension points.

Actions either trigger an interaction with the back end, calling an OData service, or they trigger navigation.
Depending on where you want to place an action, and how you want to use it, specific attributes, prerequisites,
and guidelines apply. These are described below and in the floorplan-specific sections. For details about
navigation, see Configuring Navigation [page 1563].

 Note
The overview page only supports micro actions, for example, actions in the quick view cards that open
when you click the right-hand side of the stack card. For more information, see Quick View Cards [page
1974] and Custom Actions [page 2025].

Overview

Annotation-based or
custom action?

Context-dependent or
independent? Floorplan Link

Global action Custom action Context-independent ● List report
● Object page
● Overview page
● Analytical list

page

Adding Custom Ac
tions Using Extension
Points [page 1831]
(List report and object
page)

Custom Actions [page
2025] (Overview page)

Defining Custom Ac
tions [page 1923] (An
alytical list page)

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1605

Annotation-based or
custom action?

Context-dependent or
independent? Floorplan Link

Actions in table toolbar ● Annotation-based
● Custom action

● Context-depend
ent

● Context-inde
pendent

● List report
● Object page
● Analytical list

page

Actions in the List Re
port [page 1641]

Enabling Actions in the
List Report [page
1642]

Enabling Action But
tons in Tables on the
Object Page [page
1771]

Table-Only View [page
1902] (Analytical list
page)

Defining Custom Ac
tions [page 1923] (An
alytical list page)

Actions on the object
page

● Annotation-based
● Custom action

● Context-depend
ent

● Context-inde
pendent

Object page Displaying Actions on
the Object Page [page
1664]

Enabling Actions in Ob
ject Page Header [page
1693]

Enabling Action But
tons in Tables on the
Object Page [page
1771]

Actions in forms in
sections on the object
page

● Annotation-based
● Custom action

Context-independent Object page Adding Action Buttons
to Forms in Sections
[page 1710]

Adding Custom Ac
tions Using Extension
Points [page 1831]

Actions in smart chart
toolbar

Annotation-based Context-independent Object page Defining Actions in
Smart Chart Toolbar
[page 1707]

Actions in chart tool
bar

Using manifest set
tings

Context-dependent Analytical list page Defining Custom Ac
tions [page 1923]

Chart-Only View [page
1910]

1606 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Annotation-based or
custom action?

Context-dependent or
independent? Floorplan Link

Line item actions Annotation-based Context-dependent ● List report
● Object page
● Analytical list

page

Adding Line Item Ac
tions in Tables [page
1743] (List report, ob
ject page)

Table-Only View [page
1902] (Analytical list
page)

Determining actions ● Annotation-based
● Custom action

● Context-depend
ent

● Context-inde
pendent

● List report
● Object page
● Analytical list

page

Adding Determining
Actions [page 1778]
(List report, object
page)

Adding Custom Ac
tions Using Extension
Points [page 1831]
(List report, object
page)

Table-Only View [page
1902] (Analytical list
page)

Actions in quick view
cards

Annotation-based Context-dependent Overview page Quick View Cards
[page 1974]

Generic and Application-Specific Actions

Generic Actions
In the list report and on the object page, the standard actions Create (+ button), Delete, Edit, as well as actions
triggering external navigation, are provided by SAP Fiori elements. You can enable or disable these actions. For
more information, see Enabling Actions in the List Report [page 1642], Enabling Action Buttons in Tables on the
Object Page [page 1771], and Enabling Actions in Object Page Header [page 1693].

App-Specific Actions
You can implement your own actions using annotations or extension points. These types of actions are
available:

● Annotation-based actions
○ Actions that require user confirmation, for example, those for critical actions that have severe

consequences. The system opens a dialog in which the user has to confirm the action.
○ Actions that require additional user input, for example, an approval comment. The system opens a

dialog with one or more entry elements in which the user enters the required data. The system can
pre-fill data, if applicable.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1607

○ Actions that require none of the above. The system triggers the action.
Example: Adding Line Item Actions in Tables [page 1743]

● Actions using manifest settings
For the analytical list page, you can define actions in the chart toolbar. For more information, see Chart-
Only View [page 1910] and Defining Custom Actions [page 1923].

● Custom actions
If your use case requires actions that cannot be implemented using annotations, you can use extension
points to add actions to your app. For more information, see Adding Custom Actions Using Extension
Points [page 1831], .

Actions by Place on the UI

Global Actions

Global actions can be implemented by using an extension point. They refer to the whole page, for example,
Display Log. They are placed at the top of the page.

For more information, see:

● Adding Custom Actions Using Extension Points [page 1831] (List report and object page)
● Custom Actions [page 2025] (Overview page)
● Defining Custom Actions [page 1923] (Analytical list page)

Line Item Actions

Line item actions in tables are annotation-based. They are displayed in a column (specified in the annotation)
in the individual line item. When the user triggers the action, it affects only the individual line item.

For more information, see Adding Line Item Actions in Tables [page 1743] (list report and object page) and
Table-Only View [page 1902] (Analytical list page).

Actions in the Table Toolbar

You can display actions in the toolbar to allow users to perform an action for one or more lines in the table. For
more information, see:

● Enabling Actions in the List Report [page 1642]
● Enabling Action Buttons in Tables on the Object Page [page 1771]
● Table-Only View [page 1902] (Analytical list page)
● Defining Custom Actions [page 1923] (Analytical list page)

Determining Actions

Determining actions are placed in the footer of the app. They are used to trigger actions directly using the
context of the table in the list report, or the context of the page in the object page. See also Adding Determining
Actions [page 1778] (list report, object page) and Table-Only View [page 1902] (analytical list page).

Floorplan-Specific Actions

Depending on the floorplan, you have various ways to define, enable, and display actions. For more information,
see Actions in the List Report [page 1641] and Displaying Actions on the Object Page [page 1664].

1608 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Context-Independent and Context-Dependent Actions

Both actions calling OData FunctionImports (UI.DataFieldForAction) and actions for external navigation
(UI.DataFieldForIntentBasedNavigation) can be either context-independent or context-dependent.
For context-dependent actions, users have to select a line item in a table. Only then are the buttons that
visualize these actions enabled. However, they are always visible. For context-independent actions, users do
not have to select a line item in a table. Buttons visualizing context-independent actions are always enabled.

Actions calling OData FunctionImports
Actions calling OData FunctionImports can be added via a UI.DataFieldForAction annotation.

 Sample Code

<Record Type="UI.DataFieldForAction"> <PropertyValue Property="Label" String="My Action"/>
 <PropertyValue Property="Action"
String="STTA_SALES_ORDER_WD_20_SRV.STTA_SALES_ORDER_WD_20_SRV_Entities/
C_STTA_SalesOrder_WD_20My_FunctionImport"/>
 <PropertyValue Property="InvocationGrouping"
EnumMember="UI.OperationGroupingType/Isolated"/>
</Record>

Context-dependent FunctionImports provide a sap:action-for annotation defining the entity type for the
required context.

 Sample Code

<FunctionImport Name="C_STTA_SalesOrder_WD_20Setdisabledstatus" ReturnType="STTA_SALES_ORDER_WD_20_SRV.C_STTA_SalesOrder_WD_20Type"
EntitySet="C_STTA_SalesOrder_WD_20" m:HttpMethod="POST" sap:action-
for="STTA_SALES_ORDER_WD_20_SRV.C_STTA_SalesOrder_WD_20Type" sap:applicable-path="Setdisabledstatus_ac">

Context-independent FunctionImports do not provide a sap:action-for annotation.

 Sample Code
s

<FunctionImport Name="C_STTA_SalesOrder_WD_20Create_simple" ReturnType="STTA_SALES_ORDER_WD_20_SRV.C_STTA_SalesOrder_WD_20Type" EntitySet="C_STTA_SalesOrder_WD_20" m:HttpMethod="POST" />

Context-independent actions calling OData FunctionImports can be placed in the table and smart chart
toolbars of the list report and the object page, as determining actions in the list report or in the object page
header.

 Note
● If you use context-free actions, you need to label them in a way that makes it clear to the app user that

the action is context-free.
● SAP Fiori elements currently only supports context-independent and context-dependent actions

without input parameters.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1609

● You can also call function imports without input parameters using multi-selection in tables. However,
this is not possible if function imports have input parameters.

Context-independent actions for external navigation
The following coding sample shows the annotations for a context -independent action for external navigation
(UI.DataFieldForIntentBasedNavigation) (Property="RequiresContext" Bool="false"):

 Sample Code

<Record Type="UI.DataFieldForIntentBasedNavigation" > <PropertyValue Property="Label" String="Navigation Tester with
RequiresContext"/>
 <PropertyValue Property="SemanticObject" String="Object"/>
 <PropertyValue Property="Action" String="Action"/>
 <PropertyValue Property="RequiresContext" Boolean="false"/> </Record>

Context-dependent actions for external navigation
The following coding sample shows the annotations for a context-dependent action for external navigation
(UI.DataFieldForIntentBasedNavigation).

 Sample Code

<Record Type="UI.DataFieldForIntentBasedNavigation" > <PropertyValue Property="Label" String="Navigation Tester with
RequiresContext"/>
 <PropertyValue Property="SemanticObject" String="Object"/>
 <PropertyValue Property="Action" String="Action"/>
 <PropertyValue Property="RequiresContext" Boolean="true"/> </Record>

Related Information

Adding Confirmation Popovers for Actions [page 1782]
Using Action Control for Context-Dependent Actions [page 1778]
Adding Action-Specific Messages to Confirmation Dialog Boxes [page 1782]
Configuring Navigation [page 1563]

Using Messages

Two types of messages are used in SAP Fiori elements (List report / object page and analytical list page only):

● Transient messages
Messages that refer to the current function, for example, "Document can't be printed as printer is not
available".

1610 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

The messages are only valid, and can be displayed, for a short period of time after the user has executed an
action or an operation. They are not saved to the database.

● State messages
Messages that refer to the state of an instance, for example, "Amount must not be negative".
These messages are displayed on the UI until the state of the related instance has been corrected, for
example, by changing the amount attribute to a positive value. The messages are displayed to the user and
also persisted in the back-end system.

By default, messages are handled as follows:

● General
○ After executing an action, all related transient messages are displayed in a dialog box. All new state

messages are shown in a message popover, together with the existing state messages.
○ Draft operations are handled like actions, for example, activate, prepare, or validate operations.

 Note
Avoid raising transient messages during prepare and validate operations. The user would be able to
see them in a dialog box and this UI behavior is not needed in edit mode.

○ If only one transient success message is raised, this is shown in a toast message. In all other cases, the
messages are shown in a dialog box.

● List report: Only transient messages are displayed, in a dialog box after an action has been executed
● Object page:

○ In display mode, only transient messages are displayed after an action has been executed.
○ In edit mode, all state messages related to the object are displayed in a popover message. The user can

open the message for the related object, for example, the displayed sales order. Messages for the
items are not displayed. The user has to navigate to the item. The popover also displays client
validation messages.

Enabling the Flexible Column Layout

The flexible column layout allows users to see more details on a page, and to expand and collapse the screen
areas, depending on their requirements.

The flexible column layout offers different layouts with up to three columns. Depending on which panel the user
is focused on, it can be expanded. The user can also switch between different layouts and enable full-screen
mode.

 Note
● For the overview page, this layout is not relevant.
● The analytical list page only supports the TwoColumnsBeginExpanded layout. For more information,

see also 2409984 .
● The flexible column layout can only be used in draft scenarios. In display-only, non-draft apps, you can

also use the flexible column layout.

To enable the flexible column layout in an app, create an entry in manifest.json, as follows:

"sap.ui.generic.app": {

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1611

http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/2409984

 "_version": "1.1.0",
 "settings": {
 "flexibleColumnLayout": {
 "defaultTwoColumnLayoutType": "TwoColumnsMidExpanded",
 "defaultThreeColumnLayoutType": "ThreeColumnsEndExpanded"
 }
 }, "pages": [...

 Note
For optimum readability, you can set the PopinLayout property to Block, GridLarge, or GridSmall. For
more information, see Adapting the UI: List Report and Object Page [page 1860].

Use the following attributes to create the column layout you want:

● defaultTwoColumnLayoutType: 2-column layout with these options:
○ TwoColumnsBeginExpanded

○ TwoColumnsMidExpanded

1612 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

● defaultThreeColumnLayoutType: 3-column layout with these options:
○ ThreeColumnsMidExpanded

○ ThreeColumnsEndExpanded

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1613

Users can expand and collapse the columns using the focus buttons. They can change to full-screen mode by
choosing the full-screen button.

Defining a Default Layout

For each page configured in the manifest you can define a default layout that is used when the page is opened.
You can use the defaultLayoutType property to do so. For example, you can use the
MidColumnFullScreen property value to open a page in full-screen mode. This overrides the layout which
has been defined in the global flexibleColumnLayout settings for the corresponding column. Note that this
is only relevant if different pages in the same column need different default layouts.

For an object page, you can define "defaultLayoutType": "OneColumn". By doing so, in the flexible column
layout, this object page moves to the first column. All other object pages that are below the first one in the
hierarchy move up accordingly. If they have the same setting, they also move to the first column.

1614 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Usually, this setting is made on the main object page. After navigating from the list report, the object page is
then displayed in full-screen mode, that is, the main object page replaces the list report. When navigating to an
item, the main object remains in the first column and the item is displayed in the second column.

Adapting the Application Header

If required, you can change the application header that is generated from the SAP Fiori launchpad.

List Report, Overview Page, and Analytical List Page

Figure 255: Application Header in List Report

To change the application header, in your project artifacts, change your app's i18n property file under webapp/
i18n/i18n.properties ->appTitle.

The title and description are set in the sap.app section in the manifest file, and the image or icon are set in the
sap.ui section under icons. Both the application title and the description should be translatable, that is, the
text property name should be specified in the application manifest surrounded by double curly brackets ({{). In
the icon property, you can set a URL to an sap-icon or a URL to an image.

 Sample Code

"sap.app": { ...
 "title": "{{app_title}}",
 "description": "{{app_description}}",
 ...
},
"sap.ui": {
 "icons": {
 "icon": "sap-icon://dimension",
 "favIcon": "favicon.ico"
 }
} ...

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1615

Object Page

Figure 256: Application Header on Object Page

To change the application header on the object page, change the @UI.headerInfo.typeName annotation.

Related Links

● For information about changing the table header in a list report, see Setting the Smart Table Header [page
1737].

● For information about changing object page titles and subtitles, see Adapting the Object Page Title and
Subtitle [page 1667].

Managing Variants

Lets you manage variants with different structures in the filter and content areas.

Context

The list report and the analytical list page provide variant management on page level and on control level.

Use page-level variant management to capture filter selection, filter mode, view mode, auto-hide icon state
(eye-icon), chart and table configuration (measures and dimensions), sort order, and grouping. The page level
variant is enabled by default.

Use control-level variant management to define separate variants for filters, charts, and table sections. Set
smartVariantManagement=false in the app-descriptor file to use control-level variant management. The
filter variant stores filter area selections and the filter mode. When you load the stored variant, both the filter
area selection and filter mode appear. It is not possible to:

● Turn off variant management for selected controls (filter, chart, or table area)
● Use control-level variant management and page-level variant management together

 Note
The SAPUI5 standard class sap.ui.comp.variants.VariantManagement supports and manages
variants.

1616 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Related Information

Configuring the Title Area [page 1872]
Creating Key Performance Indicator Tags [page 1873]
Choosing Filter Modes [page 1880]

Responsiveness Options: Example

When using SAP Fiori elements, you can make use of specific responsiveness options. For example, in pages
that have toolbars (such as list report tables, object page tables, and smart chart toolbars), the system
evaluates the com.sap.vocabularies.UI.v1.Importance for each field:

● Fields of high importance are rendered on a mobile phone.
● Fields of high or medium importance are shown on the tablet.
● Fields of high, medium, or low importance are shown on the desktop.

Value Help as a Dropdown List

If your value help contains a fixed number of values, a dropdown list will be rendered.

For more information on how value help annotations are set in CDS, search for UI Annotations in the
documentation of your SAP NetWeaver version on the SAP Help Portal at https://help.sap.com/viewer/p/
SAP_NETWEAVER.

If the entity set of a value help has a fairly stable number of instances, you can render an input field with a value
help and dropdown list box (sap.m.ComboBox and in cases of multi selection a sap.m.MultiComboBox)
using the metadata extension sap:semantics='fixed-values' on the entity set level and the sap:value-
list='fixed-values' on the property level.

In the following example the product category is implemented as a dropdown list box:

 Sample Code
$metadata

<EntityType Name="SMART_C_ProductType" sap:label="Product" sap:content-
version="1"> <Key>...</Key>
 ...
 <Property Name="ProductCategory" Type="Edm.String" Nullable="false"
MaxLength="40" sap:label="Category" sap:value-list="fixed-values" />
 ...
 <EntityContainer Name="SMART_PROD_MAN_Entities"
m:IsDefaultEntityContainer="true" sap:supported-formats="atom json xlsx">
 ...
 <EntitySet Name="SEPMRA_I_ProductCategory"
EntityType="SMART_PROD_MAN.SEPMRA_I_ProductCategoryType" sap:creatable="false" sap:updatable="false"
sap:deletable="false" sap:searchable="true" sap:content-version="1"
sap:semantics="fixed-values" />

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1617

https://help.sap.com/viewer/p/SAP_NETWEAVER
https://help.sap.com/viewer/p/SAP_NETWEAVER

This is the rendering result:

Figure 257: Product Category Values as Dropdown List Box

Using Images, Initials, and Icons

SAP Fiori elements supports the use of images, initials, and icons.

 Note
You can use the SAPUI5 Visual Editor to replace the default icon by any SAP icon.

The system follows this logic for choosing a display option for an object:

 Note
In the object page's header, the header image is an avatar control. By default, the avatar is rendered as a
square. If the avatar's source, initials, or icon isn't set or found, a fallback placeholder is displayed. The type
of placeholder depends on the shape of the avatar. If the avatar is circular, a person icon is shown. If the
avatar is a square, a product icon is shown.

1618 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Keyboard Shortcuts

SAP Fiori elements provides keyboard shortcuts for basic operations.

The table shows the available keyboard shortcuts.

Action
Shortcut (Micro
soft Windows)

Shortcut (Mac
OS) Prerequisite

Relevant Floor
plans Result

Create Ctrl + Enter CMD + Enter The focus should
be on the table.

List report

Object page

The same as when
a user chooses
Create.

Delete table entry Ctrl + D Cmd + D The focus should
be set on the table.

List report

Object page

The same as when
a user chooses
Delete in a table

 Note
This requires a
selection for
multiple dele
tions or a fo
cus position
for deleting
single items.

Delete page level Ctrl + Del CMD + fn +
delete (use ← if

there is no delete
key

The focus should
be set anywhere
on the object page.

Object page The same as when
a user chooses
Delete on the ob
ject page

Edit page level Ctrl + E CMD + E The focus should
be set anywhere
on the object page.

Object page The same as when
a user chooses
Edit on the object
page

Save page level Ctrl + S CMD + S The page should
be in edit mode.
The focus should
be set anywhere
on the object page.

Object page The same as when
a user chooses
Save on the object
page

Share Shift + Ctrl
+ S

Shift + CMD
+ S

The focus should
be set anywhere
on the list report
or object page.

Analytical list page

List report

Object page

If the focus is on
the filter bar, the
share-ActionSheet
opens near the
Share button

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1619

Action
Shortcut (Micro
soft Windows)

Shortcut (Mac
OS) Prerequisite

Relevant Floor
plans Result

Go Enter or
Return

Enter or
Return

The focus should
be set anywhere
on the SmartFilter
Bar.

Analytical list page

List report

Object page

In the SmartFilter
Bar, the search is
triggered while the
focus is within one
of the filter bar’s
input fields.

Go Ctrl + Enter CMD + Enter The focus should
be on any element
in the visual filter
panel or on the en
tire visual filter.

Analytical list page
(visual filter)

If the focus is on
any element in the
visual filter panel
or on the entire
visual filter, Go is
triggered.

Select row in ana
lytical or grid ta
bles

Shift +
Space

Shift +
Space

The focus should
be on a table cell.

Analytical list page

List report

Object page

If the focus is on a
cell, the entire row
is selected

Table settings Ctrl + , CMD + , The focus should
be set on the table.

Analytical list page

List report

Object page

The same as when
a user chooses the
Table Settings but
ton.

Export as Shift + Ctrl
+ E

Shift + CMD
+ E

The focus should
be set on the table.

Analytical list page

List report

Object page

The same as when
a user chooses
Export to Excel →
Export As.

Initial Expansion Level for Tables in List Reports & Analytical
List Pages

You can set the number of expanded levels for tables in List Reports and Analytical List Pages using the
initialExpansionLevel property of the PresentationVariant annotation.

1620 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Expected Behavior of Table Types

Table 77: Table Types

Table Type Expected Behaviour

Analytical Table The default initialExpansionLevel is 0.

 Note

Responsive Table Irrespective of the value of the
initialExpansionLevel, the responsive table ex
pands to one level. The groups are always expanded and you
can group using table settings.

Tree Table In List Reports, the first level is automatically expanded.

In Analytical List Pages, the default
initialExpansionLevel is 0.

The initialExpansionLevel should never exceed the number of grouped columns.

Defining Initial Expansion Level in PresentationVariant

For initialExpansionLevel to be supported, PresentationVariant annotations must exist for the
content area in Analytical List Pages/ List Reports and multiple tabs in a List Reports.

 Note
If tabs are not defined for a List Reports, the default PresentationVariant (without the qualifier) is
considered.

The content area in Analytical List Pages can be associated directly with the PresentationVariant in
these cases:

● The qualifier is defined in the manifest: There is no matching SelectionPresentationVariant with
the qualifier but there is a matching PresentationVariant.

● The qualifier is not defined in the manifest: There is no default SelectionPresentationVariant but
there is a default PresentationVariant.

The tabs in a List Reports can be associated directly with the PresentationVariant when the annotation
path of the tab defined in the manifest points to a PresentationVariant annotation. In this case, the
required PresentationVariant has to be defined as shown in the sample code below:

 Sample Code

<Annotation Term="UI.PresentationVariant" Qualifier="Default"> <Record>
 <PropertyValue Property="Visualizations">
 <Collection>
 <AnnotationPath>@UI.LineItem#DefaultLineItem</AnnotationPath>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1621

 </Collection>
 </PropertyValue>
 <PropertyValue Property="GroupBy">
 <Collection>
 <PropertyPath>ProductId</PropertyPath>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="InitialExpansionLevel" Int="1"/>
 <PropertyValue Property="SortOrder">
 <Collection>
 <Record>
 <PropertyValue Property="Property"
PropertyPath="ProductCategory" />
 <PropertyValue Property="Descending" Bool="false" />
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
</Annotation>

Defining the Initial Expansion Level in the SelectionPresentationVariant

If the content area in the Analytical List Pages and tabs in the List Reports are associated with a
SelectionPresentationVariant that references a PresentationVariant, ensure that the
PresentationVariant is not defined inline but referred to using a path as shown in the sample code below:

 Sample Code

<Annotation Term="UI.SelectionPresentationVariant" Qualifier="MainContent"> <Record>
 <PropertyValue Property="ID" String=""/>
 <PropertyValue Property="Text" String=""/>
 <PropertyValue Property="SelectionVariant"
Path="@UI.SelectionVariant#Default"/>
 <PropertyValue Property="PresentationVariant"
Path="@UI.PresentationVariant#Default"/>
 </Record>
</Annotation>

● Configuring Tables [page 1735]
● Table-Only View [page 1902]

List Report and Object Page

The list report is typically used in conjunction with an object page. This is the main use case when creating SAP
Fiori apps. While the list report lets users filter, view, and work with items (objects) organized in list (table)
format, object pages let users work with objects, providing functionality to view, edit, and create objects.

The object page can also be used in conjunction with the analytical list page. For more information, see
Analytical List Page [page 1868].

1622 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

List Report Elements

The list report lets the user work with a large list of items. It combines powerful functions for filtering large lists
with different ways of displaying the resulting item list.

● Adapting the Application Header [page 1615]
● Enabling Variant Management [page 1637]
● Adapting the Smart Filter Bar [page 1661]
● Actions in the List Report [page 1641]
● Smart Tables [page 1628]

When you launch the application, the system loads the data to the list report by default and the smart filter bar
appears collapsed so that more rows can be viewed in table. The enableAutoBinding property of the
SmartTable has been set to True in the UI Adaptation Editor.

 Note
Provide default values for mandatory filter fields to avoid loading of empty tables when you launch the app.

This is the default behavior. In special cases where you don't want the system to load the data when you launch
the app, you can disable the settings like this:

● End Users:
End users can disable autoloading by setting Apply Automatically to False in variant management.

● Application Developers:
Application developers can change the enableAutobinding to False for smart tables through Visual
Editor (UIA).
For multi-view scenarios, application developers can change the manifest setting enableAutobinding to
False under quickVariantSelectionX

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1623

 Sample Code

“pages”: { “ListReport|<EntitySet> “: {
 “entitySet”: <EntitySet>,
 “component”: {
 “name”: “sap.suite.ui.generic.template.ListReport”,
 “settings”: {
 “quickVariantSelectionX”: {
 “enableAutoBinding”: false
 }
 }
 }
 }

Main Elements of the List Report

The list report view includes the following main elements:

● Application header
● Smart filter bar with variant management and a generic Share menu that includes the following actions:

○ Send Email
○ Save as Tile
○ Share in SAP Jam (if integration with SAP Jam is configured)

● Smart table
● Footer toolbar that can include optional actions

More Information

For more information about the various functions of the list report view, see:

● Social media integration (enabling the Share in SAP Jam option in the footer toolbar):
About SAP Jam Integration

● Configuring List Report Features [page 1637]
● Configuring Further Common Features [page 1778]

1624 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/saphelp_nw75/helpdata/en/2f/880e688daa441a9eb4223e8f0cabee/content.htm

Object Page Elements

The object page lets you display, edit, and create objects, as well as save drafts. It is suitable for both simple
objects and more complex, multi-faceted objects. The object page view gives you optimal support for multiple
devices.

● Enabling the Related Apps Button [page 1697]
● Adding Action Buttons to Forms in Sections [page 1710]
● Header Facets [page 1668]
● Setting up the Object Page Header [page 1665]
● Enabling Actions in Object Page Header [page 1693]
● Setting up the Object Page Header [page 1665]
● Defining and Adapting Sections [page 1698]
● Defining and Adapting Sections [page 1698]
● Object Page Elements [page 1625]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1625

Main Elements of the Object Page

● Page title that is set to the object type, for example, product
● Object header including the following:

○ Title and subtitle
○ Editing status icon (if applicable)
○ Header toolbar, containing generic actions (in Display mode)
○ Optional elements, such as:

○ A description
○ An image of the object instance

 Note
If the instance does not provide an image, then the default image of the object type is used.

○ Buttons in the header toolbar for use case-specific actions, for example, Edit and Delete
○ Header facets to showcase important information relating to the object. Header facets can

contain:
○ Label-field pairs, to show, for example, price or availability. We recommend not using more

than five label-field pairs.
○ Smart controls, to show, for example, a micro chart detailing sales revenue or a rating

indicator to visualize the average of all user-assigned ratings
● Anchor navigation area that lets users navigate to the individual content area sections
● Content area in which data is organized into sections that can contain field groups or a table
● Paginator buttons on the detail page to browse from item to item in the list the user came from

 Note
The paginator buttons are only visible if these conditions are fulfilled:
○ The user comes from a list to the current page.
○ This list contains at least two entries.
○ The user is on a subobject page.

On the first object page, the paginator buttons are disabled, by default. You can adapt the UI to enable
them. For more information, see Adapting the UI: List Report and Object Page [page 1860].

● Footer bar in which actions and the Show Messages button are available (if applicable).
The footer bar of subitem object pages can also include the Apply button in create and edit mode. This
action concludes the current create or edit activity, saves the draft, and navigates one step up in the object
hierarchy. A toast message is displayed when an operation is successful. For more information, see Draft
Handling [page 1631].

1626 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

The object page is made up of the following elements:

More Information

Subject Link

Controls related to object pages sap.uxap [page 2481]

Annotations used to set up various elements of object pages Configuring Object Page Features [page 1664]

Configuring Further Common Features [page 1778]

How-To Videos

The following videos provide step-by-step instructions for typical tasks when creating apps with SAP Fiori
elements.

YouTube Video Link to Help

Creating a List Report App with SAP Fiori Elements: Building an App Using SAP Web IDE [page 1553]

Adding a Field to a List Report Table: Defining Line Items [page 1762]

Adding a Default Filter to a List Report: Adapting the Smart Filter Bar [page 1661]

Creating Multiple Views in List Report Tables: Multiple Views on List Report Tables [page 1645]

Enabling Quick Views for Smart Link Navigation: Enabling Quick Views for Smart Link Navigation [page 1567]

Adding a Field Group to an Object Page: Defining and Adapting Sections [page 1698]

Adding a Data Point Header to an Object Page: Data Points [page 1682]

Creating a Section Extension on an Object Page: Adding a Section to an Object Page [page 1803]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1627

General Concepts

Smart Tables

A list report contains a smart table control that displays the list report items and uses page mechanisms when
loading data.

The smart table in the list report view contains the following:

● Layout management
● Toolbar with actions rendered as text icons, for example, Personalize and Add Item
● Application-specific actions rendered as text buttons, for example Copy, Approve, and Delete
● Indication of draft status
● Displays items locked by another user

Smart tables can render these table types:

● Responsive tables
Responsiveness is optimized for mobile use, line items can be viewed with no scrolling or with only vertical
scrolling, regardless of the display width.

 Note
On mobile devices, a responsive table is always displayed.

● Grid table
Desktop-centric table type which allows users to scroll in both directions. This table type can handle a large
number of items and columns.

● Analytical table
Contains data structured in rows and columns. It provides several powerful options for working with data,
including advanced grouping and aggregations.
In contrast to other tables, the analytical data binding used by the analytical table automatically displays
an aggregated number in a cell.

● Tree tables
Users can display hierarchically structured data.

 Note
You can use the tree table only in apps for ready-only scenarios.

The application decides which table representation is most suitable based on the usage. The table toolbar is
responsive. For information about available table types, see also Tables: Which One Should I Choose? [page
2286].

1628 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Navigation at Row Level

If a page contains a grid, an analytical or tree table, and has an object or subobject page, users can navigate to
the object or subobject page at row level. The Show Detail button is not displayed in these tables.

Triggering Custom Actions for Items in a Table

By default, the smart table generated by the template is single-selection. Users select an item from the table to
trigger a custom action, for example, Validate, which then returns the results for the selected item.

Searching for Rows in a Table on an Object Page

In responsive, grid, and analytical tables, if the table is searchable (that is, if an entity set is used for which
sap:searchable is true), a search field is displayed. You can search for particular rows in the table.

Smart Multi-Input Control

Smart multi-input [page 2443] is automatically rendered as a column in responsive and grid tables if a 1:N
relationship exists in the association for the given column.

To configure smart multi-input fields on an object page, see Using the Smart MultiInput Control on the Object
Page [page 1720].

Vertical Alignment of Responsive Table

You can set the vertical alignment property for a responsive table via manifest property
tableColumnVerticalAlignment under settings of sap.ui.generic.app. You can set the property value
as Top, Middle, or Bottom.

Related Information

Configuring Tables [page 1735]
Setting the Table Type [page 1735]
Tables: Which One Should I Choose? [page 2286]
Enabling Multiple Selection in Tables [page 1741]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1629

Editing Status

The editing status reflects the state of the object or entry in terms of the processing cycle. For example, it can
give the user information about whether the item can be accessed or its level of completion.

Editing Status for Table Items

The list report allows users to view the editing status of the objects displayed. The editing status is calculated
from the draft administrative data that is added when using the Business Object Processing Framework
(BOPF).

Table 78: Draft Administrative Data: Visualization

Editing Status Description

Draft: my own draft

Active version

Active version with draft created by an
other user; no longer locked

Active version with draft created by an
other user; locked

Access to Administrative Data
For the statuses Unsaved Changes and Locked, the name of the user who last changed the object is visible
directly in the line item in the list report (see above). Note that if the user's full name is not available in the
master data in the back-end system, only the technical user name displays. If the technical name is also not
available, the message then indicates that the unsaved changes or the lock on the object belongs to "another
user".

As well, for the statuses Draft, Unsaved Changes, and Locked, a link accesses a popover to allow you to view the
user who last changed the object and the time of the change. Note that if the user's full name is not available in
the master data in the back-end system, only the technical user name displays.

Editing Status Filter
A static filter attribute is available for all applications, which is added to the smart filter bar of the list report for
all draft-enabled applications by default. This filter allows users to search for objects or entries in a specific
state.

The drop-down values are as follows:

1630 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Table 79: Drop-Down Values

Drop-Down Value Description

All Shows all results except duplicates. This means that in the
case of an edit draft, the drafts shall be shown but not the
corresponding active version of the same document.

Own Draft Shows the drafts that the current user can display or edit.

Locked by Another User Shows the active versions that are locked by other users.
The current user cannot edit these versions.

Unsaved Changes by Another User Shows the active versions that were edited by other users,
but are no longer locked. The current user can edit and over
write these versions, and the previous draft will be overwrit
ten.

No Changes Shows active versions that have no corresponding draft.

 Note
The default search filter is All, even if the user clears the filter value.

Disabling the Editing Status Filter

If desired, the editing status filter can be disabled after you generate your app. For information, see Disabling
the Editing Status Filter [page 1660].

Related Information

Displaying the Editing Status [page 1763]

Draft Handling

A draft is an interim version of a business entity that has not yet been explicitly saved as an active version.
Drafts are saved automatically in the background whenever users add or change information within a business
entity while it's in edit mode (auto-save). SAP Fiori elements support the creation of apps using draft handling.

Drafts are used as follows:

● To keep unsaved changes when an editing activity is interrupted. This lets users resume editing later.
● To prevent data loss if an app terminates unexpectedly
● As a locking mechanism to prevent multiple users from editing the same object at the same time, and to

inform users about unsaved changes by another user.

When a user starts creating a new business entity or edits an existing one, a draft is created in the background.
This enables field validation and dynamic field control (showing additional fields based on user interaction) and

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1631

provides default values for fields based on recent data entry. A draft can be validated for consistency and
completeness at any time. This returns a list of messages.

While the user is modifying a business entity, an indicator shows when a draft is saved implicitly. The user still
needs to choose Save to incorporate the changes into an active business document.

Using the Apply Button

The footer bar of a subobject page contains an Apply button in create mode and edit mode. When users choose
this button they can conclude their current create or edit activity, apply the changes or entries to the draft, and
navigate one step up in the object hierarchy.

When a user edits an object, the system behavior of the Apply button is as follows:

1. On an object page, the user chooses Edit.
2. The system creates a draft version of the object.
3. The user makes changes to the draft version of the object and navigates to a detail page. When Apply is

chosen, the changes are applied to the draft.
4. When the user chooses Save, the changes are saved to the active version of the object.

 Note
If there's an error, for example, network issues, after having chosen Apply, a message is displayed. If the
user chooses Cancel, nothing happens. If the user chooses Discard Changes, the system behaves according
to the message, for example, the changes are discarded.

Handling Inconsistent Input

Users might enter data that is so inconsistent that the system cannot store it in the draft. For example,
characters are entered in a number field, or more characters than the field length allows are entered. If this is
the case, the contents of the UI differ from the contents of the draft. Before the draft can be saved by the user,
the system displays a message prompting the users to solve these errors. After all errors have been solved, the
draft can be saved.

1632 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

This system behavior is also valid when using the Apply button. When choosing Apply, the system has to make
sure that the contents on the UI and the stored contents of the draft are identical. If the errors described above
occur, the system displays the same message prompting the user to solve them.

 Note
This message lists only errors related to technical inconsistencies, not to logical inconsistencies. For
example, if a user enters a business partner that does not exist, this error is not displayed. These types of
errors are displayed in a state message when saving the object.

Related Links:

● Draft Handling in SAP Fiori Design Guidelines
● Developing New Transactional Apps with Draft Capabilities

Non-Draft Apps

By default, you need to create apps that use draft handling. For general information about draft handling, see
https://experience.sap.com/fiori-design-web/draft-handling/ and Draft Handling [page 1631].

You can create non-draft apps, however, you need to consider the specific features and restrictions listed
below, as compared to those for draft apps. Create non-draft apps only for simple scenarios without complex
flows.

 Note
Example of a complex flow: Creating items and subitems in a single step, before saving.

Example of a simple flow: An app used occasionally to change specific fields.

 Note
Do not combine draft and non-draft entity sets in one app. Exception: A draft-enabled entity set can contain
a non-draft child for display purposes only. For example, a sales order might contain a non-draft contact
sub-object.

Saving Data

In non-draft scenarios, data is not automatically saved to the back-end system when a user changes data on
the UI. Users always have to save the new or changed data when they leave a page, for example, in these cases:

● Creating new subitems
● Editing existing subitems

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1633

http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fdraft-handling%2F
https://help.sap.com/viewer/cc0c305d2fab47bd808adcad3ca7ee9d/7.52.2/en-US/d36820f082c84085b6634be4576e351a.html
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fdraft-handling%2F

● Navigating away, for example, by using a chevron in a table
● Navigating back to the list report

The Save button is also available on subobject pages. If a user wants to navigate away from the edit screen that
contains unsaved data, a data-loss message is displayed.

The following features are also not available in non-draft apps:

● Start working on an object, save it as incomplete, and continue later
● Automatic saving and data-loss prevention: Keep working while data is saved automatically and

asynchronously
● Navigation within the app to different pages without having to keep saving in between

 Note
On the object page, for fields that contain a combination of a value and text, for example, currency and EUR
or text arrangement and unit, changed values are displayed correctly after saving, only if you have defined a
dedicated side effect.

Locking

This system doesn't lock objects when data is being edited. Data might be lost if two users work on the same
object at the same time. The data of the last user to save is the data in the final version. Consequently, data is
not read again from the back-end system when the user starts editing.

Navigation

The following navigation actions or events discard the entered data:

● SAP Fiori actions: For example, Back or Home
When performing these actions, the SAP Fiori data-loss message is displayed.

● Launchpad signout
Data is lost, no data-loss message is displayed.

● Browser actions: For example, back, forward, open bookmark, change URL, refresh, and closing the
browser.
When performing these actions, the data is lost, and no data-loss message is displayed.

1634 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Extension Points and Secured Execution

Various checks can be executed. For example, check for the needed busy indicator or to see whether the data
loss popup is needed. The following table contains the input parameters for the method used in the check, and
the corresponding system behavior:

Table 80: Example parameters

Parameter System Behavior

busy.set=true Triggers a busy indicator when a function is being executeed. Can be set to false in case of
immediate completion.

busy.check=true Checks whether the application is currently busy. The function is executed only if it's not
busy.

Has to be set to false if the function is not triggered by direct user interaction, but as a result
of another function that set the application to busy.

dataloss.popup=true Displays a data-loss message before execution of the function if needed (that is, in non-draft
cases when the model or registered methods contain pending changes).

dataloss.navigation=f
alse

Indicates that execution of the function leads to navigation, that is, leaves the current page,
which induces a slightly different text for the data-loss message.

Further Draft Features that Are not Available in Non-Draft Apps

The following draft app features are not available in non-draft apps:

● No data loss, connectivity disruption or session time-out
● Device switch: Start on one device and continue on another
● Action and field control adjustments during data entry
● Checks during data entry
● Actions on entered data (without saving or triggering side effects)
● Calculations and defaulting during data entry
● Context-dependent value helps (based on currently entered data)
● Sorting and filtering in editable tables for data entry
● Flexible column layout

Handling Inconsistent Input

Users might enter data that is so inconsistent that the system cannot store it.

For example, you've entered characters in a number field. Or you've entered more characters than the field
length allows. The system behaves as described below, depending on whether your app is draft-enabled or not.

● System behavior in draft-enabled apps

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1635

In a case like this, the contents of the UI differ from the contents of the draft. Before the user can save the
draft, the system displays a message prompting the users to solve these errors. After all errors have been
solved, the draft can be saved.
The system also behaves like this when using the Apply button. When you choose Apply, the system has to
make sure that the content on the UI and the stored content of the draft are identical. If the errors
described above occur, the system displays the same message prompting the user to solve them.

● System behavior in non-draft apps
Before users can save the data, the system displays a message prompting the users to solve these errors.
After all errors have been solved, the object can be saved.

 Note
This message lists only errors related to technical inconsistencies, not to logical inconsistencies. For
example, if a user enters a business partner that does not exist, this error is not displayed. These types of
errors are displayed in a state message when you save the object.

Using Analytical Parameters from the Back End

List report and object page support analytical parameters that have been defined in the back end.

They are controlled by the considerAnalyticalParameters property, which is defined in the manifest.json
of your application. As soon as the considerAnalyticalParameters flag is set to true, the framework
automatically provides filters for the analytical parameter in the list report. These filters automatically become
mandatory, and the data on the UI changes according to the value provided in the filter.

 Sample Code
Manifest.json showing the considerAnalyticalParameters property

"sap.ui.generic.app": { "_version": "1.3.0",
 "settings": {
 "considerAnalyticalParameters": true,
 "forceGlobalRefresh": true,
 "inboundParameters": {
 "Supplier": {
 "useForCreate": true
 }
 },
 "objectPageDynamicHeaderTitleWithVM": true
 },
.
.
.
.

1636 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Configuring List Report Features

You can use annotations to set up various elements in the list report view, such as the table type and smart
filter bar.

Enabling Variant Management

Variants let you store settings that users create for the smart filter bar, such as selection fields and layout, and
for the smart table, such as sorting and visible columns.

In harmonized variant management for list report, you can save filter setting and values of smart filter bar, and
personalisation of smart tables together using the variant for the smart filter bar.

Figure 258: Variant Management

 Note
You can define variants for specific selections of data on the user interface, for example, based on filter
settings. In the definition dialog, these variants are called views, however, the feature is called variant
management. Therefore, for clarity, we use the term variant management in this section.

Code Sample

In the manifest.json file, the smartVariantManagement variable is set to true by default or false based
on the option selected in SAP WebIDE Wizard. It can be changed in the manifest as below:

"sap.ui.generic.app": { "_version":"1.1.0",
 "pages": [
 {
 "entitySet": "XXXXXX_Product",
 "component": {
 "name": "sap.suite.ui.generic.template.ListReport",
 "list": true,
 "settings" : {
 "gridTable" : false,

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1637

 "multiSelect": false, "smartVariantManagement": true

Enabling Table Filters

In harmonized variant management, by default, you cannot set a filter in the table personalization settings. To
enable filtering, set the enableTableFilterInPageVariant property in the manifest. If
smartVariantManagement is set to false, then table filter is enabled by default.

 Sample Code
 "sap.ui.generic.app": {
 "_version": "1.3.0",
 "settings": {
 "forceGlobalRefresh": true
 },
 "pages": {
 "ListReport|STTA_C_MP_Product": {
 "entitySet": "STTA_C_MP_Product",
 "component": {
 "name": "sap.suite.ui.generic.template.ListReport",
 "list": true,
 "settings": {
 "smartVariantManagement": true,
 "enableTableFilterInPageVariant": true
 }
 },

1638 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Creating a List Report Without Variant Management

To make things easier, you may want to create an app without variant management. In this case, only the title of
the app is displayed. You can create a custom title, if required.

Context

Without variant management, and with no custom title added, your app looks as follows:

Figure 259: App Without Variant Management

Without variant management and with a custom title added, your app looks like this:
Figure 260: App Without Variant Management and With Custom Title

Procedure

1. Include the variantManagementHidden flag in the settings of the list report component in the
manifest.json of your app.

○ If you set the flag to true, then standard variant management is not available in the app. The app
name is displayed instead.

○ If you set the flag to false or if the flag is not at all contained in the manifest of the app, the standard
variant management is available and can be enabled or disabled. For more information, see Enabling
Variant Management [page 1637].

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1639

 Sample Code
List Report Without Variant Management

 "sap.ui.generic.app": {
 "_version":"1.1.0",
 "pages": [
 {
 "entitySet": "XXXXXX_Product",
 "component": {
 "name": "sap.suite.ui.generic.template.ListReport",
 "list": true,
 "settings" : {
 "gridTable" : false,
 "multiSelect": false,
 "smartVariantManagement": true,
 "variantManagementHidden": true // Hides Variant
management
 }
 },

2. If you want to use an app-specific title instead of the variant, include the
subTitleIfVariantMgmtHidden property in the i18n file and enter a text value as shown below:

 Sample Code
 #XTIT,40 subSubTitleIfVariantMgmtHidden = List Report Custom Title

3. Add a new property in the manifest.json of the application as shown below.

 "sap.ui.generic.app": {
 "_version":"1.1.0",
 "pages": [
 {
 "entitySet": "XXXXXX_Product",
 "component": {
 "name": "sap.suite.ui.generic.template.ListReport",
 "list": true,
 "settings" : {
 "gridTable" : false,
 "multiSelect": false,
 "smartVariantManagement": true,
 "variantManagementHidden": true,
 "subTitleIfVariantMgmtHidden":
"{{subTitleIfVariantMgmtHidden}}" // Adding Custom Title here
 } },

1640 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Actions in the List Report

The list report supports various types of actions.

Actions in the Table Toolbar

The table toolbar in the list report contains buttons used to trigger actions for the entire list report or for
selected items. As shown below, these actions can include generic functions offered by SAP Fiori elements or
app-specific actions.

Figure 261: Example: Actions in the Table Toolbar

App-Specific Actions
Depending on your use case, you can define actions that are displayed in the table toolbar for your app, for
example, Copy and Approve. You can define the following types of actions for your app:

● Actions that require user confirmation, for example, for critical actions that have severe consequences.
The system opens a dialog in which the user has to confirm the action.

● Actions that require additional user input, for example, an approval comment. The system opens a dialog
with one or more entry elements in which the user enters the required data. The system can pre-fill data, if
applicable.

● Actions that require none of the above. The system triggers the action.

Generic Actions
You can use the following generic actions in the table toolbar:

● Action that triggers external navigation
● Creation of a new item (+ button) if the entity set can be created
● Deletion of one or more items if the entity set can be deleted

Global Actions and Line Item Actions

For information about setting up global actions that apply to the entire app, see Adding Custom Actions Using
Extension Points [page 1831].

For information about definining line item actions, see Adding Line Item Actions in Tables [page 1743].

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1641

More Information

Subject Link

Actions within the list report Enabling Actions in the List Report [page 1642]

Actions within a line item in the list report Adding Line Item Actions in Tables [page 1743]

Determining actions (in the footer of a list report) Adding Determining Actions [page 1778]

Custom actions using extension points Adding Custom Actions Using Extension Points [page 1831]

Enabling Actions in the List Report

You can enable certain common actions specific to your use case for the list report. You can display the actions
in either the toolbar or within a specific column for line items.

Actions in the Toolbar

You can display actions in the toolbar to allow users to perform an action for one or more lines in the table.

Actions in Toolbar
The table below describes how to set up your annotations so that generic actions provided by SAP Fiori
elements and application-specific actions triggering external navigation are rendered in the toolbar:

Action Setting Comments

Create (+) sap:creatable="true" for the
root entity set

The Create feature is enabled by de
fault, as the entity set is already creata
ble.

Delete sap:deletable="true" for the
root entity set

The Delete feature is enabled by de
fault, as the entity set is already deleta
ble. Note that if you want to specify
conditions for deletion (using the
deletable-path annotation), you
must ensure that the setting
sap:deletable has not been made.

Action triggering external navigation Add the following property:
<PropertyValue
Property="RequiresContext"
Bool="true"/>

For more information about configuring
intent-based navigation, see Configur-
ing External Navigation [page 1563].

Enable or Disable Delete Button (Using deletable-path Annotations)
You can enable or disable the Delete button in the list report based on conditions specified in the back-end
system. For example, you can disable deletion for a sales order that has already been paid. In this case, if a user

1642 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

selects an item that cannot be deleted, the Delete button is disabled. In addition, if the user navigates from this
item in the list report to the object page, the Delete button is hidden.

In your annotation, set the deletable-path to point to a particular property of an object (entity) in the back-
end system that is either true or false. If the value of this property is true, the Delete button is enabled; if it
is false, it is disabled. If you want to use the deletable-path annotation to specify conditions for deletion,
you have to ensure that the setting sap:deletable is not present in your annotations.

The code sample below shows you how to set up your annotation to enable or disable the Delete button, based
on the value of the Delete_mc property in the back-end system.

<Annotations Target="STTA_PROD_MAN.STTA_PROD_MAN_Entities/STTA_C_MP_Product"> <Annotation Term="Org.OData.Capabilities.V1.DeleteRestrictions">
 <Record>
 <PropertyValue Property="Deletable" Path="Delete_mc"/>
 </Record>
 </Annotation> </Annotations>

Application-Specific Actions in Toolbar (Specify Text)
To specify a text for your action, use the com.sap.vocabularies.UI.v1.DataFieldForAction property
and specify the text to display. The example below shows you how to display an action to create a copy of the
list item in the toolbar:

Figure 262: List Report: Annotation DataFieldForAction for Defining Application-Specific Actions

Sample Code

<Annotation Term="UI.LineItem"> <Collection>
 <Record Type="UI.DataFieldForAction">
 <PropertyValue Property="Label" String="Copy"/>
 <PropertyValue Property="Action"
String="SEPMRA_PROD_MAN.SEPMRA_PROD_MAN_Entities/SEPMRA_C_PD_ProductCopy"/>
 </Record>
 <Collection>
 <Record Type="UI.DataField">
 ...
 </Collection> </Annotation>

Enable or Disable Buttons Triggering External Navigation
In a DataFieldForIntentBasedNavigation, you can specify RequiresContext. Setting it to True means
that a line needs to be selected for the button to be enabled. Otherwise, it is disabled.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1643

Display or Hide Buttons Triggering External Navigation
You can define that context-independent buttons (RequiresContext is set to False) triggering external
navigation are displayed only if the navigation target is supported on the current device. As a prerequisite, you
need to have maintained the navigation target in the SAP Fiori launchpad, as shown in the figures below:

Figure 263: SAP Fiori launchpad: Maintain the supported devices for the combination of semantic object and action.

Figure 264: SAP Fiori launchpad: Maintain the mandatory parameters for semantic object and action

 Note
● As shown above, in the SAP Fiori launchpad, you maintain mandatory parameters for navigation, for

example, a sales order ID. If you have specified RequiresContext: False, for the combination of
semantic object and action, and for this combination you maintain a mandatory parameter in the SAP
Fiori launchpad, these settings contradict each other and the button is not displayed.

● The system checks only those actions that were created using annotations, not extension points.
● This feature is not relevant for context-dependent buttons.

For information about context-dependent and context-independent actions, see Actions [page 1605].

Actions for Line Items

For information about setting up annotations for actions within a line item of the list report, see Adding Line
Item Actions in Tables [page 1743].

1644 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

More Information

General information on actions: Actions [page 1605]

Multiple Views on List Report Tables

By default, the list report displays only one table. You can define multiple views of a table, and add a chart, if
required.

This video shows the step-by-step procedure for defining multiple views:

 Note
You can define variants for specific selections of data on the user interface, for example, based on filter
settings. In the definition dialog, these variants are called views, however, the feature is called variant
management. Therefore, for clarity, we use the term variant management in this section.

You have the following options:

● A single table for all views ("single table mode"): The UI contains a single table instance, one table
toolbar, and (if activated) one table variant management. To switch between the views, a segmented
button is rendered in the table toolbar. If there are more than three views, a select control is rendered
instead of a segmented button.

Figure 265: Single Table Mode
● A separate table for each view ("multiple table mode"): If there are n views, the UI contains n table

instances. This results in n separate table toolbars and n separate table variant managements. An icon tab
bar is rendered above the table for switching between the views (table instances). Only the table on the
currently selected tab is visible.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1645

Figure 266: Multiple Table Mode

○ In multiple table mode, in addition to tables, you can also display charts on specific tab pages. Tables
are displayed by default.

1646 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Figure 267: Multiple Table Mode with Charts
○ On each tab, you can also display data for different entity sets, for example, a sales order or a supplier.

To do so, add the entity set to the corresponding tab in the manifest.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1647

Figure 268: Multiple views on a list report with different entity sets

Which Annotations Should I Use?

● If you only want to describe which data should be displayed in a view, you can define a
SelectionVariant containing filter criteria for the data. See Defining Multiple Views on a List Report
Table - Single Table Mode [page 1649].

● If you also want to describe how the data should be displayed (for example, different sort orders in a table
or a different visualization in a table or chart), you can define a SelectionPresentationVariant. Note
that you can use this annotation only for multiple table mode and multiple table mode with charts. See
Defining Multiple Views on a List Report Table - Multiple Table Mode [page 1651].

● If all you want to do is use a different visualization, you can define a PresentationVariant.

 Note
For information about SelectionVariants, PresentationVariants, and
SelectionPresentationVariants, see the OData vocabulary at https://wiki.scn.sap.com/wiki/display/
EmTech/OData+4.0+Vocabularies+-+SAP+UI .

Related Information

Defining Multiple Views on a List Report Table - Single Table Mode [page 1649]
Defining Multiple Views on a List Report Table - Multiple Table Mode [page 1651]
Defining Multiple Views on a List Report with Different Entity Sets and Table Settings [page 1656]

1648 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/disclaimer?site=https%3A%2F%2Fwiki.scn.sap.com%2Fwiki%2Fdisplay%2FEmTech%2FOData%2B4.0%2BVocabularies%2B-%2BSAP%2BUI
http://help.sap.com/disclaimer?site=https%3A%2F%2Fwiki.scn.sap.com%2Fwiki%2Fdisplay%2FEmTech%2FOData%2B4.0%2BVocabularies%2B-%2BSAP%2BUI

Defining Multiple Views on a List Report Table - Single Table
Mode

You can define multiple views of a table and display them in single table mode. Users can switch between views
using a segmented button.

Context

To define multiple views using single table mode, perform the following steps:

Procedure

1. Add SelectionVariants to your annotations file.

 Sample Code
SelectionVariant that filters for items that cost a certain amount (for example, at least 5,000
euros).

 <Annotation Term="UI.SelectionVariant" Qualifier="Expensive">
 <Record>
 <PropertyValue Property="Text" String="Expensive">
 </PropertyValue>
 <PropertyValue Property="SelectOptions">
 <Collection>
 <Record Type="UI.SelectOptionType">
 <PropertyValue Property="PropertyName"
 PropertyPath="GrossAmount" />
 <PropertyValue Property="Ranges">
 <Collection>
 <Record Type="UI.SelectionRangeType">
 <PropertyValue Property="Option"

EnumMember="UI.SelectionRangeOptionType/GE" />
 <PropertyValue Property="Low"
String="5000" />
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
 </Collection>
 </PropertyValue>
 </Record> </Annotation>

 Note
For the SelectionVariant, the following applies:
○ The FilterExpression of the SelectionVariantType is not supported.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1649

○ The following SelectionRangeOptionTypes are supported without any wildcards, for example,
*, ?, …:
○ EQ: Equal to
○ BT: Between
○ LE: Less than or equal to
○ GE: Greater than or equal to
○ NE: Not equal to
○ GT: Greater than
○ LT: Less than

For the PresentationVariant, SortOrders is supported.

2. Extend the manifest.json to switch on the multiple view feature and link to the variants you have added to
your annotations. You do this in the list report settings section under sap.ui.generic.app. Use
quickVariantSelection for single table mode.

○ The variants section (lines 11-20) contains a set of entries that point to the variants defined in the
annotations.

○ For each entry under variants (for example, lines 12-15), define an annotationPath (line 14) for a
specific variant.

○ Provide a key entry (line 13) that is used for initializing the corresponding SegmentedButton item.
This is a mandatory entry.

 Sample Code
 1 ...
2 "sap.ui.generic.app": {
3 "pages": [
4 {
5 "entitySet": "C_STTA_SalesOrder_WD_20",
6 "component": {
7 "name": "sap.suite.ui.generic.template.ListReport",
8 "list": true,
9 "settings": {
10 "quickVariantSelection": {
11 "variants": {
12 "0": {
13 "key": "_tab1",
14 "annotationPath":
"com.sap.vocabularies.UI.v1.SelectionVariant#Expensive"
15 },
16 "1": {
17 "key": "_tab2",
18 "annotationPath":
"com.sap.vocabularies.UI.v1.SelectionPresentationVariant#Cheap"
19 }
20 }
21 } 22 ...

Related Information

Adding Segmented Buttons to a Table Toolbar [page 1766]

1650 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Defining Multiple Views on a List Report Table - Multiple
Table Mode

You can define multiple views of a table and display them in multiple table mode. In addition to tables, you can
display charts in the views. Users can switch between views using an icon tab bar.

Prerequisites

If you want to use charts in multiple table mode, you need to have defined a UI.Chart annotation, including a
qualifier, as follows:

 <Annotation Term="UI.Chart" Qualifier="Chart1">
 <Record Type="UI.ChartDefinitionType">
 <PropertyValue Property="Title" String="Revenue by Customer"/>
 <PropertyValue Property="Description" String="Net Revenue by Customer"/>
 <PropertyValue Property="ChartType" EnumMember="UI.ChartType/Column"/>
 <PropertyValue Property="Dimensions">
 <Collection>
 <PropertyPath>ProductCategory</PropertyPath>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="Measures">
 <Collection>
 <PropertyPath>NetAmount</PropertyPath>
 </Collection>
 </PropertyValue>
 </Record>
</Annotation>

Context

To define multiple views using multiple table mode, perform the following steps:

Procedure

1. Add SelectionVariants or SelectionPresentationVariants to your annotations file.

 Note
You can reference different UI.LineItem annotations for different tabs. To do so, reference the
annotation under PresentationVariant/Visualizations. If there is no
PresentationVariant/Visualizations for a tab, a default UI.LineItem (without a qualifier) is
taken into account.

○ Multiple table mode with table

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1651

 Sample Code
SelectionVariant that filters for items that cost a certain amount, (for example, at least 5,000
euros).

 <Annotation Term="UI.SelectionVariant" Qualifier="Expensive">
 <Record>
 <PropertyValue Property="Text" String="Expensive">
 </PropertyValue>
 <PropertyValue Property="SelectOptions">
 <Collection>
 <Record Type="UI.SelectOptionType">
 <PropertyValue Property="PropertyName"
 PropertyPath="GrossAmount" />
 <PropertyValue Property="Ranges">
 <Collection>
 <Record Type="UI.SelectionRangeType">
 <PropertyValue Property="Option"

EnumMember="UI.SelectionRangeOptionType/GE" />
 <PropertyValue Property="Low"
String="5000" />
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
 </Collection>
 </PropertyValue>
 </Record> </Annotation>

 Sample Code
SelectionPresentationVariant containing a SelectionVariant and a
PresentationVariant. The SelectionVariant filters for items with a price less than a certain
amount (for example, 5,000 euros), the PresentationVariant defines the ascending sort order:

 <Annotation Term="UI.SelectionPresentationVariant" Qualifier="Cheap">
 <Record>
 <PropertyValue Property="Text" String="Cheap">
 </PropertyValue>
 <PropertyValue Property="SelectionVariant">
 <Record>
 <PropertyValue Property="Text" String="Cheap">
 </PropertyValue>
 <PropertyValue Property="SelectOptions">
 <Collection>
 <Record Type="UI.SelectOptionType">
 <PropertyValue Property="PropertyName"
 PropertyPath="GrossAmount" />
 <PropertyValue Property="Ranges">
 <Collection>
 <Record
Type="UI.SelectionRangeType">
 <PropertyValue Property="Option"

EnumMember="UI.SelectionRangeOptionType/LT" />
 <PropertyValue Property="Low"
String="5000" />
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
 </Collection>

1652 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 </PropertyValue>
 </Record>
 </PropertyValue>
 <PropertyValue Property="PresentationVariant">
 <Record>
 <PropertyValue Property="SortOrder">
 <Collection>
 <Record>
 <PropertyValue Property="Property"
 PropertyPath="GrossAmount" />
 <PropertyValue Property="Descending"
Bool="false" />
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
 </PropertyValue>
 </Record> </Annotation>

○ Multiple table mode with chart
Reference the UI.Chart annotation in your SelectionPresentationVariant or
PresentationVariant for your view.

 <Annotation Term="UI.SelectionPresentationVariant" Qualifier="Chart1">
 <Record>
 <PropertyValue Property="Text" String="Chart1"/>
 <PropertyValue Property="SelectionVariant">
 <Record>

 </Record>
 </PropertyValue>
 <PropertyValue Property="PresentationVariant">
 <Record>
 <PropertyValue Property="Visualizations">
 <Collection>
 <AnnotationPath>@UI.Chart#Chart1</AnnotationPath>
 </Collection>
 </PropertyValue>
 </Record>
 </PropertyValue>
 </Record>
</Annotation>

 Note
For the SelectionVariant, the following applies:
○ The FilterExpression of the SelectionVariantType is not supported.
○ The following SelectionRangeOptionTypes are supported without any wildcards, for example,

*, ?, …:
○ EQ: Equal to
○ BT: Between
○ LE: Less than or equal to
○ GE: Greater than or equal to
○ NE: Not equal to
○ GT: Greater than
○ LT: Less than

For the PresentationVariant, SortOrders and visualizations are supported.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1653

2. Extend the manifest.json to switch on the multiple view feature and link to the variants you have added to
your annotations. You do this in the list report settings section under sap.ui.generic.app. Use
quickVariantSelectionX for multiple table mode or multiple table mode with charts.

○ The variants section (lines 11-20) contains a set of entries that point to the variants defined in the
annotations.

○ For each entry under variants (for example, lines 12-15), define an annotationPath (line 14) of a
specific variant.

○ Provide a key entry (line 13) that is used for initializing the corresponding IconTabBar item. This entry
is mandatory.

 Sample Code
 1 ...
2 "sap.ui.generic.app": {
3 "pages": [
4 {
5 "entitySet": "C_STTA_SalesOrder_WD_20",
6 "component": {
7 "name": "sap.suite.ui.generic.template.ListReport",
8 "list": true,
9 "settings": {
10 "quickVariantSelectionX": {
11 "variants": {
12 "Expensive": {
13 "key": "Expensive",
14 "annotationPath":
"com.sap.vocabularies.UI.v1.SelectionVariant#Expensive"
15 },
16 "Cheap": {
17 "key": "Cheap",
18 "annotationPath":
"com.sap.vocabularies.UI.v1.SelectionPresentationVariant#Cheap"
19 }
20 }
21 } 22 ...

 Note
○ If you want to enable auto-binding, do not use key user adaptation for changing the smart table's

enableAutoBinding properties. From a performance perspective, this leads to backend requests
for each table instance. To achieve the required behavior (that is, only rebind the currently visible
table), you can add an entry enableAutoBinding: true under quickVariantSelectionX.
This ensures the behavior on list report page level.

○ Stable IDs: As there are separate table instances for each tab, table-specific IDs (such as IDs for
tables, toolbar actions, draft indicators in table columns) get a suffix "-<key>", where <key> is the
variant key you have specified in the manifest (line 13). This avoids duplicate ID errors and allows
you to adapt specific tables via runtime adaptation (for example, hiding a toolbar action for a
specific table).

3. If you use charts in multiple table mode, you can implement the following features:
○ Actions in toolbars for charts

1654 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

For charts in multiple table mode, actions from the annotations (UI.Chart/Actions only) and custom
actions that were added using extension points are supported. If custom action buttons are relevant to
selection, they are disabled if no chart bar is selected. If not, they are enabled.

 <Annotation Term="UI.Chart" Qualifier="Chart4">
 <Record Type="UI.ChartDefinitionType">
 <PropertyValue Property="ChartType" EnumMember="UI.ChartType/
Column"/>
 <PropertyValue Property="Dimensions">
 <Collection>
 <PropertyPath>CompanyCode</PropertyPath>
 <PropertyPath>Customer</PropertyPath>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="Measures">
 <Collection>
 <PropertyPath>AmountInTransactionCurrency</PropertyPath>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="Actions">
 <Collection>
 <Record Type="UI.DataFieldForAction">
 <PropertyValue Property="Action"
String="ZFAR_CUSTOMER_LINE_ITEMS2_SRV.ZFAR_CUSTOMER_LINE_ITEMS2_SRV_Entitie
s/Create"/>
 <PropertyValue Property="Label" String="Action 1"/>
 </Record>
 <Record Type="UI.DataFieldForIntentBasedNavigation">
 <PropertyValue Property="SemanticObject"
String="Customer"/>
 <PropertyValue Property="Action"
String="postPayment2"/>
 <PropertyValue Property="Label" String="SO Navigation
(M)"/>
 <Annotation
Term="com.sap.vocabularies.UI.v1.Importance"
EnumMember="com.sap.vocabularies.UI.v1.ImportanceType/Medium"/>
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
</Annotation>

○ Navigation for charts
To enable navigation for charts, you have to set the property "showItemNavigationOnChart" in the
manifest to "true" and maintain an internal navigation target in the manifest.

 "quickVariantSelectionX": {
 "showCounts": true,
 "variants": {
 "0": {
 "key": "0",
 "annotationPath":
"com.sap.vocabularies.UI.v1.SelectionVariant#VAR1"
 },
 "1": {
 "key": "1",
 "annotationPath":
"com.sap.vocabularies.UI.v1.SelectionPresentationVariant#VAR4",
 "showItemNavigationOnChart": true
 }
 }
}

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1655

For information about how to maintain an internal navigation target, see Configuring Internal
Navigation [page 1581].
If navigation is enabled, the Show details button is displayed in the popup after you select a chart bar
and choose the Details button.

On each tab, you can also display data for different entity sets with different table types and other settings,
for example, a sales order or a supplier. To do so, add the entity set and/or table settings to the
corresponding tab in the manifest. For more information, see Defining Multiple Views on a List Report with
Different Entity Sets and Table Settings [page 1656].

Defining Multiple Views on a List Report with Different Entity
Sets and Table Settings

You can configure your app to display data for different entity sets and table settings, for example, sales orders
or suppliers.

Prerequisite: You have completed the procedure Defining Multiple Views on a List Report Table - Multiple Table
Mode [page 1651].

To specify table settings on tab pages, you need to add tableSettings to the corresponding tab in
manifest.json of your application.

 Note
Implement this feature with caution, and, for example, take the following into account:

● While this feature provides a combined view of different objects, it does not replace dedicated
applications, each with their specific purpose.

● Use this feature only to search for and work on similar business objects that have a subset of common
fields. Do not use it for random business objects. Changing common fields in the smart filter bar always
has an effect on the tab that is currently open, as well as on all other tabs. While you can implement any
entity set from a technical perspective, you should take the business and usability perspective into
account. Moreover, as this feature affects performance, you should also check any changes in
performance when adding entity sets. Note that if you don't follow these recommendations, the
application will be responsible for usability and performance.

● Do not combine draft and non-draft entity sets in one list report.
● You cannot use flexible column layout in combination with this feature.
● You can specify different table types for each tab, but there should not be a mix of responsive and non-

responsive (grid, tree and analytical) tables.
● You can define custom actions using extension points only for main entity sets. Actions defined for

other entity sets are not supported.

To include different entity sets and table settings in multiple views, specify an entity set for each tab in
the"quickVariantSelectionX" section. See lines 10 to 27 in the code snippet below.

 Sample Code
 "sap.ui.generic.app": {
 "pages": [{
 "entitySet": "C_RequirementTrackingPurReq",
 "component": {

1656 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 "name": "sap.suite.ui.generic.template.ListReport",
 "list": true,
 "settings": {
 "condensedTableLayout": true,
 "smartVariantManagement": false,
 "quickVariantSelectionX": {
 "showCounts": true,
 "variants": {
 "1": {
 "key": "1",
 "entitySet": "C_RequirementTrackingPurReq",
 "annotationPath":
"com.sap.vocabularies.UI.v1.SelectionVariant#VAR1",
 "tableSettings": {
 "type": "GridTable",
 "multiSelect": false,
 "selectAll": false,
 "selectionLimit": 200
 }
 },
 "2": {
 "key": "2",
 "entitySet": "C_RequirementTrackingPurOrd",
 "annotationPath":
"com.sap.vocabularies.UI.v1.SelectionVariant#VAR5",
 "tableSettings": {
 "type": "GridTable",
 "multiSelect": false,
 "selectAll": false,
 "selectionLimit": 200
 }
 },
 "3": {
 "key": "3",
 "entitySet": "C_RequirementTrackingPurReq",
 "annotationPath":
"com.sap.vocabularies.UI.v1.SelectionPresentationVariant#VAR6",
 "showItemNavigationOnChart": true,
 "tableSettings": {
 "type": "TreeTable",
 "multiSelect": false,
 "selectAll": false,
 "selectionLimit": 200
 }
 }
 }
 }
 }
 } }] }

Under "sap.ui.generic.app"/"pages", specify the leading entity set. This is used for the smart filter bar
and for the footer. Each table or chart has its own entitySet which you specify under
"quickVariantSelectionX"/"variants". If you do not specifiy an entity set under "/"variants", the
leading entity set is used as a default.

System Behavior for Filters

Filter values from the smart filter bar are applied to the currently visible table only if the corresponding
properties are available in the entity type of the table or chart. If not, they are ignored.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1657

The same is true for the display of counts on each tab. For example, as you can see below, the Plant field is
displayed in each entity set. It influences the number of items displayed on each tab:

Figure 269: Filtering example

If you add a second filter value, for example, the Purchasing Group field, which is found only in the entity type of
the second table, only the count of the second tab changes. The counts of the first and third tabs don't change
as this field is not relevant for the entity sets. The system displays a message to inform the user about this.

For example, if you add a filter to the Purchasing Requisition tab that is not applicable to the Purchase Orders
tab entity set and switch to the Purchase Orderstab, the system displays a message about this. If you close this
message and add another filter that is not applicable to the Purchase Orders tab entity set, the system displays
an updated message saying both filters are not relevant to this entity set.

Figure 270: Filtering example

1658 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

System Behaviour for Different Table Type Settings

Table type settings can be set for each variant under quickVariantSelectionX in manifest.json. If table
settings are not specified, the system picks the overall table setting and applies them for the variant. It is not
possible to have a combination of responsive and non-responsive tables on the same tab. The tables in List
Report can either be all responsive or a mix of non-responsive, such as grid, tree or analytical tables. This
ensures a consistent scrolling behaviour.

Different tabs on an object page can render different table types. For example, first tab can be a tree table while
the second tab can be a grid table.

Figure 271: Example of an object page with two tabs of different table types

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1659

Related Information

Example: Enable Internal Navigation for a List Report to Object Pages of Different Entity Sets [page 1820]

Disabling the Editing Status Filter

The editing status filter is enabled by default in the list report.

Figure 272: Editing status filter

If required, you can disable this filter for your app. To do so, you need to adapt your OData service in the
backend. The resulting metadata.xml file looks as shown below:

 <Annotation Term="Capabilities.NavigationRestrictions">
 <Record>
 <PropertyValue
Property="RestrictedProperties">
 <Collection>
 <Record>
 <PropertyValue
Property="NavigationProperty" NavigationPropertyPath="DraftAdministrativeData" />
 <PropertyValue
Property="FilterRestrictions">
 <Record>

<PropertyValue Property="Filterable" Bool="false" />
 </Record>
 </PropertyValue>
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
 </Annotation>

1660 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Adapting the Smart Filter Bar

For the SmartFilterBar, you can define application-specific selection fields by using
com.sap.vocabularies.UI.v1.SelectionFields and field groups for the filter popup.

 Note
Field groups are used in the SmartFilter only to group the fields. The grouping can only be seen in the
Adapt Filters popup. Any label specified in the annotations is used to override the property's default label.

To explicitly define which field groups are to be displayed in the Adapt Filters popup, use the
UI.FilterFacets annotation. If you don’t define any field groups using the annotation, the smart
filterbar displays all field groups. See also SmartFilterBar.

This video shows the step-by-step procedure for adding a default filter to the smart filter bar:

Figure 273: List Report: Adapt Filters Popup

 Note
The Editing Status filter is added automatically if you have a draft service.

Adding Filters

Use com.sap.vocabularies.UI.v1.SelectionFields to add filter fields to the smart filter bar. Specify
additional PropertyPath values as shown in the code sample below

Annotation XML

<Annotations Target="SEPMRA_PROD_MAN.SEPMRA_C_PD_ProductType"> ...
 <Annotation Term="UI.SelectionFields">
 <Collection>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1661

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.comp.smartfilterbar.SmartFilterBar.html

 <PropertyPath>Price</PropertyPath>
 <PropertyPath>Supplier</PropertyPath>
 </Collection> </Annotation>

Setting Default Filter Value

<Annotations Target="STTA_PROD_MAN.STTA_C_MP_ProductType/Supplier"> <Annotation Term="Common.FilterDefaultValue" String="100000047"/> </Annotations>

Related Information

Smart Filter Bar [page 2413]

Enabling the Search Function

To enable the search function, sap:searchable must be set to true for the root entity set.

Figure 274: List Report: Search

Code Sample

Metadata XML

<EntitySet
Name="SEPMRA_C_PD_Product"EntityType="SEPMRA_PROD_MAN.SEPMRA_C_PD_ProductType"
sap:searchable="true" sap:content-version="1"/>

Configuring the Delete Dialog Box

You can adapt the text in the Delete dialog box to match your requirements

When a user deletes a record from the list report, the text in the dialog box "Delete Object 500000000?" is
displayed in the delete confirmation, informing the user that object 500000000 is being deleted.

1662 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

The corresponding i18n key for the text used by the SAP Fiori elements framework in the delete confirmation
dialog is ST_GENERIC_DELETE_SELECTED. You can adapt it by maintaining a text for this key in the app’s i18n
file.

The context displayed in the Delete dialog box is taken from the Title property of the HeaderInfo
annotation. In the example below, the value mapped to the "so_id" property is shown in the dialog text.

 Sample Code

<Annotation Term="UI.HeaderInfo"> <Record>
 <PropertyValue Property="TypeName" String="Sales Order"/>
 <PropertyValue Property="TypeNamePlural" String="Sales Orders"/>
 <PropertyValue Property="Title">
 <Record Type="UI.DataField">
 <PropertyValue Property="Value" Path="so_id"/>
 </Record>
 </PropertyValue>
 </Record>
 </Annotation>

Related Information

Adapting Texts in the Delete Dialog Box (List Report) [page 1843]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1663

Configuring Object Page Features

You can use annotations to set up various elements on the object page, such as the header and sections.

Defining the SmartForm Column Layout

The column layout is used by default in the SmartForm on the object page. Do not include any layout or other
container controls into the GroupElement. Views are also not supported. This could damage the visual layout,
keyboard support, and screen-reader support.

You can use the useColumnLayoutForSmartForm switch in the manifest, at sap.ui.generic.app
\settings, to change from the default layout for the SmartForm (column layout) to the responsive grid
layout. To do so, set the switch to false.

 Sample Code

"sap.ui.generic.app": { "_version": "1.3.0",
 "settings": {
 " useColumnLayoutForSmartForm ":
false
 }

Displaying Actions on the Object Page

Specific rules apply when displaying actions on the object page.

Order of Actions

The order of the application-specific actions follows the order defined in the metadata file. Generic actions are
placed after application-specific actions.

Display Based on Mode

The display of actions depends on which mode the user is in:

● In Display mode, the relevant actions are displayed in the header toolbar (see Object Page Elements [page
1625]).

● In Edit or Create mode, the footer bar contains the relevant actions, for example, Save and Cancel (see
figure below).

1664 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Figure 275: Object Page: Action Triggered from Footer Bar (Edit Mode)

 Note
In non-draft applications, users can choose the Save and Edit button to save the current changes. The
object page stays in edit mode so that they can continue editing. You can enable this feature via SAPUI5
Visual Editor. For more information, see Adapting the UI: List Report and Object Page [page 1860].

If this feature is enabled, you have to make following changes:

● Change the type of the Save and Edit button to Emphasized and of the Save button to Transparent.
You can do so by changing the Type property of both buttons in SAPUI5 Visual Editor.

● Place the Save and Edit button as the first button in the footer and the Save button as the second
button, using SAPUI5 Visual Editor.

Setting up the Object Page Header

You have various options for defining the object page header.

The object page supports the standard header and the dynamic header. To ensure consistency across all
floorplans and to provide more flexibility, it is mandatory to use the dynamic header. See also Object Page
Headers [page 2488].

 Sample Code

"sap.ui.generic.app": { "_version": "1.3.0",
 "settings": {
 "forceGlobalRefresh": false,
 "objectPageHeaderType": "Dynamic",

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1665

 "showDraftToggle": false },

The object page header display is determined by the following vocabularies:

● com.sap.vocabularies.UI.v1.HeaderInfo/Title/Value determines the object title.
● com.sap.vocabularies.UI.v1.HeaderInfo/Description/Value determines the subtitle.
● com.sap.vocabularies.UI.v1.HeaderInfo/ImageUrl determines the image.
● com.sap.vocabularies.UI.v1.HeaderInfo/TypeName is used as the text for the link that navigates

back to the list report.
● com.sap.vocabularies.UI.v1.HeaderInfo/TypeImageUrl determines the icon.
● com.sap.vocabularies.UI.v1.HeaderInfo/Initials determines the initials

Main Elements

This figure shows how to set up the following basic elements for your object page header in your annotations:

Label in Figure Element

1 Title (Object Type)

2 Image of the object instance

3 Language-dependent product text in SAP back-end systems

4 Product title in SAP back-end systems

Figure 276: Object Page Header

1666 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Sample Code

This sample code is a selectable version of the code shown above for setting up the main elements on the
object page header.

<Annotation Term="UI.HeaderInfo"> <Record>
 <PropertyValue Property="TypeName" String="Product"/>
 <PropertyValue Property="TypeNamePlural" String="Products"/>
 <PropertyValue Property="ImageUrl" Path="ProductPictureURL"/>
 <PropertyValue Property="Title"
 <Record Type="UI.DataField">
 <PropertyValue Property="Value"
Path="to_ProductTextInCurrentLang/Name"/>
 </Record>
 </PropertyValue>
 PropertyValue Property="Description">
 <Record Type="UI.DataField">
 <PropertyValue Property="Value" Path="Product"/>
 </Record>
 </PropertyValue>
 </Record>
</Annotation>

For information on display options for a object, see Using Images, Initials, and Icons [page 1618].

Adapting the Object Page Title and Subtitle

You can use annotations to adapt the object page title and subtitle.

Figure 277: Object Page Title and Subtitle

To define or change the object page title and subtitle, adapt the OData annotations:

 Sample Code

<Annotations Target="STTA_PROD_MAN.STTA_C_MP_ProductType"> <Annotation Term="UI.HeaderInfo">
 <Record>
 <PropertyValue Property="Title">

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1667

 <Record Type="UI.DataField">
 <PropertyValue
Property="Value" Path="to_ProductTextInOriginalLang/Name"/>
 </Record>
 </PropertyValue>
 <PropertyValue Property="Description">
 <Record Type="UI.DataField">
 <PropertyValue
Property="Value" Path="ProductForEdit"/>
 </Record>
 </PropertyValue>
 </Record>
 </Annotation>
</Annotations>

Header Facets

You can include various types of header facets in your object page header, for example, displaying contact data
or a rating indicator.

You can use the annotation term UI.HeaderFacets to define which information is displayed in the header. For
example, you can define content blocks with several fields and contact details. You can also apply content
blocks for the shipping address, price, and category.

The last header section is filled with the data points of your metadata document
(com.sap.vocabularies.UI.v1.DataPoint). The title and value are taken into account.

Available header facets:

● Plain Text Facet [page 1669]
● Contact Facet [page 1671]
● Smart Micro Chart Facet [page 1673]
● Rating Indicator Facet [page 1683]
● Header Field Group [page 1681]
● Data Points [page 1682]
● Form Facet [page 1690]
● Address Facet in the Object Page Header [page 1692]

Enabling Simple Header Facets

If you want to display more content in your header facet, you can enable the simple header facet.

To do so, you must add the simpleHeaderFacets:true flag manually under sap.ui.generic.app →
pages (Object page)→ component → settings in the app's manifest.json file.

 Note
The simple header facet does not support the use of complex data points and
DataFieldForAnnotation, such as ratings, progress indicators, or charts.

1668 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

The following figure shows a sample simple header facet:

Figure 278: Simple Header Facet

 Sample Code
Enabling simple header facet

 "sap.ui.generic.app": {
 "_version": "1.2.0",

 "pages": [{
 "entitySet": "STTA_C_MP_Product",
 "component": {
 "name": "sap.suite.ui.generic.template.ListReport",
 "list": true,
 "settings": {
 "gridTable": false,
 "multiSelect": true,
 "smartVariantManagement": true
 }
 },
 "pages": [{
 "entitySet": "STTA_C_MP_Product",
 "component": {
 "name":
"sap.suite.ui.generic.template.ObjectPage",
 "settings": {
 "showRelatedApps": true,
 "gridTable": false,
 "editableHeaderContent": true,
 "simpleHeaderFacets":true, // This
Enables Simple Header Facet on the Object Page
 }
 },
 "pages": [{
 "navigationProperty": "to_ProductText",
 "entitySet": "STTA_C_MP_ProductText",
 "component": {
 "name":
"sap.suite.ui.generic.template.ObjectPage"
 }
 }]
 }]
 }] },

Plain Text Facet

You can add a plain text facet to the header area. This type of facet is suitable if you wish to add a single field or
block of text with a title, such as a description.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1669

A plain text facet shows the label property of the UI.ReferenceFacet as the title. It also shows the value
property of the DataField complex type of the FieldGroup annotation as the description.

To add a plain text facet, use the UI.HeaderFacet term and include the UI.ReferenceFacet complex type,
and then reference the FieldGroup annotation.

This is displayed as shown below within the object page header:

Figure 279: Plain Text Facet in Object Header

Code Samples

The following code samples show an example of how to create your annotations for a plain text header:

UI.ReferenceFacet

 <Record Type="UI.ReferenceFacet">
 <PropertyValue Property="Label" String="{@i18n>@ProductDescription}"/>
 <PropertyValue Property="Target" AnnotationPath="to_ProductTextInCurrentLang/
@UI.FieldGroup#PlainText"/>
</Record> </Collection>

UI.FieldGroup

 <Annotation Term="UI.FieldGroup" Qualifier="PlainText">
 <Record>
 <PropertyValue Property="Data">
 <Collection>
 <Record Type="UI.DataField">
 <PropertyValue Property="Value" Path="Description"/>
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
</Annotation>

UI.MultilineText

In addition, you must include a property annotation to indicate that this property contains a multiline text, as
shown below:

 <Annotations Target="STTA_PROD_MAN.STTA_C_MP_ProductTextType/Description">
 <Annotation Term="UI.MultiLineText"/>
</Annotations>

1670 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

CDS Annotations

If desired, you can set this up using a CDS annotation, as shown below:

CDS Annotation Definition

 //@Scope: #ELEMENT
multiLineText: Boolean default true;

CDS Source

 @UI.multiLineText
Description: String;

Contact Facet

Using the @Communication.Contact annotation, you can enable a quick view contact within the header form
facet, as shown below:

Code Samples

In the example, the UI.DataFieldForAnnotation points to a contact annotation on a different entity, which
has a 1:1 relation to the root entity, and so one contact is displayed in the header. The label, for example,
Supplier, is taken from UI.DataFieldForAnnotation, and the value, for example SAP, is the fn property of
the contact annotation.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1671

 Sample Code
Contact link

<Annotation Term="UI.FieldGroup" Qualifier="GeneralInformationForHeader"> <Record>
 <PropertyValue Property="Data">
 <Collection>
 <Record Type="UI.DataField">
 <PropertyValue
Property="Value" Path="to_StockAvailability/Quantity"/>
 <Annotation
Term="UI.Importance" EnumMember="UI.ImportanceType/Low"/>
 </Record>
 <Record Type="UI.DataField">
 <PropertyValue
Property="Value" Path="Weight"/>
 <Annotation
Term="UI.Importance" EnumMember="UI.ImportanceType/High"/>
 </Record>
 <Record Type="UI.DataField">
 <PropertyValue
Property="Label" String="WeightUnit [SmLiQv]"/>
 <PropertyValue
Property="Value" Path="WeightUnit"/>
 <Annotation
Term="UI.Importance" EnumMember="UI.ImportanceType/High"/>
 </Record>
 <Record
Type="UI.DataFieldForAnnotation">
 <PropertyValue
Property="Label" String="Supplier [ContactQV]"/>
 <PropertyValue
Property="Target" AnnotationPath="to_Supplier/@Communication.Contact"/>
 <Annotation
Term="UI.Importance" EnumMember="UI.ImportanceType/High"/>
 </Record>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="Label"
String="{@i18n>@GeneralInfoFieldGroupLabel}"/>
 </Record>
 </Annotation>

 Sample Code
Popover

<Annotation Term="Communication.Contact"> <Record>
 <PropertyValue Property="fn"
Path="CompanyName"/>
 <PropertyValue Property="email">
 <Collection>
 <Record>
 <PropertyValue Property="type"
EnumMember="Communication.ContactInformationType/work"/>
 <PropertyValue
Property="address" Path="EmailAddress"/>
 </Record>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="tel">
 <Collection>
 <Record>

1672 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 <PropertyValue Property="type"
EnumMember="Communication.PhoneType/preferred Communication.PhoneType/work"/>
 <PropertyValue Property="uri"
Path="PhoneNumber"/>
 </Record>
 <Record>
 <PropertyValue Property="type"
EnumMember="Communication.PhoneType/fax"/>
 <PropertyValue Property="uri"
Path="FaxNumber"/>
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
 </Annotation>

More Information

For more information about the Communication.Contact annotation, see Adding a Contact Facet [page
1703].

Smart Micro Chart Facet

You can add a SmartMicroChart control to a facet within the header area on the object page.

A smart micro chart facet contains a title, subtitle, SmartMicroChart control, and a footer. The
SmartMicroChart control supports the following micro charts in the object page header:

● Smart area micro chart
● Smart bullet micro chart
● Smart radial micro chart
● Smart column micro chart
● Smart line micro chart
● Smart harvey micro chart
● Smart stacked bar micro chart

To add a smart micro chart facet, in the local annotations file, use a UI.HeaderFacets term and the complex
type UI.ReferenceFacet and reference the UI.Chart as shown in the sample code below.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1673

Figure 280: Object Page Header

Code Samples

UI.HeaderFacets and UI.ReferenceFacet

<Annotations Target="STTA_PROD_MAN.STTA_C_MP_ProductType"> <Annotation Term="UI.HeaderFacets">
 <Collection>
 <Record Type="UI.ReferenceFacet">
 <PropertyValue Property="Target"
AnnotationPath="to_ProductSalesPrice/@UI.Chart"/>
 </Record>
 </Collection>
 </Annotation>
</Annotations>

UI.Chart Annotations

The UI.Chart Title property is used for the title.

The UI.Chart Description property is used for the subtitle.

Smart Area Micro Chart

<Annotation Term="UI.Chart"> <Record Type="UI.ChartDefinitionType">
 <PropertyValue Property="Title" String="Sales Price" />
 <PropertyValue Property="Description" String="Area Micro Chart" />
 <PropertyValue Property="ChartType" EnumMember="UI.ChartType/Area" />
 <PropertyValue Property="Dimensions">
 <Collection>
 <PropertyPath>PriceDay</PropertyPath>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="Measures">
 <Collection>
 <PropertyPath>AreaChartPrice</PropertyPath>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="MeasureAttributes">
 <Collection>
 <Record Type="UI.ChartMeasureAttributeType">
 <PropertyValue Property="Measure"
PropertyPath="AreaChartPrice" />
 <PropertyValue Property="Role"
EnumMember="UI.ChartMeasureRoleType/Axis1" />

1674 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 <PropertyValue Property="DataPoint"
AnnotationPath="@UI.DataPoint#AreaChartPrice" />
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
</Annotation>

Smart Bullet Micro Chart

<Annotation Term="UI.Chart"> <Record Type="UI.ChartDefinitionType">
 <PropertyValue Property="Title" String="Sales Revenue" />
 <PropertyValue Property="Description" String="Bullet Micro Chart" />
 <PropertyValue Property="ChartType" EnumMember="UI.ChartType/Bullet" />
 <PropertyValue Property="Measures">
 <Collection>
 <PropertyPath>BulletChartRevenue</PropertyPath>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="MeasureAttributes">
 <Collection>
 <Record Type="UI.ChartMeasureAttributeType">
 <PropertyValue Property="Measure"
PropertyPath="BulletChartRevenue" />
 <PropertyValue Property="Role"
EnumMember="UI.ChartMeasureRoleType/Axis1" />
 <PropertyValue Property="DataPoint"
AnnotationPath="@UI.DataPoint#BulletChartRevenue" />
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
</Annotation>

Smart Radial Micro Chart

 Sample Code

<Annotation Term="UI.Chart" Qualifier="SpecificationWidthRadialChart"> <Record Type="UI.ChartDefinitionType">
 <PropertyValue Property="Title" String="Product Width
Specification"/>
 <PropertyValue Property="Description" String="No
navigation with qualifier"/>
 <PropertyValue Property="ChartType"
EnumMember="UI.ChartType/Donut"/>
 <PropertyValue Property="Measures">
 <Collection>
 <PropertyPath>Width</PropertyPath>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="MeasureAttributes">
 <Collection>
 <Record Type="UI.ChartMeasureAttributeType">
 <PropertyValue Property="Measure"
PropertyPath="Width"/>
 <PropertyValue Property="Role"
EnumMember="UI.ChartMeasureRoleType/Axis1"/>
 <PropertyValue Property="DataPoint"
AnnotationPath="@UI.DataPoint#Width"/>
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
 </Annotation>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1675

Smart Column Micro Chart

 Sample Code

<Annotation Term="UI.Chart" Qualifier="SpecificationWidthColumnChart"> <Record Type="UI.ChartDefinitionType">
 <PropertyValue Property="Title" String="Product Width
Specification Column Chart"/>
 <PropertyValue Property="Description"
String="Describe Column Chart"/>
 <PropertyValue Property="ChartType"
EnumMember="UI.ChartType/Column"/>
 <PropertyValue Property="Criticality"
Path="criticalityValue"/>
 <PropertyValue Property="Measures">
 <Collection>
 <PropertyPath>Width</PropertyPath>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="Dimensions">
 <Collection>
 <PropertyPath>Day</PropertyPath>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="MeasureAttributes">
 <Collection>
 <Record Type="UI.ChartMeasureAttributeType">
 <PropertyValue Property="Measure"
PropertyPath="Width"/>
 <PropertyValue Property="Role"
EnumMember="UI.ChartMeasureRoleType/Axis1"/>
 <PropertyValue Property="DataPoint"
AnnotationPath="@UI.DataPoint#Width"/>
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
 </Annotation>

Smart Line Micro Chart

 Sample Code

<Annotation Term="UI.Chart" Qualifier="SpecificationWidthtLineChart"> <Record Type="UI.ChartDefinitionType">
 <PropertyValue Property="Title" String="Product Width
Specification Line Chart"/>
 <PropertyValue Property="Description"
String="Describe Line Chart"/>
 <PropertyValue Property="ChartType"
EnumMember="UI.ChartType/Line"/>
 <PropertyValue Property="Measures">
 <Collection>
 <PropertyPath>Width</PropertyPath>
 <PropertyPath>Depth</PropertyPath>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="Dimensions">
 <Collection>
 <PropertyPath>Day</PropertyPath>
 <PropertyPath>Day</PropertyPath>
 </Collection>
 </PropertyValue>

1676 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 <PropertyValue Property="MeasureAttributes">
 <Collection>
 <Record Type="UI.ChartMeasureAttributeType">
 <PropertyValue Property="Measure"
PropertyPath="Width"/>
 <PropertyValue Property="Role"
EnumMember="UI.ChartMeasureRoleType/Axis2"/>
 <PropertyValue Property="DataPoint"
AnnotationPath="@UI.DataPoint#Width"/>
 </Record>
 <Record Type="UI.ChartMeasureAttributeType">
 <PropertyValue Property="Measure"
PropertyPath="Depth"/>
 <PropertyValue Property="Role"
EnumMember="UI.ChartMeasureRoleType/Axis2"/>
 <PropertyValue Property="DataPoint"
AnnotationPath="@UI.DataPoint#Depth"/>
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
 </Annotation>

Smart Harvey Micro Chart

 Sample Code

<Annotation Term="UI.Chart" Qualifier="SpecificationWidthHarveyChart"> <Record>
 <PropertyValue EnumMember="UI.ChartType/Pie"
Property="ChartType" />
 <PropertyValue Property="Title" String="Sold to
Produced Harvey Chart" />
 <PropertyValue Property="Description" String="Harvey
Chart" />
 <PropertyValue Property="Measures">
 <Collection>
 <PropertyPath>Sold</PropertyPath>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="MeasureAttributes">
 <Collection>
 <Record Type="UI.ChartMeasureAttributeType">
 <PropertyValue Property="DataPoint"
AnnotationPath="@UI.DataPoint" />
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
 </Annotation>

Smart Stacked Bar Micro Chart

 Sample Code

<Annotation Term="UI.Chart" Qualifier="SalesPriceStackedBarChart"> <Record Type="UI.ChartDefinitionType">
 <PropertyValue Property="Title" String="Sales Price"/>
 <PropertyValue Property="Description" String="Stacked
BarChart"/>
 <PropertyValue Property="ChartType"
EnumMember="UI.ChartType/BarStacked"/>
 <PropertyValue Property="Dimensions">
 <Collection>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1677

 <PropertyPath>Revenue</PropertyPath>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="Measures">
 <Collection>
 <PropertyPath>Width</PropertyPath>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="MeasureAttributes">
 <Collection>
 <Record Type="UI.ChartMeasureAttributeType">
 <PropertyValue Property="Measure"
PropertyPath="Width"/>
 <PropertyValue Property="Role"
EnumMember="UI.ChartMeasureRoleType/Axis1"/>
 <PropertyValue Property="DataPoint"
AnnotationPath="@UI.DataPoint#Width"/>
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
 </Annotation>

 Note
The template does not currently support the use of navigation properties in the UI.Chart term for the
smart micro chart (see example below).

Figure 281: Navigation Property

UI.DataPoint Annotation
The DataPoint property of the MeasureAttributes of the Chart annotation has to point to the
UI.DataPoint annotation.

The smart micro chart supports both the Criticality and CriticalityCalculation properties of a
UI.DataPoint. For an example of how to use the CriticalityCalculation, see the smart area micro
chart annotation example. For an example of how to use the Criticality property, see the smart bullet micro
chart annotation example.

 Note
Although the Title for the UI.DataPoint is mandatory, the smart micro chart doesn't use it.

Smart Area Micro Chart

<Annotation Term="UI.DataPoint" Qualifier="AreaChartPrice">

1678 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 <Record>
 <PropertyValue Property="Title" String="Sales Price" />
 <PropertyValue Property="Value" Path="AreaChartPrice" />
 <PropertyValue Property="TargetValue" Path="TargetPrice" />
 <PropertyValue Property="CriticalityCalculation">
 <Record>
 <PropertyValue Property="ImprovementDirection"
EnumMember="UI.ImprovementDirectionType/Target" />
 <PropertyValue Property="DeviationRangeHighValue"
Path="DeviationUpperBoundPrice" />
 <PropertyValue Property="DeviationRangeLowValue"
Path="DeviationLowerBoundPrice" />
 <PropertyValue Property="ToleranceRangeHighValue"
Path="ToleranceUpperBoundPrice" />
 <PropertyValue Property="ToleranceRangeLowValue"
Path="ToleranceLowerBoundPrice" />
 </Record>
 </PropertyValue>
 </Record>
</Annotation>

Smart Bullet Micro Chart

<Annotation Term="UI.DataPoint" Qualifier="BulletChartRevenue"> <Record>
 <PropertyValue Property="Title" String="Sales Revenue" />
 <PropertyValue Property="Value" Path="BulletChartRevenue" />
 <PropertyValue Property="TargetValue" Path="TargetRevenue" />
 <PropertyValue Property="ForecastValue" Path="ForecastRevenue" />
 <PropertyValue Property="MinimumValue" Decimal="100" />
 <PropertyValue Property="MaximumValue" Decimal="300" />
 <PropertyValue Property="Criticality" Path="Criticality" />
 </Record> </Annotation>

Smart Radial Micro Chart and Smart Column Micro Chart

 Sample Code

<Annotation Term="UI.DataPoint" Qualifier="Width"> <Record>
 <PropertyValue Property="Value" Path="Width"/>
 <PropertyValue Path="Day1" Property="Title" />
 <PropertyValue Property="Description" String="Bullet
Micro Chart"/>
 <PropertyValue Property="TargetValue" Path="Weight"/>
 <PropertyValue Property="ForecastValue"
Path="Height"/>
 <PropertyValue Property="MinimumValue" Decimal="0"/>
 <PropertyValue Property="MaximumValue" Decimal="100"/>
 <PropertyValue Property="Criticality"
Path="criticalityValue"/>
 </Record>
 </Annotation>

Smart Line Micro Chart

For the width Datapoint annotation, see the UI.DataPoint Annotation for Smart Radial Micro Chart.

Depth Datapoint annotation:

 Sample Code

<Annotation Term="UI.DataPoint" Qualifier="Depth">

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1679

 <Record>
 <PropertyValue Property="Value" Path="Depth"/>
 <PropertyValue Path="Day2" Property="Title" />
 <PropertyValue Property="MinimumValue" Decimal="0"/>
 <PropertyValue Property="MaximumValue" Decimal="200"/>
 <PropertyValue Property="Criticality"
Path="criticalityValue"/>

 </Record>

Smart Harvey Micro Chart

 Sample Code

<Annotation Term="UI.DataPoint"> <Record>
 <PropertyValue Path="Sold" Property="Value" />
 <PropertyValue Path="Produced"
Property="MaximumValue" />
 <PropertyValue Path="criticalityValue"
Property="Criticality" />
 </Record>
 </Annotation>

Smart Stacked Bar Micro Chart

For the width Datapoint annotation, see the UI.DataPoint annotation for the Smart Radial Micro Chart.

 Note
The following must all point to the same property in the entityType:

● Measures property of the Chart annotation
● Measure property of the MeasureAttributes property of the Chart annotation
● Value property of the DataPoint annotation

Unit of Measure Annotations
The Unit of Measure is used for the footer of the smart micro chart. An annotation for the Unit of
Measure is included in the example below. The example uses the Measures.ISOCurrency term and it is
applied to the entity type property that is used as the value property of the UI.DataPoint.

<Annotations xmlns="http://docs.oasis-open.org/odata/ns/edm"
Target="STTA_PROD_MAN.STTA_C_MP_ProductSalesPriceType/AreaChartPrice">> <Annotation Term="Measures.ISOCurrency" Path="Currency"/>
</Annotations>
<Annotations xmlns="http://docs.oasis-open.org/odata/ns/edm"
Target="STTA_PROD_MAN.STTA_C_MP_ProductSalesRevenueType/BulletChartRevenue">>
 <Annotation Term="Measures.ISOCurrency" Path="Currency"/>
 </Annotations>
 <Annotations xmlns="http://docs.oasis-open.org/odata/ns/edm"
Target="STTA_PROD_MAN.STTA_C_MP_ProductSalesRevenueType/
BulletChartMonthRevenue">>
 <Annotation Term="Measures.ISOCurrency" Path="Currency"/>
 </Annotations>
 <Annotations xmlns="http://docs.oasis-open.org/odata/ns/edm"
Target="STTA_PROD_MAN.STTA_C_MP_ProductSalesRevenueType/BulletChartNetRevenue">
 <Annotation Term="Measures.ISOCurrency" Path="Currency"/>
 </Annotations>
 <Annotations xmlns="http://docs.oasis-open.org/odata/ns/edm"
Target="STTA_PROD_MAN.STTA_C_MP_ProductType/SpecificationWidthHarveyChart">

1680 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 <Annotation Term="Measures.ISOCurrency" Path="Currency"/>
 </Annotations>
 <Annotations xmlns="http://docs.oasis-open.org/odata/ns/edm"
Target="STTA_PROD_MAN.STTA_C_MP_ProductType/Sold">
 <Annotation Term="Measures.ISOCurrency" Path="WeightUnit" />
 </Annotations>

Header Field Group

A field group defines the fields displayed within a specific reference facet. For example, the figure below shows
the following fields within the General Information section (created with a header facet):

● Quantity
● Weight
● Supplier

Figure 282: Object Page: Header Field Group

Code Sample

In the example below, the first field group refers to general information.

<Annotation Term="UI.FieldGroup" Qualifier="GeneralInformationForHeader"> <Record>
 <PropertyValue Property="Data">
 <Collection>
 <Record Type="UI.DataField">
 <PropertyValue Property="Value" Path="to_StockAvailability/Quantity"/>
 <Annotation Term="UI.Importance" EnumMember="UI.ImportanceType/Low"/>
 </Record>
 <Record Type="UI.DataField">
 <PropertyValue Property="Value" Path="Weight"/>
 <Annotation Term="UI.Importance" EnumMember="UI.ImportanceType/High"/>
 </Record>
 <Record Type="UI.DataFieldForAnnotation">
 <PropertyValue Property="Label" String="Supplier"/>
 <PropertyValue Property="Target" AnnotationPath="to_Supplier/
@Communication.Contact"/>
 <Annotation Term="UI.Importance" EnumMember="UI.ImportanceType/High"/>
 </Record>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="Label" String="{@i18n>@GeneralInfoFacetLabel}"/>
 </Record> </Annotation>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1681

Data Points

A data point represents a single point of data. It is typically a number but can also be textual, for example, a
status value.

The image below shows the data points Product Category and Price in the object page header.

Figure 283: Object Page: DataPoints

This video shows the step-by-step procedure for adding a data point header to an object page:

Code Samples

UI.Reference Facet

If you add a UI.ReferenceFacet that points to UI.DataPoint, the title and value of the UI.DataPoint will
be rendered.

<Annotation Term="UI.HeaderFacets"> <Collection>
 <Record Type="UI.ReferenceFacet">
 <PropertyValue Property="Label" String="{@i18n>@TechnicalData}"/>
 <PropertyValue AnnotationPath="@UI.FieldGroup#TechnicalData"
Property="Target"/>
 </Record>
 <Record Type="UI.ReferenceFacet">
 <PropertyValue AnnotationPath="@UI.DataPoint#Price"
Property="Target"/>
 </Record>
 <Record Type="UI.ReferenceFacet">
 <PropertyValue AnnotationPath="@UI.DataPoint#ProductCategory"
Property="Target"/>
 </Record>
 <Record Type="UI.ReferenceFacet">
 <PropertyValue Property="Label" String="Employee"/>
 <PropertyValue AnnotationPath="to_Supplier/@Communication.Contact"
Property="Target"/>
 </Record>
</Annotation>

UI.DataPoint

Each UI.DataPoint annotation term must point to a qualifier, as shown below:

<Annotation Term="UI.DataPoint" Qualifier="Price"> <Record>

1682 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 <PropertyValue Property="Value" Path="Price"/>
 <PropertyValue Property="Title" String="Price"/>
 </Record>
</Annotation>
<Annotation Term="UI.DataPoint" Qualifier="ProductCategory">
 <Record>
 <PropertyValue Property="Value" Path="ProductCategory"/>
 <PropertyValue Property="Title" String="Category"/>
 </Record>
</Annotation>

Rating Indicator Facet
You can add a read-only rating indicator to the object page header.

The rating indicator allows you to visually represent the rating types described below.

Aggregated Rating

This rating shows an average of all ratings recorded for the object and is displayed as shown below in the object
page header (Display mode):

Figure 284: Aggregated Rating Indicator

When the rating indicator shows an aggregated rating, it contains the following elements:

● Title
● Subtitle, displaying the total number of ratings

 Note
You have the option to specify a text in the subtitle to be more descriptive (example: 139 user reviews,
where "139" is the number of reviews received, and "user reviews" is the text added). For information,
see the code sample below.

● Rating control, displaying the visual representation of the rating (stars)
● Footer text, displaying the calculated average of all ratings

 Note
If you wish to use an aggregated rating, you must use local annotations (as opposed to CDS annotations).
For information, see the code sample below.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1683

Non-aggregated Rating

This rating shows a single rating, such the user's own rating for the object. In the examples below, the non-
aggregated rating is used to display the user's own rating. This rating type is displayed as shown below:

Figure 285: Non-aggregated Rating Indicator

When the rating indicator shows a non-aggregated rating, it contains the following elements:

● Title
● Subtitle
● Rating control, displaying the visual representation of the rating (stars)

 Note
There is no footer for this rating type.

If you wish to use a non-aggregated rating, you can use either local annotations or CDS annotations. See
the code samples below.

Rating Indicator in Edit Mode

When the object page is in Edit mode, the rating indicator moves into the header facet and appears as shown
below with the title only. For an aggregated rating, the number of ratings is shown in parentheses after the
stars. Note that the rating indicator is still read-only in this mode.

1684 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Figure 286: Rating Indicator in Edit Mode

Code Samples

To add a rating indicator facet to the object page header, use a UI.ReferenceFacet that points to a
UI.DataPoint with Rating as the UI.VisualizationType as shown in the code sample below.

The rating indicator uses the values of the UI.DataPoint, which contains the path to the field in the back-end
system that provides the rating value.

Set the Maximum Number of Stars

The maximum number of stars (TargetValue) can be set in one of the following ways:

● Specified in the annotation, as shown in the sample code for the aggregated rating
● Determined by a path to a specific field in the back-end system, as shown in the sample code for the non-

aggregated rating

Change the Subtitle

The subtitle is set differently for the aggregated and non-aggregated ratings.

To render a subtitle for an aggregated rating, set the SampleSize property for the term UI.DataPoint. The
SampleSize property value (for example, 139) is then concatenated with a text (for example, user reviews).
You can change this text by annotating the SampleSize with Common.Label, as shown in the sample code for
the aggregated rating. Otherwise, the default text (ratings) is used.

To render a subtitle for a non-aggregated rating, the Description property needs to be set for the term
UI.DataPoint, as shown in the sample code for the non-aggregated rating.

Aggregated Rating

<Record Type="UI.ReferenceFacet"> <PropertyValue Property="Target" AnnotationPath="to_ProductRating/
@UI.DataPoint#Aggregated"/>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1685

</Record>
<Annotation Term="UI.DataPoint" Qualifier="Aggregated">
 <!--aggregated rating -->
 <Record>
 <PropertyValue Property="Title" String="{@i18n>@ProductAverageRating}"/>
 <PropertyValue Property="Value" Path="AverageRating"/>
 <PropertyValue Property="TargetValue" Int="3"/>
 <PropertyValue Property="Visualization" EnumMember="UI.VisualizationType/
Rating"/>
 <PropertyValue Property="SampleSize" Path="ReviewCount"/>
 </Record>
</Annotation>

<!--replace default subtitle text with custom text -->

<Annotations Target="STTA_PROD_MAN.STTA_C_MP_ProductRatingType/ReviewCount">
 <Annotation Term="Common.Label" String="user reviews"/> </Annotations>

Non-aggregated Rating

 <Record Type="UI.ReferenceFacet">
 <PropertyValue Property="Target" AnnotationPath="to_ProductRating/
@UI.DataPoint#NonAggregated"/>
</Record>
<!-- non aggregated rating -->
<Annotation Term="UI.DataPoint" Qualifier="NonAggregated">
 <Record>
 <PropertyValue Property="Title" String="{@i18n>@ProductUserRating}"/>
 <PropertyValue Property="Description" String="@i18n>@MyRating}"/>
 <PropertyValue Property="Value" Path="Rating"/>
 <PropertyValue Property="TargetValue" Path="MaxRating"/>
 <PropertyValue Property="Visualization" EnumMember="UI.VisualizationType/
Rating"/>
 </Record>
</Annotation>

CDS Annotation Source (Non-aggregated Rating Only)

 @UI.dataPoint: {
 title:'Product Rating',
 description: 'Rating Indicator',
 targetValueElement: 'MaxRating',
 visualization: #RATING
}

@EndUserText.label: 'Rating'
ProductRating.Rating as Rating

Progress Indicator Facet

You can add a progress indicator to a header facet on the object page.

The progress indicator allows you to visually represent the level of completion of a goal or target, such as a
project's progress, sales progress for the current year’s goal, the development stage of a product, stock
availability, and so on. The figure below shows a progress indicator within the object page header.

1686 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Figure 287: Progress Indicator in Object Page Header

As shown below, progress can be expressed either as a percentage or in absolute numbers (for example, "8 of
10"), and it can include a unit of measure, such as PC, GB, and so on.

Figure 288: Progress Indicator: Percent or Number

The progress indicator in the header facet is made up of sections to include a title, subtitle, and footer:

Figure 289: Sections of Progress Indicator

Code Samples

UI.ReferenceFacet

To display the progress indicator in the object page header, add a record to the UI.HeaderFacets collection.
This record must be of type UI.ReferenceFacet and contain an AnnotationPath that points to a
UI.DataPoint with the visualization type Progress. The properties for the data point can be included in
either the entityType being annotated (Target) or in another entityType different from the Target, in
which case the AnnotationPath contains a navigation path as shown below.

<Annotations Target="STTA_PROD_MAN.STTA_C_MP_ProjectType"> <Annotation Term="UI.HeaderFacets">
 <Collection>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1687

 <Record Type="UI.ReferenceFacet">
 <PropertyValue Property="Target"
 AnnotationPath="to_ProgressType/@UI.DataPoint#Progress"/>
 </Record>
 </Collection>
 </Annotation> </Annotations>

 Note
In the example above, "UI" is an alias for the com.sap.vocabularies.UI.v1 vocabulary.

CDS: UI.DataPoint

In CDS, annotate the EntityType containing the properties required for the data point as shown below.

@UI.dataPoint: { title:'{@i18n>Title}',
 description: {@i18n>SubTitle},
 targetValue: 150,
 criticality: 'Criticality',
 visualization: #PROGRESS
}
ProjectProgress.Progress

 Note
● The data point annotation is for a Property even if the UI vocabulary specifies an EntityType as the

Target.
● The property name will be used as the Qualifier in the resulting (generated) annotation.

The generated annotation will be similar to the example below:

UI.DataPoint

Annotate the entityType containing the properties required for the data point as shown below.

<Annotations Target="STTA_PROD_MAN.STTA_C_MP_ProgressType"> <Annotation Term="UI.DataPoint" Qualifier="Progress">
 <Record>
 <PropertyValue Property="Title" String="{@i18n>Title}"/>
 <PropertyValue Property="Description" String="{@i18n>SubTitle}"/>
 <PropertyValue Property="Value" Path="Progress"/>
 <PropertyValue Property="TargetValue" Decimal="150"/>
 <PropertyValue Property="Criticality" Path="Criticality "/>
 <PropertyValue Property="Visualization"
EnumMember="UI.VisualizationType/Progress"/>
 </Record>
 </Annotation>
</Annotations>

UoM and Common.Label

Additionally, for the unit of measure (UoM) and the footer, annotate the entityType’s property so that it
includes the path of the Value property for the data point. For example, in the code sample above, the path for
the data point Value property is Value, which is then used to annotate the entityType. In the examples
below, this is represented by <Annotations Target="STTA_PROD_MAN.STTA_C_MP_ProgressType/
Value">.

1688 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Note that the unit of measure can be annotated with Unit or ISOCurrency as shown below. For the footer, the
term Common.Label needs to be applied.

Progress Indicator: UoM.Unit

<Annotations Target="STTA_PROD_MAN.STTA_C_MP_ProgressType/Value"> <Annotation Term="UoM.Unit" Path="UoM">
 <Annotation Term="Common.Label" String="{@i81n>Footer}"> </Annotations>

Progress Indicator: UoM.ISOCurrency

<Annotations Target="STTA_PROD_MAN.STTA_C_MP_ ProgressType/Value"> <Annotation Term="UoM.ISOCurrency" Path="UoM">
 <Annotation Term="Common.Label" Path="Footer”> </Annotations>

 Note
In the examples above, UoM is an alias for the Org.OData.Measures.V1 vocabulary.

Rendering Rules

● The Value and Title properties are mandatory. Without a value, the progress cannot be calculated. A
title should always be provided for an object page header facet, as this is required by the DataPoint term
in the UI vocabulary.

● The TargetValue property is mandatory when using a UoM that is not expressed as a percentage (for
example, currency, CM, PC, and so on), or if no UoM is provided.

● The remaining properties - Unit of Measure, Subtitle, and Footer - are optional.
● If the value of the Unit of Measure property is "%", then the Value property will be used directly as a

percentage.
● If the value of the Unit of Measure is not "%" or is not provided, then the progress will be calculated

using the Value and TargetValue properties according to the formula Progress = Value /
TargetValue.

● Additionally, the following checks will be done:
○ Division by zero will result in progress being zero (since it cannot be calculated).
○ Progress must be a value between 0 and 100.

○ If the progress is less than zero, then no color will appear in the progress bar.
○ If the progress is greater than 100, then the progress bar will be fully colored.
○ In both cases the actual value of the progress will be displayed in the bar as shown below.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1689

Figure 290: Values in Progress Indicator

Key Value Facet

If you add a UI.ReferenceFacet that points to UI.DataPoint, the title and value of the UI.DataPoint are
rendered as follows:

 Sample Code
 <Annotation Term="UI.DataPoint" Qualifier="ProductCategory">
 <Record>
 <PropertyValue Property="Value" Path="ProductCategory"/>
 <PropertyValue Property="Title"
String="{@i18n>@ProductCategory}"/>
 </Record>
</Annotation>

Form Facet

You can add a form facet to the object page header. To do so, add a UI.ReferenceFacet that points to
UI.FieldGroup or UI.Identification. If you provide a label in the UI.ReferenceFacet, it is used as the
form's title.

1690 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Sample Code
 <Record Type="UI.ReferenceFacet">
 <PropertyValue Property="Label" String="{@i18n>@TechnicalData}"/>
 <PropertyValue AnnotationPath="@UI.FieldGroup#TechnicalData"
Property="Target"/>
</Record>

The header form facet supports the display of a contact with a quick view, as shown below:

The sample code below shows the UI.FieldGroup.

 Sample Code
 <Annotation Term="UI.FieldGroup" Qualifier="Test">
 <Record>
 <PropertyValue Property="Data">
 <Collection>
 <Record Type="UI.DataField">
 <PropertyValue Property="Value" Path="Product" />
 <Annotation Term="UI.Importance" EnumMember="UI.ImportanceType/
High" />
 </Record>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1691

 <Record Type="UI.DataField">
 <PropertyValue Property="Value" Path="ProductCategory" />
 <Annotation Term="UI.Importance" EnumMember="UI.ImportanceType/
Medium" />
 </Record>
 <Record Type="UI.DataFieldForAnnotation">
 <PropertyValue Property="Label" String="Supplier" />
 <PropertyValue Property="Target" AnnotationPath="to_Supplier/
@Communication.Contact" />
 </Record>
 <Record Type="UI.DataField">
 <PropertyValue Property="Value" Path="Price" />
 <Annotation Term="UI.Importance" EnumMember="UI.ImportanceType/
Medium" />
 </Record>
 <Record Type="UI.DataFieldWithIntentBasedNavigation">
 <PropertyValue Property="Label" String="Weight (with IBN)" />
 <PropertyValue Property="Value" Path="Weight" />
 <PropertyValue Property="SemanticObject" String="EPMProduct" />
 <PropertyValue Property="Action" String="manage_st" />
 </Record>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="Label" String="Product Information" />
 </Record>
</Annotation>

In the sample code above, the third record is a UI.DataFieldForAnnotation, which, in this case, points to a
contact annotation on a different entity that has a 1:1 relation to the root entity. The label is derived from the
label in the UI.DataFieldForAnnotation and the value is the fn property of the contact annotation.

The last record is a UI.DataFieldWithIntentBasedNavigation to render the property value as a link,
allowing for navigation to the semantic object.

 Note
Contacts on 1:n relations are not supported in the header.

Address Facet in the Object Page Header

If you add a UI.ReferenceFacet that points to an address annotation, an address facet is displayed in the
object page header.

It shows the label of the UI.ReferenceFacet and, below, only the label property of the address annotation.
This is why the label property needs to contain the whole formatted address, with \n for new lines.

 Note
Other properties of the address annotation are not interpreted and rendered.

1692 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Example value for the label property: "Mail Drop: TNE QB\n123 Main Street\nAny Town, CA
91921-1234\nU.S.A.". This is shown as follows:

 Sample Code
 <Record Type="UI.ReferenceFacet">
 <PropertyValue Property="Label" String="Shipping Address"/>
 <PropertyValue AnnotationPath="@Communication.Address" Property="Target"/>
</Record>

Enabling Actions in Object Page Header

You can enable generic actions in your object header.

All data fields with com.sap.vocabularies.UI.v1.DataFieldForAction are interpreted as actions. The
system renders a button within the header displaying the text of the data field label.

Data fields for actions that you annotate with high importance are displayed to the left of the Edit/Delete
buttons, and those without high importance are displayed to the right. In addition to the importance, you need
to specify the action for the data field and implement the action handling in the OData service (DPC:
execute_action), as shown below for the Copy button. See the code samples below for information on where
to place the data fields for actions.

Figure 291: Object Page: Actions Defined for the EntitySet

Annotations for the Copy button:

<Annotation Term="UI.Identification"> <Collection>
 <Record Type="UI.DataFieldForAction">
 <PropertyValue Property="Label" String="Copy" />
 <PropertyValue Property="Action"
 String="STTA_PROD_MAN.STTA_PROD_MAN_Entities/
STTA_C_MP_ProductCopy" />

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1693

 <Annotation Term="UI.Importance" EnumMember="UI.ImportanceType/
High" />
 </Record>
...
 </Collection>
</Annotation>

Edit and Delete Buttons

The Edit and Delete buttons are displayed as shown above, if the following conditions are met:

● Edit button: sap:updatable is not set to false
● Delete button: sap:deletable is not set to false

 Note
If you want to specify conditions for deletion or updates (using the deletable-path or updatable path
annotation), you need to ensure that you have not made the sap:deletable or sap:updatable setting
in your annotations.

Show or Hide Edit and Delete Buttons (Using updatable-path and deletable-
path Annotations)

You can choose to display or hide the Delete or Edit button on the object page based on certain conditions in
your back-end system. For example, you may wish to disable editing or deletion for a sales order that has
already been paid.

Within your annotation, you set the deletable-path (for the Delete button) or updatable-path (for the Edit
button) to point to a particular property of an object (entity) in the back-end system that is either true or
false. If the value of this property is true, the Delete or Edit button is displayed; if it is false, it is hidden.

 Note
● This is done in conjunction with the deletable path annotation for the list report.
● If you want to specify conditions for deletion or updates (using the deletable-path or updatable-

path annotation), you need to ensure that you have not made the sap:deletable or
sap:updatable setting in your annotations.

1694 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Code Samples

deletable-path
The code sample below shows you how to set up your annotation to display or hide the Delete button, based on
the value of the Delete_mc property in the back-end system.

<Annotations Target="STTA_PROD_MAN.STTA_PROD_MAN_Entities/STTA_C_MP_Product"> <Annotation Term=" Org.OData.Capabilities.V1.DeleteRestrictions">
 <Record>
 <PropertyValue Property="Deletable" Path="Delete_mc"/>
 </Record>
 </Annotation> </Annotations>

updatable-path
The code sample below shows you how to set up your annotation to display or hide the Edit button, based on
the value of the Updatable_mc property in the back-end system.

<Annotations Target="STTA_PROD_MAN.STTA_PROD_MAN_Entities/STTA_C_MP_Product"> <Annotation Term="Org.OData.Capabilities.V1.UpdateRestrictions">
 <Record>
 <PropertyValue Property="Updatable" Path="Updatable_mc"/>
 </Record>
 </Annotation> </Annotations>

Smart Controls in Object Page Header

You can use various smart controls within the object page header. You use annotations to set up the smart
controls.

Enabling Editable Header Fields

You can enable an option to make fields in the object page header editable in edit mode.

To do this, set the editableHeaderContent parameter to true in the manifest.json file as shown in the
example below. This provides a form group for the title and subtitle of the HeaderInfo and one form group for
each header facet.

 Sample Code

"sap.ui.generic.app": { "pages": [
 {
 "entitySet": "SEPMRA_C_PD_Product",
 "component": {
 "name": "sap.suite.ui.generic.template.ListReport",
 "list": true
 },
 "pages": [

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1695

 {
 "entitySet": "SEPMRA_C_PD_Product",
 "component": {
 "name":
"sap.suite.ui.generic.template.ObjectPage",
 "settings": {
 "editableHeaderContent": true
 }
 },
 "pages": [
 {
 "navigationProperty": "to_ProductText",
 "entitySet": "SEPMRA_C_PD_ProductText",
 "component": {
 "name":
"sap.suite.ui.generic.template.ObjectPage"
 }
 }
]
 }
]
 }
]
 },

Adding Subpages

If required, you can add additional subpages based on the object page template to your app.

The SAP Web IDE wizard allows you to create one subpage (detail page) for the object page when you create
your app. This is expressed in the code as a 1:n association to the root entity and is rendered as a table on the
object page.

Removing the Subpage

By default, navigation from the subpage automatically generated by the wizard is available from the object
page through the preset definition of a subpage for the corresponding entity set. Simply remove this to delete
the subpage and corresponding link from the object page.

Adding Subpages

You can add further subpages manually in the manifest.json file post-generation, as shown below:

"sap.ui.generic.app": { "pages": [
 {
 "entitySet": "SEPMRA_I_ProductWithDraft",
 "component": {
 "name": "sap.suite.ui.generic.template.ListReport",
 "list": true
 },

1696 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 "pages": [
 {
 "entitySet": "SEPMRA_I_ProductWithDraft",
 "component": {
 "name": "sap.suite.ui.generic.template.ObjectPage"
 },
 "pages": [
 {
 "entitySet": "SEPMRA_I_ProductTextWithDraft",
 "navigationProperty": "to_ProductText",
 "component": {
 "name":
"sap.suite.ui.generic.template.ObjectPage"
 }
 }
]
 }
]
 }
] },

More Information

For information about defining an external navigation target using intent-based navigation, see Changing
Navigation to Object Page [page 1583].

Enabling the Related Apps Button

By default, the Related Apps button is disabled on object pages created with the object page template. If you
want, you can enable this button, which allows you to provide a link to any of the navigation targets of the
semantic object.

The Related Apps button is displayed on the object page if you set the showRelatedApps parameter to true
in the manifest.json as shown below:

"sap.ui.generic.app": { "pages": [
 {
 "entitySet": "SEPMRA_C_PD_Product",
 "component": {
 "name": "sap.suite.ui.generic.template.ListReport",
 "list": true
 },
 "pages": [
 {
 "entitySet": "SEPMRA_C_PD_Product",
 "component": {
 "name": "sap.suite.ui.generic.template.ObjectPage",
 "settings": {
 "showRelatedApps": true
 }
 },
 "pages": [
 {
 "navigationProperty": "to_ProductText",

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1697

 "entitySet": "SEPMRA_C_PD_ProductText",
 "component": {
 "name":
"sap.suite.ui.generic.template.ObjectPage"
 }
 }
]
 }
]
 }
] },

Defining and Adapting Sections

The object page content is arranged into sections and subsections that you can configure.

You use the com.sap.vocabularies.UI.v1.Facets annotations to build sections. Different facets have
been defined to display important information in the content area sections.

 Note
All facets are displayed on the same page. The link from a facet leads you to the related section on the
same page. The facet annotation label is used twice: Once for the facet in the header area and once for the
section's title.

A section can consist of several subsections. If a UI.CollectionFacet contains several
UI.CollectionFacets, each of these is a subsection, as shown in the example below. You can include
several content blocks, such as forms or tables in a subsection.

<Annotation Term="UI.Facets"> <Collection>
 <!-- This facet is displayed as before in a section -->
 <Record Type="UI.ReferenceFacet">
 <PropertyValue Property="Label"
String="{@i18n>@GeneralInfoFacetLabel}"/>
 <PropertyValue Property="Target"
AnnotationPath="@UI.FieldGroup#GeneralInformation" />
 </Record>
 <Record Type="UI.CollectionFacet">
 <PropertyValue Property="ID" String="FurtherData"/>
 <PropertyValue Property="Label" String="{@i18n>@FurtherData}"/>
 <PropertyValue Property="Facets">
 <Collection>
 <!-- This CollectionFacet becomes a subsection with a form with
groups --> <Record Type="UI.CollectionFacet">

This video shows the step-by-step procedure for adding a field group to a section on the object page: .

You can hide and display sections based on properties like this:

 Sample Code

<Record Type="UI.ReferenceFacet"> <Annotation Term="UI.Hidden" Path="IsActiveEntity"/>
 <PropertyValue Property="Label" String="{@i18n>@SalesData}" />

1698 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 <PropertyValue Property="Target" AnnotationPath="to_ProductSalesData/
@UI.Chart" />
</Record>

A facet contains collection facets (UI.CollectionFacet) as well as reference facets
(UI.ReferenceFacet). Collection facets are made up of a list of records, each of which represents a
reference facet to a field group, UI.LineItem, UI.Chart, or another annotation. Reference facets represent a
reference, for example, to a UI.LineItem (list on the object page), UI.Chart (Chart), or
UI.Identification annotation.

You can define a hierarchy level. Instead of a reference facet, you can add a collection facet that consists of
several reference facets. The contents of these reference facets are arranged underneath.

In the figure below, the collection facet for Product Information combines three reference facets. Each
reference facet refers to a field group or to an identification annotation.

Figure 292: Object Page: CollectionFacet

Further reference facets refer to identification sections, the field group, contact, or line item annotations. For
line items, a list is rendered.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1699

Figure 293: Object Page: ReferenceFacets

Rendering a Smart Table in a Section

To render a smart table in a section, here's what you do:

1. Include a list in the section, indicated by com.sap.vocabularies.UI.v1.LineItem.
2. To render an Add Entry button, set Org.OData.Capabilities.V1.InsertRestrictions/

Insertable/Bool to true for the entity set.
To make the related entity set insertable, take into account that:
○ The system gives priority to the Org.OData.Capabilities.V1.NavigationRestrictions of the

root entity set. Depending on the value of the Insertable property of InsertRestrictions, the
related entity set is made insertable or not insertable.
If Insertable = true, the related entity set is insertable.
If Insertable = false, the related entity set is not insertable.

 Sample Code

<Annotations Target="STTA_PROD_MAN.STTA_PROD_MAN_Entities/
STTA_C_MP_Product"> <Annotation Term="Capabilities.NavigationRestrictions">
 <Record>
 <PropertyValue Property="RestrictedProperties">
 <Collection>
 <Record>
 <PropertyValue Property="NavigationProperty"
NavigationPropertyPath="to_ProductText"/>
 <PropertyValue Property="InsertRestrictions">
 <Record>
 <PropertyValue Property="Insertable" Bool="true"/>
 </Record>
 </PropertyValue>
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
 </Annotation>
</Annotation>

1700 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Note
NavigationRestrictions works only if InlineCreate is enabled for the related entity table.
The creation from a new object page is not supported using this annotation.

○ If InsertRestrictions is not defined for the source entity set's NavigationRestrictions, the
Insertable property of the related entity set's InsertRestrictions is considered.
If Insertable = true, the related entity set is insertable.
If Insertable = false, the related entity set is not insertable.

 Sample Code

<Annotations Target="STTA_PROD_MAN.STTA_PROD_MAN_Entities/
STTA_C_MP_ProductText"> <Annotation Term="Capabilities.InsertRestrictions">
 <Record>
 <PropertyValue Property="Insertable" Bool="true"/>
 </Record>
 </Annotation>
 </Annotations>

○ If InsertRestrictions is not defined for the related entity set or for the source entity set's
NavigationRestrictions, the related entity set is insertable.

See also Enabling Inline Creation of Table Entries on Object Page [page 1769].

Increased Section and Table Height to use Available Free Space on the
Object Page

If the object page contains only one section with just one table or if the object page uses an icon tab bar for
sections and any section has only one table, the following system behavior applies:

If the table is a ui.table, the section and table expand to use the full page height, showing more rows in the
table.

If the table is a sap.m.table, the section and table expand to show 25 rows.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1701

 Note
For information about the icon tab bar, under Adapting the UI: List Report and Object Page [page 1860],
see Adapting the UI: Object Page Switch to tabs .

You can also optimize the table visualization by using the condensed mode. For more information, see Using
the Condensed Table Layout [page 1773].

If your table has a lot of entries, see the information regarding the MultiSelectionPlugin at Enabling
Multiple Selection in Tables [page 1741].

IDs for Collection Facets

To enable extensions, personalization, and automated testing, for example, you need to have stable IDs for
views and controls. In most cases, they are derived automatically from existing annotations. For collection
facets, you can use an annotation to set a stable ID. The ID should be meaningful and must be unique within the
entity type. You should use only characters in camel case and without spaces.

If you define your facets in an annotation file in your project, you can add the ID there directly, as in this
example:

 Sample Code

<Annotation Term="UI.Facets"> <Collection>
 <Record Type="UI.CollectionFacet"> <PropertyValue Property="ID" String="GeneralInformation"/>

1702 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Adding a Contact Facet

To render a contacts list and contact facet, you add a UI.ReferenceFacet that points to a contact annotation
(type). It shows the label of the UI.ReferenceFacet and, below, the fn property of the contact annotation. If
you click on the name, a quickview with the contact details is displayed as shown below:

Figure 294: Object Page: Contacts

The facet annotation looks as follows:

 Sample Code

<Record Type="UI.ReferenceFacet"> <PropertyValue Property="Label" String="Supplier"/>
 <PropertyValue AnnotationPath="to_Supplier/@Communication.Contact"
Property="Target"/> </Record>

The Contact annotation looks as follows:

 Sample Code

<Annotations Target="SEPMRA_PROD_MAN.SEPMRA_I_EmployeeType"> <Annotation Term="Communication.Contact">
 <Record>
 <PropertyValue Property="fn" Path="FormattedName"/>
 <PropertyValue Property="title" Path="JobTitle"/>
 <PropertyValue Property="org" Path="CompanyName"/>
 <PropertyValue Property="role" Path="OrganizationRole"/>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1703

 <PropertyValue Property="n">
 <Record>
 <PropertyValue Property="given" Path="FirstName"/>
 <PropertyValue Property="additional" Path="MiddleName"/>
 <PropertyValue Property="surname" Path="LastName"/>
 </Record>

 </PropertyValue>
 <PropertyValue Property="photo" Path="EmployeePictureURL"/>
 <PropertyValue Property="tel">
 <Collection>
 <Record>
 <PropertyValue Property="type"
EnumMember="Communication.PhoneType/fax"/>
 <PropertyValue Property="uri" Path="FaxNumber"/>
 </Record>
 <Record>
 <PropertyValue Property="type"
EnumMember="Communication.PhoneType/cell"/>
 <PropertyValue Property="uri"
Path="MobilePhoneNumber"/>
 </Record>
 <Record>
 <PropertyValue Property="type"
EnumMember="Communication.PhoneType/work"/>
 <PropertyValue Property="uri" Path="PhoneNumber"/>
 </Record>
 <Record>
 <PropertyValue Property="type" EnumMember=""/>
 <PropertyValue Property="address" Path="FaxNumber"/>
 </Record>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="email">
 <Collection>
 <Record>
 <PropertyValue Property="type"
EnumMember="Communication.ContactInformationType/work"/>
 <PropertyValue Property="address"
Path="EmailAddress"/>
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
 </Annotation> </Annotations>

Address Facet in Sections

If you add a UI.ReferenceFacet that points to an address annotation, an address facet is displayed in the
object page sections or in a quick view.

It shows the label of the UI.ReferenceFacet and, below, only the label property of the address annotation.
Therefore, the label property should contain the whole formatted address, with \n for new lines.

 Note
Other properties of the address annotation are not interpreted and rendered.

1704 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Example value for the label property: "Mail Drop: TNE QB\n123 Main Street\nAny Town, CA
91921-1234\nU.S.A.". This is shown as follows:

The address facet can be used in various places:

● As a separate section

<Record Type="UI.ReferenceFacet"> <PropertyValue Property="Label" String="Communication Address" />
 <PropertyValue Property="Target" AnnotationPath="to_Address/
@Communication.Address" />
</Record>

● As part of a field group within a section and in a quick view with smart link navigation

<Annotation Term="UI.FieldGroup" Qualifier="GeneralInformation"> <Record>
 <PropertyValue Property="Data">
 <Collection>
 <Record Type="UI.DataFieldForAnnotation">
 <PropertyValue Property="Label" String="Communication
Address" />
 <PropertyValue Property="Target" AnnotationPath="to_Address/
@Communication.Address"/>
 </Record>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="Label" String="Product Information"/>
 </Record>
</Annotation>

Related Information

Enabling Quick Views for Smart Link Navigation [page 1567]

Smart Chart Facet

You can add a smart chart facet to a content section within the object page.

A smart chart facet contains a SmartChart control and is suitable to use if you wish to present data
graphically for analysis.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1705

To add a smart chart facet, use the UI.Facet term and include the UI.ReferenceFacet complex type, and
then reference the UI.Chart annotation. This is displayed as shown below within a content section of the
object page:

Figure 295: Smart Chart in Object Page

Code Samples

The following code samples show an example of how to create your annotations for the smart chart facet:

UI.ReferenceFacet

<Annotations Target="STTA_PROD_MAN.STTA_C_MP_ProductType"> <Annotation Term="UI.Facets">
 <Record Type="UI.ReferenceFacet">
 <PropertyValue Property="Label" String="{@i18n>@SalesData}"/>
 <PropertyValue Property="Target" AnnotationPath="to_ProductSalesData/
@UI.Chart"/>
 </Record>
 </Annotation>
</Annotations>

UI.Chart

<Annotations Target="STTA_PROD_MAN.STTA_C_MP_ProductSalesDataType"> <Annotation Term="UI.Chart">
 <Record>
 <PropertyValue Property="Title" String="Test Smart Chart"/>
 <PropertyValue Property="ChartType" EnumMember="UI.ChartType/Column"/>
 <PropertyValue Property="Dimensions">
 <Collection>
 <PropertyPath>DeliveryMonth</PropertyPath>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="Measures">
 <Collection>
 <PropertyPath>Revenue</PropertyPath>
 </Collection>
 </PropertyValue>
 </Record>
 </Annotation>
</Annotations>

The chart definition contains measures, on which the aggregations calculations are done, and dimensions,
which categorize these measures. In the chart, these are displayed as labels on the x and on the y axis.

1706 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Note
The object page does not support UI.Chart with qualifier.

The use of navigation properties within the UI.Chart term for the smart chart is not supported (see
example below).

Figure 296: Navigation Property

Defining Actions in Smart Chart Toolbar

You can add action buttons to the smart chart toolbar by defining the Actions property in the annotation term
UI.Chart. The Actions property must be a collection of the types UI.DataFieldForAction and
UI.DataFieldForIntentBasedNavigation.

 Note
To make the button visible in the smart chart toolbar, the properties Determining and Inline for
UI.DataFieldForAction and UI.DataFieldForIntentBasedNavigation must be set to false or
not defined.

The action buttons are displayed as shown below in the smart chart toolbar:

Figure 297: Actions in Smart Chart Toolbar

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1707

Enabling and Disabling Actions in Smart Chart Toolbar

To control whether UI.DataFieldForAction-based actions are enabled or disabled in the smart chart
toolbar, see Using Action Control for Context-Dependent Actions [page 1778].

To control whether UI.DataFieldForIntentBasedNavigation-based actions are enabled or disabled in
the smart chart toolbar, use the property RequiresContext. If this property is set to true (default value), the
user has to select an item in the smart chart before the action can be performed. If this property is set to
false, then the button will always be enabled.

Limitation

If you are using the applicable-path setting to control the visibility of actions in the smart chart toolbar, the
property specified must point to a property within the same entity and cannot be a navigation property (see
below).

Code Samples

The code samples below show how to add actions to the smart chart toolbar.

UI.Chart for Smart Chart

<Annotations Target="<entity type>"> <Annotation Term="UI.Chart">
 <Record>
 <PropertyValue Property="ChartType" EnumMember="UI.ChartType/
Column"/>
 <PropertyValue Property="Dimensions">
 <Collection>
 <PropertyPath><property path></PropertyPath>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="Measures">
 <Collection>
 <PropertyPath><property path></PropertyPath>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="Actions">
 <Collection>
 <Record Type="UI.DataFieldForAction">
 <PropertyValue Property="Label" String="<label>"/>
 <PropertyValue Property="Action" String="<entity
type>"/>
 <PropertyValue Property="InvocationGrouping"
EnumMember="UI.OperationGroupingType/Isolated"/>
 </Record>
 <Record Type="UI.DataFieldForIntentBasedNavigation">
 <PropertyValue Property="Label" String="<label>"/>
 <PropertyValue Property="SemanticObject"
String="<semantic object>"/>
 <PropertyValue Property="Action"
String="<action>"/>
 </Record>
 </Collection>

1708 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 </PropertyValue>
 </Record>
 </Annotation> </Annotations>

Hiding and Showing Reference Facets Using See More and
See Less Links

You can hide or show reference facets on the UI using the See more or See less links.

The See more link appears in the bottom right corner if hidden facets are available.

Figure 298: See Less

To enable this feature, set the PartOfPreview annotation of the relevant reference facet to false as in the
following example:

 Sample Code

<Record Type="UI.ReferenceFacet"> <PropertyValue Property="Label" String="{@i18n>@ProductDescription}"/>
<PropertyValue Property="Target" AnnotationPath="to_ProductTextInCurrentLang/
@UI.FieldGroup#PlainText"/>
 <Annotation Term="UI.PartOfPreview" Bool="false"/> </Record>

 Note
This feature is available for reference facets that are implemented under a collection facet.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1709

Adding Action Buttons to Forms in Sections

You can add action buttons to the forms contained in sections. These forms are indicated by
com.sap.vocabularies.UI.v1.FieldGroup. A form action button is then displayed in the toolbar of the
object page section that contains the form.

You can add the following action buttons:

● Buttons calling an OData function (using DataFieldForAction)
● Buttons triggering intent-based navigation (using DataFieldForIntentBasedNavigation)

To do so, add a DataFieldForAction or DataFieldForIntentBasedNavigation to the data of your
FieldGroup definition. The following example shows the definition of a form with two buttons:

 Sample Code
 <Annotation Term="UI.FieldGroup" Qualifier="TechnicalData">
 <Record>
 <PropertyValue Property="Data">
 <Collection>
 <Record Type="UI.DataField">
 <PropertyValue Property="Value" Path="Width"/>
 <Annotation Term="UI.Importance"
EnumMember="UI.ImportanceType/Medium"/>
 </Record>
 <Record Type="UI.DataField">
 <PropertyValue Property="Value" Path="Depth"/>
 <Annotation Term="UI.Importance"
EnumMember="UI.ImportanceType/Medium"/>
 </Record>
 ...
 <Record Type="UI.DataFieldForAction">
 <PropertyValue Property="Label" String="Copy"/>
 <PropertyValue Property="Action"
String="STTA_PROD_MAN.STTA_PROD_MAN_Entities/STTA_C_MP_ProductCopy"/>
 </Record>
 <Record Type="UI.DataFieldForIntentBasedNavigation">
 <PropertyValue Property="Label" String="Manage Products
(ST)" />
 <PropertyValue Property="SemanticObject"
String="EPMProduct" />
 </Record>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="Label" String="Technical Data"/>
 </Record>
</Annotation>

For more information, see also Configuring External Navigation [page 1563].

Hiding Features Using the UI.Hidden Annotation

You can use the UI.Hidden annotation to hide or display specific features on the object page.

The default value of the UI.Hidden annotation is true, that is, a feature using the UI.Hidden annotation
term is not visible on the UI. These are the values you can set:

1710 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Annotation System Behavior

<Annotation Term="UI.Hidden"
Bool="false"/>

The feature is visible

<Annotation Term="UI.Hidden"
Bool="true"/>

The feature is not visible

<Annotation Term="UI.Hidden"
Path="Edit_ac"/>

The feature is visible if the path evaluates to false and is not visible if
the path evaluates to true.

 Note
The path must point to a boolean property. Expression bindings, for
instance, using a negation with !, are not supported behind the path.
For more information, see Expression Binding [page 845].

<Annotation Term="UI.Hidden" /> The default value is true

Header Facets on the Object Page

You can hide header facets as shown below:

 Note
You cannot use the UI.Hidden annotation to hide the entire UI.FieldGroup and UI.Identification.
If you want to hide these, you have to hide all DataField records in them.

Figure 299: Header Facets on Object Page

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1711

Sections on Object Page

You can hide an entire section. If you're using collection facets, you can also hide just one subsection. You can
hide content within a section. See also DataField Records in Facets [page 1715].

Figure 300: Sections on Object Page

1712 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Content in Quick Views

You can hide content in quick views, such as field groups like this:

Figure 301: Field Groups in Quick Views on Object Page

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1713

You can also use this annotation to hide the content in quick views in the list report.

DataField Records in Header Facets

You can hide DataField records, such as UI.DataField or UI.DataFieldForAnnotation in header facets as shown
below:

Figure 302: DataField Records in Header Facets

1714 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

DataField Records in Facets

You can hide DataField records, for example, UI.DataField, UI.DataFieldForAnnotation in facets as shown below:

 Note
You cannot use the UI.Hidden annotation to hide the entire UI.FieldGroup and UI.Identification.
If you want to hide these, you have to hide all DataField records within them.

Figure 303: DataField Records in Facets

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1715

DataField Records in Smart Tables

To hide table columns, the UI.Hidden path needs to refer to the property of the header instance, for example:

<Annotation Term="UI.Hidden" Path="to_Product/Edit_ac">

In the following example, STTA_C_MP_Product is the entity set of the object page header and
STTA_C_MP_ProductText is the entity set of the smart table on the object page, and to_Product is the
navigation property from STTA_C_MP_ProductText to STTA_C_MP_Product.

1716 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Figure 304: DataField Records in Smart Tables

Notes on Hiding DataField Records

● Even if you hide all determining actions in the footer, the footer is still displayed on the UI. This also applies
to determining actions added via the manifest.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1717

● The See More button is visible even if the content within it is hidden.

Configuring a Confirmation Popup for Messages

In draft scenarios, the system displays warning messages during the save process, for example, if fields have
not been filled consistently or if entries are missing.

You can enable a confirmation popup that displays all warning and error messages, asking users whether they
still want to save the data.

 Note
The Save option is availabe only if there are no error messages.

To enable this popup, in the manifest.json under the object page settings, set the
showConfirmationOnDraftActivate flag to true.

"pages": { "ObjectPage|STTA_C_MP_Product": {
 "entitySet": "STTA_C_MP_Product",
 "component": {
 "name":
"sap.suite.ui.generic.template.ObjectPage",
 "settings": {
 "showRelatedApps": true,
 "tableType":
"ResponsiveTable",
 "editableHeaderContent":
true,

"showConfirmationOnDraftActivate": true,
 "sections": {

"to_ProductText::com.sap.vocabularies.UI.v1.LineItem": {

"navigationProperty": "to_ProductText",

"entitySet": "STTA_C_MP_ProductText",

"multiSelect": true,

"createMode": "inline",

"tableType": "ResponsiveTable"
 }
 }
 }
 },
.
. .

 Note
During the activation of a draft document, if the backend responds with response code 412, the system
displays a confirmation popup for the user. This is independent of the
showConfirmationOnDraftActivate flag.

1718 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Save and Navigation Options on the Object Page

When creating, editing, and saving draft or non-draft records, the user stays on the object page by default.

Save and Close Feature - Navigation to List Report

You can add save and close logic to the Save button on the object page to enable users to navigate directly back
to the list report. If the user clicks the button, the draft record is saved and the user automatically navigates to
the list report page.

To enable this feature, set the navToListOnSave flag to true in the manifest.json.

"pages": { "ObjectPage|STTA_C_MP_Product": {
 "entitySet": "STTA_C_MP_Product",
 "component": {
 "name":
"sap.suite.ui.generic.template.ObjectPage",
 "settings": {
 "navToListOnSave": true,
 "showRelatedApps": true,
 "tableType":
"ResponsiveTable",
 "editableHeaderContent":
true,

"showConfirmationOnDraftActivate": true,
 "sections": {

"to_ProductText::com.sap.vocabularies.UI.v1.LineItem": {

"navigationProperty": "to_ProductText",

"entitySet": "STTA_C_MP_ProductText",

"multiSelect": true,

"createMode": "inline",

"tableType": "ResponsiveTable"
 }
 }
 }
 },

If the flag is set to true, the user automatically navigates to the list report page as soon as the draft record has
been saved.

If the flag is set to false or if the flag is not set at all, the user stays on object page which is also the default
behavior.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1719

Using the Smart MultiInput Control on the Object Page

For fields in which users can enter more than one value, the Smart MultiInput control is rendered on the object
page if specific conditions are met.

If the system identifies a 1:N association of a DataField, the Smart MultiInput control is activated
automatically.

 Note
You must have maintained this 1:N association in the back-end system. Without this 1:N association, a
SmartField is rendered.

Figure 305: Smart MultiInput Control on the Object Page Form

1720 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Figure 306: Smart MultiInput Control on the Object Page Table

 Note
You cannot export to excel or copy and paste data from the smart multi-input field.

Related Information

Smart Tables [page 1628]

Including Reuse Components on an Object Page

You can embed a reuse component as a section in the object page of your app.

A reuse component is an encapsulated UI area that can be included (embedded) into an SAP Fiori elements-
based application. Reuse components are mainly used for reusable UIs which are used consistently across
several applications, for example, output management or attachment services. However, you can also create a
one-time reuse component which is used in only one application on one page.

Not every piece of reusable code should be encapsulated into a reuse component. Reuse components are
always rectangular UI areas.

 Note
A reuse component that can be used within a SAP Fiori elements-based application cannot be used in a
freestyle application. If reuse component owners want to provide the functionality for both types of
applications, they need to provide two components, one for each use case.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1721

We recommend factoring out as much coding as possible into artifacts that are shared by both
components.

Reuse components that are used on an object page are often used on several pages. If this is not the case,
consider whether they can be realized via view or fragment extensions.

To include a reuse component on an object page, adapt the manifest.json of your app, in the pages section of
the object page which is to contain the reuse component.

The following example embeds two reuse components:

 Sample Code

... "sap.ui.generic.app": {
 ...
 "pages": {
 "ListReport|myRootEntity": {
 "entitySet": "myRootEntity",
 "component": {
 "name": "sap.suite.ui.generic.template.ListReport",
 "list": true,
 ...
 },
 "pages": {
 "ObjectPage|myRootEntity": {
 "entitySet": "myRootEntity",
 "component": {
 "name": "sap.suite.ui.generic.template.ObjectPage",
 ...
 },
 "embeddedComponents": {
 "myFirstComponentEmbedding": {
 "id": "myFirstComponentEmbedding",
 "componentUsage": "myUsage",
 "title":
"{{I18N_KEY_FOR_FIRST_REUSE_COMPONENT_TITLE}}",
 "settings": {
 "documentNumber": "{documentNumber}"
 }
 },
 "mySecondComponentEmbedding": {
 "id": "mySecondComponentEmbedding",
 "componentName":
"theOtherReuseComponentQualifiedName",
 "title":
"{{I18N_KEY_FOR_SECOND_REUSE_COMPONENT_TITLE}}",
 "binding": "myNavProperty",
 }
 },
 "pages": {
 // add list of sub-pages of the root object page here
 }
 }
 }
 } }

The logical names of the embedded components (myFirstComponentEmbedding and
mySecondComponentEmbedding) each appear twice within the codeblock. This is because the name of the
property (within embeddedComponents) which defines the reuse component instance and the value of the
property ID in this definition must be identical.

1722 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

The sample definitions above show two options for addressing a reuse component:

● Faciliating a use of the component that has been defined in the corresponding section of the manifest. For
more information, see also https://sapui5.hana.ondemand.com/#/api/sap.ui.core.Component/methods/
createComponent

● Directly addressing the component name within the definition

Use the title property to provide a title for the section that is to contain the reuse component. To provide a
translatable title, this property must point to a key in the i18n file of the app.

If the reuse component exposes properties other than the predefined ones (see Developing Reuse
Components [page 1726]), the embedding may contain binding information for these properties. See the
property settings under myFirstComponentEmbedding above. The corresponding property in this case is
documentNumber. The value for this property can be any valid binding string, for example,
"{documentNumber}" can also be replaced by an expression binding like "{= ${documentNumber} || $
{documentId} }" if relevant for your app.

The reuse component instance cannot only receive information about the object that is on the embedding
object page by transferring dedicated properties. As described under Developing Reuse Components [page
1726], the binding context that has been set for the OData model for the embedding page is also valid for the
reuse component. However, within the definition of the embedding, this binding context might be modified
using the binding property. See the second embedding definition above for this. The path that is in the value
for this property defines a path relative to the current binding context for the whole object page. Thus, the
binding context that is valid for the second reuse component instance is determined by applying this relative
path to the binding context that is valid for the whole page.

Defining the Default Visibility

Most reuse components are always visible on the object page they have been placed on. However, you can
define that a reuse component is only visible for specific instances of the corresponding entity. In your reuse
component implementation, use the setSectionHidden method of the extensionAPI to show or hide the
reuse component on the object page. For more information, see Developing Reuse Components [page 1726].

Set the default visibility to the value that is correct for most cases. You can use the hiddenByDefault
property for this purpose, on the same level as ID, title, settings, and so on. If this property is set to true, the
section is hidden by default when the object page is opened with a new instance. It is only visible when the
reuse component unhides itself using the setSectionHidden method..

Placing Reuse Component Instances

Each reuse component instance defined for an object page of a SAP Fiori elements-based app is realized by a
section that contains a sub-section which in turn contains the content of the reuse component. By default,
these sections are added to the end of the object page in the same order the reuse component instances are
defined in the manifest. You can move these sections using the SAP Visual Editor. For more options, see Placing
Reuse Component Instances on the Object Page [page 1724].

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1723

https://sapui5.hana.ondemand.com/#/api/sap.ui.core.Component/methods/createComponent
https://sapui5.hana.ondemand.com/#/api/sap.ui.core.Component/methods/createComponent

Dependencies

If the reuse component uses its own OData service, make sure you declare it as a dependency both under
"sap.ui5"/"dependencies"/"libs" and under "sap.ui5"/"dependencies"/"component".

Placing Reuse Component Instances on the Object Page

Each reuse component instance defined for an object page belonging to an SAP Fiori elements-based app is
realized by a section that contains a subsection which in turn contains the content of the reuse component.

By default, these sections are added to the end of the object page in the same order as the reuse component
instances are defined in the manifest. You can use the SAPUI5 Visual Editor to move these sections.

Adding a Reuse Component as a Sub-Section to an Existing Section

You can add a reuse component to any existing section as a final subsection, using the manifest property
"leadingSectionIdOrPath" to link it with the desired section. In the annotations, collection facets are used
with their IDs, and reference facets are used with their annotation paths. This means you need to provide either
the ID or the path of the required facet as a value to this property. During templating, the reuse component is
attached as a subsection to the section. See an example manifest below:

 Sample Code

"embeddedComponents": { "tableTest": {
 "id":"tableTest",
 "componentName": "STTA_MP.reuseComponents.tableTest",
 "title": "{{SalesPriceReuse}}",
 "leadingSectionIdOrPath": "GeneralInformation",
 "settings": {
 "navigationProperty": "to_ProductSalesPrice"
 }
 } }

Grouping Reuse Components into a Single Section

You can group reuse components into a single section. Each reuse component has an ID. You can choose one to
be the leading component, and the others can be grouped with it. See the example manifest below.

Use the "groupTitle" property for the title of the grouped reuse components. If there is no title, use the
existing title as the group (section) title. If the configuration is incorrect, for example, if a reuse component that
has already been used, is used in a grouping, the fallback solution is to show it as a separate section.

1724 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Sample Code

"embeddedComponents": { "stateTest": {
 "id": "stateTest",
 "componentUsage": "stateTest",
 "title": "{{stateReuse}}",
 "groupTitle":"{{reuseGroupTitle}}"
 },
 "situationsTest": {
 "id": "situationsTest",
 "componentName":
"STTA_MP.reuseComponents.situationsTest",
 "title": "{{situationsReuse}}",
 "settings": {
 "productKey": "{ProductForEdit}"
 },
 "leadingSectionIdOrPath": "stateTest",
 } }

Reuse components grouped into a subsection in a existing section can be moved within the section, using the
SAP Visual Editor. You can move all reuse components grouped together as a single section within the section.

Hiding Reuse Components via API

You can use the extension API SetSectionHidden to hide reuse components. Use this API to hide only reuse
components, not to hide other sections.

sap.suite.ui.generic.template.ObjectPage.extensionAPI.ExtensionAPI.SetSectionHidden
accepts only one boolean argument, either "true" or "false".

Call this API in the component.js of the reuseable components.

 Sample Code

function fnRegisterOnPageDataLoaded(oExtensionAPI){ oExtensionAPI.attachPageDataLoaded(function(oEvent){
 var oContextData = oEvent.context.getObject();
 (oExtensionAPI.setSectionHidden || jQuery.noop)
(oContextData.ProductCategory !== "Notebooks");
 }); }

Refreshing Reuse Components

Reuse components expose a stRefresh function which is called by the SAP Fiori elements framework to
refresh the component. You can trigger it using the manifest property stRefreshTrigger.

For example, if the reuse component is to react to the value change of more than one property, such as a price
change, then annotate a side effect and add the target propertyPriceTrigger, as shown in the sample below.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1725

This can also be achieved via a function import, by annotating a side effect against a function import.

 Sample Code
Trigger refresh when changing the value of a property

"embeddedComponents": { "priceComponentEmbedding": {
 "id": "priceComponentEmbedding",
 "componentUsage": "priceComponentUsage",
 "title": "{{I18N_KEY_FOR_PRICE_COMPONENT_TITLE}}",
 "settings": {
 "stRefreshTrigger": "{Price}"
 }
 },

 Sample Code
Trigger refresh when changing the values of one of the properties

"embeddedComponents": { "priceComponentEmbedding": {
 "id": "priceComponentEmbedding",
 "componentUsage": "priceComponentUsage",
 "title": "{{I18N_KEY_FOR_PRICE_COMPONENT_TITLE}}",
 "settings": {
 "stRefreshTrigger": "{Price}{Supplier}"
 }
 },

 Sample Code
Trigger refresh when chaning the values of a combination of properties

"embeddedComponents": { "priceComponentEmbedding": {
 "id": "priceComponentEmbedding",
 "componentUsage": "priceComponentUsage",
 "title": "{{I18N_KEY_FOR_PRICE_COMPONENT_TITLE}}",
 "settings": {
 "stRefreshTrigger": "{= ${Price}+${Supplier}}"
 }
 },

Developing Reuse Components

Follow these guidelines when developing reuse components that are to be included as sections in object pages.

General Guidelines

As a provider of a reuse component that is used in several apps, create a library which can be included by the
apps.

1726 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

When providing a one-time reuse component provide the reuse component within the same project that
implements the application that uses the reuse component.

Technically, a reuse component is a subclass of UIComponent which calls ReuseComponentSupport.mixInto
within its init() method.

 Note
● The reuse component must not define any method starting with the prefix st or _st. The only

exceptions are the methods defined in this documentation. These methods have to be overwritten so
you can use the functions provided by SAP Fiori elements.

● If you want to use the component model functionality providedy by SAP Fiori elements, note that the
method name getComponentModel is reserved by SAP Fiori elements.

● The reuse component can define (API) properties on its own. These properties can be used to
communicate with the application that embeds the reuse component. However, certain property
names are predefined by SAP Fiori elements. These properties have specific semantics and cannot be
used to communicate with the embedding application.

Reuse Components and Reuse Component Instances

A reuse component is a software artifact that can be used to embed a UI module into an object page . You can
embed the same reuse component several times in the same app or even in one object page.

A reuse component instance is one occurence of a reuse component within an application.

This means that the implementation of a reuse component must not store any information that should be
considered at instance level, in a singleton object.

Handling Properties

A reuse component may expose properties that can be used to communicate with the embedding application.
For each of these properties, setter and getter methods are created automatically. The embedding application
does not communicate with the reuse component instance by directly calling these methods. It does not even
have access to the reuse component instance. For more information, see Including Reuse Components on an
Object Page [page 1721] .

The reuse component has two options for consuming the properties:

Option 1: Overriding the Setters
If the reuse component is to react via coding to changes of its properties, override the setter method of the
corresponding property within the reuse component.

Option 2: Component Model
When calling the ReuseComponentSupport.mixInto method, the reuse component can provide an optional
second (string) parameter. If this parameter is not faulty, it is used as the name of the JSON model this is
automatically attached to the reuse component. You can retrieve this model from the reuse component by
calling the getComponentModel() method that is automatically added to the reuse component.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1727

https://sapui5.hana.ondemand.com/#/api/sap.ui.core.UIComponent
https://sapui5.hana.ondemand.com/#/api/sap.suite.ui.generic.template.extensionAPI.ReuseComponentSupport/methods/sap.suite.ui.generic.template.extensionAPI.ReuseComponentSupport.mixInto

The component model may contain arbitrary properties. However, if any of the reuse component's properties is
changed, the corresponding property in the component model is changed accordingly. This can be used in
particular for declaratively using the property values within binding definitions. You can also achieve this by
creating a corresponding property binding and attach a change handler to this binding.

 Note
If a property in the JSON model is modified by other means, this change is not transferred to the
corresponding property of the reuse component. If you want to transfer the change, you can use the
bTwoWaySync parameter of the ReuseComponentSupport.mixInto method. Handle this functionality
with care, as there is a risk of accidentally modifying data in the enclosing application.

The reuse component may also use the component model to handle additional properties that aren't
exposed as properties of the reuse component. These properties are controlled exclusively by the reuse
component. They cannot be used to communicate with the embedding application. However, they can be
used for data transfer between declarative and programmatic parts of the implementation of the reuse
component.

Predefined Properties
Although some properties are predefined by the SAP Fiori elements framework, the reuse component must
declare them in the metadata. The values are then provided by the SAP Fiori elements framework.

Property names with the prefix st are reserved for the SAP Fiori elements framework. These properties are
supported:

● uiMode
The possible values for this property are "Create", "Display", and "Edit". Note that this property should not
provide information for setting up backend requests (for example, whether the active or the draft version of
the object is currently displayed). Use this property only to provide the correct mode for controls within the
reuse component (for example, input fields).

● semanticObject
The semantic object displayed on the current object page.

● stIsAreaVisible
This boolean property is set to true if the reuse component is in the visible area of the screen.
We recommended postponing any performance-critical action if the value of this property is false. In this
case, the action should be performed only if the value of this property is true (if it is still necessary). This
type of system behavior is called lazy loading.

The following example shows a snippet of a reuse component that uses the predefined properties and an
additional property documentNumber that is used to pass a key to the reuse component:

 Sample Code

sap.ui.define(["sap/ui/core/UIComponent",
 "sap/suite/ui/generic/template/extensionAPI/ReuseComponentSupport"
], function(UIComponent, ReuseComponentSupport) {
 "use strict";
 /* Definition of the reuse component */
 return UIComponent.extend("MyReuseComponent", {
 metadata: {
 manifest: "json",
 library: "myLibrary",
 properties: {
 /* Standard properties for reuse components */

1728 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 uiMode: {
 type: "string",
 group: "standard"
 },
 semanticObject: {
 type: "string",
 group: "standard"
 },
 stIsAreaVisible: {
 type: "boolean",
 group: "standard"
 },

 /* Component specific properties */

 documentNumber: {
 type: "string",
 group: "specific",
 defaultValue: ""
 }
 }
 },

 // Standard life time event of a component. Used to transform this
component into a reuse component for Fiori Elements
 init: function(){
 //Transform this component into a reuse component for Fiori Elements:
 ReuseComponentSupport.mixInto(this, "myPropertiesModelName");
 // Defensive call of init of the super class:
 (UIComponent.prototype.init || jQuery.noop).apply(this, arguments);
 }
 });
});

Now the reuse component can declaratively use all the properties defined above, as shown in the following
example:

 Sample Code
 <sfo:SmartForm xmlns:sfo="sap.ui.comp.smartform"
 editable="{= ${myPropertiesModelName>/uiMode} !== 'Display' }"
</sfo:SmartForm>

If the reuse component is to adapt to changes of the property programmatically, two alternative techniques
can be used. They are shown in the following code snippet:

 Sample Code
 sap.ui.define([
 "sap/ui/core/UIComponent",
 "sap/suite/ui/generic/template/extensionAPI/ReuseComponentSupport"
], function(UIComponent, ReuseComponentSupport) {
 "use strict";
 /* Definition of the reuse component */
 return UIComponent.extend("MyReuseComponent", {
 metadata: {
 manifest: "json",
 library: "myLibrary",
 properties: {
 /* Standard properties for reuse components */
 uiMode: {
 type: "string",
 group: "standard"

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1729

 },
 semanticObject: {
 type: "string",
 group: "standard"
 },
 stIsAreaVisible: {
 type: "boolean",
 group: "standard"
 },

 /* Component specific properties */

 documentNumber: {
 type: "string",
 group: "specific",
 defaultValue: ""
 }
 }
 },

 // Technique 1: Redefine the predefined setter-method
 setStIsAreaVisible: function(bIsAreaVisible){
 if (bIsAreaVisible !== this.getStIsAreaVisible()){
 this.setProperty("stIsAreaVisible", bIsAreaVisible); // ensure that the
property is updated accordingly
 // ... (any code that wants to consume the changed visibility of the
reuse component)
 }
 },

 // Standard life time event of a component. Used to transform this
component into a reuse component for Fiori Elements and do some initialization
 init: function(){
 // Defensive call of init of the super class:
 (UIComponent.prototype.init || jQuery.noop).apply(this, arguments);
 //Transform this component into a reuse component for Fiori Elements:
 ReuseComponentSupport.mixInto(this, "myPropertiesModelName");
 // Technique 2: Attach to changes of the component model
 var oMyPropertiesModel = this.getComponentModel();
 var oPropertyBinding = oMyPropertiesModel.bindProperty("/documentNumber");
 oPropertyBinding.attachChange(function(){
 var sDocumentNumber = oMyPropertiesModel.getProperty("/documentNumber");
 // ... (any code that wants to consume the changed document number)
 });
 }
 });
});

Model Propagation

The unnamed model (the OData model) and a JSON model named 'ui' that are defined in the application are
propagated to the reuse component.

 Note
Additional JSON models which are used internally may also be propagated to the reuse component.
However, the reuse component must not access these models in any way.

The binding context for the unnamed model is already preset. By default, if the reuse component is used in an
object page, the binding context of the object page is propagated to the reuse component. The embedding

1730 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

application may add a relative binding to the definition of the embedding. This modifies the binding context of
the reuse component accordingly.

 Note
The propagation of the unnamed model is especially important if the data that is accessed by the reuse
component is provided by the same OData service that is used by the embedding application.

Change Events for the Reuse Components

For the implementation of the reuse component to be able to react to a change of the object key attached to
the page it is embedded in , ensure that the model propagation has already taken place. The reuse component
can then rely on the fact that the bindings of all controls have already been updated accordingly. In this case
the reuse component can implement the stRefresh(oModel, oBindingContext, oExtensionAPI)
method. This method is called if at least one of the following occurs:

● A new binding context is defined for the embedding page
● The binding context of the embedding page is forced to refresh
● The key information for the embedding page changes

Note that method is called only after the model propagation to the reuse component.

The reuse component might also implement the stStart(oModel, oBindingContext, oExtensionAPI)
method. This method is called at the same time as described for stRefresh, but stStart is only called once
during the lifetime of the app. If both stStart and stRefresh have been implemented for the first occurence
of the specified events, stStart is called. For all other occurences, stRefresh is called.

Note that the signature of the stStart and stRefresh methods are identical:

● oModel is the standard OData model of this app
● oBindingContext is the binding context of the current page. Note that this might be faulty, for example, if

the reuse component is embedded on an object page that is currently in create mode in a non-draft app.
● oExtensionAPI is the instance of the extension API attached to this reuse component (instance).

If the reuse component is to be used in change scenarios, we recommend implementing the stRefresh
method. In this case, the framework might call this method to indicate that the reuse component should
refresh its data (even if the object instance displayed on the embedding object page did not change).

Lazy Loading and Refresh

The following coding example shows how lazy loading and the refresh function are combined:

 Sample Code
 sap.ui.define([
 "sap/ui/core/UIComponent",
 "sap/suite/ui/generic/template/extensionAPI/ReuseComponentSupport"
], function(UIComponent, ReuseComponentSupport) {
 "use strict";

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1731

 /* Definition of the Reuse Component */
 return UIComponent.extend("MyReuseComponent", {
 metadata: {
 manifest: "json",
 library: "myLibrary",
 properties: {
 stIsAreaVisible: {
 type: "boolean",
 group: "standard"
 },
 },

 setStIsAreaVisible: function(bIsAreaVisible){
 if (bIsAreaVisible !== this.getStIsAreaVisible()){
 this.setProperty("stIsAreaVisible", bIsAreaVisible); // ensure that the
property is updated accordingly
 this.refreshImpl();
 }
 },

 // Standard life time event of a component. Used to transform this
component into a Reuse Component for Fiori Elements and do some initialization
 init: function(){
 // Defensive call of init of the super class:
 (UIComponent.prototype.init || jQuery.noop).apply(this, arguments);
 //Transform this component into a reuse component for Fiori Elements:
 ReuseComponentSupport.mixInto(this);
 },
 stRefresh: function(oModel, oBindingContext, oExtensionAPI) {
 this.oModel = oModel;
 this.oBindingContext = oBindingContext;
 this.oExtensionAPI = oExtensionAPI;
 this.refreshImpl();
 },

 refreshImpl: function(){
 if (this.oBindingContext && this.getStIsAreaVisible()){
 // ... (any code that loads the data for the Reuse Component according
to this.oBindingContext)
 this.oBindingContext = null;
 }
 }
 });
});

Extension API

To each reuse component instance, an instance of the extension API is attached. This instance is a variant of
the extension API which is provided for the corresponding object page or canvas page. It is passed to the
stStart and stRefresh method as a third parameter.

The ReuseComponent.mixInto method which has to be called by every reuse component within its init()
method returns a Promise that resolves to this instance of the extension API.

Compared to the standard extension API attached to the current page, the extension API instance attached to
the reuse component instance has the following modifications:

● The getNavigationController() method provides a modified version of the NavigationController
which is also able to navigate to the pages defined in the reuse component and shares a common
communication object with these pages.

1732 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.suite.ui.generic.template.ObjectPage.extensionAPI.ExtensionAPI
https://sapui5.hana.ondemand.com/#/api/sap.suite.ui.generic.template.Canvas.extensionAPI.ExtensionAPI
https://sapui5.hana.ondemand.com/#/api/sap.suite.ui.generic.template.extensionAPI.NavigationController

● The getCommunicationObject() method, when called with no parameter (or a number not greater 0 as
a parameter) behaves as usual. Calling getCommunicationObject(1) provides a communication object
that can be used for communication with the pages defined in the reuse component. The subpages can
retrieve this communication object via calling getCommunicationObject() (without parameters).

● If the reuse component is embedded in an object page, the extension API has an additional
setSectionHidden(bHidden) method that can be used to show or hide the section implemented by the
reuse component instance.

Reuse Components with Subpages

You can define additional pages for a reuse component. You can add them to the embedding app and use them
to provide navigation within the reuse component.

The embedding application needs to provide the definitions of the possible subpages within its manifest. That
is, the provider of the reuse component has to publish a snippet that defines the subpages of the reuse
component, and every consumer of the reuse component has to add this snippet to the declaration of his useof
the reuse component.

The definition to be added within the definition of the reuse component must have the same structure as the
one that is required for the normal way the subpages of an object page are defined within the pages structure
of the manifest. See the following example for this:

 Sample Code
 ...
"embeddedComponents": {
 "myComponentEmbedding": {
 "id": "myComponentEmbedding",
 "componentName": "theEmbeddedComponent",
 "title": "{{I18N_KEY_FOR_REUSE_COMPONENT_TITLE}}",
 "settings": {
 "documentNumber": "{documentNumber}"
 },
 "pages":{
 // add sub-pages here
 }
 }
}

Using Standard Object Pages as Subpages of a Reuse Component
Optimally, use a standard object page as a subpage for a reuse component. The manifest looks like this:

 Sample Code
 ...
"embeddedComponents": {
 "myComponentEmbedding": {
 "id": "myComponentEmbedding",
 "componentName": "theEmbeddedComponent",
 "title": "{{I18N_KEY_FOR_REUSE_COMPONENT_TITLE}}",
 "settings": {
 "theNavigationPropertyName":
"myNavigationProperty" },
 "pages":{

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1733

 "ObjectPage|myNavigationProperty":{
 "navigationProperty": "myNavigationProperty",
 "entitySet": "myDependingEntitySet",
 "component": {
 "name": "sap.suite.ui.generic.template.ObjectPage"
 }
 }
 }
 }
}

There should be a navigation property called myNavigationProperty from the entity set of the object page
hosting the reuse component, to myDependingEntitySet.

You need to explicitly trigger the navigation to the subpage. Use NavigationController.navigateInternal() for this
purpose, as shown below:

 Sample Code
 var oBindingContext = oEvent.getSource().getBindingContext(); // or any
other way you have to get a binding context for the target page
var oNavigationController = oExtensionAPI.getNavigationController(); //
oExtensionAPI is the instance of the extension api which has been discussed
above
var sNavigationProperty =
this.getOwnerComponent().getTheNavigationPropertyName(); // retrieve the
name of the navigation property (see comments below)
var oNavigationData = {
 navigationProperty: sNavigationProperty
};
oNavigationController.navigateInternal(oBindingContext, oNavigationData);

The name of the navigation property (in this case, myNavigationProperty) must be available for the
developer of the reuse component in order to trigger the navigation. However, this name is part of the OData
service of the embedding application. To achieve a loose coupling, the developer of the reuse component does
not need to hard-code this name. The reuse component should have a theNavigationPropertyName
property which is used to transfer the name of the navigation property to the reuse component.

General Structure of a Reuse Component Project

A reuse component that can be used within a SAP Fiori elements-based application cannot be used in a
freestyle application. Provide two separate components that refer to a common implementation.

Stable IDs

For some purposes it is helpful if the IDs of the controls used within a reuse component instance are stable. As
a prerequisite, the ID of the view hosting the content of the reuse component is stable. You should define this
view declaratively. Specify the view within the manifest.json of the reuse component.

1734 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.suite.ui.generic.template.extensionAPI.NavigationController/methods/navigateInternal

Configuring Tables

You can use the annotations and entries in the manifest.json to control various aspects of tables.

For information on smart tables, see also: https://sapui5.hana.ondemand.com/sdk/#/api/
sap.ui.comp.smarttable.SmartTable and Tables: Which One Should I Choose? [page 2286]

Setting the Table Type

In the manifest.json file, and through annotations, you can control which table type is rendered in the list
report and on the object page.

These are the type properties available within tableSettings :

● ResponsiveTable
● GridTable
● AnalyticalTable
● TreeTable

 Note
● Grid tables, analytical tables, and tree tables cannot be rendered on smartphones. On smartphones,

always responsive tables are shown.
● List report only: If the type property within tableSettings is AnalyticalTable, set the annotation

sap:semantics to aggregate for the specified entity type. Note that sap:semantics is a back-end
entity type definition and cannot be changed in the SAP Web IDE.

● If you do not maintain the type property within tableSettings , and if sap:semanticsto
aggregate has been set in the back-end, an analytical table is rendered.

Examples

Set the type property within tableSettings to the required value in the sap.ui.generic.app section of
the manifest.json:

Example for the list report:

"sap.ui.generic.app": { "pages": [{
 "entitySet": "Zfarvd_Bs_Hd_Bo",
 "component": {
 "name": "sap.suite.ui.generic.template.ListReport",
 "list": true,
 "settings": {
 "tableSettings": {
 "type": "GridTable"
 }
 } },

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1735

https://sapui5.hana.ondemand.com/sdk/#/api/sap.ui.comp.smarttable.SmartTable
https://sapui5.hana.ondemand.com/sdk/#/api/sap.ui.comp.smarttable.SmartTable

Examples for the object page:

"sap.ui.generic.app": { "pages": [
 {
 "entitySet": "STTA_C_MP_Product",
 "component": {
 "name": "sap.suite.ui.generic.template.ListReport",
 "list": true
 },
 "pages": [
 {
 "entitySet": "STTA_C_MP_Product",
 "component": {
 "name": "sap.suite.ui.generic.template.ObjectPage"
 "settings": {
 "sections": {

"to_ProductText::com.sap.vocabularies.UI.v1.LineItem": {
 "navigationProperty": "to_ProductText",
 "entitySet": "STTA_C_MP_ProductText",
 "tableSettings": {
 "type": "TreeTable"
 }
 }
 }
 } },

Defining tableTypes under the settings is supported for backward compatibility. However, using
tableSetings is recommended for defining table types.

 Note
If you maintain the type property within tableSettings in sections, it has a higher priority than the
type property of tableSettings in Object Page .

"pages": [{ "entitySet": "STTA_C_MP_Product",
 "component": {
 "name": "sap.suite.ui.generic.template.ObjectPage",
 "settings": {
 "showRelatedApps": true,
 "tableSettings": {
 "type":"ResponsiveTable"
 },
 "sections": {

"to_ProductText::com.sap.vocabularies.UI.v1.LineItem": {
 "navigationProperty": "to_ProductText",
 "entitySet": "STTA_C_MP_ProductText",
 "tableSettings": {
 "type":"GridTable"
 }
 }
 }
 }

1736 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

More Information

For a description of the available table types, see Smart Tables [page 1628].

For information about setting up tables in the list report through annotations, see Settings for List Report
Tables [page 1761].

For information about setting up tables in the object page, see Settings for Object Page Tables [page 1765].

Setting the Smart Table Header

The header of the smart table is set using com.sap.vocabularies.UI.v1.HeaderInfo
TypeNamePlural.

Figure 307: List Report: Page Header

Defining the Default Sort Order

You can define whether the default sort order for tables is ascending or descending by using the
com.sap.vocabularies.UI.v1.PresentationVariant annotation term and the SortOrder property.

 Sample Code
Presentation Variant

 <Annotations xmlns="http://docs.oasis-open.org/odata/ns/edm"
Target="ZFAR_CUSTOMER_LINE_ITEMS2_SRV.Item">
 <Annotation Term="com.sap.vocabularies.UI.v1.PresentationVariant">
 <Record>
 <PropertyValue Property="Visualizations">
 <Collection>
 <AnnotationPath>@UI.LineItem</AnnotationPath>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="RequestAtLeast">
 <Collection>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1737

 <PropertyPath>Customer</PropertyPath>
 <PropertyPath>CompanyCode</PropertyPath>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="SortOrder">
 <Collection>
 <Record>
 <PropertyValue Property="Property"
PropertyPath="CompanyCode"/>
 <PropertyValue Property="Descending" Bool="true"/>
 </Record>
 <Record>
 <PropertyValue Property="Property"
PropertyPath="Customer"/>
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
 </Annotation> </Annotations>

If no sort order is defined, the property value is Ascending.

Table Groupings

SAP Fiori elements handle table groupings automatically.

The grouping of rows is supported in responsive tables (sap.m.Table) and analytical tables
(sap.ui.Table.AnalyticalTable). Grid tables and tree tables are not supported.

1738 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Table grouping of rows looks like this:

Grouping Header Text

These group header formatters are automatically set by SAP Fiori elements:

● Responsive table: Set a grouping function on the sorter: fnGroup of sap.ui.model.Sorter.
● Analytical table: Set property groupHeaderFormatter of sap.ui.table.AnalyticalColumn.

Grouping Header Types

SAP Fiori elements supports these group header formatters:

OData Type
SAP Display For
mat OData Example Unformatted Formatted Comments

Edm.DateTimeOff-
setDate

Date /
Date(1485471600
000 +0000)/

Fri Jan 27 2017
00:00:00 GMT
+0100 (Central
European Stand
ard Time)

Jan 26, 2017 UTC

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1739

OData Type
SAP Display For
mat OData Example Unformatted Formatted Comments

Edm.DateTimeOff-
set

/
Date(1485471600
000 +0000)/

Fri Jan 27 2017
00:00:00 GMT
+0100 (Central
European Stand
ard Time)

Jan 27, 2017,
12:00:00 AM

Edm.DateTime Date /
Date(1485471600
000 +0000)/

Fri Jan 27 2017
00:00:00 GMT
+0100 (Central
European Stand
ard Time)

Jan 26, 2017 UTC

Edm.DateTime /
Date(1485471600
000 +0000)/

Fri Jan 27 2017
00:00:00 GMT
+0100 (Central
European Stand
ard Time)

Jan 27, 2017,
12:00:00 AM

Edm.Time Time PT11H13M01S [object Object] is:
{ms: 43980000,
__edmType:
"Edm.Time"}

11:13:01 AM

Edm.String Date 20180313 20180313 Mar 13, 2018

Edm.Boolean true true Yes

Edm.Decimal 10 10 10.000 m* Unit of measure

Edm.Decimal 2498.00 2498.00 2,498.00 EUR* Currency

Edm.String m m Meter (m)* Unit of measure
and TextArrange
ment

Edm.String EUR EUR Euro (EUR)* Currency and Tex
tArrangement

* Units of measure or currencies in the grouping header are supported only in responsive tables.

Limitations

For analytical tables, take the following limations into account:

● Grouping can only be activated for dimension columns.
● Grouping takes place on the server. The header formatter has no effect on the grouping itself. This means

that groups stay separate even if they have the same header after formatting.
● The TextArrangement annotation is not supported. A property with a text property is displayed as

follows: “m – Meter”. For more information, see TextArrangement.
● Displaying values with units of measure is not supported.

1740 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.comp.smarttable.SmartTable/annotations/TextArrangement

Enabling Multiple Selection in Tables

Single selection in tables is enabled by default. If you want, you can enable multi-select..

This allows users to select multiple items from list report or object page tables, and then choose a custom
action button. After triggering the action, the user stays on the same page (no navigation). Note that the
custom action button cannot have action parameters and that the results have to be displayed on the page on
which the action was triggered.

List Report Settings

When multiSelect is set to true in the manifest.json file of a list report table, the table switches from
single-select to multi-select, as shown in the this sample code:

 "sap.ui.generic.app": {
 "_version": "1.3.0",
 "pages": {
 "ListReport|STTA_C_MP_Product": {
 "entitySet": "STTA_C_MP_Product",
 "component": {
 "name": "sap.suite.ui.generic.template.ListReport",
 "list": true,
 "settings" : {
 "tableSettings": {
 "multiSelect": true
 }
 }

Object Page Settings

You have two options:

● You can enable multiple selection at object page level for all tables on the object page.
To do so, set multiSelect to true in the manifest.json file of your object page.

 "pages": {
 "ObjectPage|STTA_C_MP_Product": {
 "entitySet": "STTA_C_MP_Product",
 "name": "sap.suite.ui.generic.template.ObjectPage",
 "settings": {
 "showRelatedApps": true,
 "editableHeaderContent": true,
 "tableSettings": {
 "multiSelect": true
 },
 "sections": {
 "to_ProductText::com.sap.vocabularies.UI.v1.LineItem": {
 "navigationProperty": "to_ProductText",
 "entitySet": "STTA_C_MP_ProductText",
 "createMode": "inline"
 }

● You can enable multiple selection at table level, that is, individually for each table.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1741

To do so, set multiSelect to true for a specific table in the manifest.json file of your object page:

"pages": { "ObjectPage|STTA_C_MP_Product": {
 "entitySet": "STTA_C_MP_Product",
 "name": "sap.suite.ui.generic.template.ObjectPage",
 "settings": {
 "showRelatedApps": true,
 "editableHeaderContent": true,
 "sections": {
 "to_ProductText::com.sap.vocabularies.UI.v1.LineItem": {
 "navigationProperty": "to_ProductText",
 "entitySet": "STTA_C_MP_ProductText",
 "createMode": "inline”,
 "tableSettings": {
 "multiSelect": true
 }
 }

MultiSelectionPlugin

Use the MultiSelectionPluginfor grid tables, analytical tables, and tree tables. The Select All button is
disabled by default. If you want to enable it, set selectAll : true. If selectAll : false, the following
applies:

● The user can still select a range. If new data needs to be loaded from the back-end system for this, the
number of lines to be loaded is restricted to the specified limit. The default value for this limit is 200. If
selectAll : true, the selection limit is not evaluated.

● The Undo Selection button is displayed instead of the Select All button. The user can choose this button to
reset all selections.

 Note
If the user chooses Select All, the system loads all data from the back-end system, possibly in multiple
sequential requests. For performance reasons, set selectAll : true only if the expected amount of
data is not too high.

For more information, see MultiSelectionPlugin and the sample for the MultiSelectionPlugin.

The following sample code shows example table settings for a GridTable with MultiSelectionPlugin. You
can place these "tableSettings" underneath "settings" at list report level as well as at object page level.

 Sample Code
 "tableSettings": { "type": "GridTable",
 "multiSelect": true,
 "selectAll": false,
 "selectionLimit": 150
 }

1742 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.table.plugins.MultiSelectionPlugin
https://sapui5.hana.ondemand.com/#/entity/sap.ui.table.Table/sample/sap.ui.table.sample.MultiSelectionPlugin

Adding Line Item Actions in Tables

You can add a line item action button as a column within the SmartTable control in both the list report and the
object page.

Line item actions are used to trigger actions directly for a single table row. The following types of line item
actions are supported:

● Actions that trigger a back-end call through the OData service, for example, Approve or Unblock,
represented by the complex type DataFieldForAction

● Actions that trigger navigation, for example, to a different app, represented by the complex type
DataFieldForIntentBasedNavigation

To add a line item action to a smart table, in the annotation term UI.LineItem, set the Inline property to
true for the complex types listed above. The line item actions are then displayed as shown below:

Figure 308: Line Item Actions (List Report Shown)

Code Sample

The following code sample shows how to create your annotations for line item actions. Note that the
UI.LineItem vocabulary term is used to define the columns for the smart table.

UI.LineItem

<Annotation Term="UI.LineItem"> <Collection>
 <Record Type="UI.DataFieldForAction">
 <PropertyValue Property="Label" String="Copy with new Supplier"/>
 <PropertyValue Property="Action"
 String="STTA_PROD_MAN.STTA_PROD_MAN_Entities/
STTA_C_MP_ProductCopywithparams"/>
 <Annotation Term="UI. InvocationGrouping"
 EnumMember="UI.OperationGroupingType/Isolated"/>
 </Record>
 <Record Type="UI.DataFieldForAction">
 <PropertyValue Property="Label" String="Activate"/>
 <PropertyValue Property="Action"
 String="STTA_PROD_MAN.STTA_PROD_MAN_Entities/
STTA_C_MP_ProductActivation"/>
 <Annotation Term="UI. InvocationGrouping"
 EnumMember="UI.OperationGroupingType/ChangeSet"/>
 </Record>
 <Record Type="UI.DataField">
 <PropertyValue Property="Value" Path="Product"/>
 <Annotation Term="UI.Importance" EnumMember="UI.ImportanceType/High"/>
 </Record>
 <Record Type="UI.DataField">
 <PropertyValue Property="Value" Path="ProductCategory"/>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1743

 <Annotation Term="UI.Importance" EnumMember="UI.ImportanceType/High"/>
 </Record>
 <Record Type="UI.DataField">
 <PropertyValue Property="Value" Path="to_Supplier/CompanyName"/>
 <Annotation Term="UI.Importance" EnumMember="UI.ImportanceType/High"/>
 </Record>
 <Record Type="UI.DataField">
 <PropertyValue Property="Criticality" Path="to_StockAvailability/
StockAvailability"/>
 <PropertyValue Property="Value" Path="to_StockAvailability/
StockAvailability"/>
 <Annotation Term="UI.Importance" EnumMember="UI.ImportanceType/High"/>
 </Record>
 <Record Type="UI.DataField">
 <PropertyValue Property="Value" Path="Price"/>
 <Annotation Term="UI.Importance" EnumMember="UI.ImportanceType/High"/>
 </Record>
 <Record Type="UI.DataFieldForAction">
 <PropertyValue Property="Label" String="Copy"/>
 <PropertyValue Property="Action"
 String="STTA_PROD_MAN.STTA_PROD_MAN_Entities/STTA_C_MP_ProductCopy"/>
 <PropertyValue Property="Inline" Bool="true"/>
 <Annotation Term="UI. InvocationGrouping"
 EnumMember="UI.OperationGroupingType/Isolated"/>
 </Record>
 <Record Type="UI.DataFieldForIntentBasedNavigation">
 <PropertyValue Property="Label" String="Manage Products (ST)"/>
 <PropertyValue Property="SemanticObject" String="EPMProduct"/>
 <PropertyValue Property="Action" String="manage_st"/>
 <PropertyValue Property="Inline" Bool="true"/>
 </Record>
 <Record Type="UI.DataFieldWithIntentBasedNavigation">
 <PropertyValue Property="Label" String="Weight (with IBN)" />
 <PropertyValue Property="Value" Path="Weight"/>
 <PropertyValue Property="SemanticObject" String="EPMProduct" />
 <PropertyValue Property="Action" String="manage_st"/>
 </Record>
 </Collection>
</Annotation>

In the example above, the order in which the record types are presented in the annotation determines the order
in which they appear in the table columns:

● For the first two record types, the DataFieldForAction complex type does not contain the Inline
property, which means that the action button will appear in the smart table toolbar. If the Inline property
is there and set to false, the action button is also displayed in the smart table toolbar.

● With the next five record types, the DataField complex type is used to define the data for a column within
the smart table.

● With the last two record types, the DataFieldForAction and DataFieldForIntentBasedNavigation
complex types are used and contain the Inline property which is set to true. This means the action
buttons will appear in every row in the appropriate column within the smart table.

● With the last record type, the DataFieldWithIntentBasedNavigation complex type is used to render
the property value as a link allowing for navigation to the semantic object.

1744 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Highlighting Line Items Based on Criticality

You can add semantic highlights to line items in tables, based on their criticiality.

The figure below shows an example of this:

To do so, add a LineItem criticality annotation for the line items of the entity type that is used by a table, as
follows:

 Sample Code

 <Annotation Term="UI.LineItem">
 <Annotation Term="UI.Criticality"
Path="Element_transporting_criticality_of_complete_LineItem" /> //
LineItem Criticality annotation
 <Collection>
 <Record Type="UI.DataField">
 ...
 </Record>
 </Collection>
</Annotation>

If this annotation has been defined based on the criticality value received for the corresponding line item, the
following highlights are displayed:

● 0 - None (no color)
● 1 - Error (red)
● 2 - Warning (yellow)
● 3 - Success (green)

 Note
Newly created line items in draft status are always highlighted in blue. After saving the line item, blue is
replaced by the color for the criticality of the line item.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1745

Adding a Rating Indicator to a Table

You can add a read-only rating indicator to a table.

The rating indicator allows you to visually represent the value of a field from the back-end system with the
corresponding number of stars (configurable). This field can indicate a rating or classification for a specific
object or item.

Decimal values are rounded up or down accordingly. If a value falls between x.25 and x.74, a half star is
displayed.

Figure 309: Rating Indicator in Table

Code Samples (OData Annotations)

Use the following annotations to enable the rating indicator and define the maximum number of stars:

 Sample Code

<Annotations Target="STTA_PROD_MAN.STTA_C_MP_ProductType"> <Annotation Term="UI.DataPoint" Qualifier="Rating">
 <Record>
 <PropertyValue Property="Value"
Path="to_StockAvailability/StockAvailability" />
 <PropertyValue
Property="TargetValue" Decimal="4" />
 <PropertyValue
Property="Visualization" EnumMember="UI.VisualizationType/Rating" />
 </Record>
 </Annotation>
 <Annotation Term="UI.LineItem">
 <Collection>
 <Record
Type="UI.DataFieldForAnnotation">
 <PropertyValue
Property="Label" String="Rating" />
 <PropertyValue
Property="Target" AnnotationPath="@UI.DataPoint#Rating" />
 </Record>
 …
 </Collection>
 …
 </Annotation>
 …
</Annotations>

1746 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Note
The TargetValue property defines the maximum number of stars. In this case, it is 4.

Adding a Progress Indicator to a Table

You can add a progress indicator to a table.

The progress indicator allows you to visually represent the level of completion of a project or a goal, for
example.

It can be used to express completion values either as a percentage or as absolute numbers (for example, 8 of
10).

Figure 310: Progress Indicator

Code Samples

The following code sample shows how to implement a progress indicator using annotations.
AnnotationPath="@UI.DataPoint#Progress references the Qualifier="Progress".
EnumMember="UI.VisualizationType/Progress" defines the actual visualization as a progress indicator.

<Annotations Target="STTA_PROD_MAN.STTA_C_MP_ProductType"> <Annotation Term="UI.DataPoint" Qualifier="Progress">
 <Record>
 <PropertyValue Property="Value"
Path="to_StockAvailability/Quantity" />
 <PropertyValue
Property="TargetValue" Decimal="100" />
 <PropertyValue
Property="Visualization" EnumMember="UI.VisualizationType/Progress" />
 </Record>
 </Annotation>
 <Annotation Term="UI.LineItem">
 <Collection>
 <Record
Type="UI.DataFieldForAnnotation">
 <PropertyValue
Property="Label" String="Progress" />
 <PropertyValue
Property="Criticality" Path="to_StockAvailability/Quantity" />

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1747

 <PropertyValue
Property="Target" AnnotationPath="@UI.DataPoint#Progress" />
 </Record>
 <Collection>
 </Annotation>
</Annotations>

Change Color of Progress Bar

If required, you can set up the progress bar so that it changes color to reflect the state of the progress
depending on the criticality value as shown in the figure below.

Figure 311: Progress Indicator: Colors Reflect State of Progress

To do so, assign a value to the criticality property.

The path references the property (in this case, Path="StockAvailability") that defines the color.

<Annotation Term="UI.DataPoint" Qualifier="Quantity"> <Record>
 <PropertyValue Property="Value" Path="Quantity"/>
 <PropertyValue Property="Title"
String="{@i18n>@Availability}"/>
 <PropertyValue Property="Description" String="Progress
Indicator"/>
 <PropertyValue Property="TargetValue" Decimal="150"/>
 <PropertyValue Property="Visualization"
EnumMember="UI.VisualizationType/Progress"/>
 <PropertyValue Property="Criticality"
Path="StockAvailability"/>
 </Record>
 </Annotation>

1748 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Adding a Smart Micro Chart to a Table

You can add a smart micro chart to a column within a SmartTable control in both the list report and the object
page.

To add a smart micro chart to a smart table, use the annotation term UI.LineItem and the complex type
DataFieldForAnnotation. The smart micro charts are then displayed within the table column as shown
below:

Figure 312: Smart Micro Chart in List Report

Code Samples

UI.LineItem and UI.DataFieldForAnnotation
The Label property of the UI.DataFieldForAnnotation is used for the text of the table column header.

 <Annotations Target="STTA_PROD_MAN.STTA_C_MP_ProductType">
 <Annotation Term="UI.LineItem">
 <Collection>
 <Record Type="UI.DataFieldForAction">
 <PropertyValue Property="Label" String="Copy with new Supplier"/>
 <PropertyValue Property="Action"
String="STTA_PROD_MAN.STTA_PROD_MAN_Entities/STTA_C_MP_ProductCopywithparams"/>
 <Annotation Term="UI.OperationGrouping"
EnumMember="UI.OperationGroupingType/Isolated"/>
 </Record>
 <Record Type="UI.DataFieldForAction">
 <PropertyValue Property="Label" String="Activate"/>
 <PropertyValue Property="Action"
String="STTA_PROD_MAN.STTA_PROD_MAN_Entities/STTA_C_MP_ProductActivation"/>
 <PropertyValue Property="Determining" Bool="true"/>
 <Annotation Term="UI.OperationGrouping"
EnumMember="UI.OperationGroupingType/ChangeSet"/>
 </Record>
 <Record Type="UI.DataField">
 <PropertyValue Property="Value" Path="Product"/>
 <Annotation Term="UI.Importance" EnumMember="UI.ImportanceType/High"/>
 </Record>
 <Record Type="UI.DataField">
 <PropertyValue Property="Value" Path="ProductCategory"/>
 <Annotation Term="UI.Importance" EnumMember="UI.ImportanceType/High"/>
 </Record>
 <Record Type="UI.DataField">
 <PropertyValue Property="Value" Path="to_Supplier/CompanyName"/>
 <Annotation Term="UI.Importance" EnumMember="UI.ImportanceType/High"/>
 </Record>
 <Record Type="UI.DataField">

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1749

 <PropertyValue Property="Criticality" Path="to_StockAvailability/
StockAvailability"/>
 <PropertyValue Property="Value" Path="to_StockAvailability/
StockAvailability"/>
 <Annotation Term="UI.Importance" EnumMember="UI.ImportanceType/High"/>
 </Record>
 <Record Type="UI.DataField">
 <PropertyValue Property="Value" Path="Price"/>
 <Annotation Term="UI.Importance" EnumMember="UI.ImportanceType/High"/>
 </Record>
 <Record Type="UI.DataFieldForAction">
 <PropertyValue Property="Label" String="Copy"/>
 <PropertyValue Property="IconUrl" String="sap-icon://copy"/>
 <PropertyValue Property="Action"
String="STTA_PROD_MAN.STTA_PROD_MAN_Entities/STTA_C_MP_ProductCopy"/>
 <PropertyValue Property="Inline" Bool="true"/>
 <PropertyValue Property="Determining" Bool="true"/>
 <Annotation Term="UI.OperationGrouping"
EnumMember="UI.OperationGroupingType/Isolated"/>
 </Record>
 <Record Type="UI.DataFieldForIntentBasedNavigation">
 <PropertyValue Property="Label" String="Manage Products (ST)"/>
 <PropertyValue Property="SemanticObject" String="EPMProduct"/>
 <PropertyValue Property="Action" String="manage_st"/>
 <PropertyValue Property="Inline" Bool="true"/>
 <PropertyValue Property="Determining" Bool="true"/>
 </Record>
 <Record Type="UI.DataFieldForAnnotation">
 <PropertyValue Property="Label" String="Rating"/>
 <PropertyValue Property="Target" AnnotationPath="@UI.DataPoint#Rating"/>
 </Record>
 <Record Type="UI.DataFieldForAnnotation">
 <PropertyValue Property="Label" String="Progress"/>
 <PropertyValue Property="Criticality" Path="to_StockAvailability/
Quantity"/>
 <PropertyValue Property="Target"
AnnotationPath="@UI.DataPoint#Progress"/>
 </Record>
 <Record Type="UI.DataFieldForAnnotation">
 <PropertyValue Property="Label" String="Sales"/>
 <PropertyValue Property="Target" AnnotationPath="to_ProductSalesPrice/
@UI.Chart#AreaChartQualifier"/>
 </Record>
 <Record Type="UI.DataFieldForAnnotation">
 <PropertyValue Property="Label" String="Revenue"/>
 <PropertyValue Property="Target" AnnotationPath="to_ProductSalesRevenue/
@UI.Chart#BulletChartQualifier"/>
 </Record>
 </Collection>
 </Annotation> </Annotations>

UI.Chart Annotations

Smart Area Micro Chart

 <Annotation Term="UI.Chart" Qualifier="AreaChartQualifier">
 <Record Type="UI.ChartDefinitionType">
 <PropertyValue Property="Title" String="Sales Price" />
 <PropertyValue Property="Description" String="Area Micro Chart" />
 <PropertyValue Property="ChartType" EnumMember="UI.ChartType/Area" />
 <PropertyValue Property="Dimensions">
 <Collection>
 <PropertyPath>PriceDay</PropertyPath>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="Measures">

1750 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 <Collection>
 <PropertyPath>AreaChartPrice</PropertyPath>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="MeasureAttributes">
 <Collection>
 <Record Type="UI.ChartMeasureAttributeType">
 <PropertyValue Property="Measure"
PropertyPath="AreaChartPrice" />
 <PropertyValue Property="Role"
EnumMember="UI.ChartMeasureRoleType/Axis1" />
 <PropertyValue Property="DataPoint"
AnnotationPath="@UI.DataPoint#AreaChartPrice" />
 </Record>
 </Collection>
 </PropertyValue>
 </Record> </Annotation>

Smart Bullet Micro Chart

 <Annotation Term="UI.Chart" Qualifier="BulletChartQualifier">
 <Record Type="UI.ChartDefinitionType">
 <PropertyValue Property="Title" String="Sales Revenue" />
 <PropertyValue Property="Description" String="Bullet Micro Chart" />
 <PropertyValue Property="ChartType" EnumMember="UI.ChartType/Bullet" />
 <PropertyValue Property="Measures">
 <Collection>
 <PropertyPath>BulletChartRevenue</PropertyPath>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="MeasureAttributes">
 <Collection>
 <Record Type="UI.ChartMeasureAttributeType">
 <PropertyValue Property="Measure"
PropertyPath="BulletChartRevenue" />
 <PropertyValue Property="Role"
EnumMember="UI.ChartMeasureRoleType/Axis1" />
 <PropertyValue Property="DataPoint"
AnnotationPath="@UI.DataPoint#BulletChartRevenue" />
 </Record>
 </Collection>
 </PropertyValue>
 </Record> </Annotation>

 Recommendation
Refer the documentation for Smart Micro Chart Facet [page 1673] to see code samples for these micro
charts:

● Smart radial micro chart
● Smart column micro chart
● Smart line micro chart
● Smart harvey micro chart
● Smart stacked bar micro chart

Limitation

Currently, the template doesn't currently support the use of navigation properties within the UI.Chart term
for the smart micro chart (see example below).

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1751

Figure 313: Navigation Property

UI.DataPoint Annotation
The DataPoint property of the MeasureAttributes of the UI.Chart annotation should point to the
UI.DataPoint annotation.

The SmartMicroChart control supports the Criticality and CriticalityCalculation properties of a
UI.DataPoint. For an example of how to use the CriticalityCalculation, see the smart area micro
chart annotation example. For an example of how to use the Criticality property, see the smart bullet micro
chart annotation example.

 Note
Although the Title for the UI.DataPoint is mandatory, it is not used by the smart micro chart.

Smart Area Micro Chart

 <Annotation Term="UI.DataPoint" Qualifier="AreaChartPrice">
 <Record>
 <PropertyValue Property="Title" String="Sales Price" />
 <PropertyValue Property="Value" Path="AreaChartPrice" />
 <PropertyValue Property="TargetValue" Path="TargetPrice" />
 <PropertyValue Property="CriticalityCalculation">
 <Record>
 <PropertyValue Property="ImprovementDirection"
EnumMember="UI.ImprovementDirectionType/Target" />
 <PropertyValue Property="DeviationRangeHighValue"
Path="DeviationUpperBoundPrice" />
 <PropertyValue Property="DeviationRangeLowValue"
Path="DeviationLowerBoundPrice" />
 <PropertyValue Property="ToleranceRangeHighValue"
Path="ToleranceUpperBoundPrice" />
 <PropertyValue Property="ToleranceRangeLowValue"
Path="ToleranceLowerBoundPrice" />
 </Record>
 </PropertyValue>
 </Record> </Annotation>

Smart Bullet Micro Chart

 <Annotation Term="UI.DataPoint" Qualifier="BulletChartRevenue">
 <Record>
 <PropertyValue Property="Title" String="Sales Revenue" />
 <PropertyValue Property="Value" Path="BulletChartRevenue" />
 <PropertyValue Property="TargetValue" Path="TargetRevenue" />
 <PropertyValue Property="ForecastValue" Path="ForecastRevenue" />
 <PropertyValue Property="MinimumValue" Decimal="100" />
 <PropertyValue Property="MaximumValue" Decimal="300" />

1752 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 <PropertyValue Property="Criticality" Path="Criticality" />
 </Record> </Annotation>

 Note
The following must all point to the same property in the entityType:

● Measure property of the Chart annotation
● Measure property of the MeasureAttributes property of the Chart annotation
● Value property of the DataPoint annotation

CDS Annotations
CDS Annotation Definition for UI.Chart

 chart : array of
{
 qualifier : String(120);
 @LanguageDependency.maxLength : 40
 title : String(60);
 @LanguageDependency.maxLength : 80
 description : String(120);
 chartType : String enum
 {
 COLUMN;
 COLUMN_STACKED;
 COLUMN_STACKED_100;
 COLUMN_DUAL;
 COLUMN_STACKED_DUAL;
 COLUMN_STACKED_DUAL_100;
 BAR;
 BAR_STACKED;
 BAR_STACKED_100;
 BAR_DUAL;
 BAR_STACKED_DUAL;
 BAR_STACKED_DUAL_100;
 AREA;
 AREA_STACKED;
 AREA_STACKED_100;
 HORIZONTAL_AREA;
 HORIZONTAL_AREA_STACKED;
 HORIZONTAL_AREA_STACKED_100;
 LINE;
 LINE_DUAL;
 COMBINATION;
 COMBINATION_STACKED;
 COMBINATION_STACKED_DUAL;
 HORIZONTAL_COMBINATION_STACKED;
 HORIZONTAL_COMBINATION_STACKED_DUAL;
 PIE;
 DONUT;
 SCATTER;
 BUBBLE;
 RADAR;
 HEAT_MAP;
 TREE_MAP;
 WATERFALL;
 BULLET;
 VERTICAL_BULLET;
 };
 dimensions : array of elementRef;
 measures : array of elementRef;
 dimensionAttributes : array of
 {

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1753

 dimension : elementRef;
 role : String(10) enum
 {
 CATEGORY;
 SERIES;
 };
 };
 measureAttributes : array of
 {
 measure : elementRef;
 role : String(10) enum
 {
 AXIS_1;
 AXIS_2;
 AXIS_3;
 };
 asDataPoint : Boolean default true;
 }; }

CDS Annotation for UI.Chart: Smart Area Micro Chart

 @UI.chart:[{
 title: 'Sales Price',
 description: 'Area Micro Chart',
 chartType: #AREA,
 dimensions:['PriceDay'],
 measures:['AreaChartPrice'],
 measureAttributes: [
 { measure: 'AreaChartPrice', role: #AXIS_1, asDataPoint: true }
],
 qualifier: 'AreaChartQualifier' }]

CDS Annotation for UI.Chart: Smart Bullet Micro Chart

 @UI.chart:[{
 title:'Sales Revenue',
 description: 'Bullet Micro Chart',
 chartType: #BULLET,
 measures:['BulletChartRevenue'],
 measureAttributes: [
 { measure: 'BulletChartRevenue', role: #AXIS_1, asDataPoint: true }
],
 qualifier: 'BulletChartQualifier' }]

CDS Annotation Definition for UI.DataPoint

 dataPoint
{
 @LanguageDependency.maxLength : 40
 title : String(60);
 @LanguageDependency.maxLength : 80
 description : String(120);
 @LanguageDependency.maxLength : 190
 longDescription : String(250);
 targetValue : DecimalFloat;
 targetValueElement : elementRef;
 forecastValue : elementRef;
 minimumValue : DecimalFloat;
 maximumValue : DecimalFloat;
 visualization : String enum
 {
 NUMBER;

1754 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 BULLET_CHART;
 DONUT;
 PROGRESS;
 RATING;
 };
 valueFormat
 {
 scaleFactor : DecimalFloat;
 numberOfFractionalDigits : Integer;
 };
 referencePeriod
 {
 @LanguageDependency.maxLength : 80
 description : String(120);
 start : elementRef;
 end : elementRef;
 };
 criticality : elementRef;
 criticalityCalculation
 {
 improvementDirection : String enum { MINIMIZE; TARGET; MAXIMIZE; };
 toleranceRangeLowValue : DecimalFloat;
 toleranceRangeLowValueElement : elementRef;
 toleranceRangeHighValue : DecimalFloat;
 toleranceRangeHighValueElement : elementRef;
 deviationRangeLowValue : DecimalFloat;
 deviationRangeLowValueElement : elementRef;
 deviationRangeHighValue : DecimalFloat;
 deviationRangeHighValueElement : elementRef;
 };
 trend : elementRef;
 trendCalculation
 {
 referenceValue : elementRef;
 isRelativeDifference : Boolean default false;
 upDifference : DecimalFloat;
 upDifferenceElement : elementRef;
 strongUpDifference : DecimalFloat;
 strongUpDifferenceElement : elementRef;
 downDifference : DecimalFloat;
 downDifferenceElement : elementRef;
 strongDownDifference : DecimalFloat;
 strongDownDifferenceElement : elementRef;
 };
 responsible : elementRef;
 responsibleName : String(120); };

CDS Annotation for UI.DataPoint: Smart Area Micro Chart

 @UI.dataPoint: {
 title: 'Sales Price',
 targetValueElement: 'TargetPrice',
 criticalityCalculation: {
 improvementDirection: #TARGET,
 toleranceRangeLowValueElement: 'ToleranceLowerBoundPrice',
 toleranceRangeHighValueElement: 'ToleranceUpperBoundPrice',
 deviationRangeLowValueElement: 'DeviationLowerBoundPrice',
 deviationRangeHighValueElement: 'DeviationUpperBoundPrice'
 }
} ProductSalesPrice.Price as AreaChartPrice

CDS Annotation for UI.DataPoint: Smart Bullet Micro Chart

 @UI.dataPoint: {

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1755

 title:'Sales Revenue',
 targetValueElement: 'TargetRevenue',
 forecastValue: 'ForecastRevenue',
 minimumValue: 100,
 maximumValue: 300,
 criticality: 'Criticality'
}
ProductSalesRevenue.Revenue as BulletChartRevenue

 Note
Currently, the UI.DataPoint in the CDS views does not support elementRef for minimumValue and
maximumValue. The values for these properties are hard-coded as in the example above.

Adding a Contact Quick View to a Table

Using the @Communication.Contact annotation, you can enable a contact quick view in a table.

The quick view can be displayed from the list report and the object page, as shown below.

Figure 314: Displaying a Contact Quick View in a Table

Code Sample

In the example, the UI.LineItem annotation needs to be added under the ProductType entity, as follows:

 Sample Code

 <Annotation Term="UI.LineItem"> <Collection>

 <Record
Type="UI.DataFieldForAction">
 <PropertyValue
Property="Label" String="Activate" />
 <PropertyValue
Property="Action"

1756 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

String="STTA_PROD_MAN.STTA_PROD_MAN_Entities/STTA_C_MP_ProductActivation"/>
 <PropertyValue
Property="InvocationGrouping"

EnumMember="UI.OperationGroupingType/ChangeSet" />
 </Record>

 <Record Type="UI.DataField">
 <PropertyValue
Property="Value" Path="ProductPictureURL" />
 <Annotation
Term="UI.Importance" EnumMember="UI.ImportanceType/High" />
 </Record>
 <Record Type="UI.DataField">
 <PropertyValue
Property="Value" Path="ProductForEdit" />
 <Annotation
Term="UI.Importance" EnumMember="UI.ImportanceType/High" />
 </Record>
 <Record Type="UI.DataField">
 <PropertyValue
Property="Value" Path="ProductCategory" />
 <Annotation
Term="UI.Importance" EnumMember="UI.ImportanceType/High" />
 </Record>
 <Record
Type="UI.DataFieldWithIntentBasedNavigation">
 <PropertyValue
Property="Label" String="Supplier (with IBN)" />
 <PropertyValue
Property="Value" Path="Supplier" />
 <PropertyValue
Property="SemanticObject" String="EPMProduct" />
 <PropertyValue
Property="Action" String="manage" />
 </Record>

 <Record
Type="UI.DataFieldForAnnotation">
 <PropertyValue
Property="Label" String="{@i18n>@Supplier}"/>
 <PropertyValue
Property="Target"

AnnotationPath="to_Supplier/@Communication.Contact"/>
 <Annotation
Term="UI.Importance" EnumMember="UI.ImportanceType/High" />
 </Record>
 <Record Type="UI.DataField">
 <PropertyValue
Property="Criticality"

Path="to_StockAvailability/StockAvailability" />
 <PropertyValue
Property="Value"

Path="to_StockAvailability/StockAvailability" />
 <Annotation
Term="UI.Importance" EnumMember="UI.ImportanceType/High" />
 </Record>
 <Record
Type="UI.DataFieldForAnnotation">
 <PropertyValue
Property="Label" String="Rating" />
 <PropertyValue
Property="Target" AnnotationPath="@UI.DataPoint#Rating" />
 </Record>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1757

 <Record
Type="UI.DataFieldForAnnotation">
 <PropertyValue
Property="Label" String="Progress" />
 <PropertyValue
Property="Criticality"

Path="to_StockAvailability/Quantity" />
 <PropertyValue
Property="Target" AnnotationPath="@UI.DataPoint#Progress" />
 </Record>
 <Record Type="UI.DataField">
 <PropertyValue
Property="Value" Path="Price" />
 <Annotation
Term="UI.Importance" EnumMember="UI.ImportanceType/High" />
 </Record>
 <Record
Type="UI.DataFieldForAction">
 <PropertyValue
Property="Label" String="Copy" />
 <PropertyValue
Property="IconUrl" String="sap-icon://copy" />
 <PropertyValue
Property="Action"

String="STTA_PROD_MAN.STTA_PROD_MAN_Entities/STTA_C_MP_ProductCopy" />
 <PropertyValue
Property="Inline" Bool="true" />
 <PropertyValue
Property="Determining" Bool="true" />
 <PropertyValue
Property="InvocationGrouping"

EnumMember="UI.OperationGroupingType/Isolated" />
 </Record>
 <Record
Type="UI.DataFieldForIntentBasedNavigation">
 <PropertyValue
Property="Label" String="{@i18n>@MANAGE_PRODUCTS_(ST)_2}" />
 <PropertyValue
Property="SemanticObject" String="EPMProduct" />
 <PropertyValue
Property="Action" String="manage_st" />
 <PropertyValue
Property="Inline" Bool="false" />
 <PropertyValue
Property="Determining" Bool="false" />
 <PropertyValue
Property="RequiresContext" Bool="true" />
 </Record>

 <Record
Type="UI.DataFieldForIntentBasedNavigation">
 <PropertyValue
Property="Label" String="{@i18n>@Inline_Nav_MasterDetail}" />
 <PropertyValue
Property="SemanticObject" String="EPMProduct" />
 <PropertyValue
Property="Action" String="manage" />
 <PropertyValue
Property="Inline" Bool="true" />
 <PropertyValue
Property="Determining" Bool="false" />
 <PropertyValue
Property="RequiresContext" Bool="false" />
 </Record>

1758 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 <Record
Type="UI.DataFieldForAnnotation">
 <PropertyValue
Property="Label" String="Sales"/>
 <PropertyValue
Property="Target" AnnotationPath="to_ProductSalesPrice/
@UI.Chart#SalesPriceAreaChart"/>
 </Record>
 <Record
Type="UI.DataFieldForAnnotation">
 <PropertyValue
Property="Label" String="Revenue"/>
 <PropertyValue
Property="Target" AnnotationPath="to_ProductSalesRevenue/
@UI.Chart#GrossSalesRevenueBulletChart"/>
 </Record>
 </Collection> </Annotation>

The Communication.Contact annotation term is defined under the SupplierType entity as follows:

 Sample Code

 <Annotation Term="Communication.Contact"> <Record>
 <PropertyValue Property="fn"
Path="CompanyName" />
 <PropertyValue Property="tel">
 <Collection>
 <Record>

<PropertyValue Property="type"

EnumMember="Communication.PhoneType/fax" />

<PropertyValue Property="uri" Path="FaxNumber" />
 </Record>
 <Record>

<PropertyValue Property="type"

EnumMember="Communication.PhoneType/preferred Communication.PhoneType/work" />

<PropertyValue Property="uri" Path="PhoneNumber" />
 </Record>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="email">
 <Collection>
 <Record>

<PropertyValue Property="type"

EnumMember="Communication.ContactInformationType/work
Communication.ContactInformationType/pref" />

<PropertyValue Property="address" Path="EmailAddress" />
 </Record>
 </Collection>
 </PropertyValue>
 </Record> </Annotation>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1759

Adding Multiple Fields to One Column in Responsive Tables

You can add multiple IDs, descriptions, and action buttons to one column in a responsive table.

To include these items, the UI.FieldGroup needs to be referred to in the UI.LineItem annotation. The
UI.FieldGroup then contains a collection of annotations that can be grouped together semantically.

The FieldGroup below contains the fields that are displayed in the same column.

 Sample Code

<Annotation Term="com.sap.vocabularies.UI.v1.FieldGroup" Qualifier="TechData"> <Record>
 <PropertyValue Property="Data">
 <Collection>
 <Record Type="com.sap.vocabularies.UI.v1.DataField">
 <PropertyValue Property="Value" Path="Supplier" />
 </Record>
 <Record Type="com.sap.vocabularies.UI.v1.DataField">
 <PropertyValue Property="Value" Path="Width" />
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
</Annotation>

The UI.LineItem that includes the UI.FieldGroup shown above looks like this (second DataField):

 Sample Code

<Annotation Term="UI.LineItem"> <Collection>
 <Record Type="UI.DataField">
 <PropertyValue Property="Label" String="Project"/>
 <PropertyValue Property="Value" Path="Project"/>
 <Annotation Term="UI.Importance" EnumMember="UI.ImportanceType/
High"/>
 </Record>
 <Record Type="com.sap.vocabularies.UI.v1.DataFieldForAnnotation">
 <PropertyValue Property="Label" String="Technical Data" />
<!-- This Label becomes the column header -->
 <PropertyValue Property="Target"
AnnotationPath="@UI.FieldGroup#TechData"/> <!-- This FieldGroup should
always be a part of same entityType as the UI.LineItem (to_NavigationProperty/
@UI.FieldGroup are currently not supported) -->
 </Record>
 </Collection>
</Annotation>

 Note
For the fields contained in the FieldGroup shown above: If a property and its corresponding sap:text
property are shown in the same column, the TextArrangement annotation is not applicable for this field.
In this case, the default is idOnly. In all other cases, the textArrangement annotation can be defined to
show the ID and the description in the table column.

You can use the following annotations in UI.FieldGroup:

1760 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

● UI.DataField
● UI.DataFieldForAction
● UI.DataFieldForIntentBasedNavigation
● UI.DataFieldWithNavigationPath
● UI.DataFieldForAnnotation

○ Communication.Contact
○ UI.Chart
○ UI.Visualization/Rating
○ UI.Visualization/Progress

The result looks like this:

Figure 315: Multiple IDs, Descriptions, and Action Buttons in a Table Column

Limitations

Take the following limitations into account when implementing this feature:

● When using the export to Microsoft Excel feature, only the first field of the semantically connected column
is exported, that is, the first visible field in the table column.

● When using table personalization, users can only filter, sort, and group the semantically connected column
based on the individual properties (of the same entity type as the UI.LineItem) mentioned in the
UI.FieldGroup collection.
Example: Height and weight are two properties which are semantically connected. The name of the column
header is Combined. In this case, in the personalization, you cannot filter, sort, and group on Combined.
You can only filter, sort, and group on individual properties like height and weight.

Settings for List Report Tables

You can set up various aspects of the list report table through annotations and in the manifest.json file, as
described in the sections that follow.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1761

Defining Line Items

To define the line items of a table, use com.sap.vocabularies.UI.v1.LineItem as shown in the code
samples below. The rendering result is as follows:

Figure 316: List Report: LineItem of Root EntitySet

This video shows the step-by-step procedure for adding line items to a list report table:

Code Samples

Root entitySet in manifest.json

"pages: [{
 "entitySet": "SEPMRA_C_PD_Product",
 "component": {
 "name": "sap.suite.ui.generic.template.ListReport",
 "list": true },

Annotation XML: Determining Column Names

... <Annotation Term="UI.LineItem">
 <Collection>
 <RecordType="UI.DataField">
 <PropertyValue Property="Value" Path="Product"/>
 <Annotation Term="UI.Importance" EnumMember="UI.ImportanceType/High"/>
 </Record>
 <RecordType="UI.DataField">
 <PropertyValue Property="Value" Path="ProductCategory"/>
 <Annotation Term="UI.Importance" EnumMember="UI.ImportanceType/High"/>
 </Record>
 <RecordType="UI.DataField">
 <PropertyValue Property="Value" Path="Supplier"/>

1762 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 <Annotation Term="UI.Importance" EnumMember="UI.ImportanceType/High"/>
 </Record>
 </Collection> </Annotation>

More Information

For information about adding actions for line items in the list report view, see Enabling Actions in the List
Report [page 1642].

For information about responsiveness options in tables, see Responsiveness Options: Example [page 1617].

Displaying Images in Tables

To display images in tables, you must first add a data field with a value that relates to an image URL

This is shown in the following example:

 Sample Code

<Record Type="UI.DataField"> <PropertyValue Property="Value" Path="ProductPictureURL"/>
 <Annotation Term="UI.Importance" EnumMember="UI.ImportanceType/High"/>
</Record>

You also need to add a property annotation to the local annotation file that specifies that this property contains
an image URL, as in the following example:

 Sample Code

<Annotations Target="STTA_PROD_MAN.STTA_C_MP_ProductType/ProductPictureURL"> <Annotation Term="UI.IsImageUrl" />
 <Annotation Term="Common.Text" String="{Product}" />
</Annotations>

The Common.Text annotation is optional. You can use it to provide textual information for the image, for
example, for accessibility purposes. This text is not visible on the UI, but can be read by screen readers. From a
technical perspective, the provided string (in this example, the product) is assigned to the alt property of the
sap.m.Image instance.

Displaying the Editing Status

In draft-enabled applications, the edit, locked, unsaved data, or draft status is displayed in the first column to
which you have added the semantic key using the semantic key annotation.

For more information, see Editing Status [page 1630].

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1763

 Note
This is only available for the default DataField.

 Sample Code

<Annotations xmlns="http://docs.oasis-open.org/odata/ns/edm"
Target="STTA_PROD_MAN.STTA_C_MP_ProductType"> <Annotation Term="Common.SemanticKey">
 <Collection>
 <PropertyPath>ProductForEdit</PropertyPath>
 </Collection>
 </Annotation>
</Annotations>

If you have not added a semantic key to the line items, the editing status is displayed in the Title or Description
column, depending on the available information:

● If a semantic key annotation is available for the entityType, the value of the first semantic key is
displayed.

● If no semantic key annotation is available, the system checks whether the headerInfo/Title/Value/
Path is available under the LineItem annotation.

If applicable, this column is displayed in bold font and the editing status is added, if available.

For more information, see also SemanticKey.

Adapting the Table Content to the Space in the List Report

By default, the analytical, grid, and tree tables in list reports use the entire space of the table container on the
page.

For tables in the list report that have their own scrollbar, thefitContent property is set to true by default.
This applies if the tableType is sap.ui.table.Table, sap.ui.table.AnalyticalTable, or
sap.ui.table.TreeTable.

If you don't want the table to occupy the entire space, set the the property to false.

Alternatively, you can use the SAPUI5 Visual Editor to change this setting.

 Note
In the default settings for responsive tables the fitContent property is set to false.

Related Information

https://sapui5.hana.ondemand.com/#/api/sap.f.DynamicPage/methods/getFitContent
Adapting the UI: List Report and Object Page [page 1860]

1764 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.comp.smarttable.SmartTable/Annotations/SemanticKey
https://sapui5.hana.ondemand.com/#/api/sap.f.DynamicPage/methods/getFitContent

Settings for Object Page Tables

You can set up various aspects of the object page tables through the manifest.json file, as described in the
sections that follow.

Adding Titles to Object Page Tables

You can add a title to an object page table.

To add a title to an object page table, provide a string value to the TypeNamePlural property of the
UI.HeaderInfo annotation for the entity type with which the table is associated.

 Sample Code

<Annotations Target="STTA_PROD_MAN.STTA_C_MP_ProductTextType"> <Annotation Term="UI.HeaderInfo">
 <Record>
 <PropertyValue Property="TypeName" String="Product Text" />
 <PropertyValue Property="TypeNamePlural"
String="{@i18n>@TableTitle}" />
 <PropertyValue Property="Title">
 <Record Type="UI.DataField">
 <PropertyValue Property="Value" Path="Name" />
 </Record>
 </PropertyValue>
 <PropertyValue Property="Description">
 <Record Type="UI.DataField">
 <PropertyValue Property="Value" Path="Language" />
 </Record>
 </PropertyValue>
 </Record> </Annotation>

Take the following into account:

● As TypeNamePlural is a mandatory parameter, if the section title and the table title are identical, the
table title is not displayed.

● If the UI.HeaderInfo annotation hasn't been entered, the table title is also not displayed.
● Make sure you provide the appropriate section titles if the same string is maintained under

TypeNamePlural in the UI.HeaderInfo annotation.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1765

The results look like this:

Figure 317: Title for single table in object page section

Figure 318: Title for multiple tables in object page section

Adding Segmented Buttons to a Table Toolbar

You can add segmented buttons to the toolbar, to enable switching between the table content using a selection
variant annotation.

You can associate every button of the segmented buttons (or every list item in the select box) with a selection
variant that filters the table according to the selection variant filters once a user has clicked it. This means that
the user has multiple views in a single table of the object page. You can enable this feature for any table on the
object page.

To implement this feature, make a "quickVariantSelection" entry in the manifest. Every variant
corresponds to its filter on the UI. A segmented button is rendered when the number of variants defined is less
than or equal to 3. Defining 4 or more variants in the manifest renders a selection box.

1766 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

The following manifest settings are required for adding segmented buttons:

 Sample Code

"component": { "name": "sap.suite.ui.generic.template.ObjectPage",
 "settings": {
 "showConfirmationOnDraftActivate": false,
 "sections": {
 "SalesOrderItemsID": {
 "navigationProperty": "to_Item",
 "entitySet": "C_STTA_SalesOrderItem_WD_20",
 "createMode": "inline",
 "quickVariantSelection": {
 "showCounts": true,
 "variants": {
 "0": {
 "key": "_tab2",
 "annotationPath":
"com.sap.vocabularies.UI.v1.SelectionVariant#SimpleFilter"
 },
 "1": {
 "key": "_tab3",
 "annotationPath":
"com.sap.vocabularies.UI.v1.SelectionVariant#ComplexFilter"
 }
 }
 }
 }
 },
 "showRelatedApps": true
 }
}

To show the number of records available next to the title of the segmented button, set showCounts to true.

You can define a simple or a complex filter condition inside the SelectionVariant. While the simple
condition has only one property in the SelectionVariant, the complex filter condition can have more than
one property to be filtered.

The annotations defined in the variants are:

 Sample Code

 <Annotation Term="UI.SelectionVariant" Qualifier="SimpleFilter">
 <Record>
 <PropertyValue Property="Text" String="Tax amount less than 10
USD" />
 <PropertyValue Property="SelectOptions">
 <Collection>
 <Record Type="UI.SelectOptionType">
 <PropertyValue Property="PropertyName"
PropertyPath="tax_amount" />
 <PropertyValue Property="Ranges">
 <Collection>
 <Record Type="UI.SelectionRangeType">
 <PropertyValue Property="Sign"
EnumMember="UI.SelectionRangeSignType/I" />
 <PropertyValue Property="Option"
EnumMember="UI.SelectionRangeOptionType/LT" />
 <PropertyValue Property="Low" String="10" />
 </Record>
 </Collection>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1767

 </PropertyValue>
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
 </Annotation>
 <Annotation Term="UI.SelectionVariant" Qualifier="ComplexFilter">
 <Record>
 <PropertyValue Property="Text" String="Net Amount between 10 and 40
And Gross Amount Less than 100 USD" />
 <PropertyValue Property="SelectOptions">
 <Collection>
 <Record Type="UI.SelectOptionType">
 <PropertyValue Property="PropertyName"
PropertyPath="net_amount" />
 <PropertyValue Property="Ranges">
 <Collection>
 <Record>
 <PropertyValue Property="Sign"
EnumMember="com.sap.vocabularies.UI.v1.SelectionRangeSignType/I" />
 <PropertyValue Property="Option"
EnumMember="UI.SelectionRangeOptionType/BT" />
 <PropertyValue Property="Low" String="10" />
 <PropertyValue Property="High" String="40" />
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
 <Record Type="UI.SelectOptionType">
 <PropertyValue Property="PropertyName"
PropertyPath="gross_amount" />
 <PropertyValue Property="Ranges">
 <Collection>
 <Record Type="UI.SelectionRangeType">
 <PropertyValue Property="Option"
EnumMember="UI.SelectionRangeOptionType/LT" />
 <PropertyValue Property="Sign"
EnumMember="UI.SelectionRangeSignType/I" />
 <PropertyValue Property="Low" String="100" />
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
 </Annotation>

 Note
If the SelectionVariant has multiple <SelectionOptionType>, filters that have the same target
property are combined with an OR condition. Filters that have different target properties are combined with
an AND condition.

The table containing the segmented buttons looks like this:

1768 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Figure 319: Segmented button 1 selected

Figure 320: Segmented button 2 selected

 Note
When the table is initially loaded, two calls are made to determine the number of the records in the table.
These are shown in the button text.

Setting showCounts to false will not show the number in the button text. This means that in this case no
count calls are made.

Related Information

Defining Multiple Views on a List Report Table - Single Table Mode [page 1649]

Enabling Inline Creation of Table Entries on Object Page

You can enable the inline creation of table entries for apps that use draft handling.

In edit mode, the user can add new entries to a table in a section by choosing Add Entry. By default, a new entry
is created and the system automatically navigates to the item's object page. You can enable inline creation of
entries, that is, a new line is created but automatic navigation isn't triggered. When a new entry is created, the
line is highlighted in blue. This highlight disappears once the data is saved.

To enable inline creation, in the pages section in the manifest.json of your app, set createMode to inline like
this:

 Note
If you have defined an ID for the reference facet of your table, use this ID instead of the generated one, for
example, to_ProductText::com.sap.vocabularies.UI.v1.LineItem.

 "sap.ui.generic.app": {

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1769

 "pages": [
 {
 "entitySet": "SEPMRA_C_PD_Product",
 "component": {
 "name": "sap.suite.ui.generic.template.ListReport",
 "list": true
 },
 "pages": [
 {
 "entitySet": "SEPMRA_C_PD_Product",
 "component": {
 "name": "sap.suite.ui.generic.template.ObjectPage",
 "settings": {
 "sections": {

"to_ProductText::com.sap.vocabularies.UI.v1.LineItem": {

"navigationProperty": "to_ProductText",
 "entitySet":
"SEPMRA_C_PD_ProductText",
 "createMode":
"inline"
 }
 }
 }
 },
 "pages": [
 {
 "navigationProperty": "to_ProductText",
 "entitySet": "SEPMRA_C_PD_ProductText",
 "component": {
 "name":
"sap.suite.ui.generic.template.ObjectPage"
 }
 }
]
 }
]
 }
]
 },

 Note
For apps based on releases below SAP NetWeaver 7.51 SP01, the following restriction applies: If a user sets
a filter in a table that is enabled for inline creation, the filter conditions might not be evaluated correctly.
This can result in data being displayed incorrectly and not according to the filter criteria that has been
entered. This is relevant only for apps that use draft handling.

Changing the Default Sort Order

Based on the the default sort order, each newly created row is placed at the top of the table. You can disable
this default sorting by using the disableDefaultInlineCreateSort flag as shown below in the
manifest.json. You can then enter your own sorting logic.

This flag is evaluated only if the "createMode":"inline" flag is available in the manifest.json.

 Sample Code

1770 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

"ObjectPage|STTA_C_MP_Product": {
 "entitySet": "STTA_C_MP_Product",
 "component": {
 "name":
"sap.suite.ui.generic.template.ObjectPage",
 "settings": {
 "showRelatedApps": true,
 "tableType": "ResponsiveTable",
 "editableHeaderContent": true,
 "showConfirmationOnDraftActivate": true,
 "sections": {

"to_ProductText::com.sap.vocabularies.UI.v1.LineItem": {
 "navigationProperty":
"to_ProductText",
 "entitySet": "STTA_C_MP_ProductText",
 "multiSelect": true,
 "createMode": "inline",
 "disableDefaultInlineCreateSort":true,
 "tableType": "ResponsiveTable"
 }
 }
 }
 },

 Note
If you disable the default sort order and do not enter a custom sort order, the newly created row is
displayed last. Due to the growingThreshold setting of a maximum of 10 rows, the row might not be
visible if 10 rows are already displayed. To see this row, you then need to scroll down to the last position in
the table.

Enabling Action Buttons in Tables on the Object Page

You can use annotations to enable generic actions in tables on the object page.

Display or Hide the + (Create) Button

You can display or hide the + (Create) button for entities related to the selected object (entity) based on certain
conditions set up in your back-end system. For example, you can prevent users from adding a product
description after the product has been archived.

When set up to be visible, the + button is displayed in the table toolbar when the object page is in Edit mode, as
shown below.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1771

Figure 321: + Button in Table Toolbar

Within your annotations, you set the creatable-path to a particular property of the root object (entity) in the
back-end system that is either true or false. If the value of this property is true, the + button is displayed; if
it is false, it is hidden. Note that the creatable-path must point to a property of the root entity.

Code Samples
creatable-path: v2 Annotation

<NavigationProperty Name="to_ProductText" sap:creatable-
path="CanCreateProductText".../>

creatable-path: v4 Annotation

 <Annotations Target="STTA_PROD_MAN.STTA_PROD_MAN_Entities/STTA_C_MP_Product">
 <Annotation Term="Capabilities.InsertRestrictions">
 <Record>
 <PropertyValue Property="NonInsertableNavigationProperties">
 <Collection>
 <If>
 <Not>
 <Path>CanCreateProductText</Path>
 </Not>
 <NavigationPropertyPath>to_ProductText</
NavigationPropertyPath>
 </If>
 </Collection>
 </PropertyValue>
 </Record>
 </Annotation> </Annotations>

1772 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Enable or Disable Delete Button

You can enable or disable the Delete button in the toolbar of tables on the object page based on certain
conditions in the back-end system. For example, you can disable the Delete button for a product's text if the
text is in English.

Within your annotation, you set the deletable-path for an entity set to point to a particular Boolean property
of the entity that has a value of either true or false. The Delete button is enabled if the selected item's
property is true. If multiple selection is enabled for the table, the button is enabled if at least one selected item
is deletable.

Code Samples

v2 Annotation for Metadata

<EntitySet Name="STTA_C_MP_ProductText"
EntityType="STTA_PROD_MAN.STTA_C_MP_ProductTextType" sap:deletable-
path="Delete_mc" sap:content-version="1"/>

v4 Annotation

<Annotations Target="STTA_PROD_MAN.STTA_PROD_MAN_Entities/STTA_C_MP_ProductText"> <Annotation Term="Org.OData.Capabilities.V1.DeleteRestrictions">
 <Record>
 <PropertyValue Property="Deletable" Path="Delete_mc"/>
 </Record>
 </Annotation>
</Annotations>

Using the Condensed Table Layout

You can set the content density to condensed for ui.table on the object page.

To do so, in the manifest.json under the relevant section, set "condensedTableLayout" : true. Make this
setting for the section in which you want the UI table to adapt the condensed style.

 Sample Code

"ObjectPage|STTA_C_MP_Product": { "entitySet": "STTA_C_MP_Product",
 "component": {
 "name":
"sap.suite.ui.generic.template.ObjectPage",
 "settings": {
 "sections": {

"to_ProductText::com.sap.vocabularies.UI.v1.LineItem": {

"condensedTableLayout": true,
 }
 }
 }
 }

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1773

 Note
● The condensedTableLayout class can be set only if there is just one section that contains only

UI.table or if the icon tab bar is used for navigation between sections, and any section has only one
table in it. Otherwise, the class is not applied for ui.table even if the manifest key is set to true.

● The app needs to run in compact mode. If it runs in condensed mode, the class is not set, even if the
manifest key is set to true.

● Condensed mode can only be applied to ui.table.

Related Information

Content Densities [page 1142]

Copying and Pasting from Microsoft Excel to Editable Tables

Users can copy and paste data from Microsoft Excel to responsive tables and grid tables.

You need to fulfill these prerequisites to use this feature:

● The app is draft-enabled.
● Inline creation is enabled for the object page table. See also Enabling Inline Creation of Table Entries on

Object Page [page 1769].

If these prerequisites are fulfilled, a Paste button is shown in the table toolbar. Once the user has copied data
from Microsoft Excel, the focus can be anywhere in the table except for the cells. The user needs to trigger the
browser paste (CTRL + V for Microsoft Windows, CMD + V for MacOS). The paste function in a smart table
is available for these scenarios:

● In edit mode, the smart table only has editable fields.

Sample data:

1774 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

● In edit mode, the smart table only has editable fields. It also contains multiple editable fields in a single
column, for example, value and unit of measure.

Sample data:

● The smart table has both editable and non-editable fields.

Sample data:

 Note
The user has to maintain the placeholder for non-editable fields in Microsoft Excel. The fields can also
be empty.

● The smart table contains an inline action.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1775

Sample data:

 Note
Do not make entries for inline actions since the actions are not actual columns in the smart table.

 Note
Only the pasting of simple data fields is supported. Complex fields, such as smart links and images, are not
supported.

If there are validation errors, an error message is shown in a dialog box so that the user can take action.

All records that a user pastes are part of one POST batch call. The duration of the POST call increases with
the number of records pasted.

The order of the of the data copied from Microsoft Excel might differ from the order in the table after the
user has pasted it. SAP Fiori elements cannot control this.

Users cannot paste data into custom columns of tables.

This feature is not supported for tables with custom columns and custom tables.

Adapting Text for Confirmation Dialog Box When Deleting
Lines in a Table

When a user deletes a line in a table on the object page, a confirmation dialog box is displayed. You can adapt
the displayed default texts for every table.

To do so, you have to provide these custom texts in the application's i18n file, under the respective entitySet.
This is the key for those texts:

<i18n_Key>|<EntitySet>|<navigationProperty>|com.sap.vocabularies.UI.v1.LineItem

If the annotation has a qualifier for the line item annotation, then the i18n key should be:

<i18n_Key>|<EntitySet>|<navigationProperty>|com.sap.vocabularies.UI.v1.LineItem|
<qualifier>

1776 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Example
DELETE_SELECTED_ITEM|STTA_C_MP_Product|to_ProductText|
com.sap.vocabularies.UI.v1.LineItem=Delete this row?

You can use these i18n keys:

#YMSG, 100: Delete selected item text. "item" to be redefined.

DELETE_SELECTED_ITEM=Delete the selected item?

#YMSG, 100: Delete selected items text. "items" to be redefined.

DELETE_SELECTED_ITEMS=Delete the selected items?

#YMSG, 30: Delete success message. Parameter: {0}= deleted items count. "items" to be redefined.

DELETE_SUCCESS_PLURAL_WITH_COUNT={0} items have been deleted.

#YMSG, 30: Delete success message. Parameter: {0}= deleted item as count (1). "item" to be redefined.

DELETE_SUCCESS_WITH_COUNT={0} item has been deleted.

#YMSG, 30: Delete error message. Parameter: {0}= non-deleted items as count."items" to be redefined.

DELETE_ERROR_PLURAL_WITH_COUNT={0} items cannot be deleted.

#YMSG, 30: Delete error message. Parameter: {0}= non-deleted item as count (1)."item" to be redefined.

DELETE_ERROR_WITH_COUNT={0} item cannot be deleted.

#YMSG, 30: Delete error message. "items" to be redefined.

DELETE_ERROR_PLURAL=The selected items cannot be deleted.

#YMSG, 30: Delete error message. "item" to be redefined.

DELETE_ERROR=The selected item cannot be deleted.

#YMSG, 30: Delete success message. "items" to be redefined.

DELETE_SUCCESS_PLURAL=The selected items have been deleted.

#XMSG: Message box text after successfully deleting an object or sub-item. "item" to be redefined.

ITEM_DELETED=Item deleted

#YMSG, 100: Delete undeletable items text: {0}=digit, {1}=digit

DELETE_UNDELETABLE_ITEMS={0} of {1} items cannot be deleted.

If you don't provide any custom texts, the system uses the default texts listed above.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1777

Configuring Further Common Features

You can use annotations to set up various elements that are common to the list report and the object page,
such as status colors and navigation.

Using Action Control for Context-Dependent Actions

You can use action control to display actions by adding the sap:action-for and sap:applicable-path
terms to your action or function import.

Actions you've defined using these annotations are context-dependent. This means that users have to select
an item or a line in a list. Only then are the actions enabled.

In the applicable path, you specify a Boolean property for the entity type that controls whether the function
import can be invoked. SAP Fiori elements evaluates the applicable path and sets the visibility of the
corresponding action based on the boolean property value.

If the condition as defined by the applicable-path variable is not fulfilled, the action is hidden or disabled as
follows:

● hidden if on page header level or for line item buttons in a table
● disabled for header buttons in a table

 Sample Code

<FunctionImport Name="SEPMRA_C_PD_ProductCopy" ReturnType="SEPMRA_PROD_MAN.SEPMRA_C_PD_ProductType"
 EntitySet="SEPMRA_C_PD_Product" m:HttpMethod="POST"
 sap:action-for="SEPMRA_PROD_MAN.SEPMRA_C_PD_ProductType"
 sap:applicable-path="IsActiveEntity">
 <Parameter Name="ProductDraftUUID" Type="Edm.Guid" Mode="In"/>
 <Parameter Name="ActiveProduct" Type="Edm.String" Mode="In"
MaxLength="10"/>
</FunctionImport>

 Note
If multi-select is available in a table, the action is allowed when at least one of the marked entries fulfils the
condition.

Adding Determining Actions

You can add a determining action button to the footer of the list report view or to the footer of the object page.

Determining actions are used to trigger actions directly using the context of the table in the list report, or the
context of the page in the object page.

1778 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Two types of determining actions are supported:

● Actions that trigger a back-end call through the OData service (Function, FunctionImport, Action, or
ActionImport), represented by the complex type DataFieldForAction

● Actions that trigger intent-based navigation, represented by the complex type
DataFieldForIntentBasedNavigation

To add a determining action to the footer of the list report or object page, use the annotation term
UI.LineItem and set the Determining property to true for the complex type. This is displayed as shown
below:

Figure 322: List Report: Determining Action in Footer

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1779

Figure 323: Object Page: Determining Action in Footer

Code Samples

List Report
The following code sample shows an example of how to create your annotations for the determining actions in
the list report:

 <Annotation Term="UI.LineItem">
 <Collection>
 <Record Type="UI.DataFieldForAction">
 <PropertyValue Property="Label" String="Copy with new Supplier"/>
 <PropertyValue Property="Action"
 String="STTA_PROD_MAN.STTA_PROD_MAN_Entities/
 STTA_C_MP_ProductCopywithparams"/>
 <Annotation Term="UI. InvocationGrouping"
 EnumMember="UI.OperationGroupingType/Isolated"/>
 </Record>
 <Record Type="UI.DataFieldForAction">
 <PropertyValue Property="Label" String="Copy"/>
 <PropertyValue Property="Action"
 String="STTA_PROD_MAN.STTA_PROD_MAN_Entities/STTA_C_MP_ProductCopy"/>
 <PropertyValue Property="Determining" Bool="true"/>
 <Annotation Term="UI. InvocationGrouping"
 EnumMember="UI.OperationGroupingType/Isolated"/>
 </Record>
 <Record Type="UI.DataFieldForIntentBasedNavigation">
 <PropertyValue Property="Label" String="Manage Products (ST)"/>
 <PropertyValue Property="SemanticObject" String="EPMProduct"/>
 <PropertyValue Property="Action" String="manage_st"/>
 <PropertyValue Property="Determining" Bool="true"/>
 </Record>

1780 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 </Collection>
</Annotation>

 Note
The UI.LineItem vocabulary term is used to define the columns for the smart table.

In the example above for the first record type, the DataFieldForAction complex type does not contain the
Determining property. Therefore, the action button will appear in the smart table toolbar.

With the last two record types, the DataFieldForAction and DataFieldForIntentBasedNavigation,
complex types are used and contain the Determining property, which is set to true. This means the action
buttons will appear in the footer.

Object Page
The following code sample shows how to create your annotations for the determining actions on the object
page:

 <Annotation Term="UI.Identification">
 <Collection>
 <Record Type="UI.DataFieldForAction">
 <PropertyValue Property="Label" String="CWP"/>
 <PropertyValue Property="Action"
 String="STTA_PROD_MAN.STTA_PROD_MAN_Entities/
 STTA_C_MP_ProductCopywithparams"/>
 <Annotation Term="UI.OperationGrouping"
 EnumMember="UI.OperationGroupingType/Isolated"/>
 <Annotation Term="UI.Importance" EnumMember="UI.ImportanceType/High"/>
 </Record>
 <Record Type="UI.DataFieldForAction">
 <PropertyValue Property="Label" String="Copy"/>
 <PropertyValue Property="Action"
 String="STTA_PROD_MAN.STTA_PROD_MAN_Entities/
STTA_C_MP_ProductCopy"/>
 <PropertyValue Property="Determining" Bool="true"/>
 <Annotation Term="UI.OperationGrouping"
 EnumMember="UI.OperationGroupingType/Isolated"/>
 <Annotation Term="UI.Importance" EnumMember="UI.ImportanceType/High"/>
 </Record>
 </Collection>
 </Annotation>

 Note
The UI.Identification vocabulary term is used to define the actions on the object page.

In the example above for the first record type, the DataFieldForAction complex type does not contain the
Determining property. That's why the action button will appear in the object page header.

With the last record type, the DataFieldForAction complex type is used and contains the Determining
property, which is set to true. This means the action button will appear in the footer. Note that if the
Determining property is either not present or is set to false, the action will not appear in the footer.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1781

Adding Action-Specific Messages to Confirmation Dialog
Boxes

You can create message texts for specific critical actions. They are displayed in the confirmation dialog box for
the action.

You can add action-specific messages to the i18n.properties file of your application. The key to be added needs
to have the following format: ACTION_CONFIRM|<FunctionImportName>, where FunctionImportName is
specific to a particular action. The figure below shows some examples:

Figure 324: Function imports

The key can also be interpreted as ACTION_CONFIRM|<EntitySetName><ActionName>.

Add the key value pair and the message text to the i18n.properties file of your application, as follows:

 Sample Code

#XMSG: Messagebox text for confirming an action question ACTION_CONFIRM|STTA_C_MP_ProductActivation = Are you sure you really want to
activate this product?

 Note
If you have not specified a custom action for an action, the generic message, "Do you really want to execute
the action <Action Label>?" is displayed.

Adding Confirmation Popovers for Actions

You can display a popover when a user triggers an action.

To do so, add the IsActionCritical annotation as shown below:

<Annotations Target="GWSAMPLE_BASIC.GWSAMPLE_BASIC_Entities/RegenerateAllData"> <Annotation Term="com.sap.vocabularies.Common.v1.IsActionCritical"
Bool="true"/> </Annotations>

1782 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Prefilling Fields When Creating a New Entity

When a user creates a new entity, it is possible to prefill fields with specific values.

If the entity is draft-enabled, the relevant service implementation can be used to prefill the fields.

In some cases, the values result from a user interaction that took place before the creation of the entity was
triggered. Then, the relevant information must be transfered from the front end to the back end.

 Note
Use this feature carefully as the user might not expect to come upon prefilled fields.

Do not use this feature if the fields are not (or might not be) visible to the user.

There are two options for supporting the prefilling of fields on the UI. You can use them only for the main object.

● Creation via cross-app navigation
● Prefilling Fields When Creating a New Entity Using an Extension Point [page 1850]

Creation via Cross-App Navigation

When navigating to an app that is based on SAP Fiori elements, set parameterMode or preferredMode to
create to indicate that a new instance is to be created (and the user starts with the Create screen of this
instance).

The source app might add values for properties to be prefilled in the created instance by adding the
corresponding name/value-pair as a startup-parameter for the target app.

 Note
The startup-parameters must contain a single value for the property.

You have configured the property to be used in the create case, for the target app.

The configuration in the target app needs to be done in the manifest.json of the target app. The following code
sample shows how to ensure that a value for Supplier can be passed to the app's create process:

 Sample Code
 ...
"sap.ui.generic.app": {
 "_version": "???",
 "settings": {
 "inboundParameters": {
 "Supplier": {
 "useForCreate": true
 }
 },
 }
...

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1783

Status Colors and Icons

You can define status colors and icons.

The UI annotations in CDS for LineItem, Identification and FieldGroup have an attribute in the
corresponding fields that indicates how critical the field is using colors and icons. This attribute has to refer to
another property, which contains the value of the criticality.

<Annotation Term="UI.LineItem"> <Collection>
 ...
 <Record Type="UI.DataField">
 <PropertyValue Property="Criticality" Path="to_ProductStock/
StockCriticality"/>
 <PropertyValue Property="Value" Path="to_ProductStock/
StockEmergencyLevel"/>
 <Annotation Term="UI.Importance" EnumMember="UI.ImportanceType/
High"/>
 </Record> ...

The property containing the criticality can have the following values (derived from the complex type
CriticalityType of the vocabulary com.sap.vocabularies.UI.v1):

● 0 - Neutral
● 1 - Negative
● 2 - Critical
● 3 - Positive

The texts are not static, you can change them to suit your purposes by defining them in the criticality path. The
following shows examples of using these values in stock availability of products both in the list report and the
object page:

1784 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Side Effects

If a user changes the content of a field or performs another activity, this change can potentially influence other
fields on the UI. This system behavior is called a side effect.

Side effects are performed in the back end. However, you need to annotate the side effects implemented in the
back end using side effect annotations to "inform" the frontend which fields on the UI might be influenced by a
change, in order to request new data for these fields. Otherwise, the UI might still display outdated data.

 Note
The so-called default side effects are relevant for the majority of apps. Therefore, you do not need to
annotate these side effects.They are available per default. You cannot switch them off.

Default Side Effects

The following side effects are available in SAP Fiori elements by default.

User Action Side Effect

Creating a new entity / draft version, either in the list report
or on the object page

List binding of the parent page is refreshed to show the
newly created entity.

Deleting an entity, either in the list report or on the object
page

List binding of the parent page is refreshed to remove the de
leted entity.

Creating a draft for an active object List binding of the list report page is refreshed to show the
new draft.

Discarding a draft version List binding of the list report page is refreshed to remove the
draft and show the active version.

Activating a draft version List binding of the list report page is refreshed to remove the
draft and show the active version.

Triggering an action Collection for which the action is annotated is refreshed if
the following conditions apply:

● The action is a bound action.
● The returned instance does not correspond to the

bound instance. Example: Copy action.

Side Effects that can be Annotated

A side effect annotation needs to contain the following elements:

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1785

● Side effect trigger: A property change, an action, or a structural change (creating or deleting a subitem)
● Data the side effect influences: A property or structural information (to be checked)
● Side effect type: Value change, field control change, or validation
● Qualifier which is sent to the back end to indicate the reason for triggering the request (to be checked)

You can define side effects either in MPC_EXT or in local annotation files.

Supported Side Effect Annotation Properties

The following side effect annotations are supported:

● Source properties
You can define a property or a list of properties that create a virtual field group. Once the user leaves this
property or field group, the side effect is triggered. .

 Note
You cannot use navigation properties as source properties.

● Source entities
You can specify a 1:n navigation property. The side effect is triggered when structural changes are made
(adding or deleting an item). The side effect is not triggered if a property of any entity is changed. This
needs to be done in the entity type of the associated entity.

 Note
You cannot specify a 1:1 association or an empty target to ensure that the whole entity is considered as
the source.

● Target properties
You can define a property or a list of properties to be refreshed. You can also use 1:1 navigation properties.
If this is the case, a request with an expand to this navigation property is triggered.

● Target entities
You can specify 1:1 and 1:n navigation properties.
In case of 1:n, the request is not sent via the list binding. This means that no paging is considered and new
and deleted entries are not updated in the list. Therefore, 1:n should be used carefully. If you specify an
empty target, the whole entity is updated.

● No source properties and no source entities
You can define the behavior of the global side effect (user chooses Enter without focusing on a field
group). You can use this side effect to control whether a prepare or validate, or only a refresh is sent. You
can also restrict the updated fields via target properties and target entities.
See also Using the Global Side Effect [page 1792].

 Note
● Side effects for non-draft apps are supported. The side effects are triggered once the user saves the

entity and the save action is successful.
● You can annotate side effects of actions. If no side effect is annotated, the system does not refresh

anymore automatically.
● If a text arragement annotation is used, especially in combination with a value list annotation, you also

need to provide a side effect annotation to indicate that the text must be updated when the user sets a
different key.

1786 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Side Effect Types

The following side effect types are available:

● ValueChange
If a prepare action is annotated, a prepare is sent. Note that the complete UI is blocked in this case.

● ValidationMessage
If a validation is annotated, a validation is sent by the system. This happens asynchronously, and the UI is
not blocked.

● FieldControlChange
Only GETs are sent by the system. The complete UI is blocked.

 Note
Do not misuse the side effect types. If your service has a prepare action but you do not want to trigger the
complete prepare in the backend system, you should use the side effect qualifier that is sent to the
backend system to decide whether the prepare (and which one) is to be triggered.

Scenario where Local Side Effects cannot be Triggered

As a general rule, no data is sent to the backend until a UI validation error is solved. Hence, side effect is not
triggered when there is a validation error related to the source field(s).

For example, if a data field referencing to property ProductCategory has field value entered with greater than
MaxLength="40", no side effect shall be triggered.

 Sample Code

<EntityType Name="SEPMRA_I_ProductCategoryType" sap:label="Category"
sap:content-version="1"> <Key>
 <PropertyRef Name="ProductCategory"/>
 </Key>
 <Property Name="ProductCategory" Type="Edm.String"
Nullable="false" MaxLength="40" sap:label="Category"/>
 <Property Name="MainProductCategory" Type="Edm.String"
MaxLength="40" sap:label="Main Category" sap:value-list="fixed-values"/>
 <NavigationProperty Name="to_MainCategory"
Relationship="STTA_PROD_MAN.assoc_BBDC3EA034F824A7382F8EEF561C1160"
FromRole="FromRol
 e_assoc_BBDC3EA034F824A7382F8EEF561C1160"
ToRole="ToRole_assoc_BBDC3EA034F824A7382F8EEF561C1160"/>
 </EntityType>

Related Information

Side Effect Annotations: Examples [page 1788]
Using the Global Side Effect [page 1792]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1787

Side Effect Annotations: Examples

You define side effects either in the *MPC_EXT class or in the local annotation file.

Example: Annotating side effects in the method DEFINE of the class
CL_MM_PUR_PO_AI_MAINT_MPC_EXT

 Sample Code

 * define Side Effects for Purchase Order:
 DATA lo_ann_target TYPE REF TO /iwbep/if_mgw_vocan_ann_target. "
Vocabulary Annotation Target "#EC NEEDED
 DATA lo_annotation TYPE REF TO /iwbep/if_mgw_vocan_annotation. "
Vocabulary Annotation "#EC NEEDED
 DATA lo_collection TYPE REF TO /iwbep/if_mgw_vocan_collection. "
Vocabulary Annotation Collection "#EC NEEDED
 DATA lo_function TYPE REF TO /iwbep/if_mgw_vocan_function. "
Vocabulary Annotation Function "#EC NEEDED
 DATA lo_fun_param TYPE REF TO /iwbep/if_mgw_vocan_fun_param. "
Vocabulary Annotation Function Parameter "#EC NEEDED
 DATA lo_property TYPE REF TO /iwbep/if_mgw_vocan_property. "
Vocabulary Annotation Property "#EC NEEDED
 DATA lo_record TYPE REF TO /iwbep/if_mgw_vocan_record. "
Vocabulary Annotation Record "#EC NEEDED
 DATA lo_reference TYPE REF TO /iwbep/if_mgw_vocan_reference. "
Vocabulary Annotation Reference

 lo_reference = vocab_anno_model->create_vocabulary_reference(iv_vocab_id
= '/IWBEP/VOC_COMMON'

iv_vocab_version = '0001').
 lo_reference->create_include(iv_namespace =
'com.sap.vocabularies.Common.v1').
 lo_reference = vocab_anno_model->create_vocabulary_reference(iv_vocab_id
= '/IWBEP/VOC_CORE'

iv_vocab_version = '0001').
 lo_reference->create_include(iv_namespace = 'Org.OData.Core.V1').

 lo_ann_target = vocab_anno_model-
>create_annotations_target('MM_PUR_PO_AI_MAINTAIN.C_PurchaseOrderEnhWDType')
 ##NO_TEXT . "Add annotation term for VIPs introduced

 lo_annotation = lo_ann_target->create_annotation(iv_term =
'com.sap.vocabularies.Common.v1.SideEffects') ##NO_TEXT .

 lo_record = lo_annotation->create_record() ##NO_TEXT.
 lo_property = lo_record->create_property('SourceProperties')
##NO_TEXT.
 lo_collection = lo_property->create_collection().

 lo_collection->create_simple_value()->set_property_path('Supplier')
##NO_TEXT .
 lo_collection->create_simple_value()-
>set_property_path('CompanyCode') ##NO_TEXT .
 lo_collection->create_simple_value()-
>set_property_path('DocumentCurrency') ##NO_TEXT .

1788 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 lo_collection->create_simple_value()-
>set_property_path('PurchasingGroup') ##NO_TEXT. lo_collection->create_simple_value()-
>set_property_path('PurchasingOrganization') ##NO_TEXT.

Example: User changes a source property and the system refreshes the price

 Sample Code

<Annotations Target="NAMESPACE.ENTITYTYPE"> <Annotation Term="com.sap.vocabularies.Common.v1.SideEffects"
Qualifier="PriceChanged">
 <Record>
 <PropertyValue Property="SourceProperties">
 <Collection>
 <PropertyPath>Amount</PropertyPath>
 <PropertyPath>Discount</PropertyPath>
 <PropertyPath>Product</PropertyPath>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="TargetProperties">
 <Collection>
 <PropertyPath>Price</PropertyPath>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="EffectTypes" EnumMember="ValueChange" />
 </Record>
</Annotation> </Annotations>

Example: User changes the supplier and the system refreshes the 1:1
navigation toSupplier

 Sample Code

<Annotations Target="NAMESPACE.ENTITYTYPE"> <Annotation Term="com.sap.vocabularies.Common.v1.SideEffects"
Qualifier="SupplierChanged">
 <Record>
 <PropertyValue Property="SourceProperties">
 <Collection>
 <PropertyPath>Supplier</PropertyPath>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="TargetEntities">
 <Collection>
 <NavigationPropertyPath>toSupplier</NavigationPropertyPath>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="EffectTypes" EnumMember="ValueChange" />
 </Record>
</Annotation> </Annotations>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1789

Example: User changes a single property, and the system reads the whole
entity due to field control

 Sample Code

<Annotations Target="NAMESPACE.ENTITYTYPE"> <Annotation Term="com.sap.vocabularies.Common.v1.SideEffects"
Qualifier="PriceChanged">
 <Record>
 <PropertyValue Property="SourceProperties">
 <Collection>
 <PropertyPath>Status</PropertyPath>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="TargetEntities">
 <Collection>
 <NavigationPropertyPath></NavigationPropertyPath>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="EffectTypes"
EnumMember="FieldControlChange" />
 </Record>
</Annotation> </Annotations>

Example: Side effect on structural changes of a 1:n association

If any header information or other associated entity needs to be refreshed once a subitem has been created or
deleted, you should add side effect annotations as shown in the example below:

 Sample Code

<Annotations Target="NAMESPACE.ENTITYTYPE"> <Annotation Term="com.sap.vocabularies.Common.v1.SideEffects"
Qualifier="ReactOnItemCreationOrDeletion">
 <Record>
 <PropertyValue Property="SourceEntities">
 <Collection>
 <NavigationPropertyPath>toSalesOrderItems</NavigationPropertyPath>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="EffectTypes" EnumMember="ValueChange"/>
 <PropertyValue Property="TargetProperties">
 <Collection>
 <PropertyPath>OverallAmount</PropertyPath>
 </Collection>
 </PropertyValue>
 </Record>
</Annotation> </Annotations>

1790 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Example: Side effect after executing an action

After executing an action, but only if the returned entity is different from the entity for which the action was
called, the related list binding is refreshed. Therefore, you need to define a side effect annotation for those
cases in which any other entity or an association might be changed due to an action call. The target definition’s
property path that may cover both properties and entities has to express a binding parameter name referring
to the entity to which the action is bound.

 Sample Code

<Annotations
Target="CA_OC_MANAGE_OR_ITEMS_SRV.CA_OC_MANAGE_OR_ITEMS_SRV_Entities/
IssueOutput"> <Annotation Term="com.sap.vocabularies.Common.v1.SideEffects">
 <Record>
 <PropertyValue Property="EffectTypes" EnumMember="ValueChange"/>
 <PropertyValue Property="TargetProperties">
 <Collection>
 <PropertyPath>_it/to_OutputRequestItemStatus/
OutputRequestItemStatus_Text</PropertyPath>
 </Collection>
 </PropertyValue>
 </Record>
 </Annotation> </Annotations>

Example: Refresh the navigation target

In this case, when the item tax amount is changed, the navigation property leading to the root
(to_SalesOrder) is updated.

 Sample Code

<Annotations
Target="STTA_SALES_ORDER_WD_20_SRV.C_STTA_SalesOrderItem_WD_20Type"> <Annotation Term="com.sap.vocabularies.Common.v1.SideEffects"
Qualifier="TaxAmountChanged">
 <Record>
 <PropertyValue Property="SourceProperties">
 <Collection>
 <PropertyPath>TaxAmount</
PropertyPath>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="TargetEntities">
 <Collection>

<NavigationPropertyPath>to_SalesOrder</NavigationPropertyPath>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="EffectTypes"
EnumMember="ValueChange"/>
 </Record>
 </Annotation>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1791

Using the Global Side Effect

To optimize performance, make the annotations for the desired side effects as specific as possible.

You can annotate a global side effect (side effect that is triggered when the user chooses Enter) for each
service and specify the targets (entities or properties) that might be affected by changes to any properties.
These targets will be requested whenever the user chooses Enter . Only if you annotate a side effect, a page
will be refreshed automatically when a change is made.

The forceGlobalRefresh parameter in the manifest.json defines the global refresh behavior:

● If the parameter is set to true, a global refresh is triggered when the user chooses Enter , even if no global
side effect has been annotated.

● If the parameter is set to false, the system reacts according to what has been annotated.
● If the parameter is not set, for compatibility reasons, the (runtime) default is true.

For newly generated apps, the (design time) default is false, that is, the SAP WebIDE creation wizard
generates "forceGlobalRefresh": false.

 Sample Code
 <Annotations Target="NAMESPACE.ENTITYTYPE">
<Annotation Term="com.sap.vocabularies.Common.v1.SideEffects"
Qualifier="GlobalSideEffect">
 <Record>
 <PropertyValue Property="EffectTypes" EnumMember="ValueChange"/>
 <PropertyValue Property="TargetProperties">
 <Collection>
 <PropertyPath>TaxAmount</PropertyPath>
 <PropertyPath>NetAmount</PropertyPath>
 <PropertyPath>GrossAmount</PropertyPath>
 </Collection>
 </PropertyValue>
 </Record>
</Annotation>
</Annotations>

Changing Default Titles for Unnamed Objects

When adding new items to a list report or object page table, the default title <Unnamed Object> is displayed for
unnamed entities. You can add more specific default titles in your app's i18n file.

In the i18n files of the list report and the object page, change the value of the NEW_OBJECT property to the title
you want to be displayed for new entities for the list report or the object page like this:

List report:

#XTIT, Default title for unnamed objects

NEW_OBJECT=LR Unnamed Entity

1792 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Figure 325: Default title in list report

Object page:

#XTIT, Default title for unnamed objects

NEW_OBJECT=OP Unnamed Entity

Figure 326: Default title on object page

Enabling Buttons to Display Draft / Saved Values

In the list report and on the object page, you can enable buttons to display and hide draft values.

 Sample Code

"sap.ui.generic.app": { "_version": "1.3.0",
 "settings": {
 "showDraftToggle": true,
 } },

By default, these buttons are hidden. To enable them, set the showDraftToggle flag to True in the
manifest.json.

In the list report table toolbar, this enables the Hide Draft Values / Show Draft Values button. In the object page
header, this enables the Display Saved Version / Return to Draft button for your draft-enabled applications.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1793

In the list report, the Hide Draft Values / Show Draft Values button is enabled only if the Editing Status in the list
report filterbar is set to All. Using this button, users can view the saved / active versions of entities if there are
any. They can switch back to displaying the modified draft version using the Show Draft Values button

On the object page, users see the Display Saved Version / Return to Draft button when someone lands on their
draft.

The following tables show the system behavior for list report and object page:

Mode switch in list report In list report
When navigating to object
page Navigation back to list report

Hide Draft Values Only saved objects are
displayed in the list report
table

Saved object is displayed
with Return to Draft button if
a draft exists for this object.

Only saved objects are
displayed in the list report
table

Show Draft Values Saved and draft objects are
displayed in the list report
table

Object page opens in edit
mode for drafts with Display
Saved Version button

Saved and draft objects are
displayed in the list report
table

Mode switch on object page On object page Navigation back to list report

Display Saved Version Saved version of record with Return to
Draft button

State of Hide / Show Draft button
preserved from when the user last
navigated from list report

Return to Draft Object page opens in edit mode with
Display Saved Version button

State preserved of Hide / Show Draft
button from when the user last
navigated from list report

Figure 327: List report - all items are shown

1794 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Figure 328: List report - only saved versions of the items are shown

Figure 329: Object page - saved version of the object shown in read mode

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1795

Figure 330: Object page - draft version of the object is shown

Providing Editable Key Fields

Users cannot edit key fields in draft applications. You can introduce an additional key field that is editable.

 Note
This topic is relevant only for applications using existing databases. If you build on a new data model, you
can always use an artificial key (typically, a GUID) and model the fields with a semantical meaning only as
non-key fields.

However, for existing databases that already use semantically important fields in the key and you need to
be able to change them (maybe only provide them by the user upon creation), changing the model in such
a way would lead to a data conversion with potentially high impact for customers with huge amounts of
data.

 Note
This topic is relevant only for applications that use draft handling. For non-draft applications, as all changes
are transported to the backend only in one shot when the object is saved, from a UI point of view, a change
in a key property would just mean, that the object returned from the save operation is a different instance
than before.

In draft applications, users cannot edit key fields because changes are merged directly into the draft
document, and since the key field is part of the draft document's identifier, users would need to navigate to a
different document with each merge. From the user experience point of view, this is not a good solution.

As a workaround, you can introduce an additional field that is editable. In an active document, this field's value
is always identical to the key field's value. While users work on the draft, only the additional field is changed.
Only when the draft is activated, is the additional field's value transferred to the key field. When activated, the
system automatically navigates from the draft to the active instance.

On the UI, only the additional field is displayed. However, you need to use the key field for the navigation
parameters. It should be consistent with the semantic object attribute.

1796 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

If a user navigates to a list report or object page application, and if the navigation parameters are not selective
enough to directly navigate to the object, you need to set the needed navigation parameters in the filters. As
the additional field is used here, SAP Fiori elements need to map the value of the navigation parameter to the
additional field. To do this, use the com.sap.vocabularies.Common.v1.EditableFieldFor annotation.

 Sample Code

<Annotations
Target="STTA_SALES_ORDER_WD_20_SRV.C_STTA_SalesOrderItem_WD_20Type/
SalesOrderForEdit"> <Annotation
Term="com.sap.vocabularies.Common.v1..EditableFieldFor" String="SalesOrder"/>
 </Annotations>
 <Annotations
Target="STTA_SALES_ORDER_WD_20_SRV.C_STTA_SalesOrderItem_WD_20Type/
SalesOrderItemForEdit">
 <Annotation
Term="com.sap.vocabularies.Common.v1.EditableFieldFor"
String="SalesOrderItem"/>
 </Annotations>

Configuring the Delete Confirmation Dialog Box

You can adapt the text in the Delete dialog box to match your requirements while deleting an object or an item
from the list report and object page tables.

The context displayed in the dialog box is taken from the Title and Description properties of the
UI.HeaderInfo annotation (defined in the entitySet bound to the table).

Depending on the UI.HeaderInfo annotation, there can be three different type of text that can appear in the
dialog box:

● When the UI.HeaderInfo annotation has both Title and Description properties defined
In this scenario, when you delete a single item from the table, the dialog confirmation would show the
message like the one displayed below.

 Sample Code

<Annotation Term="UI.HeaderInfo"> <Record>
 <PropertyValue Property="TypeName" String="Sales Order" />
 <PropertyValue Property="TypeNamePlural" String="Sales Orders" />

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1797

 <PropertyValue Property="Title">
 <Record Type="UI.DataField">
 <PropertyValue Property="Value" Path="so_id" />
 </Record>
 </PropertyValue>
 <PropertyValue Property="Description">
 <Record Type="UI.DataField">
 <PropertyValue Property="Value" String="Sales Order" />
 </Record>
 </PropertyValue>
 </Record>
</Annotation>

● When the UI.HeaderInfo annotation has only the Title property defined
In this scenario, when you delete a single item from the table, the dialog confirmation would show the
message such as the one displayed below.

 Sample Code

<Annotation Term="UI.HeaderInfo"> <Record>
 <PropertyValue Property="TypeName" String="Sales Order" />
 <PropertyValue Property="TypeNamePlural" String="Sales Orders" />
 <PropertyValue Property="Title">
 <Record Type="UI.DataField">
 <PropertyValue Property="Value" Path="so_id" />
 </Record>
 </PropertyValue>
 </Record>
</Annotation>

● When the UI.HeaderInfo annotation has neither the Title nor the Description property defined.
In this scenario, when you delete a single item from the table, the dialog confirmation would show the
message like the one displayed below.

1798 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

The applications can override the default text by using the i18 keys mentioned below:

● Main Object: These are applicable when delete is triggered from list report and the main object page.
○ UI.HeaderInfo annotation has both Title and Description defined

i18n key to be used is DELETE_WITH_OBJECTINFO
○ UI.HeaderInfo annotation has only Title defined

i18n key to be used is DELETE_WITH_OBJECTTITLE
○ UI.HeaderInfo annotation has neither Title nor Description defined

i18n key to be used is ST_GENERIC_DELETE_SELECTED
● Sub Entity: These are appicable when delete is triggered from object page tables or the sub object.

○ UI.HeaderInfo annotation has both Title and Description defined
i18n key to be used is DELETE_SELECTED_ITEM_WITH_OBJECTINFO

○ UI.HeaderInfo annotation has only Title defined
i18n key to be used is DELETE_SELECTED_ITEM_WITH_OBJECTTITLE

○ UI.HeaderInfo annotation has neither Title nor Description defined
i18n key to be used is DELETE_SELECTED_ITEM

 Note
Applications that are overriding delete message when single entry is being deleted from the table, should
revisit the UI.HeaderInfo annotation’s configuration and adapt the texts accordingly.

Extending List Reports and Object Pages Using App
Extensions

Various framework extension points are available for list reports and object pages.

Make sure you have read the following information: Read Before Extending a Generated App [page 1586].

 Caution
Use app extensions with caution and only if you cannot produce the required behavior by other means,
such as manifest settings or annotations. To correctly integrate your app extension coding with SAP Fiori
elements, use only the extensionAPI of SAP Fiori elements. For more information, see Using the
ExtensionAPI [page 1588].

After you've created an app extension, its display (for example, control placing, CSS) and system behavior
(for example, model and binding usage, busy handling) of the app extension lies within the application's
responsibility. SAP Fiori elements provides support only for the official extensionAPI functions. Don't
access or manipulate SAP Fiori elements' internal coding.

You can either use the extension wizard in the SAP Web IDE to create extensions or you can create them
manually.

In list reports and object pages, you can use SAP Web IDE to add the following extensions:

● List report
○ Filter
○ Action

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1799

○ Column
● Object page

○ Action
○ Facet
○ Column
○ Header
○ Form

While this documentation describes how to manually define app extensions, the following how-to video shows
you how to create a section extension on the object page using the extension wizard: .

Extension Points for Object Page Header Facets

You define application-specific header facets using annotations, but in some cases it might be necessary to
integrate components in the front end that are not available with annotations.

 Caution
Use app extensions with caution and only if you cannot produce the required behavior by other means,
such as manifest settings or annotations. To correctly integrate your app extension coding with SAP Fiori
elements, use only the extensionAPI of SAP Fiori elements. For more information, see Using the
ExtensionAPI [page 1588].

After you've created an app extension, its display (for example, control placing, CSS) and system behavior
(for example, model and binding usage, busy handling) of the app extension lies within the application's
responsibility. SAP Fiori elements provides support only for the official extensionAPI functions. Don't
access or manipulate SAP Fiori elements' internal coding.

On the object page, you can use extension points to add additional header facets in the following places:

● Before header facet: The extension is inserted before a given facet.
● Replace header facet: The extension is rendered instead of an existing facet.
● After header facet: The extension is inserted after a given facet.

You must use a view inside the extension to create a header facet extension. Enter the extension information in
the following format in the manifest.json of your application:

<Different_Scenario>|<EntitySet_Name>|headerEditable::<Annotation_Information>

Specify the extension facet in the form of its annotation path. In addition, you must specify the entity set name,
as the same annotation may exist for various entity sets. You also need to define the className, viewName,
type and the optional parameter bVisibleOnEdit.

 Note
You only set this optional parameter to "false" if the entire header extension is to be hidden when the object
page is edited.

 Sample Code

"extends": {

1800 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 "extensions": {
 "sap.ui.viewExtensions": {
 "sap.suite.ui.generic.template.ObjectPage.view.Details": {
 "BeforeHeaderFacet|STTA_C_MP_Product|
headerEditable::com.sap.vocabularies.UI.v1.Chart::SpecificationWidthBulletChar
t": {
 "className": "sap.ui.core.mvc.View",
 "viewName":
"STTA_MP.ext.fragments.HeaderExtensionFacet",
 "type": "XML",
 "bVisibleOnEdit": true
 }
 }
 }
 }
}

The following extension options are available:

● Standard object header facet: Before, replace, and after scenario:
○ "BeforeHeaderFacet|<EntitySet Name>|headerEditable::<Annotation information "
○ "ReplaceHeaderFacet|<EntitySet Name>|headerEditable::<Annotation

information>"
○ "AfterHeaderFacet|<EntitySet Name>|headerEditable::<Annotation information>"

● Simple object header facet: Before, replace, and after scenario:
"BeforeSimpleHeaderFacet|<EntitySet Name>|headerEditable::<Annotation
information>"
"ReplaceSimpleHeaderFacet|<EntitySet Name>|headerEditable::<Annotation
information>"
"AfterSimpleHeaderFacet|<EntitySet Name>|headerEditable::<Annotation
information>"

● Replace the complete object page header with an extension. This means that the UI.HeaderFacet
annotation is not there. If it is there, remove it from the annotations. The manifest entry should look like
this:
"ReplaceHeaderExtensionFacet|<EntitySet Name>"

● Standard object header: If there is no image in the object page header, you can include an extension
instead of an image. The manifest entry should look like this:
"NoImageExtensionFacet|<EntitySet Name>"

 Note
You can only use this scenario if there is no value for the ImageUrl or TypeImageUrl property of the
UI.HeaderInfo annotation.

If there is an image in the object page header, you can enter an extension after the image. The manifest
entry should look like this:
" AfterImageExtensionFacet|<EntitySet Name>"

● Object page header containing only a DataPoint annotation: Before, replace, and after scenario:
○ "BeforeHeaderDataPoint|<EntitySet Name> | <Annotation Information>"
○ "ReplaceHeaderDataPoint|<EntitySet Name> | <Annotation Information>"
○ "AfterHeaderDataPoint|<EntitySet Name> | <Annotation Information>"

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1801

Extension Points for Sections on the Object Page

You define application-specific sections in the form of annotations, however, in some cases you might need to
integrate components into the front end, for example, charts or attachments.

 Caution
Use app extensions with caution and only if you cannot produce the required behavior by other means,
such as manifest settings or annotations. To correctly integrate your app extension coding with SAP Fiori
elements, use only the extensionAPI of SAP Fiori elements. For more information, see Using the
ExtensionAPI [page 1588].

After you've created an app extension, its display (for example, control placing, CSS) and system behavior
(for example, model and binding usage, busy handling) of the app extension lies within the application's
responsibility. SAP Fiori elements provides support only for the official extensionAPI functions. Don't
access or manipulate SAP Fiori elements' internal coding.

On the object page, you can use extension points to add additional sections in these places:

● BeforeFacet: The extension is inserted before a given section.
● ReplaceFacet: The extension is rendered instead of an existing section.
● AfterFacet: The extension is inserted after a given section.

 Note
In the manifest.json, you use the term facet to add a section to the object page.

You need to specify the section in the form of its annotation path. In addition, you must specify the entitySet
name, as the same annotation path may exist for various entity sets.

You add this information to the manifest.json file, as in these examples:

 "extends": {
 "extensions": {
 "sap.ui.viewExtensions": {
 "sap.suite.ui.generic.template.ObjectPage.view.Details":
 "BeforeFacet|SEPMRA_C_PD_Product|
to_ProductText::com.sap.vocabularies.UI.v1.LineItem": {
 "className": "sap.ui.core.Fragment",
 "fragmentName": "nw.epm.refapps.st.prod.manage.ext.BeforeFacetTest",
 "type": "XML",
 "sap.ui.generic.app": {
 "title": "Facet Breakout before Product Text LineItem"
 }
 },
 "BeforeFacet|SEPMRA_C_PD_Product|
to_ProductText::com.sap.vocabularies.UI.v1.LineItem|1": {
 "className": "sap.ui.core.Fragment",
 "fragmentName": "nw.epm.refapps.st.prod.manage.ext.BeforeFacetTestNew",
 "type": "XML",
 "sap.ui.generic.app": {
 "title": "Facet Breakout before Product Text LineItem",
 "key" : "1"
 }
 }
 "AfterFacet|SEPMRA_C_PD_Product|
to_Supplier::com.sap.vocabularies.UI.v1.Identification": {
 "className": "sap.ui.core.Fragment",
 "fragmentName": "nw.epm.refapps.st.prod.manage.ext.AfterFacetTest",

1802 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 "type": "XML",
 "sap.ui.generic.app": {
 "title": "Facet Breakout after Supplier Identification"
 }
 },
 "AfterFacet|SEPMRA_C_PD_Product|
to_Supplier::com.sap.vocabularies.UI.v1.Identification|1": {
 "className": "sap.ui.core.Fragment",
 "fragmentName": "nw.epm.refapps.st.prod.manage.ext.AfterFacetTest",
 "type": "XML",
 "sap.ui.generic.app": {
 "title": "Facet Breakout after Supplier Identification",
 "key": 1
 }
}
}

 Note
You can specify either a view or a fragment contained in the additional section. Either way, you do not need
to use the object page (uxap) tags ObjectPageSection, subSections, or ObjectPageSubSection.
These definitions are already part of the template for the object page view. Additional sections are rendered
if an extension exists.

For an example with step-by-step instructions, see Adding a Section to an Object Page [page 1803].

For more information, see View Extension [page 2149].

Adding a Section to an Object Page

You can add an additional section to your object page, as described below.

 Caution
Use app extensions with caution and only if you cannot produce the required behavior by other means,
such as manifest settings or annotations. To correctly integrate your app extension coding with SAP Fiori
elements, use only the extensionAPI of SAP Fiori elements. For more information, see Using the
ExtensionAPI [page 1588].

After you've created an app extension, its display (for example, control placing, CSS) and system behavior
(for example, model and binding usage, busy handling) of the app extension lies within the application's
responsibility. SAP Fiori elements provides support only for the official extensionAPI functions. Don't
access or manipulate SAP Fiori elements' internal coding.

For this example, you want to add a section called Product Description to the object page of the Manage
Products app.

 Note
This documentation describes how to manually define extensions. The following video provides an example
for how to create a section extension on the object page using the extension wizard:

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1803

Step 1: Create fragment for the new facet

In the SAP Web IDE, open the folder structure of the Manage Products project and proceed as follows:

1. In the webapp folder, create a new subfolder called ext.
2. In the folder ext, create a new subfolder called view.
3. In the view folder, create file DescriptionBreakout.view.xml.
4. Define the view with its elements, here a TextArea that consumes the section title for the product

description text in the original language.

 Sample Code

<core:View xmlns:core="sap.ui.core" xmlns="sap.m"> <VBox>
 <TextArea id="DescriptionTextArea"
 value="{to_ProductTextInOriginalLang/Description}"
 width="30%"
 editable="false"/>
 </VBox> </core:View>

Step 2: Add section title to the i18n file

To make the section title translatable, add the text to the i18n file as follows:

 Sample Code

#This is the resource bundle for Manage Products
XTIT: Title of a facet within an object page if not needed in local/
annotations.xml ProductDescription=Product Description

Step 3: Add extension definition to the manifest.json file

To add the extension definition to the manifest.json file, use a viewExtension.

The extension appears within the ObjectPage.view using the AfterFacet option.

 Sample Code

manifest.json "extends": {
 "extensions": {
 "sap.ui.viewExtensions": {
 "sap.suite.ui.generic.template.ObjectPage.view.Details": {
 "AfterFacet|SEPMRA_C_PD_Product|GeneralInformation": {
 "className": "sap.ui.core.mvc.View",
 "viewName":
"ManageProducts.ext.view.DescriptionBreakout",

1804 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 "type": "XML",
 "sap.ui.generic.app": {
 "title": "{{ProductDescription}}"
 }
 }
 }
 }
 }
 },

To add multiple sections, the extension name needs to contain a key after the annotation name in the extension
entry, for example, "BeforeFacet|SEPMRA_C_PD_Product|
to_ProductText::com.sap.vocabularies.UI.v1.LineItem|1", as well as a key object in
sap.ui.generic.app.

 Sample Code

"extends": { "extensions": {
 "BeforeFacet|SEPMRA_C_PD_Product|
to_ProductText::com.sap.vocabularies.UI.v1.LineItem": {
 "className": "sap.ui.core.Fragment",
 "fragmentName": "nw.epm.refapps.st.prod.manage.ext.BeforeFacetTest",
 "type": "XML",
 "sap.ui.generic.app": {
 "title": "Facet Breakout before Product Text LineItem"
 }
 },
 "BeforeFacet|SEPMRA_C_PD_Product|
to_ProductText::com.sap.vocabularies.UI.v1.LineItem|1": {
 "className": "sap.ui.core.Fragment",
 "fragmentName": "nw.epm.refapps.st.prod.manage.ext.BeforeFacetTestNew",
 "type": "XML",
 "sap.ui.generic.app": {
 "title": "Facet Breakout before Product Text LineItem",
 "key" : "1"
 }
 }
 "AfterFacet|SEPMRA_C_PD_Product|
to_Supplier::com.sap.vocabularies.UI.v1.Identification": {
 "className": "sap.ui.core.Fragment",
 "fragmentName": "nw.epm.refapps.st.prod.manage.ext.AfterFacetTest",
 "type": "XML",
 "sap.ui.generic.app": {
 "title": "Facet Breakout after Supplier Identification"
 }
 },
 "AfterFacet|SEPMRA_C_PD_Product|
to_Supplier::com.sap.vocabularies.UI.v1.Identification|1": {
 "className": "sap.ui.core.Fragment",
 "fragmentName": "nw.epm.refapps.st.prod.manage.ext.AfterFacetTest",
 "type": "XML",
 "sap.ui.generic.app": {
 "title": "Facet Breakout after Supplier Identification",
 "key": 1
 }

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1805

Results

The object page of the Manage Products app shows the new section Product Description:

Adding Dynamic Side Content to Object Page Sections
Sometimes it might be necessary to add additional information that is not available with annotations to object
page sections or subsections.

You can use extension points to add additional content to sections in the following places:

● BeforeMainContent: The extension is added before a sections' main content.
● AfterMainContent: The extension is added after the section's main content.

Main content refers to the information that comes from the annotations.

 Caution
Use app extensions with caution and only if you cannot produce the required behavior by other means,
such as manifest settings or annotations. To correctly integrate your app extension coding with SAP Fiori
elements, use only the extensionAPI of SAP Fiori elements. For more information, see Using the
ExtensionAPI [page 1588].

After you've created an app extension, its display (for example, control placing, CSS) and system behavior
(for example, model and binding usage, busy handling) of the app extension lies within the application's
responsibility. SAP Fiori elements provides support only for the official extensionAPI functions. Don't
access or manipulate SAP Fiori elements' internal coding.

Enter the extension information in the manifest.json of your application in the following format:
<Different_Scenario>|<EntitySet_Name>|<Annotation_Information_of_Subsection>

1806 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Specify the extension facet in the form of the annotation information of the subsection where side content
needs to be placed. In addition, specify the entity set name, as the same annotation may exist for various entity
sets. You also need to define the className, viewName, type, and the optional parameter equalSplit.

To enable the equal split mode, (50:50 percent for main content vs. side content), add the "equalSplit”:
true setting to the manifest.

If “equalSplit” is set to false or is not defined, the percentage of main content and side content depends
on the device on which the app is running.

 Sample Code

"extends": { "extensions": {
 "sap.ui.viewExtensions": {
 "sap.suite.ui.generic.template.ObjectPage.view.Details": {
 "AfterMainContent|STTA_C_MP_Product|
GeneralInformationForm":{
 "className": "sap.ui.core.Fragment",
 "fragmentName": "STTA_MP.ext.fragments.SideContentExtension",
 "type": "XML",
 "equalSplit": true
 },
"BeforeMainContent|STTA_C_MP_Product|
to_ProductSalesData::com.sap.vocabularies.UI.v1.Chart":{
 "className": "sap.ui.core.Fragment",
 "fragmentName": "STTA_MP.ext.fragments.SideContentExtension",
 "type": "XML"
 }
 }
 }
 }
}

You can specify either a view or a fragment contained in the section. You do not need to use the object page
(uxap) tags, ObjectPageSection, subSections, or ObjectPageSubSection. These definitions are already
part of the template for the object page view.

After you have added side content, the system displays a button in the subsection toolbar to show or hide the
side content. The default texts for this button are Show Details or Hide Details. If you want to provide a custom
text, specify it by adding the key value pair of the custom label to the i18n.properties file of the specific entity
set of object page. The key uniquely defines the subsection for whose side content button you provide the
custom text. The structure of the key is as follows:

 Note
In the annotation information of the subsection, replace all separators (-- , :: etc) with a | (vertical bar) while
forming the key.

● Show the side content button
ShowSideContent|<EntitySet>|<Annotation Info of the Subsection>
Example: ShowSideContent|STTA_C_MP_Product|to_ProductSalesData|
com.sap.vocabularies.UI.v1.Chart
ShowSideContent|STTA_C_MP_Product|GeneralInformationForm

● Hide the side content button
HideSideContent|<EntitySet>|<Annotation Info of the Subsection>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1807

Example: HideSideContent|STTA_C_MP_Product|to_ProductSalesData|
com.sap.vocabularies.UI.v1.Chart
HideSideContent|STTA_C_MP_Product|GeneralInformationForm

Figure 331: Side Content Added to the Object Page

 Note
● Use dynamic side content for small previews. Do not consider it as an extension of the main panel's

content.
● Do not use tables in the side content panel.
● Avoid any content that may introduce a horizontal scroll bar.
● For better content visualization of the dynamic side content, use the 50% screen display of the

dynamic side content.

Extension Points for Subsections on the Object Page

On the object page, you can use extension points to add additional subsections.

 Caution
Use app extensions with caution and only if you cannot produce the required behavior by other means,
such as manifest settings or annotations. To correctly integrate your app extension coding with SAP Fiori
elements, use only the extensionAPI of SAP Fiori elements. For more information, see Using the
ExtensionAPI [page 1588].

After you've created an app extension, its display (for example, control placing, CSS) and system behavior
(for example, model and binding usage, busy handling) of the app extension lies within the application's
responsibility. SAP Fiori elements provides support only for the official extensionAPI functions. Don't
access or manipulate SAP Fiori elements' internal coding.

1808 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

You can add additional subsections in existing facets:

● BeforeSubSection: The extension is inserted before a given subsection in a facet
● AfterSubSection: The extension is inserted after a given subsection in a facet
● ReplaceSubSection: The extension replaces an existing subsection in a facet.

You must specify the subsection in the form of its annotation path. You also have to specify the entitySet name,
as the same annotation path may exist for various entity sets. You add this information to the manifest.json file,
as in the example. For more information, see Extension Points for Sections on the Object Page [page 1802].

 Sample Code
 "sap.ui.viewExtensions": {
 "sap.suite.ui.generic.template.ObjectPage.view.Details": {
 "BeforeSubSection|STTA_C_MP_Product|
to_ProductSalesData::com.sap.vocabularies.UI.v1.Chart":{
 "className": "sap.ui.core.mvc.View",
 "viewName": "STTA_MP.ext.view.ProductSalesPrice",
 "type": "XML",
 "sap.ui.generic.app": {
 "title": "Target Sales Prices",
 "enableLazyLoading": true
 }
 },
 "AfterSubSection|STTA_C_MP_Product|
to_ProductSalesData::com.sap.vocabularies.UI.v1.LineItem":{
 "className": "sap.ui.core.mvc.View",
 "viewName": "STTA_MP.ext.view.ProductSalesPrice",
 "type": "XML",
 "sap.ui.generic.app": {
 "title": "Target Sales Prices",
 "enableLazyLoading": true
 }
 "ReplaceSubSection|STTA_C_MP_Product|
to_ProductTextType::com.sap.vocabularies.UI.v1.LineItem":{
 "className": "sap.ui.core.mvc.View",
 "viewName": "STTA_MP.ext.view.ProductSalesPrice",
 "type": "XML",
 "sap.ui.generic.app": {
 "title": "Target Sales Prices",
 "enableLazyLoading": true
 }
 },

The result looks as shown below. The highlighted subsection has been added using the extension point.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1809

 Note
You can specify either a view or a fragment contained in the additional subsection. Either way, you do not
need to use the object page (uxap) tags ObjectPageSection, subSections, or
ObjectPageSubSection. These definitions are already part of the template for the object page view.
Additional sections are rendered if an extension exists.

Extension Points for Forms on the Object Page

On the object page, you can use extension points to extend forms in sections.

 Caution
Use app extensions with caution and only if you cannot produce the required behavior by other means,
such as manifest settings or annotations. To correctly integrate your app extension coding with SAP Fiori
elements, use only the extensionAPI of SAP Fiori elements. For more information, see Using the
ExtensionAPI [page 1588].

After you've created an app extension, its display (for example, control placing, CSS) and system behavior
(for example, model and binding usage, busy handling) of the app extension lies within the application's
responsibility. SAP Fiori elements provides support only for the official extensionAPI functions. Don't
access or manipulate SAP Fiori elements' internal coding.

Use the "SmartFormExtension|<entity name>|<fieldgroup annotation>" key in the manifest entry
to add new fields to an existing field group. In the example below, an extension is added to the General
Information field group.

1810 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Sample Code
 "sap.suite.ui.generic.template.ObjectPage.view.Details": {
 "SmartFormExtension|STTA_C_MP_Product|
com.sap.vocabularies.UI.v1.FieldGroup::GeneralInformation": {
 "className": "sap.ui.core.Fragment",
 "fragmentName": "STTA_MP.ext.fragments.SmartFormGroupElement",
 "type": "XML"
 } }

 Note
SmartForm Extension supports only "sap.ui.core.Fragment" for the "className".

See also: Defining the SmartForm Column Layout [page 1664]

Extension Points for Tables

You can use extension points to enhance tables in SAP Fiori elements apps.

 Caution
Use app extensions with caution and only if you cannot produce the required behavior by other means,
such as manifest settings or annotations. To correctly integrate your app extension coding with SAP Fiori
elements, use only the extensionAPI of SAP Fiori elements. For more information, see Using the
ExtensionAPI [page 1588].

After you've created an app extension, its display (for example, control placing, CSS) and system behavior
(for example, model and binding usage, busy handling) of the app extension lies within the application's
responsibility. SAP Fiori elements provides support only for the official extensionAPI functions. Don't
access or manipulate SAP Fiori elements' internal coding.

You use the following extension points to add additional columns to tables:

Table Type SAP Fiori Element Extension Point Example

All Object page onBeforeRebindTableExt
ension

Example: Applying Custom
Logic When a Table is Loaded
or Refreshed [page 1813]

Responsive table List report ResponsiveTableColumns
Extension|<Name of the
EntitySet>

ResponsiveTableCellsEx
tension|<Name of the
EntitySet>

Example: Adding Columns to
a Responsive Table in the List
Report [page 1814]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1811

Table Type SAP Fiori Element Extension Point Example

Object page ResponsiveTableColumns
Extension|<Name of the
table EntitySet>|
<Facet ID/Annotation
Path>

ResponsiveTableCellsEx
tension|<Name of the
table EntitySet>|
<Facet ID/Annotation
Path>

Example: Adding Columns to
a Responsive Table on the
Object Page [page 1822]

Grid table List report GridTableColumnsExtens
ion|<Name of the
EntitySet>

Example: Adding Columns to
a Grid Table in the List Report
[page 1824]

Object page GridTableColumnsExtens
ion|<Name of the table
EntitySet>|<Facet ID/
Annotation Path>

Example: Adding Columns to
a Grid Table in the Object
Page [page 1826]

Analytical table List report AnalyticalTableColumns
Extension|<Name of the
EntitySet>

Object page AnalyticalTableColumns
Extension|<Name of the
table EntitySet>|
<Facet ID/Annotation
Path>

Example: Adding Columns to
an Analytical Table on the
Object Page [page 1827]

Tree table List report TreeTableColumnsExtens
ion|<Name of the
EntitySet>

Example: Adding Columns to
a Tree Table in the List Report
[page 1829]

 Note
<Name of the EntitySet> is the EntitySet of the current page. <Name of the table EntitySet> is
the EntitySet of the table the extension is meant for. Use the <name of the table EntitySet> for all
table column extensions on the object page, as opposed to all other view extensions on the object page.

You use extension point ListReportExtension to replace default navigation within a responsive table in a list
report. For more information, see the following example: Example: Replacing Standard Navigation in a
Responsive Table in the List Report [page 1817].

You use extension point DetailsExtension to replace default navigation within a responsive table on an
object page. For more information, see the following example: Example: Replacing Standard Navigation in a
Responsive Table on the Object Page [page 1819].

1812 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Example: Applying Custom Logic When a Table is Loaded or
Refreshed

This example explains how to use an extension point if you want to apply custom logic when your table is being
loaded or refreshed.

Context

 Caution
Use app extensions with caution and only if you cannot produce the required behavior by other means,
such as manifest settings or annotations. To correctly integrate your app extension coding with SAP Fiori
elements, use only the extensionAPI of SAP Fiori elements. For more information, see Using the
ExtensionAPI [page 1588].

After you've created an app extension, its display (for example, control placing, CSS) and system behavior
(for example, model and binding usage, busy handling) of the app extension lies within the application's
responsibility. SAP Fiori elements provides support only for the official extensionAPI functions. Don't
access or manipulate SAP Fiori elements' internal coding.

Procedure

1. Register your extension point in the manifest.json.

 Sample Code

"extends": { "extensions": {
 ...
 "sap.ui.controllerExtensions": {
 ...
 "sap.suite.ui.generic.template.ListReport.view.Details": {
 ...
 "controllerName": "STTA_MP.ext.controller.DetailsExtension",
 ...
 }
 }
 ...

2. Implement your controller extension.

You have to implement a onBeforeRebindTableExtension function within the object page controller
extension. Here, it is DetailsExtension.controller.js. In this example, three tables are used on the
object page.To identify the tables, you should use the table ID.

 Sample Code

sap.ui.controller("STTA_MP.ext.controller.ListReportExtension", {

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1813

 onBeforeRebindTableExtension: function(oEvent) {
 var oID = oEvent.getSource().getId();
 var tableId =
"STTA_MP::sap.suite.ui.generic.template.ObjectPage.view.Details::STTA_C_MP_
Product--to_ProductText::com.sap.vocabularies.UI.v1.LineItem::Table";
 // to select only one specific table
 switch (oID) {
 case tableId:
 // implement your logic for table 1 here
 ...
 break;
 default :
 // implement your default logic for all others here
 ...
 return;
 }
 }
 ... }

Example: Adding Columns to a Responsive Table in the List
Report

For responsive tables, you have to implement two extension points to add a custom column.

Context

 Caution
Use app extensions with caution and only if you cannot produce the required behavior by other means,
such as manifest settings or annotations. To correctly integrate your app extension coding with SAP Fiori
elements, use only the extensionAPI of SAP Fiori elements. For more information, see Using the
ExtensionAPI [page 1588].

After you've created an app extension, its display (for example, control placing, CSS) and system behavior
(for example, model and binding usage, busy handling) of the app extension lies within the application's
responsibility. SAP Fiori elements provides support only for the official extensionAPI functions. Don't
access or manipulate SAP Fiori elements' internal coding.

For information about the configuration options and examples for defining custom columns in smart tables,
see Smart Table [page 2444].

1814 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

The table containing additional custom columns can look like this:

Figure 332: Custom columns in responsive table

Procedure

1. Define a fragment for the view extension.

For a custom column in a responsive table, you have to implement two extensions. First, implement the
definition of the custom columns, then, implement the content of the custom columns.

You can change the sequence of the columns via the customData property columnIndex, as shown in the
sample code below.

 Note
If the content of your custom column refers to a property (such as{Price}), you need to include a
corresponding "leadingProperty" entry in the CustomData of the column definition.

 Sample Code

<core:FragmentDefinition xmlns:core="sap.ui.core" xmlns="sap.m">
 <Column>
 <Text text="{i18n|sap.suite.ui.generic.template.ListReport|
STTA_C_MP_Product>xfld.Rating}" />
 <customData>
 <core:CustomData key="p13nData"
 value='\{"columnKey": "Rating",
"leadingProperty":"Price", "columnIndex" : "100"}' />
 </customData>
 </Column>
 <Column>
 <Text text="{i18n|sap.suite.ui.generic.template.ListReport|
STTA_C_MP_Product>xfld.BreakoutColumn}" />
 <customData>
 <core:CustomData key="p13nData"
 value='\{"columnKey": "Test", "columnIndex" :
"101"}' />
 </customData>
 </Column>
</core:FragmentDefinition>

In the example project webapp/ext/fragments/ListReportResponsiveTableColumns.fragment.xml, enter
the following:

 Sample Code

<core:FragmentDefinition xmlns:core="sap.ui.core" xmlns="sap.m"> <RatingIndicator value="{= ${Price} > 500 ? 1:5}"></RatingIndicator>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1815

 <Text text="{i18n|sap.suite.ui.generic.template.ListReport|
STTA_C_MP_Product>xfld.BreakoutColumnContent}"></Text>
</core:FragmentDefinition>

2. Register your view extensions in the manifest.json file of your application, as follows:

 Sample Code

... "extends": {
 "extensions": {
 "sap.ui.viewExtensions": {
 "sap.suite.ui.generic.template.ListReport.view.ListReport": {
 "ResponsiveTableColumnsExtension|STTA_C_MP_Product": {
 "className": "sap.ui.core.Fragment",
 "fragmentName":
"STTA_MP.ext.fragments.ListReportResponsiveTableColumns",
 "type": "XML"
 },
 "ResponsiveTableCellsExtension|STTA_C_MP_Product": {
 "className": "sap.ui.core.Fragment",
 "fragmentName":
"STTA_MP.ext.fragments.ListReportResponsiveTableCells",
 "type": "XML"
 },...

If you use QuickVariantSelectionX, you need to define the extensions per tab. In this case, the names
of the extension points areResponsiveTableColumnExtension|<EntitySet>|<tabKey> and
ResponsiveTableCellsExtensions|<EntitySet>|<tabKey>, respectively. <tabKey> is the key
provided when defining the QuickVariantSelectionX. See also Defining Multiple Views on a List Report
Table - Multiple Table Mode [page 1651].

 Note
If you do not use |<tab key> as part of the extension point name, for compatibility reasons, the feature
will also work. However, you cannot provide stable IDs for the columns and cells.

 Sample Code

... "extends": {
 "extensions": {
 "sap.ui.viewExtensions": {
 "sap.suite.ui.generic.template.ListReport.view.ListReport": {
 "ResponsiveTableColumnsExtension|STTA_C_MP_Product|Expensive": {
 "className": "sap.ui.core.Fragment",
 "fragmentName":
"STTA_MP.ext.fragments.ListReportResponsiveTableColumnsExpensive",
 "type": "XML"
 },
 "ResponsiveTableCellsExtension|STTA_C_MP_Product|Expensive": {
 "className": "sap.ui.core.Fragment",
 "fragmentName":
"STTA_MP.ext.fragments.ListReportResponsiveTableCellsExpensive",
 "type": "XML"
 },
 "ResponsiveTableColumnsExtension|STTA_C_MP_Product|Cheap": {
 "className": "sap.ui.core.Fragment",
 "fragmentName":
"STTA_MP.ext.fragments.ListReportResponsiveTableColumnsCheap",
 "type": "XML"

1816 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 },
 "ResponsiveTableCellsExtension|STTA_C_MP_Product|Cheap": {
 "className": "sap.ui.core.Fragment",
 "fragmentName":
"STTA_MP.ext.fragments.ListReportResponsiveTableCellsCheap",
 "type": "XML"
 },...

Example: Replacing Standard Navigation in a Responsive
Table in the List Report

You can replace the standard navigation from the list report to the object page with your own navigation to an
external or internal target.

Context

 Caution
Use app extensions with caution and only if you cannot produce the required behavior by other means,
such as manifest settings or annotations. To correctly integrate your app extension coding with SAP Fiori
elements, use only the extensionAPI of SAP Fiori elements. For more information, see Using the
ExtensionAPI [page 1588].

After you've created an app extension, its display (for example, control placing, CSS) and system behavior
(for example, model and binding usage, busy handling) of the app extension lies within the application's
responsibility. SAP Fiori elements provides support only for the official extensionAPI functions. Don't
access or manipulate SAP Fiori elements' internal coding.

Procedure

1. Add a navigation target to the manifest.js file.

In the example below, external navigation (outbound) via the SAP Fiori Launchpad has been added.

 Sample Code
 sap.app": {
...
 "crossNavigation": {
 "inbounds": {},
 "outbounds": {
 "EPMProductManageSt": {
 "semanticObject": "EPMProduct",
 "action": "manage",
 "parameters": {
 "preferredMode": {
 "value": {

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1817

 "value": "display"
 }
 }
 }
 }
 }
 }
....

2. Register your extension in the manifest.js file.

 Sample Code

"extends": { "extensions": {
 ...
 "sap.ui.controllerExtensions": {
 ...
 "sap.suite.ui.generic.template.ListReport.view.ListReport": {
 ...
 "controllerName": "STTA_MP.ext.controller.ListReportExtension",
 ...
 }
 }
 ...

3. Implement your controller extension.

You have to implement the onListNavigationExtension function within the list report controller
extension.

 Sample Code

onListNavigationExtension: function(oEvent) { var oNavigationController = this.extensionAPI.getNavigationController();
 var oBindingContext = oEvent.getSource().getBindingContext();
 var oObject = oBindingContext.getObject();
 // for notebooks we trigger external navigation for all others we use
internal navigation
 if (oObject.ProductCategory == "Notebooks") {
 oNavigationController.navigateExternal("EPMProductManageSt");
 } else {
 // return false to trigger the default internal navigation
 return false;
 }
 // return true is necessary to prevent further default navigation
 return true;
 },

4. To ensure that this navigation can be triggered by the user, you must have defined an object page. If you do
not want the user to be able to navigate to this object page, follow the procedure described under Changing
Navigation to Object Page [page 1583], Enable External Navigation.

1818 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Example: Replacing Standard Navigation in a Responsive
Table on the Object Page

You can replace the standard navigation from the object page with your own navigation to an external or
internal target.

Context

 Caution
Use app extensions with caution and only if you cannot produce the required behavior by other means,
such as manifest settings or annotations. To correctly integrate your app extension coding with SAP Fiori
elements, use only the extensionAPI of SAP Fiori elements. For more information, see Using the
ExtensionAPI [page 1588].

After you've created an app extension, its display (for example, control placing, CSS) and system behavior
(for example, model and binding usage, busy handling) of the app extension lies within the application's
responsibility. SAP Fiori elements provides support only for the official extensionAPI functions. Don't
access or manipulate SAP Fiori elements' internal coding.

Procedure

1. Add a navigation target to the manifest.js file.

In the example below, external navigation (outbound) via the SAP Fiori Launchpad has been added.

 Sample Code
 sap.app": {
...
 "crossNavigation": {
 "inbounds": {},
 "outbounds": {
 "EPMProductManageSt": {
 "semanticObject": "EPMProduct",
 "action": "manage",
 "parameters": {
 "preferredMode": {
 "value": {
 "value": "display"
 }
 }
 }
 }
 }
 }
....

2. Register your extension in the manifest.js file.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1819

 Sample Code

"extends": { "extensions": {
 ...
 "sap.ui.controllerExtensions": {
 ...
 "sap.suite.ui.generic.template.ObjectPage.view.Details": {
 ...
 "controllerName": "STTA_MP.ext.controller.DetailsExtension",
 ...
 }
 }
 ...

3. Implement your controller extension.

You have to implement the onListNavigationExtension function within the object page controller
extension.

 Sample Code

onListNavigationExtension: function(oEvent) { var oNavigationController = this.extensionAPI.getNavigationController();
 var oBindingContext = oEvent.getSource().getBindingContext();
 var oObject = oBindingContext.getObject();
 // for notebooks we trigger external navigation for all others we use
internal navigation
 if (oObject.ProductCategory == "Notebooks") {
 oNavigationController.navigateExternal("EPMProductManageSt");
 } else {
 // return false to trigger the default internal navigation
 return false;
 }
 // return true is necessary to prevent further default navigation
 return true;
 },

Example: Enable Internal Navigation for a List Report to
Object Pages of Different Entity Sets

You can enable internal navigation to an object page for a list report with different entity sets by using the
onListNavigationExtension function.

 Caution
Use app extensions with caution and only if you cannot produce the required behavior by other means,
such as manifest settings or annotations. To correctly integrate your app extension coding with SAP Fiori
elements, use only the extensionAPI of SAP Fiori elements. For more information, see Using the
ExtensionAPI [page 1588].

After you've created an app extension, its display (for example, control placing, CSS) and system behavior
(for example, model and binding usage, busy handling) of the app extension lies within the application's
responsibility. SAP Fiori elements provides support only for the official extensionAPI functions. Don't
access or manipulate SAP Fiori elements' internal coding.

1820 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

In the extension function, you can define the logic or condition that triggers the navigation to the object page. If
none of the conditions mentioned in the extension are met, navigation to the default object page is triggered.

The figure below shows a sample navigation scenario:

The code snippet below shows a sample implementation of the onListNavigationExtension.

 Sample Code

onListNavigationExtension: function(oEvent) { var oBindingContext = oEvent.getSource().getBindingContext();
 var oObject = oBindingContext.getObject();
 var sNavigationProperty;
 switch (oObject.Column3){
 case "100":
 sNavigationProperty = "NavigationProperty1";
 break;
 case "200":
 sNavigationProperty = "NavigationProperty2";
 break;
 }
 if (sNavigationProperty){
 var oExtensionAPI = this.extensionAPI;
 var fnNavigate = function(){
 return new Promise(function(fnResolve, fnReject){
 var oModel = oBindingContext.getModel();
 var oTarget;
 oModel.createBindingContext(sNavigationProperty,
oBindingContext, {}, function(oTarget){
 var oNavigationController =
oExtensionAPI.getNavigationController();
 oNavigationController.navigateInternal(oTarget);
 fnResolve();
 });
 });
 };
 oExtensionAPI.securedExecution(fnNavigate, {
 busy: {
 check: false
 },
 dataloss: {
 popup: false
 }
});
 return true;
 }
 return false;
 }
Sample Implementation of Manifest changes:
 "pages": {
 "ObjectPage|EntitySet1 ": {
 "entitySet": " EntitySet1",

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1821

 "component": {
 "name": "sap.suite.ui.generic.template.ObjectPage"
 }
 },
 "ObjectPage| EntitySet2 ": {
 "entitySet": " EntitySet2",
 "component": {
 "name": "sap.suite.ui.generic.template.ObjectPage"
 }
 },
 "ObjectPage| EntitySet3": {
 "entitySet": " EntitySet3",
 "component": {
 "name": "sap.suite.ui.generic.template.ObjectPage"
 }
 }

Example: Adding Columns to a Responsive Table on the
Object Page

For responsive tables, you have to implement two extension points to add a custom column.

Context

 Caution
Use app extensions with caution and only if you cannot produce the required behavior by other means,
such as manifest settings or annotations. To correctly integrate your app extension coding with SAP Fiori
elements, use only the extensionAPI of SAP Fiori elements. For more information, see Using the
ExtensionAPI [page 1588].

After you've created an app extension, its display (for example, control placing, CSS) and system behavior
(for example, model and binding usage, busy handling) of the app extension lies within the application's
responsibility. SAP Fiori elements provides support only for the official extensionAPI functions. Don't
access or manipulate SAP Fiori elements' internal coding.

The table containing additional columns can look like this:

Figure 333: Custom columns in a responsive table on the object page

Procedure

1. Define a fragment for the view extension.

1822 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

For a custom column in a responsive table, you have to implement two extensions. First, implement the
definition of the custom columns and then implement the content of the custom columns.

In the example project: webapp/ext/fragments/ProductTextResponsiveTableColumns.fragment.xml:

 Sample Code

<core:FragmentDefinition xmlns:core="sap.ui.core" xmlns="sap.m">
 <Column>
 <Text text="{i18n|sap.suite.ui.generic.template.ObjectPage|
STTA_C_MP_Product>xfld.BreakoutColumn}" />
 <customData>
 <core:CustomData key="p13nData"
 value='\{"columnKey": "Test", "columnIndex" :
"101"}' />
 </customData>
 </Column>
</core:FragmentDefinition>

In the example project: ProductTextResponsiveTableCells.fragment.xml:

 Sample Code

<core:FragmentDefinition xmlns:core="sap.ui.core" xmlns="sap.m"> <Text text="{i18n|sap.suite.ui.generic.template.ObjectPage|
STTA_C_MP_Product>xfld.BreakoutColumnContent}"></Text>
</core:FragmentDefinition>

2. Register your view extensions in the manifest.json file of your application as follows:
For information on naming, see Extension Points for Tables [page 1811].

 Sample Code

... "extends": {
 "component": "sap.suite.ui.generic.template.ListReport",
 "minVersion": "1.1.0",
 "extensions": {
 "sap.ui.viewExtensions": {
"sap.suite.ui.generic.template.ObjectPage.view.Details": {
 "ResponsiveTableColumnsExtension|STTA_C_MP_ProductText|
to_ProductText::com.sap.vocabularies.UI.v1.LineItem": {
 "className": "sap.ui.core.Fragment",
 "fragmentName":
"STTA_MP.ext.fragments.ProductTextResponsiveTableColumns",
 "type": "XML"
 },
 "ResponsiveTableCellsExtension|STTA_C_MP_ProductText|
to_ProductText::com.sap.vocabularies.UI.v1.LineItem": {
 "className": "sap.ui.core.Fragment",
 "fragmentName":
"STTA_MP.ext.fragments.ProductTextResponsiveTableCells",
 "type": "XML"
 }
 },

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1823

Example: Adding Columns to a Grid Table in the List Report

To add custom columns to a grid table in the list report, follow the steps described below.

Context

 Caution
Use app extensions with caution and only if you cannot produce the required behavior by other means,
such as manifest settings or annotations. To correctly integrate your app extension coding with SAP Fiori
elements, use only the extensionAPI of SAP Fiori elements. For more information, see Using the
ExtensionAPI [page 1588].

After you've created an app extension, its display (for example, control placing, CSS) and system behavior
(for example, model and binding usage, busy handling) of the app extension lies within the application's
responsibility. SAP Fiori elements provides support only for the official extensionAPI functions. Don't
access or manipulate SAP Fiori elements' internal coding.

The table containing additional columns can look like this:

Figure 334: Custom columns in a grid table in the list report

Procedure

1. Define a fragment for the view extension

In the sample project, this is webapp/ext/fragments/ListReportGridTableColumns.fragment.xml.

You add the extension column to the first position of the grid table. You can change this sequence via the
customData property columnIndex, as shown in the sample code below.

 Note
If the content of your custom column refers to a property (such as{Price}), you need to include a
corresponding "leadingProperty" entry in the CustomData of the column definition.

 Sample Code

<core:FragmentDefinition xmlns:core="sap.ui.core" xmlns:table="sap.ui.table" xmlns="sap.m">
 <table:Column>

1824 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 <Label text="Rating" />
 <table:customData>
 <core:CustomData key="p13nData"
 value='\{"columnKey": "Rating",
"leadingProperty":"Price", "columnIndex" : "100"}' />
 </table:customData>
 <table:template>
 <RatingIndicator value="{= ${Price} > 500 ? 1:5}"></
RatingIndicator>
 </table:template>
 </table:Column>
 <table:Column>
 <Label text="Test" />
 <table:customData>
 <core:CustomData key="p13nData" value='\{"columnKey":
"Test", "columnIndex" : "101"}' />
 </table:customData>
 <table:template>
 <Text text="{i18n|
sap.suite.ui.generic.template.ListReport|
STTA_C_MP_Product>xfld.BreakoutColumnContent}"></Text>
 </table:template>
 </table:Column>
</core:FragmentDefinition>

2. Register your view extensions in the manifest.json file of your application as follows:

 Sample Code

... "extends": {
 "component": "sap.suite.ui.generic.template.ListReport",
 "minVersion": "1.1.0",
 "extensions": {
 "sap.ui.viewExtensions": { "sap.suite.ui.generic.template.ListReport.view.ListReport": { "GridTableColumnsExtension|STTA_C_MP_Product": {
 "className": "sap.ui.core.Fragment",
 "fragmentName":
"STTA_MP.ext.fragments.ListReportGridTableColumns",
 "type": "XML"
 },…

If you use QuickVariantSelectionX, you need to define the extensions per tab. In this case, the name of
the extension point is GridTableColumnExtension|<EntitySet>|<tabKey>. <tabKey> is the key
provided when defining the QuickVariantSelectionX. See also Defining Multiple Views on a List Report
Table - Multiple Table Mode [page 1651].

 Note
If you do not use |<tab key> as part of the extension point name, for compatibility reasons, the feature
will also work. However, you cannot provide stable IDs for the columns and cells.

 Sample Code

... "extends": {
 "extensions": {
 "sap.ui.viewExtensions": {
 "sap.suite.ui.generic.template.ListReport.view.ListReport": {
 "GridTableColumnsExtension|STTA_C_MP_Product|Expensive": {

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1825

 "className": "sap.ui.core.Fragment",
 "fragmentName":
"STTA_MP.ext.fragments.ListReportGridTableColumnsExpensive",
 "type": "XML"
 },
 "GridTableColumnsExtension|STTA_C_MP_Product|Cheap": {
 "className": "sap.ui.core.Fragment",
 "fragmentName":
"STTA_MP.ext.fragments.ListReportGridTableColumnsCheap",
 "type": "XML"
 },...

Example: Adding Columns to a Grid Table in the Object Page

To add custom columns to a grid table in the list report, follow the steps described below.

Context

 Caution
Use app extensions with caution and only if you cannot produce the required behavior by other means,
such as manifest settings or annotations. To correctly integrate your app extension coding with SAP Fiori
elements, use only the extensionAPI of SAP Fiori elements. For more information, see Using the
ExtensionAPI [page 1588].

After you've created an app extension, its display (for example, control placing, CSS) and system behavior
(for example, model and binding usage, busy handling) of the app extension lies within the application's
responsibility. SAP Fiori elements provides support only for the official extensionAPI functions. Don't
access or manipulate SAP Fiori elements' internal coding.

Procedure

1. Define a fragment for the view extension.

For a custom column in a responsive table, you have to implement two extensions. First, implement the
definition of the custom columns and then implement the content of the custom columns.

In the example project webapp/ext/fragments/ProductTextGridTableColumns.fragment.xml, two columns
are added, one containing text, the other containing an action button:

 Sample Code

<core:FragmentDefinition xmlns:core="sap.ui.core"
xmlns:table="sap.ui.table" xmlns="sap.m"
xmlns:sfi="sap.ui.comp.smartfield"> <table:Column width="150px" >
 <Label text="{i18n|sap.suite.ui.generic.template.ObjectPage|
STTA_C_MP_Product>xfld.BreakoutColumn}" />

1826 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 <table:template>
 <Text text="{i18n|sap.suite.ui.generic.template.ObjectPage|
STTA_C_MP_Product>xfld.BreakoutColumnContent}"></Text>
 </table:template>
 </table:Column>
 <table:Column width="160px">
 <Label text="{i18n|sap.suite.ui.generic.template.ObjectPage|
STTA_C_MP_Product>xfld.BreakoutColumn}" />
 <table:template>
 <Button text="GridTab.Button"
 press = "onGridTableBreakoutButtonPress"></Button>
 </table:template>
 </table:Column>
</core:FragmentDefinition>

2. Register your view extensions in your application's manifest.json file as follows:

 Sample Code

"extends": { "extensions": {
 "sap.ui.controllerExtensions": {

 }
 "sap.ui.viewExtensions": {

 "sap.suite.ui.generic.template.ObjectPage.view.Details": {

 "GridTableColumnsExtension|STTA_C_MP_ProductText|
to_ProductTextNavigation::com.sap.vocabularies.UI.v1.LineItem": {
 "className": "sap.ui.core.Fragment",
 "fragmentName":
"STTA_MP.ext.fragments.ProductTextGridTableColumns",
 "type": "XML"
 },
 ...

Example: Adding Columns to an Analytical Table on the
Object Page

To add custom columns to an analytical table on the object page, follow the steps described below.

Context

 Caution
Use app extensions with caution and only if you cannot produce the required behavior by other means,
such as manifest settings or annotations. To correctly integrate your app extension coding with SAP Fiori
elements, use only the extensionAPI of SAP Fiori elements. For more information, see Using the
ExtensionAPI [page 1588].

After you've created an app extension, its display (for example, control placing, CSS) and system behavior
(for example, model and binding usage, busy handling) of the app extension lies within the application's

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1827

responsibility. SAP Fiori elements provides support only for the official extensionAPI functions. Don't
access or manipulate SAP Fiori elements' internal coding.

The table containing additional columns can look like this:

Figure 335: Custom columns in an analytical table on the object page

Procedure

1. Define a fragement for the view extension

In the example project webapp/ext/fragments/ProductSalesDataAnalyticalTableColumns.fragment.xml,
two columns are added: One containing text, the other one containing an action button.

 Sample Code

<core:FragmentDefinition xmlns:core="sap.ui.core"
 xmlns:table="sap.ui.table"
 xmlns="sap.m"
 xmlns:sfi="sap.ui.comp.smartfield">
 <table:AnalyticalColumn width="150px">
 <Label text="{i18n|sap.suite.ui.generic.template.ObjectPage|
STTA_C_MP_Product>xfld.BreakoutColumn}" />
 <table:template>
 <Text text="{i18n|sap.suite.ui.generic.template.ObjectPage|
STTA_C_MP_Product>xfld.BreakoutColumnContent}"></Text>
 </table:template>
 <table:customData>
 <core:CustomData key="p13nData" value='\
{"columnKey": "some unique key" \}' />
 </table:customData>
 </table:AnalyticalColumn>

 <table:AnalyticalColumn width="170px">
 <Label text="{i18n|
sap.suite.ui.generic.template.ObjectPage|
STTA_C_MP_Product>xfld.BreakoutColumn}" />
 <table:template>
 <Button text="{i18n|
sap.suite.ui.generic.template.ObjectPage|
STTA_C_MP_Product>xfld.AnalyticalTableButton}"

 press =
"onAnalyticalTableBreakoutButtonPress">
 </Button>
 </table:template>

 <table:customData>
 <core:CustomData
key="p13nData" value='\{"columnKey": some unique key" \}' />

1828 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 </table:customData>

 </table:AnalyticalColumn>

</core:FragmentDefinition>

2. Register your view extensions in the manifest.json file of your application, as follows:

 Sample Code

"extends": { "extensions": {
 "sap.ui.controllerExtensions": {

 }
 "sap.ui.viewExtensions": {

 "sap.suite.ui.generic.template.ObjectPage.view.Details": {

 "AnalyticalTableColumnsExtension|
STTA_C_MP_ProductSalesData|
to_ProductSalesData::com.sap.vocabularies.UI.v1.LineItem": {
 "className": "sap.ui.core.Fragment",
 "fragmentName":
"STTA_MP.ext.fragments.ProductSalesDataAnalyticalTableColumns",
 "type": "XML"
 },

Example: Adding Columns to a Tree Table in the List Report

To add custom columns to a tree table in the list report, follow the steps described below.

Context

 Caution
Use app extensions with caution and only if you cannot produce the required behavior by other means,
such as manifest settings or annotations. To correctly integrate your app extension coding with SAP Fiori
elements, use only the extensionAPI of SAP Fiori elements. For more information, see Using the
ExtensionAPI [page 1588].

After you've created an app extension, its display (for example, control placing, CSS) and system behavior
(for example, model and binding usage, busy handling) of the app extension lies within the application's
responsibility. SAP Fiori elements provides support only for the official extensionAPI functions. Don't
access or manipulate SAP Fiori elements' internal coding.

The table containing additional columns can look like this:

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1829

Figure 336: Custom columns in tree table in the list report

Procedure

1. Define a fragment for the view extension

In the example project webapp/ext/fragments/ListReportTreeTableColumns.fragment.xml, the custom
column is added to the first position of the tree table. You can change the sequence via the customData
property columnIndex as shown below.

 Note
If the content of your custom column refers to a property (such as{Price}), you need to include a
corresponding "leadingProperty" entry in the CustomData of the column definition.

 Sample Code

<core:FragmentDefinition xmlns:core="sap.ui.core" xmlns:table="sap.ui.table" xmlns="sap.m">
 <table:Column>
 <Label text="Rating" />
 <table:customData>
 <core:CustomData key="p13nData"
 value='\{"columnKey": "Rating",
"leadingProperty":"Price", "columnIndex" : "100"}' />
 </table:customData
 <table:template>
 <RatingIndicator value="{= ${Price} > 500 ? 1:5}"></
RatingIndicator>
 </table:template>
 </table:Column>
 <table:Column>
 <Label text="Test" />
 <table:customData>
 <core:CustomData key="p13nData" value='\{"columnKey":
"Test", "columnIndex" : "101"}' />
 </table:customData>
 <table:template>
 <Text text="{i18n|
sap.suite.ui.generic.template.ListReport|
STTA_C_MP_Product>xfld.BreakoutColumnContent}"></Text>
 </table:template>
 </table:Column>
</core:FragmentDefinition>

2. Register your view extension in the manifest.json file of your application.

 Sample Code

...

1830 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 "extends": {
 "component": "sap.suite.ui.generic.template.ListReport",
 "minVersion": "1.1.0",
 "extensions": {
 "sap.ui.viewExtensions": {
 "sap.suite.ui.generic.template.ListReport.view.ListReport": {
 "TreeTableColumnsExtension|STTA_C_MP_Product": {
 "className": "sap.ui.core.Fragment",
 "fragmentName":
"STTA_MP.ext.fragments.ListReportTreeTableColumns",
 "type": "XML"
 },…

If you use QuickVariantSelectionX, you need to define the extensions per tab. In this case, the name of
the extension point is TreeTableColumnExtension|<EntitySet>|<tabKey>. <tabKey> is the key
provided when defining the QuickVariantSelectionX. See also Defining Multiple Views on a List Report
Table - Multiple Table Mode [page 1651].

 Note
If you do not use |<tab key> as part of the extension point name, for compatibility reasons, the feature
will also work. However, you cannot provide stable IDs for the columns and cells.

 Sample Code

... "extends": {
 "extensions": {
 "sap.ui.viewExtensions": {
 "sap.suite.ui.generic.template.ListReport.view.ListReport": {
 "TreeTableColumnsExtension|STTA_C_MP_Product|Expensive": {
 "className": "sap.ui.core.Fragment",
 "fragmentName":
"STTA_MP.ext.fragments.ListReportTreeTableColumnsExpensive",
 "type": "XML"
 },
 "TreeTableColumnsExtension|STTA_C_MP_Product|Cheap": {
 "className": "sap.ui.core.Fragment",
 "fragmentName":
"STTA_MP.ext.fragments.ListReportTreeTableColumnsCheap",
 "type": "XML"
 },...

Adding Custom Actions Using Extension Points

You can use extension points to add custom actions to the list report and the object page.

Context

 Caution
Use app extensions with caution and only if you cannot produce the required behavior by other means,
such as manifest settings or annotations. To correctly integrate your app extension coding with SAP Fiori

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1831

elements, use only the extensionAPI of SAP Fiori elements. For more information, see Using the
ExtensionAPI [page 1588].

After you've created an app extension, its display (for example, control placing, CSS) and system behavior
(for example, model and binding usage, busy handling) of the app extension lies within the application's
responsibility. SAP Fiori elements provides support only for the official extensionAPI functions. Don't
access or manipulate SAP Fiori elements' internal coding.

You can define custom actions for:

● List reports (global action)
For global actions, you do not have to select a line in the list report table. This type of action refers to the
whole list report, for example, Display Log. Global actions are placed in the list report filter bar next to the
Share button.

● Table toolbar of the list report
● Header of the object page
● Table toolbar for a specific table on the object page
● Form in a section on the object page
● Footer bar

These custom actions are displayed as buttons on the UI. When the user selects the action, the system calls a
handler function that can be implemented within a controller extension.

Procedure

1. Implement controller extension
a. In your app, create a .controller.js file for your extension.

In the code sample below, we assume the following:
○ App name: my_app
○ File names: MyListReportExt.controller.js (extending the ListReport controller),

MyObjectPageExt.controller.js (extending the ObjectPage controller)
○ Location of controller files: my_app/webapp/ext/controller

b. In your controller extension, implement the event handler functions to be executed when the user
selects the action. For example, if you want to extend the ListReport controller, your controller
extension should look like this:

sap.ui.controller("my_app.ext.controller.MyListReportExt", { onCustomAction1 : function(oEvent) { … },
 onCustomAction2 : function(oEvent) { … },
 …
}

When implementing the handler functions for your custom actions, you must use the Using the
ExtensionAPI [page 1588].

2. Extend the manifest.json file

In your app's manifest.json file, under sap.ui5 → extends → extensions, you can specify
extensions for the ListReport and the ObjectPage controllers.

1832 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Specify the following information and extend the manifest files as described below:

<entity set> Entity set that is displayed on the list report or on the ob
ject page (for example, SMART_C_Product)

 Note
If you use multiple views with different entity
sets on the list report page, Actions need to be
defined only for main entity set. It is not possible to
execute Actions defined for other entity sets.

<Action 1>, <Action 2>, … Action names

<id> ID to be used for the action button

 Note
The values of the action name and the ID should be
identical.

<button text> nullText to be displayed on the button (typically a binding
to an i18n entry, for example, null<button text>null
null{i18n>MY_BUTTON_TEXT})

<handler function> Handler function that is called when the user selects the
action button

<global> (required) Indicates whether this is a global action. The default value
is false.

 Note
If a determining property is set along with the global
property, the action is rendered as a global action
since this takes precedence.

Relevant only for table toolbar actions in the list report
and object page: <requiresSelection> (optional)

Property that indicates whether the action requires a se
lection of items. The default value is true.

Relevant only for list report actions and object page
header actions: <determining> (optional)

Property that indicates whether the action should be dis
played in the footer of the page. The default value is
false.

Relevant only for object page actions: <SmartTable
Facet ID>

ID that either comes from the annotation in which you
have provided an ID for the facet or that's made up of the
annotation term plus the navigation property. For exam
ple: <entity type association>::com.sap.vocabula
ries.UI.v1.LineItem

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1833

○ Table toolbar action for the list report

 ...
"extends": {
 "extensions": {
 "sap.ui.controllerExtensions": {
 "sap.suite.ui.generic.template.ListReport.view.ListReport": {
 "controllerName": "my_app.ext.controller.MyController",
 "sap.ui.generic.app": {
 "<entity set>": {
 "EntitySet": "<entity set>",
 "Actions": {
 "<Action 1>": {
 "id" : "<id>",
 "text" : "<button text>",
 "press" : "<handler function>",
 "requiresSelection": <true|false>
 },
 "<Action 2>": {
 ...
 },
 ...
 }
 ...

○ Action for the object page header

... "extends": {
 "extensions": {
 "sap.ui.controllerExtensions": {
 ...
 "sap.suite.ui.generic.template.ObjectPage.view.Details": {
 "controllerName": "my_app.ext.controller.DetailsExtension",
 "sap.ui.generic.app": {
 "<entity set>": {
 "EntitySet": "<entity set>",
 "Header" : {
 "Actions": {
 "<Action 1>": {
 "id" : "<id>",
 "text" : "<button text>",
 "press" : "<handler function>"
 },
 "<Action 2>": { ... }
 }
 },
...

○ Table toolbar action for the object page

 ...
"extends": {
 "extensions": {
 "sap.ui.controllerExtensions": {
 ...
 "sap.suite.ui.generic.template.ObjectPage.view.Details": {
 "controllerName": "my_app.ext.controller.DetailsExtension",
 "sap.ui.generic.app": {
 "<entity set>": {
 "EntitySet": "<entity set>",
 "Sections": {
 "<SmartTable Facet ID>": {
 "id" : "<SmartTable Facet ID>",
 "Actions": {

1834 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 "<SmartTable Action 1>": {
 "id" : "<id>",
 "text" : "<button text>",
 "press" : "<handler function>",
 "requiresSelection": <true|false>
 },
 "<SmartTable Action 2>": { ... }
 }
...

○ Form action for the object page

 ...
"extends": {
 "extensions": {
 "sap.ui.controllerExtensions": {
 ...
 "sap.suite.ui.generic.template.ObjectPage.view.Details": {
 "controllerName": "my_app.ext.controller.DetailsExtension",
 "sap.ui.generic.app": {
 "<entity set>": {
 "EntitySet": "<entity set>",
 "Sections": {
 "<Form Facet ID>": {
 "id": "<Form Facet ID>",
 "Actions": {
 "<Action 1>": {
 "id" : "<id>",
 "text" : "<button text>",
 "press" : "<handler function>"
 },
 "<Action 2>": { ... }
 }
...

○ Footer bar action in the list report:

"sap.ui5": { "extends": {
 "extensions": {
 "sap.ui.controllerExtensions": {
 "sap.suite.ui.generic.template.ListReport.view.ListReport": {
 "controllerName": "my_app.ext.controller.MyController",
 "sap.ui.generic.app": {
 "<entity set>": {
 "EntitySet": "<entity set>",
 "Actions": {
 "<Action 1>": {
 "id": "<id>",
 "text": "<button text>",
 "press": "<handler function>",
 "determining": true
 }
 }
 }
 }
 }
 }
 }
 }
}

○ Footer bar action in the object page:

 "sap.ui5": {

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1835

 "extends": {
 "extensions": {
 "sap.ui.controllerExtensions": {
 "sap.suite.ui.generic.template.ObjectPage.view.Detail": {
 "controllerName": "my_app.ext.controller.MyController",
 "sap.ui.generic.app": {
 "<entity set>": {
 "EntitySet": "<entity set>",
 "Header": {
 "Actions": {
 "<Action 1>": {
 "id": "<id>",
 "text": "<button text>",
 "press": "<handler function>",
 "determining": true
 }
 }
 }
 }
 }
 }
 }
 }
 }
}

○ List report (global action)

 ...
"extends": {
 "extensions": {
 "sap.ui.controllerExtensions": {
 "sap.suite.ui.generic.template.ListReport.view.ListReport": {
 "controllerName": "my_app.ext.controller.MyController",
 "sap.ui.generic.app": {
 "<entity set>": {
 "EntitySet": "<entity set>",
 "Actions": {
 "<Action 1>": {
 "id" : "<id>",
 "text" : "<button text>",
 "press" : "<handler function>",
 "global": <true|false>
 },
 "<Action 2>": {
 ...
 },
 ...
 }
 ...

Display of Actions Added Using Extension Points

You can control the display of actions added using extension points in the list report and object page through
certain settings in the manifest.json file.

 Caution
Use app extensions with caution and only if you cannot produce the required behavior by other means,
such as manifest settings or annotations. To correctly integrate your app extension coding with SAP Fiori

1836 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

elements, use only the extensionAPI of SAP Fiori elements. For more information, see Using the
ExtensionAPI [page 1588].

After you've created an app extension, its display (for example, control placing, CSS) and system behavior
(for example, model and binding usage, busy handling) of the app extension lies within the application's
responsibility. SAP Fiori elements provides support only for the official extensionAPI functions. Don't
access or manipulate SAP Fiori elements' internal coding.

In the list report and in tables on the object page, you can specify that a user must make a selection before an
action button is enabled. In addition, you can use the applicablePath setting for the action, which will then
use data from the back-end system to determine whether the action is valid for the selection, and thus whether
the button should be enabled or disabled.

If more than one row is selected in the list report or table, or if one applicablePath setting from a selection
evaluates to true, the action button will be enabled. The back-end system must then return the appropriate
message for cases in which the action cannot be performed.

When an action is placed in the header or footer of the object page, it is enabled by default. In this case, the
actions consider only the applicablePath setting for the product represented by the object page, as in this
instance the object page itself is considered the selection. Therefore, when the applicablePath for the
product evaluates to false, the action button is hidden (not visible) on the object page.

 Note
Using the applicablePath setting is optional. If you do not use it, the action is always enabled.

Code Samples

To set up and control the display of your actions, in the manifest.json file, use the properties
requiresSelection and applicablePath.

List Report (Action in Table Header)
The following code sample shows an example of how to set up your manifest.json file to determine whether
to enable or disable an action in the list report:

 "sap.ui5": {
 "extends": {
 "extensions": {
 "sap.ui.controllerExtensions": {
 "sap.suite.ui.generic.template.ListReport.view.ListReport": {
 "controllerName": "my_app.ext.controller.ListReportExtension",
 "sap.ui.generic.app": {
 "<entity set>": {
 "EntitySet": "<entity set>",
 "Actions": {
 "<Action 1>": {
 "id": "<id>",
 "text": "<button text>",
 "press": "<handler function>",
 "requiresSelection": true,
 "applicablePath": "<entity type property>"
 },
 "<Action 2>": {

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1837

 "id": "<id>",
 "text": "<button text>",
 "press": "<handler function>",
 "requiresSelection": true
 }
 }
 }
 }
 }
 }
 }
 }
}

Object Page (Action in Header or Footer)
The following code sample shows an example of how to set up your manifest.json file to determine whether
an action is visible in the header or footer of the object page:

 "sap.ui5": {
 "extends": {
 "extensions": {
 "sap.ui.controllerExtensions": {
 "sap.suite.ui.generic.template.ObjectPage.view.Details": {
 "controllerName": "my_app.ext.controller.DetailsExtension",
 "sap.ui.generic.app": {
 "<entity set>": {
 "EntitySet": "<entity set>",
 "Header": {
 "Actions": {
 "<Action 1>": {
 "id": "<id>",
 "text": "<button text>",
 "press": "<handler function>",
 "applicablePath": "<entity type property>"
 }
 }
 },
 "Sections": {
 "<entity type
association>::com.sap.vocabularies.UI.v1.LineItem": {
 "id": "<SmartTable Facet ID>",
 "Actions": {
 "<Action 2>": {
 "id": "<id>",
 "text": "<button text>",
 "press": "<handler function>",
 "requiresSelection": true,
 "applicablePath": "<entity type property>"
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
}

1838 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Displaying Custom Action Buttons Depending on the Mode

In case of draft-enabled applications, if the draft information of the object page needs to be found out in the
controller / view extension (if the object page is an own draft version or an active version with an existing own
draft), you can use the DraftAdministrativeData navigation property. For example, you might want to
show a custom action button on the object page only in edit mode.

 Sample Code
 onAfterRendering: function(oEvent) {
 var oButton =
sap.ui.getCore().byId("STTA_MP::sap.suite.ui.generic.template.ObjectPage.view.
Details::STTA_C_MP_Product--action::ObjectPageCustomAction");
 oButton.bindElement("DraftAdministrativeData");
 oButton.bindProperty("visible", {
 path: "DraftIsCreatedByMe"
 });
},

Adding Custom Fields to the Smart Filter Bar

You can extend the filter bar by using a custom filter field.

 Caution
Use app extensions with caution and only if you cannot produce the required behavior by other means,
such as manifest settings or annotations. To correctly integrate your app extension coding with SAP Fiori
elements, use only the extensionAPI of SAP Fiori elements. For more information, see Using the
ExtensionAPI [page 1588].

After you've created an app extension, its display (for example, control placing, CSS) and system behavior
(for example, model and binding usage, busy handling) of the app extension lies within the application's
responsibility. SAP Fiori elements provides support only for the official extensionAPI functions. Don't
access or manipulate SAP Fiori elements' internal coding.

To enable this, you need to add a view extension and a corresponding controller extension, as in the following
example:

 Sample Code

"extends": { "extensions": {
 "sap.ui.controllerExtensions": {
 "sap.suite.ui.generic.template.ListReport.view.ListReport":
{
 "controllerName":
"<myNamespace>.ext.controller.CustomFilter"
 }
 },
 "sap.ui.viewExtensions": {

"sap.suite.ui.generic.template.ListReport.view.ListReport": {
 "SmartFilterBarControlConfigurationExtension|
<myEntityset>": {

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1839

 "className": "sap.ui.core.Fragment",
 "fragmentName":
"<myNamespace>.ext.fragment.CustomFilter",
 "type": "XML" },

You can add additional controls to the smart filter bar. The following methods are mandatory:

● Using onBeforeRebindTable, you evaluate the settings in the custom fields and add the corresponding
filters to the bindingParameters of the table.

● Using getCustomAppStateData, you read the state of all custom fields and store that state in the object
provided to enable the templates to use it for navigation.

● Using restoreCustomAppStateData, you get the custom app state object you provided in
getCustomAppStateData and set the corresponding values to your custom controls. For example, you
call this method after returning from a navigation.

The onInitSmartFilterBar method is optional. You use it if you need to bind a custom control to its own
model or if you want value changes to trigger an action.

The enhanced controller methods each call a corresponding extension method:

● onBeforeRebindTableExtension
● getCustomAppStateDataExtension
● restoreCustomAppStateDataExtension
● onInitSmartFilterBarExtension

 Note
The filterable fields are usually defined by metadata annotations. You only have to use the extension option
if the filter attribute can only be calculated by the client.

For an example with step-by-step instructions, see Adding Filterable Field to the Smart Filter Bar [page 1840].

Adding Filterable Field to the Smart Filter Bar
The following example shows the development steps for adding an additional filter to the smart filter bar of the
list report.

 Caution
Use app extensions with caution and only if you cannot produce the required behavior by other means,
such as manifest settings or annotations. To correctly integrate your app extension coding with SAP Fiori
elements, use only the extensionAPI of SAP Fiori elements. For more information, see Using the
ExtensionAPI [page 1588].

After you've created an app extension, its display (for example, control placing, CSS) and system behavior
(for example, model and binding usage, busy handling) of the app extension lies within the application's
responsibility. SAP Fiori elements provides support only for the official extensionAPI functions. Don't
access or manipulate SAP Fiori elements' internal coding.

In this example, we assume that you want to add a Price field with two filter options to the smart filter bar of the
Manage Products app's list report. To do so, you have to complete the following steps:

1840 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

1. Create a controller for a new facet on the list report
2. Add field name and filter option texts to the i18n file
3. Define a view and a controller extension in the manifest.json file

 Note
You can only add new fields to the smart filter bar, not change existing ones. If you want to change existing
fields, you must remove them first completely from the annotations, then add them again as new fields.

Step 1: Create a controller for a new facet in the list report

In the SAP Web IDE, open the folder structure of the Manage Products project and then proceed as follows:

1. In the webapp folder, create a new subfolder called ext.
2. In the folder ext, create a new subfolder called fragment.
3. In the fragment folder, create file Custom.Filter.fragment.xml.
4. In the controller folder, create file Custom.Filter.controller.js.
5. Define the fragment by adding ControlConfiguration to the smart filter bar. You can see the options

for the ComboBox in the following example:

 Sample Code

<core:FragmentDefinition xmlns="sap.m"
 xmlns:smartfilterbar="sap.ui.comp.smartfilterbar"
 xmlns:core="sap.ui.core">
 <!-- Price Filter-->
 <smartfilterbar:ControlConfiguration key="CustomPriceFilter" index="3"
 label="{i18n|sap.suite.ui.generic.template.ListReport|
SEPMRA_C_PD_Product>xfld.Price}"
 visibleInAdvancedArea="true" groupId="_BASIC">
 <smartfilterbar:customControl>
 <ComboBox id="CustomPriceFilter-combobox">
 <core:Item id="CustomPriceFilterItem0" key="0"
 text="{i18n|
sap.suite.ui.generic.template.ListReport|
SEPMRA_C_PD_Product>xtit.Price_0-100}"/>
 <core:Item id="CustomPriceFilterItem3" key="1"
 text="{i18n|
sap.suite.ui.generic.template.ListReport|
SEPMRA_C_PD_Product>xtit.Price_GE100}"/>
 </ComboBox>
 </smartfilterbar:customControl>
 </smartfilterbar:ControlConfiguration> </core:FragmentDefinition>

 Note
You can use the index property to define the position of the filterable field. For more information, see
also Smart Filter Bar [page 2413] and https://sapui5.hana.ondemand.com/#docs/api/symbols/
sap.ui.comp.smartfilterbar.ControlConfiguration.html.

6. To generate the additional filter logic, implement the logic in the controller as shown in the example below.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1841

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.comp.smartfilterbar.ControlConfiguration.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.comp.smartfilterbar.ControlConfiguration.html

Note that if a user changes a filter field in the filter bar, the table shows an overlay to indicate that the state
of the filter bar differs from the date currently being displayed. If the control used in your app does not
trigger a change event, you have to set this up using .fireChange() so that the filter bar will recognize
the change and display the overlay.

 Sample Code

sap.ui.controller("ManageProducts.ext.controller.CustomFilter", { onBeforeRebindTableExtension: function(oEvent) {
 var oBindingParams = oEvent.getParameter("bindingParams");
 oBindingParams.parameters = oBindingParams.parameters || {};

 var oSmartTable = oEvent.getSource();
 var oSmartFilterBar = this.byId(oSmartTable.getSmartFilterId());
 var vCategory;
 if (oSmartFilterBar instanceof
sap.ui.comp.smartfilterbar.SmartFilterBar) {
 //Custom price filter
 var oCustomControl =
oSmartFilterBar.getControlByKey("CustomPriceFilter");
 if (oCustomControl instanceof sap.m.ComboBox) {
 vCategory = oCustomControl.getSelectedKey();
 switch (vCategory) {
 case "0":
 oBindingParams.filters.push(new
sap.ui.model.Filter("Price", "LE", "100"));
 break;
 case "1":
 oBindingParams.filters.push(new
sap.ui.model.Filter("Price", "GT", "100"));
 break;
 default:
 break;
 }
 }
 }
 } });

Step 2: Add field name and filter option texts to the i18n file

To make the field name and the filter options translatable, add the texts to the i18n file as follows:

 Sample Code

#XFLD: Custom filter breakout label xfld.Price=Price
#XTIT: Price range 0-100
xtit.Price_0-100=Price between 0-100
#XTIT: Price range Over 100 xtit.Price_GE100=Price: Over 100

1842 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Step 3: Define a view and a controller extension in the manifest.json file

To integrate the logic as an extension, define a view and controller extension to load the files you created in
Step 1 (Custom.Filter.fragment.xml and Custom.Filter.controller.js).

The logic is added to the ListReport section of the Manage Products app.

 Sample Code

"extends": { "extensions": {
 "sap.ui.controllerExtensions": {
 "sap.suite.ui.generic.template.ListReport.view.ListReport": {
 "controllerName": "ManageProducts.ext.controller.CustomFilter"
 }
 },
 "sap.ui.viewExtensions": {
 "sap.suite.ui.generic.template.ListReport.view.ListReport": {
 "SmartFilterBarControlConfigurationExtension|
SEPMRA_C_PD_Product": {
 "className": "sap.ui.core.Fragment",
 "fragmentName":
"ManageProducts.ext.fragment.CustomFilter",
 "type": "XML"
 }
 }
 }
 } },

Results

The list report of the Manage Products app displays the new Price field with filter options.

Adapting Texts in the Delete Dialog Box (List Report)

You can adapt the text of the Delete dialog box that is displayed when you delete list report items.

Context

 Caution
Use app extensions with caution and only if you cannot produce the required behavior by other means,
such as manifest settings or annotations. To correctly integrate your app extension coding with SAP Fiori
elements, use only the extensionAPI of SAP Fiori elements. For more information, see Using the
ExtensionAPI [page 1588].

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1843

After you've created an app extension, its display (for example, control placing, CSS) and system behavior
(for example, model and binding usage, busy handling) of the app extension lies within the application's
responsibility. SAP Fiori elements provides support only for the official extensionAPI functions. Don't
access or manipulate SAP Fiori elements' internal coding.

The Delete dialog looks as follows:

It contains the following text:

● title: always appears
● text: always appears
● unsavedChanges: appears in the following cases:

○ If not, only list report items with the editing status unsavedChanges are selected
○ If not, only list report items with the editing status unsavedChanges and locked are selected

● undeletableText: appears only if one or more selected items cannot be deleted using the deletablePath
feature.

 Note
For information about how to adapt texts on the object page, see Adapting Texts in the Delete Dialog Box
(Object Page Header) [page 1846] and Adapting Texts in the Delete Dialog Box (Object Page with Nested
Smart Table) [page 1848].

Procedure

1. Register your extension at the app descriptor (manifest.json) for the list report.

 Sample Code
 "extends": {
 "extensions": {
 ...
 "sap.ui.controllerExtensions": {
 ...
 "sap.suite.ui.generic.template.ListReport.view.ListReport": {
 ...
 "controllerName":
"MY_APP.ext.controller.ListReportExtension",
 ...
 }
 }

1844 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 ...

2. Maintain the controller extension files in your app.

3. Implement the function 'beforeDeleteExtension' in the controller extension file of the list report. You
have several options to determine the delete dialog box:
○ The easy way

 Sample Code
 beforeDeleteExtension: function(oBeforeDeleteProperties) {
 var oMessageText = {
 title: "My title";
 text: "My text",
 unsavedChanges: "My unsaved changes",
 undeletableText: "My undeletable text"
 };
 return oMessageText;
}

○ Using promises

 Sample Code
 beforeDeleteExtension: function(oBeforeDeleteProperties) {
 var oMessageText = {
 title: "My title";
 text: "My text",
 unsavedChanges: "My unsaved changes",
 undeletableText: "My undeletable text"
 };
 return Promise.resolve(oMessageText);
}

○ Using the extensionAPI.SecuredExecution (see also Using the SecuredExecution Method [page
1590])

 Sample Code
 beforeDeleteExtension: function(oBeforeDeleteProperties) {
 var oMessageText = {
 title: "My title";
 text: "My text",
 unsavedChanges: "My unsaved changes",
 undeletableText: "My undeletable text"
 };
 return this.extenionAPI.securedExecution(function() {
 return new Promise(function(resolve) {
 ...
 resolve(oMessageText);
 ...
 });
 });

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1845

}

 Note
The property oBeforeDeleteProperties contains information about the selected items for deletion
of the list report.

Adapting Texts in the Delete Dialog Box (Object Page Header)

You can adapt the text of the Delete dialog box that is displayed when you delete the entire object page.

Context

 Caution
Use app extensions with caution and only if you cannot produce the required behavior by other means,
such as manifest settings or annotations. To correctly integrate your app extension coding with SAP Fiori
elements, use only the extensionAPI of SAP Fiori elements. For more information, see Using the
ExtensionAPI [page 1588].

After you've created an app extension, its display (for example, control placing, CSS) and system behavior
(for example, model and binding usage, busy handling) of the app extension lies within the application's
responsibility. SAP Fiori elements provides support only for the official extensionAPI functions. Don't
access or manipulate SAP Fiori elements' internal coding.

In the object page header, you can display the Delete dialog box by choosing the Delete button to delete the
entire content of the object page.

Perform these steps to be able to use the extension:

Procedure

1. Register your extension at the app descriptor (manifest.json):

 Sample Code
 "extends": {
 "extensions": {
 ...
 "sap.ui.controllerExtensions": {
 ...
 "sap.suite.ui.generic.template.ObjectPage.view.Details": {
 ...
 "controllerName": "MY_APP.ext.controller.DetailsExtension",
 ...
 }

1846 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 }
 ...

2. Maintain the controller extension files in your app:

3. The Delete dialog box contains the following text:
○ title: always appears
○ text: always appears

Implement the beforeDeleteExtension function in the controller extension file of the object page. You
have several options to determine the delete dialog:
○ The easy way

 Sample Code
 beforeDeleteExtension: function() {
 var oMessageText = {
 title: "My title";
 text: "My text"
 };
 return oMessageText;
}

○ Using promises

 Sample Code
 beforeDeleteExtension: function() {
 var oMessageText = {
 title: "My title";
 text: "My text"
 };
 return Promise.resolve(oMessageText);
}

○ Using the extensionAPI.SecuredExecution (see also Using the SecuredExecution Method [page
1590])

 Sample Code
 beforeDeleteExtension: function() {
 var oMessageText = {
 title: "My title";
 text: "My text"
 };
 return this.extenionAPI.securedExecution(function() {
 return new Promise(function(resolve) {
 ...
 resolve(oMessageText);
 ...
 });
 });

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1847

}

Adapting Texts in the Delete Dialog Box (Object Page with
Nested Smart Table)

You can adapt the text of the Delete dialog box that is displayed when you delete items from nested smart
tables on the object page.

Context

 Caution
Use app extensions with caution and only if you cannot produce the required behavior by other means,
such as manifest settings or annotations. To correctly integrate your app extension coding with SAP Fiori
elements, use only the extensionAPI of SAP Fiori elements. For more information, see Using the
ExtensionAPI [page 1588].

After you've created an app extension, its display (for example, control placing, CSS) and system behavior
(for example, model and binding usage, busy handling) of the app extension lies within the application's
responsibility. SAP Fiori elements provides support only for the official extensionAPI functions. Don't
access or manipulate SAP Fiori elements' internal coding.

On an object page with a nested smart table, you can choose the Delete button in the table toolbar to delete the
selected table items.

Perform these steps to be able to use the extension:

Procedure

1. Register your extension with the app descriptor (manifest.json):

 Sample Code
 "extends": {
 "extensions": {
 ...
 "sap.ui.controllerExtensions": {
 ...
 "sap.suite.ui.generic.template.ObjectPage.view.Details": {
 ...
 "controllerName": "MY_APP.ext.controller.DetailsExtension",
 ...
 }
 }
 ...

1848 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

2. Maintain the controller extension files in your app:

3. The Delete dialog box contains the following text:
○ title: always appears
○ text: always appears
○ undeletableText: appears only if one or more selected table items cannot be deleted using the

deletablePath feature.
Implement the beforeLineItemDeleteExtension function in the controller extension file of the object
page. You have several options to determine the delete dialog:
○ The easy way

 Sample Code
 beforeLineItemDeleteExtension:
function(oBeforeLineItemDeleteProperties) {
 if (oBeforeLineItemDeleteProperties.sUiElementId !==
"My_APP::sap.suite.ui.generic.template.ObjectPage.view.Details::MY_Entit
ySet--to_NavProperty::com.sap.vocabularies.UI.v1.LineItem::Table") {
 return;
 }
 var oMessageText = {
 title: "My title";
 text: "My text",
 undeletableText: "My undeletable text"
 };
 return oMessageText;
}

○ Using promises

 Sample Code
 beforeLineItemDeleteExtension:
function(oBeforeLineItemDeleteProperties) {
 if (oBeforeLineItemDeleteProperties.sUiElementId !==
"My_APP::sap.suite.ui.generic.template.ObjectPage.view.Details::MY_Entit
ySet--to_NavProperty::com.sap.vocabularies.UI.v1.LineItem::Table") {
 return;
 }
 var oMessageText = {
 title: "My title";
 text: "My text",
 undeletableText: "My undeletable text"
 };
 return Promise.resolve(oMessageText);
}

○ Using the extensionAPI.SecuredExecution (see also Using the SecuredExecution Method [page
1590])

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1849

 Sample Code
 beforeLineItemDeleteExtension:
function(oBeforeLineItemDeleteProperties) {
 if (oBeforeLineItemDeleteProperties.sUiElementId !==
"My_APP::sap.suite.ui.generic.template.ObjectPage.view.Details::MY_Entit
ySet--to_NavProperty::com.sap.vocabularies.UI.v1.LineItem::Table") {
 return;
 }
 var oMessageText = {
 title: "My title";
 text: "My text",
 undeletableText: "My undeletable text"
 };
 return this.extenionAPI.securedExecution(function() {
 return new Promise(function(resolve) {
 ...
 resolve(oMessageText);
 ...
 });
 });
}

 Note
The property oBeforeLineItemDeleteProperties contains information about the selected items
that are to be deleted from the nested smart table. For example, sUiElementId identifies the UI
element (here, the nested smart table) from which something is to be deleted.

Prefilling Fields When Creating a New Entity Using an
Extension Point

When a user creates a new entity, it is possible to prefill fields with specific values.

There are two ways you can implement this system behavior:

● Creation using cross-app navigation
For more information, see Prefilling Fields When Creating a New Entity [page 1783].

● Passing values entered by the user into the filter bar

Passing Values Entered by the User into the Filter Bar

In the list report, if users enter a value into the filter bar, perform a search, and then create a new object, this
can mean that they want to create an instance that was not found with the previous search.You can support this
scenario by providing the additional option "Create with filters" which passes filter values entered by the user to
the newly created instance.

To enable this feature, perform these steps:

1. Incorporate the following snippet into the manifest.json:

1850 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

...
"sap.ui.generic.app": {
 "_version": "???",
 "settings": { ... },
 "pages": {
 "ListReport|myEntitySet": {
 "entitySet": "myEntitySet",
 "component": {
 "name": "sap.suite.ui.generic.template.ListReport",
 "list": true,
 "settings": {
 "createWithFilters": {
 "strategy": "extension"
 },
 ...

Result: The standard Create button in the list report is replaced by a menu button that gives you two
options:
○ The text for the first option is given by the i18n key CREATE_NEW_OBJECT. The default text is Create

Object. We recommend overwriting this text with a more specific text, for example, Create New
Product.

○ The text for the second option is Create with Filters. We do not recommend overwriting this text.
Note that this option is enabled only if the data displayed in the table corresponds to the displayed
filter values. This means the user might have to choose Go to enable the option if the selection is not
triggered automatically.

2. Implement the logic that transfers information from the filter bar to the creation process. To do so, you
have to override the extension function
getPredefinedValuesForCreateExtension(oSmartFilterBar). This function receives an instance
of sap.ui.comp.smartfilterbar.SmartFilterBar and must return an object that represents the
name/value pairs that should be used in the creation process.
This is shown in the following code sample which extracts the filter values for ProductCategory and
Supplier (if one exists and is unique):

 Sample Code
 getPredefinedValuesForCreateExtension: function(oSmartFilterBar){
 var oRet = {};
 var oSelectionVariant =
oSmartFilterBar.getUiState().getSelectionVariant();
 var aSelectOptions = oSelectionVariant.SelectOptions;
 var fnTransfer = function(sFieldname){
 for (var i = 0; i < aSelectOptions.length; i++){
 var oSelectOption = aSelectOptions[i];
 if (oSelectOption.PropertyName === sFieldname){
 if (oSelectOption.Ranges.length === 1){
 var oFilter = oSelectOption.Ranges[0];
 if (oFilter.Sign === "I" && oFilter.Option === "EQ")
{
 oRet[sFieldname] = oFilter.Low;
 }
 }
 break;
 }
 }
 };
 fnTransfer("ProductCategory");
 fnTransfer("Supplier");
 return oRet;
},

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1851

 Note
We recommend using this option only for fields that are available and editable on the object page, and
that will not be changed via UI adaptation. Otherwise, users might potentially save values they have
never seen or cannot change.

Custom State Handling for Extended Apps

You can perform inner app state handling for custom UI elements.

To do so, three methods need to be adapted by the relevant implementation:

● onCustomStateChange
Method of the extensionAPI of the object page. This method should be called whenever the (persistable)
state of the custom UI changes. The method does not have any parameters. For more information, see
ExtensionAPI for object page extensions.

● provideCustomStateExtension
Method of the object page controller you need to override if you want to handle custom states.
An empty javascript object oState is passed to this method. The method adds any state information to
this object.
You can add properties to the object. Note that the value of the properties needs to have a predefined
structure. This means that the corresponding value for each property has to be an object containing two
properties, like this:
○ First property: data

The value of this property can be any javascript object. The only restriction is that method
JSON.stringify must be applicable to this object and the state of the object must be restorable
from the result of this operation.

○ Second property: lifecycle
The value of this property must be an object specifying the lifecycle of the corresponding state. For
more information, see Lifecycle [page 1853].

● applyCustomStateExtension(oState, bIsSameAsLast)
Method of the object page controller which must be overridden if you want to perform custom state
handling.
The object oState passed to this method contains properties according to the applicable states that have
been added to the state object in a suitable provideCustomStateExtension call. Note that the value of
this property is the value of the corresponding data property and the information may have been
serialized and deserialized in the meantime.
The content of the lifecycle property is not passed to the applyCustomStateExtension method. The
lifecycle information determines only which information is passed to the applyCustomStateExtension
method.
You have to evaluate the state and apply it to the custom UI elements accordingly.

 Note
If parameter bIsSameAsLast is truthy, users reach the page for the same instance they visited the
last time. In this case, you do not need to adapt the UI state, since the whole page should still be in the
same state as when the users left it.

1852 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.suite.ui.generic.template.ObjectPage.extensionAPI.ExtensionAPI

In draft scenarios, the parameter bIsSameAsLast is also truthy if the instance that is currently
displayed and the instance that was visited previously are semantically the same but differ in their draft
status (for example, one is the active version, the other one the draft). However, due to technical
restrictions, this might fail in some cases (which means that bIsSameAsLast would be faulty,
although the two instances are semantically identical).

Lifecycle

When overriding the provideCustomStateExtension method, you need to define the lifecycle attached to
the different parts of the state.

The lifecycle object has the following potential properties. Each of them has boolean values, with standard
javascript logic for truthy and faulty values.

● session: Setting this property to true indicates that the lifecycle of this state should correspond to the
whole session.
The exact definition of a session's lifetime depends on the underlying SAP Fiori launchpad (FLP)
infrastructure.
These boundary conditions apply:
○ The session survives any FLP cross-app navigation.
○ The session ends when the user closes the browser.

In particular, the lifetime is sufficient to ensure that the state can be restored after navigating to another
SAP Fiori application (via cross-app navigation) and returning by back navigation.
Note that a hash of this information is stored in the URL.

● permanent: Setting this property to true indicates that the lifecycle of this state survives the session.
A hash of the state is stored in the URL. You can store the mapping information needed to resolve the hash
to the real state on the frontend server.
Note that you need to make specific configuration settings to allow this persistency.
If persistency is enabled, the state is part of the URL, even if the user bookmarks it or sends it with e-mail.
Otherwise, it corresponds to the session.

 Note
Choose this lifecycle only if the corresponding state is also relevant for other user sessions. For
example, it is not relevant for a scroll position.

● page: Setting this property to true indicates that the state should also be applied when the user navigates
to the same page for a different instance.
Handle this property with care since some time might have passed since the user visited this page for
another instance. The user might be surprised to find the page for the new instance in the given state.

● pagination: This property has the same semantics as the page property. However, the state is preserved
only when you use pagination to change instances . Pagination means that the content of one instance is
immediately replaced by another instance on the UI. Typical examples: Using paginator buttons or
browsing through different instances in a flexible column layout scenario.

 Note
The session and permanent properties can be used to define a lifecycle that extends the lifetime of the
current application. In this case, the state is stored as a hash within the URL. This means that the state can

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1853

only be recovered if the same URL is called again. This happens if the user navigates to the corresponding
page with backward or forward navigation in the history, uses a bookmark, or a URL received by other
means, for example, e-mail.

The state information is not available if the user navigates to the same app using normal forward navigation.
Example: The user chooses the FLP home button to navigate to the FLP and then selects the tile representing
the app a second time.

Reuse Components

Reuse components may also want to keep a specific state. However, they cannot override the controller's
extension functions.

For a reuse component to keep a state, you need to implement the methods stGetCurrentState(), and
stApplyState(oState, bIsSameAsLast).

Note that the signature of stGetCurrentState() differs from the signature of the corresponding extension
method provideCustomStateExtension(oState). While stGetCurrentState() is only responsible for
providing a state object with the structure defined above, provideCustomStateExtension(oState) enters
the state into a given empty state object.

Example: Custom State Handling

This example shows how to implement inner app state handling for custom UI elements.

The custom UI shows a map containing two state information items:

● The zoomFactor is a number between 1 and 100. The zoomFactor should be passed to other instances
on pagination. The zoomFactor should also remain valid for the whole session.

● The selectedCity is information consisting of a country and a city. The selected state should not be
passed to other instances. However, it should be bookmarkable for the current instance, when customers
enable storage on the frontend server.

The following sample code shows this:

 Sample Code
 onZoomFactorChange: function(iZoomFactor){
 if (!this.isAdoptingState){ // ignore case where we are just adapting to
the given state
 this.zoomFactor = iZoomFactor;
 // Inform framework that state of custom ui area has changed
 this.extensionAPI.onCustomStateChange();
 }
},

onSelectedCityChange: function(sCountry, sCity){
 if (!this.isAdoptingState){ // ignore case where we are just adapting to
the given state
 this.city = sCity;
 this.country = sCountry;

1854 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 // Inform framework that state of custom ui area has changed
 this.extensionAPI.onCustomAppStateChange();
 }
},

provideCustomStateExtension: function(oState){
 oState.zoomFactor = {
 data: this.zoomFactor,
 lifecycle: {
 session: true,
 pagination: true
 }
 };
 oState.selectedCity = {
 data: {
 country: this.country,
 city: this.city
 },
 lifecycle: {
 permanent: true
 }
 };
},

applyCustomStateExtension: function(oState, bIsSameAsLast){
 if (bIsSameasLast){
 return; // all controls are still in the correct state
 }
 this.isAdoptingState = true;
 this.setZoomFactor(oState.zoomFactor);
 this.setSelectedCity(oState.selectedCity.country,
oState.selectedCity.city);
 this.isAdoptingState = false;
},

setZoomFactor: function(iZoomFactor){
 this.zoomFactor = iZoomFactor;
 //... custom code which brings the map to the given zoom factor
},

setSelectedCity: function(sCountry, sCity){
 this.city = sCity;
 this.country = sCountry;
 //... custom code which selects the specified city
}

 Note
We recommend introducing the controller property isAdoptingState if setZoomFactor and/or
setSelectedCity trigger the event handlers calls onZoomFactorChange or onSelectedCityChange,
respectively.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1855

Adaptation Extension Example: Adding a Button to the Table
Toolbar in the List Report

In this example, you add a button to the table toolbar in the list report and extend it to filter only the records
which have a price that is greater than or equal to 1000.

Prerequisites

You have performed the steps described in Extending Delivered Apps Using Adaptation Extensions [page
1596].

Context

Procedure

1. Select the table tool bar and choose Add Fragment.

2. Under Target Aggregation, select content and choose your preferred index value. Choose Create New to
create the fragment. If the fragment is already there, you can search for it.

1856 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

3. Enter a fragment name, for example, FilterPriceButton, and choose Create.

4. Write the following code in the auto-generated FilterPriceButton.fragment.xml file. Note that the
bold code needs a supporting function in the extension controller. This is described in the next step.

 Sample Code

<core:FragmentDefinition xmlns:core='sap.ui.core' xmlns='sap.m'> <Button id="PriceBtnID" text="Filter Price"
press=".extension.ProdMan.AdaptProject.ListReportExtension.handleFilterPric
ePress"></Button> </core:FragmentDefinition>

 Note
".extension.ProdMan.AdaptProject.ListReportExtension.handleFilterPricePress"
consists of the following elements that are connected with a dot (.).

.extension: Required according to the UI adaptation tool guidelines

ProdMan.AdaptProject: Name of the project

ListReportExtension: Controller extension file name

handleFilterPricePress: Function in the controller extension file

5. Create a controller extension. Select the table toolbar as described under step 1 and choose Extend with
Controller.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1857

6. Enter the controller name, for example, ListReportExtension, and choose Extend.

The system generates the controller extension file ListReportExtension.js.

This auto-generated file contains predefined life-cycle functions under the Override block. All extensibility
functions provided by SAP Fiori elements should be consumed inside Override. The custom-defined
functions should be consumed outside the Override block.

To complete the example, copy and paste the code shown below to ListReportExtension.js.

 Note
handleFilterPricePress is a custom-defined function and addFilters is the extensibility
function provided by SAP Fiori elements.

 Sample Code
In this example, there is a property named Price named property in your list report entity type.

/** *@controller Name:
sap.suite.ui.generic.template.ListReport.view.ListReport,
*@viewId:STTA_MP::sap.suite.ui.generic.template.ListReport.view.ListReport:
:STTA_C_MP_Product
*/
sap.ui.define(["sap/ui/core/mvc/Controller", "sap/ui/core/mvc/
ControllerExtension"], function (Controller, ControllerExtension) {
return
ControllerExtension.extend("ProdMan.AdaptProject.ListReportExtension", {

handleFilterPricePress : function() {
 this.iPriceRestriction = "1000";
 var oExtensionAPI = this.base.templateBaseExtension.getExtensionAPI();
 oExtensionAPI.rebindTable();
},
//override an existing method of the Main.controller
override: {
//adding a life cycle method
/**
* Called when a controller is instantiated and its View controls (if
available) are already created.
* Can be used to modify the View before it is displayed, to bind event
handlers and do other one-time initialization.
* @memberOf src.client.uiadaptation
*/
onInit: function () {
},
/**
* Similar to onAfterRendering, but this hook is invoked before the
controller's View is re-rendered
* (NOT before the first rendering! onInit() is used for that one!).
* @memberOf src.client.uiadaptation

1858 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

*/
onBeforeRendering: function () {
},
/**
* Called when the View has been rendered (so its HTML is part of the
document). Post-rendering manipulations of the HTML could be done here.
* This hook is the same one that SAPUI5 controls get after being rendered.
* @memberOf src.client.uiadaptation
*/
onAfterRendering: function () {
},
/**
* Called when the Controller is destroyed. Use this one to free resources
and finalize activities.
* @memberOf src.client.uiadaptation
*/
onExit: function () {
},
"templateBaseExtension": {
addFilters : function(fnAddFilter, sControlId){
if(this.iPriceRestriction){
fnAddFilter(this, new sap.ui.model.Filter("Price", "GE",
this.iPriceRestriction));
}
}
}
}
}); });

7. In the adaptation editor, choose the Preview tab page and choose Go. Check the value in the Price field for
all records.

8. Choose Filter Price and check the value in the Price field for the filtered records.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1859

Adapting the UI: List Report and Object Page

You can use the SAPUI5 Visual Editor in the SAP Web IDE to extend and customize specific features in the list
report and on the object page.

 Note
Adapt the UI only for the use cases described here. Otherwise, issues regarding consistency, compatibility,
or other problems may occur immediately or in future releases.

Adapting the UI: List Report

Feature Setting

Display the Export to Excel button in the table toolbar For SmartTable, set the Use Export to Excel property to
true.

Combine buttons (actions) in the toolbar Select the buttons you want to combine by holding the
ctrl key and left-clicking them in the required order. Then,

release the ctrl key, right-click one of the selected but
tons and choose Combine from the context menu.

 Note
If the buttons don't all fit because the preview size in the
UI adaptation editor is too small, you can expand the ed
itor tab by double-clicking it and collapsing the outline
and property panels.

Change the column width of
sap.ui.table.Table ,sap.ui.table.Analytica
lTable, or sap.m.Table.

Choose the column header to select the corresponding
sap.ui.table.Column. Change the Width property as
needed.

Table for retrieving data without using the Go button

Collapse the smart filter bar by default when the app is
launched

For the SmartTable control, set the
enableAutoBinding property to True.

Center-align status columns For sap.m.Table, select a column and set the H Align
property to Center.

For sap.ui.table, click the column header and set the H
Align property to Center.

For vertical alignment of whole responsive table, see Smart
Tables [page 1628].

1860 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Feature Setting

Disable sticky column header and sticky table toolbar By default, the sticky column header and the sticky table
toolbar in the list report are enabled. To disable them,
change the Sticky property value under Table.

Hide a toolbar action for a specific table (if you use multiple
views on list report tables)

Set the visible property to false.

Disable standard system behavior for list report tables (ana
lytical, grid, tree tables): Table should not occupy the entire
space available in the container.

In the Dynamic Page, set the Fit Content property to
false.

Change the layout of the list report table for better readabil
ity in case of a high number of columns.

For sap.m.Table, set the PopinLayout property to
one of the following values:

● Block
● GridSmall
● GridLarge

The default layout is Block.

Adapting the UI: Object Page

Feature Setting

Change the image shape from square to circle Switch to preview mode, navigate to the object page, switch
back to Adapt the UI. Select the object page header and set
the Object Image Shape property to Circle.

Change the avatar shape in the object page dynamic header
from a square to a circle

Switch to preview mode, navigate to the object page, switch
back to Adapt the UI. Select the avatar in the object page
header and set the displayShape property to Circle.

Hide anchor bar Switch to preview mode, navigate to the object page, switch
back to Adapt the UI. Select the object page layout and set
the Show Anchor Bar property to false.

Switch to tabs Switch to preview mode, navigate to the object page, switch
back to Adapt the UI. Select the object page layout and set
the Use Icon Tab Bar property "useIconTabBar" to
true.

Display the Export to Excel button in the table toolbar For SmartTable, set the Use Export to Excel property to
true.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1861

Feature Setting

Show header content in edit mode By default, there is a binding at the showHeaderContent
property of sap.uxap.ObjectPageLayout that the UI
Adaptation editor cannot display. Change this property to
False to get a change file. Then, change the newValue
from false to true.

Alternatively, you can make a binding change if you need to
change the value according to a property or an expression.
For more information, see Creating a Binding Change [page
1864].

Show content parts in the header according to a specific
mode

Ensure that the header content is also displayed in edit/
create mode, as described above. Then, search for the

sap.m.VBox under sap.uxap.ObjectPageLayout

headerContent of the header facet you want to adjust. At
the sap.m.VBox, set a binding change in the Visible property.

See also Creating a Binding Change [page 1864].

Hide the Share button Select the Share button in the header and set the Visible
property to false.

Set widths of mixed content in sections

When placing mixed content, such as forms or tables into
one subsection, you may want to adjust the content blocks
to display a table next to a form, for example.

Select the sap.ui.layout.GridData of the corre
sponding section and set the spans according to your re
quirements.

Don't collapse headers when scrolling down Select the sap.uxap.ObjectPageLayout and set the Always
show content header property to true.

 Note
On tablets and mobile phones, the header collapses au
tomatically.

Show more contact information in the header facet In the outline, choose sap.m.Page content

sap.uxap.ObjectPageLayout headerContent . For each
header facet, an sap.m.VBox is displayed. In the contact
header facet, several sap.m.HBoxes are displayed when
icons and texts or links are available but invisible. Set the
Visible properties of the required items to true.

1862 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Feature Setting

Show paginator buttons (up and down arrows) on first ob
ject page

By default, the paginator buttons for navigating to the previ
ous object page or next object page are not displayed on the
first object page. They are displayed from the second object
page onwards.

From the outline, choose sap.m.Page content

sap.uxap.ObjectPageLayout headerTitle

sap.uxap.ObjectPageHeader navigationBar sap.m.Bar

contentRight sap.m.HBox and set the property Visible to
true.

Set object page tables with non-editable content only to not
editable

 Note
This is relevant for tables with non-editable content only.

By default, object page tables are automatically set to
editable if the object page is in edit mode. This means
that users can only access editable table content when they
navigate through the table using the tab key.

However, in a table with only non-editable content, there is
no tab stop.

Set the editable property of the smart table to false.
The inner table's navigationMode property is set to
Navigation.

Users can then navigate through the entire focusable table
content, and not only through the editable fields.

Enable "Include Item In Selection" for tables.

By setting this property to true, the item selection is dis
played even if a user navigates away from a table.

For the SmartTable control, set the
includeItemInSelection property to True.

Enable the Save and Edit button in non-draft applications.
Users can choose this button to save the current changes.
The object page stays in edit mode so that they can continue
editing.

In the SAPUI5 Visual Editor, go to the object page of your
app. Switch to edit mode and choose the Save and Edit
button from the outline panel. Change the visibility to true. In
the change file that's created, change the new value from
true to {ui>/editable}.

Change the layout of the object table for better readability in
case of a high number of columns.

For sap.m.Table, set the PopinLayout property to
one of the following values:

● Block
● GridSmall
● GridLarge

The default layout is Block.

More Information

For information about adapting the UI in the SAP Web IDE, choose Help Documentation Developing
Developing Web Applications SAPUI5 Visual Editor .

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1863

Creating a Binding Change

You can create property binding changes manually by using the UI Adaptation Editor. Note that you can use
only those properties whose data has already be retrieved by the model.

Context

 Note
This procedure is only relevant for the following use cases described in Adapting the UI: List Report and
Object Page [page 1860]:

● Object page: Show header content in edit mode
● Object page: Show content parts in the header according to a specific mode

Perform the following steps to create a property binding change:

Procedure

1. Open SAP Web IDE and choose the SAPUI5 Visual Editor for your app.
2. Change the property to which you want to apply a property binding, for example, the Visible property of a

button. This is an example of a change file:

 {
 "fileName": "id_1460988346969_256_propertyChange",
 "fileType": "change",
 "changeType": "propertyChange",
 "reference": "STTA_MP.Component",
 "packageName": "$TMP",
 "content": {
 "property": "visible",
 "oldValue": true,
 "newValue": false
 },
 "selector": { "id":
"STTA_MP::sap.suite.ui.generic.template.ObjectPage.view.Details::STTA_C_MP_Pro
duct--
action::STTA_PROD_MAN.STTA_PROD_MAN_Entities::STTA_C_MP_ProductCopywithparams"
,
 "type": "sap.uxap.ObjectPageHeaderActionButton"
 },
 "layer": "VENDOR",
 "texts": {},
 "namespace": "apps/STTA_MP/changes/",
 "creation": "2016-04-18T14:05:47.149Z",
 "originalLanguage": "EN",
 "conditions": {},
 "context": "",
 "support": {
 "generator": "Change.createInitialFileContent",
 "service": "",
 "user": ""
 }

1864 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

}

Make the following replacements in this change:
○ Change the value of the changeType from propertyChange to propertyBindingChange.
○ In the content, replace newValue with newBinding, and its value with your required binding, for

example, {myProperty}. In this example, myProperty contains the values true or false to change
the visibility.
The result looks as follows:

 {
 "fileName": "id_1460988346969_256_propertyChange",
 "fileType": "change",
 "changeType": "propertyBindingChange",
 "reference": "STTA_MP.Component",
 "packageName": "$TMP",
 "content": {
 "property": "visible",
 "oldValue": true,
 "newBinding": "{myProperty}"
 },
 "selector": {
 "id":
"STTA_MP::sap.suite.ui.generic.template.ObjectPage.view.Details::STTA_C_MP_
Product--
action::STTA_PROD_MAN.STTA_PROD_MAN_Entities::STTA_C_MP_ProductCopywithpara
ms",
 "type": "sap.uxap.ObjectPageHeaderActionButton"
 },
 "layer": "VENDOR",
 "texts": {},
 "namespace": "apps/STTA_MP/changes/",
 "creation": "2016-04-18T14:05:47.149Z",
 "originalLanguage": "EN",
 "conditions": {},
 "context": "",
 "support": {
 "generator": "Change.createInitialFileContent",
 "service": "",
 "user": ""
 }
}

 Note
You can also use an expression binding. For example, if you want to inverse your property you can use
newBinding: "{= !${myProperty}}".

The following expressions might be useful:

○ Object Page: Edit mode: {ui>/editable}
○ Object Page: Display mode: {= !${ui>/editable}}
○ Object Page: Create mode: {ui>/createMode}

Indicates whether the UI currently displays an entity that is about to be created (no active version
exists yet).

○ Object Page: Controls enabled: {ui>/enabled}
Indicates whether active UI elements (such as buttons) should currently be enabled.

You can set a binding to an i18n text. To do so, add the i18n model in front of the property. Example:
newBinding: "{i18n>xtol.MoveDown}".

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1865

Worklist

A worklist displays a collection of items that are to be processed by the user.

Working through the item list usually involves reviewing details of the list items and taking action. In most
cases, the user has to either complete or delegate a work item.

The focus of the worklist floorplan is on processing the items. This differs from the list report floorplan, which
focuses on filtering content to create a list.

● Adapting the Application Header [page 1615]
● Smart Tables [page 1628]
● Worklist [page 1866]

Worklist Features That Differ from List Report Features

From a technical perspective, a worklist is a simplified list report. The following aspects differ from the list
report features:

● You create a worklist using SAP WebIDE. In the Template Selection step, choose Worklist as a template. For
more information, see Building an App Using SAP Web IDE [page 1553].

1866 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

● The worklist does not contain a smart filter bar. The search field is available in the table toolbar.
● You can choose an app-specific title by setting the corresponding value for the

subTitleIfVariantMgmtHidden property.
For more information, see Step 2 under Creating a List Report Without Variant Management [page 1639].

● Variant management:
○ By default, variant management is hidden. You can customize the worklist to provide variant

management at table level. To do so, set the variantManagementHidden flag to false in the
manifest.json. You can enable page level variant management by setting smartVariantManagement
to true and the variantManagementHidden flag to false in the manifest.json. Variants can also be
shared.

○ The Execute on Select action is not available.
● Smart table:

○ The multiselect function is enabled for all tables. If there are only line item actions, a no-selection table
is enabled.

○ The Export to Microsoft Excel feature is not available.
○ The default table type is responsive. The table title contains the row count. A fixed layout and growing

using the scrolling function is enabled.
○ The table header menu provides the following options: Sort, filter, group, and column settings.

Worklist Types

In the SAP WebIDE, you generate a simple worklist. You can create a category worklist by defining a view on a
worklist, as described under Defining Multiple Views on a List Report Table - Single Table Mode [page 1649].

Configuring the Worklist

See the user assistance for List Report and Object Page [page 1622] for any worklist configuration options.
Apart from the features listed above, you can also use the options described for the list report, for example:

● Configuring List Report Features [page 1637]
● Configuring Navigation [page 1563]
● Configuring Tables [page 1735]
● Configuring Further Common Features [page 1778]
● Extending List Reports and Object Pages Using App Extensions [page 1799]

For general information about the worklist floorplan, see SAP Fiori Design Guidelines .

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1867

http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2F

Analytical List Page

Analytical List Page (ALP) is an SAP Fiori elements application for detailed analytics.

ALP lets you analyze data from different perspectives, investigate a root cause, and to act on transactional
content. You can identify relevant areas within data sets or significant single instances using data visualization
and business intelligence. All this can be done seamlessly within one page.

The combination of transactional and analytical data using chart and table visualization lets you quickly view
the data you need. This hybrid view allows an interesting interplay between the chart and table representations.

Configure ALP to include the following use cases seamlessly on one page:

● Related KPIs (key performance indicators) on the header area as KPI tags. These KPI tags also allow
progressive disclosure and navigation through KPI cards.

● Filter data sets used for the main content area with different filter modes. For example, visual filters provide
an intuitive way of choosing filter values from an associated measure value.

● Seamless navigation to applications from the content area and the KPI card area.
● Customizing and sharing ALP as a page variant with other users.

● Visual Filter Setup [page 1885]
● Chart-Only View [page 1910]
● Table-Only View [page 1902]
● Managing Variants [page 1616]
● Creating Key Performance Indicator Tags [page 1873]
● Choosing Filter Modes [page 1880]
● Configuring the Content Area [page 1901]

1868 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

More Information

For more information about the analytical list page plugin, see Building an App Using SAP Web IDE [page 1553].

Related Information

Descriptor Configuration [page 1869]
Configuring the Title Area [page 1872]
Configuring the Filter Area [page 1881]
Configuring the Content Area [page 1901]
Configuring Analytical List Page App Extensions [page 1915]

Descriptor Configuration

The descriptor file (manifest.json) is an application configuration file that contains valid entries for initializing
the analytical list page (ALP).

Generic App Configuration

 Note
Analytical List Page (ALP) works only for analytical.

 Sample Code

{ <EntityType Name="SEPMRA_C_ALP_SlsOrdItemCubeALPResult"
sap:semantics="aggregate" sap:label="Sales Analysis" sap:value-list="true"
sap:content-version="1">
 <Key>

<PropertyRef Name="ID"/>
 </Key>
 <Property
Name="ID" Type="Edm.String" Nullable="false" sap:sortable="false"
sap:filterable="false"/>
 <Property
Name="SalesOrder" Type="Edm.String" MaxLength="10" sap:aggregation-
role="dimension" sap:display-format="UpperCase" sap:label="Sales Order"
sap:quickinfo="Sales Order ID" sap:creatable="false"
sap:updatable="false"/>
 <Property
Name="SalesOrderItem" Type="Edm.String" MaxLength="10" sap:aggregation-
role="dimension" sap:display-format="UpperCase" sap:label="Sales Order
Item" sap:quickinfo="Sales Order Item ID"/>
 .
 .
</EntityType>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1869

 }

The following code sample provides the descriptor configuration with the default values relevant for the ALP.

"sap.ui.generic.app": { "_version": "1.2.0",
 "settings":{
 "flexibleColumnLayout":{
 "defaultTwoColumnLayoutType":"TwoColumnsBeginExpanded"
 }
 },
 "pages": [{ // This can have multiple page definitions within it. ALP currently
only consumes the first page.
 "entitySet": "SEPMRA_C_ALP_SlsOrdItemCube",
/* Represents the entity set that is used to populate the main content area.
For parametrized entity set, use result entity set name instead of parametrized
entity set. */
 "component": {
 "name": "sap.suite.ui.generic.template.AnalyticalListPage", // Should not be
changed.
 "list":true,
 "settings": {
 "tableSettings": {
 "type": "GridTable or AnalyticalTable or ResponsiveTable",
/*Use these settings to select a table in ALP. Supports three table types:
"AnalyticalTable", "GridTable" & "ResponsiveTable".
By default, ALP determines the table type when undefined or if there is an
incorrect value.
Note: Do not set "tableType" to "AnalyticalTable" if the underlying service for
the main entity set
is not an aggregate service.*/
 "multiSelect": true,
/* When true, multiple records in the tabular display can be
selected. This setting takes effect only if the service has
defined Actions in annotation or inside ControllerExtension.
Else, the selection is always single.*/
 "selectAll": true
/*Use this setting to select all the rows that are available in the back end
with the current filters.
It triggers only one batch call to select all the records.*/
 "selectionLimit": 20
/*You can only select 20 rows at a time while selecting a range of rows in the
table.
If selectionLimit is not provided, then a default value of 200 is set to
selectionLimit.
Note: Select all and selection limit are applicable only for GridTable and
AnalyticalTable*/
}
 "qualifier": "DefaultPresentationVariant"
/* Represents the SelectionPresentationVariant qualifier.
ALP looks for SelectionPresentationVariant with this qualifier
and if not found, it looks for PresentationVariant with this qualifier.
This setting is optional, if this is not provided ALP looks for
Default LineItem and Chart without qualifiers. */
 "condensedTableLayout": true, // When set to false, compact style will be
used to render the table.
 "smartVariantManagement": true, // When false, control level variant
management is used instead of page level variant management
 "defaultContentView": "charttable", // Determines the visualization of
content area. Possible other values: chart or table.
 "defaultFilterMode": "visual", // Determines the filter mode that is
used. Possible other value: compact
 "showGoButtonOnFilterBar": false, // Go button is displayed for compact
filters when this is set to true
 "contentTitle": "{{contentAreaTitle}}", //Lets you define title for the
content area. Ensure that the contentAreaTitle is also defined in i18n.properties

1870 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 "autoHide":false,
 "filterDefaultsFromSelectionVariant":false, //Lets you to add default
values for FilterBar using SelectionVariant annotation.
 "condensedTableLayout":false,
 "keyPerformanceIndicators": { // The first 3 KPIs listed here show up in
the KPI tags
 "KPIRevenue": { // First KPI
 "model": "kpi",
/* Links to the item in "models" section which provides additional information,
for example, the data source for the KPI from which we could further obtain the
data source and annotation corresponding to this KPI. This property must not be
empty. */
 "entitySet": "SEPMRA_C_ALP_TotalSalesKPI", // Entity set used
for bringing up the details displayed within the KPI tag/card.
 "qualifier": "KPIRevenue",
/* Refers to the UI.KPI annotation. */
 "detailNavigation": "OverviewPage",
/* Points to an element within "outbounds" property of the
"crossNavigation" section. The details there help us in determining
the target application as well as the parameters that need to be passed
upon navigation from the KPI card footer. */
 "groupId": "mainKpiGroup" /* To achieve faster end-to-end response time within analytical list page, enable batching of KPIs by defining groupId in the KPI section of the descriptor
configuration file. You can determine which KPIs should be grouped together in a
given batch call.
Note: -> The KPIs with same data source are batched together. KPIs with same groupId and different data source triggers different batch calls. -> Batching of KPIs may increase the number of batch calls to the back end. */
 }
 } // End of KPIs
 } // End of settings
 },
 "pages": [{ //ALP does an inner app navigation to the smart template specified
below
 "entitySet": "SEPMRA_C_ALP_SlsOrdItemCube",
 "component": {
 "name": "<
<sap.suite.ui.generic.template.ObjectPage>>"
 }
 "navigation": { //Optional (If specified ALP navigates to the target
Application specified below through external app navigation)
 "display": {
 "path": "sap.apps.crossNavigation.outbounds",
 "target": "<

 <NavigateToCTRItem>>"
 }
 }
 }]
}] // End of outer pages }

Related Information

Analytical List Page [page 1868]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1871

Configuring the Title Area

The dynamic area of the analytical list page is the title area.

In the header area, you can view information related to the Key Performance Indicator (KPI) or choose any of
the following built-in SAP Fiori elements features to:

● Define or manage page variants
● Choose filter modes (compact or visual)
● Customize the filter area
● Share the analytical list page

UI.KPI Annotation

Use the UI.KPI annotation to display KPIs on your analytical list page application. Define the descriptor
configuration file with a qualifier and map it to the UI.KPI annotation. If this annotation is not configured, then
the UI.SelectionPresentationVariant annotation with the same qualifier name takes effect.

We recommended using a single SAP-wide KPI gallery based on the KPIs generated by standard SAP KPI
creation tools, such as the SAP Smart Business framework.

 Sample Code
Descriptor setting

"KPIQuantity": { "model": "kpi",
 "entitySet": "SEPMRA_C_ALP_SlsOrdItemCubeALPResults",
 "qualifier": "KPIQuantity
}

To enable navigation for a KPI card, you need to define the semantic object, action, and KPI ID in the UI.KPI
annotation. The KPI ID is passed to the target application as the EvaluationId for launching the smart
business application.

Related Information

Analytical List Page [page 1868]
Managing Variants [page 1616]
Creating Key Performance Indicator Tags [page 1873]
Choosing Filter Modes [page 1880]

1872 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Creating Key Performance Indicator Tags

The key performance indicator (KPI) tag is an abbreviated and clickable title with a KPI value.

Each KPI can have its own OData source, entity set, and annotation file. The KPI value changes if an action is
executed on the transactional content. For example, releasing sales orders affects a related KPI and posting an
accounting document affects certain financial KPIs.

● [page 1873]
● [page 1874]
● [page 1874]
● [page 1874]
● [page 1875]
● [page 1875]

Hover over each action for a description. Click the action for more information.

Descriptor Settings: KPI configuration
Property: keyPerformanceIndicators

Use the UI.KPI annotation to display KPIs on your analytical list page application (title area or below filter bar
depending on the value of the filterable). Define the descriptor configuration file with a qualifier and map it
to the UI.KPI annotation. If this annotation is not configured, then the UI.SelectionPresentationVariant
annotation with the same qualifier name takes effect.

We recommend using a single SAP-wide KPI gallery based on the KPIs generated by standard SAP KPI creation
tools, such as the SAP Smart Business framework.

Configuration Sample:

"sap.ui.generic.app":{ "pages":[
 {
 "entitySet":"SEPMRA_C_ALP_SlsOrdItemCube",
 "component":{
 "name":"sap.suite.ui.generic.template.AnalyticalListPage",
 "list":true,

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1873

 "settings":{
 "keyPerformanceIndicators":{
 "KPIRevenue":{
 "model":"kpi",
 "entitySet":"SEPMRA_C_ALP_TotalSalesKPI",
 "qualifier":"KPIQuantity",
 "detailNavigation":"EPMProduct"
 }
 }
 } },

Annotation: UI.KPI annotation with the qualifier KPIQuantity

<Annotation Term="UI.KPI" Qualifier="KPIQuantity"> <Record>
 <PropertyValue Property="DataPoint" Path="@UI.DataPoint#DPForQuantity" />
 <PropertyValue Property="SelectionVariant"
Path="@UI.SelectionVariant#SVForQuantity" />
 <PropertyValue Property="ID" String="ActualCostByGLAccountNameKPI" />
 <PropertyValue Property="Detail">
 <Record Type="UI.KPIDetailType">
 <PropertyValue Property="SemanticObject" String="EPMProduct" />
 <PropertyValue Property="Action" String="manage_stta" />
 <PropertyValue Property="DefaultPresentationVariant"
Path="@UI.PresentationVariant#PVForQuantity" />
 </Record>
 </PropertyValue>
 </Record> </Annotation>

To enable navigation for a KPI card, you need to define the semantic object, action, and KPI ID in the UI.KPI
annotation. The KPI ID is passed to the target application as an EvaluationId for launching the SAP Smart
Business application.

Annotation: KPIDetailType

<PropertyValue Property="Detail"> <Record Type="UI.KPIDetailType">
 <PropertyValue Property="SemanticObject" String="EPMProduct" />
 <PropertyValue Property="Action" String="manage_stta" />
 <PropertyValue Property="DefaultPresentationVariant"
Path="@UI.PresentationVariant#PVForQuantity" />
 </Record> </PropertyValue>

Annotation: DataPoint

 Sample Code
DataPoint annotation with the qualifier DPForQuantity

<Annotation Term="com.sap.vocabularies.UI.v1.DataPoint"
Qualifier="DPForQuantity"> <Record Type="com.sap.vocabularies.UI.v1.DataPointType">
 <PropertyValue Property="Title" String="Quantity by Customer Company
Name" />
 <PropertyValue Property="Description" String="About
NumberOfSalesOrders" />
 <PropertyValue Property="Value" Path="Quantity" />
 <PropertyValue Property="Criticality"
EnumMember="com.sap.vocabularies.UI.v1.CriticalityType/Neutral" />
 </Record>

1874 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

</Annotation>

Annotation: SelectionVariant with the qualifier SVForQuantity

Description: Configure this annotation for filters and parameters to provide default values for the
corresponding filter fields. This overrides the default values from the Common.FilterDefaultValue
annotation. You get the filters from the SelectionVariant.SelectOptions and the parameters from the
SelectionVariant.Parameters.

<Annotation Term="UI.SelectionVariant" Qualifier="SVForQuantity"> <Record>
 <PropertyValue Property="Parameters">
 <Collection>
 <Record Type="UI.Parameter">
 <PropertyValue Property="PropertyName"
PropertyPath="CompanyCurrency" />
 <PropertyValue Property="PropertyValue" String="EUR" />
 </Record>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="SelectOptions">
 <Collection>
 <Record Type="UI.SelectOptionType">
 <PropertyValue Property="PropertyName"
PropertyPath="MainProductCategory" />
 <PropertyValue Property="Ranges">
 <Collection>
 <Record Type="UI.SelectionRangeType">
 <PropertyValue EnumMember="UI.SelectionRangeSignType/I"
Property="Sign" />
 <PropertyValue EnumMember="UI.SelectionRangeOptionType/
EQ" Property="Option" />
 <PropertyValue Property="Low" String="Computer
Systems" />
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
 </Collection>
 </PropertyValue>
 </Record> </Annotation>

Annotation: PresentationVariant annotation with the qualifier PVForQuantity

<Annotation Term="com.sap.vocabularies.UI.v1.PresentationVariant"
Qualifier="PVForQuantity"> <Record>
 <PropertyValue Property="SortOrder">
 <Collection>
 <Record Type="Common.SortOrderType">
 <PropertyValue Property="Property" PropertyPath="Quantity" />
 <PropertyValue Property="Descending" Bool="true" />
 </Record>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="Visualizations">
 <Collection>
 <AnnotationPath>@com.sap.vocabularies.UI.v1.Chart#QuantityChart</
AnnotationPath>
 </Collection>
 </PropertyValue>
 </Record>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1875

</Annotation>

 Sample Code
Chart annotation with the qualifier QuantityChart

<Annotation Term="com.sap.vocabularies.UI.v1.Chart" Qualifier="QuantityChart"> <Record>
 <PropertyValue Property="Title" String="NumberOfSalesOrders" />
 <PropertyValue Property="MeasureAttributes">
 <Collection>
 <Record
Type="com.sap.vocabularies.UI.v1.ChartMeasureAttributeType">
 <PropertyValue Property="Measure" PropertyPath="Quantity" />
 <PropertyValue Property="Role"
EnumMember="com.sap.vocabularies.UI.v1.ChartMeasureRoleType/Axis1" />
 </Record>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="DimensionAttributes">
 <Collection>
 <Record
Type="com.sap.vocabularies.UI.v1.ChartDimensionAttributeType">
 <PropertyValue Property="Dimension"
PropertyPath="SoldToPartyCompanyName" />
 <PropertyValue Property="Role"
EnumMember="com.sap.vocabularies.UI.v1.ChartDimensionRoleType/Category" />
 </Record>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="ChartType" EnumMember="UI.ChartType/Bar" />
 <PropertyValue Property="Description" String="NumberOfSalesOrders by
Customer Company Name" />
 </Record>
</Annotation> C

KPI Titles

The abbreviation of the KPI title is based on this logic:

If a KPI name is Abbreviation is based on Example

One word First three letters KPI Name: TargetMargin

KPI Title: TAR

Two words First letter of each word KPI Name: Actual Cost

KPI Title: AC

Three words or more First letter of first three words KPI Name: Actual Margin Relative

KPI Title: AMR

 Note
The KPI name is taken from the Title property of the DataPoint annotation.

1876 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

KPI Value and Color

Use the UI.KPI annotation to render KPI values and to determine the KPI's color. This annotation is associated
with the SelectionVariant and DefaultPresentationVariant.

The first DataPoint visualization element in the PresentationVariant renders the KPI value and
determines the KPI's color. If a KPI is percent-based, then the “%” sign appears along with the KPI value.

 Note
Click the KPI title or value to view more details on a KPI card.

The color of the KPI value depends on the threshold values. To define the threshold values, use these properties
in the DataPoint annotation:

● CriticalityCalculation: Allows you to hard code values or to include the value from a property path
● Criticality: Allows complex back-end logic to specify the criticality values

 Note
If you use both properties in the annotation, then the criticality value overrides the
CriticalityCalculation value.

The color logic depends on the measure type. You can choose a maximizing measure, minimizing measure, or
range-based measure types based on the "ImprovementDirection" value of the measure.

● Target Measure: Hover over each item to view the conditions.

● Creating Key Performance Indicator Tags [page 1873]
● Creating Key Performance Indicator Tags [page 1873]
● Creating Key Performance Indicator Tags [page 1873]
● Creating Key Performance Indicator Tags [page 1873]
● Creating Key Performance Indicator Tags [page 1873]

● Maximizing Measure: Hover over each item to view the conditions.

● Creating Key Performance Indicator Tags [page 1873]
● Creating Key Performance Indicator Tags [page 1873]
● Creating Key Performance Indicator Tags [page 1873]

● Minimizing Measure: Hover over each item to view the conditions.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1877

● Creating Key Performance Indicator Tags [page 1873]
● Creating Key Performance Indicator Tags [page 1873]
● Creating Key Performance Indicator Tags [page 1873]

If the threshold values are insufficient or incorrect, the ALP chooses the closest color match for a KPI value. For
example, if a target KPI has the DataPoint.Value aggregate <
ThresholdValues.ToleranceRangeLowValue and does not have a value for
ThresholdValues.DeviationRangeLowValue, then the KPI value has the color for critical.

 Note
The criticality indicator line in a KPI tag also takes the same color as the KPI value.

Scale, Decimal Precision and Number Formatting

The SAPUI5 formatter returns the scale factor and decimal factor for a KPI value.

The NumberOfFractionalDigits information can be provided in com.sap.vocabularies.UI.v1.DataPoint [page
2010] term, using the ValueFormat property. The NumberOfFractionalDigits property is used to determine the
number of fraction digits. These are the rules:

● Decimals are not shown by default.
● You can specify 1 or 2 decimal places by using the NumberOfFractionalDigits property in Annotations. If a

value higher than 2 is provided, it is considered in addition to 2.

In the following example, the price property number of fractions digit value provided in the OData metadata - 3
is overridden with the value 1 as provided in the com.sap.vocabularies.UI.v1.DataPoint [page 2010] ValueFormat
property

 Sample Code

<Annotation Term="com.sap.vocabularies.UI.v1.DataPoint" Qualifier="Price"> <Record Type="com.sap.vocabularies.UI.v1.DataPointType">
 <PropertyValue Property="Value" Path="Price"/>
 <PropertyValue Property="ValueFormat">
 <Record Type="com.sap.vocabularies.UI.v1.NumberFormat">
 <PropertyValue Property="NumberOfFractionalDigits" int="1"/>
 </Record>
 </PropertyValue>
 </Record>
</Annotation>

1878 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Display KPI Tags with Units of Measure

The global and filterable KPIs in the ALP can now display KPI values with a Unit of Measure. For example, to
add a Unit of Measure, define a path or string value directly.

 Sample Code

<Annotations Target="CZ_PROJECTKPIS_CDS.CZ_PROJECTKPISType/ActualCost"> <Annotation Term="Org.OData.Measures.V1.ISOCurrency"
Path="CompanyCodeCurrency"/>
</Annotations>
<Annotations Target="CZ_PROJECTKPIS_CDS.CZ_PROJECTKPISType/TargetMargin">
 <Annotation Term="Org.OData.Measures.V1.ISOCurrency" String="EUR"/>
</Annotations>
<Annotations Target="CZ_PROJECTKPIS_CDS.CZ_PROJECTKPISType/
ActualMarginRelative">
 <Annotation Term="Org.OData.Measures.V1.Unit" String="%"/>
</Annotations>
<Annotations Target="CZ_PROJECTKPIS_CDS.CZ_PROJECTKPISType/NetWeight">
 <Annotation Term="Org.OData.Measures.V1.Unit" Path="WeightUnit"/> </Annotations>

You can override a unit of measure that comes from the back end. For example, the following annotation
configuration overrides the unit of measure from the back end and changes it to a percentage-based unit of
measure.

<Annotations Target="CZ_PROJECTKPIS_CDS.CZ_PROJECTKPISType/ActualCost"> <Annotation Term="Org.OData.Measures.V1.Unit" String="%"/>
</Annotations>

Filterable KPI

The filterable KPIs react to filter bar changes when there is an exact match between the technical name,
modified filter, and parameter field in the filter bar and in the KPI's entity set.

 Note
● If the default filter values specified in the SelectionVariant annotation are also part of the filter bar

fields, then the filter bar values override the SelectionVariant annotation default values. Otherwise
they are applied in addition to the filter bar values.

● The ALP ignores the UI.Hidden fields on filter selection for filterable KPIs, if the filter field coming
from filter bar is marked as UI.Hidden in the KPI entity set.

To ensure that KPIs show up as filterable, set “filterable”=true in the app's descriptor file.

Configuration Sample:

"sap.ui.generic.app":{ "pages":[
 {
 "entitySet":"SEPMRA_C_ALP_SlsOrdItemCube",
 "component":{
 "name":"sap.suite.ui.generic.template.AnalyticalListPage",
 "list":true,

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1879

 "settings":{
 "keyPerformanceIndicators":{
 "KPIRevenue":{
 "model":"kpi",
 "entitySet":"SEPMRA_C_ALP_TotalSalesKPI",
 "qualifier":"KPIRevenue",
 "filterable":true,
 "detailNavigation":"OverviewPage"
 }
 }
 } },

Semantic coloring for Filterable KPI

If CriticalityCalculation is defined in the annotations, filterable KPIs are updated based on a change to
the filter or parameter. If the values come from a path, then criticality indicators change based on the KPI value.

 Note
Only path-based is supported for filterable KPIs and semantic coloring depends on the changes to the filter
bar.

Related Information

Configuring the Title Area [page 1872]
Managing Variants [page 1616]

Choosing Filter Modes

ALP offers compact and visual filter modes. You can choose to set filters from both modes.

 Note
Based on the annotation configuration, filter dimensions show up in either of the filter modes, or on both
the filter modes. However, a filter field on the visual filter always shows up in compact filter mode.

Filter Bar Customization

You can customize filter fields or charts that show up on the filter bar. Use the Adapt Filters (<number>) option
in the header area to customize both filter modes. The filter fields in the

● Compact filter configuration dialog box are the fields in the entity set that have sap:filterable=”true”
in their metadata. Select the filter fields that you want to use on the filter bar.

● Visual filter configuration dialog box are the fields in the entity set that have sap:filterable=”true” in
their metadata. The fields need to have a ValueList annotation with a valid presentation variant qualifier.

1880 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

In the visual filter mode, you can change the chart type, sort order, and measure according to your needs.
Visual filter supports three basic chart types (bar, donut, and line). When you select a chart filter, the other
chart filters are refreshed to provide the appropriate fields. In some cases, some of the filters selected may no
longer be visible in the chart area. If this is the case, choose the Value help or Selected icon, to view all of the
visual filter conditions that have been set.

 Note
The filter selection count depends on the number of fields you select and is not based on the individual field
values set within the field. The count also includes filters set from the filter dialog that are not seen on the
filter bar.

Filter Modes

Analytical List Page lets you toggle between the visual filter and compact filter, even while filter conditions are
applied. When you toggle, ALP ensures that the filter values in one mode sync with those in the other mode.
However,

● Filter selection in fields without visual filter configuration are seen only in compact filters.
● Parameters do not show up in visual filters.

Despite the prior conditions, all selections in the compact filter are included for the main content area, even
when visual filters are used.

Related Information

Configuring the Title Area [page 1872]
Managing Variants [page 1616]
Defining ValueList Annotation [page 1896]

Configuring the Filter Area

The section following the title area is the filter area. Set up filters to get the serach results you want in the main
content area.

You can use either a compact filter or a visual filter to perform the search operation (when sap:filterable=true).
To make sure the selection filter with incoming values, pass the filter context through the navigation context.

You can also configure default filter values by defining the Common.FilterDefaultValue annotation for a
property type.

 Note
The default filter values from the Common.FilterDefaultValue property are overwritten by the variant
management or navigation context in the specified order.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1881

 Sample Code
Default filter value configuration annotation sample

 <Annotations Target="SEPMRA_SO_ANA.SEPMRA_C_ALP_SlsOrdItemCubeType/
DeliveryCalendarYear">
 <Annotation Term="Common.FilterDefaultValue" String="2018" />
</Annotations>

The filter dimensions shown in the filter dialog can belong to any of the following groups:

Basic Group

All filter dimensions listed within the SelectionField annotation property belong to the this filter group. In
addition, all mandatory filters, parameters, and data fields marked with the FieldGroup annotation with
qualifier _BASIC are included in this group.

Field Group

Filter dimensions listed under a FieldGroup annotation property but not listed within the SelectionField
annotation property belong to this filter group. For example, a new group with name <EntityTypeName> is
created. If there are multiple entityTypes, multiple entityTypeName groups are created.

This kind of filter dimension is a part of the filter dialog but does not show up in the filter bar unless it is
explicitly added by means of a filter dialog or is part of a chosen variant.

Entity Type Name Group

Filter dimensions that are not part of the SelectionField or do not have FieldGroup annotation properties
belong to this filter group. This kind of filter dimension is part of the filter dialog but does not show up in the
filter bar unless it is explicitly added by means of a filter dialog or is part of a chosen variant.

 <Annotation Term="UI.FieldGroup" Qualifier="Group Name">
 <Record>
 <PropertyValue Property="Data">
 <Collection>
 <Record Type="UI.DataField">
 <PropertyValue Property="Value" Path="Property Name"/>
 </Record>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="Label" String="Group Name"/>
 </Record> </Annotation>

Go Button

The Go button appears in the ALP filter area. Use this button to refresh or load the main content area. By
default, the Go button is disabled. To enable the Go button, set "showGoButtonOnFilterBar": true in the
descriptor file sap.ui.generic.app settings property.

If you enable the Go button and modify the filter selection, the main content area is not refreshed until you
choose Go.

"sap.ui.generic.app": {

1882 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 "_version": "1.1.0",
 "pages": [{
 "entitySet": "SEPMRA_C_ALP_SlsOrdItemCube",
 "component": {
 "name": "sap.suite.ui.generic.template.AnalyticalListPage",
 "list": true,
 "settings": {
 "showGoButtonOnFilterBar": true,
 }
 }
 }] }

Default Values in Filter Bar

The new filterDefaultsFromSelectionVariant app descriptor setting, lets you to add default values for
FilterBar using SelectionVariant annotation.

 Sample Code

<Annotation Term="UI.SelectionVariant" Qualifier="Default"> <Record>
 <PropertyValue Property="Parameters">
 <Collection>
 <Record Type="UI.Parameter">
 <PropertyValue Property="PropertyName"
PropertyPath="P_CompanyCode" />
 <PropertyValue Property="PropertyValue" String="EASI" />
 </Record>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="SelectOptions">
 <Collection>
 <Record Type="UI.SelectOptionType">
 <PropertyValue Property="PropertyName"
PropertyPath="Customer"/>
 <PropertyValue Property="Ranges">
 <Collection>
 <Record Type="UI.SelectionRangeType">
 <PropertyValue
EnumMember="UI.SelectionRangeSignType/I" Property="Sign"/>
 <PropertyValue
EnumMember="UI.SelectionRangeOptionType/EQ" Property="Option"/>
 <PropertyValue Property="Low" String="ABC"/>
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
</Annotation>

 Note
● The default values coming from the SelectionVariant:

○ Override the default values specified by the Common.FilterDefaultValue.
○ Are considered on application load for standard variant. The default values do not persist if you

switch to another variant and return to the standard variant.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1883

● SAP Fiori launch pad default values overrides the SelectionVariant default values.

Related Information

Analytical List Page [page 1868]
Compact Filter Setup [page 1884]
Visual Filter Setup [page 1885]
Defining ValueList Annotation [page 1896]

Compact Filter Setup

Lets you specify filter field values based on the configuration in the sap:filter-restriction of the
respective field in the entity set.

In addition to the fields configured in the SelectionFields annotation, compact filters also display the
mandatory parameters and filters you need to query the entity set. You can explicitly add the additional filter
fields listed in the filter configuration dialog to the filter area, if needed.

The ValueList annotation handles the dependency of filter values based on the selection of filter values in
other filter fields.

 Note
To enable value help in compact filters, you have to define at least one ValueList annotation configuration
without the PresentationVariantQualifier property.

The AND operator groups multiple filter field selections and the OR operator groups multiple selections within
the same field.

Annotation for Filter Field Selection

Annotation: UI.SelectionFields

</Annotation> <Annotation Term="UI.SelectionFields">
 <Collection>
 <PropertyPath>DeliveryCalendarYear</PropertyPath>
 <PropertyPath>SoldToParty</PropertyPath>
 <PropertyPath>Product</PropertyPath>
 <PropertyPath>MainProductCategory</PropertyPath>
 <PropertyPath>DeliveryCalendarQuarter</PropertyPath>
 </Collection> </Annotation>

1884 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Related Information

Configuring the Filter Area [page 1881]
Defining ValueList Annotation [page 1896]

Visual Filter Setup

An intuitive way of choosing filter values from an associated measure value.This setup supports line, bar, and
donut charts.

SelectionFields annotation for which a visual filter is defined.

 Note
The ALP ignores the UI.Hidden fields when you select filters if the IN mapping points to a field marked
with UI.Hidden in the valuelist entity set. For example, the Status_ID from the main entity set points to
StatusCode in the value help entity set (of the visual filter). If the StatusCode is marked as UI.Hidden,
then the incoming value is ignored.

Configuring the sap:value-list=fixed-values property in the annotation.xml file lets you display
visual filter values in a dropdown list. This allows users to select or deselect values that are not displayed in the
chart. If the dropdown list is enabled, ensure that the records available in the collection path entity set of the
visual filter and compact filter are the same for a smooth sync between the visual filter and the compact filter.

The visual filter includes only the first measure and dimension from the first chart annotation within the
specified PresentationVariantQualifier. Make sure that the dimension you specify in the chart and the
ValueListProperty of the OUT parameter is the same. You can also define a SortOrder property in the
PresentationVariant annotation to control the sort order based on a sort field.

 Note
Sorting in visual filters is based on this logic:

● For bar and donut chart types, sorting is always based on the measure displayed (the default is
descending order). To change the sort order property, define the SortOrder property in the
PresentationVariant annotation.

● For line charts with time-based dimensions, sorting is always based on the dimension displayed in
ascending order, however, only the last six time periods are displayed.
The sorting by the annotation is ignored for time-based dimensions for line-charts in the visual filter.

● For line charts with non time-based dimensions, sorting is always based on the dimension (the default
is ascending order). To change the sort order, define the SortOrder property in the
PresentationVariant annotation.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1885

● #unique_775/unique_775_Connect_42_subsection-im1 [page 1886]
● #unique_775/unique_775_Connect_42_subsection-im2 [page 1887]
● #unique_775/unique_775_Connect_42_subsection-im3 [page 1887]
● #unique_775/unique_775_Connect_42_subsection-im4 [page 1889]
● #unique_775/unique_775_Connect_42_subsection-im5 [page 1889]

Hover over each action for a description. Click the action for more information.

ValueList Annotation

This is an example of a code snippet for a value list annotation. You use it to configure visual filters. For more
information, see Defining ValueList Annotations.

 Sample Code
ValueList Annotation Sample

<Annotations xmlns="http://docs.oasis-open.org/odata/ns/edm"
Target="SEPMRA_ALP_SO_ANA_SRV.SEPMRA_C_ALP_SlsOrdItemCubeALPResult/
SalesOrderOverallStatus"> <Annotation Term="Common.ValueList" Qualifier="VisualFilter">
 <Record>
 <PropertyValue Property="Label" String="Overall Status" />
 <PropertyValue Property="CollectionPath"
String="SEPMRA_C_ALP_SlsOrdItemCubeALPResults" />
 <PropertyValue Property="SearchSupported" Bool="false" />
 <PropertyValue Property="PresentationVariantQualifier"
String="FilterNumberOfSalesOrdersByStatus" />
 <PropertyValue Property="SelectionVariantQualifier"
String="SVForStatus" />
 <PropertyValue Property="Parameters">
 <Collection>
 <Record Type="Common.ValueListParameterInOut">

1886 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 <PropertyValue Property="LocalDataProperty"
PropertyPath="SalesOrderOverallStatus" />
 <PropertyValue Property="ValueListProperty"
String="SalesOrderOverallStatus" />
 </Record>
 <Record Type="Common.ValueListParameterInOut">
 <PropertyValue Property="LocalDataProperty"
PropertyPath="MainProductCategory" />
 <PropertyValue Property="ValueListProperty"
String="MainProductCategory" />
 </Record>
 <Record Type="Common.ValueListParameterInOut">
 <PropertyValue Property="LocalDataProperty"
PropertyPath="ProductCategory" />
 <PropertyValue Property="ValueListProperty"
String="ProductCategory" />
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
 </Annotation> </Annotations>

 Note
See the Defining ValueList Annotations section for information about the IN/OUT mapping of visual
filters.

PresentationVariantQualifier
The PresentationVariant qualifier provides chart definitions for visual filters. The visual filter picks up the
first chart annotation in the PresentationVariant annotation to render the chart. If the chart type is not
supported, the ALP renders a bar chart (default chart type).

<Annotation Term="UI.PresentationVariant"
Qualifier="FilterNumberOfSalesOrdersByStatus"> <Record>
 <PropertyValue Property="Text" String="Filter: Number of Sales Order by
Status" />
 <PropertyValue Property="SortOrder">
 <Collection>
 <Record Type="Common.SortOrderType">
 <PropertyValue Property="Property"
PropertyPath="NumberOfSalesOrders" />
 <PropertyValue Property="Descending" Bool="true" />
 </Record>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="Visualizations">
 <Collection>
 <AnnotationPath>@UI.Chart#FilterNumberOfSalesOrdersByStatus</
AnnotationPath>
 </Collection>
 </PropertyValue>
 </Record> </Annotation>

Chart Annotation

<Annotation Term="UI.Chart" Qualifier="FilterNumberOfSalesOrdersByStatus"> <Record Type="UI.ChartDefinitionType">
 <PropertyValue Property="Title" String="Sales Orders by Status" />

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1887

 <PropertyValue Property="Description" String="Number of Sales Orders by
Status" />
 <PropertyValue Property="ChartType" EnumMember="UI.ChartType/Donut" />
 <PropertyValue Property="Dimensions">
 <Collection>
 <PropertyPath>SalesOrderOverallStatus</PropertyPath>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="DimensionAttributes">
 <Collection>
 <Record Type="UI.ChartDimensionAttributeType">
 <PropertyValue Property="Dimension"
PropertyPath="SalesOrderOverallStatus" />
 <PropertyValue Property="Role"
EnumMember="UI.ChartDimensionRoleType/Category" />
 </Record>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="Measures">
 <Collection>
 <PropertyPath>NumberOfSalesOrders</PropertyPath>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="MeasureAttributes">
 <Collection>
 <Record Type="UI.ChartMeasureAttributeType">
 <PropertyValue Property="Measure"
PropertyPath="NumberOfSalesOrders" />
 <PropertyValue Property="Role"
EnumMember="UI.ChartMeasureRoleType/Axis1" />
 <PropertyValue Property="DataPoint"
AnnotationPath="@UI.DataPoint#NumberOfSalesOrders" />
 </Record>
 </Collection>
 </PropertyValue>
 </Record> </Annotation>

Chart Type

You can select chart data points and segments in a chart. These selections influence the other chart filters
depending on the configuration of the value list annotation.

The Chart Type… Displays…

Bar Top or bottom three records

Line First or last six data points

Donut Top or bottom two records

You can enable the visual filter (donut chart type) to display an overlay message if there are measures with
negative values. Set the Analytics.AccumulativeMeasure annotation to false as shown in the example.
By default, the value of the Analytics.AccumulativeMeasure annotation is true.

<Annotations Target="SEPMRA_ALP_SO_ANA_SRV.Z_SEPMRA_C_ALP_QUARTERVHType/
DifferenceAmount"> <Annotation Term="Analytics.Measure" Bool="true" />
 <Annotation Term="Analytics.AccumulativeMeasure" Bool="false" />
</Annotations>

Chart Title

1888 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

ALP displays chart titles in the following order: <Measure Name> by <Dimension Name> in <Scale factor>
<UoM>

● <Measure Name> indicates the measure associated with the chart. Use sap:label()
● <Dimension Name> indicates the dimension associated with the chart. Use sap:label()
● <Scale Factor> indicates the scale as specified using the ScaleFactor property of the DataPoint

annotation associated with the measure displayed in the chart.

 Note
The scale factor in the chart and chart title are of the same scale.

Annotation: SelectionFields
Define the SelectionFields annotation for sorting the order of the fields displayed in the visual filters. If
there are any mandatory filter fields that are not specified in the SelectionFields, then these fields appear
first, followed by the other entries in the SelectionFields.

<Annotation Term="UI.SelectionFields"> <Collection>
 <PropertyPath>DeliveryCalendarYear</PropertyPath>
 <PropertyPath>SoldToParty</PropertyPath>
 <PropertyPath>Product</PropertyPath>
 <PropertyPath>MainProductCategory</PropertyPath>
 <PropertyPath>DeliveryCalendarQuarter</PropertyPath>
 </Collection> </Annotation>

Annotation: SelectionVariant

<Annotation Term="UI.SelectionVariant" Qualifier="SVForStatus"> <Record>
 <PropertyValue Property="Parameters">
 <Collection>
 <Record Type="UI.Parameter">
 <PropertyValue Property="PropertyName"
PropertyPath="CompanyCurrency" />
 <PropertyValue Property="PropertyValue" String="EUR" />
 </Record>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="SelectOptions">
 <Collection>
 <Record Type="UI.SelectOptionType">
 <PropertyValue Property="PropertyName"
PropertyPath="SalesOrderOverallStatus" />
 <PropertyValue Property="Ranges">
 <Collection>
 <Record Type="UI.SelectionRangeType">
 <PropertyValue EnumMember="UI.SelectionRangeSignType/E"
Property="Sign" />
 <PropertyValue EnumMember="UI.SelectionRangeOptionType/
EQ" Property="Option" />
 <PropertyValue Property="Low" String="D" />
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
 <Record Type="UI.SelectOptionType">
 <PropertyValue Property="PropertyName" PropertyPath="Product" />
 <PropertyValue Property="Ranges">
 <Collection>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1889

 <Record Type="UI.SelectionRangeType">
 <PropertyValue EnumMember="UI.SelectionRangeSignType/E"
Property="Sign" />
 <PropertyValue EnumMember="UI.SelectionRangeOptionType/
EQ" Property="Option" />
 <PropertyValue Property="Low" String="HT-1502" />
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
 </Collection>
 </PropertyValue>
 </Record> </Annotation>

Text Arrangement

You can now change the formatting of the text that appears on the visual filter chart axis labels, legends, chart
tooltips, and within the selected link (if a chart context is selected). The default view of the visual filter bar is
based on the filter fields defined in the TextArrangement annotation and its type in the main entity set to
change the text behavior like this:

Table 81:

Text Arrangement Type Description

TextFirst Use the visual filter to combine measures or item counts
with filter values. The ChartDefault type that has the sap:text
first, followed by the ID in brackets, for example, "Notebook
(001)"

TextLast ID followed by the sap:text in brackets, for example, "001
(Notebook)".

TextOnly Shows only the sap:text, for example, "Notebook"

TextSeparate Shows only the ID, for example, "002"

 Sample Code
Text Arrangement Annotation

<Annotations Target="ProductType"> //Main EntitySet <Annotation Term="com.sap.vocabularies.UI.v1.TextArrangement"
EnumMember="com.sap.vocabularies.UI.v1.TextArrangementType/TextFirst"/> </Annotations>

1890 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Display of Empty Values

The empty dimension value is displayed as Not Assigned in the visual filter chart. Note that this impacts the
display only of visual filters but not of the value help, drop down, or compact filters. For the value help, drop
down, or compact filter, it is displayed as <empty>.

Lazy Loading of Visual Filters

You enable lazy loading of visual filters by configuring the lazyLoadVisualFilter setting in the descriptor
file. It is disabled by default.

If you enable lazy loading, then the batch call for loading of visual filters is deferred until the user switches to
the visual filter bar.

 Sample Code
Descriptor setting

"settings": { "qualifier": "MainContent",
 "defaultContentView": "charttable",
 "smartVariantManagement": true,
 "showGoButtonOnFilterBar": true,
 "multiSelect": true, "lazyLoadVisualFilter":true, "tableType": "AnalyticalTable",

}

Fixed Values on Visual Filters

To display default records on the visual filter chart, configure the SelectionVariant annotation with filter values
(SelectOptions property) and link it with the ValueList annotation.

The in/out parameter values take precedence over the SelectionVariant value set, if the property is an
in/out parameter and has a select option value without a chart dimension.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1891

Table 82: In/out parameter taking precedence

Scenario Description

Scenario 1: Annotation configuration

Chart dimension = “Status”, Select Option in SV = [(“Status”,
Values = “In Progress”, “New”), (“Project”, Values=”List Re
port”)]

● "Project" is not a chart dimension, it is an in/out param
eter for the status

● The chart displays records relating to In Progress
and New status values for the project List Report.

Scenario 2: Overriding annotation configuration from filter
bar

Change the project value from List Report to
Analytical List Page on the filter bar

Specifying Analytical List Page as a value for the
project in the filter bar, re-renders charts to display records
for In Progress and New status values of the Analytical List
Page project.

 Note
The in/out parameter mapping values set for the other
properties in the SelectionVariant annotation
that are not part of the project field is considered as it is.

To render the visual filter with a parametrized entity set as the collection path, you need to provide parameters
in the SelectionVariant annotation. Any values added in the smart filter bar take priority over the
SelectionVariant annotation values.

Table 83:

Scenario Description

Scenario 1: Annotation configuration

Parameter in SelectionVariant = [(“P_DisplayCurrency”,
Value=”USD”)]

The chart renders records with the currency unit USD.

Scenario 2: Overriding annotation configurations on the filter
bar

Change USD to EUR on the filter bar

If you specify EUR as a value for P_DisplayCurrency in
the filter bar, the chart re-renders with records that have the
currency unit EUR

Date Selection

Visual filters now support date-based, single selection fields in the Universal Time Coordinated (UTC) format.
The date selection field appears on the visual filter if the annotations in the metadata file contain:

● Edm.DateTime and sap:display-format="Date"
● Edm.String and sap:semantics="yearmonthday"
● Edm.String and sap:semantics="yearmonth"
● Edm.String and sap:semantics="year"

1892 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Note
Displaying the value in the visual filter and its tooltip is impacted. Value help or the dropdown for selecting
the values remains the same if sap:semantics="yearmonth" is set.

 Note
You can see the date selection button on the visual filter for fields annotated with sap:filter-
restriction=”single-value". For fields annotated with sap:filter-restriction=”multiple",
you see the value help selection button.

 Sample Code
Sample Metadata

<Property Name="StartDate" Type="Edm.DateTime" sap:display-format="Date" sap:aggregation-role="dimension" sap:label="Date" sap:filter-
restriction="single-value"/>
<Property Name="StartDate" Type="Edm.String" sap:semantics="yearmonthday"
sap:aggregation-role="dimension" sap:label="Date" sap:filter-
restriction="single-value"/>

Unit of Measure with Multiple Units of Measure

Visual filter charts do not show up if the back end returns data with multiple units of measure (UoM). To
achieve a single UoM, set the required UoM in the filter bar or change all the UoMs into one UoM in the back
end.

For currency-based visual filter values, the currency value could come from another filter field in the main
entity set (mapped to the value help currency field based entity set through the standard IN mapping). If this
kind of mapping exists with an empty filter field in the main entity set, ALP uses the value set maintained in the
DisplayCurrency field in the incoming navigation context for filtering the value help entity set to render the
visual filter chart.

If there's a parameter in the main entity set with the exact technical name P_DisplayCurrency, the value is
derived from the incoming DisplayCurrency field of the incoming navigation context.

 Note
User preference for display currency type is stored in the SAP Fiori launchpad user settings. Applications
pass this value to filters using the DisplayCurrency field.

Number Formatting

NumberOfFractionalDigits information can be provided in com.sap.vocabularies.UI.v1.DataPoint [page
2010] term, using the ValueFormat property. The NumberOfFractionalDigits property is used to
determine the number of fraction digits. These are the rules:

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1893

● Decimals are not shown by default.
● You can specify 1 or 2 decimal places using theNumberOfFractionalDigits property in Annotations. If a

value of more than 2 is provided, it is also included.

In the following example, the price property number of fractional digits provided in the OData metadata, 3 is
overridden by the value 1 as provided in the com.sap.vocabularies.UI.v1.DataPoint [page 2010] ValueFormat
property

 Sample Code

<Annotation Term="com.sap.vocabularies.UI.v1.DataPoint" Qualifier="Price"> <Record Type="com.sap.vocabularies.UI.v1.DataPointType">
 <PropertyValue Property="Value" Path="Price"/>
 <PropertyValue Property="ValueFormat">
 <Record Type="com.sap.vocabularies.UI.v1.NumberFormat">
 <PropertyValue Property="NumberOfFractionalDigits" int="1"/>
 </Record>
 </PropertyValue>
 </Record>
</Annotation>

Semantic Coloring for Visual Filter Measure Values

Semantic coloring is based on the defined:

● Criticality in DataPoint annotations. The specified value, or the value returned from a path, determines the
color

● CriticalityCalculation in DataPoint annotations, along with the improvement direction and various
threshold values. This applies only when the criticality is not defined.

 Note
No color is applied to the chart measure when

● A neutral value is returned
● Not enough threshold values are defined or when the improvement direction is missing

Grouping Visual Filter Calls (Optional)

Add a groupId for a set of visual filters to consolidate all group calls into one batch call. This helps you group
fast-loading visual filters in one batch and group all the other slow loading visual filters into a separate batch
call. This improves rendering of the fast-loading visual filters over the slow-loading visual filters.

1894 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Define the onBeforeRebindVisualFilterExtension extension controller method in the controller file.
Ensure that the groupId is one of the keys in the oContext object which is passed to the extension as a
parameter. Provide a valid string value as shown here:

 Sample Code

onBeforeRebindVisualFilterExtension: function(sEntityType, sDimension,
sMeasure, oContext){ 'use strict';
 var Log = sap.ui.require("sap/base/Log");
 if (sDimension === "Product") {
 oContext.groupId = "Group1";
 }
 if (sDimension === "DeliveryCalendarMonth" || sDimension ===
"DeliveryCalendarQuarter") {
 oContext.groupId = "Group2";
 }
 Log.info("onBeforeRebindVisualFilterExtension called!"); }

 Note
● The visual filter calls without a groupId are all combined in one batch.
● Visual filter calls assigned to a groupId reach the back end in one batch.

Guidelines

Show the filter dimension with one measure in the visual filter not with multiple measures.

Filter dimensions in the compact filters (filter bar) have exactly one representation in the visual filter bar.

Do not show the same filter dimension with two or more different measures at the same time in the visual filter
bar. The example shows the filter Dimension Year with two different measures Revenue and Quantity.
Showing the filter dimensionYear twice is not in sync with the compact filter, where it is shown only once.
Furthermore, matching between the two filter types won't work.

If the use case requires you to show a dimension with different measures, consider using an overview page
instead.

Table 84:

Do Don't

For each dimension, display exactly one representation in
the visual filter bar.

Do not use the same filter dimension with different meas
ures.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1895

Related Information

Configuring the Filter Area [page 1881]

Defining ValueList Annotation

Lets you map an entity to another entity that is associated with a different entity set. The value list annotation
defines the relationship between filter fields of the main entity set and the fields in the value help entity set.

You can map an entity from a value help entity set to derive value help for an entity in the main entity set. Use
this annotation to configure visual filters for ALP.

Common.ValueList

Property Details

Label (Optional, String) Enter label information

CollectionPath (Required, String) Entity set for retrieving value help

SearchSupported (Required, Bool) True or False

Parameters Parameters to map a main entity set to a value help entity
set.

● Record Type: Common.ValueListParameterOut
determines the
○ Elements of a main entity set that make it to the fil-

ter query
○ Field from a value help entity set that sets the field

value in the main entity set

● Record Type: Common.ValueListParameterIn
determines the filtering data set from a value help entity
set

● Record Type:
Common.ValueListParameterInOut combina
tion of both in and out parameters.

Parameter properties:

● LocalDataProperty
● ValueListProperty

PresentationVariantQualifier (Required, String) Specify a qualifier name for the chart annotation

1896 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Example

Take a look at entity set "Z0020" (main entity set) with the three filters: region, country, and plant. The
SelectionFields annotation has the following dimensions:

<Annotation Term="UI.SelectionFields"> <Collection>
 <PropertyPath>RegionID</PropertyPath>
 <PropertyPath>CountryID</PropertyPath>
 <PropertyPath>PlantID</PropertyPath>
 </Collection>
</Annotation>

The value help for these dimensions display values present in the main entity set only. However, with the
ValueList annotation you can retrieve records from a master list.

Consider the following table in which all of the entity sets refer to the same business object using different
dimension names.

Table 85:

Business Object
Z0020 (Main Entity
Set) Z0021 (Entity Set) Z0022 (Entity Set) Z0023 (Entity Set)

Region RegionID RegionCode RegionIdentifier RegionNumber

Country CountryID CountryCode CountryIdentifier CountryNumber

Plant PlantID PlantCode PlantIdentifier PlantNumber

Region

LocalDataProperty maps to the ValueListProperty. The RegionID is mapped to the RegionCode and
the PlantID is mapped to the PlantCode. In the following annotation example, the PlantCode value help
entity set filters out regions based on the PlantID chosen from a main entity set.

Table 86:

Parameter Z0020 (LocalDataProperty) Z0021 (ValueListProperty)

ValueListParameterOut RegionID RegionCode

ValueListParameterIn PlantID PlantCode

The PresentationVariantQualifier is associated with a value help entity set. This means that values for
chart properties (measure and dimension) are from a value help entity set. For example, if a
PresentationVariantQualifier is a bar chart with the dimension RegionCode and the measure is Net
Sales, then the ALP visual filter displays a bar chart that shows the top three regions.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1897

Annotation Example

<Annotations Target="Z0020_CDS.Z0020Type/RegionID"> // specifies the ValueList
annotation is on the “RegionID” dimension in Z0020 entity set <Annotation Term="Common.ValueList" Qualifier="0020_Region">
<Record>
 <PropertyValue Property="Label" String="Region"/>
 <PropertyValue Property="CollectionPath" String="Z0021"/> // Specifies
that the entity set for fetching the value help is Z0021
 <PropertyValue Bool="false" Property="SearchSupported"/>
 <PropertyValue Property="Parameters"> // In and Out parameters to map
the main entity set with the value help entity set
 <Collection>
 <Record Type="Common.ValueListParameterOut"> // OUT parameter
determine elements in the main entity set that make it to the filter query and
also determine the entity from the value help entity set that influences their
value
 <PropertyValue Property="LocalDataProperty"
PropertyPath="RegionID"/> // LocalDataProperty points to an entity in the main
entity set – this is the entity used in forming the filter query
 <PropertyValue Property="ValueListProperty" String="RegionCode"/
> // ValueListProperty refers to the entity within the value help entity set
that provides the “value” for the entity of the main entity set which makes up
the filter query and is referred via the LocalDataProperty
 </Record>
 <Record Type="Common.ValueListParameterIn"> // IN parameters help in
filtering the data set of the value help entity set
 <PropertyValue Property="LocalDataProperty"
PropertyPath="PlantID"/>
 <PropertyValue Property="ValueListProperty" String="PlantCode"/>
 </Record>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="PresentationVariantQualifier"
String="Bar_0021_Region"/> // The presence of a presentation variant means
Region comes up as a visual filter.
 </Record>
</Annotation>
</Annotations>

Country

The following annotation example defines the CountryIDCountryIdentifier entity present in the Z0022
entity set. If you query values for the value with the RegionID of the main entity set, then the value help for the
CountryID field filters by the RegionIdentifier.

Table 87:

Parameter Z0020 (LocalDataProperty) Z0021 (ValueListProperty)

ValueListParameterOut CountryID CountryIdentifier

ValueListParameterIn RegionID RegionIdentifier

1898 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Annotation Example

<Annotations Target="Z0020_CDS.Z0020Type/CountryID"> <Annotation Term="Common.ValueList" Qualifier="0020_Country">
<Record>
 <PropertyValue Property="Label" String="Country"/>
 <PropertyValue Property="CollectionPath" String="Z0022"/> // Note that
country values come from Z0022 and is different from the value help entity set
of region (Z0021)
 <PropertyValue Bool="false" Property="SearchSupported"/>
 <PropertyValue Property="Parameters">
 <Collection>
 <Record Type="Common.ValueListParameterOut">
 <PropertyValue Property="LocalDataProperty"
PropertyPath="CountryID"/>
 <PropertyValue Property="ValueListProperty"
String="CountryIdentifier"/>
 </Record>
 <Record Type="Common.ValueListParameterIn">
 <PropertyValue Property="LocalDataProperty"
PropertyPath="RegionID"/>
 <PropertyValue Property="ValueListProperty"
String="RegionIdentifier"/>
 </Record>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="PresentationVariantQualifier"
String="Country_Chart"/>
 </Record>
</Annotation>
</Annotations>

Plant

The following example annotation configures the PlantID value with the with the Z0023 value help entity set.
Selecting a value for PlantNumber maps to PlantID of the main entity set. You can also configure multiple
Common.ValueListParameterIn parameters to filter both region and country in the filter query.

Table 88:

Parameter Z0020 (LocalDataProperty) Z0021 (ValueListProperty)

ValueListParameterOut PlantID PlantNumber

ValueListParameterIn RegionID RegionNumber

ValueListParameterIn CountryID CountryNumber

Annotation Example

<Annotations Target="Z0020_CDS.Z0020Type/PlantID"> <Annotation Term="Common.ValueList" Qualifier="0020_Plant">

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1899

<Record>
 <PropertyValue Property="Label" String="Plant"/>
 <PropertyValue Property="CollectionPath" String="Z0023"/>
 <PropertyValue Bool="false" Property="SearchSupported"/>
 <PropertyValue Property="Parameters">
 <Collection>
 <Record Type="Common.ValueListParameterOut">
 <PropertyValue Property="LocalDataProperty"
PropertyPath="PlantID"/>
 <PropertyValue Property="ValueListProperty"
String="PlantNumber"/>
 </Record>
 <Record Type="Common.ValueListParameterIn">
 <PropertyValue Property="LocalDataProperty"
PropertyPath="RegionID"/>
 <PropertyValue Property="ValueListProperty"
String="RegionNumber"/>
 </Record>
 <Record Type="Common.ValueListParameterIn">
 <PropertyValue Property="LocalDataProperty"
PropertyPath="CountryID"/>
 <PropertyValue Property="ValueListProperty"
String="CountryNumber"/>
 </Record>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="PresentationVariantQualifier"
String="Plant_Chart"/>
 </Record>
</Annotation>
</Annotations>

All three visual filters appear in the ALP header area if you have completed the chart configuration for the
respective PresentationVariantQualifier.

If your configuration has Net Sales as a common measure in all three entity sets, then the first chart displays
the top three regions (each bar = RegionCode from Z0021).- The second chart displays the top three
countries (each bar = CountryIdentifier from Z0022). The last chart displays the top three plants (each
bar = PlantNumber from Z0023) as measured against Net Sales.

Scenario 1: Selection in the Region Chart

If you select a bar in the region chart with this configuration, it then passes the RegionID=<chosen value from
RegionCode of Z0021> to the filter query in the main entity set. As a result, ALP refreshes the data in the main
content area and the other two charts (A RegionID is an IN parameter for the ValueList annotation of the
CountryID and PlantID). The top three countries and plants are displayed for the chosen region.

Scenario 2: Selection in the Region Chart and Country Chart

After selecting the region chart, if you select a bar in the country chart then it passes the CountryID=<chosen
value from CountryIdentifier of Z0022> to the filter query in the main entity set. As a result, the ALP
refreshes data in the main content area and the third chart (A CountryID is an IN parameter only for
"PlantID"). Plants within the chosen region and country are displayed.

Scenario 3: Selection in the Plant Chart

PlantID is an IN parameter used only for the RegionID. This means that along with the main content area
only the first chart is refreshed and displays the top three countries for the chosen plant.

1900 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Note
The IN mapping defined for a field is ignored when the same field has a ValueList annotation defined for
it. For example, when PlantID is the IN mapping for the ValueList of the PlantID. However, the existing
mapping values of the PlantID in the filter query would have no impact on a visual filter. The ignored value
is considered for the main filter query and shows up in the visual filter Selected button.

Related Information

Configuring the Filter Area [page 1881]
Choosing Filter Modes [page 1880]
Compact Filter Setup [page 1884]

Configuring the Content Area

Visualize data from the main entity set and seamlessly navigate to an application. Define a valid chart or
LineItem annotation to render content for the chart area and table area.

Context

Analytical list page determines the content of the main area as follows:

● If you have set the value for a qualifier in descriptor file, ALP looks for the
SelectionPresentationVariant with the same qualifier. If the SelectionPresentationVariant is
found, then the associated PresentationVariant is used.
○ If the SelectionPresentationVariant is not found, then the application looks for a

PresentationVariant with the same qualifier.
○ If PresentationVariant is not found, then an error message is displayed.

● If you have not set the value for a qualifier in the descriptor file, ALP looks for a default
SelectionPresentationVariant and uses the associated PresentationVariant
○ If the default SelectionPresentationVariant is not found, ALP looks for a default

PresentationVariant
○ If default PresentationVariant is also not found, ALP looks for a default chart and LineItem

annotations.
● If you have configured the content tile in the descriptor file, the FilterableKPI view appears along with

the segmented buttons (Hybrid/Chart/Table) and the content area tile.

You can choose to view the main entity set data in the following view modes:

● Table only
● Chart only
● Hybrid (chart and table)

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1901

Configure contentTitle property in the descriptor configuration file, to add title for the content area.

Related Information

Analytical List Page [page 1868]
Table-Only View [page 1902]
Chart-Only View [page 1910]
Hybrid View [page 1914]

Table-Only View

Displays transactional data in a tabular format. Use table-only mode to view individual records within the
transactional data.

ALP provides the following table types:

● Analytical (sap.ui.table)
● Grid
● Responsive (sap.m.table)

Configure the tableType setting in the descriptor file to select any of the table types mentioned above.

 Note
Use the analytical table type with entity sets containing sap:semantics as aggregates.

● #unique_725/unique_725_Connect_42_subsection-im1 [page 1903]
● #unique_725/unique_725_Connect_42_subsection-im2 [page 1903]
● #unique_725/unique_725_Connect_42_subsection-im3 [page 1903]
● #unique_725/unique_725_Connect_42_subsection-im4 [page 1903]

Hover over each action for a description. Click the action for more information.

1902 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Descriptor Settings: Table-only view
Configuration Sample:

"sap.ui.generic.app":{ "pages":[
 {
 "entitySet":"SEPMRA_C_ALP_SlsOrdItemCube",
 "component":{
 "name":"sap.suite.ui.generic.template.AnalyticalListPage",
 "list":true,
 "settings":{
 "qualifier":"DefaultVariant",
 }
 }
 } },

Annotation: SelectionPresentationVariant with Qualifier="DefaultVariant"
Configuration Sample:

<Annotation Term="UI.SelectionPresentationVariant" Qualifier="DefaultVariant"> <Record>
 <PropertyValue Property="Text" String="Product Financial Analysis"/>
 <PropertyValue Property="SelectionVariant"
Path="@UI.SelectionVariant#DefaultSelectionVariant"/>
 <PropertyValue Property="PresentationVariant"
Path="@UI.PresentationVariant#DefaultPresentationVariant"/>
 </Record> </Annotation>

Annotation: Presentation Variant

<Annotation Term="UI.PresentationVariant" Qualifier="DefaultPresentationVariant"> <Record>
 <PropertyValue Property="Text" String="Default"/>
 <PropertyValue Property="SortOrder">
 <Collection>
 <Record Type="Common.SortOrderType">
 <PropertyValue Property="Property" PropertyPath="NetAmount"/>
 <PropertyValue Property="Descending" Bool="true"/>
 </Record>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="Visualizations">
 <Collection>
 <AnnotationPath>@UI.LineItem#Default</AnnotationPath>
 </Collection>
 </PropertyValue>
 </Record> </Annotation>Presentation Variant annotation example

Annotation: LineItem

<Annotation Term="UI.LineItem" Qualifier="Default"> <Collection>
 <Record Type="UI.DataField">
 <PropertyValue Property="Value" Path="DeliveryCalendarYear"/>
 <Annotation Term="UI.Importance" EnumMember="UI.ImportanceType/High"/>
 </Record>
 <Record Type="UI.DataField">
 <PropertyValue Property="Value" Path="DeliveryCalendarMonth"/>
 <Annotation Term="UI.Importance" EnumMember="UI.ImportanceType/High"/>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1903

 </Record>
 <Record Type="UI.DataField">
 <PropertyValue Property="Value" Path="SalesOrder"/>
 <Annotation Term="UI.Importance" EnumMember="UI.ImportanceType/High"/>
 </Record>
 <Record Type="UI.DataFieldForIntentBasedNavigation">
 <PropertyValue Property="Label" String="Manage Sales Order"/>
 <PropertyValue Property="SemanticObject" String="EPMSalesOrder"/>
 <PropertyValue Property="Action" String="manage_st"/>
 <PropertyValue Property="RequiresContext" Bool="false"/>
 <Annotation Term="UI.Importance" EnumMember="UI.ImportanceType/High"/>
 </Record>
 <Record Type="UI.DataFieldWithIntentBasedNavigation">
 <PropertyValue Property="SemanticObject" String="EPMSalesOrder"/>
 <PropertyValue Property="Action" String="manage_st"/>
 <PropertyValue Property="Value" Path="SalesOrder"/>
 <Annotation Term="UI.Importance" EnumMember="UI.ImportanceType/High"/>
 </Record>
 <Record Type="UI.DataField">
 <PropertyValue Property="Label" String="Item"/>
 <PropertyValue Property="Value" Path="SalesOrderItem"/>
 <Annotation Term="UI.Importance" EnumMember="UI.ImportanceType/High"/>
 </Record>
 <Record Type="UI.DataField">
 <PropertyValue Property="Value" Path="Product"/>
 <Annotation Term="UI.Importance" EnumMember="UI.ImportanceType/High"/>
 </Record>
 <Record Type="UI.DataFieldWithIntentBasedNavigation">
 <PropertyValue Property="SemanticObject" String="EPMProduct"/>
 <PropertyValue Property="Action" String="manage_st"/>
 <PropertyValue Property="Value" Path="Product"/>
 <Annotation Term="UI.Importance" EnumMember="UI.ImportanceType/High"/>
 </Record>
 <Record Type="UI.DataField">
 <PropertyValue Property="Value" Path="ProductName"/>
 <Annotation Term="UI.Importance" EnumMember="UI.ImportanceType/High"/>
 </Record>
 <Record Type="UI.DataField">
 <PropertyValue Property="Value" Path="MainProductCategory"/>
 <Annotation Term="UI.Importance" EnumMember="UI.ImportanceType/High"/>
 </Record>
 <Record Type="UI.DataField">
 <PropertyValue Property="Label" String="Customer"/>
 <PropertyValue Property="Value" Path="SoldToPartyCompanyName"/>
 <Annotation Term="UI.Importance" EnumMember="UI.ImportanceType/High"/>
 </Record>
 <Record Type="UI.DataField">
 <PropertyValue Property="Value" Path="Quantity"/>
 <Annotation Term="UI.Importance" EnumMember="UI.ImportanceType/High"/>
 </Record>
 <Record Type="UI.DataField">
 <PropertyValue Property="Value" Path="NetAmount"/>
 <Annotation Term="UI.Importance" EnumMember="UI.ImportanceType/High"/>
 </Record>
</Collection> </Annotation>

The data set helps ALP decide which table to display when it is not configured in descriptor settings. If the data
set

● Comes from an analytical OData service, then ALP renders data through an analytical table. This table
provides grouping and aggregation of data at different levels.

● Doesn't come from an analytical OData service and grid table usage is enabled in your descriptor setting
(tabletype=GridTablePresentation V), then ALP brings up the grid table (sap.ui.table) for the tabular
display.

1904 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

In all other cases, ALP uses the responsive table (sap.m.table) to render the data.

 Note
By default, ALP displays tables in condensed mode. You can modify the descriptor setting to use compact
mode.

You can perform several table level operations using the table toolbar. The settings feature allows you to

● Add or remove dimensions and measures bound to a table
● Perform sort operations on a table
● Choose dimensions to group a table as needed

 Note
You can adjust the width of columns by modifying the MaxLength metadata for texts strings and
Precision metadata for decimals.

Configure the descriptor file to provide table navigation. Choose Details to navigate from a table row to another
application.

 Note
The selected table record context is passed to the target application as a navigation context. In case of:

● Inner app navigation: The selected table record context is passed to the target application
● External navigation: The selected table record and filter context is passed to the target application
● To remove values from the selection variant passed in the navigation context, use the

adaptNavigationParameterExtension breakout.

"sap.ui.generic.app": { "_version": "1.3.0",
 "pages": {
“page-1”: {
 “entitySet”: ….
 “component": {
 …
 …
 } // End of component
"pages": [{ //ALP does an inner app navigation to the smart template specified
below
 "entitySet": "<<ZCOSTCENTERCOSTSQUERY0020>>", //Ensure that the
Entity set specified here is the same entity set used in the main content area.
 "component": {
 "name": "<<sap.suite.ui.generic.template.ObjectPage>>"
 }
"navigation": { //Optional (If specified ALP navigates to the target Application
specified below through external app navigation)
 "display": {
 "path": "sap.app.crossNavigation.outbounds",
 "target": "<<NavigateToCTRItem>>"
 }
 }
 }]
 } // End of page-1
}
}

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1905

Filter Option

You can enable filtering in the smart table area by configuring the enableTableFilterInPageVariant
setting in the descriptor file. By default, filtering is:

● Disabled in the page-level variant.
● Enabled in the control-level variant and cannot be disabled.

 Note
In SmartTable, you can view the filter option after selecting the column header or from the personalization
settings. Whereas, in responsive tables, the filter option is available only from table personalization
settings.

"settings": { "qualifier": "MainContent",
 "defaultContentView": "charttable",
 "smartVariantManagement": true,
 "showGoButtonOnFilterBar": true,
 "multiSelect": true, "enableTableFilterInPageVariant":true, "tableType": "AnalyticalTable",

}

Custom Navigation

The DataFieldWithIntentBasedNavigation record type within the LineItem annotation lets you include
a navigation option in the smart table. Defining this annotation adds a new column to the table and provides a
link to the target application based on the properties (semantic object and semantic action) configured in the
annotation.

 Sample Code
Annotation sample

<Annotation Term="UI.LineItem" Qualifier="ActualCosts"> <Collection>
 <Record Type="UI.DataFieldWithIntentBasedNavigation">
 <PropertyValue Property="Label" String="Cost Center (IBN)"/>
 <PropertyValue Property="Value" Path="CostCenter" />
 <PropertyValue Property="SemanticObject" String="alpwp"/>
 <PropertyValue Property="Action" String="display"/>
 </Record>
 </Collection>
</Annotation>

The DataFieldWithIntentBasedNavigation record type within the LineItem annotation lets you include
a navigation option within the smart table toolbar.

<Record Type="UI.DataFieldForIntentBasedNavigation"> <PropertyValue Property="Label" String="Manage"/>
<PropertyValue Property="SemanticObject" String="CompanyCode"/>
<PropertyValue Property="Action" String="display"/>

1906 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 <PropertyValue Property="Inline" Bool="true"/> </Record>

 Note
The selection column in the table is disabled if all of the following conditions are met:

● There are no DataFieldForAction buttons defined by the application.
● There are no DataFieldForIntentBasedNavigation buttons with RequiresContext set to true.
● There are no manifest based custom actions with RequiresSelection set to true.

Actions by Annotation

Define custom action buttons on the table toolbar using the DataFieldForAction property associated to
LineItem annotation.

 Note
To correctly integrate your app extension coding with SAP Fiori elements, use only the extensionAPI of SAP
Fiori elements. For more information, see Using the ExtensionAPI [page 1588].

Inline Button
Include a custom buttons in a table by defining the inline property in the DataFieldForAction annotation.
This button appears in the table column and the position of the column depends on its position in the
LineItem annotation.

<Record Type="UI.DataFieldForIntentBasedNavigation"> <PropertyValue Property="Label" String="Manage"/>
<PropertyValue Property="SemanticObject" String="CompanyCode"/>
<PropertyValue Property="Action" String="display"/> <PropertyValue Property="Inline" Bool="true"/> </Record>

Determining Button
At the click of a button, the associated:

● DataFieldForAction annotation handles the action as defined. The user application must ensure that
this points to the fully qualified action or function.

● DataFieldForIntentBasedNavigation annotation launches the SAP Fiori applications as specified in
the action. If the action is configured to accept context, then the selected table and filter context is passed
to the target application through the navigation context.

You can configure the table toolbar to contain buttons defined with the annotations
com.sap.vocabularies.UI.v1.DataFieldForAction and
com.sap.vocabularies.UI.v1.DataFieldForIntentBasedNavigation. The determining buttons for
tables are in the footer bar, and chart buttons appear before determining buttons.

 <PropertyValue Property="Actions">
 <Collection>
 <Record Type="UI.DataFieldForAction">

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1907

 <PropertyValue Property="Label" String="Copy"/>
 <PropertyValue Property="Action"
String="CZ_EASILINEITEMS_SADL_CDS.CZ_EASILINEITEMS_SADLType/Copy"/>
 <PropertyValue Property="InvocationGrouping"
EnumMember="UI.OperationGroupingType/Isolated"/> <PropertyValue Property="Determining" Bool="true"/> </Record>
 <Record Type="UI.DataFieldForIntentBasedNavigation">
 <PropertyValue Property="Label" String="Manage Products (STTA)"/>
 <PropertyValue Property="SemanticObject" String="EPMProduct"/>
 <PropertyValue Property="Action" String="manage_st"/> <PropertyValue Property="Determining" Bool="true"/> </Record>
 </Collection> </PropertyValue>

<PropertyValue Property="Actions"> <Collection>
 <Record Type="UI.DataFieldForAction">
 <PropertyValue Property="Label" String="Copy"/>
 <PropertyValue Property="Action"
String="CZ_EASILINEITEMS_SADL_CDS.CZ_EASILINEITEMS_SADLType/Copy"/>
 </Record>
 <Record Type="UI.DataFieldForIntentBasedNavigation">
 <PropertyValue Property="Label" String="Manage Products (STTA)"/>
 <PropertyValue Property="SemanticObject" String="EPMProduct"/>
 <PropertyValue Property="Action" String="manage_st"/>
 <PropertyValue Property="RequiresContext" />
 </Record>
 </Collection> </PropertyValue>

Quick View in Table

You can configure the smart table column cells to display additional information in a quick view card. For more
information, see Enabling Quick Views for Smart Link Navigation [page 1567]

Semantic Highlighting of Rows

Use a property or a dimension that represents the criticality of the record (row) in the back end to add record-
level semantic coloring in the SmartTable.

To enable this feature, add the criticalityProperty to the LineItem annotation of the smartTable.

 Sample Code

<Annotation Term="UI.LineItem"> <Annotation Term="UI.Criticality"
Path="Element_transporting_criticality_of_complete_LineItem" /> //
LineItem Criticality annotation
 <Collection>
 <Record Type="UI.DataField">
 ...
 </Record>
 </Collection>

1908 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

</Annotation>

The coloring of the criticality is defined as follows:

● 0 - None (No Color) - v1.CriticalityType/Neutral
● 1 - Error (Semantic Negative) - v1.CriticalityType/Negative
● 2 - Warning (Semantic Critical) - v1.CriticalityType/Critical
● 3 - Success (Semantic Positive) - v1.CriticalityType/Positive

The semantic coloring of table rows is supported for analytical tables, responsive tables, and grid tables.

 Note
For analytical tables, the field that returns the criticality must be a property and not a dimension.

Semantically Connected Fields

You can configure the table columns to view multiple field types. To enable this feature, configure
UI.LineItem, UI.DataFieldForAnnotation, and UI.FieldGroup annotations as shown here:

 Sample Code
LineItem annotation

<Annotation Term="UI.LineItem"> <Collection>
 ………………………………
 ………………………………
 <Record Type="UI.DataFieldForAnnotation">
 <PropertyValue Property="Target"
AnnotationPath="@UI.FieldGroup#ActionGroupTest" />
 <PropertyValue Property="Label" String="Multiple Actions"/>
 </Record>
 …………………
 …………………
 </Collection>
</Annotation>

 Sample Code
FieldGroup Annotation

<Annotation Term="UI.FieldGroup" Qualifier="ActionGroupTest"> <Record Type="UI.FieldGroupType">
 <PropertyValue Property="Data">
 <Collection>
 <Record Type="UI.DataFieldForAction"> // Can also be
DataField or ImageURL or DataFieldForIntentBasedNavigation or
DataFieldWithIntentBasedNavigation here
 <PropertyValue Property="Action"
String="ZEPM_C_SALESORDERITEMQUERY_CDS.ZEPM_C_SALESORDERITEMQUERYResult/
update"/>
 <PropertyValue Property="Label" String="Update Order"/>
 <PropertyValue Property="Inline" Bool="true"/>
 </Record>
 <Record Type="UI.DataFieldForAction">

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1909

 <PropertyValue Property="Action"
String="ZEPM_C_SALESORDERITEMQUERY_CDS.ZEPM_C_SALESORDERITEMQUERYResult/
delete"/>
 <PropertyValue Property="Label" String="Delete Order"/>
 <PropertyValue Property="Inline" Bool="true"/>
 </Record>
 </Collection>
 </Record>
</Annotation>

 Note
● You can see fields belonging to the same entityType in the table personalization.
● Grid and analytical tables do not support semantically connected fields for the annotation properties

ImageURL and UI.Chart.

Related Information

Configuring the Content Area [page 1901]

Chart-Only View

Uses a smart chart that provides visual representation of analytical data.

By selecting the chart context, users can navigate to other applications. A smart chart provides:

● Semantic object-based navigation
● Easy changing of chart types
● Customization of chart settings

The chart-only view provides a way to analyze data from different perspectives, step by step, to investigate a
root causeby drilling down without direct access to transactional content. The smart chart control is used to
provide the chart visualization.

You use this features to deal with analytical data that can be visually represented using charts, without needing
to link them to the transactional data set.

1910 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

● #unique_731/unique_731_Connect_42_subsection-im1 [page 1911]
● #unique_731/unique_731_Connect_42_subsection-im2 [page 1911]
● #unique_731/unique_731_Connect_42_subsection-im3 [page 1911]
● #unique_731/unique_731_Connect_42_subsection-im4 [page 1912]

Hover over each action for a description. Click the action for more information.

Descriptor Settings: Table-only view

Configuration Sample:

"sap.ui.generic.app":{ "pages":[
 {
 "entitySet":"SEPMRA_C_ALP_SlsOrdItemCube",
 "component":{
 "name":"sap.suite.ui.generic.template.AnalyticalListPage",
 "list":true,
 "settings":{
 "qualifier":"DefaultVariant",
 }
 }
 } },

Annotation: SelectionPresentationVariant with Qualifier="DefaultVariant"

Configuration Sample:

<Annotation Term="UI.SelectionPresentationVariant" Qualifier="DefaultVariant"> <Record>
 <PropertyValue Property="Text" String="Product Financial Analysis"/>
 <PropertyValue Property="SelectionVariant"
Path="@UI.SelectionVariant#DefaultSelectionVariant"/>
 <PropertyValue Property="PresentationVariant"
Path="@UI.PresentationVariant#DefaultPresentationVariant"/>
 </Record> </Annotation>

Annotation: Presentation Variant

<Annotation Term="UI.PresentationVariant" Qualifier="DefaultPresentationVariant"> <Record>
 <PropertyValue Property="Text" String="Default"/>
 <PropertyValue Property="SortOrder">
 <Collection>
 <Record Type="Common.SortOrderType">
 <PropertyValue Property="Property" PropertyPath="NetAmount"/>
 <PropertyValue Property="Descending" Bool="true"/>
 </Record>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="Visualizations">
 <Collection>
 <AnnotationPath>@UI.Chart#Default</AnnotationPath>
 </Collection>
 </PropertyValue>
 </Record> </Annotation>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1911

Use the app-descriptor setting chartPresentationQualifier to render a chart based on a specific
PresentationVariant annotation configuration.

"settings": { "chartPresentationQualifier": “qualifier”}

Annotation: Chart

<Annotation Term="UI.Chart" Qualifier="Default"> <Record Type="UI.ChartDefinitionType">
 <PropertyValue Property="Title" String="Revenue by Customer"/>
 <PropertyValue Property="Description" String="Net Revenue by Customer"/>
 <PropertyValue Property="ChartType" EnumMember="UI.ChartType/Column"/>
 <PropertyValue Property="Dimensions">
 <Collection>
 <PropertyPath>SoldToParty</PropertyPath>
 <PropertyPath>DeliveryCalendarYear</PropertyPath>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="DimensionAttributes">
 <Collection>
 <Record Type="UI.ChartDimensionAttributeType">
 <PropertyValue Property="Dimension" PropertyPath="SoldToParty"/>
 <PropertyValue Property="Role"
EnumMember="UI.ChartDimensionRoleType/Category"/>
 </Record>
 <Record Type="UI.ChartDimensionAttributeType">
 <PropertyValue Property="Dimension"
PropertyPath="DeliveryCalendarYear"/>
 <PropertyValue Property="Role"
EnumMember="UI.ChartDimensionRoleType/Series"/>
 </Record>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="Measures">
 <Collection>
 <PropertyPath>NetAmount</PropertyPath>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="MeasureAttributes">
 <Collection>
 <Record Type="UI.ChartMeasureAttributeType">
 <PropertyValue Property="Measure" PropertyPath="NetAmount"/>
 <PropertyValue Property="Role" EnumMember="UI.ChartMeasureRoleType/
Axis1"/>
 <PropertyValue Property="DataPoint"
AnnotationPath="@UI.DataPoint#NetAmount"/>
 </Record>
 </Collection>
 </PropertyValue>
 </Record> </Annotation>

Semantic Navigation

If you select a data point or segment from a chart, the smart chart checks the annotation of any semantic
object definition for these dimensions and uses it as a base to render the navigation links. For example,

1912 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Sample Code
Cost Center dimension

<Annotations xmlns=http://docs.oasis-open.org/odata/ns/edm
Target=”Emp_Line_Item.Item/Cost_Center”> <Annotation Term=”com.sap.vocabularies.Common.v1.SemanticObject”
String=”CostCenter”/>
</Annotations>

In the preceding example, the smart charts retrieve all the navigation parameters for which you have an
authorization and that are defined for the CostCenter semantic object. The selected chart and filter context is
passed to the target application through the navigation context.

Choose Details on the toolbar, to view navigation links that define actions associated with semantic objects.

Chart Operations

You can perform several chart level operations on the toolbar. The Settings option on the chart toolbar enables
you to include additional filters on the chart, or to change:

● Dimensions and measures bound to a chart
● Roles for dimensions and measures
● Sort order in charts

The Drilldown option lets you change the chart grouping dimension. If you have already made a chart selection
before selecting the Drilldown option and changing the grouping dimension, analytical list page uses the earlier
chart dimension selection as a filter context for drilldown.

Actions by Annotation

Any action that you define in the Actions property of the chart annotation (DataFieldForAction or
DataFieldForIntentBasedNavigation), is displayed as an additional button on the chart toolbar (when
determining=false).

 Note
To correctly integrate your app extension coding with SAP Fiori elements, use only the extensionAPI of SAP
Fiori elements. For more information, see Using the ExtensionAPI [page 1588].

Determining Button

You can configure the smart chart toolbar to contain action buttons defined with annotations
com.sap.vocabularies.UI.v1.DataFieldForAction and
com.sap.vocabularies.UI.v1.DataFieldForIntentBasedNavigation. Choosing
DataFieldForAction executes the back-end function import as identified by the Action property. When you
choose DataFieldForIntentBasedNavigation, the appropriate SAP Fiori app is launched. The

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1913

determining buttons for the chart are found in the footer bar and the chart buttons are ordered before the table
buttons.

 <PropertyValue Property="Actions">
 <Collection>
 <Record Type="UI.DataFieldForAction">
 <PropertyValue Property="Label" String="Copy"/>
 <PropertyValue Property="Action"
String="CZ_EASILINEITEMS_SADL_CDS.CZ_EASILINEITEMS_SADLType/Copy"/>
 <PropertyValue Property="InvocationGrouping"
EnumMember="UI.OperationGroupingType/Isolated"/> <PropertyValue Property="Determining" Bool="true"/> </Record>
 <Record Type="UI.DataFieldForIntentBasedNavigation">
 <PropertyValue Property="Label" String="Manage Products (STTA)"/>
 <PropertyValue Property="SemanticObject" String="EPMProduct"/>
 <PropertyValue Property="Action" String="manage_st"/> <PropertyValue Property="Determining" Bool="true"/> </Record>
 </Collection> </PropertyValue>

With the click of a button, the associated:

● DataFieldForAction annotation handles the action as defined. The user application has to ensure that
this points to the fully qualified action or function.

● DataFieldForIntentBasedNavigation annotation launches the SAP Fiori applications as specified in
the action. If the action is configured to accept context, then the selected chart and filter context is passed
to the target application through the navigation context.

<PropertyValue Property="Actions"> <Collection>
 <Record Type="UI.DataFieldForAction">
 <PropertyValue Property="Label" String="Copy"/>
 <PropertyValue Property="Action"
String="CZ_EASILINEITEMS_SADL_CDS.CZ_EASILINEITEMS_SADLType/Copy"/>
 </Record>
 <Record Type="UI.DataFieldForIntentBasedNavigation">
 <PropertyValue Property="Label" String="Manage Products (STTA)"/>
 <PropertyValue Property="SemanticObject" String="EPMProduct"/>
 <PropertyValue Property="Action" String="manage_st"/>
 </Record>
 </Collection> </PropertyValue>

Related Information

Configuring the Content Area [page 1901]

Hybrid View
The hybrid view is the default data display mode in the ALP content area. It lets you view both analytical data
(chart format) and transactional data (table format).

Users can interact with both the chart and the table. The initial view of the chart, visualizes the most important
aspects of the whole data set. Selecting a dimension within a chart area automatically filters all relevant

1914 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

information in the table area. For example, if a chart selection is Country=ABC, then all records associated with
this country selection are filtered in the table.

The Auto-hide feature is displayed in the hybrid (chart and table) view. When the feature is turned off, the table
records that are not affected by the chart selection are also displayed in the table. If the feature is turned on,
then only the records that are affected by the chart selection (for example, only the highlighted records) are
displayed in the table, In this case chart selection acts as an additional filter on the table. The table records
matching the selected chart context is highlighted.

 Note
Ensure that chart context dimensions are set as visible columns in the table for optimal accuracy of
highlights.

 Tip
Note that the hybrid view is available in laptops with a screen height that is larger than 900px. This mode is
not available for tabs or mobiles.

Related Information

Configuring the Content Area [page 1901]

Configuring Analytical List Page App Extensions

This section provides some of the advance configurations and extensions for your application.

For extensions common to all floorplans of SAP Fiori elements, see Extending SAP Fiori Elements-Based Apps
[page 1585]

Related Information

Analytical List Page [page 1868]
Refresh API [page 1916]
Smart Table Extensions [page 1916]
Chart Extensions [page 1919]
Creating Custom Filter [page 1920]
Defining Custom Actions [page 1923]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1915

Refresh API

Use the refreshBinding function (in Component.js) to refresh the header, filter, and content area
elements.

This helps you to reload the data for all components configured in ALP without triggering the browser refresh.
The selections in the filter bar (compact or visual filter) and the personalization settings (sorting, grouping, and
so on) are retained even after the refresh.

 Note
The main chart selection is lost during the refresh. This may result in the change of table data when
AutoHide is switched on for filter mode.

 Sample Code
Refreshing by using the controller extensions is defined by the application

 //By calling refreshBinding function directly .
 var component = this.getOwnerComponent(); component.refreshBinding();

Related Information

Configuring Analytical List Page App Extensions [page 1915]

Smart Table Extensions

Define custom actions for tables by configuring the descriptor and annotation files.

OnBeforeRebindTableExtension

Use onBeforeRebindTableExtension to define app-specific logic before the table is rendered. This allows you to
bind additional parameters from custom filters to the table query.

In the descriptor file, define the sap.ui.controllerExtensions and extend ALP controller
sap.suite.ui.generic.template.AnalyticalListPage.view.AnalyticalListPage as shown in
this sample.

"sap.ui5": { "_version": "1.1.0",
 …
 …
"extends": {
 "extensions": {

1916 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 "sap.ui.controllerExtensions": {

"sap.suite.ui.generic.template.AnalyticalListPage.controller.AnalyticalListPage":
 {
 "controllerName":
"sap.poc.ftu.apps.alr.ext.controller.AnalyticalListPageExt",
 "sap.ui.generic.app": {
 … …

Define the extended behavior in the extension method. This enables ALP to pass the event object for extracting
controls and other details.

sap.ui.controller(“sap.poc.ftu.apps.alr.ext.controller.AnalyticalListPageExt”,{ onBeforeRebindTableExtension: function(oEvent) {
 alert(‘onBeforeRebindTableExtension called!’);
}, }

Table Column Extensions

In the descriptor file, define sap.ui.viewExtensions to extend ALP view and to create custom columns.
Configure sap.suite.ui.generic.template.AnalyticalListPage.view.AnalyticalListPage to
extend the ALP view and AnalyticalTableColumnsExtension to extended columns and its fragments
(define within the app namespace) .

"sap.ui5": { "_version": "1.1.0",
 "extends": {
 "extensions": {
 "sap.ui.viewExtensions": {

"sap.suite.ui.generic.template.AnalyticalListPage.view.AnalyticalListPage": {
 "AnalyticalTableColumnsExtension|
CZ_EASILINEITEMS_SADL": { // The second part after the "|" operator is the
entity set
 "className": "sap.ui.core.Fragment",
 "fragmentName":
"sap.poc.ftu.apps.alr.ext.fragment.CustomColumn", // namespace of the
application having the custom fragment name
 "type": "XML"
 }
 }
 } // End of viewExtensions
 } // End of extensions
 },

 }

Fragment extension code sample:

<core:FragmentDefinition xmlns:core="sap.ui.core" xmlns="sap.m" xmlns:table="sap.ui.table">
 <table:AnalyticalColumn width="150px" autoResizable="true">
 <Label text="My Extended Column"/> // Column header name
 <table:template>
 <Label text="data"/> // value in each cell of the table
 </table:template>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1917

 <table:customData>
 <core:CustomData key="p13nData"
 value='\{"columnKey": "Test", "columnIndex" : "1"}' />
 </table:customData>
 </table:AnalyticalColumn> </core:FragmentDefinition>

Navigation Extension for Rows

ALP allows applications to do conditional navigation using the onListNavigationExtension API. ALP
allows you to decide on the target application based on the context available in the selected table record. You
can define different targets for each row in the table. You can also retain the standard ALP navigation
mechanism (inner app navigation to object page or navigation to an external application) while enabling app-
specific custom navigation to selected rows.

 Note
We recommend you use the navigateExternal() API as shown below to perform any external
navigation.

 Sample Code

onListNavigationExtension: function(oEvent) { var oNavigationController = this.extensionAPI.getNavigationController();
 var oBindingContext = oEvent.getSource().getBindingContext();
 var oObject = oBindingContext.getObject();
 // for notebooks we trigger external navigation for all others we use
internal navigation
 if (oObject.CostCenter == "300-1000") {
 oNavigationController.navigateExternal("ActualCostsKPIDetails");
 } else {
 // return false to trigger the default internal navigation
 return false;
 }
 // return true is necessary to prevent further default navigation
 return true; }

Related Information

Configuring Analytical List Page App Extensions [page 1915]
Defining Custom Actions [page 1923]

1918 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Chart Extensions

Define custom actions for a chart by configuring the descriptor and annotation files.

onBeforeRebindChartExtension

Use the onBeforeRebindChartExtension chart support controller extension to define application-specific
actions. This allows you to bind additional parameters, such as custom filters or chart queries.

In the app-descriptor file, define the sap.ui.controllerExtensions and extend the ALP controller
sap.suite.ui.generic.template.AnalyticalListPage.view.AnalyticalListPage as shown here:

"sap.ui5": { "_version": "1.1.0",
 …
 …
"extends": {
 "extensions": {
 "sap.ui.controllerExtensions": {

"sap.suite.ui.generic.template.AnalyticalListPage.view.AnalyticalListPage": {
 "controllerName":
"sap.poc.ftu.apps.alr.ext.controller.AnalyticalListPageExt",
 "sap.ui.generic.app": {
 … …

Define the extended behavior in the extension method. This enables ALP to pass the event object for extracting
controls and other details.

sap.ui.controller(“sap.poc.ftu.apps.alr.ext.controller.AnalyticalListPageExt”,{ onBeforeRebindChartExtension: function(oEvent) {
 alert(‘onBeforeRebindChartExtension called!’);
}, }

Related Information

Configuring Analytical List Page App Extensions [page 1915]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1919

Creating Custom Filter

Define custom filters for compact filters and KPI tags.

Compact Filters

Define custom filter view fragments, use view extensions and define extended fragments and controllers in the
application namespace as shown here:

"sap.ui5": { "_version": "1.1.0",
 "extends": {
 "extensions": {
 "sap.ui.controllerExtensions": { // Controller extension

"sap.suite.ui.generic.template.AnalyticalListPage.controller.AnalyticalListPage":
 { // ALP app view to be extended with controller
 "controllerName":
"analytics2.alr.ext.controller.CustomFiltersController", // extended Controller
declared using namespace
 ... // Other custom controllers
 ...
 } // End of ALP controller extensions
 }, // End of controller extensions
 "sap.ui.viewExtensions": { // View Extension

"sap.suite.ui.generic.template.AnalyticalListPage.view.AnalyticalListPage": { //
ALP app view to be extended with filter fragment
 "SmartFilterBarControlConfigurationExtension|
CZ_EASILINEITEMS_SADL": { // <Filter Bar Extension>|<Entity Set>
 "className": "sap.ui.core.Fragment",
 "fragmentName": "analytics2.alr.ext.fragments.CustomFilters", //
extended Fragment declared using namespace
 "type": "XML"
 },
 ... // Other view extensions
 ...
 } // End of ALP view extensions
 } // End of view extensions
 }
 }
}

Sample of a custom view XML fragment:

<core:FragmentDefinition xmlns="sap.m"
xmlns:smartfilterbar="sap.ui.comp.smartfilterbar" xmlns:core="sap.ui.core"> <smartfilterbar:ControlConfiguration key="CustomFilters" index="99"
visibleInAdvancedArea="true" label="Custom Filter" groupId="_BASIC">
 <smartfilterbar:customControl>
 <ComboBox id="CustomFilters-combobox">
 <core:Item key="0" text="Item1"/>
 <core:Item key="1" text="Item2"/>
 <core:Item key="2" text="Item3"/>
 </ComboBox>
 </smartfilterbar:customControl>
 </smartfilterbar:ControlConfiguration>
</core:FragmentDefinition>

1920 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Sample of a custom filter controller extension:

sap.ui.controller("analytics2.alr.ext.controller.CustomFiltersController", { onInitSmartFilterBarExtension: function(oEvent) {
 // the custom field in the filter bar might have to be bound to a custom
data model
 // if a value change in the field shall trigger a follow up action, this
method is the
 // place to define and bind an event handler to the field
 // Example:
 var oSmartFilterBar = oEvent.getSource();

oSmartFilterBar.getControlByKey("CustomFilters").attachSelectionChange(function(o
ChangeEvent){
 //code
 },this); Log.info("onInitSmartFilterBarExtension initialized"); },
 onBeforeRebindTableExtension: function(oEvent) {
 // usually the value of the custom field should have an effect on the
selected data in the table.
 // So this is the place to add a binding parameter depending on the value
in the custom field.
 },
 onBeforeRebindChartExtension: function(oEvent) {
 // usually the value of the custom field should have an effect on the
selected data in the chart.
 // So this is the place to add a binding parameter depending on the
value in the custom field.
 },
 getCustomAppStateDataExtension : function(oCustomData) {
 // the content of the custom field shall be stored in the app state, so
that it can be restored
 // later. For example, after a back navigation. The developer has to
ensure that the content of the
 // field is stored in the object that is returned by this method.
 // Example:
 var oComboBox = this.byId("CustomFilters-combobox");
 if (oComboBox){ oCustomData.CustomPriceFilter = oComboBox.getSelectedKey(); } },
 restoreCustomAppStateDataExtension : function(oCustomData) {
 // in order to restore the content of the custom field in the filter
bar. For example, after a
 // back navigation, an object with the content is handed over to this
method and the developer
 // has to ensure, that the content of the custom field is set accordingly
 // also, empty properties have to be set
 // Example:
 if (oCustomData.CustomPriceFilter !== undefined){ if (this.byId("CustomFilters-combobox")) { this.byId("CustomFilters-
combobox").setSelectedKey(oCustomData.CustomPriceFilter); } }
 }
});

 Remember
● The custom filters do not show up in visual filters.
● If you define logic in the onBeforeRebindChartExtension or onBeforeRebindTableExtension

to handle values that come from the custom filter fields, then these values are refreshed when the table

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1921

or chart area is refreshed. This ensures that custom filters are synchronized when the filter mode
changes.

● When you choose Clear, ALP triggers onClearFilterExtension, which clears all filter dimensions.
This means that you need to define the logic to handle the clear event for custom filters in the
application controller extension . For example:

onClearFilterExtension: function(oEvent) { // Logic for clearing extended filters
 'use strict';
 if (this.byId("CustomFilters-combobox")) {
 this.byId("CustomFilters-combobox").setSelectedKey(null);
 } }

Visual Filters

Use the onBeforeRebindVisualFilterExtension to customize the visual filter. Configure the extension
to:

● Modify the visual filter or parameter values
● Add a custom query parameter to the visual filter call
● Influence the sorting order

In this extension, you can also access the incoming navigation context of the app with the
getNavigationContext API.

onBeforeRebindVisualFilterExtension: function(sEntityType, sDimension, sMeasure,
oContext){ // oContext has filters, queryParameters, sorters,
entityParameters applicable for this specific visual filter 'use strict';
 var oNavigationContext =
this.extensionAPI.getNavigationContext(); //getting
incoming navigation context through extension API
 if (sDimension === “CostCenter”) {
 oContext.queryParameters.Type =
"Cost"; //adding custom query
parameter (It will be included in visual filter query as “?Type=”Cost”)

 if (oContext.entityParameters.P_DisplayCurrency === “USD”)
{ //Influencing applied parameters /
filters
 oContext.queryParameter.Country = “USA”;
 oContext.filters.push(new sap.ui.model.Filter("Product", "EQ",
"HT-1000"));
 }
 }
}

 Note
● The format for the date field is YYYY-MM-DDT00:00:00Z. For example, 2018-10-15T00:00:00Z.
● The format for date and time values from the SelectionVariant annotation is YYYY-MM-

DDT00:00:00.000Z (in UTC) or YYYY-MM-DDTHH:MM:SS.fff-HH:MM (local time with offset). For
example, 2018-09-03T12:46:00.000Z or 2018-09-03T12:46:12:123-7:00

1922 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

KPI Tags

You can add or modify the existing filters or parameter values using the extension API
onBeforeRebindFilterableKPIExtension. The applications can also change depending on the KPI's
entity type or KPI ID.

 Sample Code

onBeforeRebindFilterableKPIExtension: function(oSelectionVariant,
sEntityType, sKPIId) { 'use strict';
 // using this extension app can modify the existing filters and
parameters
 // and also add/remove/modify the custom filters applied to
FilterableKPIs
 if (sKPIId ===
"alp.tech.app::sap.suite.ui.generic.template.AnalyticalListPage.view.Analytica
lListPage::SEPMRA_C_ALP_SlsOrdItemCubeALPResults--
template::KPITag::kpi::KPINetProductPriceByCategory") {
 oSelectionVariant.addSelectOption("Product", "I", "EQ",
"HT-1502", null);
 }
 jQuery.sap.log.info("onBeforeRebindFilterableKPIExtension called!");
 } }

Related Information

Configuring Analytical List Page App Extensions [page 1915]

Defining Custom Actions

Define custom actions by using the extensions in the app-descriptor file. You can also define these custom
actions so that they appear on charts, tables, or header toolbars based on the filter property value (chart/
table/global).

 Note
To correctly integrate your app extension coding with SAP Fiori elements, use only the extensionAPI of
SAP Fiori elements. For more information, see Using the ExtensionAPI [page 1588].

Use the requiresSelection property to pass a row or record as a context. This ensures that the selection
context is available with the extensionAPI. By default, requiresSelection property is true.

Use the getSelectedContexts() API in the extensionAPI class to get the selection context. For buttons in
the chart toolbar, pass on the event ID as a parameter.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1923

Set "global": true to define a button in the header area. This takes precedence over determining and
filter settings that appear on the page header.

"sap.ui5": { "_version": "1.1.0",
 "extends": {
 "extensions": {
 "sap.ui.controllerExtensions": {
 "sap.suite.ui.generic.template.AnalyticalListPage.view.Analytical
ListPage": {
 "controllerName": "analytics2.ext.controller.ALPExt",
 "sap.ui.generic.app": {
 "ZCostCenterCostQuery0020": {
 "EntitySet": "ZCostCenterCostQuery0020",
 "Actions": {
 "Action A": {
 "id": "ActionA",
 "text": "{{Action A}}",
 "press": "onClickActionA",
 "global": true
 },
 "Action B": {
 "id": "ActionB_requiresSelection",
 "text": "{{Action B}}",
 "press": "onClickActionB",
 "filter": "table",
 "requiresSelection":false
 }
 "Action C: {
 "id": "ActionC_requiresSelection",
 "text": "{{Action C}}",
 "press": "onClickActionC",
 "filter": "chart",
 "requiresSelection":false
 }
 "Action D": {
 "id": "ActionD",
 "text": "{{Action D}}",
 "press": "onClickActionD",
 "filter": "table"
 }
 "Action E: {
 "id": "ActionE",
 "text": "{{Action E}}",
 "press": "onClickActionE",
 "filter": "chart"
 }
 } //End of Custom Actions
 } // End of entity type ZCostCenterCostQuery0020
 }
 } // End of ALP controllerExtensions
 } // End of controllerExtensions
 }
 },
 ,
 }

Custom actions defined in the application’s custom controller:

sap.ui.controller("analytics2.ext.controller.ALPExt"){ onBeforeRebindTableExtension: function(oEvent){
 console.log('onBeforeRebindTableExtension called!');
 },
 onBeforeRebindChartExtension: function(oEvent){
 console.log('onBeforeRebindChartExtension called!');

1924 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 },
 onClickActionA: function(oEvent){
 alert('Button A shows up only in table toolbar and is clicked toolbar!');
 },
 onClickActionB: function(oEvent){
 var contexts = this.extensionAPI.getSelectedContexts();
 alert('Button B which shows up in table toolbar only is clicked!');
 },
 onClickActionC: function(oEvent){
 var contexts = this.extensionAPI.getSelectedContexts(oEvent.ID);
 alert('Button C which shows up in chart toolbar only is clicked!');
 },
 onClickActionD: function(oEvent){
 alert('Button D which shows up in table toolbar only is clicked!');
 },
 onClickActionE: function(oEvent){
 alert('Button E which shows up in chart toolbar only is clicked!');
 }
}

Invoke Actions

This extension API lets you invoke any back-end action from the controller extensions (standard SAPUI5 API
methods). For example:

onClickActionSTTA_C_SO_SalesOrder_ND1: function(oEvent) { var oApi = this.extensionAPI;
 var mParameters = {
 "SalesOrderID": "500000052"
 };
 oApi.invokeActions("STTA_SALES_ORDER_ND_SRV_01/
AFF8CCF97ACESave_stta_i_so_salesorder_nd", [], mParameters);
}

Related Information

Configuring Analytical List Page App Extensions [page 1915]
Smart Table Extensions [page 1916]

Adapting the UI: Analytical List Page

You can extend and customize specific features on the analytical list page by using the UI adaption editor in the
SAP Web IDE.

 Note
Adapt the UI only for the use cases described here. Otherwise, control replacements might lead to changes
that can no longer be applied.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1925

Table 89:

Feature Setting

Collapse smart filter bar Configure the Header Expanded property for the tem
plate (ID is template:Page) to collapse and hide the filter
bar.

Freeze filter bar on scroll Configure the Preserve header state on scroll
property for the template (ID is template:Page) to
freeze the filter bar.

Variant management options Configure the following page variant (ID is
template:PageVariant) properties to enable the var
iant management options:

● Set as default: This property lets you set the de
fault variant for a user

● Public: This property lets you make the variant as
visible to users

Share icon Configure the Visibility property to hide or unhide the
share icon (ID is template:Share).

Clear button The clear button may appear on the smart filter bar or on the
header area based on the enabling of Go button. If the Clear
button is on the:

● Smart filer bar: Configure the Visibility property
of the clear button (ID is
template:SmartFilterBar-btnClear).

● Header bar: Configure the Visibility property of
the Clear button (ID is template:ClearButton).

Table toolbar Configure the Visibility property of the table toolbar
(ID is template:TableToolbar) to hide or unhide table
toolbar.

Page footer Configure the Visibility property of the page footer (ID
is template:FooterToolbar) to hide or unhide page
footer.

Chart Use the following smart chart (ID is chart, example C_Con
trItemMonitoringResults--chart) properties on the UI Adap
tation layer:

● Ignored Chart Types
● Selection Mode
● Chart tool tip
● Chart type selection button

1926 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Adapting the UI: Chart

Table 90:

Property Description

Ignored chart types Comma-separated value fields do not showup in the list of
available chart types.

No data Allows you to override the default text when chart has no
data to display.

Selection mode Lets you select the mode (single, multiple, or none).

Show chart type selection button Controls the visibility of the chart type button (users could
change the chart type).

Show download button Controls the visibility of the chart download button (users
can download the chart as an image)

Show legend button Controls the visibility of the legend button (users can toggle
the visibility of the chart legends)

Values for Ignored Chart Type
Table 91:

Chart Type ignoredChartTypes value

Bar Chart bar

Column Chart column

Line Chart line

Combined Column Line Chart combination

Pie Chart pie

Doughnut Chart donut

Scatter Plot scatter

Bubble Chart bubble

Heat Map heatmap

Bullet Chart bullet

Vertical Bullet Chart vertical_bullet

Stacked Bar Chart stacked_bar

Stacked Column Chart stacked_column

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1927

Chart Type ignoredChartTypes value

Combined Stacked Line Chart stacked_combination

Horizontal Combined Stacked Line Chart horizontal_stacked_combination

Bar Chart with 2 X-Axes dual_bar

Column Chart with 2 Y-Axes dual_column

Line Chart with 2 Y-Axes dual_line

Stacked Bar Chart with 2 X-Axes dual_stacked_bar

Stacked Column Chart with 2 Y-Axes dual_stacked_column

Combined Column Line Chart with 2 Y-Axes dual_combination

Combined Bar Line Chart with 2 X-Axes dual_stacked_combination

Combined Stacked Line Chart with 2 Y-Axes dual_horizontal_combination

Horizontal Combined Stacked Line Chart with 2 X-Axes dual_horizontal_stacked_combination

100% Stacked Bar Chart 100_stacked_bar

100% Stacked Column Chart 100_stacked_column

100% Stacked Bar Chart with 2 X-Axes 100_dual_stacked_bar

100% Stacked Column Chart with 2 Y-Axes 100_dual_stacked_column

Waterfall Chart waterfall

Horizontal Waterfall Chart horizontal_waterfall

Adapting the UI: Chart Toolbar

Table 92:

Sample ID Setting

C_ContrItemMonitoringResults--chart-btnPersonalisation Icon: For chart personalization

C_ContrItemMonitoringResults--chart-btnDrillDownText Visibility: To drill down within the chart toolbar

1928 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Adapting the UI: Table

Table 93:

Sample ID Setting

C_ContrItemMonitoringResults--table-nodata Allows you to override the default text when chart has no
data to display

C_ContrItemMonitoringResults--table-btnPersonalisation Icon: Lets you configure the table personalization

C_ContrItemMonitoringResults--table-btnExcelExport Icon: To export content to excel

C_ContrItemMonitoringResults--table Show Row Count

Adapting the UI: Table Column

Each column of the smart table can also be tweaked in UI Adaptation (sample ID is
C_ContrItemMonitoringResults--PurchaseContract). The smart table columns expose several
properties for this purpose. Some of them are listed here:

Table 94:

Property Setting

Visible Hide or unhide a column

Width Adjust the column width

Auto Resizable Expand column to the maximum width of the content

InResult Ensures the column is always used in the query, which af
fects the aggregation level

Resizable Resize column width

Show Sort Menu Entry Displays column with a sort tab for personalization

Sort Order Allows sorting

Sorted Displays sorted items when sort is available in column
header

Summed Displays the total sum of a column

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1929

Overview Pages

An overview page is a data-driven SAP Fiori application built using SAPUI5 technology, OData services, and
annotations for organizing large amounts of information.

Overview pages provide quick access to vital business information at a glance, in the form of visual, actionable
cards. The user-friendly experience makes viewing, filtering, and acting upon data quick and simple. Business
users can see the big picture at a glance, and also focus on the most important tasks, enabling faster decision
making as well as immediate action.

The application lets you create several cards for different types of content that helps in visualizing information
in an attractive and efficient way. You can create overview pages and add cards to the page using the overview
page wizard in SAP Web IDE.

The displayed data is fully interactive, with clickable areas for easy navigation to relevant applications. Based
on SAP Fiori, overview pages organize action items with a fully responsive user interface. Users can access
overview pages from SAP Fiori launchpad and narrow down the information displayed, or opt to hide cards to
focus on a particular topic.

The overview page application contains the following main components:

● Application header: Provides a description of the area for which this application provides an overview (for
example, procurement or sales). From the header area, users can change user account settings and
manage cards.

● Smart filter: Provides application-level filters for changing the level of data displayed in the cards. For
example, you could use the filter to display only transactions larger than $10,000, only items lighter than
50kg, and so on. .

● Cards: A card is a smart component that uses UI annotation to render its content. Each card is bound to a
single entity set in a data source. A card may display a donut or bar chart, or a table. Stack cards contain a
set of quick view cards, which can be viewed in an object stream. Cards are displayed on the overview page
in up to five responsive columns and can be rearranged by dragging and dropping.

Overview page application instances consist of a UI component that extends the overview page application
component and a manifest file that contains the application configuration.

1930 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

● Analytical Cards [page 1976]
● Stack Cards [page 1970]
● List Cards [page 1953]
● List Cards [page 1953]
● List Cards [page 1953]
● Table Cards [page 1937]
● Stack Cards [page 1970]
● Link List Cards [page 1963]
● Overview Pages [page 1930]

More Information

For more information about the overview page plugin, see Building an App Using SAP Web IDE [page 1553].

Descriptor Configuration

The descriptor file (manifest.json) is an application configuration file that contains valid entries for
initializing an application.

The manifest.json file defines static information about the application, such as the name of the application or
the location of various files. It is written in JavaScript Object Notation (JSON) format.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1931

 Sample Code
Descriptor Sample Settings

"sap.ovp": {//section for ovp-specific app descriptor settings "globalFilterModel": "ZModelName", //OData model that contains entity
definitions relevant for global filters
 "globalFilterEntityType": "ZFilterEntityType", //Represents the entity to
use as a global filter in the smart filter bar control
 “globalFilterEntitySet”: “ZFilterEntitySet”, //Represents the entity set
to use as a global filter in the smart filter bar control
 "containerLayout": "resizable", //Represents the layout of the card
container, as fixed or resizable. The default value is fixed.
 “smartVariantRequired”: true, //Represents a switch to activate smart
variant management in the global filters. The default value is true.
 “showDateInRelativeFormat”: false, //Represents a switch to enable or
disable relative/normal date formatting in OVP applications
 "enableLiveFilter": false, //Represents the switch to activate live
update in the global filters, else manual update is required by clicking the
Go button
 ”imageSupported": true, //Allows the condensed list card to show images
or icons
 "considerAnalyticalParameters": true, //Flag to enable/disable analytical
parameter support for smart filter bar
 “refreshIntervalInMinutes”: 2, //Time interval in minutes to auto refresh
the card models
 “useDateRangeType”: true, //Flag to enable or disable semantic date range
control for the Smart filter bar. The default value is false.
 “cards”: { //An object of cards
 “card01”: { //each card will contain the following
 "model": “ZCard1Model”, //Model for the card
 "template": “sap.ovp.cards.list”,//Card component path to use for this
card
 “settings”: {
 “title”: “card title”, //Language-dependent title of the card - used in
the card header
 “subTitle”: “sub title”, //Language-dependent subtitle of the card - used
in the card header
 “entitySet”: “zCard1EntitySet”, //Entity set displayed in this card
 “"valueSelectionInfo": “text for KPI Header”, //Additional information
relevant for the KPI Header
 "listFlavor": “Standard”, //Represents the flavor of the list to use in
this card. The flavor can be bar or standard.
 “listType”: “Extended”, //Represents the type of list to use for this
card. The list can be extended to display more information or condensed to
take up less space on the card
 “sortBy”: “zPropertyForSort”,//Property name to sort by this entity set
 “sortOrder“: “Ascending”//Sort order (ascending or descending)
 "staticContent": {}, //Applicable for static link list cards
 "annotationPath": “”, // Represents the annotation path "kpiAnnotationPath":"com.sap.vocabularies.UI.v1.KPI#AllActualCosts", //
Represents the KPI annotation path"selectionAnnotationPath": “”, //
Represents the selection annotation path "chartAnnotationPath": “”,//Represents the chart annotation
path
 "presentationAnnotationPath": “”, //Represents the
presentation annotation path
 "dataPointAnnotationPath": “”, //Represents the data point
annotation path
 "identificationAnnotationPath": “”, //Represents the
identification annotation path
 "dynamicSubtitleAnnotationPath": “”, //Represents the dynamic
subtitle annotation path
 "requireAppAuthorization": “” //Represents the cards for
which authorization is required "chartAnnotationPath":
"com.sap.vocabularies.UI.v1.Chart#SalesShareBubble",

1932 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 "presentationAnnotationPath":
"com.sap.vocabularies.UI.v1.PresentationVariant#SalesShareBubble",
 "identificationAnnotationPath":
"com.sap.vocabularies.UI.v1.Identification#Eval_by_Currency_Scatter",
 "selectionAnnotationPath" :
"com.sap.vocabularies.UI.v1.SelectionVariant#Eval_by_Currency_ColumnStacked",
 "navigation": "noHeaderNav" //Allows you to disable
navigation from the analytical list card header area

 }
} } }

Users can resize the card area (increase or decrease) in the resizable card layout. It is a grid-based layout that
allows you to resize a card in horizontal and vertical directions. Configure the OVP section in the descriptor file
with the "containerLayout": "resizable" property.

To load cards with specific requirements, define a default size as part of the card definition in the descriptor file.

"defaultSpan": { "rows": 7, \\Number of line items to display for table and list cards
 "cols": 2 \\Card width calculated based on window width
 "showOnlyHeader": true/false, \\To render only the card header
 "minimumTitleRow": 1/2/3, \\Display more text in the title, number of lines to
be shown
 "minimumSubTitleRow": 1/2 \\Display more text in the subtitle, number of lines
to be shown }

Configuring Dependencies to SAPUI5 Libraries

To improve loading time, you can define dependencies to SAPUI5 libraries required by your application.

Overview page application instances are dependent on the sap.ovp SAPUI5 library, and the dependencies are
configured in the "sap.ui5" dependencies section.

 Sample Code

"sap.ui5": { ...
 "dependencies": {
 "minUI5Version": "1.32.0",
 "libs": {
 "sap.ovp": {
 "minVersion": "1.32.0"
 }
 }
 },
 ... }

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1933

Configuring the Global Filter

The global filter provides the ability for end users to filter the data displayed in one or more cards.

The global filter is implemented using the sap.ui.comp.smartfilterbar.SmartFilterBar control. This
control enables end users to persist their preferred filters, and share them with other users. The filter presents
filterable properties according to the configured entity type, and is applied to all cards that have the same
property name in their entity type. Also, you can define the filter you want to add to the filter bar by default by
using the UI.SelectionFields configuration in the annotations file.

You configure the global filter in the "sap.ovp" section using the following properties:

● globalFilterModel: the OData model to use for the global filter
● globalFilterEntityType: the entity type that contains the filterable properties

 Sample Code

"sap.ovp": { "_version": "1.1.0",
 "globalFilterModel": "ZCD204_EPM_DEMO_SRV",
 "globalFilterEntityType": "SalesOrder",
 "cards": {
 ...
 } }

Enabling Basic Search

The search field on the smart filter bar lets you search for a value across all searchable entity sets. To enable
the search field, set the property "showBasicSearch":"true" in the descriptor file.

The search functionality is applicable for entity types that has:

● sap:searchable=“true” in the metadata file
● SearchRestrictions annotation present for the entity set

Overview Page Card

A card is a smart component that uses UI annotation to render its content. It contains a header area and a
footer area.

Each card is bound to a single entity set in a data source and configuration is provided in the
"sap.ovp"..."cards" object. The cards object contains the list of cards to display in the application.

The card ID is the property name and the card configuration is provided in an object as the value. At runtime,
cards are displayed in the order that they appear in the application descriptor.

1934 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Card Header

All cards have a static header section that can be configured in the descriptor configuration file. The card
header includes the properties: category, title, and subTitle.

The title of a card is mandatory. The subtitle is only mandatory if the card contains data point annotations
(such as a KPI header). The title and subtitle can contain a maximum of two lines. The header also contains
counter information that displays how many records are being presented in the card out of the total existing
records, according to the current filter.

 Note
The count information displays only in table and list cards. For more information, see Table Cards [page
1937] and List Cards [page 1953].

 Sample Code

"sap.ovp": { "_version": "1.1.0",
 "globalFilterModel": "ZCD204_EPM_DEMO_SRV",
 "globalFilterEntityType": "SalesOrder",
 "cards": {
 "card00": {
 "model": "ZCD204_EPM_DEMO_SRV",
 "template": "sap.ovp.cards.stack",
 "settings": {
 ...
 "category": "{{card00_category}}",
 "title": "{{card00_title}}",
 "subTitle ": "{{card00_subTitle}}",
 ...
 }
 },
 "card01": {
 "model": "ZCD204_EPM_DEMO_SRV",
 "template": "sap.ovp.cards.table",
 "settings": {
 "title": "{{card01_category}}",
 ...
 }
 },
 ...
 } }

KPI Headers
The generic card provides a dynamic section that can display a key performance indicator (KPI), and related
information, in the header. The KPI is an aggregated value, as defined in the annotation file. To display a KPI
header in a card, make sure that your OData service supports aggregation of values and the data is coming
from the backend only. The KPI header can contain a KPI value, including its unit of measure, its trend, and
percentage of change, and KPI header description.

The KPI extension uses the following annotation terms:

● com.sap.vocabularies.UI.v1.DataPoint: Used to retrieve information about the title and the value
of the KPI.

● com.sap.vocabularies.UI.v1.PresentationVariant: Used to retrieve information about the fields
by which to group, and sorting information.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1935

● com.sap.vocabularies.UI.v1.SelectionVariant: Used to retrieve information about the filters.

 Note
For more information about these annotations, see Annotations Used in Overview Pages [page 2010].

These annotation terms can be configured in the application manifest file, as shown in the following example:

 Sample Code
 "sap.ovp": {
 ...
 "cards": {
 ...
 "card02": {
 "model": "ZCD204_EPM_DEMO_SRV",
 "template": "sap.ovp.cards.charts.bubble",
 "settings": {
 "entitySet": "SalesOrders",
 "identificationAnnotationPath":
"com.sap.vocabularies.UI.v1.Identification#bubble",
 "selectionAnnotationPath":
"com.sap.vocabularies.UI.v1.SelectionVariant#bubble",
 "chartAnnotationPath":
"com.sap.vocabularies.UI.v1.Chart#bubble",
 "presentationAnnotationPath":
"com.sap.vocabularies.UI.v1.PresentationVariant#bubble",
 "dataPointAnnotationPath":
"com.sap.vocabularies.UI.v1.DataPoint#bubble"
 }
 },
 ...
 }
}

Types of Cards

Overview pages may contain transactional cards, such as table, list, stack, quick view cards, and analytical
chart cards such as line, bubble, donut, column, and bullet chart cards.

The following is a list of available cards:

Card Type Description

Table Table cards display a list of records according to the configuration in the
com.sap.vocabularies.UI.v1.LineItem term. Table cards displays data in a 3-col
umn table layout.

List List cards display lists of records according to the configuration in the
com.sap.vocabularies.UI.v1.LineItem term. List cards display up to six fields of
data in each list item.

Link List Link list cards display a list of links with an image or icon and a (optional) subtitle for each of the
links.

1936 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Card Type Description

Stack Stack cards aggregate a set of cards of the same type, which are based on a common topic or
action. When clicked, stack cards can display up to 20 cards in an object stream.

Quick View Quick view cards display detailed information about a single record, in greater depth than would
be displayed in a table or list.

Analytical Chart Analytical chart cards show data in a variety of chart formats. They can be line, bubble, donut,
column, stacked column, vertical column, combination, or scatter chart cards. The value of the
template property points to the generic card component
sap.ovp.cards.charts.analytical.

You can set all cards to refresh automatically for a given interval. The minimum and default refresh time is one
minute. To enable auto refresh, configure the refreshIntervalInMinutes property in the descriptor
configuration file.

"sap.ovp": { "globalFilterModel": "salesOrder",
 "globalFilterEntityType": "GlobalFilters",
 ...
 ... "refreshIntervalInMinutes": 12, "disableTableCardFlexibility": false, "cards": {

Table Cards

A table card displays a list of records in a 3-column table layout.

To create a table card, you need these annotations:

 Note
To add annotations, use the SAP WebIDE annotation modular or the SAP WebIDE code editor. For more
information, see Building an App Using SAP WebIDE

 Note
(Optional) You can configure smart links in table cards to access quick links.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1937

● #unique_724/unique_724_Connect_42_subsection-im1 [page 1938]
● #unique_724/unique_724_Connect_42_subsection-im2 [page 1939]
● #unique_724/unique_724_Connect_42_subsection-im3 [page 1940]
● #unique_724/unique_724_Connect_42_subsection-im4 [page 1942]
● #unique_724/unique_724_Connect_42_subsection-im5 [page 1943]

Hover over each action for a description. Click the action for more information.

Descriptor Settings: Title
Property: title

Description: Configuring this property displays the card title at the top of the table card.

Configuration Sample:

 "sap.ovp": { "globalFilterModel": "salesOrder",
 "globalFilterEntityType": "GlobalFilters",
 ...
 ...
 "cards": {
 "card014": {
 "model": "salesOrder",
 "template": "sap.ovp.cards.table",
 "settings": {

1938 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 "title": "Purchase Forecast", "entitySet": "SalesShare",
 ...
 ...
 ...
 }
]
 } },

Descriptor Settings: Subtitle

Property: subTitle

Description: Configuring this property displays the card subtitle below the title of the table card.

Configuration Sample:

 "sap.ovp": { "globalFilterModel": "salesOrder",
 "globalFilterEntityType": "GlobalFilters",
 ...
 ...
 "cards": {
 "card014": {
 "model": "salesOrder",
 "template": "sap.ovp.cards.table",
 "settings": {
 "title": "Sales Forecast", "subTitle": "per Supplier", "entitySet": "SalesShare",
 ...
 ...
 }
]
 } },

You can display the unit of measure next to numeric values by providing the sap:unit attribute in the OData
metadata file or by annotating the unit in the annotation document. For example, if you have the following data,
and want to display 850 kg after the subtitle text

{ CurrencyCode:"KG"
 GrossAmount:850 }

Use one of the following options:

Option 1: Define sap:unit in the metadata

<Property Name="CurrencyCode" Type="Edm.String" MaxLength="5"
sap:label="Currency" sap:updatable="false" sap:semantics="currency-code"/> <Property Name="GrossAmount" Type="Edm.Decimal" Precision="16" Scale="3"
sap:unit="CurrencyCode" sap:label="Gross Amt." sap:creatable="false"
sap:updatable="false"/>

Option 2: Define Org.OData.Measures.V1.ISOCurrency in annotations

<Annotations Target="GWSAMPLE_BASIC.SalesOrder/GrossAmount"> <Annotation Term="Org.OData.Measures.V1.ISOCurrency" Path="CurrencyCode"/> </Annotations>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1939

KPI annotation

Descriptor Settings

"sap.ovp": {//section for ovp-specific app descriptor settings ...
 "kpiAnnotationPath":"com.sap.vocabularies.UI.v1.KPI#AllActualCosts", //
Represents the KPI annotation path

 ...
}
}

Annotation Sample

<Annotation Term="UI.KPI" Qualifier="AllActualCosts"> <Record Type="UI.KPIType">
 <PropertyValue Property="Detail">
 <Record Type="UI.KPIDetailType">
 <PropertyValue Property="DefaultPresentationVariant"
Path="@UI.PresentationVariant#Eval_by_Currency1" />
 <PropertyValue Property="AlternativePresentationVariants">
 <Collection>
 <Path>@UI.PresentationVariant#Eval_by_Currency_Column</Path>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="SemanticObject" String="Action" />
 <PropertyValue Property="Action" String="toappnavsample" />
 </Record>
 </PropertyValue>
 <PropertyValue Property="SelectionVariant"
Path="@UI.SelectionVariant#Eval_by_Currency_1" />
 <PropertyValue Property="DataPoint" Path="@UI.DataPoint#Eval_by_Country-
Generic" />
 <PropertyValue Property="ID" String="String for KPI Annotation" />
 </Record> </Annotation>

 Sample Code
PresentationVariant annotation

<Annotation Term="UI.PresentationVariant" Qualifier="Eval_by_Currency1"> <Record>
 <PropertyValue Property="MaxItems" Int="5" />
 <PropertyValue Property="GroupBy">
 <Collection>
 <PropertyPath>Country</PropertyPath>
 <PropertyPath>Currency</PropertyPath>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="SortOrder">
 <Collection>
 <Record>
 <PropertyValue Property="Property" PropertyPath="TotalSales" />
 <PropertyValue Property="Descending" Boolean="true" />
 </Record>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="Visualizations">
 <Collection>
 <AnnotationPath>@UI.Chart#Eval_by_Currency_Donut</AnnotationPath>
 </Collection>
 </PropertyValue>
 </Record>

1940 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

</Annotation>

 Sample Code
SelectionVariant annotation

<Annotation Term="UI.SelectionVariant" Qualifier="Eval_by_Currency_1"> <Record>
 <PropertyValue Property="SelectOptions">
 <Collection>
 <Record>
 <PropertyValue Property="PropertyName"
PropertyPath="Country" />
 <PropertyValue Property="Ranges">
 <Collection>
 <Record>
 <PropertyValue Property="Sign"
EnumMember="UI.SelectionRangeSignType/I" />
 <PropertyValue Property="Option"
EnumMember="UI.SelectionRangeOptionType/EQ" />
 <PropertyValue Property="Low" String="IN" />
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="Parameters">
 <Collection>
 <Record Type="UI.Parameter">
 <PropertyValue Property="PropertyName"
PropertyPath="Currency_Target" />
 <PropertyValue Property="PropertyValue" String="EUR" />
 </Record>
 <Record Type="UI.Parameter">
 <PropertyValue Property="PropertyName"
PropertyPath="UoM_Target" />
 <PropertyValue Property="PropertyValue" String="KGM" />
 </Record>
 </Collection>
 </PropertyValue>
 </Record> </Annotation>

 Sample Code
DataPoint annotation

<Annotation Term="UI.DataPoint" Qualifier="Eval_by_Country-Generic"> <Record Type="UI.DataPointType">
 <PropertyValue Property="Title" String="Sales India - Generic Card" />
 <PropertyValue Property="Value" Path="Sales" />
 <PropertyValue Property="ValueFormat">
 <Record>
 <PropertyValue Property="ScaleFactor" Int="2" />
 <PropertyValue Property="NumberOfFractionalDigits" Int="1" />
 </Record>
 </PropertyValue>
 <PropertyValue Property="CriticalityCalculation">
 <Record>
 <PropertyValue Property="ImprovementDirection"
EnumMember="UI.ImprovementDirectionType/Minimizing" />
 <PropertyValue Property="DeviationRangeHighValue" String="7300" />
 <PropertyValue Property="ToleranceRangeHighValue" String="7200" />

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1941

 </Record>
 </PropertyValue>
 <PropertyValue Property="TargetValue" String="2.000 " />
 <PropertyValue Property="TrendCalculation">
 <Record>
 <PropertyValue Property="ReferenceValue" String="5201680" />
 <PropertyValue Property="DownDifference" Int="10000000.0" />
 </Record>
 </PropertyValue>
 </Record> </Annotation>

Configuring View Switch

Property: valueSelectionInfo

Description: Configuring this property allows you to define a dropdown list to filter/view data at the card level.

Descriptor Settings

 "sap.ovp": { "globalFilterModel": "salesOrder",
 "globalFilterEntityType": "GlobalFilters",
 "showDateInRelativeFormat": false,
 "disableTableCardFlexibility": false,
 "considerAnalyticalParameters": true,
 "useDateRangeType": false,
 "cards": {
 "card014": {
 "model": "salesOrder",
 "template": "sap.ovp.cards.table",
 "settings": {
 "title": "Sales Forecast",
 "subTitle": "per Supplier",
 "valueSelectionInfo": "Value Selection Info",
 "entitySet": "SalesShare",
 "tabs": [
 {
 "dynamicSubtitleAnnotationPath":
"com.sap.vocabularies.UI.v1.HeaderInfo#dynamicSubtitle",
 "annotationPath": "com.sap.vocabularies.UI.v1.LineItem#View1",
 "selectionAnnotationPath":
"com.sap.vocabularies.UI.v1.SelectionVariant#line1",
 "presentationAnnotationPath":
"com.sap.vocabularies.UI.v1.PresentationVariant#line",
 "identificationAnnotationPath":
"com.sap.vocabularies.UI.v1.Identification",
 "dataPointAnnotationPath":
"com.sap.vocabularies.UI.v1.DataPoint#line", "value": "{{dropdown_value2}}" },
 {
 "dynamicSubtitleAnnotationPath":
"com.sap.vocabularies.UI.v1.HeaderInfo#dynamicSubtitle",
 "annotationPath": "com.sap.vocabularies.UI.v1.LineItem#View4",
 "identificationAnnotationPath":
"com.sap.vocabularies.UI.v1.Identification#item2",
 "dataPointAnnotationPath":
"com.sap.vocabularies.UI.v1.DataPoint#line", "value": "{{dropdown_value4}}" }
]
 } },

1942 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Configuring the Table Area
Annotation: LineItem

Description: Configuring this annotation displays the table header title (Label property) and the
corresponding values (Value property) for the row items.

Descriptor Settings

 "sap.ovp": { "globalFilterModel": "salesOrder",
 "globalFilterEntityType": "GlobalFilters",
 "showDateInRelativeFormat": false,
 "disableTableCardFlexibility": false,
 "considerAnalyticalParameters": true,
 "useDateRangeType": false,
 "cards": {
 "card014": {
 "model": "salesOrder",
 "template": "sap.ovp.cards.table",
 "settings": {
 "title": "Sales Forecast",
 "subTitle": "per Supplier",
 "valueSelectionInfo": "Value Selection Info",
 "entitySet": "SalesShare",
 "tabs": [
 {
 "dynamicSubtitleAnnotationPath":
"com.sap.vocabularies.UI.v1.HeaderInfo#dynamicSubtitle", "annotationPath": "com.sap.vocabularies.UI.v1.LineItem#View1", "selectionAnnotationPath":
"com.sap.vocabularies.UI.v1.SelectionVariant#line1",
 "presentationAnnotationPath":
"com.sap.vocabularies.UI.v1.PresentationVariant#line",
 "identificationAnnotationPath":
"com.sap.vocabularies.UI.v1.Identification",
 "dataPointAnnotationPath":
"com.sap.vocabularies.UI.v1.DataPoint#line",
 "value": "{{dropdown_value2}}"
 },
 {
 "dynamicSubtitleAnnotationPath":
"com.sap.vocabularies.UI.v1.HeaderInfo#dynamicSubtitle", "annotationPath": "com.sap.vocabularies.UI.v1.LineItem#View4", "identificationAnnotationPath":
"com.sap.vocabularies.UI.v1.Identification#item2",
 "dataPointAnnotationPath":
"com.sap.vocabularies.UI.v1.DataPoint#line",
 "value": "{{dropdown_value4}}"
 }
]
 } },

Annotation Sample for LineItem#View4

 <Annotation Term="com.sap.vocabularies.UI.v1.LineItem"
Qualifier="View4"> <Collection>
 <Record Type="com.sap.vocabularies.UI.v1.DataField">
 <PropertyValue Property="Label" String="Order ID"/>
 <PropertyValue Property="Value" Path="SalesOrderID"/>
 </Record>
 <Record Type="com.sap.vocabularies.UI.v1.DataField">
 <PropertyValue Property="Label" String="Customer"/>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1943

 <PropertyValue Property="Value"
Path="ToBusinessPartner/EmailAddress"/>
 </Record>
 <Record Type="com.sap.vocabularies.UI.v1.DataField">
 <PropertyValue Property="Label" String="Customer"/>
 <PropertyValue Property="Value" Path="CustomerName"/>
 </Record>
 <Record
Type="com.sap.vocabularies.UI.v1.DataFieldForAnnotation">
 <PropertyValue Property="Label" String="TaxAmount"/>
 <PropertyValue Property="Target"
AnnotationPath="@com.sap.vocabularies.UI.v1.DataPoint#TaxAmount"/>
 </Record>
 </Collection> </Annotation>

Annotation Sample for DataPoint#TaxAmount

 <Annotation Term="com.sap.vocabularies.UI.v1.DataPoint"
Qualifier="TaxAmount"> <Record Type="com.sap.vocabularies.UI.v1.DataPointType">
 <PropertyValue Property="Title" String="TaxAmount"/>
 <PropertyValue Property="Value" Path="TaxAmount"/>
 </Record> </Annotation>

The com.sap.vocabularies.UI.v1.LineItem term can be configured in the application manifest file by
setting the annotationPath property with a qualifier, as shown in the example below. If the
annotationPath property is not configured, the com.sap.vocabularies.UI.v1.LineItem term, without
a qualifier, is used.

 Sample Code

"sap.ovp": { ...
 "disableTableCardFlexibility": false,
 ...
 "card02": {
 "model": "salesOrder",
 "template": "sap.ovp.cards.table",
 "settings": {
 "title": "Sales Orders With Analytical Header",
 "subTitle": "Sales Orders With Analytical Header",
 "listFlavor": "bar",
 "listType": "extended",
 "entitySet": "SalesOrderSet",
 "dataPointAnnotationPath":
"com.sap.vocabularies.UI.v1.DataPoint#line_without_trend",
 "selectionAnnotationPath":
"com.sap.vocabularies.UI.v1.SelectionVariant#line1",
 "annotationPath": "com.sap.vocabularies.UI.v1.LineItem#View1",
 "presentationAnnotationPath":
"com.sap.vocabularies.UI.v1.PresentationVariant#line"
 }
 },
 ...
 } }

You can use different com.sap.vocabularies.UI.v1.LineItem annotations for different card instances of
the same entity type by using different qualifiers and setting the annotationPath property with the qualifier
in the card configuration. For example com.sap.vocabularies.UI.v1.LineItem#Qualifier1.

1944 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

If you set "disableTableCardFlexibility": true, then at runtime, DataField records are sorted
according to importance set in the com.sap.vocabularies.UI.v1.ImportanceType annotation, and their
order of entry. The first two DataField records are displayed in the first two columns of the table. If there is a
DataFieldForAnnotation record that has a DataPoint target, it is used for the third column and its value is
highlighted according to the criticality of the DataPoint. If no DataFieldForAnnotation is defined, the next
DataField record is displayed in the third column.

If you set "disableTableCardFlexibility": false, then at runtime, table columns are sorted according
to the importance set in the com.sap.vocabularies.UI.v1.ImportanceType annotation, and their order
of entry.

 Note
If a DataField record points to a path that exists in a DataPoint target, it is skipped so that the property
is not displayed more than once in the same table.

Example

In this example, the first column in the table displays Product Name, the second column displays Supplier,
and the third column displays Weight Measure (according to the DataPoint target).

 Sample Code

<Annotation Term="com.sap.vocabularies.UI.v1.DataPoint"
Qualifier="WeightMeasure"> <Record Type="com.sap.vocabularies.UI.v1.DataPointType">
 <PropertyValue Property="Title" String="Weight"/>
 <PropertyValue Property="Description" Path="Name"/>
 <PropertyValue Property="Value" Path="WeightMeasure"/>
 <PropertyValue Property="CriticalityCalculation">
 <Record
Type="com.sap.vocabularies.UI.v1.CriticalityCalculationType">
 <PropertyValue Property="ImprovementDirection"
EnumMember="com.sap.vocabularies.UI.v1.CriticalityCalculationType/Maximize"/>
 <PropertyValue Property="ToleranceRangeLowValue" Int="2.5"/>
 <PropertyValue Property="DeviationRangeLowValue" Int="4.3"/>
 </Record>
 </PropertyValue>
 </Record>
</Annotation>
<Annotation Term="com.sap.vocabularies.UI.v1.LineItem">
 <Collection>
 <Record Type="com.sap.vocabularies.UI.v1.DataField">
 <PropertyValue Property="Label" String="Product ID"/>
 <PropertyValue Property="Value" Path="ProductID"/>
 </Record>
 <Record Type="com.sap.vocabularies.UI.v1.DataField">
 <PropertyValue Property="Label" String="Category"/>
 <PropertyValue Property="Value" Path="Category"/>
 </Record>
 <Record Type="com.sap.vocabularies.UI.v1.DataField">
 <PropertyValue Property="Label" String="Product Name"/>
 <PropertyValue Property="Value" Path="Name"/>
 <Annotation Term="com.sap.vocabularies.UI.v1.Importance"
EnumMember="com.sap.vocabularies.UI.v1.ImportanceType/High"/>
 </Record>
 <Record Type="com.sap.vocabularies.UI.v1.DataField">

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1945

 <PropertyValue Property="Label" String="Supplier"/>
 <PropertyValue Property="Value" Path="SupplierName"/>
 <Annotation Term="com.sap.vocabularies.UI.v1.Importance"
EnumMember="com.sap.vocabularies.UI.v1.ImportanceType/High"/>
 </Record>
 <Record Type="com.sap.vocabularies.UI.v1.DataField">
 <PropertyValue Property="Label" String="Unit Price"/>
 <PropertyValue Property="Value" Path="Price"/>
 <Annotation Term="com.sap.vocabularies.UI.v1.Importance"
EnumMember="com.sap.vocabularies.UI.v1.ImportanceType/High"/>
 </Record>
 <Record Type="com.sap.vocabularies.UI.v1.DataFieldForAnnotation"
Qualifier="WeightMeasure">
 <PropertyValue Property="Label" String="Weight Measure"/>
 <PropertyValue Property="Target"
AnnotationPath="@com.sap.vocabularies.UI.v1.DataPoint#WeightMeasure"/>
 </Record>
 </Collection> </Annotation>

Smart Links

Define a semantic object for the entity set and its property using the annotation target to enable smart links in
a table card. For example:

<Annotations Target="GWSAMPLE_BASIC.SalesOrder/SalesOrderID"> <Annotation Term="com.sap.vocabularies.Common.v1.SemanticObject"
String="OVP" /> </Annotations>

Table cards also let you view contact information if you have defined the
com.sap.vocabularies.Communication.v1.Contact annotation.

<Annotation Term="com.sap.vocabularies.UI.v1.LineItem"
Qualifier="NewSalesOrders"> <Collection>
 <Record Type="com.sap.vocabularies.UI.v1.DataField">
 <PropertyValue Property="Label" String="Order ID (Company)"/>
 <PropertyValue Property="Value" Path="SalesOrderID"/>
 </Record>
 <Record Type="com.sap.vocabularies.UI.v1.DataFieldForAnnotation">
 <PropertyValue Property="Label" String="Created by (Role)" />
 <PropertyValue Property="Target"
AnnotationPath="ToBusinessPartner/
@com.sap.vocabularies.Communication.v1.Contact" />
 </Record>
 </Collection> </Annotation>

<Annotation Term="com.sap.vocabularies.Communication.v1.Contact"> <Record>
 <PropertyValue Property="tel">
 <Collection>
 <Record>
 <PropertyValue Property="type"
EnumMember="com.sap.vocabularies.Communication.v1.PhoneType/fax" />
 <PropertyValue Property="uri" Path="FaxNumber" />
 </Record>
 <Record>

1946 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 <PropertyValue Property="type"
EnumMember="com.sap.vocabularies.Communication.v1.PhoneType/work
com.sap.vocabularies.Communication.v1.PhoneType/pref" />
 <PropertyValue Property="uri" Path="PhoneNumber" />
 </Record>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="email">
 <Collection>
 <Record>
 <PropertyValue Property="type"
EnumMember="com.sap.vocabularies.Communication.v1.ContactInformationType/pref
com.sap.vocabularies.Communication.v1.ContactInformationType/work" />
 <PropertyValue Property="address" Path="EmailAddress" />
 </Record>
 </Collection>
 </PropertyValue>
 </Record> </Annotation>

Text Arrangement

The text arrangement annotation lets you to format of text.

<Annotations xmlns="http://docs.oasis-open.org/odata/ns/edm"
Target="GWSAMPLE_BASIC.SalesOrder/CustomerID"> <Annotation Term="com.sap.vocabularies.Common.v1.Text" Path="Supplier_Name"/>
 <Annotation Term="com.sap.vocabularies.UI.v1.TextArrangement"
EnumMember="com.sap.vocabularies.UI.v1.TextArrangementType/TextLast" /> </Annotations>

In the preceding example, the text Customer is bound to the ContactID property and appears as shown in the
table:

Text Arrangement Type Result

TextLast ContractID (Customer)

TextFirst Customer (ContractID)

TextOnly Customer

Text Alignment

The DataPoint or DataField is aligned as shown in the table below:

Annotation Field Table Alignment

DataField, Contact annotation Left Aligned

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1947

Annotation Field Table Alignment

DataPoint with or without Criticality/CriticalityCalculation
OR property (either DataField or DataPoint) of type Edm.Da
teTime or Edm.DateTimeOffset

Right Aligned

DataPoint with Criticality and property of type Edm.String Center Aligned

Configuring the Table Area

The LineItem annotation lets you configure the table header title (label property) and the corresponding
values (value property) for the column items.

1. Define DataField property to display values (text) for the table column. For example:

<Annotation Term="com.sap.vocabularies.UI.v1.LineItem" Qualifier="View4"> <Collection>
 <Record Type="com.sap.vocabularies.UI.v1.DataField">
 <PropertyValue Property="Label" String="Order ID" />
 <PropertyValue Property="Value" Path="SalesOrderID" />
 </Record>
 <Record Type="com.sap.vocabularies.UI.v1.DataField">
 <PropertyValue Property="Label" String="Customer" />
 <PropertyValue Property="Value" Path="ToBusinessPartner/
EmailAddress" />
 </Record>
 <Record Type="com.sap.vocabularies.UI.v1.DataField">
 <PropertyValue Property="Label" String="Customer" />
 <PropertyValue Property="Value" Path="CustomerName" />
 </Record>
 <Record Type="com.sap.vocabularies.UI.v1.DataFieldForAnnotation">
 <PropertyValue Property="Label" String="TaxAmount" />
 <PropertyValue Property="Target"
AnnotationPath="@com.sap.vocabularies.UI.v1.DataPoint#TaxAmount" />
 </Record>
 </Collection> </Annotation>

2. (Optional) Define DataFieldforAnnotation property using these annotations:
○ DataPoint: To view numeric values in the table. For example:

<Annotation Term="com.sap.vocabularies.UI.v1.DataPoint"
Qualifier="TaxAmount"> <Record Type="com.sap.vocabularies.UI.v1.DataPointType">
 <PropertyValue Property="Title" String="TaxAmount" />
 <PropertyValue Property="Value" Path="TaxAmount" />
 </Record> </Annotation>

○ Contact: To view quick view information in the table. For example, you can configure the table card to
display contact information as shown here:

<Annotation Term="com.sap.vocabularies.Communication.v1.Contact"> <Record>
 <PropertyValue Property="tel">
 <Collection>
 <Record>

1948 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 <PropertyValue Property="type"
EnumMember="com.sap.vocabularies.Communication.v1.PhoneType/fax" />
 <PropertyValue Property="uri" Path="FaxNumber" />
 </Record>
 <Record>
 <PropertyValue Property="type"
EnumMember="com.sap.vocabularies.Communication.v1.PhoneType/work
com.sap.vocabularies.Communication.v1.PhoneType/pref" />
 <PropertyValue Property="uri" Path="PhoneNumber" />
 </Record>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="email">
 <Collection>
 <Record>
 <PropertyValue Property="type"
EnumMember="com.sap.vocabularies.Communication.v1.ContactInformationType/
pref com.sap.vocabularies.Communication.v1.ContactInformationType/work" />
 <PropertyValue Property="address" Path="EmailAddress" />
 </Record>
 </Collection>
 </PropertyValue>
 </Record> </Annotation>

3. (Optional) Define navigation properties for table area.
For configuring navigation information:
○ Use com.sap.vocabularies.UI.v1.DataFieldForIntentBasedNavigation to define intent based navigation

to SAP Fiori application.
○ Use com.sap.vocabularies.UI.v1.DataFieldWithUrl term to configure navigation to external apps and

websites.

 Note
The recommended way to configure intent-based navigation using
DataFieldForIntentBasedNavigation property. However, you can also use DataFieldWithUrl for
navigation to a specific application route that is not configured as target map. The overview page identify
this as an intent-based navigation and opens the application in the same tab with relevant context.

Configuring the Table Card Header Area (Optional)

You can configure the header area from the app descriptor file and annotations.

1. Configure card header properties (card title, subtitle, KPI value, and view switch settings in the descriptor
file as shown here):
○ Card title and subTitle

"sap.ovp": { "globalFilterModel": "salesOrder",
"globalFilterEntityType": "GlobalFilters",
 ...
 ...
"cards": {
 "card014": {
 "model": "salesOrder",
 "template": "sap.ovp.cards.table",
 "settings": {
 "title": "Sales Forecast",

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1949

 "subTitle": "per Supplier",
 "entitySet": "SalesShare",
 ...
 ...
 }
]
 } },

○ KPI information
Annotation Sample
Descriptor Settings

"sap.ovp": {//section for ovp-specific app descriptor settings ...

"kpiAnnotationPath":"com.sap.vocabularies.UI.v1.KPI#AllActualCosts", //
Represents the KPI annotation path

 ...
}
}

 Sample Code
DataPoint annotation

<Annotation Term="UI.DataPoint" Qualifier="Eval_by_Country-Generic"> <Record Type="UI.DataPointType">
 <PropertyValue Property="Title" String="Sales India - Generic
Card" />
 <PropertyValue Property="Value" Path="Sales" />
 <PropertyValue Property="ValueFormat">
 <Record>
 <PropertyValue Property="ScaleFactor" Int="2" />
 <PropertyValue Property="NumberOfFractionalDigits"
Int="1" />
 </Record>
 </PropertyValue>
 <PropertyValue Property="CriticalityCalculation">
 <Record>
 <PropertyValue Property="ImprovementDirection"
EnumMember="UI.ImprovementDirectionType/Minimizing" />
 <PropertyValue Property="DeviationRangeHighValue"
String="7300" />
 <PropertyValue Property="ToleranceRangeHighValue"
String="7200" />
 </Record>
 </PropertyValue>
 <PropertyValue Property="TargetValue" String="2.000 " />
 <PropertyValue Property="TrendCalculation">
 <Record>
 <PropertyValue Property="ReferenceValue" String="5201680" />
 <PropertyValue Property="DownDifference" Int="10000000.0" />
 </Record>
 </PropertyValue>
 </Record> </Annotation>

○ View switch: Configuring this property allows you to define a dropdown list to filter/view data at the
card level.

"sap.ovp": { "globalFilterModel": "salesOrder",

1950 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 "globalFilterEntityType": "GlobalFilters",
 "showDateInRelativeFormat": false,
 "disableTableCardFlexibility": false,
 "considerAnalyticalParameters": true,
 "useDateRangeType": false,
 "cards": {
 "card014": {
 "model": "salesOrder",
 "template": "sap.ovp.cards.table",
 "settings": {
 "title": "Sales Forecast",
 "subTitle": "per Supplier",
 "valueSelectionInfo": "Value Selection Info",
 "entitySet": "SalesShare",
 "tabs": [
 {
 "dynamicSubtitleAnnotationPath":
"com.sap.vocabularies.UI.v1.HeaderInfo#dynamicSubtitle",
 "annotationPath": "com.sap.vocabularies.UI.v1.LineItem#View1",
 "selectionAnnotationPath":
"com.sap.vocabularies.UI.v1.SelectionVariant#line1",
 "presentationAnnotationPath":
"com.sap.vocabularies.UI.v1.PresentationVariant#line",
 "identificationAnnotationPath":
"com.sap.vocabularies.UI.v1.Identification",
 "dataPointAnnotationPath":
"com.sap.vocabularies.UI.v1.DataPoint#line",
 "value": "{{dropdown_value2}}"
 },
 {
 "dynamicSubtitleAnnotationPath":
"com.sap.vocabularies.UI.v1.HeaderInfo#dynamicSubtitle",
 "annotationPath": "com.sap.vocabularies.UI.v1.LineItem#View4",
 "identificationAnnotationPath":
"com.sap.vocabularies.UI.v1.Identification#item2",
 "dataPointAnnotationPath":
"com.sap.vocabularies.UI.v1.DataPoint#line",
 "value": "{{dropdown_value4}}"
 }
]
 } },

2. Define the DataPoint annotation to complete configuring KPI information on the card header area. The
following are the annotation properties:
○ Add Title property to configure the table column name, and also to display as a title on the KPI

header
○ Add Value property to display KPI measure
○ Add ValueFormat to define number format
○ Add criticality to highlight the KPI measure value. You can define criticality as a path or enum value.

The supported enum values are:
○ com.sap.vocabularies.UI.v1.CriticalityType/Neutral - default neutral color is

considered
○ com.sap.vocabularies.UI.v1.CriticalityType/Negative - Red is considered
○ com.sap.vocabularies.UI.v1.CriticalityType/Critical - Orange is considered
○ com.sap.vocabularies.UI.v1.CriticalityType/Positive - Green is considered

You can also define criticality using a path property that returns value:
○ 0 for Neutral- default neutral colour is considered
○ 1 for Negative – Red is considered
○ 2 for Critical – Orange is considered

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1951

○ 3 for Positive – Green is considered

Configuring the Table Header Navigation (Optional)

The identification annotation lets you configure navigation (from header and table area) within an application.

 Note
In case of table area navigation, the navigation settings configured using the LineItem annotation takes
precedence over the navigation settings configured using the identification annotation.

Customizing Table Card

You can customize the content on the table area with smart links, text alignment, filtering or grouping
information.

Adding Smart Links

Define a semantic object for the entity set and its property using the annotation target to add smart links. For
example:

<Annotations Target="GWSAMPLE_BASIC.SalesOrder/SalesOrderID"> <Annotation Term="com.sap.vocabularies.Common.v1.SemanticObject" String="OVP" />
</Annotations>

Text Arrangement in Table Area

Define Text arrangement annotation to format content on the table area.

<Annotations xmlns="http://docs.oasis-open.org/odata/ns/edm"
Target="GWSAMPLE_BASIC.SalesOrder/CustomerID"> <Annotation Term="com.sap.vocabularies.Common.v1.Text" Path="Supplier_Name"/>
<Annotation Term="com.sap.vocabularies.UI.v1.TextArrangement"
EnumMember="com.sap.vocabularies.UI.v1.TextArrangementType/TextLast" />
</Annotations>

1952 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

In the preceding example, the text Customer is bound to the ContactID property and appears as shown in the
table:

Text Arrangement Type Result

TextLast ContractID (Customer)

TextFirst Customer (ContractID)

TextOnly Customer

Filtering

You can add filters to table card by using the com.sap.vocabularies.UI.v1.SelectionVariant
annotation term, or by passing filter parameter in the URL. For more information, see Configuring Card Filters
[page 2000]

Sorting or Grouping

You can sort information in the table card by using sortBy and sortOrder properties in the application
descriptor file. For more information, see Configuring Sort Properties [page 2001]

List Cards

List cards display lists of records according to the configuration in the
com.sap.vocabularies.UI.v1.LineItem term. List cards display up to six fields of data in each list item.

When creating a list card, you can choose from a number of different types of lists. The number of items
displayed depends on the type of list. You can choose from two types of list cards:

● Condensed
● Extended

For each of these types you can choose from two flavors:

● Standard
● Bar

The com.sap.vocabularies.UI.v1.LineItem term can be configured in the application manifest file by
setting the annotationPath property with a qualifier, as shown in the example below. If the
annotationPath property is not configured, the com.sap.vocabularies.UI.v1.LineItem term, without
a qualifier, is used.

 Sample Code

"sap.ovp": { ...
 "cards": {

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1953

 ...
 "card04": {
 "model": "ZCD204_EPM_DEMO_SRV",
 "template": "sap.ovp.cards.list",
 "settings": {
 "sortBy": "Price",
 "sortOrder": "descending",
 "listFlavor": "bar",
 "annotationPath": "com.sap.vocabularies.UI.v1.LineItem#bar",
 "category": "{{card04_category}}",
 "entitySet": "Products"
 }
 },
 ...
 } }

By default, the fields in the list card are mapped to the com.sap.vocabularies.UI.v1.LineItem
annotation. Any other collection of DataFieldAbstract can be used by setting the annotationPath
property. LineItem is a collection of DataFieldAbstract records. You can use different
com.sap.vocabularies.UI.v1.LineItem annotations for different card instances of the same entity type
by using different qualifiers and setting the annotationPath property with the qualifier in the card
configuration. For example com.sap.vocabularies.UI.v1.LineItem#Qualifier1.

At runtime, the DataField records are sorted according to the optional Importance
(com.sap.vocabularies.UI.v1.ImportanceType) annotation. DataField entries are sorted according
to importance and their order of entry.

Condensed List Type - Standard Flavor

In this type of list, each list item displays up to three fields. The first two DataField records are displayed at
the top left and bottom left of the list item. If there is a DataFieldForAnnotation record that has a
DataPoint target, it is displayed at the top right of the list item, and its value can be highlighted according to
the criticality of the datapoint. If no DataFieldForAnnotation record is defined, the next DataField record
is displayed instead.

Number of list items displayed: up to 3.

Extended List Type - Standard Flavor

In this type of list, each list item displays up to six fields. DataField records are displayed on the left side of
the line item, and DataPoint records are displayed on the right. If no DataPoint record is defined, or less
than three DataPoint records are available, the right side of the line item displays DataField records
instead.

Number of list items displayed: up to 6.

1954 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Condensed List Type - Standard Flavor Extended List Type - Standard Flavor

Condensed List Type - Bar Flavor

In this type of list, each list item displays up to three fields. Only use this kind of list if you want to display a
DataPoint record. The first DataField record is displayed as a title for the line item in the top-left field. The
first DataPoint record is displayed as a bar beneath the title, and as a numeric value to the right of the bar.
You can also display an additional DataPoint record to the right of the first DataPoint record. The bar can
display values as a percentage or as any numeric value.

Number of list items displayed: up to 3.

Extended List Type - Bar Flavor

In this type of list, each list item displays up to five fields. The first DataField record is displayed as a title for
the line item in the top-left field. An additional DataField record can be displayed beneath the title. The first
DataPoint record is displayed as a bar beneath the DataField records, and as a numeric value to the right of
the bar at the bottom of the line item. You can also display two additional DataPoint records to the right of line
item, one above the other.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1955

 Note
If highlighting (criticality) is defined in the annotation of the DataPoint records, only one will be
highlighted in the line item according to the order in which they are displayed.

Number of list items displayed: up to 5.

Condensed List Type - Bar Flavor Extended List Type - Bar Flavor

Condensed List Card with Images or Icons

To display images or icons in the condensed list card, set the property ”imageSupported": true, in the
descriptor settings and configure the DataField property in the LineItem annotation. For example:

<Annotation Term="com.sap.vocabularies.UI.v1.LineItem"> <Collection>
 <Record Type="com.sap.vocabularies.UI.v1.DataField">
 <PropertyValue Property="IconUrl" Path="web_address"/>
 <PropertyValue Property="Value" Path="MaterialName"/>
 </Record>
</Collection> <Annotation>

1956 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Note
In list card, an image control is used instead of avatar. For more information, see Using Images, Initials, and
Icons [page 1618].

Configuring the List Area

1. Define DataField property to display values (text) for the list. For example:

<Annotation Term="com.sap.vocabularies.UI.v1.LineItem" Qualifier="View4"> <Collection>
 <Record Type="com.sap.vocabularies.UI.v1.DataField">
 <PropertyValue Property="Label" String="Order ID" />
 <PropertyValue Property="Value" Path="SalesOrderID" />
 </Record>
 <Record Type="com.sap.vocabularies.UI.v1.DataField">
 <PropertyValue Property="Label" String="Customer" />
 <PropertyValue Property="Value" Path="ToBusinessPartner/
EmailAddress" />
 </Record>
 <Record Type="com.sap.vocabularies.UI.v1.DataField">
 <PropertyValue Property="Label" String="Customer" />
 <PropertyValue Property="Value" Path="CustomerName" />
 </Record>
 <Record Type="com.sap.vocabularies.UI.v1.DataFieldForAnnotation">
 <PropertyValue Property="Label" String="TaxAmount" />
 <PropertyValue Property="Target"
AnnotationPath="@com.sap.vocabularies.UI.v1.DataPoint#TaxAmount" />
 </Record>
 </Collection> </Annotation>

2. (Optional) Define DataFieldforAnnotation property using these annotations:
○ DataPoint: To view numeric values in the list. For example:

<Annotation Term="com.sap.vocabularies.UI.v1.DataPoint"
Qualifier="TaxAmount"> <Record Type="com.sap.vocabularies.UI.v1.DataPointType">
 <PropertyValue Property="Title" String="TaxAmount" />
 <PropertyValue Property="Value" Path="TaxAmount" />
 </Record> </Annotation>

○ Contact: To view quick view information in the list. For example, you can configure the list card to
display contact information as shown here:

<Annotation Term="com.sap.vocabularies.Communication.v1.Contact"> <Record>
 <PropertyValue Property="tel">
 <Collection>
 <Record>
 <PropertyValue Property="type"
EnumMember="com.sap.vocabularies.Communication.v1.PhoneType/fax" />
 <PropertyValue Property="uri" Path="FaxNumber" />
 </Record>
 <Record>
 <PropertyValue Property="type"
EnumMember="com.sap.vocabularies.Communication.v1.PhoneType/work
com.sap.vocabularies.Communication.v1.PhoneType/pref" />

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1957

 <PropertyValue Property="uri" Path="PhoneNumber" />
 </Record>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="email">
 <Collection>
 <Record>
 <PropertyValue Property="type"
EnumMember="com.sap.vocabularies.Communication.v1.ContactInformationType/
pref com.sap.vocabularies.Communication.v1.ContactInformationType/work" />
 <PropertyValue Property="address" Path="EmailAddress" />
 </Record>
 </Collection>
 </PropertyValue>
 </Record> </Annotation>

3. (Optional) Define navigation properties for list area.
For configuring navigation information:
○ Use com.sap.vocabularies.UI.v1.DataFieldForIntentBasedNavigation to define intent based navigation

to SAP Fiori application.
○ Use com.sap.vocabularies.UI.v1.DataFieldWithUrl term to configure navigation to external apps and

websites.

 Note
The recommended way to configure intent-based navigation using
DataFieldForIntentBasedNavigation property. However, you can also use DataFieldWithUrl for
navigation to a specific application route that is not configured as target map. The overview page identify
this as an intent-based navigation and opens the application in the same tab with relevant context.

Configuring the List Card Header Area

Configure card header properties.

1. Configure card title and subtitle in the descriptor file as shown here:
Card title and subTitle

 "sap.ovp": { "globalFilterModel": "salesOrder",
 "globalFilterEntityType": "GlobalFilters",
 ...
 ...
 "cards": {
 "sap.ovp.test_card.card002": {
 "model": "salesOrder",
 "template": "sap.ovp.cards.list",
 "settings": {
 "title": "Purchase History",
 "subTitle": "SubTitle",
 "entitySet": "SalesOrderSet",
 ...
 ...
 }
]
 } }

1958 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

2. Configure KPI value
Descriptor Settings

"sap.ovp": {//section for ovp-specific app descriptor settings ...
 "kpiAnnotationPath":"com.sap.vocabularies.UI.v1.KPI#AllActualCosts", //
Represents the KPI annotation path

 ... }

 Sample Code
KPI Annotation

<Annotation Term="UI.KPI" Qualifier="AllActualCosts"> <Record Type="UI.KPIType">
 <PropertyValue Property="Detail">
 <Record Type="UI.KPIDetailType">
 <PropertyValue Property="DefaultPresentationVariant"
Path="@UI.PresentationVariant#Eval_by_Currency1" />
 <PropertyValue Property="AlternativePresentationVariants">
 <Collection>
 <Path>@UI.PresentationVariant#Eval_by_Currency_Column</
Path>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="SemanticObject" String="Action" />
 <PropertyValue Property="Action" String="toappnavsample" />
 </Record>
 </PropertyValue>
 <PropertyValue Property="SelectionVariant"
Path="@UI.SelectionVariant#Eval_by_Currency_1" />
 <PropertyValue Property="DataPoint"
Path="@UI.DataPoint#Eval_by_Country-Generic" />
 <PropertyValue Property="ID" String="String for KPI Annotation" />
 </Record> </Annotation>

 Sample Code
Associated Presentation Variant Annotation

<Annotation Term="UI.PresentationVariant" Qualifier="Eval_by_Currency1"> <Record>
 <PropertyValue Property="MaxItems" Int="5" />
 <PropertyValue Property="GroupBy">
 <Collection>
 <PropertyPath>Country</PropertyPath>
 <PropertyPath>Currency</PropertyPath>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="SortOrder">
 <Collection>
 <Record>
 <PropertyValue Property="Property"
PropertyPath="TotalSales" />
 <PropertyValue Property="Descending" Boolean="true" />
 </Record>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="Visualizations">
 <Collection>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1959

 <AnnotationPath>@UI.Chart#Eval_by_Currency_Donut</
AnnotationPath>
 </Collection>
 </PropertyValue>
 </Record> </Annotation>

 Sample Code
Associated Selection Variant Annotation

<Annotation Term="UI.SelectionVariant" Qualifier="Eval_by_Currency_1"> <Record>
 <PropertyValue Property="SelectOptions">
 <Collection>
 <Record>
 <PropertyValue Property="PropertyName"
PropertyPath="Country" />
 <PropertyValue Property="Ranges">
 <Collection>
 <Record>
 <PropertyValue Property="Sign"
EnumMember="UI.SelectionRangeSignType/I" />
 <PropertyValue Property="Option"
EnumMember="UI.SelectionRangeOptionType/EQ" />
 <PropertyValue Property="Low" String="IN" />
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="Parameters">
 <Collection>
 <Record Type="UI.Parameter">
 <PropertyValue Property="PropertyName"
PropertyPath="Currency_Target" />
 <PropertyValue Property="PropertyValue" String="EUR" />
 </Record>
 <Record Type="UI.Parameter">
 <PropertyValue Property="PropertyName"
PropertyPath="UoM_Target" />
 <PropertyValue Property="PropertyValue" String="KGM" />
 </Record>
 </Collection>
 </PropertyValue>
 </Record> </Annotation>

Define the DataPoint annotation to complete configuring KPI information on the card header area. The
following are the annotation properties:
○ Add Title property to display as a title on the KPI header
○ Add Value property to display KPI measure
○ Add ValueFormat to define number format
○ Add criticality to highlight the KPI measure value. You can define criticality as a path or enum value.

The supported enum values are:
○ com.sap.vocabularies.UI.v1.CriticalityType/Neutral - default neutral color is

considered
○ com.sap.vocabularies.UI.v1.CriticalityType/Negative - Red is considered

1960 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

○ com.sap.vocabularies.UI.v1.CriticalityType/Critical - Orange is considered
○ com.sap.vocabularies.UI.v1.CriticalityType/Positive - Green is considered

You can also define criticality using a path property that returns value:
○ 0 for Neutral- default neutral colour is considered
○ 1 for Negative – Red is considered
○ 2 for Critical – Orange is considered
○ 3 for Positive – Green is considered

 Sample Code
Associated DataPoint annotation

<Annotation Term="UI.DataPoint" Qualifier="Eval_by_Country-Generic"> <Record Type="UI.DataPointType">
 <PropertyValue Property="Title" String="Sales India - Generic
Card" />
 <PropertyValue Property="Value" Path="Sales" />
 <PropertyValue Property="ValueFormat">
 <Record>
 <PropertyValue Property="ScaleFactor" Int="2" />
 <PropertyValue Property="NumberOfFractionalDigits" Int="1" />
 </Record>
 </PropertyValue>
 <PropertyValue Property="CriticalityCalculation">
 <Record>
 <PropertyValue Property="ImprovementDirection"
EnumMember="UI.ImprovementDirectionType/Minimizing" />
 <PropertyValue Property="DeviationRangeHighValue"
String="7300" />
 <PropertyValue Property="ToleranceRangeHighValue"
String="7200" />
 </Record>
 </PropertyValue>
 <PropertyValue Property="TargetValue" String="2.000 " />
 <PropertyValue Property="TrendCalculation">
 <Record>
 <PropertyValue Property="ReferenceValue" String="5201680" />
 <PropertyValue Property="DownDifference" Int="10000000.0" />
 </Record>
 </PropertyValue>
 </Record> </Annotation>

3. Configure tabs property (view switch) in the descriptor settings to filter/view data at the card level.

"cards": { "card00": {
 "model": "salesOrder",
 "template": "sap.ovp.cards.list",
 "settings": {
 "category" : "Sales Orders With Analytical Header",
 "listFlavor": "bar",
 "listType": "extended",
 "entitySet": "SalesOrderSet",
 "tabs": [
 {
 "annotationPath":
"com.sap.vocabularies.UI.v1.LineItem#View1",
 "selectionAnnotationPath":
"com.sap.vocabularies.UI.v1.SelectionVariant#line1",
 "presentationAnnotationPath":
"com.sap.vocabularies.UI.v1.PresentationVariant#line",

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1961

 "identificationAnnotationPath":
"com.sap.vocabularies.UI.v1.Identification",
 "dataPointAnnotationPath":
"com.sap.vocabularies.UI.v1.DataPoint#line",
 "value": "{{dropdown_value1}}"
 },
 {
 "annotationPath":
"com.sap.vocabularies.UI.v1.LineItem#View2",
 "presentationAnnotationPath":
"com.sap.vocabularies.UI.v1.PresentationVariant#customer",
 "selectionAnnotationPath":
"com.sap.vocabularies.UI.v1.SelectionVariant#SP2",
 "identificationAnnotationPath":
"com.sap.vocabularies.UI.v1.Identification#item2",
 "dataPointAnnotationPath":
"com.sap.vocabularies.UI.v1.DataPoint#line",
 "value": "{{dropdown_value2}}" },

4. Configure list header navigation.
The identification annotation lets you configure navigation (from header and list area) within an
application.

 Note
In case of list area navigation, the navigation settings configured using the LineItem annotation takes
precedence over the navigation settings configured using the identification annotation.

Customizing List Card

Adding Smart Links

Define a semantic object for the entity set and its property using the annotation target to add smart links. For
example:

<Annotations Target="GWSAMPLE_BASIC.SalesOrder/SalesOrderID"> <Annotation Term="com.sap.vocabularies.Common.v1.SemanticObject" String="OVP" />
</Annotations>

Text Arrangement in List Area

Define Text arrangement annotation to format content on the list area.

<Annotations xmlns="http://docs.oasis-open.org/odata/ns/edm"
Target="GWSAMPLE_BASIC.SalesOrder/CustomerID"> <Annotation Term="com.sap.vocabularies.Common.v1.Text" Path="Supplier_Name"/>

1962 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

<Annotation Term="com.sap.vocabularies.UI.v1.TextArrangement"
EnumMember="com.sap.vocabularies.UI.v1.TextArrangementType/TextLast" />
</Annotations>

In the preceding example, the text Customer is bound to the ContactID property and appears as shown in the
table:

Text Arrangement Type Result

TextLast ContractID (Customer)

TextFirst Customer (ContractID)

TextOnly Customer

Filtering

You can add filters to list card by using the com.sap.vocabularies.UI.v1.SelectionVariant annotation
term, or by passing filter parameter in the URL. For more information, see Configuring Card Filters [page 2000]

Sorting or Grouping

You can sort information in the list card by using sortBy and sortOrder properties in the application
descriptor file. For more information, see Configuring Sort Properties [page 2001]

Link List Cards

Allows you to view a list of links with title, picture, icon, or subtitle.

Link List card supports the following navigation types:

● QuickView link: To view contact information from a collection. Example, Recent contact list
● Cross App link: To access related applications. Example, intent-based navigation
● External URL link

Link List Card Types

Supports standard and carousel link list card types.

Standard

Provides an ordered list items. (Optional) You can

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1963

● Add a picture and/or subtitle to the list item.
● Configure the card size to view multiple columns, if the dashboard layout has multiple columns.

Carousel

Provides carousel based view. Title and subtitle appears on top of the card, allowing more space for image. You
can also configure this list type with multiple columns.

1964 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

You can customize the information in the link list to appear in the following ways:

● One or two line(s) of
○ Text only
○ Text with icon supports image control
○ Text with image supports avatar control

● Interaction States: You can add more interactions to the link list.

Annotation Examples

Standard Link List

 "card20": {
 "model": "salesOrder",
 "template": "sap.ovp.cards.linklist",
 "settings": {
 "title": "Dynamic Linklist Card",

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1965

 "targetUri": "https://en.abc.org/wiki/A_2",
 "subtitle": "NEW CARD",
 "listFlavor": "standard",
 "sortBy": "Name",
 "entitySet": "ProductSet",
 "sortOrder": "ascending",
 "headerAnnotationPath": "com.sap.vocabularies.UI.v1.HeaderInfo#header1",
 "identificationAnnotationPath":
"com.sap.vocabularies.UI.v1.Identification#identify1",
 }
}

Carousel

"card_20": { "model": "HEPM_OVP_TECH_VAL",
 "template": "sap.ovp.cards.linklist",
 "settings": {
 "title": "{{card20_title}}",
 "entitySet": "Hepmra_C_OFT_Employee",
 "listFlavor": "carousel",
 "sortBy": "Employee",
 "sortOrder": "ascending",
 } },

Configuring Static Link List Card

Lets you display static data (static links and images/icons) in the form of list items.

You can set the listFlavor property in the card settings to display information in standard link list type or as
a carousel link list type.

 Note
To add annotations, use the SAP WebIDE annotation modular or code editor. For more information, see
Building an App Using SAP Web IDE [page 1553].

1. Configure card title, subtitle, and listFlavor.
2. Configure staticContent properties such as title, subtitle, imageUri, imageAltText
3. Configure navigation properties

○ Url based navigation: Define targetUri and openInNewWindow properties

 Sample Code
Target Uri Based Navigation

"card010_QuickLinks": { "model": "salesOrder",
 "template": "sap.ovp.cards.linklist",
 "settings": {
 "title": "Quick Links",
 "subTitle": "Standard Link List With Static Data",
 "listFlavor": "standard",
 "staticContent": [
 {
 "title": "Jim Smith",
 "subTitle": "Sales",

1966 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 "imageUri": "img/JD.png",
 "imageAltText": "Jim Smith",
 "targetUri": "https://abc.com",
 "openInNewWindow": true
 },
 {
 "title": "Alice Wilson",
 "subTitle": "Sales",
 "imageUri": "img/AW.png",
 "imageAltText": "Jim Smith",
 "targetUri": "https://abc.com",
 "openInNewWindow": true
 }
]
 }
}

○ IntentBasedNavigation: Define semanticObject and action properties

 Sample Code
IntentBasedNavigation

"card010_QuickLinks": { "model": "salesOrder",
 "template": "sap.ovp.cards.linklist",
 "settings": {
 "title": "Quick Links",
 "subTitle": "Standard Link List With Static Data",
 "listFlavor": "standard",
 "defaultSpan": {
 "rows": 15,
 "cols": 1
 },
 "staticContent": [
 {
 "title": "Create Purchase Order",
 "imageUri": "sap-icon://Fiori6/F0865",
 "imageAltText": "{{card30_icon_prod_man}}",
 "semanticObject": "Action",
 "action": "toappnavsample",
 "disableInCard": true
 },
 {
 "title": "Create Supplier",
 "imageUri": "sap-icon://Fiori2/F0246",
 "imageAltText": "{{card30_icon_so_man}}",
 "semanticObject": "Action",
 "action": "toappnavsample"
 },
 {
 "title": "Create Contact",
 "imageUri": "sap-icon://Fiori6/F0866",
 "imageAltText": "{{card30_icon_so_man}}",
 "semanticObject": "Action",
 "action": "toappnavsample"
 }
]
 } },

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1967

Configuring Dynamic Link List Card

Lets you display data (links and images/icons) in the form of list items.

You can set the listFlavor property in the card settings to display information in standard link list type or as
a carousel link list type.

Additionally, dynamic link list card supports contact annotation as default annotation without qualifier to
enable quick view information.

 Note
To add annotations, use the SAP WebIDE annotation modular or code editor. For more information, see
Building an App Using SAP Web IDE [page 1553].

1. 1. Configure descriptor settings

 "card017": { "model": "salesOrder",
 "template": "sap.ovp.cards.linklist",
 "settings": {
 "title": "Standard Dynamic Linklist Card",
 "targetUri": "https://en.abc.org/wiki/xyz _2",
 "subTitle": "Smartlink Feature Test",
 "listFlavor": "standard",
 "entitySet": "ProductSet",
 "sortBy": "Name",
 "sortOrder": "ascending",
 "headerAnnotationPath":
"com.sap.vocabularies.UI.v1.HeaderInfo#header1",
 "defaultSpan": {
 "rows": 20,
 "cols": 2
 }
 }
 },

2. Configure list information in the UI.HeaderInfo annotation.
○ List title: Set the Title property.
○ List subtitle: Set the Description property.
○ List item picture: Set the ImageUrl property to display list image. Or, set the typeImageUrl property

to display list icon.
○ Carousel picture: Configuration is similar to the list item picture. Additionally, the carousel picture

reacts to a click event similar to the list title.

<Annotation Term="com.sap.vocabularies.UI.v1.HeaderInfo" Qualifier="header1"> <Record Type="com.sap.vocabularies.UI.v1.HeaderInfoType">
 <PropertyValue Property="TypeName" String="Product" />
 <PropertyValue Property="TypeNamePlural" String="Products" />
 <PropertyValue Property="Title">
 <Record Type="com.sap.vocabularies.UI.v1.DataField">
 <PropertyValue Property="Label" String="Product Name" />
 <PropertyValue Property="Value" Path="Name" />
 </Record>
 </PropertyValue>
 <PropertyValue Property="Description">
 <Record Type="com.sap.vocabularies.UI.v1.DataField">
 <PropertyValue Property="Label" String="Product Description" />
 <PropertyValue Property="Value" Path="Description" />
 </Record>

1968 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 </PropertyValue>
 <PropertyValue Property="TypeImageUrl" Path="ImageUrl" />
 </Record>
</Annotation>

3. Configure contact annotation
A contact card is displayed as a popover. The data shown on the contact card are taken from the
communication contact annotation of the card. Currently the following elements of the contact annotation
are evaluated:
○ fn (Full name - used as headline of the contact card header)

photo (URL for a picture – used in the contact card header)
role (used as the description text in the contact card header)
tel (with property type “work” and “pref” the contact card shows it as “Phone”, with property type
“cell” and “work” it is shown as “Mobile”
email (with property type “work” and “pref” the contact card shows it as “E-Mail”)

<Annotation Term="com.sap.vocabularies.Communication.v1.Contact"> <Record>
 <PropertyValue Property="fn" Path="FullName" />
 <PropertyValue Property="title" Path="Title" />
 <PropertyValue Property="org" Path="CompanyName" />
 <PropertyValue Property="role" Path="OrganizationRole" />
 <PropertyValue Property="tel">
 <Collection>
 <Record>
 <PropertyValue Property="type"
 EnumMember="com.sap.vocabularies.Communication.v1.PhoneType/
fax" />
 <PropertyValue Property="uri" Path="FaxNumber" />
 </Record>
 <Record>
 <PropertyValue Property="type"
 EnumMember="com.sap.vocabularies.Communication.v1.PhoneType/
work com.sap.vocabularies.Communication.v1.PhoneType/pref" />
 <PropertyValue Property="uri" Path="PhoneNumber" />
 </Record>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="email">
 <Collection>
 <Record>
 <PropertyValue Property="type"

EnumMember="com.sap.vocabularies.Communication.v1.ContactInformationType/pref
com.sap.vocabularies.Communication.v1.ContactInformationType/work" />
 <PropertyValue Property="address" Path="EmailAddress" />
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
</Annotation>

4. Configure navigation type.
Link list card supports the following navigation types:
○ Intent based navigation: Define SemanticObject and Action properties in the

UI.Identification annotation to set the navigation target.
○ Function import (DataFieldWithAction): Define Action property in the LineItem annotation to

trigger a function import that performs an OData action for an entity.
○ External navigation: Define UI.LineItem of type WITH_URL. The URL for this navigation is taken from

the entity type field that is named in the line item’s url property.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1969

Table 95: Navigation Behavior

Annotation Behavior

For any of the these annotation configuration:

○ UI.Identification annotation with property
Action

○ com.sap.vocabularies.UI.v1.LineItem
annotation with property Action

○ com.sap.vocabularies.UI.v1.LineItem
annotation with property Url

Navigation is available from line item

For any of the these annotation configuration + default
contact annotation:

○ UI.Identification annotation with property
Action

○ com.sap.vocabularies.UI.v1.LineItem
annotation with property Action

○ com.sap.vocabularies.UI.v1.LineItem
annotation with property Url

Navigation is available from line item and you can see
quick view information on click of the title.

For only default contact annotation configuration Quick view information is available on click of title

If no navigation based annotation or contact annotation Only label is displayed

Stack Cards

Stack cards aggregate a set of cards of the same type, which are based on a common topic or action. When
clicked, up to 20 stacked cards can be displayed in the object stream.

The left-hand side of the card contains the application title (which is also the title of the object stream) and
stack description (optional). Click this section of the card or View All to open the application.

Object Stream

On the right-hand side of the card you can view the number of items in the stack. Click this section to view the
object stream (up to 20 quick view cards) excluding the placeholder card that appears as the last card in the
object stream).

 Note
The placeholder card provides additional information and appears only when the object stream has 20
quick view cards.

You can configure the quick view cards to provide actions (such as confirm or reject) and a navigation link. The
object stream's header is also navigable and navigates to the same destination as the navigation from the
header of the stack card.

1970 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Because of the relationship between the stack card and its object stream, some of the configurations for the
object stream cards are included in the stack card definitions.

● entitySet – the dominant entity set (for example, SalesOrderSet).
● objectStreamCardsNavigationProperty – the navigation property used to display information from

a secondary entity set. For example, to display sales orders by business partner, the entity set would be
BusinessPartnersSet and the navigation property SalesOrder.

 Note
This definition is not relevant for quick view cards.

● objectStreamCardsSettings – an optional configuration of additional settings for the cards displayed
in the object stream.
A showFirstActionInFooter flag is added to the objectStreamCardsSettings object in the stack
card. The default value of the flag is false. If this flag is set to true, the first action on the footer of the
quick view card will be a navigation action. If the flag is set to false, the navigation action on the footer of
the quick view card won't be displayed. Other actions will be shown instead.

● itemText - lets you include custom text along with the existing message in the placeholder card.

Example

In the following example, the stack card displays information about business partners in a quick view card,
using the information configured in com.sap.vocabularies.UI.v1.Identification with a qualifier.

 Sample Code
 "sap.ovp": {
 ...
 "cards": {
 "card00": {
 "model": "salesOrder",
 "template": "sap.ovp.cards.stack",
 "settings": {
 "title": "Stack Card Title",
 "subTitle": "Stack Card",
 "requireAppAuthorization": "#Action-toappnavsample",
 "itemText": "items awaiting approval",
 "entitySet": "SalesOrderSet",
 "identificationAnnotationPath":
"com.sap.vocabularies.UI.v1.Identification,com.sap.vocabularies.UI.v1.Identifi
cation#item2",

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1971

 "objectStreamCardsSettings": {
 "showFirstActionInFooter": false
 }
 }
 },
 ...
 }
}

Continuing the example above, the following metadata demonstrates the relationship between the
BusinessPartner and SalesOrder entity sets. The BusinessPartner entity type contains the configured
navigation ToSalesOrders property to the SalesOrder using the
Assoc_BusinessPartner_SalesOrders association and the
Assoc_BusinessPartner_SalesOrders_AssocS association set.

 Sample Code
 <EntityType Name="BusinessPartner" sap:content-version="1">
 <Key>
 <PropertyRef Name="BusinessPartnerID"/>
 </Key>
 <Property Name="Address" Type="GWSAMPLE_BASIC.CT_Address"
Nullable="false"/>
 <Property Name="BusinessPartnerID" Type="Edm.String" Nullable="false"
MaxLength="10" sap:label="Bus. Part. ID" sap:creatable="false"
sap:updatable="false"/>
 <Property Name="CompanyName" Type="Edm.String" MaxLength="80"
sap:label="Company Name"/>
 <Property Name="WebAddress" Type="Edm.String" sap:label="Web Address"
sap:sortable="false" sap:filterable="false" sap:semantics="url"/>
 <Property Name="EmailAddress" Type="Edm.String" MaxLength="255"
sap:label="E-Mail Address" sap:semantics="email"/>
 <Property Name="PhoneNumber" Type="Edm.String" MaxLength="30"
sap:label="Phone No." sap:semantics="tel"/>
 <Property Name="FaxNumber" Type="Edm.String" MaxLength="30"
sap:label="Fax Number"/>
 <Property Name="LegalForm" Type="Edm.String" MaxLength="10"
sap:label="Legal Form"/>
 <Property Name="CurrencyCode" Type="Edm.String" MaxLength="5"
sap:label="Currency" sap:semantics="currency-code"/>
 <Property Name="BusinessPartnerRole" Type="Edm.String" MaxLength="3"
sap:label="Bus. Part. Role"/>
 <Property Name="CreatedAt" Type="Edm.DateTime" Precision="7"
sap:label="Time Stamp" sap:creatable="false" sap:updatable="false"/>
 <Property Name="ChangedAt" Type="Edm.DateTime" Precision="7"
ConcurrencyMode="Fixed" sap:label="Time Stamp" sap:creatable="false"
sap:updatable="false"/>
 <NavigationProperty Name="ToSalesOrders"
Relationship="GWSAMPLE_BASIC.Assoc_BusinessPartner_SalesOrders"
FromRole="FromRole_Assoc_BusinessPartner_SalesOrders"
ToRole="ToRole_Assoc_BusinessPartner_SalesOrders"/>
 <NavigationProperty Name="ToContacts"
Relationship="GWSAMPLE_BASIC.Assoc_BusinessPartner_Contacts"
FromRole="FromRole_Assoc_BusinessPartner_Contacts"
ToRole="ToRole_Assoc_BusinessPartner_Contacts"/>
 <NavigationProperty Name="ToProducts"
Relationship="GWSAMPLE_BASIC.Assoc_BusinessPartner_Products"
FromRole="FromRole_Assoc_BusinessPartner_Products"
ToRole="ToRole_Assoc_BusinessPartner_Products"/>
</EntityType>
<EntityType Name="SalesOrder" sap:content-version="1">
 <Key>
 <PropertyRef Name="SalesOrderID"/>
 </Key>

1972 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 <Property Name="SalesOrderID" Type="Edm.String" Nullable="false"
MaxLength="10" sap:label="Sa. Ord. ID" sap:creatable="false"
sap:updatable="false"/>
 <Property Name="SalesOrderGuid" Type="Edm.Guid" Nullable="false"
sap:label="SalesOrder GUID" sap:creatable="false" sap:updatable="false"/>
 <Property Name="Note" Type="Edm.String" MaxLength="255"
sap:label="Description" sap:updatable="false" sap:sortable="false"
sap:filterable="false"/>
 <Property Name="NoteLanguage" Type="Edm.String" MaxLength="1"
sap:label="Language" sap:creatable="false" sap:updatable="false"
sap:sortable="false" sap:filterable="false"/>
 <Property Name="CustomerID" Type="Edm.String" MaxLength="10"
sap:label="Bus. Part. ID" sap:updatable="false"/>
 <Property Name="CustomerName" Type="Edm.String" MaxLength="80"
sap:label="Company Name" sap:creatable="false" sap:updatable="false"/>
 <Property Name="CurrencyCode" Type="Edm.String" MaxLength="5"
sap:label="Currency" sap:updatable="false" sap:semantics="currency-code"/>
 <Property Name="GrossAmount" Type="Edm.Decimal" Precision="16" Scale="3"
sap:unit="CurrencyCode" sap:label="Gross Amt." sap:creatable="false"
sap:updatable="false"/>
 <Property Name="NetAmount" Type="Edm.Decimal" Precision="16" Scale="3"
sap:unit="CurrencyCode" sap:label="Net Amt." sap:creatable="false"
sap:updatable="false"/>
 <Property Name="TaxAmount" Type="Edm.Decimal" Precision="16" Scale="3"
sap:unit="CurrencyCode" sap:label="Tax Amt." sap:creatable="false"
sap:updatable="false"/>
 <Property Name="LifecycleStatus" Type="Edm.String" MaxLength="1"
sap:label="PO Lifecycle" sap:creatable="false" sap:updatable="false"/>
 <Property Name="LifecycleStatusDescription" Type="Edm.String"
MaxLength="60" sap:label="Lifecycle Descript." sap:creatable="false"
sap:updatable="false" sap:sortable="false" sap:filterable="false"/>
 <Property Name="BillingStatus" Type="Edm.String" MaxLength="1"
sap:label="PO Confirmation" sap:creatable="false" sap:updatable="false"/>
 <Property Name="BillingStatusDescription" Type="Edm.String"
MaxLength="60" sap:label="Billing Description" sap:creatable="false"
sap:updatable="false" sap:sortable="false" sap:filterable="false"/>
 <Property Name="DeliveryStatus" Type="Edm.String" MaxLength="1"
sap:label="PO Ordering" sap:creatable="false" sap:updatable="false"/>
 <Property Name="DeliveryStatusDescription" Type="Edm.String"
MaxLength="60" sap:label="Delivery Description" sap:creatable="false"
sap:updatable="false" sap:sortable="false" sap:filterable="false"/>
 <Property Name="CreatedAt" Type="Edm.DateTime" Precision="7"
sap:label="Time Stamp" sap:creatable="false" sap:updatable="false"/>
 <Property Name="ChangedAt" Type="Edm.DateTime" Precision="7"
sap:label="Time Stamp" sap:creatable="false" sap:updatable="false"/>
 <NavigationProperty Name="ToBusinessPartner"
Relationship="GWSAMPLE_BASIC.Assoc_BusinessPartner_SalesOrders"
FromRole="ToRole_Assoc_BusinessPartner_SalesOrders"
ToRole="FromRole_Assoc_BusinessPartner_SalesOrders"/>
 <NavigationProperty Name="ToLineItems"
Relationship="GWSAMPLE_BASIC.Assoc_SalesOrder_SalesOrderLineItems"
FromRole="FromRole_Assoc_SalesOrder_SalesOrderLineItems"
ToRole="ToRole_Assoc_SalesOrder_SalesOrderLineItems"/>
</EntityType>
<Association Name="Assoc_BusinessPartner_SalesOrders" sap:content-version="1">
 <End Type="GWSAMPLE_BASIC.BusinessPartner" Multiplicity="1"
Role="FromRole_Assoc_BusinessPartner_SalesOrders"/>
 <End Type="GWSAMPLE_BASIC.SalesOrder" Multiplicity="*"
Role="ToRole_Assoc_BusinessPartner_SalesOrders"/>
 <ReferentialConstraint>
 <Principal Role="FromRole_Assoc_BusinessPartner_SalesOrders">
 <PropertyRef Name="BusinessPartnerID"/>
 </Principal>
 <Dependent Role="ToRole_Assoc_BusinessPartner_SalesOrders">
 <PropertyRef Name="CustomerID"/>
 </Dependent>
 </ReferentialConstraint>
</Association>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1973

<EntityContainer Name="GWSAMPLE_BASIC_Entities"
m:IsDefaultEntityContainer="true">
 <EntitySet Name="BusinessPartnerSet"
EntityType="GWSAMPLE_BASIC.BusinessPartner" sap:content-version="1"/>
 <EntitySet Name="SalesOrderSet" EntityType="GWSAMPLE_BASIC.SalesOrder"
sap:updatable="false" sap:content-version="1"/>
 <AssociationSet Name="Assoc_BusinessPartner_SalesOrders_AssocS"
Association="GWSAMPLE_BASIC.Assoc_BusinessPartner_SalesOrders"
sap:creatable="false" sap:updatable="false" sap:deletable="false" sap:content-
version="1">
 <End EntitySet="BusinessPartnerSet"
Role="FromRole_Assoc_BusinessPartner_SalesOrders"/>
 <End EntitySet="SalesOrderSet"
Role="ToRole_Assoc_BusinessPartner_SalesOrders"/>
 </AssociationSet>
</EntityContainer>

Quick View Cards

Quick view cards display detailed information about a single record, in greater depth than would be displayed in
a table or list.

The information displayed in quick view cards is configured in the
com.sap.vocabularies.UI.v1.HeaderInfo and com.sap.vocabularies.UI.v1.Facets terms. The
com.sap.vocabularies.UI.v1.HeaderInfo term is used to present the entity header information, and the
com.sap.vocabularies.UI.v1.Facets term is used to present detailed information about the record.
Quick view card supports the following properties:

● TypeNamePlural
● ImageUrl
● Title
● Description

The content area shows FieldGroup records from referenceFacet items that have been tagged using the
IsSummary annotation in the com.sap.vocabularies.UI.v1.Facets annotation.

The com.sap.vocabularies.UI.v1.Facets term can be configured in the application manifest file by
setting the annotationPath property with a qualifier, as shown in the example below. If the
annotationPath property is not configured, the com.sap.vocabularies.UI.v1.Facets term, without a
qualifier, is used.

Card Footer

You can assign actions to the quick view cards that open in the object stream of the stack card. The actions are
displayed as buttons in the card footer.

From com.sap.vocabularies.UI.v1.Identification, there are two kinds of actions that you can display
in the card footer:

● com.sap.vocabularies.UI.v1.DataFieldForIntentBasedNavigation
● com.sap.vocabularies.UI.v1.DataFieldForAction

Depending on the number of assigned actions, they are displayed in the footer as follows:

1974 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

● If there is only one action, the button is aligned to the right of the footer area.
● If there are two actions, such as OK and Cancel, they are presented according to their importance and

order of entry. We recommend providing the annotation in a such a way that the positive action is on the
left and the negative action is on the right.

● If there are more than two actions, an Actions button is displayed. Clicking the Actions button opens an
ActionSheet control with all of the defined actions in the order that they appear in the metadata.

● If no actions are assigned to the card, the footer area is not displayed.

Each OData action is translated into a request according to the annotation. Clicking an action invokes the
OData service request. Complex actions open a dialog box with the action parameters or a confirmation
message.

 Sample Code

"sap.ovp": { ...
 "cards": {
 ...
 "card01": {
 "model": "ZCD204_EPM_DEMO_SRV",
 "template": "sap.ovp.cards.table",
 "settings": {
 ...
 "identificationAnnotationPath":
"com.sap.vocabularies.UI.v1.Identification#Qualifier1",
 ...
 }
 },
 ...
 } }

Interaction buttons in the footer area are part of sap.m.OverflowToolbar so that quick view cards can
display action buttons based on the width of the card, and if more actions are necessary, the remaining actions
are shown in the overflow toolbar.

 Note
Cards can have different sizes because the height of each quick view card is aligned with the content of the
card. If there is more content than can be shown in the card, you'll be able to scroll vertically, but only within
the content area itself. The header and footers stay fixed.

 Sample Code

"sap.ovp": { ...
 "cards": {
 "card00": {
 "model": "ZCD204_EPM_DEMO_SRV",
 "template": "sap.ovp.cards.stack",
 "settings": {
 "category": "{{card01_category}}",
 "entitySet": "BusinessPartners",
 "objectStreamCardsSettings": {
 "annotationPath":
"com.sap.vocabularies.UI.v1.Facets#Qualifier2"
 }
 }
 },

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1975

 ...
 } }

Analytical Cards

Analytical cards let you view data in a variety of chart formats. The card is divided into two areas (header and
chart).

In the header area, you can view the aggregated value of a key performance indicator (KPI), the trend, and
percentage of change. In the chart area, you can view a graphical representation of the data.

 Note
If you configure the chart title, chart descriptions (x- and y-axis) are not displayed in the card (except for
bubble charts). For example, the chart title Net Sales by Days Payable, already conveys that the y-axis is Net
Sales and the x-axis represents Days Payable.

Chart Responsiveness

To improve the responsiveness of charts, you can use UI.PresentationVariant.MaxItems to limit the
number of records fetched from the backend that are rendered on the screen. For example:

 Sample Code
 <Annotation Term="UI.PresentationVariant"
Qualifier="Column_Eval_by_Country_123">
 <Record>
 <PropertyValue Property="MaxItems" Int="5" />
 </Record>
</Annotation>

 Tip
If there are too many data records displayed in the chart, it is difficult to select a data point. If you are only
interested in checking the top records, then use UI.PresentationVariant.SortOrder. For more
information, see Configuring Card Properties [page 1995].

Chart Interactivity

Users can choose specific data points to pass data in URL parameters to the target application. The target
application can read these URL parameters and use them as required (typically to filter the data set that they
are displaying).

When a user select a particular data point, the system passes a technical ID ("RegionID"="001") instead of
the display name ("Region"="EMEA").

1976 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Axis Scaling
Axis scaling lets you scale and display data for line, bubble, or scatter charts in the analytics card. You can
choose any of the following axis scaling types:

Type 1: Default property

The default behavior displays data in the respective chart format including the zero value. The graph is
adjusted according to the available data range. Set the following property in the UI.Chart annotation:

<PropertyValue Property="AxisScaling" EnumMember="UI.ChartAxisScalingType/
AdjustToDataIncluding0"/>

Type 2: Adjust scale property

The adjust scale property displays data in the respective chart format based on the available data range. Set
the following property in the UI.Chart annotation:

<PropertyValue Property="AxisScaling" EnumMember="UI.ChartAxisScalingType/
AdjustToData"/>

Type 3: Min-Max property

The min-max property lets you define the minimum and maximum data range to display data in the respective
chart format. Set the following property in the UI.Chart annotation:

<PropertyValue Property="AxisScaling" EnumMember="UI.ChartAxisScalingType/
MinMaxValues"/>

You must define the DataPoint annotation to set the minimum and maximum values.

<Annotation Term="UI.DataPoint" Qualifier="<DataPoint Qualifier>"> <Record Type="UI.DataPointType">
 <PropertyValue Property="MinimumValue" Decimal="<Minimum Value>" />
 <PropertyValue Property="MaximumValue" Decimal="<Maximum Value>" />
 <PropertyValue Property="NumberFormat">
 <Record>

 </Record>
 </PropertyValue>
 </Record>
</Annotation>

Descriptor Configuration Sample

 Sample Code
The following is a snippet of a sample descriptor file:

"sap.app": { "_version": "1.1.0",
 "id": "sap.ovp.demo",
 "type": "application",
 "i18n": "i18n/i18n.properties",
 "applicationVersion": {
 "version": "1.2.2"
 },
 "title": "{{app_title}}",
 "description": "{{app_description}}",
 "dataSources": {
 "salesShare": {
 "uri": "https://abc.com/SalesShare.xsodata",

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1977

 "type": "OData",
 "settings": {
 "odataVersion": "2.0",
 "annotations": [
 "salesShareAnno"
]
 }
 },
 "salesShareAnno": {
 "uri": "data/salesshare/annotations.xml",
 "type": "ODataAnnotation",
 "settings": {
 }
 }
 }
 }
"sap.ovp": {
 "globalFilterModel": "salesShare",
 "globalFilterEntityType": "GlobalFilters",
 "cards": {
 "cardBubble": {
 "model": "salesShare",
 "template": "sap.ovp.cards.charts.analytical",
 "settings": {
 "entitySet": "SalesShare",
 "selectionAnnotationPath" :
"com.sap.vocabularies.UI.v1.SelectionVariant#Eval_by_CtryCurr",
 "chartAnnotationPath" :
"com.sap.vocabularies.UI.v1.Chart#Eval_by_CtryCurr",
 "presentationAnnotationPath" :
"com.sap.vocabularies.UI.v1.PresentationVariant#Eval_by_CtryCurr",
 "dataPointAnnotationPath" :
"com.sap.vocabularies.UI.v1.DataPoint#Eval_by_CtryCurr",
 "identificationAnnotationPath" :
"com.sap.vocabularies.UI.v1.Identification#Eval_by_CtryCurr"
 }
 },
 "cardchartsline": {
 "model": "salesShare",
 "template":
"sap.ovp.cards.charts.analytical",
 "settings": {
 "entitySet": "SalesShare",
 "selectionAnnotationPath" :
"com.sap.vocabularies.UI.v1.SelectionVariant#Eval_by_Country",
 "chartAnnotationPath" :
"com.sap.vocabularies.UI.v1.Chart#Eval_by_Country",

"presentationAnnotationPath" :
"com.sap.vocabularies.UI.v1.PresentationVariant#Eval_by_Country",
 "dataPointAnnotationPath" :
"com.sap.vocabularies.UI.v1.DataPoint#Eval_by_Country",

"idenfiticationAnnotationPath" :
"com.sap.vocabularies.UI.v1.Identification#Eval_by_Country"
 }
 },
 "cardchartsdonut": {
 "model": "salesShare",
 "template":
"sap.ovp.cards.charts.analytical",
 "settings": {
 "entitySet": "SalesShare",

"selectionAnnotationPath" :
"com.sap.vocabularies.UI.v1.SelectionVariant#Eval_by_Currency",
 "chartAnnotationPath" :
"com.sap.vocabularies.UI.v1.Chart#Eval_by_Currency",

1978 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

"presentationAnnotationPath" :
"com.sap.vocabularies.UI.v1.PresentationVariant#Eval_by_Currency",

"dataPointAnnotationPath" :
"com.sap.vocabularies.UI.v1.DataPoint#Eval_by_Currency",

"idenfiticationAnnotationPath" :
"com.sap.vocabularies.UI.v1.Identification#Eval_by_Currency"
 }
 }
 } }

Related Information

For more information about configuring charts, see Configuring Charts [page 1990].

Chart Cards Used in Overview Pages

This section describes the analytic chart cards you can use in overview pages.

 Note
Analytic cards don't have a fixed height. The height is adjusted automatically to accommodate the data
points and legends. Legends are created automatically based on the defined measures and dimensions.

Line Chart

Line charts display information as a series of data points connected by straight-line segments. They are often
used to visualize a trend in data over time. Line charts need at least one measure and one dimension.

● Dimensions for which the role is set to category make up the x-axis (category axis). If no dimension is
specified with this role, the first dimension is used as the x-axis. We recommend using only time-based
dimensions (for example, day, date, quarter, or year) for the category axis of a line chart.

● Dimensions for which the role is set to series make up the line segments of the chart, with different
colors assigned to each dimension value. If multiple dimensions are assigned to this role, the values of all
the dimensions together are considered as one dimension and a color is assigned.

● Measures make up the y-axis (value axis). If there are multiple measures, then each measure is
represented by a different colored line in the chart area.

The line chart supports a color palette for semantic coloring.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1979

Bubble Chart

Bubble charts display up to three measures and two dimensions of data. The three measures are reflected in
the x- and y-axes, and in the size of the bubbles. The dimensions can be expressed in the colors and/or shapes
of the bubbles. Bubble charts need to have three measures and one or two dimensions.

● The first measure for which the role is set to an axis is assigned to the valueAxis feed. The UID makes up
the x-axis.

 Note
The role is set to axis1, axis2 (if there's no axis1), or axis3 (if there's no axis2.)

● The first measure for which the role is set to an axis is assigned to the valueAxis2 feed and the UID
makes up the y-axis.

 Note
The role is set to axis2 of the first measure. If there's no axis2, the role is set to axis1 of the second
measure. If there's no axis1 for the second measure, the role is set to axis3 of the first measure.

● The remaining measure is assigned to the bubbleWidth feed'sUID. This determines the size of the bubble.
● The dimensions for which the role is set to series are assigned to the feed's UID color. Different values for

this dimension in the data set result in different colored data points in the chart. If multiple dimensions are
set with the category role, only the first dimension is considered. If the role series is assigned to both
dimensions, then each combination of the dimension member gets a unique color.
For example, if role series is assigned to the dimensions "Year" and "Country" then "India/2015", "India/
2016", "Germany/2015", "Germany/2016" are represented as different colored bubbles. If no role is
assigned to a dimension, then the dimension members gets the same color. In the above example, if no
color has been assigned to a year, then the bubbles only have two colors - one for all records for India and
one for all records for Germany, irrespective of the year.

 Note
Assigning the role of a dimension as a category leads to differently shaped data points for different
values of the dimension. However, we do not recommend this for a bubble chart card.

● The dimensions for which the role is set to a category are assigned to the shape feed's UID. Different
values for this dimension in the data set result in differently shaped data points in the chart. If multiples
dimensions are set with the category role, only the first dimension is considered.

The code snippet shown below demonstrates how you define a bubble chart card. Note that there are three
measures (under the MeasureAttributes property) and one dimension (under the DimensionAttributes
property).

Example

 Sample Code

<Annotation Term="UI.Chart" Qualifier="Qualifier_ID_1"> <Record Type="UI.ChartDefinitionType">
 <PropertyValue Property="Title"
String="View1" />
 <PropertyValue Property="ChartType"
EnumMember="UI.ChartType/Bubble"/>

1980 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 <PropertyValue Property="MeasureAttributes">
 <Collection>
 <Record
Type="UI.ChartMeasureAttributeType">

 <PropertyValue Property="Measure" PropertyPath="SalesShare" />

 <PropertyValue Property="Role" EnumMember="UI.ChartMeasureRoleType/Axis1" />
 </Record>
 <Record
Type="UI.ChartMeasureAttributeType">

 <PropertyValue Property="Measure" PropertyPath="TotalSales" />

 <PropertyValue Property="Role" EnumMember="UI.ChartMeasureRoleType/Axis2" />
 </Record>
 <Record
Type="UI.ChartMeasureAttributeType">

 <PropertyValue Property="Measure" PropertyPath="Sales" />

 <PropertyValue Property="Role" EnumMember="UI.ChartMeasureRoleType/Axis3" />
 </Record>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="DimensionAttributes">
 <Collection>
 <Record
Type="UI.ChartDimensionAttributeType">

 <PropertyValue Property="Dimension" PropertyPath="Product" />

 <PropertyValue Property="Role" EnumMember="UI.ChartDimensionRoleType/
Series" />
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
</Annotation>

The bubble chart supports a color palette for semantic coloring.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1981

Example of Line and Bubble Chart Cards

Line Chart Card Bubble Chart Card

Donut Chart

A donut chart displays data as the differently colored sections of a donut. The value of the measure determines
the size of each section. Donut charts help the viewer to quickly determine the key area that needs attention.
For example, you can view numbers and percentages. You can also disable navigation in the graph (optional).

Donut charts require exactly one measure. You can provide more than one dimension. If this is the case, the
dimensions are stacked so that the sections of the chart represent the combination of all dimensions. For
example, if you define Sales as your measure, and provide two dimensions: Year and Country, the chart
displays the sales data of each combination of year and country as a separate colored section.

Stable Coloring

You can now assign specific colors to the sections in the donut chart. Each color can be assigned to a particular
dimension value. To enable this feature:

● Configure a color map object that maps the key-value pairs between dimension and color values in the
colorPalette property of the descriptor configuration.

● Enable stable coloring by setting the bEnableStableColoring property to true in card settings.
● The chart dimension property (Role) in the chart annotation has to be a Category.
● Define the com.sap.vocabularies.Common.v1.Text annotation for a dimension property within the

entity type. This is considered to be a label for any individual dimensions value and also for rendering
appropriate texts in the chart's legend.

1982 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Others Sector

You can pass filter conditions to target applications other than the dimensions shown on the donut chart. For
example, in a donut chart with the sections A, B, C, and Others, navigation from Others section leads to a filter
condition that excludes A, B, and C.

Column Chart

Use this chart type to display data, such as total product sales over a period of years in columns. The number
of columns is equal to the number of measures in the annotation file.

Column charts need to have at least one measure and one dimension. Irrespective of the role defined for the
measure in the annotation file, every measure is represented as a separate column. Similarly, regardless of the
role defined in the annotation file, every dimension is added to the axis category (x-axis).

Example of Donut and Column Chart Cards

Donut Chart Card Column Chart Card

Stacked Column Chart

A stacked column chart is similar to a column chart; however, all measures, irrespective of role, are stacked on
top of each other. There should be at least one dimension with the assigned category role and all dimensions

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1983

with this role are added to the axis category (x-axis). All dimensions with the series role are also stacked. We
recommend either stacking based on dimensions or measures, but not mixing both in a single chart card.

 Note
The column stack card can have an optional dimension with role series. Assign a dimension with the series
role for the property containing the semantic values.

The stacked column chart supports a color palette for semantic coloring.

Vertical Bullet Chart

Vertical bullet charts accept at least one measure and one dimension. All dimensions, regardless of their role,
are assigned to the axis category. All measures with the axis1 role are represented as solid-colored columns,
which represent actual values. All measures with axis2 role are shown as a solid black line, which represents
the target value.

Example of Stacked Column and Vertical Bullet Chart Cards

Stacked Column Chart Card Vertical Bullet Chart Card

1984 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Combination Chart

A combination chart lets you combine and view two or more chart types in a single chart. For example,
combining a column and line chart in the same visualization lets you compare values of different categories.
This provides a clear view and helps you compare categories.

For combination charts:

● The first measure is used for the column format and the subsequent measure is displayed as a line within
the chart.

● We recommend only using one time-based dimension for the category axis.
● All measures, irrespective of their roles, are assigned to the feed's UID value axis. You need to have at least

two measures for combination chart cards.
● For all dimensions with a role:

○ A Category is assigned to the category axis with the default role. You need to have at least one role
assigned to the category axis.

○ A Series is assigned to the feed UID's color and is displayed within the chart area with a differently
colored column and line combinations for each of its members.

Example

 Sample Code

<Annotation Term="UI.Chart" Qualifier="Eval_by_Currency_Combination"> <Record Type="UI.ChartDefinitionType">
 <PropertyValue Property="Title" String="Sales and Total Sales" />
 <PropertyValue Property="ChartType" EnumMember="UI.ChartType/
Combination"/>
 <PropertyValue Property="MeasureAttributes">
 <Collection>
 <Record Type="UI.ChartMeasureAttributeType">
 <PropertyValue Property="Measure"
PropertyPath="sales" />
 <PropertyValue Property="Role"
EnumMember="UI.ChartMeasureRoleType/Axis1" />
 </Record>
 <Record Type="UI.ChartMeasureAttributeType">
 <PropertyValue Property="Measure"
PropertyPath="totalsales" />
 <PropertyValue Property="Role"
EnumMember="UI.ChartMeasureRoleType/Axis1" />
 </Record>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="DimensionAttributes">
 <Collection>
 <Record Type="UI.ChartDimensionAttributeType">
 <PropertyValue Property="Dimension"
PropertyPath="quarter_1" />
 <PropertyValue Property="Role"
EnumMember="UI.ChartDimensionRoleType/Category" />
 </Record>
 </Collection>
 </PropertyValue>
 </Record> </Annotation>

The combination chart supports a color palette for semantic coloring.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1985

Scatter Chart

With a scatter chart card, you can visualize the distribution of data points over two measures; the first measure
for which the role is set to an axis is assigned to the valueAxis feed UID makes up the x-axis.

 Note
The role is set to axis1, axis2 (if there's no axis1), or axis3 (if there's no axis2).

The other measure is plotted on the y-axis.

A scatter chart card supports a maximum of two dimensions. If the dimension is not marked with a role, then
all members of the dimension are plotted as equal-sized bubbles of the same color in the chart. You can assign
only one dimension to the Series role and all members of this dimension get a different color. A maximum of
only one dimension can be assigned to the Category role and all members of such a dimension get a different
shape.

Example

 Sample Code

<Annotation Term="UI.Chart" Qualifier="Eval_by_Currency_Scatter"> <Record Type="UI.ChartDefinitionType">
 <PropertyValue Property="Title" String="Scatter Chart no role" />
 <PropertyValue Property="ChartType" EnumMember="UI.ChartType/
Scatter" />
 <PropertyValue Property="MeasureAttributes">
 <Collection>
 <Record Type="UI.ChartMeasureAttributeType">
 <PropertyValue Property="Measure"
PropertyPath="salesshare" />
 <PropertyValue Property="Role"
EnumMember="UI.ChartMeasureRoleType/Axis1" />
 </Record>
 <Record Type="UI.ChartMeasureAttributeType">
 <PropertyValue Property="Measure"
PropertyPath="totalsales" />
 <PropertyValue Property="Role"
EnumMember="UI.ChartMeasureRoleType/Axis2" />
 </Record>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="DimensionAttributes">
 <Collection>
 <Record Type="UI.ChartDimensionAttributeType">
 <PropertyValue Property="Dimension"
PropertyPath="suppliercompany" />
 </Record>
 </Collection>
 </PropertyValue>
 </Record> </Annotation>

1986 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Example Combination and Scatter Chart Cards

Combination Chart Card Scatter Chart Card

 Note
Analytic cards don't have a fixed height. The height is adjusted automatically to accommodate the data
points and legends. Legends are created automatically based on the defined measures and dimensions.

Waterfall Chart

You use waterfall charts to analyze a cumulative value. Waterfall charts allow you to see the change in
cumulative values from the initial state to the final state by representing the accumulation of successive values.
These are the available waterfall charts:

● Waterfall charts without a time dimension
● Waterfall charts with a time dimension represent the change of a cumulative value over time
● Semantic waterfall charts (semantic coloring based on

com.sap.vocabularies.UI.v1.CriticalityCalculation or
com.sap.vocabularies.UI.v1.Criticality in the datapoint annotation)

 Note
By default the legend shows the name of the measure mapped to the chart and two groups <0 and >0. If
there is more than one measure, all measures are displayed instead of the measure names.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1987

 Remember
● Waterfall charts need at least one measure and one dimension
● Dimensions for which a role is set (for example, category) make up the x-axis (category axis). If no

dimension is specified with a role, the first dimension is used as the x-axis.
● Dimensions for which a role is set (for example, series) make up the cumulative data points in the

chart. A waterfall chart can have only one dimension per role.
● Dimensions with the role mapped to the waterfallType UID. You use this to show the intermediate

totals and subtotals in the waterfall chart. Valid values:
○ null
○ subtotal:2 (combines the previous two data points and shows a new column in the chart as a

subtotal)
○ total (combines all the data points and shows a new column as the total)

● Measures make up the y-axis (value axis)

 Sample Code
Vertical Waterfall Chart Annotation Sample

<Annotation Term="UI.Chart" Qualifier="Waterfall_Eval_by_Country"> <Record Type="UI.ChartDefinitionType">
 <PropertyValue Property="Title" String="Revenue Waterfall" />
 <PropertyValue Property="ChartType" EnumMember="UI.ChartType/
Waterfall"/>
 <PropertyValue Property="MeasureAttributes">
 <Collection>
 <Record Type="UI.ChartMeasureAttributeType">
 <PropertyValue Property="Measure"
PropertyPath="Finances" />
 <PropertyValue Property="Role"
EnumMember="UI.ChartMeasureRoleType/Axis2" />
 </Record>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="DimensionAttributes">
 <Collection>
 <Record Type="UI.ChartDimensionAttributeType">
 <PropertyValue Property="Dimension"
PropertyPath="SpendType" />
 <PropertyValue Property="Role"
EnumMember="UI.ChartDimensionRoleType/Category" />
 </Record>
 <Record Type="UI.ChartDimensionAttributeType">
 <PropertyValue Property="Dimension" PropertyPath="Type" />
 <PropertyValue Property="Role"
EnumMember="UI.ChartDimensionRoleType/Series" />
 </Record>
 </Collection>
 </PropertyValue>
 </Record> </Annotation>

1988 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Time Series Chart

A chart type with a time axis instead of a categorical axis. A time series chart represents a time-based
dimension that is more responsive to a change in card size. Analytic cards use the time axis automatically if
these conditions apply:

● The chart type must be either vertical bullet, stacked column, scatter, line, bubble, column, waterfall,
combination, or dual combination.

● The chart is configured with only one dimension for bubble, column, waterfall, and combination charts.
However, you can use two dimensions for line charts. The second dimension can be the color dimension.
The dimension with the uid color has to have the Series role assigned to it.

● The data type of the dimension is either edm.datetime or edm.string. If the data type is edm.string,
then it needs to have the additional annotation in the OData metadata annotation:
sap:semantics:”yearweek (YYYYWW) or yearmonth (YYYYMM) or yearquarter (YYYYQ)”.

● If it is a bubble chart, it needs to have two measures. If the chart is a combination chart, it needs to have at
least two measures.

● Vertical bullet, stacked column, and scatter charts need at least one measure and one dimension. Extra
color and shape dimensions are suppored only in scatter charts.

 Sample Code
Metadata Sample

<Property Name="Date" Type="Edm.DateTime" sap:display-format="Date"
sap:label="Date" sap:aggregation-role="dimension"/>

 Sample Code
Annotation Sample

<Annotation Term="UI.Chart" Qualifier="Line-Time-Currency"> <Record Type="UI.ChartDefinitionType">
 <PropertyValue Property="Title" String="View1" />
 <PropertyValue Property="ChartType" EnumMember="UI.ChartType/Line"/>
 <PropertyValue Property="MeasureAttributes">
 <Collection>
 <Record Type="UI.ChartMeasureAttributeType">
 <PropertyValue Property="Measure"
PropertyPath="SalesShare" />
 <PropertyValue Property="Role"
 EnumMember="UI.ChartMeasureRoleType/
Axis1" />
 <PropertyValue Property="DataPoint"
AnnotationPath="@UI.DataPoint#Eval_by_CtryCurr-SalesShare"/>
 </Record>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="DimensionAttributes">
 <Collection>
 <Record Type="UI.ChartDimensionAttributeType">
 <PropertyValue Property="Dimension" PropertyPath="Date" />
 <PropertyValue Property="Role"
 EnumMember="UI.ChartDimensionRoleType/
Category" />
 </Record>
 <Record Type="UI.ChartDimensionAttributeType">
 <PropertyValue Property="Dimension"
PropertyPath="Sales_CURRENCY"/>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1989

 <PropertyValue Property="Role"
 EnumMember="UI.ChartDimensionRoleType/
Series"/>
 </Record>
 </Collection>
 </PropertyValue>
 </Record> </Annotation>

Dual Combination Chart

Overview pages support a dual combination chart type that lets you view individual data points for a particular
dimension. The chart contains two axis values with a line chart representing the multiple measures.

Chart area configuration:

● The first measure is displayed as a column chart type and subsequent measures display as a line within the
chart.

● We recommend using only one time-based dimension for the category axis.
● Configure at least two measures. Assign the measures to the feed's UID value axis, irrespective of the roles.
● Assign at least one role to the category axis. All dimensions with the Category role are assigned to the

category axis. The Category role is the default role.

Configuring Charts

Developers configure the measures and dimensions displayed in charts by setting the role property to the
desired value per chart type. Additional definitions apply to all chart types.

You can use the same annotation file with different qualifiers to present charts with different chart views. You
do this by specifying different qualifiers in the annotation file for each card. The following sections of the
annotation file apply to all chart types:

Annotation What it Does

UI.Identification Specify the navigation targets activated when the user clicks
the card and list the parameters to pass to the target appli
cation. This definition is mandatory. For more information,
see Configuring Card Navigation [page 1998].

UI.SelectionVariant.SelectOptions Specify the filter values that are applied to the card, which
are applied when retrieving the card data.

UI.PresentationVariant.SortOrder Specify the sort order to be used.

1990 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Annotation What it Does

UI.PresentationVariant.MaxItems Limit the maximum number of records to be fetched from
the backend. If this variant isn't used, then all records from
the backend will be displayed in the chart.

 Tip
Don't use this for charts that rely on complete data sets,
for example, the donut chart card, otherwise the results
won't be meaningful.

UI.Chart Specify the dimensions and measures that make up the
chart, the chart type, and the way that the measures/dimen
sions are used for the chart. This definition is mandatory.

UI.Chart.MeasureAttributes.Measure Defines the measures used in the chart.

UI.Chart.MeasureAttributes.Role The manner in which a measure is used within the chart.
This is configured differently for each chart type, as descri
bed below.

UI.Chart.DimensionAttributes.Dimension These are the dimensions used in the chart.

UI.Chart.DimensionAttributes.Role The manner in which a dimension is used within the chart.
This is configured differently for each chart type, as descri
bed below.

Formatting Numeric Values in Charts

Within overview pages, analytical chart cards can have format measure values based on the
NumberOfFractionalDigits and ScaleFactor properties of the DataPoint term in the annotation file.

Here is an example annotation that shows how it's used:

 Sample Code

<Annotation Term="UI.DataPoint" Qualifier=" Eval_by_Currency-TotalSales "> <Record Type="UI.DataPointType">
 <PropertyValue Property="ValueFormat">
 <Record>
 <PropertyValue Property="ScaleFactor"
Int="1000" />
 <PropertyValue
Property="NumberOfFractionalDigits" Int="3" />
 </Record>
 </PropertyValue>
 </Record>
</Annotation>
<Annotation Term="UI.Chart" Qualifier="Eval_by_Currency">
 <Record Type="UI.ChartDefinitionType">
 <PropertyValue Property="Title" String="View1" />
 <PropertyValue Property="ChartType" EnumMember="UI.ChartType/
Bubble"/>
 <PropertyValue Property="MeasureAttributes">
 <Collection>
 …

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1991

 <Record Type="UI.ChartMeasureAttributeType">
 <PropertyValue Property="Measure"
PropertyPath="TotalSales" />
 <PropertyValue Property="Role"
EnumMember="UI.ChartMeasureRoleType/Axis2" />
 <PropertyValue Property="DataPoint"
AnnotationPath="@UI.DataPoint#Eval_by_Currency-TotalSales"/>
 </Record>
 …
 </Collection>
 </PropertyValue>
 …
 </Record> </Annotation>

Semantic Pattern

With the semantic pattern feature, overview page analytical cards can enable users to compare between actual
and forecast values. The line, column, and vertical bullet chart cards support this feature. The forecast value
comes from the datapoint annotation that is associated with the measure used in the selected analytical card.
To enable the semantic pattern feature:

● Datapoint annotation should contain the ForecastValue property with value as a measure.
● Chart annotation should consist of:

○ 1 dimension and 1 measure for line and column chart cards
○ 1 dimension and 1-2 measures for vertical bullet chart cards

If the above conditions are not met, the chart will not inherit the semantic pattern feature. The actual measure
will appear in a solid color and the forecast measure will appear as a dashed pattern for column and vertical
bullet chart cards or as a dotted pattern for line charts. The following graphic is an example of what it could
look like:

Here's an example annotation that shows how it's used:

1992 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Sample Code

<Annotation Term="UI.DataPoint" Qualifier="Column_Forecast"> <Record Type="UI.DataPointType">
 <PropertyValue Property="Title" String="Sales Performance"/>
 <PropertyValue Property="Value" Path="Sales"/>
 <PropertyValue Property="NumberFormat">
 <Record>
 <PropertyValue Property="ScaleFactor" Int="0"/>
 <PropertyValue Property="NumberOfFractionalDigits"
Int="3"/>
 </Record>
 </PropertyValue>
 <PropertyValue Property="ForecastValue" PropertyPath="SalesShare"/>
</Record>
</Annotation>

<Annotation Term="UI.Chart" Qualifier="Eval_by_Currency_Column">
<Record Type="UI.ChartDefinitionType">
 <PropertyValue Property="Title" String="Column chart for shape" />
 <PropertyValue Property="ChartType" EnumMember="UI.ChartType/
Column" />
 <PropertyValue Property="MeasureAttributes">
 <Collection>
 <Record Type="UI.ChartMeasureAttributeType">
 <PropertyValue Property="Measure"
PropertyPath="Sales" />
 <PropertyValue Property="DataPoint">
<AnnotationPath>@UI.DataPoint#Column_Forecast</AnnotationPath>
 </PropertyValue>
 <PropertyValue Property="Role"
 EnumMember="UI.ChartMeasureRoleType/Axis1" />
 </Record>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="DimensionAttributes">
 <Collection>
<Record Type="UI.ChartDimensionAttributeType">
 <PropertyValue Property="Dimension"
PropertyPath="SupplierCompany" />
 <PropertyValue Property="Role"
 EnumMember="UI.ChartDimensionRoleType/Category" />
 </Record>
 </Collection>
 </PropertyValue>
</Record> </Annotation>

Chart Types

Overview pages can use line, donut, bubble, column, stacked column, vertical bullet, combination, and scatter
analytic chart cards.

The value assigned to the role property for dimensions and measures in the annotation file determines the
visualization of the chart. For dimensions, you can set the role to category or series. If no value is specified, the
default is category.

For measures, you can set the role to the values: axis1, axis2 , or axis3. If no value is specified, the default is
axis1. The actual interpretation of the role value specified in the annotation file varies according to the chart
type used.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1993

Time Series Charts

Time series chart cards are cards with regular charts, but use time as the category axis instead of the
categorical axis. The advantage in using a time-series axis is that the representation of the time-based
dimension is much cleaner and more responsive to the change in card size. The display level and format in the
time axis would be offered in the default format by the visual chart (for example day/month/year displayed as
10/Jan/2016).

Analytic cards will automatically use the time axis only if the following conditions are met:

● The chart type is either line, bubble, column, or combination
● The chart is configured with only one dimension
● The data type of the dimension is either edm.datetime or edm.string. If the data type is edm.string,

then it must have the additional OData metadata annotation sap:semantics of yearmonthday. If it's a
bubble chart, there must be exactly two measures

● If it's a combination chart card, then there must be at least two measures.

 Note
Only line, bubble, column, and combination chart cards support the time axis.

Color Palette

A few chart types (line, bubble, combination, and stacked column) support color palette for semantic coloring.
To enable this feature, configure the required chart type and define the colorPalette property in the app
descriptor. The colorPalette property is an array of four objects. Each object indicates the semantic
representations:

● First object: criticality state 0
● Second object: criticality state 1
● Third object: criticality state 2
● Fourth object: criticality state 3

Every object in the colorPalette array has two properties color (a color value for a particular state) and
legendText (the corresponding legend text).

 Note
● Use only the colors listed in the semantic palette that are defined by SAP Fiori guidelines for

customizing the column stack card.
● All four objects in the color colorPalette array are mandatory.

More Information

For more information about the type of charts used in overview pages, see Chart Cards Used in Overview Pages
[page 1979].

1994 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Configuring Card Properties

This section provides the configuration items relevant for all overview page cards.

All cards inherit the generic capabilities that are shared across all cards, such as a card header, card footer,
navigation support, and more. The following are the card properties mandatory for all cards:

● model: Name of the model to provide to the card instance
● template: Card type (card component package) to instantiate
● settings: Iternal card configuration passed to the card instance
● entitySet: Entity set to use in the card

Configuring an EntitySet with Input Parameters

Some entity sets requires input parameters. You can configure these parameters using the
com.sap.vocabularies.UI.v1.SelectionVariant annotation term by setting the Parameters section.

In the following examples there are two entity sets - SalesShare and SalesShareParameters - with
associations defined between them. The SalesShare entity set contains the OData information and the
SalesShareParameters defines the input parameters to retrieve from the SalesShare entity set the data
which will be displayed in cards. The com.sap.vocabularies.UI.v1.SelectionVariant annotation term
contains the input parameters to be applied, so as to trigger the query and display the actual data during
runtime.

OData metadata definition

 Sample Code

<?xml version="1.0" encoding="utf-8" standalone="yes" ?> <edmx:Edmx Version="1.0" xmlns:edmx="http://schemas.microsoft.com/ado/2007/06/
edmx" xmlns:sap="http://www.sap.com/Protocols/SAPData">
 <edmx:DataServices xmlns:m="http://schemas.microsoft.com/ado/2007/08/
dataservices/metadata" m:DataServiceVersion="2.0">
 <Schema Namespace="sap.smartbusinessdemo.services" xmlns:d="http://
schemas.microsoft.com/ado/2007/08/dataservices" xmlns:m="http://
schemas.microsoft.com/ado/2007/08/dataservices/metadata" xmlns="http://
schemas.microsoft.com/ado/2008/09/edm">
 <EntityType Name="SalesShareType" sap:semantics="aggregate">
 <Key>
 <PropertyRef Name="ID" />
 </Key>
 <Property Name="ID" Type="Edm.String" Nullable="false"
MaxLength="2147483647" sap:filterable="false" />
 <Property Name="Country" Type="Edm.String" MaxLength="3"
sap:label="Country" sap:aggregation-role="dimension" />
 <Property Name="Region" Type="Edm.String" MaxLength="4"
sap:label="Region" sap:aggregation-role="dimension" />
 <Property Name="ProductID" Type="Edm.String" MaxLength="10"
sap:label="Product ID" sap:aggregation-role="dimension" />
 <Property Name="Currency" Type="Edm.String" MaxLength="5"
sap:label="Currency" sap:aggregation-role="dimension" />
 <Property Name="Product" Type="Edm.String" MaxLength="1024"
sap:label="Product" sap:aggregation-role="dimension" />
 <Property Name="SupplierCompany" Type="Edm.String"
MaxLength="80" sap:label="Supplier Company" sap:aggregation-
role="dimension" />

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1995

 <Property Name="BuyerCompany" Type="Edm.String"
MaxLength="80" sap:label="Buyer Company" sap:aggregation-role="dimension" />
 <Property Name="Year" Type="Edm.String" MaxLength="4"
sap:label="Year" sap:aggregation-role="dimension" />
 <Property Name="Quarter" Type="Edm.String" MaxLength="2"
sap:label="Quarter" sap:aggregation-role="dimension" />
 <Property Name="Month" Type="Edm.String" MaxLength="2"
sap:label="Month" sap:aggregation-role="dimension" />
 <Property Name="TotalSales_CURRENCY" Type="Edm.String"
MaxLength="5" sap:semantics="currency-code" />
 <Property Name="Sales_CURRENCY" Type="Edm.String"
MaxLength="5" sap:semantics="currency-code" />
 <Property Name="TotalSales" Type="Edm.Decimal" Precision="15"
Scale="2" sap:filterable="false" sap:label="Total Sales" sap:aggregation-
role="measure" sap:unit="TotalSales_CURRENCY" />
 <Property Name="Sales" Type="Edm.Decimal" Precision="15"
Scale="2" sap:filterable="false" sap:label="Sales" sap:aggregation-
role="measure" sap:unit="Sales_CURRENCY" />
 <Property Name="SalesShare" Type="Edm.Decimal" Precision="12"
Scale="5" sap:filterable="false" sap:label="Sales Share" sap:aggregation-
role="measure" />
 </EntityType>
 <EntityType Name="SalesShareParametersType"
sap:semantics="parameters">
 <Key>
 <PropertyRef Name="P_Currency"/>
 <PropertyRef Name="P_Country"/>
 </Key>
 <Property Name="P_Currency" Type="Edm.String"
Nullable="false" MaxLength="5" sap:label="Currency"
sap:parameter="mandatory"/>
 <Property Name="P_Country" Type="Edm.String" Nullable="false"
DefaultValue="3" MaxLength="20" sap:label="CountryCode"
sap:parameter="mandatory"/>
 <NavigationProperty Name="Results"
Relationship="sap.smartbusinessdemo.services.SalesShareParameters_SalesShareTy
pe" FromRole="SalesShareParametersPrincipal" ToRole="SalesShareDependent"/>
 </EntityType>

 <Association Name="SalesShareParameters_SalesShareType">
 <End
Type="sap.smartbusinessdemo.services.SalesShareParametersType"
Role="SalesShareParametersPrincipal" Multiplicity="*"/>
 <End Type="sap.smartbusinessdemo.services.SalesShareType"
Role="SalesShareDependent" Multiplicity="*"/>
 </Association>

 <EntityContainer Name="SalesShare"
m:IsDefaultEntityContainer="true">

 <EntitySet Name="SalesShare"
EntityType="sap.smartbusinessdemo.services.SalesShareType"/>
 <EntitySet Name="SalesShareParameters"
EntityType="sap.smartbusinessdemo.services.SalesShareParametersType"
sap:addressable="false"/>
 <AssociationSet Name="SalesShareParameters_SalesShare"
Association="sap.smartbusinessdemo.services.SalesShareParameters_SalesShareTyp
e">
 <End Role="SalesShareParametersPrincipal"
EntitySet="SalesShareParameters"/>
 <End Role="SalesShareDependent" EntitySet="SalesShare"/>
 </AssociationSet>

 </EntityContainer>
 </Schema>
 </edmx:DataServices>

1996 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

</edmx:Edmx>

Annotation document containing the filters to be applied

 Sample Code

<Annotations Target="sap.smartbusinessdemo.services.SalesShareType"> <Annotation Term="com.sap.vocabularies.UI.v1.SelectionVariant"
Qualifier="params">
 <Record>
 <PropertyValue Property="SelectOptions">
 <Collection>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="Parameters">
 <Collection>
 <Record Type="com.sap.vocabularies.UI.v1.Parameter">
 <PropertyValue Property="PropertyName"
PropertyPath="P_Currency" />
 <PropertyValue Property="PropertyValue"
String="EUR" />
 </Record>
 <Record Type="com.sap.vocabularies.UI.v1.Parameter">
 <PropertyValue Property="PropertyName"
PropertyPath="P_Country" />
 <PropertyValue Property="PropertyValue" String="IN" />
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
 </Annotation>
 ... </Annotations>

Card configuration in the manifest document

 Sample Code

"sap.ovp": { ...
 "cards": {
 ...
 "card04": {
 "model": "salesShare",
 "template": "sap.ovp.cards.list",
 "settings": {
 ...
 "selectionAnnotationPath" :
"com.sap.vocabularies.UI.v1.SelectionVariant#params",
 "entitySet": "SalesShare"
 }
 },
 ...
 } }

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1997

Configuring Card Navigation

All cards support navigation, both to a different SAP Fiori application using intent based navigation, and to
external applications and websites via a direct URL which opens in a new browser tab. To trigger the navigation,
users click or tap on a card header and in some cases, on an item within the card.

Navigation information is taken from the com.sap.vocabularies.UI.v1.Identification and

● com.sap.vocabularies.UI.v1.DataFieldForIntentBasedNavigation should be used to define
intent based navigation to SAP Fiori application.

● com.sap.vocabularies.UI.v1.DataFieldWithUrl term should be used to configure navigation to
external apps and websites.

The recommended way to configure intent-based navigation is to use
DataFieldForIntentBasedNavigation. However, for navigation to a specific application route that is not
configured as target mapping, you can also use DataFieldWithUrl to construct the specific application
route. The overview page will identify that this is an intent-based navigation and open the application in the
relevant context, in the same tab.

Note that information about the single record selected can only be passed on to the navigation destination
from list or table cards. To support this option, provide navigation configuration in the
com.sap.vocabularies.UI.v1.LineItem term used by that specific card.

If more than one navigation record is provided in the com.sap.vocabularies.UI.v1.Identification or
com.sap.vocabularies.UI.v1.LineItem terms, the first one will be used for each term. The navigation
records would be sorted according to importance, set in the
com.sap.vocabularies.UI.v1.ImportanceType annotation, and their order of entry. The
com.sap.vocabularies.UI.v1.Identification term can be configured in the application manifest file
by setting the identificationAnnotationPath property with a qualifier, as shown in the example below. If
the identificationAnnotationPath property is not configured, the
com.sap.vocabularies.UI.v1.Identification term, without a qualifier, is used.

 Sample Code

"sap.ovp": { ...
 "cards": {
 ...
 "card04": {
 "model": "ZCD204_EPM_DEMO_SRV",
 "template": "sap.ovp.cards.list",
 "settings": {
 "sortBy": "Price",
 "sortOrder": "descending",
 "listFlavor": "bar",
 "annotationPath": "com.sap.vocabularies.UI.v1.LineItem#bar",
 "identificationAnnotationPath":
"com.sap.vocabularies.UI.v1.Identification#bar",
 "category": "{{card04_category}}",
 "entitySet": "Products"
 }
 },
 ...
 } }

1998 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Custom Navigation

Overview pages support navigation breakouts (extension points) that let you configure multiple navigation
targets from different areas of a card (different targets from different line items).

To use navigation breakouts:

1. Configure your app descriptor for controller extension.

 Sample Code

"extends": { "extensions": {
 "sap.ui.controllerExtensions": {
 "sap.ovp.app.Main": {
 "controllerName": "<custom controller path, for
example sap.ovp.demo.ext.customController>"
 }
 }
 } }

2. In the custom controller, define the doCustomNavigation function with following input parameters:
○ Card ID: Enter a string as defined in the app descriptor
○ Context: Enter the object that defines the context on click of a card
○ Navigation Entry: Enter the object that has standard navigation defined by annotations

3. Ensure that the doCustomNavigation method returns an object that is similar to input Navigation
Entry and can contain following attributes (all of type String):
○ type: (Mandatory) Possible values are com.sap.vocabularies.UI.v1.DataFieldWithUrl and

com.sap.vocabularies.UI.v1.DataFieldForIntentBasedNavigation.
○ semanticObject: Required when type is DataFieldForIntentBasedNavigation
○ action: Required when type is DataFieldForIntentBasedNavigation
○ url: Required when type is DataFieldWithUrl
○ label: Optional

4. If custom targets are required for a particular set of input parameters, return an object from the
doCustomNavigation method.

 Sample Code

doCustomNavigation: function (sCardId, oContext, oNavigationEntry) { var oCustomNavigationEntry;
 var oEntity = oContext && oContext.getProperty(oContext.sPath);
 if (sCardId === "card001" && oEntity.PurchaseOrder ===
"4500003575") {
 oCustomNavigationEntry = {};
 oCustomNavigationEntry.type =
"com.sap.vocabularies.UI.v1.DataFieldForIntentBasedNavigation";
 oCustomNavigationEntry.semanticObject = "Action";
 oCustomNavigationEntry.action = "toappnavsample2";
 oCustomNavigationEntry.url = "";
 oCustomNavigationEntry.label = "";
 }
 return oCustomNavigationEntry; }

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 1999

Adding Static Parameters

Static parameters are objects containing key value pairs. They provide navigation parameters during
IntentBasedNavigation from overview page to an application. To add navigation parameters, define the
card settings staticParameters in the descriptor file.

 Sample Code

"staticParameters": { "parameter1": "parameterValue1",
 "parameter2": "parameterValue2",
 },

Configuring Card Filters

You can add filters to all card types, by using the com.sap.vocabularies.UI.v1.SelectionVariant
annotation term or by passing filter parameter in the URL.

The following example shows filter configuration in the annotation document. The record set is filtered by the
TotalSum property and returns values between 0 and 8000. You can provide multiple filters in the
SelectOptions collection.

 Sample Code

<Annotation Term="com.sap.vocabularies.UI.v1.SelectionVariant"
Qualifier="bubble"> <Record>
 <PropertyValue Property="SelectOptions">
 <Collection>
 <Record>
 <PropertyValue Property="PropertyName"
PropertyPath="TotalSum" />
 <PropertyValue Property="Ranges">
 <Collection>
 <Record>
 <PropertyValue Property="Sign"

EnumMember="com.sap.vocabularies.UI.v1.SelectionRangeSignType/I" />
 <PropertyValue Property="Option"

EnumMember="com.sap.vocabularies.UI.v1.SelectionRangeOptionType/BT" />
 <PropertyValue Property="Low" String="0" />
 <PropertyValue Property="High" String="8000" />
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
 </Collection>
 </PropertyValue>
 </Record> </Annotation>

The preference for displaying the currency type is taken from the SAP Fiori Launchpad user settings in the
DisplayCurrency field of an application. You can also set filters for SAP Fiori overview page by passing a filter

2000 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

paramter in the URL. Applicable when you launch SAP Fiori overview pages from SAP Fiori Launchpad or from
any other application with a filter parameter.

 Note
You can only pass strings or integers as filter parameters. The filter applies automatically if the filter
property exists in the entityset.

For example: http://abc#Equipment-overviewPage?EquipmentNumber=123456

Configuring Sort Properties

All cards support sorting using the com.sap.vocabularies.UI.v1.PresentationVariant annotation
term.

List, table, and stack cards support sorting by using the sortBy and sortOrder properties in the application
manifest file.

The following example shows sort configuration in the application manifest file. The records are sorted by the
Price property in descending order.

 Sample Code

"sap.ovp": { ...
 "cards": {
 ...
 "card04": {
 "model": "ZCD204_EPM_DEMO_SRV",
 "template": "sap.ovp.cards.list",
 "settings": {
 "sortBy": "Price",
 "sortOrder": "descending",
 "listFlavor": "bar",
 "annotationPath": "com.sap.vocabularies.UI.v1.LineItem#bar",
 "identificationAnnotationPath":
"com.sap.vocabularies.UI.v1.Identification#bar",
 "category": "{{card04_category}}",
 "entitySet": "Products"
 }
 },
 ...
 } }

The following example shows sort configuration in the annotation file. The records are sorted by the Sales
property in descending order. You can configure multiple sorts by defining multiple properties in the
SortOrder collection.

 Sample Code

<Annotation Term="com.sap.vocabularies.UI.v1.PresentationVariant"
Qualifier="Eval_by_Country"> <Record>
 <PropertyValue Property="GroupBy">
 <Collection>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2001

 <PropertyPath>Country</PropertyPath>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="SortOrder">
 <Collection>
 <Record>
 <PropertyValue Property="Property" PropertyPath="Sales" />
 <PropertyValue Property="Descending" Boolean="true" />
 </Record>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="Visualizations">
 <Collection>
 <AnnotationPath>@UI.Chart#Eval_by_Country</AnnotationPath>
 </Collection>
 </PropertyValue>
 </Record> </Annotation>

 Note
Overview pages allow you to share sort parameters defined in the presentation variant to any target SAP
Fiori Elements application. The target applications can use these parameters to sort data accordingly.

Adding the OData Select Parameter

OData supports the select parameter, where you can specify lists of properties that are needed by the
application, so that unnecessary properties are not returned by the OData request.

The select parameter is not added automatically to the OData request in list and table cards as this can affect
navigation behavior. However, in some cases where Smart Business OData services are used, the select
parameter might be required to show aggregated values to the user. In these cases, the addODataSelect
property must be set in the application manifest file for the relevant card.

 Sample Code
The card configuration in the application manifest file looks like this:

"sap.ovp": { "globalFilterModel": "salesOrder",
 "globalFilterEntityType": "GlobalFilters",
 "cards": {
 "card00": {
 "model": "salesOrder",
 "template": "sap.ovp.cards.list",
 "settings": {
 "entitySet": "SalesOrderSet",
 "category": "Sales Orders with filters",
 "listType": "extended",
 "addODataSelect": true
 }
 }
 } }

2002 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Configuring View Switch

Configuring this property lets you define a dropdown list to filter/view data at the card level.

You can define view switch with a single entity set or with multiple entity sets.

 Sample Code
View Switch Defenition with Single Entity Set

"settings": { "entitySet": "SalesOrderSet"
 "tabs": [
 {
 ...
 },
 {
 ...
 }
] }

 Sample Code
View Switch Definition with Multiple Entity Sets

"settings": { "tabs": [
 {
 "entitySet": "SalesOrderSet"
 ...
 },
 {
 "entitySet": " ProductSet"
 ...
 }
] }

 Sample Code
View Switch Sample

"card009": { "model": "salesOrder",
 "template": "sap.ovp.cards.list",
 "settings": {
 "title": "Contract Monitoring",
 "subTitle": "Per Supplier",
 "valueSelectionInfo": "Total contract volume",
 "listFlavor": "bar",
 "listType": "extended",
 "showLineItemDetail":true,
 "tabs": [
 {
 "entitySet": "SalesOrderSet",
 "dynamicSubtitleAnnotationPath":
"com.sap.vocabularies.UI.v1.HeaderInfo#dynamicSubtitle",
 "annotationPath": "com.sap.vocabularies.UI.v1.LineItem#View1",
 "selectionAnnotationPath":
"com.sap.vocabularies.UI.v1.SelectionVariant#line1",

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2003

 "presentationAnnotationPath":
"com.sap.vocabularies.UI.v1.PresentationVariant#line",
 "identificationAnnotationPath":
"com.sap.vocabularies.UI.v1.Identification",
 "dataPointAnnotationPath":
"com.sap.vocabularies.UI.v1.DataPoint#line",
 "value": "{{dropdown_value2}}"
 },
 {
 "entitySet": "SalesOrderSet",
 "dynamicSubtitleAnnotationPath":
"com.sap.vocabularies.UI.v1.HeaderInfo#dynamicSubtitle",
 "annotationPath": "com.sap.vocabularies.UI.v1.LineItem#View3",
 "presentationAnnotationPath":
"com.sap.vocabularies.UI.v1.PresentationVariant#SP3",
 "identificationAnnotationPath":
"com.sap.vocabularies.UI.v1.Identification",
 "dataPointAnnotationPath":
"com.sap.vocabularies.UI.v1.DataPoint#line",
 "value": "{{dropdown_value3}}"
 },
 {
 "entitySet": "ProductSet",
 "annotationPath": "com.sap.vocabularies.UI.v1.LineItem",
 "identificationAnnotationPath":
"com.sap.vocabularies.UI.v1.Identification#identify1",
 "value": "{{dropdown_value1}}"
 }
]
 } }

Setting Units of Measure

You can display the unit of measure next to numeric values by providing the sap:unit attribute in the OData
metadata file or by annotating the unit in the annotation document.

In the following example of the Product entity type definition in the OData metadata file, the Price property
has the CurrencyCode property as its unit of measure; Width, Depth, and Height have the DimUnit
property as their unit of measure; and the WeightMeasure property has the WeightUnit property as its unit
of measure.

 Sample Code

<EntityType Name="Product" sap:content-version="1"> <Key>
 <PropertyRef Name="ProductID"/>
 </Key>
 <Property Name="ProductID" Type="Edm.String" Nullable="false"
MaxLength="10" sap:label="Product ID" sap:updatable="false"/>
 <Property Name="TypeCode" Type="Edm.String" MaxLength="2"
sap:label="Prod. Type Code"/>
 <Property Name="Category" Type="Edm.String" MaxLength="40"
sap:label="Prod. Cat."/>
 <Property Name="Name" Type="Edm.String" MaxLength="255"
sap:label="Product Name" sap:sortable="false" sap:filterable="false"/>
 <Property Name="NameLanguage" Type="Edm.String" MaxLength="1"
sap:label="Language" sap:creatable="false" sap:updatable="false"
sap:sortable="false" sap:filterable="false"/>

2004 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 <Property Name="Description" Type="Edm.String" MaxLength="255"
sap:label="Prod.Descrip." sap:sortable="false" sap:filterable="false"/>
 <Property Name="DescriptionLanguage" Type="Edm.String" MaxLength="1"
sap:label="Language" sap:creatable="false" sap:updatable="false"
sap:sortable="false" sap:filterable="false"/>
 <Property Name="SupplierID" Type="Edm.String" MaxLength="10"
sap:label="Bus. Part. ID"/>
 <Property Name="SupplierName" Type="Edm.String" MaxLength="80"
sap:label="Company Name" sap:creatable="false" sap:updatable="false"/>
 <Property Name="TaxTarifCode" Type="Edm.Byte" sap:label="Prod. Tax Code"/>
 <Property Name="MeasureUnit" Type="Edm.String" MaxLength="3"
sap:label="Qty. Unit" sap:semantics="unit-of-measure"/>
 <Property Name="WeightMeasure" Type="Edm.Decimal" Precision="13"
Scale="3" sap:unit="WeightUnit" sap:label="Wt. Measure"/>
 <Property Name="WeightUnit" Type="Edm.String" MaxLength="3"
sap:label="Qty. Unit" sap:semantics="unit-of-measure"/>
 <Property Name="CurrencyCode" Type="Edm.String" MaxLength="5"
sap:label="Currency" sap:semantics="currency-code"/>
 <Property Name="Price" Type="Edm.Decimal" Precision="16" Scale="3"
sap:unit="CurrencyCode" sap:label="Unit Price"/>
 <Property Name="Width" Type="Edm.Decimal" Precision="13" Scale="3"
sap:unit="DimUnit" sap:label="Dimensions"/>
 <Property Name="Depth" Type="Edm.Decimal" Precision="13" Scale="3"
sap:unit="DimUnit" sap:label="Dimensions"/>
 <Property Name="Height" Type="Edm.Decimal" Precision="13" Scale="3"
sap:unit="DimUnit" sap:label="Dimensions"/>
 <Property Name="DimUnit" Type="Edm.String" MaxLength="3" sap:label="Dim.
Unit" sap:semantics="unit-of-measure"/>
 <Property Name="CreatedAt" Type="Edm.DateTime" Precision="7"
sap:label="Time Stamp" sap:creatable="false" sap:updatable="false"/>
 <Property Name="ChangedAt" Type="Edm.DateTime" Precision="7"
ConcurrencyMode="Fixed" sap:label="Time Stamp" sap:creatable="false"
sap:updatable="false"/>
 <NavigationProperty Name="ToSalesOrderLineItems"
Relationship="GWSAMPLE_BASIC.Assoc_Product_SalesOrderLineItems"
FromRole="FromRole_Assoc_Product_SalesOrderLineItems"
ToRole="ToRole_Assoc_Product_SalesOrderLineItems"/>
 <NavigationProperty Name="ToSupplier"
Relationship="GWSAMPLE_BASIC.Assoc_BusinessPartner_Products"
FromRole="ToRole_Assoc_BusinessPartner_Products"
ToRole="FromRole_Assoc_BusinessPartner_Products"/> </EntityType>

In the following example, the Price property is annotated in the annotation document with
Org.OData.Measures.V1.ISOCurrency to indicate that the currency is displayed using the CurrencyCode
property; the Width, Depth, and Height properties are annotated with Org.OData.Measures.V1.Unit to
indicate that the unit is displayed using the DimUnit property; and WeightMeasure is annotated with
Org.OData.Measures.V1.Unit to indicate that the unit is displayed using the WeightUnit property.

 Sample Code

<Annotations Target="GWSAMPLE_BASIC.Product/WeightMeasure"> <Annotation Term="Org.OData.Measures.V1.Unit" Path="WeightUnit"/>
</Annotations>
<Annotations Target="GWSAMPLE_BASIC.Product/Width">
 <Annotation Term="Org.OData.Measures.V1.Unit" Path="DimUnit"/>
</Annotations>
<Annotations Target="GWSAMPLE_BASIC.Product/Depth">
 <Annotation Term="Org.OData.Measures.V1.Unit" Path="DimUnit"/>
</Annotations>
<Annotations Target="GWSAMPLE_BASIC.Product/Height">
 <Annotation Term="Org.OData.Measures.V1.Unit" Path="DimUnit"/>
</Annotations>
<Annotations Target="GWSAMPLE_BASIC.Product/Price">

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2005

 <Annotation Term="Org.OData.Measures.V1.ISOCurrency" Path="CurrencyCode"/> </Annotations>

Formatting Numeric Values

Numeric values in overview pages appear in their short format, using the SAPUI5
sap.ui.core.format.NumberFormat utility. You can configure the number of decimal points to display by
using information provided in the OData metadata file, or by using annotations.

In the following example, the scale attribute in the OData metadata is set to 3, indicating that the properties
Price, Width, Depth, and Height will be displayed with three decimal points.

 Sample Code

<EntityType Name="Product" sap:content-version="1"> ...
 <Property Name="Price" Type="Edm.Decimal" Precision="16" Scale="3"
sap:unit="CurrencyCode" sap:label="Unit Price"/>
 <Property Name="Width" Type="Edm.Decimal" Precision="13" Scale="3"
sap:unit="DimUnit" sap:label="Dimensions"/>
 <Property Name="Depth" Type="Edm.Decimal" Precision="13" Scale="3"
sap:unit="DimUnit" sap:label="Dimensions"/>
 <Property Name="Height" Type="Edm.Decimal" Precision="13" Scale="3"
sap:unit="DimUnit" sap:label="Dimensions"/>
 ... </EntityType>

You can also provide number formatting information in the annotation document in the
com.sap.vocabularies.UI.v1.DataPoint term, by using the ValueFormat property. The
NumberOfFractionalDigits property can be used to determine the number of decimal points.

In the following example, using the com.sap.vocabularies.UI.v1.DataPoint ValueFormat property,
the number of decimal points displayed for the Price property is 1, as defined in the
NumberOfFractionalDigits property.

 Sample Code

<Annotation Term="com.sap.vocabularies.UI.v1.DataPoint" Qualifier="Price"> <Record Type="com.sap.vocabularies.UI.v1.DataPointType">
 <PropertyValue Property="Title" String="Unit Price"/>
 <PropertyValue Property="Description" Path="Name"/>
 <PropertyValue Property="Value" Path="Price"/>
 <PropertyValue Property="ValueFormat">
 <Record Type="com.sap.vocabularies.UI.v1.NumberFormat">
 <PropertyValue Property="ScaleFactor" Decimal="1000"/>
 <PropertyValue Property="NumberOfFractionalDigits" int="1"/>
 </Record>
 </PropertyValue>
 </Record> </Annotation>

2006 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Highlighting Numeric Values

You can highlight a numeric value (for example, with a color) by providing Criticality or
CriticalityCalculation information in the com.sap.vocabularies.UI.v1.DataPoint annotation.

For more information, see com.sap.vocabularies.UI.v1.DataPoint in Annotations Used in Overview
Pages [page 2010].

Coloring Cards Based on Threshold Values

With overview pages, column chart cards can be semantically colored based on threshold values.

The threshold values used to semantically color column charts come from the data point annotation that is
associated with the measure used in the analytic card. We recommend to only use one measure in the chart if
you intend to use this feature.

When you color the chart card, the threshold value that influences the semantic color would also be displayed
in the legend; however, in instances where you have more than one measure, then the chart legend would only
show "good", "bad" or "neutral" values. For example, a measure can be linked with a data point as follows, if the
following two conditions are met:

● This data point should have a value that provides the improvement direction. This typically depicts whether
we are dealing with:
○ a maximizing measure where a higher value of a measure is better, or
○ a minimizing measure where a lesser value of a measure is better, or
○ a target measure where the measure value is preferred within a certain range

● It is also required to have all the threshold values based on the examples below.

 Note
We recommend configuring only one measure in the chart if you want to use semantic coloring. If more
than one measure is used and all the measures satisfy the above two conditions, then the chart would still
be colored semantically with each measure colored based on its own threshold values. The legends,
however, won't be very meaningful.

If more than one measure is used and some of the measures don't satisfy the required conditions, those
measures will be colored black and the measures that do satisfy the conditions will be semantically colored
based on the threshold values.

Examples of Measures

Target Measure (for example, temperature)

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2007

From To Measure Value

Negative Critical >= ThresholdValues.DeviationRange
LowValue

Critical Positive >= ThresholdValues.ToleranceRange
LowValue

Positive Critical > ThresholdValues.ToleranceRange
HighValue

Critical Negative > ThresholdValues.DeviationRange
HighValue

Maximizing Measure (for example, sales)

From To Measure Value

Negative Critical >= ThresholdValues.DeviationRange
LowValue

Critical Positive >= ThresholdValues.ToleranceRange
LowValue

2008 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Example of Target and Maximizing Measures

Semantic coloring with target KPIs Semantic coloring with maximizing KPIs

Minimizing Measure (for example, cost)

From To Measure Value

Positive Critical > ThresholdValues.ToleranceRange
HighValue

Critical Negative > ThresholdValues.DeviationRange
HighValue

Setting Authorizations for Cards
By setting authorization on cards, you can ensure that a user only sees cards or a preview of content from an
application for which they have the proper authorization.

An overview page provides a wide overview to the end user so that they can look at and interact with business
data in a specific domain. A user can perform key actions such as clicking on a particular card and navigating to

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2009

another application. But what if the user does an intent-based navigation to another application and gets an
error because they're not authorized to access that application?

To improve this user experience, during card configuration, you can add the property
requireAppAuthorization in the manifest.json file. Once a user has entered an app, this property is
checked against isIntentSupported to see if the user has the required authorizations to access the app. If
so, then the card will be displayed. The advantage here is that the intent can be set explicitly as needed.

Also, isIntentSupported is standard functionality in the Cross Application Navigation Service.

 Sample Code
 "sap.ovp":{
 ...
 "cards":{
 ...
 "card01":{
 "model": "salesOrder",
 "template": "sap.ovp.cards.stack",
 "settings": {
 "title": "Stack Card Title",
 "subTitle": "Stack Card",
 "requireAppAuthorization" : "#Action-toappnavsample",
 "entitySet": "SalesOrderSet"
 }
 },
 ... }

Annotations Used in Overview Pages

This topic provides a list of the annotations used in overview pages. They are as follows:

● com.sap.vocabularies.UI.v1.HeaderInfo
● com.sap.vocabularies.UI.v1.DataField
● com.sap.vocabularies.UI.v1.DataFieldForAnnotation
● com.sap.vocabularies.UI.v1.DataFieldForAction
● com.sap.vocabularies.UI.v1.DataFieldForIntentBasedNavigation
● com.sap.vocabularies.UI.v1.DataFieldWithUrl
● com.sap.vocabularies.UI.v1.DataPoint
● com.sap.vocabularies.UI.v1.Identification
● com.sap.vocabularies.UI.v1.LineItem
● com.sap.vocabularies.UI.v1.Facets
● com.sap.vocabularies.UI.v1.FieldGroup
● com.sap.vocabularies.UI.v1.SelectionVariant
● com.sap.vocabularies.UI.v1.PresentationVariant
● com.sap.vocabularies.UI.v1.SelectionPresentationVariant
● com.sap.vocabularies.UI.v1.Chart
● com.sap.vocabularies.UI.v1.KPI
● com.sap.vocabularies.Common.v1.Text

2010 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

● com.sap.vocabularies.PersonalData.v1

com.sap.vocabularies.UI.v1.HeaderInfo

The following properties are supported:

● TypeName
● TypeNamePlural
● ImageUrl
● Title
● Description

 Sample Code

<Annotation Term="com.sap.vocabularies.UI.v1.HeaderInfo"> <Record>
 <PropertyValue Property="TypeName" String="Product"/>
 <PropertyValue Property="TypeNamePlural" String="Products"/>
 <PropertyValue Property="Title">
 <Record Type="com.sap.vocabularies.UI.v1.DataField">
 <PropertyValue Property="Value" Path="Name"></PropertyValue>
 </Record>
 </PropertyValue>
 <PropertyValue Property="Description">
 <Record Type="com.sap.vocabularies.UI.v1.DataField">
 <PropertyValue Path="Description" Property="Value"/>
 </Record>
 </PropertyValue>
 <PropertyValue Property="ImageUrl" Path="ProductPicUrl"/>
 </Record> </Annotation>

com.sap.vocabularies.UI.v1.DataField

DataField is used to display simple text fields. The following properties are supported:

● Label: the label of the field
● Value: the value of the field, usually pointing to a path in the metadata

 Sample Code

<Record Type="com.sap.vocabularies.UI.v1.DataField"> <PropertyValue Property="Label" String="Total Sum"/>
 <PropertyValue Property="Value" Path="TotalSum"/> </Record>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2011

com.sap.vocabularies.UI.v1.DataFieldForAnnotation

DataFieldForAnnotation can be used to reference a different annotation term, using the Target property.
The following properties are supported:

● Label: the label of the field
● Target: reference to a different term in the annotation document

 Sample Code

<Record Type="com.sap.vocabularies.UI.v1.DataFieldForAnnotation"
Qualifier="WeightMeasure"> <PropertyValue Property="Label" String="Weight Measure"/>
 <PropertyValue Property="Target"
AnnotationPath="@com.sap.vocabularies.UI.v1.DataPoint#WeightMeasure"/> </Record>

com.sap.vocabularies.UI.v1.DataFieldForAction

DataFieldForAction is used for OData actions that can be preformed on an entity, and refer to a
FunctionImport action definition in the OData metadata. The following properties are supported:

● Label: the navigation label displayed in the footer of the quick view card.
● Action: name of the FunctionImport action definition to use

 Sample Code

<Record Type="com.sap.vocabularies.UI.v1.DataFieldForAction"> <Annotation Term="com.sap.vocabularies.UI.v1.Importance"
EnumMember="com.sap.vocabularies.UI.v1.ImportanceType/Medium" />
 <PropertyValue Property="Label" String="Confirm" />
 <PropertyValue Property="Action"
String="GWSAMPLE_BASIC.GWSAMPLE_BASIC_Entities/SalesOrder_Confirm" /> </Record>

com.sap.vocabularies.UI.v1.DataFieldForIntentBasedNavigation

The DataFieldForIntentBasedNavigation record type supports the following properties:

● SemanticObject: intent semantic object
● Action: action of the intent
● Label: the navigation label displayed in the footer of the quick view card

 Sample Code

<Record Type="com.sap.vocabularies.UI.v1.DataFieldForIntentBasedNavigation"> <PropertyValue Property="SemanticObject" String="SemanticObject1"/>
 <PropertyValue Property="Action" String="Action1"/>

2012 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 can also contain an intent based navigation with
 route (static or dynamic with
arguments).<PropertyValue Property="Label" String="App1"/>
 <Annotation Term="com.sap.vocabularies.UI.v1.Importance"
EnumMember="com.sap.vocabularies.UI.v1.ImportanceType/Medium"/> </Record><Record
Type="com.sap.vocabularies.UI.v1.DataFieldForIntentBasedNavigation"

com.sap.vocabularies.UI.v1.DataFieldWithUrl

The com.sap.vocabularies.UI.v1.DataFieldWithUrl record type supports the following properties:

● Url: Use this property to configure the URL details.

 Note
Url

● Label>: Use this property to specify the navigation label. The label appears in the quick view card's action
footer area for the stack card type.

<Record Type="com.sap.vocabularies.UI.v1.DataFieldWithUrl"> <PropertyValue Property="Label" String="Link to"/>
 <PropertyValue Property="Value" String="Google Maps"/>
 <PropertyValue Property="Url">
 <Apply Function="odata.fillUriTemplate">
 <String>https://www.google.de/maps/place/{street},{city}</String>
 <LabeledElement Name="street">
 <Apply Function="odata.uriEncode">
 <Path>Address/Street</Path>
 </Apply>
 </LabeledElement>
 <LabeledElement Name="city">
 <Apply Function="odata.uriEncode">
 <Path>Address/City</Path>
 </Apply>
 </LabeledElement>
 </Apply>
 </PropertyValue> </Record>

com.sap.vocabularies.UI.v1.DataPoint

The DataPoint term is used to display fields with special formatting. The following properties are supported:

● Title: Used in table cards for the column name
● Value: Field to display
● ValueFormat: Used with the NumberFormat annotation to format a decimal value

○ com.sap.vocabularies.UI.v1.NumberFormat:
○ ScaleFactor: Scale factor for large numbers.
○ NumberOfFractionalDigits: Number of decimal points to display.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2013

● com.sap.vocabularies.UI.v1.Criticality: An enumeration value that can be used to highlight the
value with a certain color. The following values are supported:
○ com.sap.vocabularies.UI.v1.CriticalityType/Neutral: Value is displayed using a neutral

color (default).
○ com.sap.vocabularies.UI.v1.CriticalityType/Negative: Value is displayed using a color

for errors (red).
○ com.sap.vocabularies.UI.v1.CriticalityType/Critical: Value is displayed using a color

for critical values (orange).
○ com.sap.vocabularies.UI.v1.CriticalityType/Positive: Value is displayed using a color

for positive values (green).
● com.sap.vocabularies.UI.v1.CriticalityCalculation: Used to color the value dynamically

according to the value in the com.sap.vocabularies.UI.v1.CriticalityCalculationType record
type. It supports the following values:
○ ImprovementDirection: Defines what is considered a positive value. Possible values are:

○ Minimize: If Minimize is the improvement direction, the DeviationRangeHighValue and
ToleranceRangeHighValue properties are required. and
○ If the value is less than the ToleranceRangeHighValue, the value is considered positive and

is displayed in green.
○ If the value is between the ToleranceRangeHighValue and the

DeviationRangeHighValue, the value is considered critical and is displayed in orange.
○ If the value is greater than the ToleranceRangeHighValue the value is considered negative

and is displayed in red.
○ Target: If Target is the improvement direction, the DeviationRangeLowValue,

DeviationRangeHighValue, ToleranceRangeLowValue, and ToleranceRangeHighValue
properties are required.
○ If the value is between the ToleranceRangeHighValue and ToleranceRangeLowValue,

the value is considered positive and is displayed in green.
○ If the value is between DeviationRangeLowValue and DeviationRangeLowValue, or

between DeviationRangeHighValue and ToleranceRangeHighValue, the value is
considered critical and is displayed in orange.

○ If the value is lower than the DeviationRangeLowValue or higher than
DeviationRangeHighValue, the value is considered negative and is displayed in red.

○ Maximize: If Maximize is the improvement direction, the DeviationRangeLowValue and
ToleranceRangeLowValue properties are required.
○ If the value is greater than the ToleranceRangeLowValue, the value is considered positive

and is displayed in green.
○ If the value is between ToleranceRangeLowValue and the DeviationRangeLowValue, the

value is considered critical and is displayed in orange.
○ If the value is lower than ToleranceRangeLowValue, the value is considered negative and is

displayed in red.
● com.sap.vocabularies.UI.v1.TargetValue: A reference value for trend calculation. Use this value to

calculate the deviation percent value. For example, Deviation = (DataPoint Value -
ReferenceValue) / ReferenceValue.

 Sample Code

<Annotation Term="UI.DataPoint" Qualifier="Eval_by_Country">

2014 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 <Record Type="UI.DataPointType">
 <PropertyValue Property="Title" String="Sales India - Line Card" />
 <PropertyValue Property="Value" Path="Sales" />
 <PropertyValue Property="NumberFormat">
 <Record>
 <PropertyValue Property="ScaleFactor" Int="0" />
 <PropertyValue Property="NumberOfFractionalDigits"
 Int="3" />
 </Record>
 </PropertyValue>
 <PropertyValue Property="CriticalityCalculation">
 <Record>
 <PropertyValue Property="ImprovementDirection"
 EnumMember="UI.ImprovementDirectionType/Minimizing" />
 <PropertyValue Property="DeviationRangeHighValue"
 String="7300" />
 <PropertyValue Property="ToleranceRangeHighValue"
 String="7200" />
 </Record>
 </PropertyValue>
 <PropertyValue Property="TargetValue" String="2.000 " />
 <PropertyValue Property="TrendCalculation">
 <Record>
 <PropertyValue Property="ReferenceValue" String="5201680" />
 <PropertyValue Property="DownDifference" Int="10000000.0" />
 </Record>
 </PropertyValue>
 </Record>
</Annotation>

com.sap.vocabularies.UI.v1.Identification

This term is used as a container for card actions. The following record types are supported:

● com.sap.vocabularies.UI.v1.DataFieldForAction
● com.sap.vocabularies.UI.v1.DataFieldForIntentBasedNavigation
● com.sap.vocabularies.UI.v1.DataFieldWithUrl

 Sample Code

<Annotation Term="com.sap.vocabularies.UI.v1.Identification"> <Collection>
 <Record
Type="com.sap.vocabularies.UI.v1.DataFieldForIntentBasedNavigation">
 <PropertyValue Property="SemanticObject" String="Action"/>
 <PropertyValue Property="Action" String="toappnavsample"/>
 <PropertyValue Property="Label" String="SO Navigation (M)"/>
 <Annotation Term="com.sap.vocabularies.UI.v1.Importance"
EnumMember="com.sap.vocabularies.UI.v1.ImportanceType/Medium"/>
 </Record>
 <Record Type="com.sap.vocabularies.UI.v1.DataField">
 <PropertyValue Property="Label" String="Sales Order ID"/>
 <PropertyValue Property="Value" Path="SalesOrderID"/>
 </Record>
 </Collection> </Annotation>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2015

com.sap.vocabularies.UI.v1.LineItem

This term is used to display lists of fields in a list or a table. The following record types are supported:

● com.sap.vocabularies.UI.v1.DataField
● com.sap.vocabularies.UI.v1.DataFieldForAnnotation
● com.sap.vocabularies.UI.v1.DataFieldForIntentBasedNavigation
● com.sap.vocabularies.UI.v1.DataFieldWithUrl

 Sample Code

<Annotation Term="com.sap.vocabularies.UI.v1.LineItem"> <Collection>
 <Record Type="com.sap.vocabularies.UI.v1.DataField">
 <PropertyValue Property="Label" String="Sales Order ID"/>
 <PropertyValue Property="Value" Path="SalesOrderID"/>
 </Record>
 <Record Type="com.sap.vocabularies.UI.v1.DataField">
 <PropertyValue Property="Label" String="Customer Name"/>
 <PropertyValue Property="Value" Path="CustomerName"/>
 </Record>
 <Record Type="com.sap.vocabularies.UI.v1.DataField">
 <PropertyValue Property="Label" String="Status"/>
 <PropertyValue Property="Value" Path="Status"/>
 </Record>
 <Record Type="com.sap.vocabularies.UI.v1.DataField">
 <PropertyValue Property="Label" String="Note"/>
 <PropertyValue Property="Value" Path="Note"/>
 </Record>
 <Record Type="com.sap.vocabularies.UI.v1.DataFieldForAnnotation"
Qualifier="TotalSum">
 <PropertyValue Property="Label" String="Total Sum"/>
 <PropertyValue Property="Target"
AnnotationPath="@com.sap.vocabularies.UI.v1.DataPoint#TotalSum"/>
 </Record>
 <Record Type="com.sap.vocabularies.UI.v1.DataFieldForAnnotation"
Qualifier="NetSum">
 <PropertyValue Property="Label" String="Net Sum"/>
 <PropertyValue Property="Target"
AnnotationPath="@com.sap.vocabularies.UI.v1.DataPoint#NetSum"/>
 </Record>
 <Record Type="com.sap.vocabularies.UI.v1.DataFieldForAnnotation"
Qualifier="Tax">
 <PropertyValue Property="Label" String="Tax"/>
 <PropertyValue Property="Target"
AnnotationPath="@com.sap.vocabularies.UI.v1.DataPoint#Tax"/>
 </Record>
 <Record
Type="com.sap.vocabularies.UI.v1.DataFieldForIntentBasedNavigation">
 <PropertyValue Property="SemanticObject" String="Action"/>
 <PropertyValue Property="Action" String="toappnavsample2"/>
 <PropertyValue Property="Label" String="SO Navigation (M)"/>
 <Annotation Term="com.sap.vocabularies.UI.v1.Importance"
EnumMember="com.sap.vocabularies.UI.v1.ImportanceType/Medium"/>
 </Record>
 </Collection> </Annotation>

2016 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

com.sap.vocabularies.UI.v1.Facets

The Facets term contains a collection of facets.

 Note
Overview pages only support the com.sap.vocabularies.UI.v1.ReferenceFacet record type.

 Sample Code

<Annotation Term="com.sap.vocabularies.UI.v1.Facets"> <Collection>
 <Record Type="com.sap.vocabularies.UI.v1.ReferenceFacet">
 <Annotation Term="com.sap.vocabularies.UI.v1.IsSummary"/>
 <PropertyValue Property="Label" String="Amounts"/>
 <PropertyValue Property="Target"
AnnotationPath="@com.sap.vocabularies.UI.v1.FieldGroup#Amounts"/>
 </Record>
 <Record Type="com.sap.vocabularies.UI.v1.ReferenceFacet">
 <Annotation Term="com.sap.vocabularies.UI.v1.IsSummary"/>
 <PropertyValue Property="Label" String="Note1"/>
 <PropertyValue Property="Target"
AnnotationPath="@com.sap.vocabularies.UI.v1.FieldGroup#Status"/>
 </Record>
 </Collection> </Annotation>

com.sap.vocabularies.UI.v1.FieldGroup

This term consists of a label and a collection of com.sap.vocabularies.UI.v1.DataFieldAbstract
fields.

 Sample Code

<Annotation Term="com.sap.vocabularies.UI.v1.FieldGroup" Qualifier="Amounts"> <Record Type="com.sap.vocabularies.UI.v1.FieldGroupType">
 <PropertyValue Property="Label" String="Amounts"/>
 <PropertyValue Property="Data">
 <Collection>
 <Record Type="com.sap.vocabularies.UI.v1.DataField">
 <PropertyValue Property="Label" String="Total Sum"/>
 <PropertyValue Property="Value" Path="TotalSum"/>
 </Record>
 <Record Type="com.sap.vocabularies.UI.v1.DataField">
 <PropertyValue Property="Label" String="Net Sum"/>
 <PropertyValue Property="Value" Path="NetSum"/>
 </Record>
 <Record Type="com.sap.vocabularies.UI.v1.DataField">
 <PropertyValue Property="Label" String="Tax"/>
 <PropertyValue Property="Value" Path="Tax"/>
 </Record>
 </Collection>
 </PropertyValue>
 </Record> </Annotation>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2017

com.sap.vocabularies.UI.v1.SelectionVariant

This term consists of a combination of parameters and filters that query the annotated entity set. You can use
SelectionVariant separately, or together with the SelectionPresentationVariant annotation. The
following properties are supported:

● ID: Can contain an identifier to reference this instance from external context
● Text: Name of the selection variant
● Parameters: Collection of com.sap.vocabularies.UI.v1.ParameterAbstract terms
● SelectOptions: Collection of com.sap.vocabularies.UI.v1.SelectOptionType terms used to

define filters on this entity set

 Sample Code

<Annotation Term="com.sap.vocabularies.UI.v1.SelectionVariant"> <Record>
 <PropertyValue Property="SelectOptions">
 <Collection>
 <Record>
 <PropertyValue Property="PropertyName"
PropertyPath="TotalSum" />
 <PropertyValue Property="Ranges">
 <Collection>
 <Record>
 <PropertyValue Property="Sign"

EnumMember="com.sap.vocabularies.UI.v1.SelectionRangeSignType/I" />
 <PropertyValue Property="Option"

EnumMember="com.sap.vocabularies.UI.v1.SelectionRangeOptionType/BT" />
 <PropertyValue Property="Low" String="0" />
 <PropertyValue Property="High" String="8000" />
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
 </Collection>
 </PropertyValue>
 </Record> </Annotation>

com.sap.vocabularies.UI.v1.PresentationVariant

Defines the way in which the result of a queried collection of entities is displayed in the KPI header. You can use
PresentationVariant separately, or together with SelectionPresentationVariant annotation. The
following properties are supported:

● ID: Can contain an identifier to reference this instance from external context
● Text: Name of the presentation variant
● SortOrder: Collection of com.sap.vocabularies.Common.v1.SortOrderType records
● RequestAtLeast: Collection of fileds that must be part of selection fields. The requestAtLeast lets you

receive additional dimensions from backend. The additional dimensions are added to the result of a
queried collection for further navigation.

2018 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Note
In an aggregated service, additional dimensions may cause issues while rendering the chart..

● Visualizations: Supports the LineItem or Chart annotation path

 Note
You can only define this property when it is used together with the
SelectionPresentationVariant annotation.

 Sample Code

<Annotation Term="com.sap.vocabularies.UI.v1.PresentationVariant"> <Record>
 <PropertyValue Property="GroupBy">
 <Collection>
 <PropertyPath>Status</PropertyPath>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="SortOrder">
 <Collection>
 <Record>
 <PropertyValue Property="Property" PropertyPath="TotalSum" />
 <PropertyValue Property="Descending" Bool="true" />
 </Record>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="RequestAtLeast">
 <Collection>
 <Record>
 <PropertyPath>CustomerID</PropertyPath>
 </Record>
 </Collection>
 </PropertyValue>
 </Record> </Annotation>

com.sap.vocabularies.UI.v1.SelectionPresentationVariant

Provides a combination of capabilities from SelectionVariant and PresentationVariant. The
SelectionPresentationVariant supports the following properties:

● SelectionVariant: specify the SelectionVariant annotation path.
● PresentationVariant: specify the PresentationVariant annotation path.

 Sample Code
SelectionPresentationVariant

<Annotation Term="com.sap.vocabularies.UI.v1.SelectionPresentationVariant"
Qualifier="BothSelectionAndPresentation"> <Record>
 <PropertyValue Property="SelectionVariant"
Path="@UI.SelectionVariant#SP2"/>
 <PropertyValue Property="PresentationVariant"
Path="@UI.PresentationVariant#customer"/>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2019

 </Record> </Annotation>

 Sample Code
SelectionVariant

<Annotation Term="com.sap.vocabularies.UI.v1.SelectionVariant"
Qualifier="SP2"> <Record>
 <PropertyValue Property="SelectOptions">
 <Collection>
 <Record>
 <PropertyValue Property="PropertyName"
PropertyPath="CustomerName"/>
 <PropertyValue Property="Ranges">
 <Collection>
 <Record>
 <PropertyValue Property="Sign"

EnumMember="com.sap.vocabularies.UI.v1.SelectionRangeSignType/I"/>
 <PropertyValue Property="Option"

EnumMember="com.sap.vocabularies.UI.v1.SelectionRangeOptionType/EQ"/>
 <PropertyValue Property="Low" String="Asia
High tech"/>
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
 </Collection>
 </PropertyValue>
 </Record> </Annotation>

 Sample Code
PresentationVariant

<Annotation Term="com.sap.vocabularies.UI.v1.PresentationVariant"
Qualifier="customer"> <Record>
 <PropertyValue Property="GroupBy">
 <Collection>
 <PropertyPath>BillingStatusDescription</PropertyPath>
 <PropertyPath>DeliveryStatusDescription</PropertyPath>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="Visualizations">
 <Collection>
 <AnnotationPath>@UI.LineItem#View2</AnnotationPath>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="SortOrder">
 <Collection>
 <Record>
 <PropertyValue Property="Property"
PropertyPath="CustomerName" />
 <PropertyValue Property="Descending" Boolean="true" />
 </Record>
 </Collection>
 </PropertyValue>
 </Record>

2020 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

</Annotation>

com.sap.vocabularies.UI.v1.Chart

Defines the dimensions and measures used in charts. The following properties are supported:

● Title
● Description
● ChartType
● Measures: Collection of PropertyPath properties.
● MeasureAttributes: A collection of

com.sap.vocabularies.UI.v1.ChartMeasureAttributeType records describing attributes for
measures. All measures used in this collection must also be part of the Measures property.

● Dimensions: Collection of PropertyPath properties
● DimensionAttributes: Collection of

com.sap.vocabularies.UI.v1.ChartDimensionAttributeType records describing attributes for
dimensions. All dimensions used in this collection must also be part of the Dimensions property.

 Sample Code

<Annotation Term="com.sap.vocabularies.UI.v1.Chart"> <Record Type="com.sap.vocabularies.UI.v1.ChartDefinitionType">
 <PropertyValue Property="Title" String="View1" />
 <PropertyValue Property="MeasureAttributes">
 <Collection>
 <Record
Type="com.sap.vocabularies.UI.v1.ChartMeasureAttributeType">
 <PropertyValue Property="Measure" PropertyPath="TotalSum" />
 <PropertyValue Property="Role"
EnumMember="com.sap.vocabularies.UI.v1.ChartMeasureRoleType/Axis1" />
 </Record>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="DimensionAttributes">
 <Collection>
 <Record
Type="com.sap.vocabularies.UI.v1.ChartDimensionAttributeType">
 <PropertyValue Property="Dimension" PropertyPath="Status" />
 <PropertyValue Property="Role"
EnumMember="com.sap.vocabularies.UI.v1.ChartDimensionRoleType/Series" />
 </Record>
 </Collection>
 </PropertyValue>
 </Record> </Annotation>

KPI Annotation

Use this annotation to create KPI tags for your overview page cards. The KPI information appears on the
header area of the card and reacts to the filter conditions you set. This annotation provides the capabilities of

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2021

SelectionVariant, PresentationVarint, and DataPoint annotations. Additionally, the KPI annotation
has the semantic object property and action to configure the navigation parameters.

<Annotation Term="UI.KPI" Qualifier="AllActualCosts"> <Record Type="UI.KPIType">
 <PropertyValue Property="Detail">
 <Record Type="UI.KPIDetailType">
 <PropertyValue Property="DefaultPresentationVariant"
Path="@UI.PresentationVariant#Eval_by_Currency1" />
 <PropertyValue Property="AlternativePresentationVariants">
 <Collection>
 <Path>@UI.PresentationVariant#Eval_by_Currency_Column</Path>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="SemanticObject" String="Action" />
 <PropertyValue Property="Action" String="toappnavsample" />
 </Record>
 </PropertyValue>
 <PropertyValue Property="SelectionVariant"
Path="@UI.SelectionVariant#Eval_by_Currency_1" />
 <PropertyValue Property="DataPoint" Path="@UI.DataPoint#Eval_by_Country-
Generic" />
 <PropertyValue Property="ID" String="String for KPI Annotation" />
 </Record> </Annotation>

 Sample Code
PresentationVariant annotation

<Annotation Term="UI.PresentationVariant" Qualifier="Eval_by_Currency1"> <Record>
 <PropertyValue Property="MaxItems" Int="5" />
 <PropertyValue Property="GroupBy">
 <Collection>
 <PropertyPath>Country</PropertyPath>
 <PropertyPath>Currency</PropertyPath>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="SortOrder">
 <Collection>
 <Record>
 <PropertyValue Property="Property" PropertyPath="TotalSales" />
 <PropertyValue Property="Descending" Boolean="true" />
 </Record>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="Visualizations">
 <Collection>
 <AnnotationPath>@UI.Chart#Eval_by_Currency_Donut</AnnotationPath>
 </Collection>
 </PropertyValue>
 </Record> </Annotation>

 Sample Code
SelectionVariant annotation

<Annotation Term="UI.SelectionVariant" Qualifier="Eval_by_Currency_1"> <Record>
 <PropertyValue Property="SelectOptions">
 <Collection>
 <Record>

2022 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 <PropertyValue Property="PropertyName"
PropertyPath="Country" />
 <PropertyValue Property="Ranges">
 <Collection>
 <Record>
 <PropertyValue Property="Sign"
EnumMember="UI.SelectionRangeSignType/I" />
 <PropertyValue Property="Option"
EnumMember="UI.SelectionRangeOptionType/EQ" />
 <PropertyValue Property="Low" String="IN" />
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="Parameters">
 <Collection>
 <Record Type="UI.Parameter">
 <PropertyValue Property="PropertyName"
PropertyPath="Currency_Target" />
 <PropertyValue Property="PropertyValue" String="EUR" />
 </Record>
 <Record Type="UI.Parameter">
 <PropertyValue Property="PropertyName"
PropertyPath="UoM_Target" />
 <PropertyValue Property="PropertyValue" String="KGM" />
 </Record>
 </Collection>
 </PropertyValue>
 </Record> </Annotation>

 Sample Code
DataPoint annotation

<Annotation Term="UI.DataPoint" Qualifier="Eval_by_Country-Generic"> <Record Type="UI.DataPointType">
 <PropertyValue Property="Title" String="Sales India - Generic Card" />
 <PropertyValue Property="Value" Path="Sales" />
 <PropertyValue Property="ValueFormat">
 <Record>
 <PropertyValue Property="ScaleFactor" Int="2" />
 <PropertyValue Property="NumberOfFractionalDigits" Int="1" />
 </Record>
 </PropertyValue>
 <PropertyValue Property="CriticalityCalculation">
 <Record>
 <PropertyValue Property="ImprovementDirection"
EnumMember="UI.ImprovementDirectionType/Minimizing" />
 <PropertyValue Property="DeviationRangeHighValue" String="7300" />
 <PropertyValue Property="ToleranceRangeHighValue" String="7200" />
 </Record>
 </PropertyValue>
 <PropertyValue Property="TargetValue" String="2.000 " />
 <PropertyValue Property="TrendCalculation">
 <Record>
 <PropertyValue Property="ReferenceValue" String="5201680" />
 <PropertyValue Property="DownDifference" Int="10000000.0" />
 </Record>
 </PropertyValue>
 </Record> </Annotation>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2023

Text Arrangement

The text arrangement annotation lets you format text.

<Annotations xmlns="http://docs.oasis-open.org/odata/ns/edm"
Target="GWSAMPLE_BASIC.SalesOrder/CustomerID"> <Annotation Term="com.sap.vocabularies.Common.v1.Text" Path="Supplier_Name"/>
 <Annotation Term="com.sap.vocabularies.UI.v1.TextArrangement"
EnumMember="com.sap.vocabularies.UI.v1.TextArrangementType/TextLast" /> </Annotations>

In the preceding example, the text Customer is bound to the ContactID property and appears as shown in the
table:

Text Arrangement Type Result

TextLast ContractID (Customer)

TextFirst Customer (ContractID)

TextOnly Customer

Potentially Sensitive Personal Data

To define a property as sensitive data, configure the target property and set it as personally sensitive.

<Annotations Target="SEPMRA_OVW.SEPMRA_C_OVW_SalesOrderType/CompanyCode"> <Annotation
Term="com.sap.vocabularies.PersonalData.v1.IsPotentiallySensitive"/> </Annotations>

Configuring Overview Page App Extensions

Lets you customize the card and filter area to design a robust application.

2024 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Custom Actions

You can assign custom actions to quick view cards that open in the object stream of the stack card. These
custom actions are displayed as buttons in the card footer.

Procedure

To define custom action in quick view cards:

1. Create a JavaScript file in your project folder for defining custom controls. For example,
customConfiguration.controller.js.

2. Open the JavaScript file you created and define the custom actions.

sap.ui.define([], function () { "use strict";
 return sap.ui.controller("sap.ovp.demo.ext.customConfiguration", {
 /*
 The following Hook function “onCustomActionPress” accepts only one
argument name of the press handler as a string and returns the press handler
function defined in the custom controller.
 */
 onCustomActionPress: function(sCustomAction) {
 if (sCustomAction === "press1") {
 return this.press1;
 } else if (sCustomAction === "press2") {
 return this.press2;
 }
 },
 /*
 The following Press Handler contains the custom actions to be performed
on the click of the button in quickview action footer.
 */
 press1: function(oEvent) {
 window.open("https://www.google.co.in");
 },
 press2: function(oEvent) {
 window.open("http://www.sap.com/index.html");
 },
 }); });

3. Configure the application descriptor file.
1. Add your JavaScript filepath in the extends section of the descriptor.

"extends": { "extensions": {
 "sap.ui.controllerExtensions": {
 "sap.ovp.app.Main": {
 "controllerName":
"sap.ovp.demo.ext.customConfiguration"
 }
 }
 } },

2. Add the customActions property under the stack card settings objectStreamCardsSettings
property and define the following mandatory properties:
○ text: Enter the string to view in the quick view action footer

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2025

○ press: Enter the name of a press handler defined in the JavaScript file
○ position: Enter a numeric value to position the order of actions in the quick view action footer

"card007_ProductsOutOfStock": { "model": "salesOrder",
 "template": "sap.ovp.cards.stack",
 "settings": {
 "itemText": "{{stackCard_itemText}}",
 "title": "Products Out of Stock",
 "subTitle": "SalesOrderSet Stack Card",
 "requireAppAuthorization": "#Action-toappnavsample",
 "entitySet": "SalesOrderSet",
 "identificationAnnotationPath": "com.sap.vocabularies.UI.v1.Identificat
ion,com.sap.vocabularies.UI.v1.Identification#item2",
 "objectStreamCardsSettings": {
 "showFirstActionInFooter": false,
 "customActions": [
 {
 "text": "text1",
 "press": "press1",
 "position": 1
 },
 {
 "text": "text2",
 "press": "press2",
 "position": 10
 },
 {
 "text": "text3",
 "press": "press1",
 "position": 3
 },
 {
 "text": "text4",
 "press": "press2",
 "position": 8
 },
 {
 "text": "text5",
 "press": "press1",
 "position": 5
 },
 {
 "text": "text6",
 "press": "press2",
 "position": 6
 }
]
 }
 } },

2026 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Global Actions on the Filter Bar

To add custom global actions on the smart filter bar, you need to configure the descriptor file, define a
fragment in the view extension, and create controller.js file to handle the events. For example:

 Sample Code
Descriptor Setting

"sap.ui5": { "_version": "1.1.0",
 "dependencies": {
 "libs": {
 "sap.ovp": {}
 }
 },
 "models": {
 "i18n": {
 "type": "sap.ui.model.resource.ResourceModel",
 "uri": "i18n/i18n.properties"
 },
 "salesOrder": {
 "dataSource": "salesOrder",
 "settings": {}
 }
 },
 "extends": {
 "extensions": {
 "sap.ui.controllerExtensions": {
 "sap.ovp.app.Main": {
 "controllerName": "sap.ovp.demo.ext.customFilter"
 }
 },
 "sap.ui.viewExtensions": {
 "sap.ovp.app.Main": {
 "SmartFilterBarControlConfigurationExtension|GlobalFilters": {
 "className": "sap.ui.core.Fragment",
 "fragmentName": "sap.ovp.demo.ext.customFilter",
 "type": "XML"
 },
 "SmartFilterBarGlobalActionExtension": {
 "className": "sap.ui.core.Fragment",
 "fragmentName": "sap.ovp.demo.ext.customAction",
 "type": "XML"
 }
 }

 }
 }
 } },

Add controller and view extensions with a path to the custom controller name and fragment name.

 Sample Code
Sample fragment for view extension: customAction.fragment.xml

<core:FragmentDefinition xmlns="sap.m"
xmlns:smartfilterbar="sap.ui.comp.smartfilterbar" xmlns:core="sap.ui.core">
 <Button text="Action" press="handleCustomAction" type="Transparent"></
Button>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2027

 </core:FragmentDefinition>

 Sample Code
Sample customFilter.controller.xml file

sap.ui.define(["sap/ui/model/Filter",
 "sap/m/MessageToast"
], function (Filter, MessageToast) {
 "use strict";

 //Extension controller for ovp demo app
 return sap.ui.controller("sap.ovp.demo.ext.customFilter", {
 * /*
 This is for Custom Global Action
 */
 handleCustomAction : function(){
 var msg = 'Custom Global Action clicked';
 MessageToast.show(msg);
 }
 }); });

Custom Cards

Create custom cards to view custom information relevant to your overview page.

Procedure

To create a custom card:

1. Create the following files in your project folder:
○ Component.js file
○ Cardtype.controller.js file. For example: List.controller.js
○ Cardtype.fragment.xml file. For example: List.fragment.xml
○ CardtypeHeader.fragment.xml file. For example: ListHeader.fragment.xml

2. Extend the custom overview page component in your component file.

sap.ui.define(["sap/ovp/cards/generic/Component", "jquery.sap.global"],
 function (CardComponent, jQuery) {
 "use strict";

 return CardComponent.extend("sap.ovp.cards.list.Component", {
 // use inline declaration instead of component.json to save 1
round trip
 metadata: {
 properties: {
 "contentFragment": {
 "type": "string",

2028 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 "defaultValue": "sap.ovp.cards.list.List"
 },
 "controllerName": {
 "type": "string",
 "defaultValue": "sap.ovp.cards.list.List"
 },
 "annotationPath": {
 "type": "string",
 "defaultValue": "com.sap.vocabularies.UI.v1.LineItem"
 },
 "countHeaderFragment": {
 "type": "string",
 "defaultValue": "sap.ovp.cards.generic.CountHeader"
 },
 "headerExtensionFragment": {
 "type": "string",
 "defaultValue": "sap.ovp.cards.generic.KPIHeader"
 }
 },

 version: "${version}",

 library: "sap.ovp",

 includes: [],

 dependencies: {
 libs: ["sap.suite.ui.microchart"],
 components: []
 },
 config: {}
 }
 });
 });

3. Define the fragment file content.

 Sample Code
List.fragment.xml

<core:FragmentDefinition xmlns="sap.m"
 xmlns:core="sap.ui.core"
 xmlns:ovp="sap.ovp.ui"
 xmlns:template="http://schemas.sap.com/sapui5/extension/
sap.ui.core.template/1">
 <!-- Here you can put your Card's Content Area --> </core:FragmentDefinition>

 Sample Code
ExtendedBarList.fragment.xml

 <core:FragmentDefinition
 xmlns="sap.m"
 xmlns:core="sap.ui.core"
 xmlns:ovp="sap.ovp.ui"
 xmlns:template="http://schemas.sap.com/sapui5/extension/
sap.ui.core.template/1">
 <!-- Here you can put your Card's Header Area --> </core:FragmentDefinition>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2029

4. Define the content of the controller file.

 Sample Code

sap.ui.define(["sap/ovp/cards/generic/Card.controller"], function (Controller) {
 "use strict";
 return Controller.extend("sap.ovp.demo.ext.list.List", {

 onInit: function () {

 },

 onAfterRendering: function () {

 },
 }); });

5. Configure the descriptor file.

 Sample Code

"card008_UrgentPurchaseOrdersk": { "model": "purchaseOrder",
 "template": "sap.ovp.demo.ext.list",
 "settings": {
 "title": "Custom Card for purchased items",
 "subTitle": "PurchaseOrderSet custom card",
 "listType": "extended",
 "entitySet": "PurchaseOrderSet",

Custom Filters

Add custom filters to your overview page application. It provides the end users an option to filter the data
displayed in one or more cards.

Steps

1. Create a view extension fragment.

2030 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Property Description

groupId Enter a group ID to associate the custom controller to a
group.

 Note
If the group ID does not exist, the filter is added to the
default group.

key Enter a property of an entity type to define the filter crite
ria.

visibleInAdvancedArea Enable this property to view custom filters on the filter bar.

Input id Enter a property of an entity type to define the input crite
ria.

 Sample Code
For example, create a customFilter.fragment.xml file and provide the required information.

<core:FragmentDefinition xmlns="sap.m"
xmlns:smartfilterbar="sap.ui.comp.smartfilterbar" xmlns:core="sap.ui.core"> <!-- Product ID Filter -->
 <smartfilterbar:ControlConfiguration groupId="_BASIC" key="ProductID"
 label="Product ID (Extension)"
 visibleInAdvancedArea="true">
 <smartfilterbar:customControl>
 <Input id="ProductID" type="Text"/>
 </smartfilterbar:customControl>
 </smartfilterbar:ControlConfiguration>
 <smartfilterbar:ControlConfiguration groupId="GlobalFilters"
key="SalesOrderID"
 label="Sales Order ID (Extension)"
 visibleInAdvancedArea="false">
 <smartfilterbar:customControl>
 <Input id="SalesOrderID" type="Text"/>
 </smartfilterbar:customControl>
 </smartfilterbar:ControlConfiguration> </core:FragmentDefinition>

2. Create a controller extension. For example, create a customFilter.controller.js file and define the
following functions:
○ Define getCustomFilters() to return a filter object.

 getCustomFilters: function () { var oValue1 = this.oView.byId("ProductID").getValue();
 var oValue2 = this.oView.byId("SalesOrderID").getValue();
 var aFilters = [], oFilter1, oFilter2;
 if (oValue1) {
 oFilter1 = new Filter({
 path: "ProductID",
 operator: "EQ",
 value1: oValue1
 });
 aFilters.push(oFilter1);

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2031

 }
 if (oValue2) {
 oFilter2 = new Filter({
 path: "SalesOrderID",
 operator: "EQ",
 value1: oValue2
 });
 aFilters.push(oFilter2);
 }
 if (aFilters && aFilters.length > 0) {
 return (new Filter(aFilters, true));
 }
 },

○ Define getCustomAppStateDataExtension(oCustomData) to store the application state.

 getCustomAppStateDataExtension: function (oCustomData) { //the content of the custom field will be stored in the app
state, so that it can be restored later, for example after a back
navigation.
 //The developer has to ensure that the content of the field is
stored in the object that is returned by this method.
 if (oCustomData) {
 var oCustomField1 = this.oView.byId("ProductID");
 var oCustomField2 = this.oView.byId("SalesOrderID");
 if (oCustomField1) {
 oCustomData.ProductID = oCustomField1.getValue();
 }
 if (oCustomField2) {
 oCustomData.SalesOrderID = oCustomField2.getValue();
 }
 } },

○ Define restoreCustomAppStateDataExtension(oCustomData) to restore the application state.

 restoreCustomAppStateDataExtension: function (oCustomData) { //in order to restore the content of the custom field in the
filter bar, for example after a back navigation,
 //an object with the content is handed over to this method and
the developer has to ensure that the content of the custom field is set
accordingly
 //also, empty properties have to be set
 if (oCustomData) {
 if (oCustomData.ProductID) {
 var oCustomField1 = this.oView.byId("ProductID");
 oCustomField1.setValue(oCustomData.ProductID);
 }
 if (oCustomData.SalesOrderID) {
 var oCustomField2 = this.oView.byId("SalesOrderID");
 oCustomField2.setValue(oCustomData.SalesOrderID);
 }
 } },

3. Add the controller and view extension settings to the manifest.

 Note
Ensure that you use the same entity type in both viewExtensions and globalFilterEntityType
settings. For example, see

 "extends": { "extensions": {
 "sap.ui.controllerExtensions": {

2032 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 "sap.ovp.app.Main": {
 "controllerName": "sap.ovp.demo.ext.customFilter"
 }
 },
 "sap.ui.viewExtensions": {
 "sap.ovp.app.Main": {
 "SmartFilterBarControlConfigurationExtension|
GlobalFilters": {
 "className": "sap.ui.core.Fragment",
 "fragmentName":
"sap.ovp.demo.ext.customFilter",
 "type": "XML"
 }
 }
 }
 }
 }
 },
 "sap.ovp": {
 "globalFilterModel": "salesOrder",
 "globalFilterEntityType": "GlobalFilters",
 ...
 ... }

Custom Navigation Parameters

Add custom parameters for intent-based navigation to the target application.

Procedure

1. Define the onCustomParams function in the controller file extension.

 Sample Code

 onCustomParams: function(sCustomParams) { if (sCustomParams === "getParameters") {
 return this.getParameters;
 } else if (sCustomParams === "param2") {
 return this.param2;
 } },

The custom parameter function inserts URL parameters while navigating to the target application.
Configure the following properties:
○ path: Property name
○ operator: Operator to apply. Possible operations are EQ,NE,LE,GE,LT,GT,BT,CP.
○ value1: First operator value applied
○ value2: Second operator value. Use only for a range of operators, such as BT. If empty, set the value

to null.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2033

○ sign: Specify the current selection to be included or excluded from the filter. Use I to include and E to
exclude.

 getParameters: function(oNavigateParams) { var aCustomSelectionVariant = [];
 var oCustomSelectionVariant = {
 path: "TaxTarifCode",
 operator: "EQ",
 value1: 5,
 value2: null,
 sign: "I"
 };
 aCustomSelectionVariant.push(oCustomSelectionVariant);
 return aCustomSelectionVariant;
 },
 param2: function(oNavigateParams) {
 oNavigateParams.TaxTarifCode = '3';
 return oNavigateParams; }

 Sample Code
Adding parameters during navigation

getParameters: function(oNavigateParams,oSelectionVariantParams) {

 // to get the select option property names, make use of this
to check what values are available to modify
 var aSelectOptionNames =
oSelectionVariantParams.getSelectOptionsPropertyNames();

 var oFilter1 =
oSelectionVariantParams.getSelectOption("Filter1");
 var oFilter2 =
oSelectionVariantParams.getSelectOption("Filter2");

 ///
 Your logic to extract values from oFilter1 and oFilter2
 ///

 /// logic to remove Filter1 and Filter2
 /// assigning empty values to Filter1 and Filter2, with
ignoreEmptyString as true, this will be removed from the Selection Variant

 var Filter1 = {
 path: "Filter1",
 operator: "EQ",
 value1: "",
 value2: null,
 sign: "I"
 };

 var Filter2 = {
 path: "Filter2",
 operator: "EQ",
 value1: "",
 value2: null,
 sign: "I"
 };

2034 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 /// logic to remove Filter1 and Filter2

 var aCustomSelectionVariant = [];
 var oFilter3 = {
 path: "Filter3PropertyName",
 operator: "EQ",
 value1: "< Value you want to include >",
 value2: null,
 sign: "I"
 };
 aCustomSelectionVariant.push(oFilter3);
 aCustomSelectionVariant.push(oFilter2);
 aCustomSelectionVariant.push(oFilter1);
 return {
 selectionVariant: aCustomSelectionVariant,
 ignoreEmptyString: true
 }; },

2. Configure the descriptor file.
1. Add a controller extension and specify the path to the custom controller.

"extends": { "extensions": {
 "sap.ui.controller.Extensions": {
 "sap.ovp.app.Main": {
 "controllerName":
"sap.ovp.demo.ext.customConfiguration"
 }
 }
 } },

 Note
If a controller file already exists, add the new extension code in the same file.

3. Configure the customParams card setting type to return custom parameters. Enter the name of the
custom parameter function defined in your custom controller file.

"card002_ReorderSoon": { "model": "purchaseOrder",
 "template": "sap.ovp.cards.list",
 "settings": {
 "title": "reorder Soon",
 "subTitle": "Less than 10 in stock",
 "listType": "condensed",
 "entitySet": "PurchaseSet",
 "customParams": "<function-name>" // Depending on the logic you define
in step 1, input the function name.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2035

Custom Messages

You can customize messages for success, success with no data, and error scenarios. Also, you can add an icon
for success scenarios.For error scenarios, default icon is displayed.

To configure custom messages, define getCustomMessage in your extension controller file.

getCustomMessage: function (oResponse, sCardId) { if (sCardId == "card001") {
 if (oResponse && oResponse.getParameters() &&
oResponse.getParameters().success) {
 return {
 sMessage: "My Custom Message for No Data", //message in case of success
and no data
 sIcon: "sap-icon://message-information" //icon in case of success and
no data
 }
 } else {
 return {
 sMessage: "My Custom Message for Error" //message in case of error
 }
 }
 } },

Custom View Switch

Extend view switch so it reacts based on filter conditions or custom configuration.

Procedure

To define the custom view switch:

1. Create a controller extension (example, customViewswitch.controller.js file) and define the
onBeforeRebindPageExtension function with these input parameters:
○ aCards [Type: Array]: List of all visible cards
○ oSelectionvariant [Type: Object]: Object containing filter values

2. Define setTabIndex() method to pass <Cardid> and <TabIndex> as parameters. For example, var
oTabIndexList = {"card1" : 2, "card2": 1};

 Note
The <TabIndex> starts with the value one and should not be greater than the length of tabs.

Configure the key value according to your filter values and pass the oTabIndexList object to
this.setTabIndex(oTabIndexList) as shown here:

2036 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Sample Code
Breakout function

/* * Breakout function for dynamic view switch
* */
onBeforeRebindPageExtension: function (aCards, oSelectionVariant) {
 var oTabIndexList = {};
 var oFilterList = this._getFilterList(oSelectionVariant); //Sample
logic
 var oTabIndexList = {};
 if (aCards && aCards.length > 0) {
 for (var i = 0; i < aCards.length; i++) {
 if (aCards[i].id == "card012") {
 if (oFilterList &&
oFilterList.hasOwnProperty("SupplierName")) {
 if (oFilterList.SupplierName == "SAP") {
 oTabIndexList["card012"] = 1;
 } else if (oFilterList.SupplierName == "Talpa") {
 oTabIndexList["card012"] = 2;
 }
 }
 }
 }
 }//End of sample logic
 this.setTabIndex(oTabIndexList); //Pass updated oTabIndexList object
here
}

 Sample Code
Supporting function

//get all filters with values _getFilterList: function (oSelectionVariant) {
 var oFilterList = {};
 if (oSelectionVariant && oSelectionVariant.Parameters &&
oSelectionVariant.Parameters.length > 0) {
 for (var i = 0; i < oSelectionVariant.Parameters.length; i++) {
 oFilterList[oSelectionVariant.Parameters[i].PropertyName] =
oSelectionVariant.Parameters[i].PropertyValue;
 }
 }
 if (oSelectionVariant && oSelectionVariant.SelectOptions &&
oSelectionVariant.SelectOptions.length > 0) {
 for (var j = 0; j < oSelectionVariant.SelectOptions.length; j++) {
 var aRanges = oSelectionVariant.SelectOptions[j].Ranges;
 for (var k = 0; k < aRanges.length; k++) {
 if (aRanges[k].Option == "EQ" && aRanges[k].Low !== "") {

oFilterList[oSelectionVariant.SelectOptions[j].PropertyName] =
aRanges[k].Low;
 }
 }
 }
 }
 return oFilterList;
},

3. Configure the controller extension in the descriptor file.

"extends": { "extensions": {

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2037

 "sap.ui.controllerExtensions": {
 "sap.ovp.app.Main": {
 "controllerName": "sap.ovp.demo.ext.customController"
 }
 }
 }
 }

Sharing Overview Pages

Share your application as a tile on the SAP Fiori launchpad or by sending an email link.

SAP Fiori Launchpad

The current state of the filter bar in your application is stored as a tile on the SAP Fiori launchpad.

To save the application, on the filter bar, click Share Save As Tile Fill required fields Ok .

Email

You can also share the current state of a overview page by email, which contains a link to your application.

To send an email link, on the filter bar, click Share Send Email .

Customizing Overview Pages Using Runtime Capabilities

End users can customize their overview pages by rearranging cards and by hiding or showing cards. They can
also apply a filter to the displayed information, which will affect all relevant cards.

End users can customize their overview pages in the following ways:

● Drag and drop cards to rearrange them. You can do this using the mouse, or with the keyboard by pressing
Ctrl and the arrow buttons.

● Hide cards by doing the following:
1. In the header bar, click or tap the Options icon and select Manage Cards.
2. Use the switch control to hide or show the relevant card.
3. Click OK.
4. To reset the view to the default settings, in the Manage Cards window, click Reset.

● Resize a card in horizontal and vertical directions. Or, you can load cards with specific default size. For
example, to set default size for a card, configure the card settings in the descriptor file.
Prerequisite: Set the property containerLayout: "resizable" in descriptor configuration file.

"defaultSpan": {

2038 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 "rows": 7,
 "cols": 2 }

 Note
Resizing of stack card is not supported.

● Filter the information displayed in cards by defining the values or range of values to be displayed for a
specific field. For example, display only orders for which the supply date has passed.

Key User Capabilities

A key user is a special role that lets you perform user interface adaptation in overview page application.

Prerequisites

Ensure that you have the required user role (For more information, see SAPUI5 Flexibility: Adapting UIs Made
Easy [page 1152]):

● For SAP Cloud Platform applications, you must have FlexKeyUser role assigned.
● For OnPremise applications, you must have SAP_UI_FLEX_KEY_USER role assigned.

To enable the user interface adaptation mode, click Me Area and select Adapt UI.

Table 96: User Interface Adaptation Features

Feature Description

Hide Card Lets you hide cards during initial load. The hidden cards are
available in the Manage Cards section.

Add Card Lets you add cards from a list of available cards that are hid
den.

Edit Card Lets you modify title, subtitle, KPI header, value, and descrip
tion, and type of chart. Also, you can modify sorting and nav
igation properties.

Add/Delete Views Lets you add view switch field to a card

Modify Card Size Lets you resize cards, change the number of rows and col
umns.

Create Card Lets you create new cards. Currently you can create static
link list card and KPI card only.

Others Similarly you can perform basic card operations like cut,
copy, paste, save, cancel, reset and publish.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2039

Best Practices

Maintain property labels for these annotations to enhance readability in the user interface adaptation mode:

Annotation Property

PresentationVariant text

SelectionVariant text

DataPoint title

IdentificationAnnotation The label is displayed based on the priority set in the
DataFieldForIntentBasedNavigation/
DataFieldWithURL property

chartAnnotation description

Developing Apps with Analysis Path Framework (APF)

Analysis Path Framework (APF) provides reuse components that allow you to build and enhance interactive
analytical Web applications.

You can use APF-based applications to explore KPIs and their influencing factors by drilling down into
multidimensional representations of data, such as charts or tables.

APF is available with:

● SAP Business Suite powered by SAP HANA
● SAP S/4HANA

Key Features

The key features of APF include the following:

● APF-based applications:
○ SAP Fiori applications for a data driven, chart-based drill-down analysis targeted at business users
○ Step-by-step analysis of data by building analysis paths using a set of preconfigured analysis steps
○ Select data to filter the information provided in subsequent steps
○ Save, retrieve, and print analysis paths
○ Use of OData services to expose the data on the UI. Each step can have its own OData service so that

you can define cross-scenarios that use data from different application areas or systems.
○ Supported data sources for the OData services:

○ Calculation views
○ ABAP CDS views
○ BW OData queries

2040 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

● APF Configuration Modeler:
○ Enables you to create your own APF-based applications in a very quick and easy way and to enhance

shipped applications.
○ Configure an APF-based app without having to code:

○ Choose from predefined UI elements, such as chart types, tables, and filters. APF takes care of the
interaction between these UI elements.

○ Assign OData services to analysis steps or filters, for example. APF then takes care of the OData
request handling, such as when a request is triggered and how it is parameterized.

○ Execute APF-based applications directly from the APF Configuration Modeler using the generic
runtime application provided by APF.

○ In SAP S/4HANA, the APF Configuration Modeler provides in-app help to get context-sensitive user
assistance for individual entry fields.

● Integration
○ Integration with SAP Fiori and SAP Smart Business, which allows you to launch APF-based

applications from different tiles or other apps, handing over filters and parameters to the APF-based
application.

○ Navigation from APF-based applications to other apps, for example, to view additional information or
to take action in a transactional app, handing over filters and parameters of the APF-based application
to the target application.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2041

To learn more about APF-based apps and how to configure them, see the following sections:

● Analytical Applications Based on APF [page 2043]
● Setting Up APF and the APF Configuration Modeler [page 2045]
● Authorization Concept [page 2049]
● Enhancing an APF-Based Application [page 2050]
● Creating Your Own Application [page 2052]
● APF Configuration Modeler [page 2054]
● Launching APF-Based Applications [page 2094]

2042 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

If you need more technical background information, see the following sections:

● APF Modules [page 2101]
● Concepts [page 2108]
● Configuration Files and Their Structure [page 2121]

Related Information

https://wiki.scn.sap.com/wiki/x/lCe7Gg

Analytical Applications Based on APF

APF supports a sophisticated user interaction paradigm that you can apply to your own APF-based analytical
Web application. Users can perform a step-by-step analysis of KPIs by looking at them from different
perspectives. For example, they can compare a KPI across different countries or customers, and they can
examine tendencies over time. To cover these aspects, you can define different analysis steps that the users
can then choose from in an analysis step gallery. Analysis steps consist of data that is depicted on the UI in
various types of representations, such as charts or tables.

In each analysis step, the users can select data to filter the information provided in subsequent steps. By
combining different analysis steps and applying filters, they interactively create their own flexible analysis
paths.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2043

http://help.sap.com/disclaimer?site=https%3A%2F%2Fwiki.scn.sap.com%2Fwiki%2Fx%2FlCe7Gg

To get an overview of how an APF-based app looks and how to use it, you can view the APF Demo App in the
Demo Kit and watch the following videos:

Title Video

UI Overview

Creating an Analysis Path

Further Options for Analysis Paths

Filtering Data in Analysis Paths

Insight to Action

Configured APF-Based Applications

A number of APF-based applications are available that are already configured and ready to be used.

APF-based applications that are shipped by SAP consist of a Business Server Page (BSP) application along
with an app descriptor, the manifest.json file. This manifest.json file refers to the analytical configuration
file, also in JSON format. If you want to run an APF-based application without making any changes to it, the
configuration can be read directly from the JSON files. You don't need the APF Configuration Modeler to use
this scenario.

When you import the JSON file of a shipped application into the APF Configuration Modeler to enhance the
application, the configuration is written into a repository. For more information, see Import [page 2090] and
Enhancing an APF-Based Application [page 2050].

For information about shipped APF-based apps, see the documentation of the individual apps.

Architecture

APF-based Web applications run in a Web browser and communicate with a server using OData service
requests.

2044 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/test-resources/sap/apf/demokit/app/index.html

The architecture is depicted in the following figure:

Setting Up APF and the APF Configuration Modeler

The following sections give information about the different data sources you can use and how APF is
implemented depending on the platform you use:

● SAP Business Suite powered by SAP HANA
● SAP Business Warehouse powered by SAP HANA
● SAP S/4HANA

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2045

Data Sources

APF consumes OData services. These OData services can be based on different data sources:

● Calculation views
● ABAP CDS views
● BW OData queries

When you use calculation views, APF and the APF Configuration Modeler only support the consumption of
OData Version 2.0 services provided on SAP HANA extended application services (SAP HANA XS).

All required OData services must exist and must fulfill the following requirements:

● The service definition must contain:

annotations { enable OData4SAP; }

● For each entity set you must specify the key words “aggregates always”.
In addition, for each entity set that corresponds to an analytical query view, the statement “keys generate
local” must be included.
Example:

service { "sap.hba.ecc/YearMonthQuery.calculationview" as "YearMonthQueryResults"
 keys generate local "GenID"
 aggregates always; }

When you use ABAP CDS views, SAP HANA XS is not required. ABAP CDS views are exposed using the SADL
framework and SAP NetWeaver Gateway.

For more information about CDS views, go to SAP Help Portal at http://help.sap.com/ and search for "ABAP
CDS Entitiy".

BW OData queries are required when you use APF in SAP BW on SAP HANA. For more information about BW
OData queries, search for "Creating Easy Queries and Creating OData Queries: A Comparison" in the
documentation for your SAP NetWeaver version on the SAP Help Portal at https://help.sap.com/viewer/p/
SAP_NETWEAVER.

Implementation Information for SAP Business Suite powered
by SAP HANA and SAP BW on SAP HANA

The following products are required:

● SAP Smart Business foundation component 1.0 (SAP ANALYTICS FOUNDATION 1.0)
The following software component versions that are relevant for APF are included in this product and
installed automatically:
○ HANA CONTENT HBA APF CORE 100 (technical name: HCO_HBA_R_APF_CORE)

This component contains the SAP HANA server part of APF.

2046 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/
https://help.sap.com/viewer/p/SAP_NETWEAVER
https://help.sap.com/viewer/p/SAP_NETWEAVER

○ UISAFND1 100 SP01 (technical name: UISAFND1)
This component contains the Fiori content for the APF Configuration Modeler.

 Note
This product is also included in all SAP Smart Business products.

● SAP HANA appliance software SPS08 or higher.

Installation of APF on the Front-End Server

As of SAP NetWeaver 7.4, APF is part of software component User Interface Technology (SAP_UI) in SAP
NetWeaver. For SAP NetWeaver 7.31 and lower releases, you install User Interface Add-On for SAP NetWeaver
to use APF.

Implementation of Fiori Content for APF

The following catalog, group, and role are relevant for the APF Configuration Modeler:

● Catalog SAP_APF_DT_TC_A
● Group SAP_APF_DT_TCG_A
● Role SAP_APF_DT_TCR_A

The following catalog and role are relevant for the generic runtime application:

● Catalog SAP_APF_RT_TC_A
● Role SAP_APF_RT_TCR_A

Implementation of SAP HANA Content for APF

The following role is relevant for the APF Configuration Modeler:

● sap.hba.r.apf.core.roles:AnalyticalConfiguration

The following role is relevant for all APF-based applications :

● sap.hba.r.apf.core.roles::AnalysisPath

Implementation Information for SAP S/4HANA

The following product is required: SAP Fiori 1.0 for SAP S/4HANA SPS 01

The Fiori content for the APF Configuration Modeler is contained in the following software component:
UIS4HOP1 100 SP01

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2047

Installation of APF on the Front-End Server

As of SAP NetWeaver 7.4, APF is part of software component User Interface Technology (SAP_UI) in SAP
NetWeaver. For SAP NetWeaver 7.31 and lower releases, you install User Interface Add-On for SAP NetWeaver
to use APF.

Implementation of Fiori Content for APF

The following technical catalog contains all tiles and target mappings required for APF-related apps:
SAP_TC_CA_APF_COMMON (SAP: APF Technical Catalog)

The following role, group, and catalogs are relevant for the APF Configuration Modeler:

● Group SAP_CA_BCG_APF_MODELING (Analysis Path Framework)
● Business Role SAP_BR_ANALYTICS_SPECIALIST (Analytics Specialist)

This role has the following business catalogs assigned:
○ SAP_CA_BC_APF_MODELING (APF Modeling) for the APF Configuration Modeler
○ SAP_CA_BC_APF_EXECUTION (APF Execution) for the generic runtime application

The following catalog is relevant for the generic runtime application: SAP_CA_BC_APF_EXECUTION (APF
Execution)

Assign this catalog to a role. Users that are assigned this role can then use the generic runtime application.

Path Persistence on the Back-End Server

To enable the path persistence on the back-end server, you must ensure that the OData service
BSANLY_APF_RUNTIME_SRV is activated. If you also use a front-end server, you must also activate the service
there.

You can activate the service using transaction /IWFND/MAINT_SERVICE.

Administration Information for SAP S/4HANA Cloud

When you, as an administrator, create business users, ensure that they have the business catalog
SAP_CA_BC_APF_MODELING_PC assigned.

You can also create users based on the business role template SAP_BC_ANALYTICS_SPECIALIST. This
template includes the business catalog mentioned above, but also other business catalogs, which you may or
may not need. You can use the template or assign the business catalog directly to the users as required.

2048 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Note
To authorize users for the OData services required to create a configuration for an APF-based app, you
must assign them additional business catalogs as the start authorizations for OData services are not
included in the business catalog SAP_CA_BC_APF_MODELING_PC.

Authorization Concept

The following sections provide authorization information depending on the platform you use:

● SAP Business Suite powered by SAP HANA
● SAP S/4HANA

Authorization Information for SAP Business Suite powered
by SAP HANA

The general authorization concept applies as described in the SAP HANA Security Guide on SAP Help Portal at
https://help.sap.com/viewer/p/SAP_HANA_PLATFORM.

In particular, for APF runtime and design time, analytic privileges are needed for the following calculation views:

Runtime sap.hba.r.apf.core.v/AnalysisPathQuery

sap.hba.r.apf.core.v/AnalysisPathCountQuery

sap.hba.r.apf.core.v/
AnalyticalConfigurationQuery

sap.hba.r.apf.core.v/TextElementQuery

Design Time sap.hba.r.apf.core.v/ApplicationQuery

sap.hba.r.apf.core.v/
AnalyticalConfigurationQuery

sap.hba.r.apf.core.v/TextElementQuery

Security Considerations

You can define various analytic privileges based on the sap.hba.r.apf.core.v/
AnalyticalConfigurationQuery calculation view and assign them to different users. This can be useful if
you use the generic runtime application to run several configurations with various configuration IDs and you
want to ensure that only authorized users can see the content of an app. You can specify whether you want to
restrict the access to certain applications or even configurations.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2049

https://help.sap.com/viewer/p/SAP_HANA_PLATFORM

Authorization Information for SAP S/4HANA

Configuration Persistence on the Front-End Server

Authorization object /UIF/LREP must be added to any role. Depending on what you want to do, select one of
the following values for the field /UIF/ROLE of this authorization object:

● To create configurations using the APF Configuration Modeler and to execute them, select APFADMIN.
● To run a configuration, select APFUSER

Path Persistence on the Back-End Server

To enable the path persistence on the back-end server, you must ensure that the user has the start
authorization S_SERVICE for the OData service BSANLY_APF_RUNTIME both on the front-end server (IWSG)
and on the back-end server (IWSV).

Enhancing an APF-Based Application

You have installed an APF-based application that was shipped by SAP. If you want to make changes to the
application, you can do so using the APF Configuration Modeler. Proceed as follows:

 Note
Steps 1 through 8 are relevant for SAP Business Suite powered by SAP HANA only. If you use SAP S/
4HANA, proceed with step 9.

1. In your SAP Fiori frontend server system, run transaction SE80.
2. In the Repository Browser, select BSP Application and enter the name of your Business Server Page

(BSP) application.

3. In the folder structure, open Page Fragments config and double-click the analytical configuration file
to open it.

4. Copy the entire content of the file and paste it into a text editor.
5. Save the text file using the file extension .json.

6. Go to Page Fragments i18n and double-click the .properties file for the required language.
7. Copy the entire content of the file and paste it into a text editor.
8. Save the text file using the file extension .properties.
9. Import the JSON file and the .properties text file into the APF Configuration Modeler app in one of the

following ways:
○ If you use SAP Business Suite powered by SAP HANA, choose Import and specify the files you want to

import.

2050 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Note
You can import the .properties file in any language. This allows you to switch the development
language.

○ If you use SAP S/4HANA, choose Import Delivered Content and select the desired configuration from
the value help.

 Note
You can import the .properties file in the development language only.

10. Make the required changes in the APF Configuration Modeler as explained under APF Configuration
Modeler [page 2054] and save the configuration.
For example:
○ Change requests, for example, to replace the shipped data provisioning with your own one.
○ Create new categories for the analysis step gallery.
○ Reassign steps to other categories.
○ Create new analysis steps.
○ Add representation types to a step.
○ Change filter configurations.
○ Add or change navigation targets.

11. Ensure that the correct configuration has been specified in the tile definition. To do so, proceed as follows:
○ For SAP Business Suite powered by SAP HANA:

If you launch your application from a Smart Business KPI tile, ensure that the correct configuration is
selected in the Configure KPI Tiles app.
If you launch your application from a Fiori app launcher tile, maintain the configuration ID as the value
for parameter sap-apf-configuration-id.

○ For SAP S/4HANA:
If you launch your application from a Smart Business KPI tile, ensure that the correct configuration is
selected in the Create Tile app.
If you launch your application from a Fiori app launcher tile, maintain the application ID and the
configuration ID as the value for parameter sap-apf-configuration-id in the format
<application ID>.<configuration ID>.

12. If you changed or created texts that must be translated into languages other than your development
language, export the text pool into a .properties file and perform the file-based translation process.

Related Information

APF Configuration Modeler [page 2054]
Configuring the SAP Smart Business KPI Tile [page 2094]
Import [page 2090]
Translation [page 2093]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2051

Creating Your Own Application

If you want to create your own APF-based application, we recommend using the generic APF runtime
application, which is shipped with APF. However, you can also create your own runtime application.

Using the Generic Runtime Application

This section describes how to create an APF-based application using the generic APF runtime application.

The generic application already contains important elements that are required for an APF-based application.
For example, a BSP application along with the manifest.json file is already there so that you only need to
create a configuration using the APF Configuration Modeler. In addition, the semantic object and the action,
which you need to integrate the application with SAP Smart Business, are already defined for the generic
application so that you can easily configure a Smart Business KPI tile to launch the app.

To create a configuration and run it using the generic runtime application, proceed as follows:

1. Open the APF Configuration Modeler
2. Click the + icon to create a new application and enter a description. The Semantic Object field is already

filled with FioriApplication. Save your application.

 Note
This step is not required if you use an already existing APF application and just create an additional
configuration.

3. Open the application. If the application does not yet have any configurations, you are immediately directed
to the screen where you can define one. If you want to create an additional configuration, click Add
New Configuration . Add categories, steps, representations, filters, and navigation targets as required and
save your configuration.

4. You can now execute your application immediately from the APF Configuration Modeler using the Execute
button or you can launch it from a Smart Business KPI tile or a Fiori app launcher tile.

 Note
A few restrictions apply with regards to the execute feature. For more information, see Executing a
Configuration [page 2089].

Generic APF Runtime Application

The generic APF runtime application can be used to execute APF configurations that have been created with
the APF Configuration Modeler.

2052 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Some restrictions exist for the generic APF runtime application:

● You can run it in one language only. This is because the repository where the APF Configuration Modeler
saves the configuration and the texts supports only a single language. The generic application reads texts
from this repository and not from the text properties files.

● It cannot have coded elements, such as additional footer elements.
● Using functions for setting default values in the filters is not possible. You can, however, select any of the

other default value modes when configuring the filters.

If you don’t need more than one language, a footer toolbar, nor a function for defaults in the filters, you can use
the generic application to set up an APF-based application in a quick and easy way.

Settings for the Generic APF Runtime Application

The following settings are relevant when you use the generic APF runtime application:

● You must activate the service af_apf_launch using transaction SICF in the Fiori frontend server system.
● If you use BW OData queries, set the URL parameter sap-apf-filter-reduction to true.

Related Information

APF Configuration Modeler [page 2054]
Configuring the SAP Smart Business KPI Tile [page 2094]

Using Your Own Runtime Application

This section describes how to create an APF-based SAPUI5 application using your own runtime application.

You need your own runtime application if you can’t use the generic runtime application shipped with APF, for
example, because you need more than one language or a footer toolbar, or because you want to implement
extensions, such as your own start filters.

The following steps are required:

1. Build content using the APF Configuration Modeler
For more information, see APF Configuration Modeler [page 2054].

2. Develop the Component.js file
For more information, see Consuming APF [page 2111].

3. Maintain the manifest.json file
For more information, see Descriptor (manifest.json) [page 2124].

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2053

In particular, you must maintain the following properties:

Property Description

“sap.app.i18n” The location of the text resource files. A text resource file
contains the texts that the text keys used in the configura-
tion refer to. When you export a configuration using the
APF Configuration Modeler, a text file is also exported.
More text files containing translations can be added in the
same location.

Enter the path of the text resource files relative to the web
root of the component.

“sap.app.title” Enter “{{AnalyticalConfigurationName}}”. This
refers to the text key included in the exported text proper
ties file and defines the app name.

“sap.app.dataSources.AnalyticalConfigur
ationLocation“

The location of the analytical configuration file, which is
created when you export a configuration. Enter the path of
the configuration file relative to the web root of the com
ponent.

“sap.app.dataSources.PathPersistenceSer
viceRoot“

Enter the service root for the path persistence service.
See Descriptor (manifest.json) [page 2124] for the correct
values depending on the platform you use.

“sap.apf.activateFilterReduction” This property is relevant if you use CDS views that are exe
cuted on the Analytic Engine or BW OData queries. If this
is the case, set it to true. If not, set it to false.

“sap.apf.activateLrep” If you use SAP S/4HANA, this property is mandatory and
must be set to true. Otherwise set it to false.

“sap.ui5.dependencies” Enter your current SAPUI5 version.

APF Configuration Modeler

You use the APF Configuration Modeler to design or enhance your APF-based applications.

To get an overview of the APF Configuration Modeler UI, you can view the APF Configuration Modeler Demo
App in the Demo Kit and watch the following video:

To configure a new application, the following steps are relevant and build on one another:

1. Create an application
In this step, you create a node under which you can define several different configurations. This step only
serves to organize configurations in a structured way. At runtime, the information you enter here is not
reflected on the UI.

2054 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/test-resources/sap/apf/newDemokit/modeler/index.html
https://sapui5.hana.ondemand.com/test-resources/sap/apf/newDemokit/modeler/index.html

All configurations that you create under one application node share a common text pool, that is, one text
file that contains the texts for all configurations belonging to an application node. This is useful if you have
configurations that have very similar content and therefore share large parts of their texts. Having all these
texts in one text file can also save translation costs.

2. Create one or more configurations
You can define several configurations under one application. At runtime, only one configuration is used at a
time.

3. Create categories for a configuration
The categories you define here are displayed on the first level of the analysis step gallery. They help to
clearly arrange the analysis steps, for example, by drill-down dimensions or by KPIs.
Note that the assignment of steps to categories is done manually. The steps cannot be assigned
automatically based on their content.

4. Create analysis steps for each category
Here, you define the steps that a user can choose from in the analysis step gallery and that make up the
actual analysis in an APF-based application. Analysis steps have a request assigned that retrieves the data
to be analyzed, and one or more representations that determine the chart types.

5. Create representations for each analysis step
Representations define how the data of an analysis step is visualized on the UI, that is, which chart type is
used. You can define several representations for each step so that the user can then select the required one
in the analysis step gallery. At runtime, the user can switch between the different representations of a step.

6. Create filters for a configuration
Using filters, the user can set global filter values that apply to an entire analysis path.

7. Create navigation targets for a configuration
Navigation targets are displayed in the Open In... menu of an APF-based application. When you navigate to
another application, the context of the current analysis path is handed over to the navigation target.

 Note
In SAP S/4HANA, the APF Configuration Modeler provides in-app help to get context-sensitive user
assistance for individual entry fields. To use the in-app help, you must configure your SAP Web dispatcher
accordingly. For more information, see the UI Technology Guide for S/4HANA, section 4.3 "User Assistance
Settings".

To change an application that was shipped by SAP, you must first import the relevant files into the APF
Configuration Modeler. You can then edit the elements listed above. For more information about importing files,
see Import [page 2090].

A configuration that was created or enhanced using the APF Configuration Modeler is stored in a table. Each
configuration has its own table entry with its own ID. At runtime, the configuration is read from the table, that
is, JSON files are not used in this scenario.When you import the JSON file of a shipped application into the APF
Configuration Modeler to enhance the application, the configuration is also written into a table.

Adding an Application

For an APF-based application to run, you need to add an application node and create at least one configuration
under this node in the APF Configuration Modeler.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2055

To add an application, choose New and enter the following:

Field Explanation

Description Text used to distinguish the different applications at design
time. This description is visible in the APF Configuration
Modeler only and not at runtime. It is not translated.

Semantic Object For SAP Business Suite powered by SAP HANA, this field is
prefilled with FioriApplication. Keep this default en
try if you use the generic APF runtime application. You can
change the semantic object any time, but the entry here
must be the same as the one you make when configuring the
Smart Business KPI tile. In the KPI tile configuration, the se
mantic object filters the list of configurations so that only
those are listed that have been created for the specified se
mantic object. Otherwise you have to type in your configura-
tion manually.

For SAP S/4HANA, this field is not relevant and can be left
empty.

To edit the description or the semantic object, choose the Edit Application icon for the application you want to
change.

Related Information

Configuring the SAP Smart Business KPI Tile [page 2094]

Creating a Configuration

Once you have created an application, you can add a configuration to it. First, navigate to the application by
clicking the corresponding row in the application overview. If the application does not yet have any
configurations, you are immediately directed to the screen where you can define one. If you want to create an
additional configuration, click Add New Configuration . In both cases, enter the following:

Field Explanation

Configuration Title Text used as title at runtime. This title is translated.

Configuration ID Generated GUID that is required for configuring a Fiori app
launcher tile. This ID cannot be changed.

Semantic Object Inherited from the application. It is displayed for information
only and cannot be changed here.

2056 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Field Explanation

Filter Type Choose which filter type you want to use for the entire con
figuration:

● Smart filter bar, rendered using the
SmartFilterBar control, which uses the OData
metadata of an entity type

● Individually configured filters, rendered using the
FacetFilter control

● No filters

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2057

Adding Objects to a Configuration

Within a configuration, you can now start adding objects according to the following structure:

2058 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

The design time layout of these objects is organized as a tree structure to reflect the dependencies between
them. For example, steps can only be added under a category, and representations can only be added under a
step.

The order in which the objects are arranged in the APF Configuration Modeler also determines the order in
which they are displayed on the UI at runtime. In the analysis step gallery, the categories, for instance, are listed
in the same order as they were designed in the APF Configuration Modeler.

When you add a new object, for example, an additional step in a category, it is always added at the end of the
list. You can use the Up and Down arrows to move an object to another position in the list.

Copying Objects

The following objects can be copied:

● Configuration
● Filters
● Categories
● Steps
● Representations
● Navigation targets

In all cases, the object is always copied including all subordinate objects. For example, a category is copied
including all steps and representations assigned to it.

A copy is always added in the same place as the original object. For example, when you copy a configuration,
the application GUID is retained so that the new configuration is created in the same application. The same
applies to, for example, a step: The copy of a step is added in the same category as the original step. You can
move the copy to a different category by changing the category assignment in the step itself.

Creating Categories

Categories help to group analysis steps and organize the analysis step gallery. To create a category, click Add
New Category . A category only needs a title before you can continue to assign steps to it.

At runtime, the categories are displayed in the same order as they appear here.

Creating Steps

The following video shows how to configure an analysis step:

To create an analysis step, select the category you want to create the step in and click Add Step New
Step .

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2059

Analysis steps can be assigned to multiple categories. To assign a previously created step to another category,
proceed in one of the following ways:

● Select the category you want to assign the step to and click Add Step Existing Step .
● Select the step and add the category in the Category Title field.

 Note
When you edit an analysis step that is assigned to multiple categories, the changes take effect in all
categories in which this step is used.

At runtime, the steps are displayed in the analysis step gallery in the same order as they appear in the tree
structure. You can change the order of the steps by moving them up or down the tree structure using the arrow
icons. The order of the steps can be defined for each category individually, that is, steps can have a different
order in different categories.

To create or edit an analysis step, enter the following:

Title and Assignment to Categories

Field Explanation

Step Title The title displayed in the analysis step gallery and with the
thumbnails in the analysis path display.

Step Long Title The title displayed above the representation in the analysis
step display. If no long title is defined, the title entered in the
Step Title field is used instead.

Category Assignments The categories in which the analysis step is displayed in the
analysis step gallery. At least one category must be entered
here. When first creating a step, this field is already filled
with the category in which you create the step. You can enter
additional categories so that the step is displayed in all of
these categories.

You can also remove category assignments here and you can
use this field to change the category assignment of a step by
selecting a different category from the value help. This is
particularly useful if you copy a step and then want to assign
it to a different category.

Request

Here, you enter information for the request that defines the data provisioning for the analysis step.

2060 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Field Explanation

Service Path to the OData service root. If you use ABAP CDS views
or BW OData queries, select a service from the value help,
which lists all services available on SAP Gateway. If you use
calculation views, you must enter the service manually.

Entity Set Entity set that corresponds to the data source, for example,
the SAP HANA view.

Properties The drill-down dimensions, measures, and additional infor
mation, for example, the currency, used in the step.

Ensure you select only those properties that shall be dis
played in the representation.

Selectable Property The property that is selectable in the chart. If nothing is en
tered here, nothing can be selected in any representation of
this step.

If you have selected both a key property and the correspond
ing text property in the Properties field, you can define for
the selectable property what is displayed at runtime: the key
only, the text only, or both key and text. This takes effect in
the selection information popup, showing which elements
are selected in the current analysis step as well as in the fil-
ter information popup, showing the filters that affect the cur
rent analysis step.

Label The label of the selectable property, which is displayed in the
selection information popup as well as in the filter informa
tion popup at runtime.

The default label text for each property is derived from the
sap:label annotation of the property. You can see that
the default text is used when you see Label (Default) in front
of the entry field. You can overwrite the default text with your
own label text as required. When you delete the label text,
the default label is displayed again.

Data Reduction

In this section, you can reduce the number of data records that are sent to the frontend for this analysis step.
The top n approach is useful if you know that for this analysis step it is sufficient to look at the most relevant
data records only instead of sending all data points to the UI.

 Tip
Add "top <n>" to the title of the analysis step, for example, "Revenue by Customer (Top 10)". This is helpful
because, in the chart, you cannot see that data reduction has been applied.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2061

 Note
The top n values you see in the analysis step are not necessarily the highest numbers in the data set.
Depending on the sorting direction and the measure itself, it is also possible that you see the lowest values.
Examples:

● If you sort by revenue in ascending direction, you get the bottom n instead of the top n.
● If you choose a measure for which low values are positive, such as costs or reject rates, the lowest

values are interpreted as top n.

 Note
You can use the top n function if you want to restrict your data to up to 10,000 records. If you need more
than 10,000 records, don’t use data reduction.

Field Explanation

Data Reduction Type Choose whether you want to use top n or no data reduction.

Number of Records Enter a number between 1 and 10,000.

Sorting Field, Direction You can define which properties are applied to the data re
quest and subsequently to the chart as sorting criteria. You
can also specify the sorting direction (ascending or de
scending) for each property. The sorting criteria you enter
here are copied to each representation of the step and can
not be changed in the representation configuration after
wards.

Filter Mapping

This section becomes visible when you choose a selectable property in the Request section above.

Filter mapping is useful when a selection that can be made in one analysis step cannot be handled by a
subsequent step. In this case, the system determines the source filter property based on the selections made
in a chart and maps them to other filters that can be used in the requests for subsequent steps in the path
(target properties). Filter mapping is optional, that is, if the fields are not filled, no filter mapping is executed for
this step.

Define the lookup request that maps the source property to the target properties as follows:

Field Explanation

Service Path to the OData service root. If you use ABAP CDS views
or BW OData queries, select a service from the value help,
which lists all services available on SAP Gateway. If you use
calculation views, you must enter the service manually.

Entity Set Entity set that corresponds to the SAP HANA view.

2062 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Field Explanation

Target Property Filter properties that the selectable property shall be map
ped to. These are filter properties that can be used in the re
quest for subsequent steps.

If both a key property and the corresponding text property
exist, you can define what is displayed at runtime: the key
only, the text only, or both key and text.

Label The label of the target property, which is displayed in the fil-
ter information popup at runtime.

The default label text for each property is derived from the
sap:label annotation of the property. You can see that
the default text is used when you see Label (Default) in front
of the entry field. You can overwrite the default text with your
own label text as required. When you delete the label text,
the default label is displayed again.

Keep Selected Property as Filter Determines whether the source filter property is kept in the
cumulative filter in addition to the mapped filter properties.

Assignment of Navigation Targets

Here, you can assign step-specific navigation targets to your analysis step. At runtime, these navigation targets
are displayed in the Open In... menu when this analysis step is the active one. Navigation targets that are
relevant for all steps are also displayed, but cannot be changed here.

Field Explanation

Step-Specific Shows the assigned step-specific navigation targets for this
step. You can assign additional ones by selecting them from
the list of previously created step-specific navigation targets.
You can also delete assignments.

Assigned to All Steps Navigation targets that are relevant for all analysis steps and
are always displayed in the Open In… menu at runtime. This
field is read-only.

Corner Texts for Thumbnails

The texts entered here are displayed in the four corners of the step thumbnail in the analysis path display. All of
them are optional.

Corner texts entered at step level are used as default for the corner texts at runtime as long as no text has been
maintained at representation level for the specific corner. They are also used to prefill the corner text fields at
representation level.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2063

When you change a specific corner text at step level, this change is reflected in the representation and at
runtime only if the corresponding field has not yet been edited on representation level.

Related Information

Creating Navigation Targets [page 2085]

Creating Hierarchical Steps

Hierarchical steps are analysis steps in which the data is depicted in a hierarchical table. The data for
hierarchical steps is provided in a hierarchical form, that is, it has a parent-child-relationship. The property in
the first column of the hierarchical table has the parent information and provides the hierarchical structure. You
can expand it to show the child items.

To create an analysis step, select the category you want to create the step in and click Add Step New
Hierarchical Step .

To create or edit a hierarchical step, enter the following information:

Title and Assignment to Categories

Field Explanation

Step Title The title displayed in the analysis step gallery and with the
thumbnails in the analysis path display.

Step Long Title The title displayed above the representation in the analysis
step display. If no long title is defined, the title entered in the
Step Title field is used instead.

Category Assignments The categories in which the analysis step is displayed in the
analysis step gallery. At least one category must be entered
here. When first creating a step, this field is already filled
with the category in which you create the step. You can enter
additional categories so that the step is displayed in all of
these categories.

You can also remove category assignments here and you can
use this field to change the category assignment of a step by
selecting a different category from the value help. This is
particularly useful if you copy a step and then want to assign
it to a different category.

2064 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Request

Here, you enter information for the request that defines the data provisioning for the analysis step.

Field Explanation

Service Path to the OData service root. If you use ABAP CDS views
or BW OData queries, select a service from the value help,
which lists all services available on SAP Gateway. If you use
calculation views, you must enter the service manually.

Hierarchical Entity Set Entity set that corresponds to the data source, for example,
the SAP HANA view. As soon as a service has been entered,
this field is filled automatically.

Hierarchical Property The property that is provided in a hierarchical form. This
property is always displayed as the first column of the hier
archical table. As soon as a service has been entered, this
field is filled automatically.

Non-Hierarchical Properties The properties that are displayed in the following columns of
the table. Ensure you only enter the following:

● Measures
● The text of the hierarchical property
● Properties that have the same value across the entire

hierarchy, for example, the reporting currency

 Note
Do not use other drill-down properties apart from
the hierarchical property because the tree table
cannot handle additional drill-down criteria.

Selectable Property The property that is selectable in the chart.

 Note
At runtime, you cannot add more than one hierarchical
step with the same hierarchical selectable property.

Filter Mapping

This section becomes visible when you choose a selectable property in the Request section above.

Filter mapping is useful when a selection that can be made in one analysis step cannot be handled by a
subsequent step. In this case, the system determines the source filter property based on the selections made
in a chart and maps them to other filters that can be used in the requests for subsequent steps in the path
(target properties). Filter mapping is optional, that is, if the fields are not filled, no filter mapping is executed for
this step.

Define the lookup request that maps the source property to the target properties as follows:

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2065

Field Explanation

Service Path to the OData service root. If you use ABAP CDS views
or BW OData queries, select a service from the value help,
which lists all services available on SAP Gateway. If you use
calculation views, you must enter the service manually.

Entity Set Entity set that corresponds to the SAP HANA view.

Target Property Filter properties that the selectable property shall be map
ped to. These are filter properties that can be used in the re
quest for subsequent steps.

Keep Selected Property as Filter Determines whether the source filter property is kept in the
cumulative filter in addition to the mapped filter properties.

Assignment of Navigation Targets

Here, you can assign step-specific navigation targets to your analysis step. At runtime, these navigation targets
are displayed in the Open In... menu when this analysis step is the active one. Navigation targets that are
relevant for all steps are also displayed, but cannot be changed here.

Field Explanation

Step-Specific Shows the assigned step-specific navigation targets for this
step. You can assign additional ones by selecting them from
the list of previously created step-specific navigation targets.
You can also delete assignments.

Assigned to All Steps Navigation targets that are relevant for all analysis steps and
are always displayed in the Open In… menu at runtime. This
field is read-only.

Corner Texts for Thumbnails

The texts entered here are displayed in the four corners of the step thumbnail in the analysis path display. All of
them are optional.

Corner texts entered at step level are used as default for the corner texts at runtime as long as no text has been
maintained at representation level for the specific corner. They are also used to prefill the corner text fields at
representation level.

When you change a specific corner text at step level, this change is reflected in the representation and at
runtime only if the corresponding field has not yet been edited on representation level.

2066 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Tree Table

For hierarchical steps, there is only one representation available to vizualize the data: the tree table. To create a
representation for a hierarchical step, select the step, click Add Representation and enter the following:

Field Explanation

Visualization Prefilled with Tree Table

Basic Data Enter the hierarchical property for the first column of the
tree table and properties for further columns.

If you have selected both a key property and the correspond
ing text property for the hierarchical property at step level,
you can define what is displayed in the first column of the
tree table: the key or the text. If you want both key and text
to be displayed, use Key for the hierarchical column and de
fine an additional column for the corresponding text prop
erty.

The default label text for each property is derived from the
sap:label annotation of the property. You can see that
the default text is used when you see Label (Default) in front
of the entry field. You can overwrite the default text with your
own label text as required. When you delete the label text,
the default label is displayed again.

Sorting You can define whether certain measures are applied to the
data request and subsequently to the chart as sorting crite
ria. You can also specify the sorting direction (ascending or
descending) for each measure. If you don’t specify a sorting
field, the data is displayed in the order provided by the
OData service.

Corner Texts for Thumbnail The texts that are displayed in the four corners of the
thumbnail in the analysis path display. All of them are op
tional.

The fields are prefilled with the texts entered at step level, if
applicable. When a text is entered or changed on representa
tion level, this text takes precedence over the corresponding
text entered at step level and is displayed at runtime. When
you now again change the same text at step level, this
change is not copied to the representation and also not re
flected at runtime. This only applies to those representations
where a change has been made on representation level.

 Note
A preview is not available for tree tables.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2067

Creating Representations

The following video shows how to configure a representation:

To create a representation, select the step you want to create the representation for, click Add
Representation and enter the following:

Field Explanation

Visualization Select a chart type or table representation from the value
help.

 Note
If there is an asterisk in front of the chart type, this indi
cates that the properties selected on step level are not
sufficient to configure this chart type. To be able to use
it, you must go back to the analysis step configuration
and add more dimensions or measures as required.

In the analysis step gallery, the chart type is indicated by an
icon and a label.

Basic Data Depending on the chart type you chose, enter data such as
the dimension for the horizontal axis and the legend, and the
measure. Some chart types offer more fields, for example,
the stacked column chart, or fewer fields, for example, the
pie chart. Mandatory fields are marked with an asterisk.

If you have selected both a key property and the correspond
ing text property for a dimension at step level, you can define
for each representation what is displayed at runtime: the key
only, the text only, or both key and text.

The default label text for each property is derived from the
sap:label annotation of the property. You can see that
the default text is used when you see Label (Default) in front
of the entry field. You can overwrite the default text with your
own label text as required. When you delete the label text,
the default label is displayed again.

Ensure that all properties of drill-down dimensions that are
selected for the step are also used in the representation for
this step. Otherwise the data may not be displayed correctly.

2068 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Field Explanation

Sorting You can define whether certain properties are applied to the
data request and subsequently to the chart as sorting crite
ria. You can also specify the sorting direction (ascending or
descending) for each property. If you don’t specify a sorting
field, the data is displayed in the order provided by the
OData service.

If sorting criteria have been defined in the Data Reduction
section of the step configuration, they are copied to the rep
resentation and cannot be changed here.

 Note
Not all representations support sorting by more than
one property to the full extent.

Corner Texts for Thumbnail The texts that are displayed in the four corners of the
thumbnail in the analysis path display. All of them are op
tional.

The fields are prefilled with the texts entered at step level, if
applicable. When a text is entered or changed on representa
tion level, this text takes precedence over the corresponding
text entered at step level and is displayed at runtime. When
you now again change the same text at step level, this
change is not copied to the representation and also not re
flected at runtime. This only applies to those representations
where a change has been made on representation level.

You can click Preview to see what the representation and the thumbnail will look like at runtime.

 Note
The preview is based on dummy data and does not show the real data configured for the step.

At runtime, for each representation there is also an alternative list view available. The user can toggle between
the chart representation and the list view. Exception: The alternative list view is not available if the
representation is a table. The alternative list view is created implicitly for each representation and you do not
have to define it in the APF Configuration Modeler.

Configuring Filters

APF-based applications can use filters that narrow down the data of an entire analysis path. You can either
configure each filter individually or you can use a smart filter bar:

● Individually configured filters
You can configure separate filters that are rendered using the FacetFilter control. This option is useful if
you don't have a service available that you can use to configure a smart filter bar and if you don't require

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2069

features such as range selections, date picker, or paging, which are supported by the SmartFilterBar
control only.

● Smart filter bar
You can configure an entire filter bar in just one step using the SmartFilterBar control. This option is
useful if you have an entity type that provides all of the properties that you want to offer as filters as well as
the required annotations to configure the smart filter bar. The SmartFilterBar control uses the OData
metadata of the entity type to create the filter bar. The possible filter criteria by which you can filter are
automatically derived based on the annotations of the used service.
The advanced options of the smart filter bar include the following:
○ Rule-based filtering using operators such as “contains”, “between”, or “greater than”
○ Use of the DatePicker control
○ Paging for value lists, which can avoid performance issues in the case of very large lists.

For each configuration, you define whether you want to use individually configured filters, or the smart filter
bar, or no filters at all. Once you have chosen one of the filter types, the tree structure of your configuration is
adapted accordingly.

 Note
When you switch between the two filter types or from one of the filter types to no filter, you lose the current
settings. When you switch the filter type and then want to switch back again, you have to define your
settings once more.

Individually Configured Filters

Use individually configured filters if you want to use more than one OData service to configure your filters.

The following video shows how to configure filters:

For each filter, you can configure the following:

● The property for which a filter is displayed
● The values that are listed in the value help for the property

You may have to configure a value help request to generate the list of values that the user can choose from
to filter the data.
You can also maintain the values manually if you don’t have a service available that produces the desired
values.

● The values that are preselected in the value help.

When you launch your APF-based application from a Smart Business KPI tile, you must also consider whether
an additional filter is handed over with the Smart Business context and how that affects the filter you are
configuring.

 Note
Do not define a filter for URL parameters. For example, if you configure SAPClient as URL parameter, you
cannot define an additional filter for SAPClient because this may result in an empty data response.

2070 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

You can use the fields listed in the following table to configure a filter.

Not all of the fields are relevant for each use case. For example, you can configure a value help request to
determine the entries in the value help list. A context resolution request is necessary if the Smart Business
context contains not only single values, but also other operators. The context resolution request then resolves
the context into a list of single values. This is necessary because a filter can only display single values. For
details about possible use cases, see Use Cases for Configuring Filters [page 2077].

Field Explanation

Basic Data Filter Title The label displayed for the filter at run
time.

Property The property for which you want to con
figure a filter. The value help is popu
lated with the properties of all entity
sets that are used in the configuration.

 Note
The value help is empty if you have
not yet entered any request data in
the configuration. To avoid this, en
sure you enter the required request
data before configuring a filter. Re
quest data can be entered, for ex
ample, in the Value Help section be
low or in an analysis step.

The filter property is also used as the
property displayed in the filter at run
time if an alias is not defined. Values
that the user selects in the filter are
handed over to the entire analysis path
as filter.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2071

Field Explanation

Do Not Show Filter at Runtime Select this checkbox if you do not want
to expose this filter at runtime. This is
useful when a request requires a man
datory filter or parameter that is not
coming in from outside APF, for exam
ple, with the Smart Business context,
and if it is not necessary that users see
or change the filter.

 Note
When you select this checkbox, any
information you may have entered
for value help request and context
resolution request is deleted. When
you decide later on to show the fil-
ter at runtime, you must fill in this
information again as required.

Selection Mode Choose whether you want to allow sin
gle selection or multiple selections.

2072 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Field Explanation

Default Values Default Value Mode Select None if you do not want any val
ues to be selected by default. This op
tion is useful for filters that are optional,
have a lot of values, and support multi
ple selections.

Select Automatic Values if you want the
system to determine the default values
automatically. In case of single selec
tion, the first entry in the value help of
the filter is selected by default. In case
of multiple selection, all values are se
lected by default.

Select Fixed Values if you want to list
specific values that are preselected in
the value help.

 Note
Do not enter sensitive data as de
fault values for filters. Other APF
users can read the configuration
and thus have access to this data.

Select Function if you want to specify a
JavaScript function that calculates the
default values. This function must be in
cluded in the Business Server Pages
(BSP) application.

 Note
Using a function to calculate the
default values is not possible if you
use the generic APF runtime appli
cation.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2073

Field Explanation

Default Values/Function Depending on the default value mode,
either specify the fixed default values or
a function.

If you want to enter a date as a fixed de
fault value, you can do so in one of the
following formats:

● <dd.mm.yyyy>, for example,
28.04.2018

● <mm/dd/yyyy>, for example,
04/28/2018

● <yyyy-mm-dd>, for example,
2018-04-28

 Note
If a context is handed over from a
Smart Business KPI tile for this fil-
ter property, this context replaces
the default values. The default val
ues are used as a fallback only. This
is necessary because it is not pos
sible to have an empty filter.

Value Help Value Help Mode Select Value Help Request if you want to
specify a request to generate the list of
values in the value help.

Select Configured List of Values if you
want to enter the values for the value
help manually.

Select None if none of the above op
tions applies. The values in the value
help can then result only from default
values or from a context that is handed
over from outside, for example, from a
Smart Business KPI tile.

Values (displayed only when you select
Configured List of Values)

Manual list of values for the value help.

The following fields are displayed only when you select Value Help Request.

2074 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Field Explanation

Service Path to the OData service root. If you
use ABAP CDS views or BW OData
queries, select a service from the value
help, which lists all services available on
SAP Gateway. If you use calculation
views, you must enter the service man
ually.

Entity Set Entity set that corresponds to the data
source, for example, the SAP HANA
view. This field is mandatory if a service
has been entered.

Properties The properties that determine the val
ues in the value help. Select at least the
filter property or the alias property. You
can also select further properties. For
example, you can select CompanyCode
and Revenue so that the value help lists
those company codes for which reve
nue exists.

If you select both a filter property and
the corresponding text property, for ex
ample, CompanyCode and Company
CodeName, a concatenation of key and
text is displayed in the filter at runtime
and you can search for both of them.

Alias The property displayed in the filter. It is
used if the field name of the filter’s
property is different in the value help re
quest. If the property and the alias are
the same, the alias can be omitted.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2075

Field Explanation

Context Resolution Use Value Help Request You can configure the same request for
both value help and context resolution
by selecting the Use Value Help Request
checkbox in the context resolution re
quest.

When you select the checkbox, all con
text resolution fields are filled with the
same entries as the corresponding
value help fields and cannot be edited.
When you deselect the checkbox, the
value help entries remain but can now
be edited.

If you change the value help entries, the
context resolution entries are updated
accordingly.

Service The request used for resolving a con
text into single values for the value help.

Path to the OData service root. If you
use ABAP CDS views or BW OData
queries, select a service from the value
help, which lists all services available on
SAP Gateway. If you use calculation
views, you must enter the service man
ually.

You should specify a context resolution
request if there is a possibility that a
context is handed over to the APF-
based app that does not contain single
values.

If you did not specify a context resolu
tion request, but a context resolution is
necessary to be able to display the val
ues in the value help, the filter for the
corresponding property is not displayed
on the UI. Instead, the context is ap
plied to the analysis path in the back
ground.

Entity Set Entity set that corresponds to the data
source, for example, the SAP HANA
view.

Properties The properties that determine which
values are preselected in the filter. Se
lect at least the filter property or the
alias property. You can also select fur
ther properties.

2076 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Filter Dependencies

At runtime, selections you make in a filter are applied to all subsequent filters, just as selections in an analysis
step filter the data of subsequent steps. Selections in a filter are exposed as filter criteria to the value help
request or context resolution request of any subsequent filter. Subsequent filters are positioned to the right of
the filter where the selection is made (in left-to-right languages). This dependency only exists if a property of a
filter is also used as filterable property or parameter in the value help request or context resolution request of a
subsequent filter.

At design time, the order in which the filters are arranged in the APF Configuration Modeler app determines the
order in which the filters appear at runtime. The filter that is at the top of the list at design time appears on the
left at runtime. You can determine the way in which filters influence each other by arranging them in the
required sequence. A filter that you position at the top of the list in the APF Configuration Modeler influences
any filter that is further down the list and that uses the same filter property. In other words, a filter can depend
on the selections in any filter that is higher up in the list.

 Note
If filter A has a property that filter B requires as parameter or mandatory filter, filter A must be positioned in
front of filter B so that the dependency takes effect. Otherwise, filter B is not provided with this property
and therefore does not work.

Use Cases for Configuring Filters

A filter for an APF-based application can be based on:

● A configured filter
● A filter that is handed over with the Smart Business context of a KPI tile
● Both

The following table compares the typical use cases derived from these options and the resulting configuration:

Use Case 1: Filter In
dependent of Smart
Business

Use Case 2: Filter De
termined by Smart
Business Context

Use Case 3: Filter with
Default Values Deter
mined by Smart Busi
ness Context Use Case 4: No Filter

Filter configured? Yes Yes Yes No

Value help request
configured?

Yes No Yes No

Filter passed with
Smart Business con
text?

No Yes Yes Yes

For a detailed explanation, see the following sections.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2077

Use Case 1: Filter Independent of Smart Business

For this use case, all of the following apply:

● You configure a filter for a property in your application.
● You configure a value help request to determine the entries in the value help list.
● The Smart Business KPI tile does not pass a corresponding filter in the context.

As a result, the filter is displayed in the application and its value help is populated with all values retrieved by
the configured value help request.

To configure the filter for this use case, you must enter basic data for the filter and information for the value
help. No entries for the context resolution are required.

You can configure whether multiple selections are possible in the value help or not. If multiple selections are
possible you can specify one or several values that are used as default values or you can enter a function that
determines the default values. If you select Automatic Values, all values are selected in the filter by default.

If only single selection is allowed, you can specify one value that is used as default value or you can enter a
function that determines the default value. If you select Automatic Values, the first entry in the value help of the
filter is automatically selected by default.

 Note
If you specify default values that do not exist in the value help, these values will occur in the filter in addition
to the values provided by the value help request.

2078 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

The option described above is depicted in the following figure:

Use Case 2: Filter Determined by Smart Business Context
Only

For this use case, all of the following apply:

● You configure a filter for a property in your application.
● No value help request has been specified.
● The Smart Business KPI tile passes a filter for the same property in the context.

In this case, the filter is displayed in the application and its content is determined by the information passed in
the Smart Business context. If the context contains a list of single values only, the value help lists all these
values and by default, all values are selected. If the context contains other operators, an additional context
resolution request is required. This request resolves the context into a list of single values. The value help then
lists all these single values and by default, all values are selected.

To configure a filter for this use case, only the basic data for the filter is required. You don’t have to enter
information for the value help request.

To configure the context resolution request, enter the required information in the Context Resolution section.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2079

 Note
If you did not specify a context resolution request, but a context resolution is necessary to be able to
display the values in the value help, the filter for the corresponding property is not displayed on the UI.
Instead, the context is applied to the analysis path in the background.

The options described above are depicted in the following figure:

Use Case 3: Filter with Default Values Determined by Smart
Business Context

For this use case, all of the following apply:

● You configure a filter for a property in your application.
● A value help request determines the entries in the value help list.
● The Smart Business KPI tile passes a filter for the same property in the context.

As a result, the value help for the filter lists all values retrieved by the value help request. By default, those
values are preselected that were passed as filters with the Smart Business context.

As in use case 2, if the context contains operators other than just single values, an additional context resolution
request is required. This request resolves the context into a list of single values. In the value help, these single
values are then selected by default.

2080 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

To configure a filter for this use case, you must enter basic data for the filter definition and information for the
value help.

To configure the context resolution request, enter the required information in the Context Resolution section.

The option described above is depicted in the following figure:

Example

You configure a filter for the property CompanyCode. You define a value help request that retrieves all company
codes that are available. These are listed in the value help for the filter.

The Smart Business context passes company codes 1000 and 2000 as filters. These company codes are then
preselected in the filter. The user can, for example, add more company codes to the analysis as required.

Use Case 4: No Filter

For this use case, the following applies:

● The Smart Business KPI tile passes a context for a property.
● It is not required to display the corresponding filter on the UI and it shall not be changed by the user.

Therefore, you don’t configure a filter for this property.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2081

In this case, the context is applied to the analysis path in the background. This is useful, for example, for
technical properties or for properties that the user shall not be able to change, such as, SAPClient.

The option described above is depicted in the following figure:

Erroneous Filter Configuration

If a filter has been configured for a property, situations may occur where the filter cannot be displayed. This can
be the case, for example, if a context resolution is required, but a context resolution request has not been
configured or the request fails. As in use case 4, if a filter is passed with the Smart Business context, it is
directly applied to the analysis path.

2082 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

The option described above is depicted in the following figure:

Smart Filter Bar

The SmartFilterBar control uses the OData metadata of an entity set to create a filter bar. The metadata
define, for example, the possible filter criteria by which you can filter, whether a field supports the type-ahead
feature and whether it has a value help.

To configure a smart filter bar, enter the following:

Field Explanation

Service Path to the OData service root. If you use ABAP CDS views
or BW OData queries, select a service from the value help,
which lists all services available on SAP Gateway. If you use
calculation views, you must enter the service manually.

Entity Set Entity set that corresponds to the data source, for example,
the SAP HANA view.

 Restriction
If you use an entity set that has an associated entity set, you cannot use the properties from the associated
entity set as filters in APF, because APF cannot process these properties. The properties from the
associated entity set can be selected as filters in the filter bar settings and are shown in the smart filter bar,
but they do not have any effect on the analysis path.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2083

Runtime

At runtime, the smart filter bar is rendered based on the annotations of the specified service. Whether certain
filters are already visible or not depends on the metadata. You can add more filters and select data as required.
The settings you make are applied to the analysis path as soon as you do one of the following:

● Enter a value in one of the input fields
● Use the value help to select values and choose OK

The annotations also define whether the smart filter bar has mandatory fields. If there are mandatory fields,
you can start your analysis only if they are filled. Otherwise the Add Analysis Step button is inactive.

When an external context is handed over to the APF-based app, for example, from a Smart Business KPI tile, all
properties from the context that are part of the smart filter bar are preselected in the filter bar. All other
properties are applied to the analysis path in the background, like hidden filters.

 Restriction
When you define conditions for filters, you cannot use the 'Exclude' option because APF cannot handle this.

As of SAPUI5 1.46, the property useDateRangeType is set to true for APF-based applications. This enables
you to make dynamic time selections if a date field has the filter restriction interval. For example, you can select
Last X days and define the number of days. When you save an analysis path with a dynamic time selection, the
time selection is always updated in relation to the current date when you open the analysis path.

 Note
For analysis paths and variants that have been saved prior to upgrading to SAPUI5 1.46, date intervals are
lost and must be set again.

Variant Management
When you have adjusted the smart filter bar, for example, you have added further filters or selected data, you
can save these settings as a variant. Saving a variant is independent from saving a path. Therefore, if you use a
certain variant for an analysis path, change the settings in the filter and then save the path, the path is saved
including all filters, but the variant is not overwritten.

Related Information

API Reference: sap.ui.comp.smartfilterbar.SmartFilterBar
Sample: sap.ui.comp.smartfilterbar.SmartFilterBar
API Reference: sap.ui.comp.variants.VariantManagement

2084 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.comp.smartfilterbar.SmartFilterBar.html
https://sapui5.hana.ondemand.com/#/entity/sap.ui.comp.smartfilterbar.SmartFilterBar
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.comp.variants.VariantManagement.html

Creating Navigation Targets

Users can use the Open In… button in the footer of an APF-based runtime application to navigate to other
applications. The context of the current analysis path, including start filters and other filters, such as selections
made in the charts up to the active analysis step, is handed over to the other application.

When the user navigates back to the APF-based application, the analysis path is reloaded in exactly the same
status as it was when navigating to the other application; that is, all analysis steps and all selections made are
retained.

The following video shows an introduction to navigation targets and how to configure them:

The following types of navigation targets exist:

● Navigation targets that are relevant for all analysis steps
Choose this type if the navigation target is always available no matter which analysis steps are added to the
analysis path.

● Step-specific navigation targets
Choose this type if the navigation target is relevant only in the context of a specific dimension or selection.
For example, navigating to a customer fact sheet is useful only when a customer has been selected. A step-
specific navigation target is displayed in the Open In… dialog only if the step to which it is assigned is the
active one.

Step-specific navigation targets can be assigned to multiple analysis steps. To assign a previously created
navigation target to an analysis step, proceed in one of the following ways:

● Select the navigation target and add the analysis step in the Step Assignments field.
● Select the analysis step and add the navigation target in the Navigation Target Assignment section in the

Step-Specific field.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2085

You can define multiple navigation targets for each configuration. To create a navigation target, click Add
New Navigation Target and enter the following:

Basic Data

Field Explanation

Semantic Object Semantic object as defined in the corresponding target
mapping configured in the Fiori launchpad designer.

Semantic object as defined by the Fiori launchpad configura-
tion.

 Note
Currently, you can only navigate to other APF applica
tions. Therefore, the semantic object must be
FioriApplication.

Action As soon as you enter a semantic object, the value help for
the action is filled with all actions that are available for this
target mapping and that you are authorized for. The Action
field is prefilled with the first action in this list.

 Note
Currently, you can only navigate to other APF applica
tions. Therefore, the action must be
executeAPFConfiguration.

Navigation Target Title Taken over from the description in the target mapping.

2086 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Navigation Parameters

Field Explanation

Use Dynamic Parameters By default, this checkbox is not selected. In this case, the ap
plication context is handed over to the navigation target us
ing an app state.

Select this checkbox to expose all single value filters and pa
rameters from the context as URL parameters as well. In this
case, each property of the context that has a single value
only is exposed as key-value pair in the URL. This includes
global filters set in the filter bar, selections in analysis steps,
and filters and parameters handed over to APF from another
application.

This is useful, for example, if the navigation target is unable
to consume a context from the app state or if the intent of
the navigation target has mandatory parameters that must
be provided as URL parameters.

 Note
Dynamic parameters occur in the URL of the called ap
plication. Therefore, data protection and privacy aspects
have to be considered.

Static Parameter/Value At runtime, static parameters are added to the URL of the
navigation target. You can, for example, add a specific APF
configuration ID to the navigation target to execute the ge
neric APF runtime.

Assignment to Steps

Field Explanation

Assignment Type Choose one of the following:

● Assign to All Steps
The navigation target is available in all analysis steps at
runtime.

● Assign to Specific Steps
The navigation target is available only in the specified
analysis steps.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2087

Field Explanation

Step Assignments If you are creating a step-specific navigation target, assign
one or more analysis steps to it. If you leave this field empty,
you can still save the navigation target and assign it to steps
at a later point in time.

Context Mapping

If a certain property is required for launching the navigation target, you can define a request for it. This ensures
that the property is available as a context when navigating to this navigation target at runtime. The result of the
context mapping request is a list of values for the specified property. If you have selected more than one
property, the result is a list of value tuples. The results are added to the existing context that is handed over to
the navigation target.

Field Explanation

Service Path to the OData service root. If you use ABAP CDS views
or BW OData queries, select a service from the value help,
which lists all services available on SAP Gateway. If you use
calculation views, you must enter the service manually.

Entity Set Entity set that corresponds to the data source, for example,
the SAP HANA view.

Mapped Properties Select one or more properties from the list of properties that
are available for the selected entity set.

Runtime

At runtime, the navigation targets are displayed in the Open In… menu. Step-specific navigation targets appear
at the top of the list. Navigation targets that are relevant for all analysis steps appear at the bottom of the list so
that this part of the Open In… menu is stable for all steps.

Navigation targets are displayed in the same order as they appear in the tree structure. You can change the
order of the navigation targets by moving them up or down the tree structure using the arrow icons.

The list of navigation targets in the Open In… menu can be different from user to user. Whether a navigation
target is visible for a user depends on the following:

● The user is authorized for the target mapping of the navigation target. This is the case if the user has a role
to which the catalog is assigned which contains the target mapping.

● The navigation target supports the form factor the user is currently using: desktop, tablet, or smartphone.
This is also configured in the target mapping.

2088 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Related Information

Outbound Navigation and Inbound Navigation [page 2116]

Executing a Configuration

To get a preview of how your configuration looks at runtime, you can execute it using the Execute button on the
footer of the APF Configuration Modeler. The configuration is launched in a separate browser window so that
you can see the configuration and the corresponding runtime application side by side.

The configuration preview is generated using the generic APF runtime application. Since the generic APF
runtime application does not support filters that use a function to determine the values, there is a restriction in
previewing those filters: They are shown in the preview with all values selected by default, but it is not possible
to select other values.

If a request in your configuration requires parameters or mandatory filters that will be handed over by another
application in a productive system, for example, by a Smart Business KPI tile, the preview will not work
properly. To simulate that the required parameters are handed over to the app, you can configure hidden filters
and put them in front of all other filters. This ensures that the preview shows the correct data and you can test
your application. The hidden filters do not show up on the runtime user interface. If a context value is handed
over from outside at a later stage, this context value will take precedence over the default value in the
configuration of the hidden filter, so you do not even have to remove the hidden filter.

Deleting Objects

To delete an application, select it in the Application Overview and click Edit. You can then delete it from the list.
Note, however, that an application is always deleted along with all configurations assigned to it.

To delete an object of an application, select it in the tree structure and click Delete. Note the following:

● Deleting a configuration always includes all subordinate objects.
● Deleting a category also deletes those steps that are not assigned to any other category. Steps that are

also assigned to other categories are not deleted.
● Deleting a step removes it from any category it is assigned to. To remove a step from a particular category

without deleting it altogether, select the step and remove the category assignment from the Category Title
field.

Text Pool Cleanup

All configurations that you create under one application node share a common text pool, that is, one set of
texts for all configurations belonging to an application node. This is useful if you have configurations that share
large parts of their texts, for example, because they are very similar as far as their content is concerned.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2089

When you export a configuration, the corresponding text pool can be exported too, for example, for translation
purposes. However, in certain cases, texts that are no longer used may exist in the text pool. For example, if you
change a text, both the old text and the new one are retained in the text pool, even if you only correct a typo.
When workin in the APF Configuration Modeler, you can only add texts to the text pool, but not change or
remove them. Therefore, to keep your text pool as small as possible and save translation costs, we recommend
performing a text pool cleanup whenever you want to export a text pool. Otherwise, obsolete texts may end up
in the translation process.

On the Application Overview screen, choose the Text Pool Cleanup icon for the application for which you want to
perform the text pool cleanup.

Related Information

Export [page 2092]
Translation [page 2093]

Import

To change the configuration of an APF-based application that was shipped by SAP, you must first import the
corresponding JSON file as well as the text properties file into the APF Configuration Modeler. The options that
are available for importing files depend on whether you use SAP Business Suite powered by SAP HANA, SAP
S/4HANA, or SAP Cloud Platform.

Importing Files on an SAP Business Suite powered by SAP HANA Platform

The following video shows how to import and export configurations:

Open this video in a new window

The files to be imported can either result from a configuration export or you can copy them from a shipped BSP
application.

 Note
Configuration files of APF-based applications that were not created using the APF Configuration Modeler
cannot be imported. You can easily recognize these configuration files because they do not contain a
configuration GUID.

To import the files, proceed as follows:

1. In the toolbar of the Application Overview screen, click Import.
2. Choose a configuration file for upload. The file must be in JSON format.

2090 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://www.kaltura.com/p/1921661/sp/192166100/embedIframeJs/uiconf_id/37285991/partner_id/1921661?iframeembed=true&playerId=kaltura_player&entry_id=1_umaqoyme

3. Choose a text properties file for upload. The file must be in .properties format. It is also possible to upload a
text properties file only, for example, after translation or to switch the development language.

4. Click Upload.

During import, the content of the configuration file is written into a configuration table. The content of the text
properties file is written into a text table.

If the application with the GUID specified in the JSON file does not yet exist in the APF Configuration Modeler, it
is created and the description and semantic object are filled based on the information in the JSON file.
Otherwise, the configuration of the JSON file is added to an existing application.

If a configuration with the same GUID already exists, you can decide whether you want to overwrite it or create
a new one. You can now edit the configuration and save the changes.

Importing Files on an SAP S/4HANA Platform

The following video shows how to import files on an SAP S/4HANA platform:

If you use SAP S/4HANA, you have the following options:

● Import Delivered Content
● Import Files

You can use Import Files to import files that result from a configuration export. The procedure is the same as
described above for SAP Business Suite powered by SAP HANA.

If you want to import content that was delivered by SAP, you don’t have to copy the files from a BSP
application. You can import them from the layered repository of SAPUI5 flexibility using the Import Delivered
Content function.

The configuration file of a shipped application and the text properties file in the development language reside in
the VENDOR layer of the layered repository. When you import the content, it is copied to the CUSTOMER layer.
Changes you make to the configuration or the texts are also written into the CUSTOMER layer, so the original
files in the VENDOR layer remain unchanged.

However, when a new version of a configuration is delivered with a support package, this update overwrites the
version in the VENDOR layer, so in this case the version in the CUSTOMER layer remains unchanged. To see the
updated version in the APF Configuration Modeler, you must first import the configuration again from the
VENDOR layer into the CUSTOMER layer using the Import Delivered Content function.

 Caution
When you have imported and edited a configuration and then later on import an updated version from the
VENDOR layer, this new import overwrites the changes you have already made in the CUSTOMER layer. To
prevent this, you can copy the configuration before editing it and then work on the copy.

At runtime, the system first checks whether there is a configuration file and a text properties file in the
CUSTOMER layer. Only if there are no files in the CUSTOMER layer, is the application run from the files in the
VENDOR layer.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2091

Related Information

Enhancing an APF-Based Application [page 2050]

Export

The following video shows how to import and export configurations:

Open this video in a new window

You can export the table entries for configurations and text pools. An export results in the following files:

● By exporting a configuration, you create a configuration file in JSON format. This format is required, for
example, to be able to transport a configuration between different systems.

● By exporting a text pool, you create a text file in .properties format. This format is necessary to be able to
translate the texts. Exporting is also useful to create a backup copy of your configurations and texts.

 Note
In SAP S/4HANA Cloud, you must use the apps Export Software Collection and Import Collection to
transport a configuration between different systems.

To use the export function, proceed as follows:

1. Navigate into an application.
2. Select a configuration.
3. Click Export in the footer toolbar.
4. Download the configuration file.
5. Download the text properties file.

Related Information

Translation [page 2093]
Transporting Configurations in SAP S/4HANA Cloud [page 2092]

Transporting Configurations in SAP S/4HANA Cloud

In SAP S/4HANA Cloud, you must use the apps Export Software Collection and Import Collection to transport
configurations between systems. Whenever you create, change, or delete a configuration, a notification is
created in the system. You can then use these apps to transport the files.

2092 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://www.kaltura.com/p/1921661/sp/192166100/embedIframeJs/uiconf_id/37285991/partner_id/1921661?iframeembed=true&playerId=kaltura_player&entry_id=1_umaqoyme

 Note
If you just want to create a backup copy of your files, you can use the export function of the APF
Configuration Modeler and don't need the apps Export Software Collection and Import Collection.

To find the configuration you want to export in the Import Collection app, you can search, for example, for
“Analysis Path Framework”, the configuration name, or the configuration GUID.

For more information, see the documentation for your Cloud version at https://help.sap.com/viewer/p/
SAP_S4HANA_CLOUD under Product Assistance <language> Generic Information General Functions
for the Key User Extensibility , chapters Export Software Collection and Import Collection.

Related Information

Export [page 2092]

Translation

Texts in the development language are stored in a text table. If you need more languages than just the
development language, you must export the text pool from the table into a text properties file. Based on this
file, translation can take place, resulting in one text properties file for each language.

 Note
We recommend performing a text pool cleanup before the texts are exported for translation. Otherwise,
obsolete texts may end up in the translation process.

Texts must be translated directly in the text properties file, that is, you must create one file for each language
and maintain the translated texts manually. The following examples illustrate the naming convention for the
files:

● Original: <texts>.properties
● German: <texts>_de.properties
● English: <texts>_en.properties

New texts are always added at the end of the file so that they can easily be identified after a new export.

Translated texts are always read from the text properties files and usually not reimported into the APF
Configuration Modeler unless you want to change the development language.

Related Information

Export [page 2092]
Text Pool Cleanup [page 2089]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2093

https://help.sap.com/viewer/p/SAP_S4HANA_CLOUD
https://help.sap.com/viewer/p/SAP_S4HANA_CLOUD

Launching APF-Based Applications

You can launch an APF-based application in the following ways:

● From a Smart Business KPI tile
You can configure a Smart Business KPI tile so that an APF-based application is used for drill-down.

● From a Fiori app launcher tile
You can use a Fiori app launcher tile to launch your APF-based application. However, this is not supported if
you use the generic APF runtime application.

Configuring the SAP Smart Business KPI Tile

The following tasks are performed using the Smart Business modeler apps.

Prerequisites:

● You have used the SAP Smart Business modeler apps to create the following:
○ A KPI
○ An evaluation
○ A KPI tile

● You have deployed a shipped APF-based application or created your own APF configuration that you want
to launch using an SAP Smart Business KPI tile.

You can now configure the KPI tile using the SAP Smart Business modeler apps. The data you must enter
depends on, among other things, whether you use shipped content or content you created yourself.

You can create a KPI tile for the following use cases:

Use Case Description

Shipped APF-based application – unchanged A shipped Business Server Pages (BSP) application that you
use as is without making any changes.

Shipped APF-based application – enhanced A shipped BSP application that you have enhanced, that is,
you have imported the APF configuration and changed it us
ing the APF Configuration Modeler.

Generic runtime application The generic APF runtime application is used to execute an
APF configuration that you created using the APF Configura-
tion Modeler.

New application An application you have created using the APF Configuration
Modeler without using the generic runtime application.

This requires defining your own BSP application and target
mapping.

2094 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

The data you must enter also depends on the SAP Smart Business KPI Modeler version you are using. There
are two versions of the KPI Modeler available:

● A KPI Modeler for apps that use calculation views, which is used for SAP Business Suite powered by SAP
HANA.

● A KPI Modeler for apps that use ABAP CDS views, which is available both for SAP Business Suite powered
by SAP HANA and for SAP S/4HANA.

The following sections differentiate the data you must enter depending on the use cases and the KPI Modeler
version mentioned above:

Using the SAP Smart Business Modeler Apps for SAP Business Suite
powered by SAP HANA

To configure a KPI tile for an APF-based application, open the Configure KPI Tiles app, go to the Navigation area
and select the Other Drill-Down radio button. Select Analysis Path Framework as drill-down.

Depending on your use case, enter the following data:

Shipped BSP Applica
tion - Unchanged

Shipped BSP Applica
tion – Enhanced

Generic Runtime Ap
plication New Application

Semantic Object As defined in target
mapping of the appli
cation

As defined in target
mapping of the appli
cation

Prefilled: FioriApplica
tion

As defined in your own
target mapping

Action As defined in target
mapping of the appli
cation

As defined in target
mapping of the appli
cation

Prefilled: executeAPF
Configuration

As defined in your own
target mapping

Configuration Not applicable Select the configura-
tion you want to launch

Select the configura-
tion you want to launch

Select the configura-
tion you want to launch

If you use a shipped BSP application, a KPI tile may have been shipped along with it. In this case, semantic
object and action are already filled.

 Note
We recommend copying the shipped KPI, evaluation, and tile. You can then adapt them to your needs.

Shipped BSP-Application - Unchanged

If you want to launch a shipped APF-based application without making any changes to it, entering a
configuration title is not required. The configuration can be read directly from the analytical configuration file of
the BSP application. The location of this file is specified in the manifest.json file, which is part of the BSP
application.

Shipped BSP-Application - Enhanced

If you have imported the JSON file of a shipped application into the APF Configuration Modeler, ensure that the
semantic object entered in the APF Configuration Modeler app is the same as the one you enter here. The
semantic object and the action are used to determine the KPIs navigation target.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2095

You must select a configuration to be able to launch the application. The corresponding configuration ID takes
precedence over the location of the analytical configuration file of the BSP application. To select the
configuration title, use the value help. The semantic object filters the list of configurations so that only those
are listed that have been created for the specified semantic object. A configuration title has a corresponding
configuration ID, which is unique.

Generic Runtime Application

Selecting a configuration is also mandatory if you use the generic runtime application. The generic runtime
application does not contain a reference to the location of the analytical configuration file and therefore must
be parameterized using a configuration ID. To select the configuration title, use the value help. The semantic
object filters the list of configurations so that only those are listed that have been created for the specified
semantic object. A configuration title has a corresponding configuration ID, which is unique.

New Application

If you have used the APF Configuration Modeler to create a new application, ensure that the semantic object
entered in the APF Configuration Modeler app is the same as the one you enter here. The semantic object and
the action are used to determine the KPIs navigation target.

To select the configuration title, use the value help. The semantic object filters the list of configurations so that
only those are listed that have been created for the specified semantic object. A configuration title has a
corresponding configuration ID, which is unique.

Navigating to the APF Configuration Modeler

By clicking Save and Configure Drill-Down, you can navigate to the APF Configuration Modeler to view or edit
the configuration. This is useful because from here you can navigate directly to the relevant configuration. You
cannot search for a configuration in the APF Configuration Modeler itself.

 Note
When you click Save and Configure Drill-Down, your changes are saved as draft, but not yet activated.

Using the SAP Smart Business Modeler Apps for SAP S/4HANA

 Note
The KPI Modeler for SAP S/4HANA may also be used on SAP Business Suite powered by SAP HANA.

To configure a KPI tile for an APF-based application in the SAP Smart Business modeler apps for SAP S/
4HANA, open the Create Tile app and select your tile or create a new one. In the Navigation area, go to the
Select Drill-Down field and select Analysis Path Framework.

2096 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Depending on your use case, enter the following data:

Shipped BSP Application –
Enhanced

Generic Runtime Applica
tion New Application

Semantic Object As defined in target mapping
of the application

FioriApplication (au
tomatically filled based on
selected configuration)

As defined in your own target
mapping

Action As defined in target mapping
of the application

executeAPFConfigura
tionS4HANA or
executeAPFConfigura
tion(automatically filled
based on selected configura-
tion.)

As defined in your own target
mapping

Configuration Select the configuration you
want to launch.

Select the configuration you
want to launch.

Select the configuration you
want to launch.

If you use a shipped BSP application, a KPI tile may have been shipped along with it. In this case, semantic
object and action are already filled.

 Note
We recommend copying the shipped KPI, evaluation, and tile. You can then adapt them to your needs.

By clicking Save and Configure Drill-Down, you can navigate to the APF Configuration Modeler to view or edit
the configuration. This is useful because from here you can navigate directly to the relevant configuration. You
cannot search for a configuration in the APF Configuration Modeler itself.

Launching an APF-Based Application from an SAP Smart Business Generic
Drill-Down

Instead of launching an APF-based app from an SAP Smart Business KPI tile, you can first launch an SAP
Smart Business generic drill-down app and then navigate to an APF-based app from there using the Open In…
menu. In this case, filters set in the generic drill-down app are also handed over as context to the APF-based
app.

To configure the navigation from a generic drill-down app to the APF-based app, proceed as follows:

1. Open the KPI Workspace app.
2. Choose your evaluation and switch to edit mode.
3. Enter the semantic object and, optionally, an action.

 Note
If you don’t have your own BSP application and target mapping, but use the APF generic runtime, you must
create a target mapping that launches the generic runtime and specifies the configuration as follows:

● Name: sap-apfconfigurationid
● Value: configuration ID in format <application ID>.<configuration ID>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2097

You can find the values for the configuration ID in the following places:

● application ID: in the app URL behind the parameter "app"
● configuration ID: in the app URL behind the parameter “config” or in the configuration details in the

APF Configuration Modeler app

Application Parameters

You can configure your KPI tile in a way that it launches an APF-based application and immediately opens a
specific analysis step and representation. You can do so by entering the following application parameters:

● Analysis step:
○ Name: sap-apf-step-id
○ Value: step ID, for example, “Step-23”

● Representation:
○ Name: sap-apf-representation-id
○ Value: representation ID, for example, “ Step-23-Representation-1”

You can look up the step ID and representation ID in the JSON file of the configuration. You may have to export
your configuration first to get an up-to-date JSON file. You can also find the IDs in the URL of the APF
Configuration Modeler while you are editing a step or representation. You can find the step ID behind the
parameter "step" and the representation ID behind the parameter "repn".

Entering a step ID is sufficient; you don’t have to enter a representation ID. If you only enter a step ID, the
default representation is used.

Configuring the Fiori App Launcher Tile

You can use a Fiori app launcher tile to launch your APF-based application.

Prerequisites

Mandatory HANA view parameters must be filled to be able to launch the application. This can be implemented
in the BSP application by extracting the parameter values from the URL created by the Fiori app launcher tile.
Another option is to configure a filter for a parameter. In this case, the user can set the values at runtime.

Procedure

Configure the Fiori app launcher tile using the Fiori launchpad designer. For more information, search for
"Setting Up Content With the Launchpad Designer" and "About Navigation" in the documentation for your SAP
NetWeaver version on the SAP Help Portal at https://help.sap.com/viewer/p/SAP_NETWEAVER.

2098 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/

If required, enter fixed values for the HANA view parameters in the Fiori tile. This is relevant for parameters that
shall not be displayed in the application and for which you therefore do not configure filters.

If you want to specify a configuration ID, you can also enter it as a parameter. The parameter name is sap-apf-
configuration-id.

For SAP S/4HANA, you must maintain the application ID and the configuration ID as value for parameter sap-
apf-configuration-id in the format <application ID>.<configuration ID>.

If you have imported the JSON file of a shipped application into the APF Configuration Modeler, the
configuration ID takes precedence over the location of the analytical configuration specified in the
manifest.json file.

You can also use parameters to define that a specific analysis step is immediately opened when launching the
APF-based application. To do so, enter the following parameter name and value pairs:

● sap-apf-step-id=<step ID>
● sap-apf-representation-ID=<representation ID>

Example:

● sap-apf-step-id=Step-23
● sap-apf-representation-ID=Step-23-Representation-1

You can look up the step ID and representation ID in the JSON file of the configuration. You may have to export
your configuration first to get an up-to-date JSON file.

Entering a step ID is sufficient; you don’t have to enter a representation ID. If you only enter a step ID, the
default representation is used, that is, the representation that comes first in the tree structure of the APF
Configuration Modeler.

 Note
You can define the parameters either in the tile configuration or in the corresponding target mapping.

Data Protection and Privacy

To ensure data protection and privacy, it is required to be able to delete personal data from the system.

The following sections give information about how to delete personal data depending on the platform you use.

Deletion of Personal Data in SAP Business Suite powered by
SAP HANA

This section explains how an administrator or a user can delete personal data in SAP Business Suite powered
by SAP HANA.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2099

Deleting Analysis Paths

When you create an analysis path using an APF-based app, the path as well as the user who created the path
are stored in a SAP HANA database table.

Deletion by an Administrator

When a user does not have access to the system any longer, for example, because he or she left the company,
an administrator can delete the user's analysis paths. The analysis paths are stored in the following HANA
database table:

Table name: "sap.hba.r.apf.core.db::ANALYSIS_PATH"

Schema name: "SAP_HBA". The user is stored in the table field "CREATED_BY_USER"

The administrator can delete the analysis paths with an SQL statement such as the following:

delete from "SAP_HBA"."sap.hba.r.apf.core.db::ANALYSIS_PATH" where
"CREATED_BY_USER" = '<user name>'

Deletion by a User

Users who still have system access can delete their own saved analysis paths directly in the analysis path
gallery of the runtime application. To do so, open the analysis path menu and choose Delete. This opens a list of
all saved analysis paths, which can be deleted individually. Repeat this for each APF-based application since
you can see only those analysis paths that were created in the application you're currently using.

Personal Data in Analysis Paths

In an APF-based application, personal data can also appear in an analysis path, for example, as a measure in an
analysis step such as ‘revenue by consultant’. APF does not persist these measures, but only filter criteria that
are relevant for selections made in a chart. When a user is deleted from the system, the personal data of this
user is not displayed any longer in an analysis path. The filter criteria is also removed from the analysis path so
that no personal data of the deleted user shows up.

Deletion of Personal Data in SAP S/4HANA

This section explains how an administrator or a user can delete personal data in SAP S/4HANA.

Deleting Analysis Paths

When you create an analysis path using an APF-based app, the path as well as the user who created the path
are stored in a database table.

2100 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Deletion by an Administrator

When a user left the company, the administrator deletes the user master record from the system. The user
master record includes the personalization object BSANLY_APF (Analysis Path Framework personalization
object). This ensures that deleting the user master record automatically also deletes analysis paths created by
the user.

Deletion by a User

Users who still have system access can delete their own saved analysis paths directly in the analysis path
gallery of the runtime application. To do so, open the analysis path menu and choose Delete. This opens a list of
all saved analysis paths, which can be deleted individually. Repeat this for each APF-based application since
you can see only those analysis paths that were created in the application you're currently using.

Personal Data in Analysis Paths

In an APF-based application, personal data can also appear in an analysis path, for example, as a measure in an
analysis step such as ‘revenue by consultant’. APF does not persist these measures, but only filter criteria that
are relevant for selections made in a chart. When a user is deleted from the system, the personal data of this
user is not displayed any longer in an analysis path. The filter criteria is also removed from the analysis path so
that no personal data of the deleted user shows up.

APF Modules

Analysis Path Framework (APF) is an SAPUI5 component that can be used as a foundation for creating
analytical Web applications. APF has a public API that supports the following:

● Building a Web application by using predefined UI elements
● Configuring the Web application
● Creating and processing analysis paths
● Displaying data, for example, in interactive charts
● Interaction between UI and path processing
● Error and message handling
● Interaction with the server using OData services
● Saving analysis paths on the server

Internally, APF consists of the following submodules:

● sap.apf.core
● sap.apf.ui

The sap.apf.core module defines the foundation for analysis path processing. The sap.apf.ui module
defines the UI and the rendering of the analysis path on the UI. It depends on the sap.apf.core module.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2101

The Core Module (sap.apf.core)

The core module (sap.apf.core) has a public API that supports the following:

● Loading an analytical configuration and other static resources
● Creating an analysis step from the given configuration
● Creating OData requests
● Adding a step to an analysis path
● Manipulating, processing, and updating the analysis path and its steps
● Creating filters and setting a context
● Interaction between APF and an external Web application (UI), for example, by passing callback functions
● Error handling and sending error messages to a registered handler
● Saving and retrieving a named analysis path on the server
● Extending possible configurations by new representation entities

The core component contains the entire logic for path processing, but no UI logic. For more information, see
Analysis Path Processing [page 2108].

The UI Module

The UI module provides reusable UI components to support the interaction paradigm of an APF-based Web
application.

The Analysis Step Container

The analysis step container is the UI area where the visualization of a step result, additional information, and
actions related to the analysis step are displayed. It defines the rendering and styling of an analysis step.
Analysis steps are configured in the step object of the analytical configuration file.

The analysis step container contains the following entities:

● The title of the analysis step as defined in the manifest.json file.
● The Step Toolbar [page 2102]

On the UI, the contents of the analysis step container are rendered in the analysis step display, where the
visualization of the step result, additional information and possible actions related to the step are displayed.

The Step Toolbar

The step toolbar is part of the analysis step container and provides the following actions that the user can
perform for the active analysis step:

● Selection Count

2102 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Displays the number of selected items. The selection count is displayed only when a selection is made in
the active representation.

● Filter Information
Displays a list of the filters that were set in previous analysis steps and that are also applied to the active
analysis step. If filter mapping has been applied, you are informed about the mapped filter property. In
addition, if a previous step has filters that do not affect the current analysis step, you are also informed
about this.

● Toggle Legend
Shows or hides the chart legend. This option is displayed only when the user has chosen a chart
representation.

● Zoom in and zoom out (if the chart type supports zooming)
● Toggle Fullscreen

Displays the chart in full screen mode or returns to the original size.
● Representation Type

Depicts the current representation type. If the analysis step has multiple representations, clicking the icon
opens a dialog with the available representation types for this step.

● Table Representation
Allows the user to display the data in a table. The related icon is displayed only if an alternative table
representation has been configured for the active chart representation.

● View Settings
Allows the user to sort the table. This option is displayed only when the user has chosen the table
representation.

● Export to Excel
You can download the data that is available on the front end to a Microsoft Excel file. This feature is
available in the following cases:
○ When the active analysis step is a table representation
○ When you have switched to the alternative list view of any chart

 Note
If you use this feature on an iPad, you must first add the file extension .xlsx to the download file
before you can open it in Microsoft Excel.

● Load All
Loads all data records to the front end so that you don't have to page down to the end of the table to ensure
that all data records are loaded. This is useful, for example, when you want to print or export the entire
table. A counter shows the number of data records that are already on the front end and the total number
of data records.

The Analysis Path Display
The analysis path display is the UI area where thumbnails of all analysis steps of the current analysis path are
displayed. In addition, actions such as editing analysis paths or saving them are performed in the analysis path
display. It consists of the following subcomponents:

● Analysis path title
Contains the name of the analysis path and the icon to open the actions menu.
Once an analysis path has been saved, the name of the saved path is displayed. Unsaved changes are
indicated by an asterisk in front of the path name.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2103

The actions menu offers the following options:
○ New
○ Open
○ Save
○ Save As
○ Delete
○ Print

● Analysis path carousel
Contains the thumbnails and titles of the analysis steps. More precisely, the carousel renders previews of
the analysis step instances that are displayed in the representation container. It also provides the
capabilities for adding, rearranging, and deleting analysis steps.

The analysis path controller manages the analysis path with its analysis steps. It provides the APIs to add,
delete, and rearrange analysis steps, propagate filters, invalidate path, and recalculation of filters.

The Analysis Step Gallery

When the user clicks Add Analysis Step, the analysis step gallery is instantiated. The analysis step gallery
displays all available analysis step templates in a hierarchical select dialog. This dialog first lists all available
categories. The titles of the categories as well as the order in which they are displayed are defined in the APF
Configuration Modeler app.

When the user selects a category, all analysis steps available for this category are listed on the next level of the
select dialog. The titles of the analysis steps are defined in the step configuration of the APF Configuration
Modeler app. The step configuration also contains one or more category assignments to define the categories
in which a particular step is displayed in the analysis step gallery.

On the final level, the representation types for the selected step are displayed.

When the user selects an analysis step to add it to the analysis path, the analysis step gallery calls the
createStepAndSetActive() API and adds the step to the analysis path as the active analysis step. The
analysis step gallery is then closed and the getSteps API is called to get all analysis steps in the correct
sequence.

The Analysis Path Gallery

The analysis path gallery displays the list of saved analysis paths in a hierarchical select dialog. You can select a
saved path to display the sequence of steps contained in the path.

You can click one of the analysis steps to load the analysis path. The step you clicked is displayed as the active
analysis step in the analysis step container.

The saved analysis paths are displayed in the order of the most recent modification date.

2104 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Predefined Representation Types

Use

The UI component of APF provides predefined representation types that can be used to display data.

These representation types are predefined in the file sap/apf/core/representationTypes.js. They can
be referenced in the analytical configuration using their IDs.

Each representation type has a constructor assigned. The constructor is used as a parameter in the
representation type object of the configuration file and points to the implementation of the representation
type. The charts shipped with APF are implemented using the VizFrame charting library
(sap.viz.ui5.controls.VizFrame) that is available with SAP UI5.

The following table lists the order of available representation types:

Chart Name ID Constructor
Chart Type in VizFrame
Charting Library

Column chart ColumnChart sap.apf.ui.represen
tations.columnChart

sap.viz.ui5.control
s.VizFrame({vizType
: column});

Bar chart BarChart sap.apf.ui.represen
tations.barChart

sap.viz.ui5.control
s.VizFrame({vizType
: bar});

Line chart LineChart sap.apf.ui.represen
tations.lineChart

sap.viz.ui5.control
s.VizFrame({vizType
: line});

Line chart with two vertical
axes

LineChartWithTwoVertica
lAxes

sap.apf.ui.represen
tations.lineChartWi
thTwoVerticalAxes

sap.viz.ui5.control
s.Vi
zFrame({vizType :
dual_line});

Line chart with time axis LineChartWithTimeAxis sap.apf.ui.represen
tations.lineChartWi
thTimeAxis

sap.viz.ui5.control
s.Vi
zFrame({vizType :
timeseries_line});

Pie chart PieChart sap.apf.ui.represen
tations.pieChart

sap.viz.ui5.control
s.VizFrame({vizType
: pie});

Donut chart DonutChart sap.apf.ui.represen
tations.donutChart

sap.viz.ui5.control
s.VizFrame({vizType
: donut});

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2105

Chart Name ID Constructor
Chart Type in VizFrame
Charting Library

Scatter plot chart ScatterPlotChart sap.apf.ui.represen
tations.scatterPlot
Chart

sap.viz.ui5.control
s.VizFrame({vizType
: scatter});

Bubble chart BubbleChart sap.apf.ui.represen
tations.bubbleChart

sap.viz.ui5.control
s.VizFrame({vizType
: bubble});

Stacked column chart StackedColumnChart sap.apf.ui.represen
tations.stackedColu
mnChart

sap.viz.ui5.control
s.VizFrame({vizType
:
100_stacked_column}
);

Stacked bar chart StackedBarChart sap.apf.ui.represen
tations.stackedBarC
hart

sap.viz.ui5.control
s.VizFrame({vizType
:
100_stacked_bar});

100% stacked column chart PercentageStackedColumn
Chart

sap.apf.ui.represen
tations.percentageS
tackedColumnChart

sap.viz.ui5.control
s.VizFrame({vizType
:
100_stacked_column}
);)

100% stacked bar chart PercentageStackedBarChart sap.apf.ui.represen
tati
ons.percentageStack
edBarChart

sap.viz.ui5.control
s.Vi
zFrame({vizType :
100_stacked_bar});)

Combined column line chart CombinationChart sap.apf.ui.represen
t
ations.combinationC
hart

sap.viz.ui5.control
s .Vi
zFrame({vizType :
combination});)

Combined stacked column
line chart

StackedCombinationChart sap.apf.ui.represen
t
ations.stackedCombi
nationChart

sap.viz.ui5.control
s .Vi
zFrame({vizType :
stacked
combination});)

2106 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Chart Name ID Constructor
Chart Type in VizFrame
Charting Library

Combined column line chart
with two vertical axes

DualCombinationChart sap.apf.ui.represen
t
ations.dualCombinat
ionChart

sap.viz.ui5.control
s .Vi
zFrame({vizType :
dual
combination});)

Combined stacked column
line chart with two vertical
axes

DualStackedCombination
Chart

sap.apf.ui.represen
t
ations.dualStackedC
ombinationChart

sap.viz.ui5.control
s .Vi
zFrame({vizType :
dual stacked
combination});)

Heatmap chart HeatmapChart Sap.apf.ui.represen
tations.heatmapChar
t

sap.viz.ui5.control
s.Vi
zFrame({vizType :he
atmap});)

Table TableRepresentation sap.apf.ui.represen
tations.tableRepres
entation

SAPUI5 table
(sap.ui.table.Table
)

Tree table TreeTableRepresentation sap.apf.ui.represen
tations.treeTable

SAPUI5 tree table
(sap.ui.table.TreeT
able)

You can use the predefined representation types to define representations in your application. To do so,
depending on the chart type you choose, you must define parameters such as the fields used for the horizontal
axis and the vertical axis, or the field by which a chart is sorted.

Related Information

Analytical Configuration [page 2128]
The Representation Type Object [page 2138]

Rendering of Charts

The rendering of charts includes the following elements that are defined in the APF Configuration Modeler:

● Chart title
The chart title is taken from the Step Long Title field of the step configuration. It is displayed above any
representation of a particular analysis step. If no long title is defined, the step title is used instead.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2107

● Titles of the horizontal axis and the vertical axis
The general format of the title is <title (unit)>. It can be determined in one of the following ways:
○ The title is first read from the Label field of the representation configuration in the APF Configuration

Modeler, if this property has been configured.
○ If the fieldDesc property has not been configured, but the field has a corresponding sap:text

annotation in the OData metadata, the system looks up the field name specified in the annotation and
retrieves the sap:label value of that field. This applies to those fields for which you want to display
the name rather than an ID, for example, the customer ID.

○ If the Label field has not been configured and a sap:text annotation does not exist, the system looks
up the sap:label annotation of the OData metadata, which retrieves the label specified for this field
in the SAP HANA model.

 Note
The unit is concatenated to the title only if the axis shows a measure that has a unit and if all data
records have the same unit.

● Value formatting:
All fields are formatted according to the supported OData 2.0 annotations. If no annotations exist, the
value is displayed without formatting.

● Legend
A legend is displayed for all charts that have multiple dimensions or measures. The same formatting
applies as described above.

● Labels of the horizontal axis and the vertical axis
The rendering of the labels of the axes is defined by the behavior of the core chart. The same formatting
applies as described above.

Concepts

The following sections explain the basic concepts of Analysis Path Framework (APF).

Analysis Path Processing

The main purpose of the core module (sap.apf.core) is to handle and process analysis paths. A path and its
steps are created, accessed, and processed using the APF API. During path processing, the following tasks are
executed going through all steps in the order of their positions in the analysis path:

1. Execute the OData requests of the steps
2. Supply the representations of the steps with the response data
3. Notify the application UI using a callback function

In addition, the path logic accumulates filters that are derived from selections made in representations, and
applies those filters in subsequent OData requests.

An analysis path contains an ordered sequence of one or more analysis steps.

A step is created using the APF API method createStep(<id>,<callback>). It is inserted at the end of the
path. The first method parameter is a unique identifier, which refers to the configuration entity that defines the

2108 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

step. The second parameter supplies a callback function, which is called once after the step has been created
and processed.

Path processing is triggered using the APF API method updatePath(<callback>). The callback function is
called each time after a step has been processed.

Runtime Objects

The following runtime objects exist:

● A step object consists of a request object and a binding object.
● A request object defines an OData server request. It creates and processes the OData request, processes

the response, and sends the response data to the corresponding step.
● The binding object sends the response data to the selected representation object. A binding object

associates a step with one or more representation objects and identifies and handles the
representation object that is currently selected. The binding object also defines how the selected
representation translates its selection into a filter object.

● A representation object wraps a chart, a table, or any other representation of data. When the user
switches the representation, a different representation object is selected and supplied with data.

● A filter object represents the selections made on the charts.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2109

The relation between the objects described above is depicted in the following figure:

Figure 337: Runtime Objects of a Path

Processing of Runtime Objects

The steps are processed in the order of their positions in the path. The first step is processed first. The filter
resulting from the first step is used to process the second step, and so on.

To describe the processing of an analysis path in more details, the following variables are relevant:

Variable Description

S_1,..,S_n Path of length n

S_i Step

R_i Request for step S_i

B_i Binding for step S_i

RO_i_s Selected representation object for step S_i

F_i Filter object associated to step S_i

2110 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Variable Description

F_0 Filter for the entire path. This filter is either empty or it is the
filter set by the APF API method addPathFilter()). This
filter defines the OData filter for request R_1 of step S_1.

The processing of step S_i begins with requesting the filter F_(i-1) of the previous step. Note that for step
S_1, this is filter F_0.

Step S_i is further processed by sending an OData request R_i to the server. The filter expression of request
R_i is defined by the previous filter F_(i-1).

When request R_i returns successfully, it sends its response data to the selected representation object
RO_i_s. This representation object then creates its own filter based on this data and its own UI selections. This
filter can be requested by the subsequent step.

The filter F_i is defined as a conjunctive accumulation of the previous filter F_(i-1) and the filter defined by
the selected representation object (RO_i_s). The filter F_i is used for processing step S_(i+1).

Filter F_0 is defined by URL parameters passed to the application, such as SAPCLIENT, and by filters. In the
figure above, F_0 is represented as the “Filter/Context” object directly associated to the path object.

Consuming APF

The following code snippet is an example of how to consume APF in an SAPUI5-based application:

 sap.ui.define("myApp.Component", [
 "sap/apf/base/Component"
], function(ApfComponent){
 'use strict';
 return ApfComponent.extend("myApp.Component",
 {
 metadata : {
 "name" : <name>,
 "manifest" : "json",
 "version" : <version>
 },
 /**
 * Initialize the application
 *
 * @returns
 */
 init : function() {
 // Initialize application here. No APF specific operation done here,
since APF API is not yet available.
 // Call APF Component init
 ApfComponent.prototype.init.apply(this, arguments);
 },
 /**
 * Creates the application layout and returns the outer layout of APF
 *
 * @returns {sap.ui.core.Control} the content
 */
 createContent : function() {
 // Attach APF start-up callbacks
 this.getApi().setCallbackBeforeApfStartup(this.onBeforeApfStartup);

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2111

 this.getApi().setCallbackAfterApfStartup(this.onAfterApfStartup);

 // Return whatever is returned by parent (APF Component)
createContent method
 return ApfComponent.prototype.createContent.apply(this, arguments);
 },
 onBeforeApfStartup: function() { //optional
 // Code executed before APF startup
 },

 onAfterApfStartup: function() { //optional
 // Code executed after APF startup
 },
 destroy : function() {
 // Destroy application instances

 // Call destroy on APF Component
 ApfComponent.prototype.destroy.apply(this, arguments);
 }
 });
});

Replace myApp with the application-specific namespace.

Method this.getApi() provides a reference to the APF instance.

The function registered through onBeforeApfStartup is executed after the execution of method init(), at
the beginning of method createContent() of sap.apf.base.Component. This registered function is
useful, for example, for defining application-specific filters.

The function registered through onAfterApfStartup is executed after all asynchronous startup operations
have been terminated, that is, at the end of method createContent() of sap.apf.base.Component. This
registered function is useful, for example, for adding footer content to the APF UI.

Footer Content

You can add footer content to your APF-based application, for example, to allow users to make settings such as
defining a reporting currency or adjusting the exchange rate settings.

To add footer content, attach the following APF start-up callbacks at APF API level in the Component.js file
inside the createContent() method:

1. setCallbackBeforeApfStartup, where you can build footer controls.
2. setCallbackAfterApfStartup, where you can insert the footer content into the UI layout using the

addMasterFooterContent API.

Footer controls need to register a listener to the contextChanged event of APF to listen to context changes at
startup or when a saved path is opened. The event listener for the contextChanged event is defined as
follows:
oApi.setEventCallback(oApi.constants.eventTypes.contextChanged,fnCallbackForContext
Change);

Apart from the contextChanged event, you can also register the following events for setEventCallback:

● printTrigerred (to implement a specific formatting for a print page)

2112 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

● format (to implement a specific formatting for an entire application)

Creating Filters for the Footer Content

To ensure that the filters you create as footer content are recognized by APF, create them in the following
format:

var oFilter = this.oApi.createFilter(); var orExpression = oFilter.getTopAnd().addOr();
orExpression.addExpression({
 name : "<name>",
 operator : "<operator>",
 value : "<value>", });

For example, if you want to configure a filter for the exchange rate type, the filter expression looks as follows:

orExpression.addExpression({ name : "P_ExchangeRateType",
 operator : "EQ",
 value : "USD", });

Use the API addPathFilter() to ensure that the created filter is applied to the analysis path. When the API
addPathFilter() is called with the filter created above as a parameter, it returns an ID. The filter can be
updated using the API updatePathFilter() by passing the filter ID and the filter as parameters:

var sFilterId = this.oApi.addPathFilter(oFilter); this.oApi.updatePathFilter(sFilterId, oFilter);

To retrieve the filter that was applied to the analysis path, use the API getPathFilter() and pass the filter ID as a
parameter:

var oFilter = this.oApi.getPathFilter(sFilterId); var sValue = oFilter.getInternalFilter().getFilterTerms()[0].getValue();

Security Considerations

For any application extension, ensure that both the extension and its libraries are trustworthy.

Related Information

Components [page 720]
Descriptor (manifest.json) [page 2124]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2113

Consuming APF in SAPUI5 1.28 and Prior Releases

The following code snippet is an example of how to consume APF in a UI5 based application up until SAPUI5
1.28:

 jQuery.sap.declare("myApp.Component");
sap.ui.getCore().loadLibrary("sap.apf");
jQuery.sap.require("sap.apf.Component");

sap.apf.Component.extend("myApp.Component",
{
 metadata : { name : <name>, version : <version> },
 /**
 * Initialize the application
 *
 * @returns
 */
 init : function() {
 // Initialize application here. No APF specific operation done here,
since APF API is not yet available.
 // Call APF Component init
 sap.apf.Component.prototype.init.apply(this, arguments);
 },
 /**
 * Creates the application layout and returns the outer layout of APF
 *
 * @returns {sap.ui.core.Control} the content
 */
 createContent : function() {
 // Attach APF start-up callbacks
 this.getApi().setCallbackBeforeApfStartup(this.onBeforeApfStartup);
 this.getApi().setCallbackAfterApfStartup(this.onAfterApfStartup);

 // Prepare path to application configuration file
 var modPath = jQuery.sap.getModulePath('myApp');
 var configFilePath = modPath + "/config/
myApplicationConfiguration.json";
 this.getApi().loadApplicationConfig(configFilePath);

 // Return whatever is returned by parent (APF Component)
createContent method
 return sap.apf.Component.prototype.createContent.apply(this,
arguments);
 },

 onBeforeApfStartup: function() { //optional
 // Code executed before APF startup
 },

 onAfterApfStartup: function() { //optional
 // Code executed after APF startup
 },
 destroy : function() {
 // Destroy application instances

 // Call destroy on APF Component
 sap.apf.Component.prototype.destroy.apply(this, arguments);
 }
 });

Replace myApp with the application-specific namespace.

2114 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Method this.getApi() provides a reference to the APF instance.

When you use the start parameter sap-apf-app-config-path, APF executes method
loadApplicationConfig() in the init() method of sap.apf.Component, that is, before
createContent() of the application component is executed. APF ensures that method
loadApplicationConfig() is executed not more than once.

The function registered through onBeforeApfStartup is executed after the execution of method init(), at
the beginning of method createContent() of sap.apf.Component. This registered function is useful, for
example, for defining application-specific filters.

The function registered through onAfterApfStartup is executed after all asynchronous startup operations
have been terminated, that is, at the end of method createContent() of sap.apf.Component. This
registered function is useful, for example, for adding footer content to the APF UI.

Footer Content

You can add footer content to your APF-based application, for example, to allow users to make settings such as
defining a reporting currency or adjusting the exchange rate settings.

To add footer content, attach the following APF start-up callbacks at APF API level in the Component.js file
inside the createContent() method:

1. setCallbackBeforeApfStartup, where you can build footer controls.
2. setCallbackAfterApfStartup, where you can insert the footer content into the UI layout using the

addMasterFooterContent API.

Footer controls need to register a listener to the contextChanged event of APF to listen to context changes at
startup or when a saved path is opened. The event listener for the contextChanged event is defined as
follows:
oApi.setEventCallback(oApi.constants.eventTypes.contextChanged,fnCallbackForContext
Change);

Creating Filters for the Footer Content

To ensure that the filters you create as footer content are recognized by APF, create them in the following
format:

var oFilter = this.oApi.createFilter(); var orExpression = oFilter.getTopAnd().addOr();
orExpression.addExpression({
 name : "<name>",
 operator : "<operator>",
 value : "<value>", });

For example, if you want to configure a filter for the exchange rate type, the filter expression looks as follows:

orExpression.addExpression({ name : "P_ExchangeRateType",
 operator : "EQ",
 value : "USD", });

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2115

Use the API addPathFilter() to ensure that the created filter is applied to the analysis path. When the API
addPathFilter() is called with the filter created above as a parameter, it returns an ID. The filter can be
updated using the API updatePathFilter() by passing the filter ID and the filter as parameters:

 Source Code

var sFilterId = this.oApi.addPathFilter(oFilter); this.oApi.updatePathFilter(sFilterId, oFilter);

To retrieve the filter that was applied to the analysis path, use the API getPathFilter() and pass the filter ID as a
parameter:

var oFilter = this.oApi.getPathFilter(sFilterId); var sValue = oFilter.getInternalFilter().getFilterTerms()[0].getValue();

Security Considerations

For any application extension, ensure that both the extension and its libraries are trustworthy.

Related Information

Components [page 720]

Outbound Navigation and Inbound Navigation

You can navigate from an APF-based application to another SAP Fiori application (outbound navigation) and
you can also navigate from an SAP Fiori application to an APF-based application (inbound navigation).

In both cases, the source application sends a context object to the target application using the app state. The
context object contains a filter object. This filter object represents selections made in the source application
and hands over these selections to the target application in the form of a filter. The target application applies
the filter or parts of it. For example, the target application can apply the filter to its data requests or visualize
the filter as selections in the charts on the UI.

Outbound Navigation

When navigating from an APF-based application to another application, APF puts the cumulative filter of the
current analysis path into the context object. The cumulative filter includes start filters and other filters such as
selections made in the charts up to the active analysis step. The context object stores the cumulative filter in
the formats described in the section Filter Formats [page 2117].

2116 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

APF tries to reduce the cumulative filter to the select options format. If this is successful, the resulting filter is
stored in the context object in the property selectionVariant.

If it is not possible to reduce the cumulative filter, the value of the property selectionVariant contains an
error text instead of a select option. This is because select options can only express a subset of all possible
filters whereas the format sap.ui.model.Filter can express all filters created by APF.

In addition, APF always creates a filter in the sap.ui.model.Filter format and stores it in the property
sapApfCumulativeFilter.

The consuming application can read the app state as follows:

sap.ushell.Container .getService("CrossApplicationNavigation")
 .getAppState(oInject.instances.component, crossAppStateKey)
 .done(function(appState) {
 contextObject = appState.getData();
 if (contextObject && contextObject.sapApfCumulativeFilter) {
 // your code that processes the filter
 } });

Inbound Navigation

When you navigate from an SAP Fiori application to an APF-based application, the SAP Fiori application can
hand over a filter in the context object. The APF-based application automatically applies this filter to the
analysis path. The context object contains the filter in one of the formats described in the section Filter
Formats [page 2117].

The source application can set the app state as follows:

var oCrossAppNavigator =
sap.ushell.Container.getService("CrossApplicationNavigation"); var contextObject = {};
contextObject.sapApfCumulativeFilter = //add filter here
contextObject.selectionVariant = //add selectionVariant here
appState = oCrossAppNavigator.createEmptyAppState(oInject.instances.component);
appState.setData(contextObject);
appState.save();
oCrossAppNavigator.toExternal({
 target : {
 semanticObject : oNavigationTarget.semanticObject,
 action : oNavigationTarget.action
 },
 appStateKey : appState.getKey()
});

Filter Formats

APF hands over the cumulative filter of the current analysis path including all analysis steps up to the current
step using the CrossApplicationNavigation service of the unified shell. For more information, see the API
Reference in the Demo Kit.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2117

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ushell.services.CrossApplicationNavigation.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ushell.services.CrossApplicationNavigation.html

The context object contains two different properties that hand over the filter in two different formats:

● Property sapApfCumulativeFilter:
Filter object in the format of sap.ui.model.Filter
For more information, see the API Reference in the Demo Kit.

● Property selectionVariant:
Filter object in a select options format
For more information, search for "Selection Variants" in the documentation of your SAP NetWeaver version
on the SAP Help Portal at https://help.sap.com/viewer/p/SAP_NETWEAVER.

 Note
The type information of a property is not included in any of the filters. If the consuming application requires
the type information, it can be derived from the metadata.

The Select Options Format
When the property selectionVariant of a context object is not undefined, it contains an object of the
following form:

{ "SelectionVariantID": <String>, "ParameterContextUrl": <String>, "FilterContextUrl": <String>, "Text": <String>, "Parameters": [], "ODataFilterExpression": <String>, "SelectOptions": […]
}

The property SelectOptions contains the filter object. The filter object is an array that expresses a
conjunction. The elements of the array are range expressions.

"SelectOptions": [{ "PropertyName": <String>, "Ranges": […]
 }
]

A range expression is a filter that represents ranges and disjunctions of values.

{ "Sign": "I" | "E",
 "Option": <Char(2)>, "Low": <String>, "High": <String> | null }

Sign expresses inclusion or exclusion. Option expresses the operator, for instance, "EQ" for equal or "BT" for
between. The other two properties express a low value and a high value. The high value is optional. If it is not
used, it is set to null.

Example: The following filter expresses that values are either equal to 1 or between 3 and 5:

"Ranges": [{
 "Sign": "I",
 "Option": "EQ",

2118 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.Filter.html
https://help.sap.com/viewer/p/SAP_NETWEAVER

 "Low": "0001",
 "High": null
 },
 {
 "Sign": "I",
 "Option": "BT",
 "Low": "0003",
 "High": "0005"
 }
]

 Note
APF does not support exclusions (property Sign equals "E").

Example

{ "SelectionVariantID" : "20141023134315",
 "ParameterContextUrl" : “/(..)/AccountBalance/
$metadata#AccountBalanceQueryParameters",
 "FilterContextUrl" : “/(..)/AccountBalance/
$metadata#AccountBalanceQueryResult",
 "Text" : "Temporary Selection Variant, Account Balance, 24.10.2014 13:43:15",
 "Parameters" : [
 {
 "PropertyName" : "DisplayCurrency",
 "PropertyValue" : "EUR"
 },
 {
 "PropertyName" : "ExchangeRateType",
 "PropertyValue" : "M"
 }
],
 "ODataFilterExpression" : "",
 "SelectOptions" : [
 {
 "PropertyName" : "CompanyCode",
 "Ranges" : [
 {
 "Sign" : "I",
 "Option" : "EQ",
 "Low" : "0001",
 "High" : null
 },
 {
 "Sign" : "I",
 "Option" : "EQ",
 "Low" : "0002",
 "High" : null
 }
]
 },
 {
 "PropertyName" : "FiscalYear",
 "Ranges" : [
 {
 "Sign" : "I",
 "Option" : "EQ",
 "Low" : "2014",
 "High" : null
 }

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2119

]
 },
 {
 "PropertyName" : "GLAccount",
 "Ranges" : [
 {
 "Sign" : "I",
 "Option" : "BT",
 "Low" : "10000",
 "High" : "20000"
 },
 {
 "Sign" : "I",
 "Option" : "EQ",
 "Low" : "30000",
 "High" : null
 }
]
 }
] }

Related Information

Creating Navigation Targets [page 2085]
Analysis Path Processing [page 2108]

Working with Multiple Back-End Systems

If you work with multiple back-end systems because, for example, you have a system landscape with regional
back-end systems, you can use the sap-system parameter to ensure that SAP Gateway directs the OData
service requests to the correct back-end system. For each back-end system, you can configure a SAP Fiori tile
with the corresponding sap-system parameter, so you can have several tiles for the same APF-based app
accessing data from different systems.

APF uses the general concept for SAP Fiori applications on multiple back-end systems. For more information,
search for "Configuring Multiple Back-End Systems Using the sap-system Parameter" in the documentation of
your SAP NetWeaver version on the SAP Help Portal at https://help.sap.com/viewer/p/SAP_NETWEAVER.

In particular, you must do the following:

● Assign all required back-end systems to your analytical OData services.
● If you want to save your analysis paths on multiple back-end systems, you must also assign those back-end

systems to the service BSANLY_APF_RUNTIME_SRV, which is used for path persistence.
● If you use static app launcher tiles to launch an APF-based app, go to the tile configuration and add the

parameter sap-system=<SYSTEM_ALIAS>. Create one tile for each back-end system you want to connect
the app to. For each tile, enter the system alias of one back-end system as the sap-system parameter.

● If you navigate to an APF-based app from somewhere else, for example, from a SAP Smart Business
generic drill-down app that also uses the sap-system parameter, the sap-system parameter is handed
over to APF via intent-based navigation.

2120 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://help.sap.com/viewer/p/SAP_NETWEAVER

As a result, APF interprets the sap-system parameter and reacts as follows:

● All OData requests that are used when running an APF-based app are sent with an origin segment
parameter o that corresponds to the specified sap-system parameter.

● When navigating away from the APF-based app, the sap-system parameter is added to the URL of the
navigation target.

● When executing a configuration from the APF Configuration Modeler, the sap-system parameter is added
to the URL of the generic runtime application.

Configuration Files and Their Structure

To configure or enhance an APF-based application, you can use the APF Configuration Modeler app. When you
export a configuration, a JSON file is created that contains all configuration objects, such as categories, steps,
and representations. The following chapters explain the configuration on a technical level and show how the
JSON files are structured and what the properties used in the configuration objects mean.

The following JSON files are relevant:

● The manifest.json file, which defines static information about the application.

 Note
In SAPUI5 1.28 and prior releases, the static information was defined in the application configuration
file.

● The analytical configuration file, which defines the content of the application and how it is represented on
the user interface.

 Note
We recommend not to edit the analytical configuration file manually. However, there are exceptions
such as a mass change of OData service paths.

The configuration options include the following tasks:

● Changing the analytical configuration file

 Note
When you want to change the analytical configuration file of a delivered application, you must first
make a copy and save it to a new location.

Some possible changes to the analytical configuration file are:
○ You can change a request, which defines the access to a server resource.
○ You can change the relation between the requested data and the representations by adapting the

binding.
○ You can add a category for the analysis step gallery.
○ You can add new analysis steps or adapt existing ones, for example, by replacing the request or the

binding for a step.
● Changing text resource files

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2121

 Note
When you want to change a text resource file of a delivered application, you must first make a copy and
save it to a new location.

● Changing the manifest.json file
Whenever you have changed the analytical configuration file or text resource files and have copied the files
to a new location, you must ensure that the locations are adapted accordingly in the manifest.json file.

The configuration options are explained in detail in the following sections.

Application Configuration in SAPUI5 1.28 and Prior Releases

 Note
As of SAPUI5 1.30, the application configuration file has been replaced with the manifest.json file. If you
build your app based on SAPUI5 1.30 or higher, you can skip this section. For information about the
manifest.json file, see Descriptor (manifest.json) [page 2124]

The application configuration file defines static information about the application, such as the name of the
application or the location of various files. It is written in JavaScript Object Notation (JSON) format.

In addition to the properties described below, you can define further properties as required using method
getApplicationConfigurationProperties. For example, you can define default values for fields on the
UI.

 Note
If you create an APF-based application using the generic APF runtime application, you can omit this step,
because the application configuration is already contained in it. However, if you create your own BSP
application, you must also create an application configuration file.

 Note
Customer modifications may conflict with the SAP namespace and can be overwritten when updates are
imported.

The application configuration file has the following format:

 {
 "applicationConfiguration" : {
 "type" : "applicationConfiguration", "appName" : "<key>", "appTitle" : "<key> | <text>", "analyticalConfigurationLocation" : "<applicationPath>/config/
configuration.json", "applicationMessageDefinitionLocation" : "<applicationPath>/config/
applicationMessageDefinition.json", "textResourceLocations" : { "applicationMessageTextBundle" : "<applicationPath>/i18n/
applicationMessages.properties", "applicationUiTextBundle" : "<applicationPath>/i18n/
applicationUi.properties"

2122 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 },
 "persistence" : {
 "path" : { "service" : "<service root>", "entitySet" : "<entity set name>" },
 "logicalSystem" : {
 "service" : null
 }
 }
 "smartBusiness" : {
 "runtime" : {
 "service" : "/sap/hba/r/sb/core/odata/runtime/
SMART_BUSINESS.xsodata",
 }
 }
 } }

 Note
<applicationPath> denotes the location of the Web application on the Web server.

The properties used in the application configuration file denote the following:

Property Description

appName The name of the application is displayed in the header of the
application. It is retrieved from a translatable text property
using a text key. Therefore, the value of the property
appName must be a text key.

appTitle The title is displayed in the title bar of the Web browser. It is
optional and can be used to overwrite the <title> tag of
the index.html file. The property appTitle can be a text key,
but it can also be text that is not translated.

analyticalConfigurationLocation The location of analytical configuration file for APF; for more
information, see Analytical Configuration [page 2128].

applicationMessageDefinitionLocation The location of the message definition file for the applica
tion. If the application uses the MessageHandling compo
nent of APF, this definition is used to retrieve further infor
mation for message handling, such as a text.

textResourceLocations The location of the text resource files. Text resource files
contain the texts that the text keys used in the code and the
message definition files refer to.

Text resource files can be of type *.hdbtextbundle or
*.properties and contain UI texts and message texts that
can be translated.

At runtime, a text key is resolved by checking all specified re
source files in turn.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2123

Property Description

persistence Contains two properties:

● path
Specifies the service to create, read, update, and delete
analysis paths on the persistence layer. The property
service defines the service document.

● logicalSystem
Specifies the service to determine the logical system.
In most cases, you can set the service to null.

smartBusiness The Smart Business runtime service, which is used to fetch
information related to Smart Business filters using the evalu
ation ID.

Descriptor (manifest.json)

As of SAPUI5 version 1.30, APF uses the manifest.json file as descriptor. It replaces the application
configuration file. The manifest.json file defines static information about the application, such as the name
of the application or the location of various files. It is written in JavaScript Object Notation (JSON) format.

 Note
If your application still uses the application configuration file, you can skip this section.

You can also omit this step if you create an APF-based application using the generic APF runtime
application because the manifest.json file is already contained in it. However, if you create your own
BSP application with a component that extends sap.apf.base.Component, you must also create a
manifest.json file.

 Note
Customer modifications may conflict with the SAP namespace and can be overwritten when updates are
imported.

For information about the structure and content of the manifest.json file, see Descriptor for Applications,
Components, and Libraries [page 734].

APF expects certain entries in the manifest of a component that extends sap.apf.core.Component. Entries
for four different data sources have to be defined in the sap.app namespace:

● For the data source AnalyticalConfigurationLocation, you must specify the location of the
analytical configuration file. Enter the relative path from the Component.js.

● The following three data sources are predefined and must not be changed:
○ PathPersistenceServiceRoot
○ SmartBusiness
○ LogicalSystem

2124 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

The data sources differ depending on whether you use SAP Business Suite powered by SAP HANA, or SAP
S/4HANA. The following table gives an overview about the relevant entries that you must use in your own
manifest.json file:

Data Source

...for SAP Business Suite powered by
SAP HANA and SAP BW on SAP
HANA ...for SAP S/4HANA

PathPersistenceServiceRoo
t

/sap/hba/r/apf/core/
odata/apf.xsodata

/sap/opu/odata/sap/
BSANLY_APF_RUNTIME_SRV

SmartBusiness /sap/hba/r/sb/core/odata/
runtime/
SMART_BUSINESS.xsodata

Not required

LogicalSystem /sap/hba/apps/wca/dso/s/
odata/wca.xsodata

Not required

The sap.app namespace also contains the title of the application. This “title” entry references the text key
AnalyticalConfigurationName. When you export the text pool from APF Configuration Modeler, the up-to-
date configuration title is written into the .properties file with the text key AnalyticalConfigurationName.
Ensure you also keep the location of the .properties file up to date in the manifest.json file (entry “i18n”). At
runtime, this title is displayed as the browser tab title.

Example

{ "_version": "1.1.0",
 "sap.app": {
 "_version": "1.1.0", "id": "<component ID>", "type": "application",
 "i18n": "i18n/texts.properties",
 "title": "{{AnalyticalConfigurationName}}", "description": "{{<key in .properties file>}}", "applicationVersion": {
 "version": "${project.version}"
 }, "ach": "<ach>", "dataSources": { "<data source for analytical request>": { "uri": "<service root of analytical request>", "type": "OData",
 "settings": {
 "annotations": ["<annotation data source>"],
 "odataVersion": "2.0"
 }
 },
 "<annotation data source>": { "uri": "<location of annotation file>", "type": "ODataAnnotation",
 "settings": { "localUri": "<location of local
annotation file>" }

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2125

 },
 "PathPersistenceServiceRoot": { "uri": "<URI of path persistence>", "type": "OData",
 "settings": {
 "odataVersion": "2.0"
 }
 },
 "SmartBusiness": {
 "uri": "/sap/hba/r/sb/core/odata/runtime/
SMART_BUSINESS.xsodata",
 "type": "OData",
 "settings": {
 "odataVersion": "2.0"
 }
 },
 "LogicalSystem": {
 "uri": "/sap/hba/apps/wca/dso/s/odata/
wca.xsodata",
 "type": "OData",
 "settings": {
 "odataVersion": "2.0"
 }
 }
 },
 "AnalyticalConfigurationLocation": {
 "uri": "./config/analyticalConfiguration.json",
 "type": "JSON"
 },
 "resources": "resources.json",
 "offline": false
 },
 "sap.fiori": {
 "_version": "1.1.0",
 "registrationIds": ["<FioriId>"],
 "archeType": "analytical"
 },
 "sap.ui": {
 "_version": "1.1.0",
 "technology": "UI5",
 "deviceTypes": {
 "desktop": true,
 "tablet": true,
 "phone": false
 },
 "supportedThemes": [
 "sap_hcb",
 "sap_belize"
]
 },
 "sap.ui5": {
 "_version": "1.1.0",
 "dependencies": {
 "minUI5Version": "1.38.1",
 "libs": {
 "sap.ui.core": {
 "minVersion": "1.38.1"
 "lazy" : false
 },
 "sap.ca.ui": {
 "minVersion": "1.38.1"
 "lazy" : false
 },
 "sap.m": {
 "minVersion": "1.38.1"
 "lazy" : false

2126 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 },
 "sap.ui.layout": {
 "minVersion": "1.38.1"
 "lazy" : false
 },
 "sap.ushell": {
 "minVersion": "1.38.1"
 "lazy" : false
 },
 "sap.apf": {
 "minVersion": "1.38.1"
 "lazy" : false
 },
 "sap.viz": {
 "minVersion": "1.38.1"
 "lazy" : false
 }
 }
 },
 "extends": {
 "component": "sap.apf.base"
 },
 "contentDensities": {
 "compact": true,
 "cozy": true
 },
 "models": {
 "i18n": {
 "type": "sap.ui.model.resource.ResourceModel",
 "uri": "i18n/texts.properties"
 }
 }
 "config": {
 "sapFiori2Adaptation": true
 },
 } }

APF-Specific Settings

The following settings reside in the sap.apf name space:

"sap.apf": { "activateFilterReduction" : true,
 "activateLrep" : true,
 },

● activateFilterReduction:
This property is relevant if you use CDS views that are executed on the Analytic Engine or BW OData
queries. It defines whether filters that are generated during a path update are reduced so that the Analytic
Engine can handle them.
Alternatively, you can use the equivalent boolean URL parameter sap-apf-filter-reduction, which
you can set to true. If a URL parameter exists, it overrules the entry in the manifest.json. If you use the
generic APF runtime application, you must use the URL parameter.
If you use filter reduction, make sure you don't use more than one property in the filter mapping
configuration.

● activateLrep

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2127

 Note
If you use SAP S/4HANA, this property is mandatory and must be set to true.

This property defines that the layered repository of SAPUI5 flexibility is used for persistence of the
analytical configuration.

Analytical Configuration

The analytical configuration of APF specifies, for example, the available analysis steps, the representations that
are used for each step, and the categories in which the analysis steps are displayed. It is written in JavaScript
Object Notation (JSON) format.

Some of the objects used to specify the analytical content must be registered under a unique ID and can be
accessed using this ID. The IDs must be unique within the configuration of an APF-based Web application.

The following table lists the objects used in an analytical configuration:

Object Type Unique ID Required

step Yes

hierarchicalStep Yes

request Yes

binding Yes

representation Yes

representationType (optional) Yes

facetFilter Yes

smartFilterBarConfiguration Yes

navigationTarget Yes

category Yes

label No

thumbnail No

2128 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

General Rules

The following rules apply when working with configuration objects in Analysis Path Framework:

● Value representations in configuration objects must comply with the JSON format.
● String values must be in double quotes.
● The type property is optional, but it is useful for debugging and comprehensibility.
● The id property is mandatory for those objects that require a unique ID. It must be a unique ID of type

string.
● Depending on the object type, configuration objects can contain various other properties. Changes to a set

of properties must be compatible with the original configuration object. You can, for example, add new
properties.

 Note
Customer modifications may conflict with the SAP namespace and can be overwritten when updates
are imported.

The Configuration Root Object

The configuration root object encapsulates all configuration objects that represent a function and that exist as
runtime objects. The format is as follows:

 { steps : [<step> | <hierarchicalStep>*], requests : [<request>*], bindings : [<binding>*], categories : [<category>*], representationTypes : [<representationType>*], facetFilters : [<facetFilter>*], // optional smartFilterBar : <smartFilterBarConfiguration>, // optional navigationTargets : [<navigationTarget>*], // optional configHeader : <configurationInformation> }

 Note
The notation [<type>*] indicates an array of one or more elements.

The configuration can have either facet filters or a smart filter bar, not both.

The Step Object

The step object in the analytical configuration file defines static data such as labels. It is referenced in the
category objects in which the step is displayed in the analysis step gallery.

The step object consists of a request object and a binding object. The request defines the access to the
server resource, that is, it retrieves the data that is displayed on the UI. The binding maps the required

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2129

representation types to the analysis step, which defines the way in which the data is displayed on the UI, for
example, in a chart or a list.

On the UI, analysis steps are shown in the analysis step gallery as template objects. The step template object is
derived from the step object in the configuration file, but contains only the information that is required on the
UI, for example, the texts and the representations. When a user selects an analysis step from the gallery, a new
step instance is created. An instance of a step object provides the representation type that is currently used
both in the analysis step display as a chart or a list, and in the analysis path display as a thumbnail.

Optionally, the step object can contain the filter mapping configuration. Filter mapping can be useful when a
selection that can be made in one analysis step cannot be handled by a subsequent step. In this case, the
system determines the source filter property based on the selections made in a chart and maps them to
another filter that can be used in the requests for subsequent steps in the path (mapped filter property).

The step object has the following format:

 {
 "type" : "step", // optional "id" : "<step ID>", "title" : <label> "longTitle" : <label> // optional "request" : "<request ID>", "binding" : "<binding ID>", "topNSettings" : { //optional
 "top" : "<number>",
 "orderby" : [{ "property" : "<property name>", "ascending" : <boolean> }*]
 },
 "navigationTargets" : [{"type" : "navigationTarget" , "id" : "<navigation
target ID>"}*] "thumbnail" : <thumbnail>, "filterMapping" : { // optional "requestForMappedFilter" : "<request ID>", "target" : [<mapped filter properties>*], "keepSource" : <boolean>
 } }

The properties used in the step object denote the following:

Property Description

id Unique ID of type string

title Title displayed in the analysis step gallery and in the analysis
path display.

longTitle Title displayed above the representation in the analysis step
display. If no long title is defined, the title is used instead.

request ID of the request used for this analysis step.

binding ID of the binding used for this analysis step.

thumbnail Displayed in the analysis path display.

2130 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Property Description

filterMapping Maps a filter derived from the selection in a chart (source fil-
ter property) to another filter that can be used in the re
quests for subsequent steps in the path (mapped filter prop
erty). If the filterMapping property does not exist, no fil-
ter mapping is required for this step.

requestForMappedFilter Contains the ID of the request object used to do the lookup
request. The lookup request maps the source filter proper
ties to the mapped filter properties. The source filter proper
ties are derived from the selections made in the current step.
They correspond to property requiredFilter of the
binding object. Therefore, the properties used in the
source filter must be contained as filterable properties in
requestForMappedFilter.

target Array of properties that are used to determine the mapped
filter properties based on the response from
requestForMappedFilter.

keepSource Determines whether the source filter property is kept in the
cumulative filter in addition to the mapped filter property.

true = Both filter properties are kept in the cumulative filter
for subsequent steps.

false = The mapped filter property only is kept in the cumu
lative filter.

Related Information

The Request Object [page 2133]
The Binding Object [page 2134]

The Hierarchical Step Object

The hierarchical step uses the tree table to visualize hierarchical data.

The hierarchical step object has the following format:

 {
 "type" : "hierarchical step", // optional "id" : "<step ID>", "title" : <label> "longTitle" : <label> // optional "request" : "<request ID>",

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2131

 "binding" : "<binding ID>", "navigationTargets" : [{"type" : "navigationTarget" , "id" : "<navigation
target ID>"}*]
 "hierarchyProperty": "<property name>" "thumbnail" : <thumbnail>, "filterMapping" : { // optional "requestForMappedFilter" : "<request ID>", "target" : [<mapped filter properties>*], "keepSource" : <boolean>
 } }

The properties used in the step object denote the following:

Property Description

id Unique ID of type string

title Title displayed in the analysis step gallery and in the analysis
path display.

longTitle Title displayed above the representation in the analysis step
display. If no long title is defined, the title is used instead.

request ID of the request used for this analysis step.

binding ID of the binding used for this analysis step.

navigationTargets IDs of the navigation targets used for this analysis step.

hierarchyProperty The property that is provided in a hierarchical form.

thumbnail Displayed in the analysis path display.

filterMapping Maps a filter derived from the selection in a chart (source fil-
ter property) to another filter that can be used in the re
quests for subsequent steps in the path (mapped filter prop
erty). If the filterMapping property does not exist, no fil-
ter mapping is required for this step.

requestForMappedFilter Contains the ID of the request object used to do the lookup
request. The lookup request maps the source filter proper
ties to the mapped filter properties. The source filter proper
ties are derived from the selections made in the current step.
They correspond to property requiredFilter of the
binding object. Therefore, the properties used in the
source filter must be contained as filterable properties in
requestForMappedFilter.

target Array of properties that are used to determine the mapped
filter properties based on the response from
requestForMappedFilter.

2132 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Property Description

keepSource Determines whether the source filter property is kept in the
cumulative filter in addition to the mapped filter property.

true = Both filter properties are kept in the cumulative filter
for subsequent steps.

false = The mapped filter property only is kept in the cumu
lative filter.

The Request Object

The request object defines the access to a server resource by specifying an OData service and an entity set.

A request object has the following format:

<id>" "service" : "
{
 "type" : "request", // optional "id" : "<service root>", "entitySet" : "<entity set name>", "selectProperties" : ["<property name>"*], }

The properties used in the request object denote the following:

Property Description

id Unique ID of type string.

service Path to OData service root.

The service root is defined by an absolute path on the OData
server according to the following pattern: <service
root>: ".../odata/<odata-service-document>"

The request { and its entity set name are absolute to the
service root, which starts after the server and port informa
tion: [protocol]://[server]:[port]/<service
root>

entitySet Entity set that corresponds to the data source, for example,
the SAP HANA view.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2133

Property Description

selectProperties Set of property names.

The selected properties determine which properties of the
entity are contained in the server response. Therefore, they
also determine the analytical processing of the request on
the server.

The Binding Object

The binding object defines the relation between the requested data and one or more representations. It also
defines the mapping of selections made on the UI to OData filter expressions. The binding object has the
following format:

 {
 "type" : "binding", //optional "id" : "<id>" "requiredFilters" : ["<property name>"*] "representations" : [<representation>*], }

The properties used in the binding object denote the following:

Property Description

id Unique ID of type string

requiredFilters Contract between binding and request; specify the target
properties for converting selected data into filter expres
sions

representations An array of representation objects.

Related Information

The Representation Object [page 2134]

The Representation Object

The representation object defines the relation between the requested data and the representation type, for
example, a particular chart type or a list. The format is as follows:

 {

2134 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 "type" : "representation", // optional
 "id" : "<id>"
 "representationTypeId" : "<representation type ID>",
 "parameter" : {
 "type" : "parameter"
 "dimensions" : [<dimensions>*] //optional
 "measures" : [<measures>*] // optional
 "properties" : [<properties>*] //optional
 "hierarchicalProperty" : [<hierarchical property>] //optional
 "width" : "<width>"
 "alternateRepresentationType" : "TableRepresentation" //optional
 "top" : "<number>" //optional
 "orderby" : [<orderby>*] //optional
 } }

The properties used in the representation object denote the following:

Property Description

id Unique ID of type string.

representationTypeId ID of the representation type

parameter Defines specific information for the representation, for ex
ample, dimensions, measures, properties, the optional alter
nate table representation, and the column width for table
representations. Dimensions, measures, properties and hier
archical property are all optional, but at least one of them
must exist, depending on the representation type: Charts
have dimensions and measures, tables have properties, and
tree tables have a hierarchical property and optionally more
properties.

At runtime, the constructor defined in the object, which con
tains a label, an image, and a reference to the constructor
function of the representation type representation type
object is called with the parameters defined by this property.

Properties

The properties property has the following format:

"properties": [{
 "fieldName": "Customer",
 "kind": "column",
 "fieldDesc": {
 "type": "label",
 "kind": "text",
 "key": "<key>"
 }
 }
],

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2135

Hierarchical Properties

The hierarchicalProperty property has the following format:

"hierarchicalProperty": [{
 "fieldName": "Customer",
 "kind": "hierarchicalColumn",
 "fieldDesc": {
 "type": "label",
 "kind": "text",
 "key": "<key>"
 },
 "labelDisplayOption": "text"
 }
],

Dimensions and Measures

The parameter property can contain dimensions and measures for the representation.

The dimensions property has the following format:

* object, which contains a"dimensions" : [{
 "fieldName" : "<field name>",
 "kind" : "<value>",
 "fieldDesc" : {
 "type" : "label",
 "kind" : "text",
 "key" : "<key>"
 },
 "labelDisplayOption": "text"
 }]

The kind attribute provides the option to maintain multiple dimensions. It is mapped to feedItemId. The
following table lists the feedItemId for the available charts:

Chart Type Dimension feedItemId

Line chart, line chart with two vertical
axes, column chart, bar chart, stacked
column chart, stacked bar chart, 100%
stacked column chart, 100% stacked
bar chart, combined column line chart,
combined stacked column line chart,
combined column line chart with two
vertical axes, combined stacked column
line chart with two vertical axes

First dimension categoryAxis

Second dimension color

Line chart with time axis First dimension timeAxis

2136 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Chart Type Dimension feedItemId

Second dimension color

Heatmap chart First dimension categoryAxis

Second dimension valueAxis

Pie chart, donut chart Dimension color

Scatter chart, bubble chart First dimension color

Second dimension shape

The measures property has the following format:

"measures" : [{
 "fieldName" : "<field name>",
 "kind" : "<value>",
 "fieldDesc" : {
 "type" : "label",
 "kind" : "text",
 "key" : "<key>"
 },
 "measureDisplayOption" : "bar"
 }]

The kind attribute provides the option to maintain multiple measures. It is mapped to feedItemId. The
following table lists the feedItemId for the available charts:

Chart Type Measure feedItemId

Line chart, line chart with time axis, col
umn chart, bar chart, stacked column
chart, stacked bar chart, 100% stacked
column chart, 100% stacked bar chart,
combined column line chart, combined
stacked column line chart

Measure valueAxis

Heatmap chart Measure Color

Pie chart, donut chart Measure size

Scatter chart, line chart with two verti
cal axes, combined column line chart
with two vertical axes, combined
stacked column line chart with two ver
tical axes

First measure valueAxis

Second measure valueAxis2

Bubble chart First measure valueAxis

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2137

Chart Type Measure feedItemId

Second measure valueAxis2

Third measure bubbleWidth

The optional fieldDesc property of the dimensions and measures properties can be used for rendering the
axis titles in the chart. For more information, see Rendering of Charts [page 2107].

Alternate Representation

For each representation, you can define an alternate representation. A user can switch to the alternate
representation directly from any representation without having to access the gallery of available representation
types.

To define an alternate representation, the configuration file must contain the following parameter:

"alternateRepresentationType" : "tableRepresentation"

The property alternateRepresentationType contains a reference to the representation type ID that
is configured with details such as the constructor. The constructor of an alternate representation type is
handed over to the representation instance using the parameter object.

Ordering

Using the orderby property, you can define the properties by which the data depicted in the representation is
ordered. You can also specify the ordering direction (true = ascending, false = descending).

The orderby property has the following format:

"orderby" : [{ //optional "property" : "<property name>",
 "ascending" : <boolean> }*]

The Representation Type Object

 Note
This step is required only if you want to define your own representation types in addition to the predefined
ones shipped with APF. For more information, see Predefined Representation Types [page 2105].

The representation type object defines how data is depicted on the UI. It has the following format:

 {

2138 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 "type" : "representationType", // optional "id" : "<id>", "constructor" : <constructor>, "picture" : "<path/file>", // relative to Web application root "label" : <label> }

The properties used in the representation type object denote the following:

Properties Description

id Unique ID of type string.

constructor Defines the implementing function object of the representa
tion.

picture Icon indicating the representation type.

label Defines the label text.

The Facet Filter Object

The analytical configuration can optionally contain one or more facet filter objects, which define the
configuration of the facet filters used in an APF-based application. Facet filters provide global filters that are
applied to all analysis steps of an analysis path.

The facet filter object has the following format:

 {
 "type" : "facetFilter", //optional
 "description" : <same as label text> "id" : "<id>", "property" : "<property>", "alias" : "<property>", //optional "invisible" : <boolean> //optional "valueHelpRequest" : "<request ID>", //optional "filterResolutionRequest" : "<request ID>", //optional "multiSelection" : <boolean>, //optional "preselectionDefaults" : ["<value>"*], //optional "preselectionFunction" : <function path>, //optional "label" : <label> //optional }

The properties used in the facet filter object denote the following:

Property Description

description Contains the string entered as label so that a specific facet
filter object can easily be found in the file.

id Unique ID of type string

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2139

Property Description

property Filter property for the facet filter.

If alias is not defined, property is also used as select
property for valueHelpRequest.

alias Select property for valueHelpRequest.

Used if the field name of the property of the facet filter is dif
ferent in the valueHelpRequest.

If property and alias are the same, alias can be omit
ted.

valueHelpRequest ID of the request used for providing a value help to select val
ues in the facet filter.

filterResolutionRequest ID of the request used for resolving a filter into single values
for the value help.

multiSelection Defines whether selection of multiple values is possible.

preselectionDefaults Array of values that are preselected in the facet filter.

preselectionFunction Path to the function used if the preselected values need to
be calculated.

label Defines the label text.

If a preselectionFunction is defined as string in the facet filter object, the system internally converts it into
a callable function before the configuration object is returned. If the defined function string cannot be resolved
or does not point to a function, the property preselectFunction is set to undefined .

The Smart Filter Bar Object

The analytical configuration can optionally contain a smart filter bar object, which defines the configuration of
the smart filter bar used in an APF-based application. The smart filter bar can be used as an alternative for
facet filters and provides global filters that are applied to all analysis steps of an analysis path. A configuration
can have either facet filters or a smart filter bar, not both.

The annotation file of the service root defines which properties and parameters are displayed in the smart filter
bar. Therefore, the manifest.json file of the component must contain the data source definition of the service
root as well as the data source definition of the corresponding annotation file.

The smart filter bar object has the following format:

{ "type" : "smartFilterBar",
 "id" : "SmartFilterBar ID",
 "service" : "<service root>",

2140 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 "entitySet" : "<entity set name>",
}

The properties used in the step object denote the following:

Property Description

id Unique ID of type string

service Path to OData service root

entitySet Entity set that corresponds to the data source, for example,
the SAP HANA view. The entity set provides the properties
and parameters that can be displayed in the smart filter bar.

The Navigation Target Object

The navigation target object defines applications that a user can navigate to from an APF-based application. It
has the following format:

 Source Code

{ "type" : "navigationTarget", // optional "id" : "<id>", "semanticObject" : "<semantic object>" "action" : "<action>" "isStepSpecific" : <boolean> }

The properties used in the navigation target object denote the following:

Table 97:

Property Description

id Unique ID of type string

semanticObject Semantic object as defined in the corresponding target
mapping configured in the Fiori launchpad designer.

action Action as defined in the corresponding target mapping con
figured in the Fiori launchpad designer.

isStepSpecific Determines whether the navigation is assigned to all steps or
to specific steps.

true = assigned to specific steps

false = assigned to all steps

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2141

The Configuration Header Object

The configuration header holds administrative data of the analytical configuration. It is an optional part of the
configuration, but it is automatically created when you export a configuration using the APF Configuration
Modeler. If you manually create your own analytical configuration file, you don’t have to add a configuration
header.

The configuration header has the following format:

"configHeader": { "Application": "<32-digit GUID>",
 "ApplicationName": "<application description>",
 "SemanticObject": "<semantic object name>",
 "AnalyticalConfiguration": "<32-digit GUID>",
 "AnalyticalConfigurationName": "<configuration title>",
 "UI5Version": "<your SAPUI5 version, for example, 1.38.1-SNAPSHOT>",
 "CreationUTCDateTime": "/Date(1415784024931)/",
 "LastChangeUTCDateTime": "/Date(1415815299519)/" }

The Category Object

The category object defines the categories that are displayed in the analysis step gallery. It has the following
format:

 {
 "type" : "category", // optional "id" : "<id>", "label" : <label>, "steps" : [{"type" : "step", "id" : "<step ID>"}*] }

The order in which the steps are listed in the steps array determines the order in which the steps are displayed
in the analysis step gallery at runtime.

The Label Object

The label object is a subobject that defines a label text. It can be used, for example, in the thumbnail object
or the representation type object to define the texts for the UI.

The label object contains a key that refers to a text resource file, where all texts are maintained and identified
by the registered key. The path to this resource file is configured in the manifest.json file.

The label object has the following format:

 {
 "type" : "label", // optional
 "kind" : "text", "key" : "<key>" // text key related to resource file }

2142 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

The Thumbnail Object

The thumbnail object defines the visualization of a selected analysis step in the analysis path display of the
UI. It has the following format:

 {
 "type" : "thumbnail", // optional "leftUpper" : <label>, "leftLower" : <label>, "rightUpper" : <label>, "rightLower" : <label> }

The labels define the text that is displayed in the four corners of the thumbnail. All properties of the
thumbnail object are optional.

API Reference

You can find the API Reference for Analysis Path Framework in the Demo Kit under sap.apf.

Extending Apps

You can adapt an SAPUI5 app to your specific requirements. For example, you can adapt or replace views,
extend or replace controllers, or change language-specific texts.

With SAPUI5 you have the option to extend your applications. You can do so by using SAPUI5 flexibility or
component configuration.

SAPUI5 flexibility [page 2144] is the preferred way to extend SAP Fiori elements-based apps for versions 1.56
or higher. It uses a better interface, supports layering as well as lifecycle hooks.

Using Component Configuration [page 2145] is intended for versions below 1.56 and for freestyle applications.
It is based on merge, supports only override of methods and requires additional component configurations.
The extension information is stored in a specific area of the component configuration. It can be performed on a
custom app that extends a delivered standard app. A replacement or extension of views and custom controllers
can also be part of a custom app, but may not always be required. If no replacement and no custom controller
exists, the custom app project only contains the component definition with the extension configuration. The
standard app itself is not changed. The customized app becomes the start-up project and launches the
standard app with the additional extension configuration.

For more information on how to create layered controller extensions in SAP Web IDE, see Related Information.

By using key user adaptation, users with the key user authorization role can also make extensive UI changes for
apps without having to change the code. For more information, see SAPUI5 Flexibility: Enable Your App for UI
Adaptation [page 1450].

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2143

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.apf.html

Related Information

Layering Concept [page 1156]

Using SAPUI5 Flexibility

You can use SAPUI5 flexibility to extend your SAP Fiori apps.

Overview

SAPUI5 flexibility (see SAPUI5 Flexibility: Adapting UIs Made Easy [page 1152]) allows you to extend SAP Fiori
elements-based applications without modifications of base artefacts. To use this type of extensibility, you need
an adaptation project in SAP Web IDE. It allows you to make changes that are also available in key user
adaptation (see SAPUI5 Flexibility: Enable Your App for UI Adaptation [page 1450]) as well as to extend views
with XML fragments (see XML Fragments [page 1005]) and extend controllers with controller extensions.

Using SAPUI5 Flexibility for Controller Extensions

Controller extensions add or override functionality of existing applications. For more information, see Using
Controller Extension [page 810].

By using SAPUI5 flexibility and adaptation projects, controller extensions are added to the reserved
extension namespace of the controller. This is done in order to avoid name clashes with already existing
functionality in the controller, for example
oMainControllerInstance.extension.my.sample.ControllerExtension.publicMethod().

Usage in a View
The controller extension functionality can be used in views in the same way as a regular controller function.
Deep namespaces are already supported in this scenario and it should work without additional effort.

<Button press=".extension.my.sample.ControllerExtension.publicMethod"
text="Execute"></Button>

Override Extension Functionality
It is possible to override public or extend lifecycle methods of controller extension in another controller
extension.

override: { //override other extensions method by the namespace extension name
 extension: {
 "my.sample.ControllerExtension": {
 publicMethod: function() {
 //...
 }

2144 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 }
 } }

You can also override an extension directly in a controller.

 Sample Code

sap.ui.define(['sap/ui/core/mvc/Controller', 'my/extension/SampleExtension'], function(Controller, SampleExtension) {
 "use strict";
 return MainController = Controller.extend("sample.Main", {
 //inline override of an extension. E.g. to provide a hook
implementation
 sample: SampleExtension.override({
 someHook: function() {},
 someOtherMethod: function() {}
 }),
 onLifecycleHook: function() {
 }
 });
});

Using Component Configuration

SAPUI5 supports the extension of a base controller by merging the delivered standard controller with a custom
controller on JavaScript object level.

The SAPUI5 controller extension concept does not use inheritance. Instead, methods of the custom controller
override standard methods with the same name. The following controller lifecycle methods are, however, an
exception to this rule: onInit, onExit, onBeforeRendering, onAfterRendering. For these methods, the
controller methods of your custom application are called either after (for onInit and onAfterRendering), or
before (for onExit and onBeforeRendering) the standard lifecycle methods.

The following examples show how controller extension concept in SAPUI5 works. The following code snippet
shows the standard controller Main.controller.js of the delivered standard application:

sap.ui.define(["sap/ui/core/mvc/Controller"], function(Controller) { "use strict";
 return Controller.extend("samples.components.ext.sap.Main", {
 onInit : function () {
 console.log("samples.components.ext.sap.Main - onInit");
 },
 doSomething: function() {
 alert("this is an original standard action");
 },
 doSomeStandardAction: function() {
 alert("this is another original standard action");
 }
 }); });

The following code snippet represents the custom controller CustomMain.controller.js:

sap.ui.define(["sap/ui/core/mvc/Controller"], function(Controller) { "use strict";
 return Controller.extend("samples.components.ext.customer.CustomMain", {

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2145

 onInit : function () {
 console.log("samples.components.ext.customer.CustomMain - onInit");
 },
 doSomething: function() {
 alert("this is a customer action");
 },
 doSomeCustomAction: function() {
 alert("this is another customer action");
 }
 }); });

The following extension in component configuration merges the two controllers:

extensions: { "sap.ui.controllerExtensions": {
 "samples.components.ext.sap.Main": {
 controllerName: "samples.components.ext.customer.CustomMain"
 }
 }
 //some more content }

As a result, the samples.components.ext.customer.CustomMain controller functions are merged when
the controller samples.components.ext.sap.Main is called. After initialization, the log contains the
following messages:

samples.components.ext.sap.Main - onInit samples.components.ext.customer.CustomMain - onInit

The doSomething method of the new controller overwrites the doSomething method of the standard
controller. Thus, if the method is invoked, an alert popup with the following text appears: this is a customer
action.

The doSomeStandardAction method remains available without changes, as no method with the same name
exists in the new controller.

The doSomeCustomAction method is additionally available and you can use it, for example, in a view
extension.

The controller extensions are applied to all controllers with the specified name within the customized
component, regardless of whether the controller is instantiated explicitly or belongs to a view.

Example: Component Configuration

The component configuration contains the information about the extension metadata and the objects that are
replaced or extended in the custom view or control.

The configuration is stored in the component.js file of the custom application. The component of the custom
application needs to inherit from the main component of the original application. To make the location of the
original application or component known to SAPUI5, it may be necessary to use registerModulePath(...).
The configuration in the extension section contains the extension metadata and describes the objects that are
replaced or extended.

2146 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

The following code snippet shows an example of a configuration structure.

 some.sap.Component.extend("some.customer.Component", {

 metadata : {
 some configuration
 config: {
 some configuration
 },
 extensions: {

 "sap.ui.viewExtensions": {
 "samples.components.ext.sap.Sub2": {
 "extension2": {
 className: "sap.ui.core.Fragment",
 fragmentName:
"samples.components.ext.customer.CustomFrag1",
 type: "XML"
 },
 "extension3": {
 className: "sap.ui.core.mvc.View",
 viewName:
"samples.components.ext.customer.CustomSubSubView1",
 type: "XML"
 }
 },
 "samples.components.ext.sap.Sub4": {
 "extension4": {
 className: "sap.ui.core.Fragment",
 fragmentName:
"samples.components.ext.customer.CustomFrag2",
 type: "JS"
 }
 }
 },

 "sap.ui.viewModifications": {
 "samples.components.ext.sap.Sub3": {
 "someCustomizableTextControl": {
 "visible": false
 }
 }
 },
 "sap.ui.viewReplacements": {
 "samples.components.ext.sap.Sub1": {
 viewName: "samples.components.ext.customer.CustomSub1",
 type: "XML"
 }
 },

 "sap.ui.controllerExtensions": {
 "samples.components.ext.sap.Main": {
 "controllerName":
"samples.components.ext.customer.MainExtension"
 }
 },

 "sap.ui.controllerReplacements": {
 "samples.components.ext.sap.Main":
"samples.components.ext.customer.MainReplacement"
 }
 }
 } });

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2147

"sap.ui.viewExtensions": Provides custom view content in a specified extension point in the delivered
standard application

"sap.ui.viewModifications": Used for overriding control properties of the delivered standard application

"sap.ui.viewReplacements": Used for replacing a standard view with a custom view

"sap.ui.controllerExtensions": Used for extending a controller in a delivered standard application with
a custom controller

sap.ui.controllerReplacements: Used for replacing a controller in a delivered standard application with a
custom controller

Providing Hooks in the Standard Controller

Hooks are extension points in the controller code that are used to make controller extensions more stable.

The controller extension concept enables you to override any method. This is a powerful but also fragile
feature. Extension points, so-called hooks, can be provided in the controller code. These hooks can be
documented and kept stable, thus providing more robust hooks across application updates for controller
extensions.

The process for this is as follows:

1. In the application, identify a strategic location within the controller code where customers may want to
plug in and execute their customized code.

2. In the application, define a new function name which is reserved for the extension, document the function
and any arguments the function may receive or return.

3. Add code lines in the application (see code snippet below) to check whether the function has been
implemented, and, if so, to call the function. We also recommend to implement sanity checks for return
values.

4. The customer can then configure a controller extension, implementing exactly this one function.
5. SAPUI5 runtime merges the new controller extension into the standard controller. If customizing is

enabled, the new function can be executed.

Example

By receiving the data object oSomeData from the server, the application enables you to access and modify the
data object. The extension function name is onDataReceived and gets a reference to the data object as
argument.

Code of the standard controller:

 // ...data object oSomeData has been received, possibly from an Ajax response...
 if (this.onDataReceived) { // check whether any extension has
implemented the hook...
 this.onDataReceived(oSomeData); // ...and call it
 } // ...continue working with the (now possibly modified) data...

2148 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Code of the custom controller:

 sap.ui.controller("customer.xy.Sub2ControllerExtension", {
 onDataReceived: function(oData){ // oSomeData will be passed in
 if (oData && oData.status === "important") {
 oData.message = oData.message + "!!!"; // modify some part of the data
object, adding exclamation marks to a message text
 }
 } // no need to return anything as in this example the original object is
modified
});

 Note
This only works for one extension layer as the most specific or last extension overrides any other hook
implementations. To allow multi-layer extensions, we recommend that middle-layer extensions provide and
document their own hook functions.

This also requires flat, non-inherited controllers defined with the sap.ui.controller(...) function
used as extension controller, and not with typed controllers.

View Extension

SAPUI5 uses extension points for extending standard views with custom content. The assignment of a custom
view to an extension point is done in component customizing.

You can add extension points in a standard view to indicate the position within the view where you can insert
custom content. In XML views, the <ExtensionPoint> tag is used and replaced by the controls provided by
the customer. The tag should therefore be placed in the view where also a control would be placed and
document the types of controls that are suitable.

In the XML view below, for example, three extension points are defined: extension1, extension2, and
extension3. The extension name together with the view name identifies an extension point.

<mvc:View xmlns="sap.m" xmlns:core="sap.ui.core" xmlns:mvc="sap.ui.core.mvc"> <core:ExtensionPoint name="extension1" />
 <TextView text="SAP View 'Sub2' - this one is extended by the customer and
there should be a button after this text"></TextView>
 <core:ExtensionPoint name="extension2" />
 <core:ExtensionPoint name="extension3" />
</mvc:View>

In JS views, extension points can be created within the createContent method by using the
sap.ui.extensionpoint function. The following example shows the simplest way to initiate an extension
point in a JS view.

[...] createContent(oController){
 return sap.ui.extensionpoint(this, "extension4");
 } [...]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2149

 Note
This example creates a view with one extension point, which can be customized to hold controls, but do not
show any default content.

You can add an extension point to an aggregation of another control by specifying the target control and,
optionally, a target aggregation. The target aggregation is only required when you do not want to add the
extension point to your target control's default aggregation. In the following example, an extension point is
added to VerticalLayout:

[...] createContent(oController){
 var oLayout = new sap.ui.layout.VerticalLayout("Layout1");
 sap.ui.extensionpoint(this, "extension4", null, oLayout, "content" /
not mandatory, as content is the default aggregation/);
 } [...]

You can also use the JSON notation to create the surrounding control and add the extension point to an
aggregation as follows:

[...] var oLayout = new sap.ui.layout.VerticalLayout({
 content: [
 new sap.m.Button({text: "I am preceding the extension point"}),
 sap.ui.extensionpoint(this, "extension4"),
 new sap.m.Button({text: "I am following the extension point"})
]
 });
[...]

For table-like controls with aggregations that span two dimensions, for example, rows and columns, extension
points must be provided for both dimensions. In the sap.m.Table, for example, one extension point needs to
be provided in the columns aggregation, another one in the provided cells aggregation of the
templateColumnListItem.

Extension Points with Default Content

Applications can also use extension points to provide default content, which is used as long as no custom
content is defined and ignored when custom content is defined. This feature is particularly interesting for
aggregations, which are filled by data binding: In XML views, one item is given which is used as a template. In
applications that enable exchanging these items by custom ListItems, the default list items can be enclosed
in an <ExtensionPoint> tag.

<mvc:View xmlns="sap.m" xmlns:core="sap.ui.core" xmlns:mvc="sap.ui.core.mvc"> <ListBox items="{/names}">
 <core:ExtensionPoint name="extension1" />
 <ListItem text="{firstName} />
 </core:ExtensionPoint>
 </ListBox> </mvc:View>

This can be used for all multiple aggregations, not only for lists.

2150 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

To define default content for extension points in JS views or fragments, specify the value of another parameter:

sap.ui.extensionpoint(this, "extension4", fnCreateDefaultContent); // this
extension point has a callback function creating default content

The function provided as a callback needs to return a control or an array of controls and is only executed when
no customizing for the extension is configured, or when customizing is disabled.

Extension Point Implementation

The extension content, which will then be inserted at the position of an extension point, is defined in the
custom application. For example, for the extension points that have been defined in the standard application
described in the section above, custom content can be defined for each extension. This is shown in the
example below together with a description of the customizing that connects the extension point in the
delivered standard application and the extension content in the customer application.

extensions: {
 "sap.ui.viewExtensions": {
 "samples.components.ext.sap.Sub2": {
 "extension2": {
 className: "sap.ui.core.Fragment",
 fragmentName: "samples.components.ext.customer.CustomFrag1",
 type: "XML"
 id: "stableid"
 },
 "extension3": {
 className: "sap.ui.core.mvc.View",
 viewName: "samples.components.ext.customer.CustomSubSubView1",
 type: "XML"
 }
 },
 some more content

If you add an ID to the view extension, this ID overrules the original view ID. For view fragments like in the
example, also IDs of nested controls are then prefixed with this ID.

Extension content in the custom application in CustomFrag1.fragment.xml file:

<Button xmlns="sap.m" text="This Button is in an Extension Fragment" />

 Note
You can also add multiple root-level controls using one fragment.

Extension content in the custom application in CustomSubSubView1.view.xml file.

<mvc:View xmlns="sap.m" xmlns:core="sap.ui.core" xmlns:mvc="sap.ui.core.mvc"> <core:ExtensionPoint name="extension1" />
 <TextView text="Customer View 'SubSubView1' - this one extends the original
SAP View 'Sub2' - and even custom Views can be extended:"></TextView>
 <core:ExtensionPoint name="extension2" />
</mvc:View>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2151

View Modification

For modifying views, control properties of standard views can be changed.

The view modification is currently restricted to the visible property of controls, meaning that controls can be
hidden in the custom application. The controls must have the visible property and the control's ID must be
defined in the view. The view name together with the control ID uniquely determines the control in the standard
application.

View modification is available for XML views, JS views and HTML views. Below is an example that explains how
a view modification works. The first code snippet describes the Sub3.view.xml view in the delivered standard
application.

<mvc:View xmlns="sap." xmlns:mvc="sap.ui.core.mvc"> <TextView text="SAP View 'Sub3' - the text after this one is hidden by
customizing: "></TextView>
 <TextView id="someCustomizableTextControl" text="This text is made invisible
by customization"></TextView> </mvc:View>

The following code snippet describes the extensions for the control someCustomizableTextControl with
the visible property set to false.

extensions: { "sap.ui.viewModifications": {
 "samples.components.ext.sap.Sub3": {
 "someCustomizableTextControl": {
 "visible": false
 }
 }
 } }

View Replacement

Views of a delivered standard application can be replaced to adapt the application to the customer needs.

If the extension points provided for view extension are not sufficient to meet the requirements of the custom
application, you can replace the standard view with a custom view.

The following view is delivered in the standard application:

 <mvc:View xmlns="sap.m" xmlns:mvc="sap.ui.core.mvc">
 <TextView text="SAP View 'Sub1' - this one should have been replaced by the
customer View"></TextView>
</mvc:View>

This is the custom view to replace the standard view:

 <mvc:View xmlns="sap.m" xmlns:mvc="sap.ui.core.mvc">
 <TextView text="Custom View 'Sub1' - this one replaces the original SAP View
'Sub1'"></TextView> </mvc:View>

2152 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

The following extension replaces the custom view with the view in the standard application

 extensions: {
 some more content
 "sap.ui.viewReplacements": {
 "samples.components.ext.sap.Sub1": {
 viewName: "samples.components.ext.customer.CustomSub1",
 type: "XML"
 }
 },
 some more content

Controller Replacement

Standard controller can be replaced by specifying a new controller name in a replacement View and
implementing this Controller.

For a view replacement, you can either use the standard controller of the replaced view by setting its name as
controllerName, or use and extend the standard controller, or you can replace the controller by specifying a
new controller name in the new view and implementing the new controller.

An extension option is available that allows to replace an original controller without replacing its view. This is
especially useful for typed controllers, that is, controllers that have been defined with the extend syntax:

sap.ui.define(["sap/ui/core/mvc/Controller"
], function(Controller) {
 "use strict";

 return Controller.extend("samples.components.ext.customer.CustomMain", {
 onInit: function() { /* do something */ },
 onBeforeRendering: function() { /* do something */ },
 onAfterRendering: function() { /* do something */ },
 onExit: function() { /* do something */ },
 myEventHandler: function(oEvent) { /* do something */ }
 });
 });

To replace the controller of the standard application with the custom controller, use the following extension
configuration:

extensions: { "sap.ui.controllerReplacements": {
 "samples.components.ext.sap.Main":
"samples.components.ext.customer.CustomMain"
 }, some more content

 Caution
Typed controllers cannot be extended by using the controller extension configuration
(sap.ui.controllerExtensions). Instead, you use the controller replacement configuration
(sap.ui.controllerReplacements) to extend a typed controller with the extend syntax and call the
original methods in the custom implementation:

sap.ui.define([

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2153

 "samples/components/ext/customer/CustomMain"
], function(CustomController) {
 "use strict";

 return
CustomController.extend("samples.components.ext.partner.PartnerMain", {
 onInit: function() {
 CustomController.prototype.onInit.apply(this, arguments);
 /* do something */
 },
 onBeforeRendering: function() {
 CustomController.prototype.onBeforeRendering.apply(this,
arguments);
 /* do something */
 },
 onAfterRendering: function() {
 /* do something */
 CustomController.prototype.onAfterRendering.apply(this,
arguments);
 },
 onExit: function() {
 /* do something */
 CustomController.prototype.onExit.apply(this, arguments);
 },
 myEventHandler: function(oEvent) {
 CustomController.prototype.myEventHandler.apply(this, arguments);
 /* do something */
 }
 });
 });

The chaining of the lifecycle methods is not done automatically. You can control on your own, if or when to
call the parent lifecycle methods. In addition, you can always access the methods defined in the original
controller.

Localized Texts for Extended Apps

You can add custom localized text files that contain additional texts or texts that overwrite the original texts to
the sap.ui.model.resource.ResourceModel

The enhanced resource model tries to resolve the localized texts from the custom resource bundle first. If a text
does not exist there, it tries to look up the text in the resource bundle of the original app. Custom resource
bundles cannot be added by standard extension configuration, but must be added as part of a controller
extension as shown in the following example:

 var oModel = new sap.ui.model.resource.ResourceModel({bundleUrl:"./testdata/
messages.properties"}); oModel.enhance({bundleUrl:"./testdata/messages_custom.properties"});

2154 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Specifics for Extended Apps in the ABAP Repository

For applications located in the ABAP back end, the resource model of the original application can be accessed
by its relative path. If the code is not located at the root level of the application, adjust the path with an
additional ../ at the beginning:

 var oModel = new sap.ui.model.resource.ResourceModel({bundleUrl:"../<original
bsp application name>/i18n/i18n.properties"});

You can enhance this with an additional custom text properties file, which resides in the copied application:

 oModel.enhance({bundleUrl:"./other18n.properties"});

If an SAPUI5 application is extended or copied, the GUID in the SAPUI5 translation key in the copied properties
file must be exchanged with a new one. Each properties file must contain a unique GUID. You can then upload
the application with the new translation key in the text properties file to the ABAP back end by means of the
team provider or the /UI5/UI5_REPOSITORY_LOAD upload report. To localize the custom texts in the copied
application you can use transaction se63.

 Caution
Although it is generally possible to copy SAPUI5 applications, copying and editing of applications in the
SAPUI5 text repository must be avoided and we strongly recommend to only use the extension concepts.

If an application is copied, the texts stored in the SAPUI5 text repository of the original application are not
copied and are, thus, not available in the copied SAPUI5 application. This also applies to applications using
the extension concepts of SAPUI5.

Limitations

Known limitations for extending SAPUI5 applications

The control property modification is only supported for the visible property and only for controls with a given
ID specified in the XML view.

Caveats Regarding Stability Across Application Upgrades

There are a few limitations in the compatibility of custom applications that have to be considered when
extending SAPUI5 standard applications.

Offering modification-free extensions and customizing allows to ship new versions of the application without
overwriting customer-specific modifications. Thus, these modifications can survive an application upgrade.
However, the degree of compatibility which can be guaranteed is limited. If a view is replaced by a custom view
but the original view is no longer used, the custom view will, of course, also no longer be used. Or, if a custom
controller extension accesses a field in the original view, it has to be able to cope with the possibility that the
field may no longer exist or have a different type in an upgraded version of the application, otherwise it will
break.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2155

Many possible reasons exist that modifications can not be applied any longer or even break the upgraded
version of an application and it is, therefore, not possible to compile an exhaustive list of all possible reasons.
The following list gives some examples:

● View modifications (hiding controls)
○ If the original control is no longer used or has a different or not a given ID, a view modification will no

longer be applied.
○ If the original view name is changed or the view is no longer used, an invalid view modification will no

longer be applied.
○ However, a view modification is simply ignored and will never lead to a crash.

● View extensions (added content in extension points)
○ If the extension point is removed or renamed or in an area or container which is invisible under certain

conditions, the view extension will no longer be applied.
○ If the view name is changed or the extension point is moved to a different view, the view extension will

no longer be applied.
○ If the controls around the extension point have changed or the extension point has been moved to a

different environment inside the same view, view extensions may look weird, have a broken layout or
display or do not really fit the new environment.

○ If the updated application requires the extension to be of a certain control type, the view extension may
break the application.

○ If custom code relies on the presence of the extensions, the view extension may break the application.
● View replacements

○ If the original view name is changed or the view is no longer used, view replacements will no longer be
applied.

○ As long as no other custom code relies on the view to be present, view replacements should not cause
a crash.

● Controller extensions
○ If the extension code accesses parts of the original application which are changed, for example,

removed, have a different type or a different ID, controller extensions can cause a crash.
○ If the extension code makes assumptions about the application which are no longer valid after an

update, controller extensions can lead to a crash.
○ If original code is overwritten which is required for the application to run properly, controller extensions

can lead to a crash.
○ If the controller name is changed, controller extensions are no longer applied.

● Other extension types have similar caveats.

In addition to this, all content changes such as additions, removals, and structure changes may affect CSS and
JavaScript code which relies of the position of certain elements in the DOM. Partly these caveats are
compatibility requirements for applications, partly they are suggestions for customizing development how to
create more robust extensions.

2156 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Supportability

In case of problems or errors in the custom application, several options exist that support you in resolving the
issues.

Disabling Extensions/Customizing

If a customized application does not run properly, you can disable the customizing. In a support case, for
example, you can set a breakpoint early in the sap-ui-core.js and then execute the following code in the
browser developer tool console:

 window["sap-ui-config"] = window["sap-ui-config"] ||{}; window["sap-ui-config"]["xx-disableCustomizing"] = true;

 Note
For security reasons, it is not possible to use a URL parameter.

Using the Log

The console log contains information about the processing of customizing or extensibility information.
Depending on the importance of the respective information, different log levels are used. To enable a certain log
level, execute the following code in the browser console:

 // "Log" required from module "sap/base/Log" Log.setLevel(Log.Level.INFO)

As an alternative, you can set the log level to INFO in the support popup if you want to see all messages of level
"INFO" or more important.

The following information is provided per log level:

● WARNING/ERROR: Any critical or error situation; such messages must be checked because something may
have gone wrong

● INFO: Information about successful customizing activities, such as applying a view extension or modifying
a control property

● DEBUG: Information about "non-activities", for example, if no extension configured for an extension point
was found; this provides comprehensive information for each situation where an extension might be
configured. Exception: Non-existing control property modifications are not logged at this log level (see
below how you can enable this). In addition, a complete dump of the extensibility configuration is logged
when it is activated.

Certain information is only logged when an additional URL parameter is used, because otherwise there would
be too much information in the log for other debugging scenarios: To enable this extra logging, add sap-ui-
xx-debugCustomizing to the query part of the URL. This extra logging enables an explicit log statement for
each control, for which no control modification has been found.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2157

Reading the Current Customizing Data

To dump the complete extensibility data, use the following command in the browser console:

 sap.ui.require(["sap/ui/core/CustomizingConfiguration"],
function(CustomizingConfiguration) {
 CustomizingConfiguration.log()
});

As a result, an object is returned in the console which contains the customizing configuration, structured by
type of customization and view name.

 Note
If Customizing is not enabled, this command causes an error because
sap.ui.core.CustomizingConfiguration is not defined.

Developing Controls

You can create own content for SAPUI5. To develop controls in JavaScript, you can either extend existing
controls or create new ones.

 Note
If you want to contribute to SAPUI5, you have to consider our guidelines and recommendations with regard
to, for example, product standards, file names and encoding.

As a control developer, you create or modify UI libraries and their pieces, i.e. controls and types. You define the
set of properties your control provides as well as events or aggregations. A major task is the implementation of
a control-specific renderer, which knows how to create suitable HTML markup for a given control instance,
taking its current state into account. A renderer is written in JavaScript and produces HTML output which is
styled by means of CSS. Such style sheets are another important part of a UI library.

Controls can be defined on the fly without a library definition or running generation steps. These controls are
also called notepad controls.

When you want to develop several controls for reuse in different applications, we recommend creating a control
library instead of using these notepad controls. Control libraries have additional features such as automatic
support for theming and right-to-left languages, but the implementation of the controls is the same as for
notepad controls.

 Note
This functionality is not restricted to controls. It can also be used to create or extend arbitrary objects, such
as components, that are derived from sap.ui.base.ManagedObject. For more information, see API
Reference: sap.ui.base.ManagedObject.

2158 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.base.ManagedObject.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.base.ManagedObject.html

Development Conventions and Guidelines

To keep the SAPUI5 code readable and maintainable, development conventions and guidelines are introduced.
We strongly recommend that you follow these guidelines even if you find them violated somewhere. For files
that are consistently not following these rules and for which adhering to the rules would make the code worse,
follow the local style. If you want to contribute your content to SAPUI5, you have to follow these conventions
and guidelines.

 Note
This list is not complete.

General Guidelines

The following list gives some general guidelines to be adhered to when developing content for SAPUI5:

● Always consider the developers who use your control or code! Do not surprise them, but give them what
they expect. And make it simple.

● Use tabs, not spaces, for indentation; adhere to local standards in the file.
● Use Unix line endings (LF-only).
● Text files must be UTF-8 encoded (HANA); only *.properties and *.hdbtextbundle files must be

ISO8859-1 encoded as defined in the corresponding standard.
This is the status quo. As this causes issues, it may be subject to change..

● An 80-character line length guideline does not exist.
● Use comments; do not rephrase the code, but tell the reader what is not in the code. Describe why your

code does what it does. Prefer line comments.

JavaScript Coding Guidelines

Provides an overview of the guidelines for JavaScript coding for SAPUI5 with regard to code formatting, naming
conventions, and creating classes.

For JavaScript, the following general guidelines apply:

● Do not use global JavaScript variables; organize all global objects in an sap.* namespace structure. The
module sap/base/util/ObjectPath assists in doing so. For more information, see JavaScript
Namespaces [page 2162] and API Reference: jQuery.sap.getObject.
This also means: Do not use undeclared variables. When using global variables introduced by other
libraries, declare the use in a special global comment: /*global JSZip, OpenAjax */.

● Do not access internal (private) members of other objects.
● Do not use console.log()
● Use window.document.getElementById("<someId>") instead of jQuery("#<someId>") when

<someId> is not a known string; certain characters in IDs need to be escaped for jQuery to work correctly.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2159

https://sapui5.hana.ondemand.com/#/api/jQuery.sap/methods/jQuery.sap.getObject

● Keep modifications of jQuery and other embedded Open Source to a minimum and document them clearly
with the term SAP modification. Such modifications may not alter the standard behavior of the used library
in a way that breaks other libraries

Code Formatting

For any code becoming part of SAPUI5, an ESLint check needs to run successfully, see Tools [page 2179]. The
following list contains the most important formatting rules:

● Add a semicolon after each statement, even if optional
● No spaces before and after round braces (function calls, function parameters), but…
● …use spaces after if/else/for/while/do/switch/try/catch/finally, around curly braces,

around operators and after commas
● Opening curly brace (functions, for, if-else, switch) is on the same line
● Use "===" and "!==" instead of "==" and "!="; see the ESLint docu for special cases where "==" is allowed
● The code should therefore look like this:

 function outer(c, d) {
 var e = c * d;
 if (e === 0) {
 e++;
 }
 for (var i = 0; i < e; i++) {
 // do nothing
 }
 function inner(a, b) {
 return (e * a) + b;
 }
 return inner(0, 1);
 }

Naming Conventions

We strongly recommend to use the Hungarian notation where name prefixes indicate the type for variables and
object field names. But do not use the Hungarian notation for API method parameters: The documentation
specifies the type in this case.

When using the Hungarian notation, use the prefixes highlighted below and continue with an uppercase letter
(camelCase):

Sample Type

sId string

oDomRef object

$DomRef jQuery object

iCount int

mParameters map / assoc. array

2160 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Sample Type

aEntries array

dToday date

fDecimal float

bEnabled boolean

rPattern RegExp

fnFunction function

vVariant variant types

Use CamelCase for class names, starting with an uppercase letter. HTML element IDs starting with sap-ui-
are reserved for SAPUI5. DOM attribute names starting with data-sap-ui- as well as URL parameter names
starting with sap- and sap-ui- are reserved for SAPUI5.

The following IDs are currently used:

ID Description

sap-ui-bootstrap ID of the bootstrap script tag

sap-ui-library-* Prefix for UI libraries script tags

sap-ui-theme-* Prefix for theme stylesheets link tags

sap-ui-highlightrect ID of the highlight rect for controls in TestSuite

sap-ui-blindlayer-* ID for BlockLayer

sap-ui-static ID of the static popup area of UI5

sap-ui-TraceWindowRoot ID of the TraceWindowRoot

sap-ui-xmldata ID of the XML Data Island

Creating Classes

For the creation of classes, the following rules and guidelines apply:

● Initialize and describe instance fields in the constructor function: this._bReady = false; // ready
to handle requests

● Define instance methods as members of the prototype of the constructor function:
MyClass.prototype.doSomething = function(){...

● Define static members (fields and functions) as members of the constructor function object itself:
MyClass.doSomething = function(){...

● Start the name of private members with an underscore: this._bFinalized
● Combine constructor + methods + statics in a single JS source file named and located after the qualified

name of the class; this is a precondition for class loading
● Static classes do not have a constructor but an object literal; there is no pattern for inheritance of such

classes. If inheritance is needed, use a normal class and create a singleton in the class.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2161

● Do not use SuperClass.extend(…) for subclasses. If no base class exists, the prototype is automatically
initialized by JavaScript as an empty object literal and must not be assigned manually. Consider inheriting
from sap/ui/base/Object

● Subclasses call (or apply) the constructor of their base class: SuperClass.apply(this, arguments);

For more information, see Example for Defining a Class [page 2162].

JavaScript Namespaces

SAPUI5 modules such as classes, components, and controls, should use a consistent qualified naming
scheme. Each module should reside in a unique namespace.

Naming Conventions

A namespace should be lowercase and each word should be separated by a dot (`.`), like the Java package
notation. The class name should be camelcase, starting with a capital letter.

In the following example, my.app is the general namespace and my.app.MyControl is the fully qualified class
name.

sap.ui.define(["sap/ui/core/Control"], function(Control) { return Control.extend("my.app.MyControl", {}); });

For JavaScript global names, module names, and SAPUI5 qualified names (class names, interface names,
DataType names), use the same naming prefix, only with varying separators. For example, use a slash (/)
instead of a dot (.) when requiring the class from the example above.

sap.ui.define(["my/app/MyControl"], function(MyControl) { ... });

 Note
To avoid conflicts with other frameworks or developments, the sap namespace is reserved for SAP.
Therefore, any non-SAPUI5 content, such as application code or custom controls, must not use
namespaces that start with the sap prefix.

Example for Defining a Class

Full example of a class definition, including JSDoc

sap.ui.define(["jQuery.sap.global", "sap/ui/base/Object", "sap/ui/model/json/
JSONModel"], function (jQuery, BaseObject, JSONModel) {
 // declare and document the constructor function

2162 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 /**
 * Some short sentence that summarizes the functionality of the class.
 *
 * A more detailed explanation of the class that might consist of multiple
sentences
 * and paragraphs. It is <i>possible</i> to use <code>XHTML</code>
markup
 * but this should be used only rarely, as it makes the doclet harder to read
 * in the JS editor.
 *
 * Paragraphs that are separated by empty lines will be formatted as separate
 * paragraphs in the final JSDOC documentation. This makes the addition of
 * <p> or
 tags unnecessary.
 *
 * It is possible to reference members of this class (like {@link
#ownMethod})
 * or even of other classes (like {@link sap.ui.Object#destroy}). But be
careful:
 * in contrast to JavaDoc, the signature (parameters) of a method must not be
 * included with the @link tag, only the name of the method (as !JavaScript
does not support
 * method overloading).
 *
 * @class (mandatory) Marks the function as a constructor (defining a class).
 * @param {string} sId Documentation of constructor parameters.
 * @param {object} [mProperties=null] For optional parameters, the name is
enclosed
 * in square brackets.
 * A default value can be appended with a '='.
 * @param {string} [mProperties.text] Even members of a configuration
parameter
 * can be configured.
 * @see (optional, multiple) Fully qualified HTTP links to external
documentation
 * are also possible.
 *
 * @public|@private - (optional) Declares the class as public or private
(default).
 * @author (optional, multiple) Author is referenced by user Id, not by name.
 * Multiple authors are possible, order is
 * significant (first named author is the
default
 * contact).
 * @since (optional) When the class/function has been introduced.
 * @extends sap.ui.base.Object Documents the inheritance relationship.
 * @name foo.bar.MyClass (Mandatory when defining a class with extend).
 */
 var Foo = BaseObject.extend("foo.bar.MyClass", /** @lends foo.bar.MyClass */
{

 constructor: function(sId, mProperties) {

 // init and document members here
 /**
 * The ID of a MyClass.
 *
 * @private
 */
 this.mId = sId || Utils.createGUID();
 },

 // now add further methods to that prototype
 /**
 * Again a summary in one sentence.
 *
 * More details can be documented, when the method is more complex.
 * @param {string} sMethod The same mechanism as above can be used to

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2163

 * document the parameters.
 * @param {object} [oListener] An optional parameter. If empty, the
 * <code>window</code> is used instead.
 * @experimental Since 1.24 Behavior might change.
 * @public
 */
 ownMethod: function(sMethod, oListener) {

 // ... impl
 },

 /**
 * A private method.
 *
 * Every member with a doc comment is included in the public JSDOC.
 * So we explicitly declare this as a private member:
 *
 * Additionally, using an underscore prefix prevents this method
 * from being added to the public facade.
 *
 * @private
 */
 _myVeryPrivateMethod: function() {
 }

 });

 // return the module value, in this example a class
 return Foo; });

Virtual Methods

/** * A 'virtual' method, that doesn't exist in this class but should be declared
 * in subclasses.
 *
 * It is even possible to document things that aren't there. Only useful use
 * case is the documentation of abstract methods.
 *
 * @name foo.bar.MyClass.prototype.abstractMethod
 * @function
 * @protected */

2164 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

SAPUI5 Control Development Guidelines

Content developers developing SAPUI5 controls should follow the guidelines outlined below with regard to
APIs, behavior, and themes/CSS.

General Remarks

● Keep things simple! Keep the number of entities created for a new control minimal.
● Reuse is good, but carefully compare how many features of the reused control are needed, and how big the

impact on performance would be. For example, if a control needs a clickable area, you can simply
implement onclick and check where the click came from - this has zero impact on performance. Only if
you need more features should you think about instantiating and aggregating. For example, you could use a
Button control and use its press event, but this would cost performance.

API

For APIs, the following guidelines apply:

● Get the API right the first time, you will not be able to change it later (compatibility).
● Control names start with an uppercase letter and use CamelCase for concatenated words.
● Property, event, aggregation, association, method, and parameter names start with a lowercase letter and

also use camelCase.
● Do not use Hungarian notation for API parameters, as their type is documented in JSDoc.
● Provide a reasonable default value for properties. Consider the most frequent use case.
● Let block elements autofill the available width instead of explicitly setting "100%" as the default width.
● editable and enabled are two different properties. "Not enabled" controls are not in the focus tab chain.
● Check similar controls for consistent naming and modeling of public APIs.

Controls for text input have a value property. Container controls with one generic area for child controls
have a 1..n content aggregation. When the child controls are not generic, but have specific semantics,
arrangement, or type, the name should be chosen accordingly ("items", "buttons",…).

● When there is one most important aggregation, it should be marked as the default aggregation; this
facilitates the use in XMLViews.

● Properties, associations, and aggregations should be preferred over API methods due to data binding
support and easier usage in XMLViews.

● Make sure not to break use in XMLViews; for example, types like object and any may not be used for
mandatory properties.

● Be careful about initial dependencies. The Input control, for example, should not always load the table
library just because some inputs may show a value help table after certain user interaction

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2165

Behavior

For behavior-related development, the following guidelines apply:

● Do not use hardcoded IDs. When creating internal subcontrols, their ID should be prefixed with
this.getId() + "-".

● Make sure not to break data binding.
● Do not make assumptions about how your control is used.
● Do not use oEvent.preventDefault() or oEvent.stopPropagation() without a good reason and

clear documentation why it is required.
● Use the SAPUI5 event handling methods when available instead of jQuery.bind()/.on(). When you use

jQuery.bind() or jQuery.on(), always unbind them again, for example in onBeforeRendering()
and in exit() and rebind after rendering.

● Use CSS3 for animations and fall back to no animation for legacy browsers; there are only a few exceptions
where the animation is important.

● Keep in mind that a control can be used multiple times in a page.
● Provide immediate feedback for user interaction.
● If an action takes a longer period of time, visualize this, for example by using a BusyIndicator.
● When you create HTML markup for a control outside a renderer, for example, by writing to the innerHTML

property of a DOM element, or by calling jQuery.html() or similar helpers, make sure to escape any
unchecked data first with the function provided by sap/base/security/encodeXML. This is mandatory
to prevent cross-site scripting issues. For more information, see Cross-Site Scripting [page 1475].

Renderer

With regard to the renderer, the following guidelines apply:

● Produce clean, semantic HTML5, as compact as reasonably possible.
● Each control instance must have exactly one root HTML element and can have any HTML element

structure below that.
● Unknown strings, such as values coming from string properties, need to be escaped before writing to

HTML; this avoids security risks via XSS attacks.
● Use RenderManager.writeEscaped(…), or the function provided by module sap/base/security/

encodeXML.
● Container controls such as Panel or Page, as opposed to layout controls with a generic "content"

aggregation, should render the children directly next to each other with no additional HTML or layout
applied.

● Use the Icon pool for images.
● Provide a sufficiently large touch area for interaction on touch devices (usually 3rem/48px).
● When internal HTML elements of the control below the root element need an ID, construct the ID as

follows: <control ID> + "-" + <someSuffix>.
● The HTML should adhere to the basic XHTML rules; close all tags, enclose attribute values in quotes and

do not use empty attributes without value.
● Avoid <table>-based layouts when there is no logical table. If a table is used for layout, try to use

"display:table" or even "table-layout:fixed" tables.

2166 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

● RenderManager.writeControlData() must be called in the root HTML element of the control to make
events work.

● RenderManager.writeClasses() must be called in the root HTML element of a control; otherwise
addStyleClass does not work. this does not need to be used in subelements.

Control Development Guidelines: Theming/CSS

For themes and CSS for control development in SAPUI5, the following guidelines apply.

General Guidelines

● Write semicolons, even where optional.
● Use rem for dimensions; use px only for dimensions that do not depend on the font size.
● The root element of a control should come without outer margins; add any required padding inside. Root

margins are owned by the parent control.
● Do not hard-code any colors, use LESS parameters and color calculations instead; this is also

recommended for other significant theme aspects such as fonts and background images.
● Use other LESS features moderately. The more LESS processing happens, the less clear it is where the

runtime CSS originates from.
● Do not style HTML elements directly; all selectors must include a SAPUI5-specific CSS class to avoid

affecting non-owned HTML.
● Avoid the star selector (such as: * { color: black;}) in CSS, in particular without a "direct child"

selector (">") in front of it (for performance reasons).
● Only use inline CSS for control-instance specific style, for example the button width.
● Do not use !important as it makes custom adaptations more difficult; use more specific selectors

instead.
There are rare justified exceptions, but they need to be documented.

● Put browser-prefixed properties before the un-prefixed variant.
● When the visuals of certain controls are different depending on the context/container where they are used,

use CSS cascades along with marker CSS classes in the parent control:
○ The area/container should write a certain marker CSS class to the HTML and document this CSS class

in its JSDoc.
○ The documentation should mention the purpose and contract/meaning of this class, for example, that

it is meant to modify the appearance of children in a way that better fits table cells, toolbars, or
headers.

○ This CSS class may not have any CSS styles attached. It is a pure marker.
○ This CSS class has the suffix -CTX (e.g. sapUiTable-CTX or sapUiBorderless-CTX) to make it

distinguishable from "normal" CSS class names.
○ Controls that want to modify their appearance in such an area use the marker class in a

cascade: .sapUiTable-CTX .sapUiInput { border: none; }

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2167

Naming

The following naming guidelines apply:

● All CSS classes must begin with the sapUi prefix (or sapM in the sap.m library). Exception: some global
CSS classes used in the core start with "sap-".

● For each control there must be one unique control-specific prefix for CSS classes.
For example, sapUiBtn for a Button control, or sapMITB for an IconTabBar in the sap.m library. This
class must be written to the HTML root element of the control. All CSS classes within the HTML of this
control must append a suffix to this class name, for example: sapUiBtnInner or sapMITBHeader.

Images

Themes (including "base") should only refer to existing images inside that theme. Images will be loaded relative
to the theme where they are referenced (see LESS option "relativeUrls")

If an image URL defined in base stays active in another theme 'mytheme', derived from base, LESS will
calculate a relative URL that points from the mytheme/library.css to the base/library.css.

Similar path calculation is necessary when the URL is defined in another library (e.g. from sap/m/themes/
mytheme/library.css to sap/ui/core/themes/base/image.png).

These URL transformations assume a single repository for all sources. When resources for different themes or
libraries are located in different libraries, such relative URLs might not work.

To override an image within the base theme an additional rule has to be added to the individual theme
referencing the image. Otherwise the base image will be loaded.

LESS Theme Parameters

For LESS theme parameters, the following guidelines apply:

● Use the correct theme parameter - do not find by color value, but by semantics. In general, let the visual
designers give the correct parameter to use.
If finding a color for a text, do not use any border or background color parameter. Start with @sapUiText
and try to find something more specific such as @sapUiHeaderText. Use parameters such as
@sapUiTextInverted for bright-on-dark scenarios.
If no suitable parameter exists, derive the color by calculation from a suitable parameter.

● Do not add parameters to the public API (using annotations) without sufficient clarification with designers
and product owners.

● If you create your own local parameters, you must ensure that the names you define are unique by using
name(space) prefixes.
For control-specific parameters in *.less files, use a combination of the library name and the *.less file
name for the prefix. Start with an underscore. Separate each part of the library namespace and the file
name from each other using underscores as well.

2168 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Tip
For example, you can define the following prefix:

Library: sap.ui.core

File: sap/ui/core/themes/base/MyControl.less

Prefix: @_sap_ui_core_MyControl_

For library-specific parameters in library.source.less files, use the library name for the prefix. Start
with an underscore. Separate each part of the library namespace from each other using underscores.

 Tip
For example, you can define the following prefix:

Library: sap.ui.core

File: sap/ui/core/themes/base/library.source.less

Prefix: @_sap_ui_core_

 Caution
Local parameters themselves must not contain underscores. For example, do not write
@_sap_ui_core_MyControl_Some_Color, but write @_sap_ui_core_MyControl_SomeColor
instead.

● When defining URLs as parameters use the proper url() format: @sapUiMyUrl: url(./path/to/
img.png)
○ Do not use escaped strings (~): @sapUiMyUrl: ~"path/to/img.png"
○ Do not use absolute URLs: @sapUiMyUrl: url(/absolute/path/to/img.png)

Product Standards and Acceptance Criteria

To be of high quality and usable in mission-critical business software, SAPUI5 needs to fulfill specific product
standards and acceptance criteria. While these are not directly related to code conventions, the most
important standards and criteria are mentioned here, because new code needs to fulfill these requirements.

General product standards and acceptance criteria:

● Browser support, see Browser and Platform Support [page 20]
● Security (such as output encoding to prevent XSS attacks)
● Performance needs to be in focus
● Automated tests, such as QUnit
● Proper API documentation
● Translation: All texts that are visible on the UI must be enabled for translation.

Do not provide the translations, but only provide a raw english version in the
messagebundle.properties file.
Make sure that you annotate the strings properly for translation. .

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2169

● Adhere to the compatibility rules, see Compatibility Rules [page 17].
● Make sure that any Open Source libraries (or parts of them) that you use are officially approved before you

add them to SAPUI5. Do not add any code you "found" somewhere.

Additional product standard and acceptance criteria for controls:

● Screenreader support (ARIA)
● Keyboard navigation support
● Required themes; what themes are required depends on the library, but always includes the High Contrast

theme for accessibility
● Right-to-left support
● Example page in the Samples in the Demo Kit

File Names and Encoding

Some target platforms of SAPUI5 impose technical restrictions on the naming or structure of resources
(files).For this, rules for file names and encoding have been introduced.

When developing content for SAPUI5, adhere to the following rules:

● Folder names must not contain spaces.
● To avoid issues with the SAPUI5 module loading and with URL handling in general, resource names should

not contain spaces.
● Single folder names must not be longer than 40 characters.
● Two resource names must not only differ in case.
● Avoid non-ASCII characters in resource names.

JSDoc Guidelines

Provides an overview of guidelines for creating JSDoc documentation.

To document JavaScript coding, you can add documentation comments to the code. Based on these
comments, the descriptions of the SAPUI5 entities are generated and shown in the API Reference of the Demo
Kit. SAPUI5 uses the JSDoc3 toolkit, which resembles JavaDoc, to generate the descriptions. For an
explanation of the available tags, see https://jsdoc.app .

Basics of JSDoc

Here are some general principles for writing comments:

● Document the constructor with @class, @author, @since, and so on.
● For subclasses, document the inheritance by using an @extends tag in their constructor doclet.
● Document at least public and protected methods with JSDoc, mark them as @public or @protected.

If you also document private methods with JSDoc, mark them as @private. This is currently the default in
SAPUI5, but not in JSDoc, so it is safer to explicitly specify this. @protected is not clearly defined for a

2170 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/disclaimer?site=https%3A%2F%2Fjsdoc.app

JavaScript environment. In SAPUI5, it denotes a method that is not meant to be used by applications. It
might be used outside the relevant class or subclasses, but only in closely related classes.
To explicitly specify which modules are allowed to use a class or function, mark the latter as @private
followed by @ui5-restricted <modulenames>, with a comma-separated list of the modules that have
access to this class or function.

 Note
To ensure that external JSDoc generators can also produce proper documentation, @private must be
used first followed by @ui5-restricted. @ui5-restricted overrules @private, if it can be
interpreted by the generator.

● Document method parameters with type (in curly braces) and parameter name (in square brackets if
optional).

● Use @namespace for static helper classes that only provide static methods.

For an example of how to create a class, see Example for Defining a Class [page 2162].

Descriptions

A documentation comment should provide the following content:

● Summary sentence at the beginning; the summary is reused, for example, for tooltips and in summaries in
the API Reference

● Background information required to understand the object
● Special considerations that apply
● Detailed description with additional information that does not repeat the self-explanatory API name or

summary

 Note
Avoid implementation details and dependencies unless they are important for usage.

Dos and Don'ts

● To avoid line wrapping, make sure that each line of the description has a similar length as the code. In the
API Reference, the line breaks in a description are ignored, and it appears as a continuous text.

● Use a period at the end of each summary sentence. The punctuation is required for JSDoc to identify the
first sentence.

● Don’t use a period inside a summary sentence. For example, don’t use “e.g.”, but write “for example”
instead. Otherwise the summary sentence will be cut off.

 Note
You can create links to external sources. The source should comply with standard legal requirements. The
required icons are added to the link as described in the Demo Kit under Terms of Use Disclaimer . For
more information about creating links, see the explanations below (@see and {@link}).

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2171

Recommendations for Writing Descriptions
● Don’t use exclamation marks.
● Make sure you spell acronyms correctly, for example, ID, JSON, URL.
● In the summary sentence, omit repetitive clauses like "This class" or "This method".
● For actions, start directly with an appropriate verb in the third person: Adds, allocates, constructs,

converts, deallocates, destroys, gets, provides, reads, removes, represents, returns, sets, saves, and so on.
For methods, use the following verbs:

Type Verb

Constructor Constructs

Boolean Indicates (whether)

Getter Gets

Setter Sets

Other Adds/Removes/Creates/Releases/Other verb that
applies

● For objects, use a noun phrase.
Example: Base class for navigation

Inline and HTML Tags

You can use inline and HTML tags in your comments.

Inline tags can be placed anywhere in the comments. Inline tags are denoted by curly brackets and have the
following syntax: {@tagname comment}.

HTML tags are used to format documentation comments. HTML tags have the standard HTML syntax:
<tag>...</tag>.

The table provides an overview of the most common inline and HTML tags.

2172 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Table 98: Inline and HTML Tags

Tag Use Example How to Use / Details Type of Tag

{@link} Links within API Refer
ence

{@link
sap.ui.generic.
app.navigation.
service.NavErro
r Error}

{@link
sap.ui.comp.sma
rttable.SmartTa
ble#event:befor
eRebindTable}

To replace the path
with a display text, use
it like this: {@link
<path> space <display
text>}.

You can also use
#myMethod for links
within a class or con
trol to individual meth
ods, for example. The
leading hash will then
be removed automati
cally.

For other links, use the
required syntax, for ex
ample,
#event:name.

Inline

Empty line Creates a paragraph Using <p> is not nec
essary, since empty
lines are used to define
paragraphs.

HTML

<code>…</code> Technical entities (op
tional)

the <code>Button</
code> control

<pre>…</pre> Code samples

…

…

Unordered lists

…

…

Ordered lists

…
or …

Bold font

<i>…</i> Italics

 Non-breaking space

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2173

Block Tags

You can also use block tags in your comments.

Block tags can only be placed in the tag section below the comment. They are separated from the comment by
an empty line (recommended, but not a technical requirement). Block tags have the following syntax:
@tagname comment.

The table provides an overview of the most common block tags.

Table 99: Block Tags

Tag Use Example How to Use / Details

@param Adds parameters /** * ...
 * @param
{string}
statement The
SQL statement to
be prepared
 * ... */

Begin description with a capi
tal letter.

@returns Adds return values @returns {type1|
type2|...}
Description

Begin description with a capi
tal letter.

@throws Adds the description of an
exception if an error occurs

@throws {type}
Description

Begin description with a capi
tal letter.

@author Adds the name of the devel
oper responsible for the code

@author Max
Mustermann

This is an optional tag that is
not displayed in JSDoc.

If you need to use the version
tag, use ${version} so you
don't have to update this
manually for each new ver
sion.

@version Names the version for an en
tity

@version 14.1.2

2174 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Tag Use Example How to Use / Details

@see Adds information (for exam
ple, link to documentation or
the SAP Fiori Design Guide
lines) in the header section of
the API Reference

@see path

@see free text

@see {@link
topic:bed8274140d04
fc0b9bcb2db42d8bac2
Smart Table}

@see {@link fiori:/
flexible-column-
layout/ Flexible
Column Layout}

@see {@link topic:loio <se
mantic control name>} pro
vides a link to the documen
tation (developer guide).

If there are several @see tags
with documentation links,
only the first one is shown in
the header. The other ones
are displayed under
Documentation Links in the
Overview section.

For more generic topics that
are not directly related to a
class or control, use inline
links.

@since Adds the version in which an
entity was first introduced

@since 1.30 Be as specific as possible
(without mentioning patch
levels for new development),
since this information is use
ful even for internal pur
poses. For example, mention
1.27, even though this is not
an external release.

@deprecated Adds the version in which an
entity was deprecated

@deprecated As of
version 1.28,
replaced by {@link
class name}

Be as specific as possible
(without mentioning patch
levels), since this information
is useful even for internal
purposes. For example, men
tion 1.27, even though this is
not an external release.

Provide information about
what replaces the depre
cated entity.

@experimental Classifies an entity that is not
ready for production use yet,
but available for testing pur
poses

@experimental As of
version 1.56.0

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2175

Tag Use Example How to Use / Details

@example Inserts a code sample after
the comment

/** * ...
 * @example
 * var id =
myjob.schedules.a
dd({
 *
description:
"Added at
runtime, run
every 10
minutes",
 * xscron:
"* * * * * *\/10
0",
 *
parameter: { * a: "c"

The code sample is inserted
automatically with <pre>. It
is always inserted right after
the comment.

To insert an example some
where else, for example, in
the middle of a comment,
use <pre>.

You can add a header for the
example by using <caption>.

Tips for Using Block Tags

● The order of the block tags is not mandatory from a technical perspective, but recommended to ensure
consistency.
For parameters, however, a fixed order is mandatory.

● There are more tags available, such as @classor @name.

Links to API Documentation

To refer to another entity within the API Reference, you can use {@link} in combination with the reference
types shown in the table below.

Table 100: Reference Types within API Reference

Type of Reference Description Example Comment

<full.path.ClassName> Refers to a class, interface,
enumeration, or namespace

sap.ui.comp.smartta
ble.SmartTable

full.path.Class
Name#method

Refers to an instance method
of a class

sap.ui.comp.smartta
ble.SmartTable#getH
eader

.prototype. and # are in
terchangeable

full.path.ClassName.proto
type.method

Refers to an instance method
of a class

full.path.Class
Name#event:name

Refers to an event fired by an
instance of a class

sap.ui.comp.smartta
ble.SmartTable#even
t:beforeRebindTable

2176 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Type of Reference Description Example Comment

full.path.ClassName.method Refers to a static method (or
any other static property)

#method Refers to an instance method
within a class

#getHeader You can use this type of refer
ence within an API that you
are documenting, for exam
ple, within the SmartTable
control documentation if you
want to link to a method that
belongs to the control itself.

#.method Refers to a static method
within a class

#event:name Refers to an event within a
class

Common Pitfalls in JSDoc

The use of the JSDoc toolkit has some pitfalls. By following the guidelines outlined below, these issues can be
avoided.

Multiple Documentation Comments Before a Symbol

In case of multiple documentation comments before a JavaScript symbol, JSDoc only associates the last
comment with the symbol. Therefore, multiple documentation comments before a symbol must be avoided.
The comment and code sequence below results in an unwanted documentation for the adjustFilters
symbol. To avoid this, move the TODOs, either within the function or before the documentation comment.

 /**
 * Maps the UI filter objects to the internal Filter object.
 *
 * @param filteredColumns The current UI filters that will be mapped
 * to the internal format.
 * @returns The newly formatted format.
 * @private
 */
/** TODO: Call getOperator when custom filters are supported */
/** TODO: getValue2 to fix later when we have ranges with BETWEEN operator */
sap.ui.table.internal.BehaviorManager.prototype.adjustFilters =
function(filteredColumns) {
 // ... }

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2177

Special Case: Section Separators

JSDoc interprets any multiline comment starting with a double asterisks (/**) as a documentation comment
for the JavaScript symbol that follows the documentation comment. However, some developers use
"decorative" documentation comments to separate sections in their JavaScript modules, and using a multiline
comment consisting of asterisks is just one example for such decorative comments:

 // Update aggregation
 this.insertSection(oSection, iTargetIndex, true);
 /****Update index/id mapping table********************************/
 aSections = this.getSections();
 for (var i = 0; i < aSections.length; i++) {
 this.aIdMappings[aSections[i].getId()] = i; }

For JSDoc, however, this looks like a documentation comment for the aSections variable. And if this is the last
documentation comment for aSections, it appears in the generated JSDoc for the enclosing module or class.
The only way to avoid such silly mistakes in documentation, is to avoid the pairing of multiline documentation
comments and symbols to be documented. So do not use stars/asterisks for a separating banner comment.
You can use other characters, for example /* ==== */ or /* ----- */, or at least avoid the double asterisks at the
beginning. A very unnoticeable replacement would be to use a double quote /*"************/ as only the last
documentation comment before a symbol is used. Another very good option to avoid misinterpretation of
banner comments is to document the symbol that follows.

HTML Tags in Documentation Comments

JSDoc explicitly allows HTML tags in documentation comments. This allows, as in JavaDoc, to structure longer
or more complex documentation comments with the help of some HTML markup. Typical use cases are
ordered or unordered lists or semantic tags like <code> or . But be aware that the support for HTML tags
for formatting purposes unfortunately implies that JSDoc must not escape them. So, if you want to include an
HTML literally, for example, to explain what kind of HTML is produced by a control, the HTML tag must be
HTML-escaped in the source code. Otherwise, it will mark up the final JSDoc output, which will most likely
break.

Example

In the example, note the escaped <TR> in the first and the third line of the documentation comment:

 /**
 * This function return the rowNumber given a row<TR>.
 *
 * @private
 * @param {DomRow} <TR> dom object.
 * @returns {int} the row number maintained in the data object.
 */
sap.ui.table.Table.prototype.getRowNumber = function(oDomRow) {

2178 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Tools

For the tools used for SAPUI5 content development, guidelines and recommendations have been introduced.

The following guidelines and recommendations apply:

● To make issues with mixed tabs/spaces and windows-style linebreaks visible immediately, we recommend
to configure your JavaScript editor to display whitespace and linebreak characters.

● We also recommend to configure the code formatter of your code editor accordingly.
● Do not use the auto formatter to format entire files. The auto formatter handles many lines and makes it

more difficult to find out who actually wrote the code.

ESLint

SAPUI5 contains a mandatory ruleset for ESLint. For a complete list of rules and settings, see ESLint Code
Checks [page 2179]. For the ESLint configuration file, see ESLint Configuration File [page 2184].

ESLint Code Checks

SAPUI5 uses ESLint to check JavaScript sources.

The following tables show the ESLint rules that should be enabled for the SAPUI5 projects.

Rule Sets

Table 101: Possible Errors

Rule ESLint default Core Comment

no-cond-assign error error

no-console error error

no-constant-
condition

error error

no-comma-dangle error error/warning can be set to warning if lib
only supports IE9

no-control-regex error error

no-debugger error error

no-dupe-keys error error

no-empty error error

no-empty-class error error

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2179

Rule ESLint default Core Comment

no-ex-assign error error

no-extra-boolean-
cast

error warning

no-extra-parens off off

no-extra-semi error error

no-func-assign error error

no-inner-
declarations

error error

no-invalid-regexp error error

no-negated-in-lhs error error

no-obj-calls error error

no-regex-spaces error error

no-sparse-arrays error error

no-unreachable error error

use-isnan error error

valid-jsdoc off warning requireReturn = false

valid-typeof error error

Table 102: Best Practices

Rule ESLint default Core Comment

block-scoped-var off error currently only warning be
cause of wrong behaviour in
switch statement

complexity off off

consistent-return error warning

curly error error

default-case off warning

dot-notation error off

eqeqeq error warning smart

guard-for-in off error

no-alert error error

no-caller error error

no-div-regex off error

no-else-return off off

no-empty-label error error

2180 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Rule ESLint default Core Comment

no-eq-null off off

no-eval error error

no-extend-native error error

no-fallthrough error error

no-floating-decimal off error

no-implied-eval error error

no-labels error error

no-iterator error error

no-lone-blocks error error

no-loop-func error error

no-multi-str error error

no-native-reassign error error

no-new error error

no-new-func error error

no-new-wrappers error warning

no-octal error error

no-octal-escape error error

no-proto error error

no-redeclare error warning

no-return-assign error error

no-script-url error error

no-self-compare off error

no-sequences error error

no-unused-
expressions

error warning

no-warning-comments off warning

no-with error error

radix off error

wrap-life off error any

yoda error error

Table 103: Strict Mode

Rule ESLint defaul Core

global-strict off error

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2181

Rule ESLint defaul Core

no-extra-strict error error

strict error warning

Table 104: Variables

Rule ESLint default Core Comment

no-catch-shadow error error

no-delete-var error error

no-label-var error error

no-shadow error error

no-shadow-
restricted-names

error error

no-undef error error

no-undefined off off

no-undef-init error error

no-unused-vars error error vars = all, args = none

no-use-before-
define

error warning

Table 105: Node.js

Rule ESLint default Core

handle-callback-err off off

no-mixed-requires off off

no-new-require off off

no-path-concat off off

no-process-exit off off

no-restricted-modules off off

no-sync off off

Table 106: Stylistic

Rule ESLint default Core Comment

brace-style off error singleLine = false

camelcase error warning

consistent-this off error that

eol-last error off

func-names off off

func-style off off

2182 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Rule ESLint default Core Comment

new-cap error warning

new-parens error error

no-nested-ternary off error

no-array-
constructor

error error

no-lonely-if off error

no-new-object error error

no-spaced-func error error

no-space-before-
semi

error error

no-ternary off off

no-trailing-spaces error off error, but too many places to
change

no-underscore-
dangle

error off

no-wrap-func error error

no-mixed-spaces-
and-tabs

error error smart

quotes off off

quote-props off off

semi error error

sort-vars off off

space-after-
keywords

off error always

space-in-brackets off off

space-infix-ops error error

space-return-throw-
case

error error

space-unary-word-
ops

off error

max-nested-
callbacks

off warning 3

one-var off off

wrap-regex off off

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2183

Table 107: Legacy

Rule ESLint default SAPUI5 Core

max-depth off off

max-len off off

max-params off off

max-statements off off

no-bitwise off off

no-plus off off

For more information about the rules, see the rules documentation provided on http://eslint.org .

ESLint Configuration File

Content of the ESLint configuration file

 {
 "env": {
 "browser": true
 },
 "globals": {
 "sap": true,
 "jQuery": true
 },
 "rules": {
 "block-scoped-var": 1,
 "brace-style": [2, "1tbs", { "allowSingleLine": true }],
 "consistent-this": 2,
 "global-strict": 2,
 "no-div-regex": 2,
 "no-floating-decimal": 2,
 "no-self-compare": 2,
 "no-mixed-spaces-and-tabs": [2, true],
 "no-nested-ternary": 2,
 "no-unused-vars": [2, {"vars":"all", "args":"none"}],
 "radix": 2,
 "space-after-keywords": [2, "always"],
 "space-unary-word-ops": 2,
 "wrap-iife": [2, "any"],
 "camelcase": 1,
 "consistent-return": 1,
 "max-nested-callbacks": [1, 3],
 "new-cap": 1,
 "no-extra-boolean-cast": 1,
 "no-lonely-if": 1,
 "no-new": 1,
 "no-new-wrappers": 1,
 "no-redeclare": 1,
 "no-unused-expressions": 1,
 "no-use-before-define": [1, "nofunc"],
 "no-warning-comments": 1,
 "strict": 1,
 "valid-jsdoc": [1, {
 "requireReturn": false
 }],
 "default-case": 1,
 "dot-notation": 0,

2184 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/disclaimer?site=http%3A%2F%2Feslint.org

 "eol-last": 0,
 "eqeqeq": 0,
 "no-trailing-spaces": 0,
 "no-underscore-dangle": 0,
 "quotes": 0
 }
}

The library.js File

The library.js file is a JavaScript file that contains the JavaScript code for all enumeration types provided
by the library as well as library-specific initialization code that is independent from the controls in the library.

The file calls the sap.ui.getCore().initLibrary method with an object that describes the content of the
library (list of contained controls, elements etc.). For more informarion about the object parameter, see
sap.ui.getCore().initLibrary..

The library style sheet file (library.css) contains all styles relevant for this library. For libraries that have
been developed with the SAPUI5 application development tools, this file is also generated automatically during
the build.

In a library.js file, the call to sap.ui.getCore().initLibraries() takes care of creating the
namespace object of the library, exports it under its global name and returns the namespace to the caller. In
the library.js module, you don’t need to write types or helpers to the global name, but can use the returned
namespace like this:

sap.ui.define(function() {
 “use strict”;

 /**
 * @alias my.lib
 */
 var oThisLibrary = sap.ui.getCore().initLibrary({…});

 /**
 * An addition to mylib. If you used the @alias tag above, JSDoc will
recognize this as my.lib.ValueColor.
 * @ui5-metamodel The UI5 metamodel restoration logic also can handle this
kind of definition and will create an enumeration type
 * my/lib/ValueColor.type. The name of the variable
(<code>thisLibrary</code>) is not mandatory, just an example.
 */
 oThisLibrary.ValueColor = {
 Color1: …
 };

 // don’t forget to return the value
 return oThisLibrary;
 });

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2185

https://sapui5.hana.ondemand.com/#/api/sap.ui.core.Core/methods/initLibrary

Enumerations and RegEx Types

We recommend to add all simple types of a library to the library.js module. Other modules that need to
work with such types can simply include the respective library as a module dependency:

// requiring a library sap.ui.require(["sap/ui/core/library"], function(library) {
 var sAlign = library.HorizontalAlign.Begin;
});

// defining a module with a library dependency
sap.ui.define(["sap/ui/core/library"], function(library) {
 var sAlign = library.HorizontalAlign.Begin; });

ManagedObject Metadata

In the metadata definition of ManagedObject subclasses, types for properties, aggregations, associations and
event parameters have to be specified with global names as strings.

The default values, however, should be referenced via the correct type value from the library.js module
because it avoids the usage of globals.

Define the library.js as static dependency and use it as a local variable for convenience:

sap.ui.define(["sap/ui/core/Control", "./library"], function(Control, library) { // shortcut on Enum
 var SizeMode = library.SizeMode;

 var MyControl = Control.extend("my.lib.MyControl", {
 metadata : {
 library : "my.lib",
 properties : {
 sizeMode: {type : "my.lib.SizeMode", group : "Appearance",
defaultValue : SizeMode.Auto}
 }
 }
 });

 MyControl.prototype.setSizeMode = function (sMode) {
 switch(sMode) {
 case SizeMode.Auto: ... break;
 case SizeMode.Full: ... break;
 ...
 }
 };

 return MyControl; });

2186 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Creating Control and Class Modules

Modules do not only require and use functionality from other modules, they also expose their own functionality
to the outside. In asynchronous module definition (AMD) syntax, there are several ways to expose such
functionality.

However, SAPUI5 only supports the "module return value".

If you want to export the "module value" of an AMD module under a global name, you have two options:

● You rely on the SAPUI5 methods that already do the exposure as a side effect, such as:
○ Classes created by the extend method
○ Libraries that call initLibrary() in their library.js module
○ Renderers that are created with sap.ui.core.Renderer.extend(“….”)

● You set the fourth parameter bExport of sap.ui.define(sModuleName, aDependencies,
vFactory, bExport) to true. This will expose the module value under the global name that is derived
from the module name.
The global JavaScript namespace is based on a "slash to dot replacement".

 Note
The resulting namespace might not have the expected result if the AMD module name contains dots!

In control and class modules, you should not use global variables at all. When you derive a custom control from
an existing superclass via the the extend method, the resulting subclass is returned.

You can store the return value of the extend function in a local variable, make changes to the prototype and
then return this variable as the modules return value.

JSDoc for the class should use the @alias tag to make sure that the variable is known under the global name
in the generated JSDoc.

The extend function makes sure that the respective namespace is created:

sap.ui.define(["sap/ui/base/Object", "sap/ui/model/json/JSONModel"], function
(BaseObject, JSONModel) {
 var Foo = BaseObject.extend("foo.bar.MyClass", /** @lends foo.bar.MyClass */
{

 constructor: function(sId, mProperties) {
 this.mId = sId;
 }
 });

 Foo.prototype.ownMethod = function (a) {
 return a * 2;
 };

 // return the module value, in this example a class
 return Foo; });

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2187

Related Information

Example for Defining a Class [page 2162]

Defining the Control Metadata

Control metadata consists of properties, events, as well as aggregations and associations.

The control metadata is defined as follows:

● Properties
A property has a name and an associated data type. It has a well-defined default value expressed as a
literal of that data type. Properties are accessible to application code via the element's API as getters and
setters, but are also used by a control's renderer in a read-only way. The following list gives an overview of
the most important settings for a property:
○ type: Data type of the control property; SAPUI5 provides an automatic type validation. Valid types are,

for example, string (default) for a string property, int or float for number properties, int[], etc.
for arrays and sap.ui.core.CSSSize for a custom-defined type.
For more information, see Defining Control Properties [page 2190].

○ defaultValue: Default value that is set if the application does not set a value; if no default value is
defined, the property value is undefined.

These control-specific settings are only available when inheriting from a control or one of the base classes
sap.ui.core.Control, sap.ui.core.Element, sap.ui.base.ManagedObject, see Object
Metadata and Implementation [page 2190]. For a complete list of the possible settings, see API Reference:
sap.ui.base.ManagedObject.extend.

● Events
An event has a name as well as any number of parameters. The element's API offers support to manage
event subscriptions.
It is defined by its name only.

events: { "logout": {} }

For each event, methods for registering, de-registering and firing the event are created. For the logout
event, for example, the attachLogout, detachLogout, fireLogout methods are created.
A control can enable events to be interrupted by the application. A tab control, for example, can enable the
application to cancel a close event by setting the allowPreventDefault property of the event to true
and checking the return value after firing the event:

events: { "close": {allowPreventDefault : true} }

● Aggregations and Associations
An aggregation is a special relation between two UI element types. It is used to define the parent-child
relationship within the above mentioned tree structure. The parent end of the aggregation has cardinality
0..1, while the child end may have 0..1 or 0..*. The element's API offers convenient and consistent
methods to deal with aggregations (e.g. to get, set, or remove target elements). Examples are table rows
and cells, or the content of a table cell.

2188 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.base.ManagedObject/methods/sap.ui.base.ManagedObject.extend
https://sapui5.hana.ondemand.com/#/api/sap.ui.base.ManagedObject/methods/sap.ui.base.ManagedObject.extend

An association is another type of relation between two UI element types which is independent of the
parent-child relationship within the above mentioned tree structure. Directed outgoing associations to a
target of cardinality 0..1 are supported. They represent a loose coupling only and are thus implemented
by storing the target element instance's ID. The most prominent example is the association between a label
and its field.
Aggregations and associations are defined by their name and a configuration object with the following
information:
○ type: The type should be a subclass of the element or the control; the default is

sap.ui.core.control
○ multiple: Defines whether it is a 0..1 aggregation or a 0..n aggregation; the default for aggregations is

true = 0..n, and for associations the default is false
○ singularName: For 0..n aggregations, the aggregation name typically is plural, but certain methods

are created where the singular form is required (for example, addWorksetItem} for the
"worksetItems" aggregation).

If only the type needs to be set, you can just give it as a string instead of the configuration object.
One example:

aggregations: { "acceptButton" : "sap.m.Button", // if only type is given, no object is
required
 "content" : {singularName: "content"}, // default type is
"sap.ui.core.Control",
 // which is appropriate for
generic containers
 "toolbarItems" : {type : "sap.m.Button", multiple : true, singularName :
"toolbarItem"}
 // a fully specified aggregation }

Multiple methods are created automatically at runtime, depending on the multiplicity, for example
getWorksetItems, insertWorksetItem, addWorksetItem, removeWorksetItem,
removeAllWorksetItems, indexOfWorksetItem, destroyWorksetItems. These methods have a
default implementation which does everything to handle the aggregation properly, but they can be
overridden and extended by the control implementation.
If you want to mark one aggregation as default aggregation in order to be able to omit the aggregation tag
in XML views, you can do this by setting the defaultAggregation property to the name of the
aggregation as shown in the following code snippet:

aggregations: { "content": {singularName: "content"} // default type is
"sap.ui.core.Control", multiple is "true"
}, defaultAggregation: "content"

For a brief explanation of the differences between an aggregation and an association, see the Control Metadata
section under Working with Controls [page 1041]. For a complete list of the possible settings, see API
Reference: sap.ui.base.ManagedObject.extend.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2189

https://sapui5.hana.ondemand.com/#/api/sap.ui.base.ManagedObject/methods/sap.ui.base.ManagedObject.extend
https://sapui5.hana.ondemand.com/#/api/sap.ui.base.ManagedObject/methods/sap.ui.base.ManagedObject.extend

Object Metadata and Implementation

SAPUI5 supports the extension of plain objects that are not elements or controls.

For these objects, only the following metadata is available:

● interfaces: String array that denotes the implemented interfaces (optional)
● publicMethods: List of methods that should be part of the public API (optional)
● abstract: Flag to mark the type as abstract (optional)
● final: Flag to mark the type as final (optional)

 Note
This metadata can also be used when extending controls.

Regarding the implementation, all methods given outside the metadata are attached to the new type. The
method name constructor is reserved for the constructor function of the new class. Although it is possible
from a technical point of view, we recommend not to define a constructor for new elements and controls. Your
control may otherwise break in some scenarios, such as in combination with list bindings, or may no longer be
compatible in later versions of SAPUI5 when the constructor signature is extended.

Defining Control Properties

Control properties are defined as follows:

properties: { "title" : "string", // a simple string property,
default value is undefined
 "buttonText" : {defaultValue: "Search"}, // when no type is given, the
type is string
 "showLogoutButton" : {type : "boolean", defaultValue : true}, // a boolean
property where a default value is given
 "width" : {type : "sap.ui.core.CSSSize", defaultValue : "50px"} // a CSS size
property where a default value is given }

After the property is defined, the control automatically has the setShowLogoutButton and
getShowLogoutButton methods for storing data. It is possible to assign custom definitions to these methods
by overriding them and calling the generic property methods setProperty and getProperty:

MyControl.prototype.setShowLogoutButton = function(show) { // …here anything in addition to the default handling can be done…
 // then do the default handling:
 this.setProperty("showLogoutButton", show); // this validates and stores the
new value
 return this; // return "this" to allow method chaining
};

2190 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Allowed Property Types

Table 108: Built-in Types

Type Description

boolean Can either be true or false. Properties of that type
should not be set to undefined or null. The default
value is false.

int JavaScript primitive values of type number and that don’t
have a fractional part. To keep the implementation efficient,
the constraint is not enforced. Declaring a property as type
int is rather for information reasons. The corresponding
object expects any given value to be an integer value. The
default value of the type is the number 0.

float JavaScript primitive values of type number that can have a
fractional part. It is named float instead of number to dif
ferentiate it from type int . The default value is the number
0.

string JavaScript string literal (typeof value ===
‚string’) or a String object (value instanceof
String). The default value is an empty string.

object Plain JavaScript object (an object whose constructor is
Object). Most of the time, other objects are accepted as
well, but deserializers (e.g. for XML views) will try to convert
the object from or to a JSON string. The default value is
null.

Don't mix this type up with the any type! (Sorry, we maybe
should have named it „serializable“ or „JSON“ or
something like that, to make this more clear...).

any Any valid Javascript value (including primitives, objects,
functions, regular expressions, and native objects). The sup
port in serialized formats is quite limited. Valid JSON strings
will be deserialized to an object. The default value is null.

function Can be any JavaScript function. Note that properties of this
type currently can't be used in serialized formats like
XMLViews. If an XMLView needs to set a value for a control
property of type function, it has to set the value in its con
troller code (e.g. in the onInit hook).

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2191

Table 109: Derived Types

Category Description

regular expression (RegExp) Derived from the built-in type string.

Restricted subtypes that limit their valid values to strings
that match a given regular expression.

RegExp types can only be defined by calling the
DataType.createType() method.

Example:

var fooType =
DataType.createType('foo', { isValid : function(vValue) {
 return /^(foo(bar)?)
$/.test(vValue);
 }
}, DataType.getType('string'));

If mSettings contains an implementation for isValid,
then the validity check of the newly created type will first ex
ecute the check of the base type and then call the given
isValid function.

For more information, see the API Reference.

2192 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.base.DataType.html

Category Description

enumeration (enum) Derived from the built-in type string.

Restricted subtypes can be derived that limit their valid val
ues to a fixed set of values (enumeration). An enum type is
defined through an object literal whose keys represent the
allowed values.

Restrictions:

● The value for each key must be a string literal, equal to
the key itself.

● Renamings or aliases are not supported and only keys
and values of type string are supported.

This was an early design decision in SAPUI5 and framework
code relies on it. That code might fail for enumerations that
don’t obey these restrictions.

To reference an enum type in a property definition, its global
name must be used (like sap.m.ValueColor in the ex
ample below).

.

Example:

/** * Enumeration of possible value color
settings.
*
* @enum {string}
* @public
*/
sap.m.ValueColor = {
 /**
 * Neutral value color.
 * @public
 */
 Neutral : "Neutral",
 […]
};

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2193

Category Description

array You don't have to define array types before using an array.
From each valid type above, an array type with one or more
dimensions can be derived by simply appending a pair of
square brackets ([]) for each dimension, for example:

● int[] is a one-dimensional array of integers

● int[][] is a two-dimensional array of integers (or
more precisely an array of integer arrays)

The type of an element in an array is called the component
type (int in the first example, int[] in the second).

The DataType object for an array type has a method
getComponentType to retrieve the component type.
For non-array types, this method returns null.

The default value for any array type is the empty array.

Runtime Behavior and API of Property Types

At runtime, each type is represented as instance of the class DataType (sap/ui/base/DataType.js). A
type can be looked up by its name by calling DataType.getType(name). The framework treats all values for
the above types as if they would be atomic. Changes inside a value (e.g. changing the property of a value of
type object or adding, removing, or changing members of an array) are not detected by the framework and
might lead to unexpected results. Instead, any change should be applied by setting a new (or modified) value
with a call like setText, setCaption, setColor.

Related Information

API Reference: sap.ui.base.DataType

Adding Method Implementations

After defining the metadata of a control, you add the method implementation to the control.

The following restrictions apply with regard to the method names:

● Do not use names of methods that are or will be provided by a superclass. Due to inheritance, your
implementation would overwrite the implementation of the superclass.

● Names starting with set.../get.../insert.../add.../remove.../indexOf.../destroy...
shall not be used because they may collide with setters/getters for properties or aggregations that are
defned explicitely or by a superclass.

2194 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.base.DataType.html

● Names starting with attach.../detach.../fire may collide with methods created for events.

The following method names have a specific meaning and should be used accordingly:

● on...: Used for event handlers that are automatically bound to browser events
● init: Used for the initialization function that is called after control instantiation
● renderer: Used for the function that creates the control's HTML

 Note
Any method in your inheriting control overrides methods with the same name in the superclass. If, for
example, your control implements the init() method, the init() of the superclass will no longer be
executed. The control is then no longer properly initialized and this typically causes an error. To avoid
breaking the control, call the superclass method.

Consider also that the superclass might implement the method later on, or removes its own method
implementation because it is not needed anymore. We recommend that you check for the existence of the
superclass method before calling it:

 sap.ui.somelib.SomeControl.extend("my.OwnControl", {
 ...
 init: function() {
 if (sap.ui.somelib.SomeControl.prototype.init) { // check
whether superclass implements the method
 sap.ui.somelib.SomeControl.prototype.init.apply(this,
arguments); // call the method with the original arguments
 }
 //... do any further initialization of your subclass... }

 Note
When you modify the HTML of a control using the code in the control behavior file, make sure to escape any
unchecked data you write with jQuery.sap.encodeHTML(...) to prevent cross-site-scripting issues. For
more information, see Cross-Site Scripting [page 1475].

Normal Methods

Normal or public methods comprise all methods that do not belong to one of the special method types.

All methods are appended to the implementation object. Private methods are identified by a name starting
with an underscore and must not be called from outside the control. The following code snippet is an example
for the public method divide that calls the private helper method _checkForZero within the control:

 divide: function(x, y) { // a public method of the Control
 if (this._checkForZero(y)) {
 throw new Error("Second parameter may not be zero");
 }
 return x / y;
 },
 _checkForZero: function(y) { // private helper method
 if (y === 0) {
 return true;
 }
 return false;

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2195

 }

init() Method

The init() method can be used to set up, for example, internal variables or subcontrols of a composite
control.

If the init() method is implemented, SAPUI5 invokes the method for each control instance directly after the
constructor method.

 Note
Values that are given in the constructor method are not yet available in the init method. This is to
prevent that a control only works when the values are set initially, but not when the values are changed.

The init method is considered a private method that must only be called by the SAPUI5 core.

 init: function() { this._bSearchHasBeenTriggered = false;
 this._oSearchButton = new sap.m.Button(this.getId() + "-searchBtn", {text:
"Search"}); }

 Note
Any method in your inheriting control overrides methods with the same name in the superclass. If, for
example, your control implements the init() method, the init() of the superclass will no longer be
executed. The control is then no longer properly initialized and this typically causes an error. To avoid
breaking the control, call the superclass method.

Consider also that the superclass might implement the method later on, or removes its own method
implementation because it is not needed anymore. We recommend that you check for the existence of the
superclass method before calling it:

 sap.ui.somelib.SomeControl.extend("my.OwnControl", {
 ...
 init: function() {
 if (sap.ui.somelib.SomeControl.prototype.init) { // check
whether superclass implements the method
 sap.ui.somelib.SomeControl.prototype.init.apply(this,
arguments); // call the method with the original arguments
 }
 //... do any further initialization of your subclass... }

exit() Method

The exit() method is used to clean up resources and to deregister event handlers.

If the exit() method is implemented, SAPUI5 core invokes the method for each control instance when it is
destroyed.

2196 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Note
Any method in your inheriting control overrides methods with the same name in the superclass. If, for
example, your control implements the init() method, the init() of the superclass will no longer be
executed. The control is then no longer properly initialized and this typically causes an error. To avoid
breaking the control, call the superclass method.

Consider also that the superclass might implement the method later on, or removes its own method
implementation because it is not needed anymore. We recommend that you check for the existence of the
superclass method before calling it:

 sap.ui.somelib.SomeControl.extend("my.OwnControl", {
 ...
 init: function() {
 if (sap.ui.somelib.SomeControl.prototype.init) { // check
whether superclass implements the method
 sap.ui.somelib.SomeControl.prototype.init.apply(this,
arguments); // call the method with the original arguments
 }
 //... do any further initialization of your subclass... }

Event Handler Methods

Event handler methods are invoked when an event occurs. Method names starting with on are reserved for
event handler methods.

For common events, such as click or keydown, it is sufficient to add a handler method. These events are
defined in the module sap/ui/events/ControlEventsAs. As SAPUI5 core automatically registers browser
event handlers for these methods, they are called automatically. SAPUI5 core also fires events with a richer
semantic meaning, so that control developers do not need to check various keycodes.

onclick: function(oEvent) { alert("Control " + this.getId() + " was clicked."); }

Internally used events, which start with "sap", are defined in the sap/ui/events/PseudoEvent module. An
example is the sapnext event, which is triggered by "arrow down" or "arrow right" (or "arrow left" in right-to-
left mode). The sapnext event performs all checks that are required to check whether the user wants to
navigate to the next item. The event object that is passed to the handler method contains more information.
These methods are private methods and must only be called by SAPUI5 core.

onsapnext: function(events) { // navigate to next item, an arrow key was pressed }

Related Information

API Reference: ControlEvents

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2197

https://sapui5.hana.ondemand.com/#/api/module%3Asap%2Fui%2Fevents%2FControlEvents

API Reference: PseudoEvents

Browser Events

To react to browser events, a control needs to register for the event either explicitly, or by implementing the
event handler.

SAPUI5 applications can have the following two event types:

● Browser events: These events are fired by the browser; examples for browser events are click and blur.
● Control events: These events are fired by SAPUI5 controls. They contain more semantic information than

browser events and relate to the control functionality. An example for a control event is when a browser's a
click event on an icon in a panel header that triggers a maximize or minimize event of the control.

To register browser events explicitly for certain DOM elements, use either jQuery.bind() or the respective
browser methods, such as addEventListener and register the event in the onAfterRendering method of
the control. This ensures that the event binding is repeated after the control is rerendered, meaning that new
DOM elements are created and old DOM elements are discarded. The event binding must be removed in the
onBeforeRendering and exit methods by using jQuery.unbind() to prevent memory leaks. The exit
method is called before the control is destroyed.

The explicit registering for browser events enables you to handle any type of browser event and works exactly
the same way as in web pages or jQuery-based web applications. On the other hand side, it requires some
coding to do the binding and unbinding of the event handler and registering many event handlers can affect the
performance.

Example for explicit registration of browser events:

MyControl.prototype.onAfterRendering = function() { this.$().bind("click", this.handleClick.bind(this));
}
MyControl.prototype.onBeforeRendering = function() {
 this.$().unbind("click", this.handleClick);
}
MyControl.prototype.exit = function() {
 this.$().unbind("click", this.handleClick);
}
MyControl.prototype.handleClick = function(oEvent) {
 // do something... }

Instead of explicitly registering for browser events, you can implement the event handler directly for certain
common event types by using a naming convention for the handler method. SAPUI5 automatically registers
event handlers for a list of commonly used event types on the root element of a complete tree of SAPUI5
controls. For more information about these event types, see the sap.ui.events.ControlEvents in the API
Reference. If the respective event occurs at any position in the tree and the respective control implements the
on<eventName> method, this method is invoked as if it had been registered with jQuery.bind().

The event handler implementation requires less code, reduces the number of event handler registrations in the
DOM and also reduces the number of event handler registrations and deregistrations that are executed on
every rerendering action. On the other hand, this option is only available for specific events.

Example for registering the event handler directly:

2198 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/module%3Asap%2Fui%2Fevents%2FPseudoEvents.events
https://sapui5.hana.ondemand.com/#/api/sap.ui.events

MyControl.prototype.onclick = function(oEvent) {
 // do something... }

SAPUI5 also provides so-called pseudo events. Pseudo events are semantically enriched and can be handled by
just implementing an on<eventName> method. They cannot be used with jQuery.bind(). By using pseudo
events, you avoid additional checks for modifier keys in the event handler or for certain keycodes. For a list of
Pseudo Events, see jQuery.sap.PseudoEvents.

Mobile Events

In addition to the general browser and control events you can access specific events for touch-enabled devices.

When implementing SAPUI5 controls, some browser events can be handled very easily by implementing a
method named on<eventName>, so all the bind/unbind effort is avoided. This is equally possible on mobile.

On touch-enabled platforms additional browser and pseudo events are available:

Additional Mobile Browser Events

On touch-enabled platforms the following events are also provided within UI5 controls to be handled in
on<eventName> methods:

● touchstart
● touchend
● touchmove
● touchcancel

Additional Mobile Pseudo Events

jQuery mobile event handling is used in SAPUI5 when running on touch-enabled devices. From the basic
browser events it creates semantically richer events. Some of them are also provided automatically in SAPUI5
controls:

● swipe
● tap
● swipeleft
● swiperight
● scrollstart
● scrollstop

For more information, see jQuery mobile .

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2199

https://sapui5.hana.ondemand.com/#docs/api/symbols/jQuery.sap.PseudoEvents.html
http://help.sap.com/disclaimer?site=http%3A%2F%2Fapi.jquerymobile.com%2F

Windows 8

With Microsoft Windows 8, new devices are also introduced that allow user interaction with both mouse and
touch. To be able to react to both kind of events, some new functionality was introduced.

For more information, see Windows 8 Support [page 2200]

Simulation of touch events on non-touch platforms

For testing or demonstration purposes, the events listed above can also be simulated on non-touch devices.
When this simulation is enabled, the touch events will also be triggered by mouse interaction.

 Caution
Due to technical constraints the simulation cannot be perfect, so it may not be used productively.

To enable the simulation mode, set the SAPUI5 configuration parameter xx-test-mobile to <true>, for
example by appending the URL parameter sap-ui-xx-test-mobile=true.

Related Information

Event Handler Methods [page 2197]
Browser Events [page 2198]

Windows 8 Support

Devices such as Windows 8 touch-enabled laptops now support both mouse and touch input methods
together. As a control developer you have to take this into consideration.

 Note
SAPUI5 event delegation is adapted and the ontouch or ontap functions on the control prototype are
called on both touch and mouse (exclude the emulated mouse events on touch interfaces) events. This
enables the controls which only uses SAPUI5 event delegation for event handling to work seamlessly on
Windows 8 touch-enabled devices without being changed. So for you as an SAPUI5 application developer
there is no need to change or adapt your applications to support devices that allow input from both mouse
and touch.

When you develop your own controls, then there are some things to consider:

2200 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Background: How SAPUI5 handles events

With the introduction of touch-enabled Window 8 devices, touch is becoming part of the expected desktop
experience. In the past, UI5 statically detected whether the running environment supports touch events. Then
the assumption was made that only touch (and not mouse) events need to be supported. This assumption
became faulty with the emerging of touch-enabled Windows 8 devices. The fact that touch events are
supported doesn't mean that user can't use other input device than touch. Therefore, "support touch" is not
equal to "doesn't need mouse support" anymore. For all these reasons, we don't switch between touch and
mouse - we now just support both of them!

The following figure shows how this is implemented:

A desktop control is defined as a control that listens to mouse events, whereas a mobile control listens to touch
events. To ensure that all events can be received, for mouse events touch simulation events are created and for
touch events mouse simulation events, respectively. So the UI Area, which acts as an event delegate, receives
the correct events. In detail:

● When a mouse event is triggered for a desktop control, it's handed over to the UI area directly.
● When a mouse event is triggered for a mobile control, a touch event is simulated and handed over to the UI

area.
● When a touch event is triggered for a mobile control, it's handed over to the UI area directly.
● When a touch event is triggered for a desktop control, a mouse event is simulated and handed over to the

UI area.
● Some browsers send a delayed mouse event after a touch event, this is just ignored.

So it is ensured that all events can be handled and no event is triggered twice.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2201

Support mouse and touch events together

Touch interfaces try to emulate mouse and click events obviously because touch interfaces need to work with
applications that have only interacted with mouse events before. This means for a single tap on touch
interfaces, the following events are fired in the written order:

1. touchstart
2. touchend
3. mousedown
4. mouseup
5. click

If we support mouse and touch together, the event handler is called twice for a single tap because there are
touchstart and mousedown fired by the browser. Fortunately, we have found a way to set a flag on the emulated
mouse events from touch interfaces and suppress those events when they reach the event handler.

Related Information

Adapting Event Handling to Support Windows 8 Devices [page 2203]
Device-specific Behavior of Controls [page 2206]
Windows 8 Support - Known Issues [page 2202]

Windows 8 Support - Known Issues

Information regarding known issues with regard to Windows 8 support.

Firefox doesn't simulate mouse events correctly for touch input method

Firefox currently only fires mouse events on Windows 8 for both touch and mouse input methods. When a
touch input method is used to perform a single tap, all of the mouse events aren't fired until the touch input is
released from the screen. This causes an issue that all UI updates between mousedown and mouseup events
can't be reflected on the UI because UI Tray doesn't get the chance to update. For example, a blue color should
be shown when button is tapped and set back to the normal color after tap. This blue color can't be seen on
Firefox because the setting and resetting of blue color are executed in a row and UI Tray doesn't have the time
to reflect the blue color.

A fix is only available in the beta version of Mozilla Firefox. Here you can start Firefox in Windows 8 metro mode
in which touch events are fired instead of mouse events when touch input method is used.

In the desktop mode of Firefox, touch event support is off and can be turned on only by modifying the
dom.w3c_touch_events.enabled parameter.

2202 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

More Information

● Mozilla Firefox Beta version
● Mozilla Support: How do I launch Firefox for Windows 8 Touch?
● Mozilla Firefox - Touch events

Adapting Event Handling to Support Windows 8 Devices

SAPUI5 event delegation automatically handles both mouse and touch events simultaneously. If you are using
jQuery or native browser API (domElement.addEventListener) to handle events, you have to adapt your
coding to support both.

Context

In addition, emulated mouse events shouldn't be handled otherwise the event handler is called twice for the
touch. This can be achieved by checking the flag (_sapui_delayedMouseEvent) we set to the emulated
mouse events. We have extended the jQuery.Event object with isMarked function for checking UI5 specific
flags on the real event object. The sapui prefix is already considered within the isMarked function so only
the semantic part needs to be passed into the function (for example, for checking if the flag
_sapui_delayedMouseEvent is marked, simply call isMark (delayedMouseEvent)). But when event
handler is bound using browser API like addEventListener, flag needs to be checked by using the full flag
name since there's no isMarked function on the browser event object.

In most of the cases, the event handler was bound by checking if touch is supported, like the code below:

// "Device" required from module "sap/ui/Device" jQuery(document).on(Device.support.touch ? "touchmove" : "mousemove",
function(oEvent) {
 });

Procedure

1. Since both mouse and touch should be supported, the code needs to be changed as follows.

○ When using jQuery:

 jQuery(document).on("touchmove mousemove", function(oEvent) {
 if (oEvent.isMarked("delayedMouseEvent")) {
 // Suppress the emulated mouse event from touch interface
 return;
 }
 });

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2203

http://help.sap.com/disclaimer?site=http%3A%2F%2Fwww.mozilla.org%2Fen-US%2Ffirefox%2Fbeta%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fsupport.mozilla.org%2Fen-US%2Fkb%2Fhow-do-i-launch-firefox-windows-8-touch
http://help.sap.com/disclaimer?site=https%3A%2F%2Fdeveloper.mozilla.org%2Fen-US%2Fdocs%2FWeb%2FGuide%2FEvents%2FTouch_events

○ When using native browser event listeners:

 var fnHandler = function (oEvent) { if (oEvent .
_sapui_delayedMouseEvent) { // Suppress the emulated mouse event from
touch interface
 return ; } };
document . addEventListener ("touchmove" , fnHandler); document . addEventListener ("mousemove" , fnHandler);

2. Same should be applied for the all touch and mouse event pairs when the events are needed:

○ touchstart and mousedown
○ touchmove and mousemove
○ touchend, touchcancel and mouseup

Example

We have also adapted some controls within sap.m for Windows 8 support. Let's take sap/m/
RatingIndicator as an example. User can drag the rating indicator to change the rating value. This is
implemented by registering to touchmove or mousemove event in ontouchstart function and deregister
from touchmove or mousemove by listening to touchend, touchcancel or mouseup.

Before the adaptation, code was:

// "RatingIndicator" defined in module "sap/m/RatingIndicator" // "Device" required from module "sap/ui/Device"
RatingIndicator.prototype.ontouchstart = function(oEvent) {
 if (this.getEnabled()) {

 if (!this._touchEndProxy) {
 this._touchEndProxy = jQuery.proxy(this._ontouchend, this);
 }
 if (!this._touchMoveProxy) {
 this._touchMoveProxy = jQuery.proxy(this._ontouchmove, this);
 }
 // here also bound to the mouseup mousemove event to enable it working in
 // desktop browsers
 if (Device.support.touch) {
 jQuery(window.document).on("touchend touchcancel",
this._touchEndProxy);
 jQuery(window.document).on("touchmove", this._touchMoveProxy);
 } else {
 jQuery(window.document).on("mouseup", this._touchEndProxy);
 jQuery(window.document).on("mousemove", this._touchMoveProxy);
 }

 }
};
RatingIndicator.prototype._ontouchmove = function(oEvent) {

};
RatingIndicator.prototype._ontouchend = function(oEvent) {
 if (this.getEnabled()) {

 if (Device.support.touch) {
 jQuery(window.document).off("touchend touchcancel",
this._touchEndProxy);
 jQuery(window.document).off("touchmove", this._touchMoveProxy);
 } else {
 jQuery(window.document).off("mouseup", this._touchEndProxy);

2204 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 jQuery(window.document).off("mousemove", this._touchMoveProxy);
 }

 } };

After the code adaptation:

// "RatingIndicator" defined in module "sap/m/RatingIndicator" // "Device" required from module "sap/ui/Device"
RatingIndicator.prototype.ontouchstart = function (oEvent) {
 if (this.getEnabled()) {

 if (!this._touchEndProxy) {
 this._touchEndProxy = jQuery.proxy(this._ontouchend, this);
 }
 if (!this._touchMoveProxy) {
 this._touchMoveProxy = jQuery.proxy(this._ontouchmove, this);
 }
 // The if (Device.support.touch) is removed and both mouse and touch
events are supported always
 jQuery(window.document).on("touchend touchcancel mouseup",
this._touchEndProxy);
 jQuery(window.document).on("touchmove mousemove", this._touchMoveProxy);

 }
};
RatingIndicator.prototype._ontouchmove = function (oEvent) {
 // Check the _sapui_delayedMouseEvent flag for the emulated mouse event from
touch interface
 if (oEvent.isMarked("delayedMouseEvent")) {
 return;
 }

};
RatingIndicator.prototype._ontouchend = function (oEvent) {
 // Check the _sapui_delayedMouseEvent flag for the emulated mouse event from
touch interface
 if (oEvent.isMarked("delayedMouseEvent")) {
 return;
 }

 if (this.getEnabled()) {

 // The if (Device.support.touch) is removed, just deregister from every
event
 jQuery(window.document).off("touchend touchcancel mouseup",
this._touchEndProxy);
 jQuery(window.document).off("touchmove mousemove", this._touchMoveProxy);

 } };

Renderer Methods
The renderer method is responsible for creating the HTML structure for the control.

The renderer method is a static method, so no this keyword is available, but a control instance and a
RenderManager instance are given to the method. The RenderManager collects and concatenates string
fragments and places them in the DOM at the appropriate position.

renderer: function(oRM, oControl) {

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2205

 oRM.write("<div>", oControl.getText(), "</div>"); }

A control must have exactly one HTML element as a root node, additional elements may be added below this
node. oRM.writeControlData(oControl); must be called while the root node is written. Thus, the root
element can be marked as SAPUI5 control root and the ID of the control is written. Also,
oRM.writeClasses(); must be called in the root element of the control, in order to enable support of
addStyleClass() for the control.

A new renderer type inherits from the renderer of the parent control. If a control extends, for example, the
InputBase control, the function is added to a class that inherits from sap.m.InputBaseRenderer and can
access the respective functions.

sap.ui.define(['sap/ui/core/Renderer', 'sap/m/InputBaseRenderer'], function(Renderer, InputBaseRenderer) {
 "use strict";

 var CustomInputRenderer = Renderer.extend(InputBaseRenderer);
 ...
 return CustomInputRenderer;
}, /* bExport= */ true);

If an existing renderer is used without modification, you can use the name of the respective renderer class:

renderer: "sap.m.ButtonRenderer"

A control renderer can also override or implement methods from the renderer superclass. And it can separate
out helper functions.

This is shown in the following example. Note that the methods need to be packed together into an object to
indicate that they all go into the control renderer. The main rendering method is called render. The this
keyword refers to the control renderer type and is used to access the other methods:

 renderer: {
 render: function(oRM, oControl) {
 oRM.write("<div>");
 oRM.writeEscaped(this.square(oControl.getValue()));
 oRM.write("</div>");
 },
 square: function(value) {
 return value * value;
 } }

Device-specific Behavior of Controls

Some controls have different behaviors between running on different device types (mobile, desktop, tablet).

For example, the sap.m.Carousel control shows the left and right navigation buttons in addition to gesture
only when it runs on desktop. The distinction between desktop and mobile behaviors should be done by
checking sap.ui.Device.system.desktop but NOT sap.ui.Device.support.touch because desktop
browser can also support touch, for example Windows 8 touch-enabled device.

A property combi is provided in sap.ui.Device.support with which you can tell that the browser supports
both touch and mouse interfaces.

2206 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Not all browser on Windows 8 touch-enabled device support touch events. Some browser fires mouse events
when user operates with finger. Since those mouse events are not marked with
_sapui_delayedMouseEvents, they can still be handled with SAPUI5 event delegation and the registered
handler.

Examples for Creating and Extending Controls

Examples how to create and extend controls in SAPUI5.

To create a new control type, you extend the sap.ui.core.Control class, and define the control API and the
implementation from scratch.

Creating a Simple Control

Example of a simple control with a name property

The control is used to render the text "Hello <name>":

// "Control" required from "sap/ui/core/Control" Control.extend("my.Hello", { // call the new Control type
"my.Hello"
 // and let it inherit from
sap.ui.core.Control
 metadata : { // the Control API
 properties : {
 "name" : "string" // setter and getter are created
behind the scenes,
 // including data binding and type
validation
 }
 },
 renderer : {
 apiVersion: 2, // see 'Renderer Methods' for an
explanation of this flag
 render: function(oRm, oControl) { // the part creating the HTML
 oRm.openStart("span", oControl).openEnd();
 oRm.text("Hello " + oControl.getName()); // write the Control
property 'name', with automatic XSS protection
 oRm.close("span");
 }
 } });

The new control is ready for use now. To instantiate and display the control, use the following code:

 new my.Hello({name:"UI5"}).placeAt("content");

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2207

Creating a Simple Square Control

Example of a simple Square control that is rendered as a red square with text inside that pops up an alert when
clicked

 // "Control" required from "sap/ui/core/Control"
var Square = Control.extend("my.Square", { // call the new Control type
"my.Square" and let it inherit
 // from sap.ui.core.Control
 // the Control API:
 metadata : {
 properties : { // setter and getter are created behind the
scenes,
 // incl. data binding and type validation
 "text" : "string", // in simple cases, just define the type
 "size" : {type: "sap.ui.core.CSSSize", defaultValue: "200px"}
 // you can also give a default value and more
 }
 },

 // the part creating the HTML:
 renderer : {
 // instead of "this" in the
render function
 oRm.openStart("div", oControl); // creates the root element incl.
the Control ID and enables event handling - important!
 oRm.style("width", oControl.getSize()); // write the Control
property size; the Control has validated it to be a CSS size
 oRm.style("height", oControl.getSize());
 oRm.class("mySquare"); // add a CSS class for styles
common to all Control instances
 oRm.openEnd(); // this call writes the above
class plus enables support
 // for Square.addStyleClass(...)
 oRm.text(oControl.getText()); // write another Control
property, with protection against cross-site-scripting
 oRm.close("div");
 }
 },
 // an event handler:
 onclick : function(evt) { // is called when the Control's area is
clicked - no event registration required
 alert("Control clicked! Text of the Control is:\n" + this.getText());
 } });

The information for the visual appearance can be written to the control HTML in the render method in the
same way as the instance-specific width and height. We recommend, however, to define style information that
is common to all control instances in a CSS file or in a <style> tag. Thus, it is only written once and can be
easily modified by the application.

In general, however, when controls need their own CSS and are also supposed to participate in the theming
concept, it is recommended not to use on-the-fly controls, but to create real control libraries. Those take care
of loading the CSS, providing right-to-left support, and so on.

To add a grey background, a red border and some alignment information, use the following code:

 <style>
 .mySquare { /* style the CSS class that has been written by
the renderer method */
 display: inline-block; /* enable squares to appear next to each other
within one line */

2208 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 border: 1px solid red; /* add some border, so the square can actually
be seen */
 background-color: #ddd;
 padding: 8px;
 text-align: center;
 -moz-box-sizing: border-box; /* consider padding+border part of the
width/height */
 box-sizing: border-box;
 } </style>

This custom control can now be used like any SAPUI5 control:

 // "Square" required from "my/Square"
var myControl = new Square({text:"Hello", size: "100px"}); myControl.placeAt("content");

Creating a Simple Container Control

Example of a container control with arbitrary child controls that are rendered in a row and a colored box around
each child

sap.ui.core.Control.extend("ColorBoxContainer", { // call the new Control type
"ColorBoxContainer" // and let it inherit from sap.ui.core.Control
 // the Control API:
 metadata : {
 properties : { // setter and getter are created behind the
scenes,
 // incl. data binding and type validation
 "boxColor" : "string" // the color to use for the frame around each
child Control
 },
 aggregations: {
 content: {singularName: "content"} // default type is
"sap.ui.core.Control", multiple is "true"
 }
 },
 // the part creating the HTML:
 renderer : function(oRm, oControl) { // static function, so use the given
"oControl" instance
 // instead of "this" in the renderer function
 oRm.write("<div");
 oRm.writeControlData(oControl); // writes the Control ID and enables
event handling - important!
 oRm.writeClasses(); // there is no class to write, but this
enables
 // support for
ColorBoxContainer.addStyleClass(...)
 oRm.write(">");
 var aChildren = oControl.getContent();
 for (var i = 0; i < aChildren.length; i++) { // loop over all child
Controls,
 // render the colored box around them
 oRm.write("<div");
 oRm.addStyle("display", "inline-block");
 oRm.addStyle("border", "3px solid " + oControl.getBoxColor()); //
specify the border around the child
 oRm.writeStyles();
 oRm.write(">");
 oRm.renderControl(aChildren[i]); // render the child Control

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2209

 // (could even be a big Control
tree, but you don't need to care)
 oRm.write("</div>"); // end of the box around the respective child
 }
 oRm.write("</div>"); // end of the complete Control
 } });

As the control itself has no appearance, no additional CSS is required.

You can use this container control like any SAPUI5 container:

var oButton = new sap.m.Button({text:'Hello World'}); var oInput = new sap.m.Input({placeholder:'edit text here'});
var container = new ColorBoxContainer({
 boxColor: "#ff7700",
 content:[
 oButton,
 oInput
]}); container.placeAt('content');

Extending Buttons with Additional Events

Example of a button control that is extended with additional events.

To create a HoverButton control, that is, a button that fires a hover event when the mouse enters its area,
use the following code:

sap.m.Button.extend("HoverButton", { // call the new Control type "HoverButton" // and let it inherit from
sap.m.Button
 metadata: {
 events: {
 "hover" : {} // this Button has also a "hover" event, in addition
to "press" of the normal Button
 }
 },

 // the hover event handler:
 onmouseover : function(evt) { // is called when the Button is hovered -
no event registration required
 this.fireHover();
 },
 renderer: {} // add nothing, just inherit the ButtonRenderer as is;
 // In this case (since the renderer is not changed) you could
also specify this explicitly with: renderer:"sap.m.ButtonRenderer"
 // (means you reuse the ButtonRenderer instead of creating a
new view });

The HoverButton control is used in the application in the same way as a regular button. The following code
snippet shows how to attach a handler to the hover event:

 var myControl = new HoverButton("myBtn", {
 text: "Hover Me",
 hover: function(evt) {
 alert("Button " + evt.getSource().getId() + " was hovered.");
 }

2210 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 }); myControl.placeAt("content");

Extending Input Rendering

Example of an Input control with changed rendering.

The following code snippet creates a control type that inherits from sap.m.Input. The new control has all
features from the Input control, but the rendering is changed to be highlighted with yellow background.

The control API and the render method can be inherited as it is and the renderInnerAttributes method of
the InputRenderer is overwritten:

 sap.m.Input.extend("HighlightInput", {// call the new Control type
"HighlightInput"
 // and let it inherit from sap.m.Input
 renderer: {
 // note that no render() function is given here. The Input's
render() function is used.
 // But one function is overwritten:
 writeInnerAttributes : function(oRm, oInput) {
 sap.m.InputRenderer.writeInnerAttributes.apply(this,
arguments); // the default method should be called
 // this
will make sure that all default input attributes will be there
 oRm.addStyle('background-color', '#ffff00'); // this change
could also be done with plain CSS.
 // But you get the
idea...
 }
 } });

The HighlightInput control can be used in an application in the same way as Input:

 var myControl = new HighlightInput({value:"Highlighted editing"}); myControl.placeAt("content");

Writing a Control Renderer

SAPUI5 provides three classes for control rendering: sap.ui.core.Control,
sap.ui.core.RenderManager, and sap.ui.core.Renderer.

Control Class (sap.ui.core.Control)

The control class contains the control for rendering. A control consists of properties, events, aggregations,
associations, and methods. They define the behavior of the control. The appearance and data of the control is

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2211

determined by properties, associations, and aggregations. The get... methods of the control are used to
access this information during the execution of the render() method:

● Accessing properties:

 // var oValue = oControl.get<Property>();
// for example for the 'text'-property var oValue = oControl.getText();

● Accessing 1..1 aggregations

 // var oAggregation = oControl.get<Aggregation>();
// for example for content-aggregation var oAggregation = oControl.getContent();

● Accessing 1..n aggregrations:

 // var aAggregations = oControl.get<Aggregation>s();
// for example for rows-aggregation var aAggregations = oControl.getRows();

● Accessing associations:

 // var sAssociatedControlId = oControl.get<Association>();
// for example labelFor-association var sAssociatedControlId = oControl.getLabelFor();

RenderManager Class (sap.ui.core.RenderManager)

The render manager class collects pieces of HTML and injects the generated markup into the DOM. The
RenderManager determines and loads the corresponding renderer and delegates the control rendering to the
renderer. The RenderManager also provides, amongst others, the following helper functions for rendering:

Method Description

write() Writes string information to the HTML

writeControlData() Writes the ID and the recognition data of the control to the
HTML

renderControl() Converts the specified control into HTML representation
and adds it to the HTML; used for rendering child controls

For more information, see sap.ui.core.RenderManager.

Renderer Class (sap.ui.core.Renderer)

The renderer class is the base class for control renderers. The Renderer implements the static render
method that is called when a control is added to the DOM. To render a control, the RenderManager executes
the render method on the corresponding Renderer of the respective control and passes the reference to
itself and to the control.

For notepad controls, the renderer class is normally not directly used, the "renderer" method is directly part of
the control implementation and will be added to a renderer class behind the scenes.

2212 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.RenderManager.html

Related Information

Prevention of Cross-site Scripting [page 2213]

Prevention of Cross-site Scripting

Cross-site scripting (XSS) can be prevented by ensuring that it is not possible to inject script code into an
application page that runs in a browser.

Controls must prohibit writing scripts to the page that comes from the application or from business data saved
by a different user. To ensure this, the following two measures must be combined:

● Validation of typed control properties
SAPUI5 core validates the value of properties set by the application against the type of the property. This
guarantees that an int is always an int, and a sap/ui/core/library.CSSSize is a string representing
a CSS size and does not contain a script tag. This also applies to enumerations and control IDs. The control
renderer can rely on this check when writing the HTML. Property values that are typed in this way can be
written without escaping.

● Escaping
Control developers must ensure that string control properties and other values coming from the
application and not sufficiently typed to rule out script tags being contained are escaped when written to
the HTML. For this, the sap/ui/core/RenderManager and SAPUI5 core provide helper methods.

Avoiding XSS for a New Renderer

To ensure maximum security for a renderer, note the following:

● For control properties, always use the most specific type that is available. For example, use
sap.ui.core.CSSSize instead of string and instead of sap/ui/core/library.string for control
properties that refer to a CSS size.

● Use helper methods from the RenderManager instance (used below as oRenderManager), which is
provided to the render method of the respective renderer to escape the value of a string property that is
written to the HTML:
○ Use oRenderManager.writeEscaped(oControl.getSomeStringProperty() instead of just

write(...) for writing plainly to the HTML.
○ Use oRenderManager.writeAttributeEscaped("someHtmlProperty",

oControl.getSomeStringProperty()) instead of just writeAttribute(...) for writing
attributes.

○ Use sap/base/security/encodeXML for string properties where none of the other two options is
possible to escape the string and then process it further.

● Check your HTML coding whether application values can make their way into the HTML:
○ Check where the variable values come from: Can the application set a value directly or only decide

which of the hardcoded values are used?
○ Escape values given in parameters in method calls of controls because they are currently not validated

by SAPUI5 core.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2213

○ Keep in mind that XSS can happen anywhere and anytime in CSS classes, or in styles.

Related Information

Cross-Site Scripting [page 1475]

Implementing Animation Modes

Some UI elements can have animations like page transitions or dynamic buttons. There may be cases where
the animation has to be suppressed, for example, for performance reasons or for specific users. As a control
developer, you have to make sure that your control supports the animation modes that are offered to the users.

The following animation modes are available:

● full: all animations are shown
● basic: a reduced, more light-weight set of animations
● minimal: no animations are shown, except animations of fundamental functionality
● none: deactivates the animation completely

The animation mode can either be set using the configuration parameter window['sap-ui-config]
['animationMode'] or as URL parameter (see Configuration Options and URL Parameters [page 703]).

The value for the attribute data-sap-ui-animation-mode on the <html> document root element is
injected automatically on loading with the return value by using the getAnimationMode method of the
configuration object.

If the mode is changed, the value of data-sap-ui-animation-mode is updated correspondingly.

The attribute can be selected in CSS with html[data-sap-ui-animation-mode="<mode>"].

 Example
The following implementation defines the duration for animation mode full with 1 sec, minimal and
basic with 0.1 sec, and none with 0.0 sec.

html[data-sap-ui-animation-mode="full"] .someClassName{ transition-duration: 1.0s;
}
html[data-sap-ui-animation-mode="minimal"] .someClassName,
html[data-sap-ui-animation-mode="basic"] .someClassName {
 transition-duration: 0.1s;
}
html[data-sap-ui-animation-mode="none"] .someClassName {
 transition-duration: 0.0s; }

2214 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Related Information

Configuration Options and URL Parameters [page 703]

Implementing Focus Handling

SAPUI5 provides mechanisms for observing the moving focus in an application page for controls. This
information is then preserved for refocusing elements after rerendering. The focus triggers event firing.
However, due to the high degree of flexibility in control rendering, a functionality tailored to the respective
controls is required. For this, the framework provides helper functions for the implementation of focus
handling.

Each control provided by the SAPUI5 framework has its own behavior for focus handling, depending on the
functionality that is provided by the control. Complex controls and their embedded content constitute the
highest level of complexity.

The base class for elements (Element.js) provides the following four methods to support the implementation
of focus handling:

● Element.getFocusDomRef()
Once a visible element is rendered, it has a Document Object Model (DOM) representation. The root DOM
node can be accessed by using the method getDomRef() on the element. The root DOM node is the
default focused DOM node. After rendering, when a control is supposed to be focused, the framework asks
the control for its focus DOM node by using the getFocusDomRef() method. If the root DOM node does
not represent the element that should have the focus, you have to return another DOM node by overriding
the getFocusDomRef() method.

● Element.focus()
The focus() method sets the focus on the element. This is done using the focus DOM node.

● Element.getFocusInfo()
For some controls, it is even more difficult to apply the focus once the control has been rerendered. List
controls, for example, have their own internal focus handling and set the focus on the different items. A
data table moves the focus over a matrix of cells. The requirement is that a control can apply the focus to
its exact previous position after rerendering. In cases where the SAPUI5 rendering mechanism fails to find
the correct element after rendering (for example, because it does not have an ID or the ID changed),
override the getFocusInfo() method and serialize the focus state into a JSON object and return it.
Before rendering, the render manager calls this method for the element instance and stores this
information for future use. After rendering, it calls the applyFocusInfo() method and passes back the
serialized object. This is not only useful for focus information, but also, for example, the exact cursor
position of a TextField control, can be stored in such an object.

● Element.applyFocusInfo(oFocusInfo)
The applyFocusInfo() method applies the focus to the element after rerendering. You use this method
if a different behavior is expected for the element. The default implementation of this method sets the
focus as it is implemented in the focus() method (see above).

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2215

Example

In the following example, the control would usually set the focus on the second child node of its root node. In
this case, simply override the getFocusDomRef() method:

 sap.m.<SampleControl>.getFocusDomRef = function() {
 return this.getDomRef().firstChild.nextSibling; }

Another control generally sets the focus back to the element that previously had the focus. Therefore, it
overrides the methods getFocusInfo and applyFocusInfo.

 sap.m.<SampleControl>.getFocusInfo = function() {
 return {id:this.getId(),idx:this.<myFocusElementIndex>};
}
sap.m.<SampleControl>.applyFocusInfo = function(oFocusInfo) {
 var oDomRef = this.getDomRef();
 if (oDomRef) {
 this.<myFocusElementIndex> = oFocusInfo.idx;
 this.focus();
 } }

API Reference

sap.ui.core.Element.

Related Information

Convenience Functionality [page 2216]

Convenience Functionality

In addition to automatic focus handling, SAPUI5 provides further functions to support focus handling.

Automatic focus handling is provided by the interaction between the render manager and the element
instance. jQuery.sap.focus (defined in jquery.sap.com.js) and
sap.ui.core.Core.getCurrentFocusedControlId provide further functions for focus handling.

Related Information

API Reference: jQuery.sap.focus
API Reference: getCurrentFocusedControlId

2216 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.Element.html
https://sapui5.hana.ondemand.com/#/api/jQuery.sap/methods/jQuery.sap.focus
https://sapui5.hana.ondemand.com/#/api/sap.ui.core.Core/methods/getCurrentFocusedControlId

Item Navigation - Supporting Keyboard Handling in List-like
Controls

The helper class sap.ui.core.delegate.ItemNavigation supports item navigation in lists.

The helper class can be used for keyboard events in controls that need the ability to navigate with arrow keys
over a one- or two-dimensional list of DOM nodes. The delegate hooks into the browser events for arrow up/
down/left/right, page up/down and home/end keys. With a list of DOM nodes provided by the control, it sets
the focus to the relevant DOM node in the list while handling the events.

For item navigation handling, the control has to provide a DOM node that surrounds the DOM nodes of all items
and a list of the DOM nodes of the items. When the control is entered, the initial focus should be set on the
surrounding DOM node. The setCycling method determines whether the focus automatically moves to the
top after the end of the list was reached. To use the page up/down keys, a page size must be set via the
setPageSize method on the delegate.

To specify a preselected item for the delegate, use the setSelectedIndex method. On reentering a control
with a selected item, the method sets the focus on the list item that had been selected before the control was
ended. If no selected index is given, the method sets the focus on the first item when the control is entered
again.

If item navigation has to trigger a control before a focus is set, the BeforeFocus and AfterFocus events can
be used to do, for example, preparation tasks for the controls visibility.

 Note
Using the item navigation does not prevent you from reacting on the events handled by the delegate in your
control.

Integrating Item Navigation

To integrate the item navigation in your control, apply the delegate in the onAfterRendering hook of your
control.

 sap.ui.commons.ListBox.prototype.onAfterRendering = function () {
 //Collect the dom references of the items
 var oFocusRef = this.getDomRef(),
 aRows = oFocusRef.getElementsByTagName("TR"),
 aDomRefs = [];
 for (var i=0;i<aRows.length;i++) {
 aDomRefs.push(aRows[i].firstChild);
 }
 //initialize the delegate and apply it to the control (only once)
 if (!this.oItemNavigation) {
 this.oItemNavigation = new
sap.ui.core.delegate.ItemNavigation();
 this.addDelegate(this.oItemNavigation);
 }
 // After each rendering the delegate needs to be initialized as well.
 //set the root dom node that surrounds the items
 this.oItemNavigation.setRootDomRef(oFocusRef);
 //set the array of dom nodes representing the items.
 this.oItemNavigation.setItemDomRefs(aDomRefs);
 //turn of the cycling

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2217

 this.oItemNavigation.setCycling(false);
 //set the selected index
 this.oItemNavigation.setSelectedIndex(this.getSelectedIndex());
 //set the page size this.oItemNavigation.setPageSize(this.getVisibleItems()); };

After the control is destroyed, ensure that the delegate is correctly removed. Otherwise, memory will leak
because DOM nodes are still referenced by the delegate.

 sap.m.List.prototype.destroy = function() {
 if (this.oItemNavigation) {
 this.removeDelegate(this.oItemNavigation);
 this.oItemNavigation.destroy();
 } };

Right-to-Left Support in Controls

SAPUI5 supports right-to-left directionality (RTL) in controls.

Unicode defines the direction in which a browser arranges characters to form words. CSS 2.1 also provides a
direction property. The dir attribute in HTML overrides the overall direction of blocks and influences the
text alignment, if not set explicitly. The lang attribute does not influence the text direction.

It is possible to use document.dir for text direction. The browser supports it and it can be set in the
bootstrap. The <bdo> tag in HTML is used to control the bidirectional algorithm. This means that the character
order is then not reversed if RTL and LTR words are mixed.

In a nutshell, this means the following:

● Each character inherently belongs to an RTL or LTR script (defined by Unicode). Some characters like
parentheses and dots have no inherent directionality.

● Single words are interpreted by the browser as character sequences with the same directionality. For
these, the browser knows the text direction and handles them as blocks that get their internal text direction
only from the used characters.

● The words themselves are separated by the direction-neutral characters like parentheses, spaces and dots.
This makes it possible for a single sentence to contain words with either directionality.

 Note
This behavior can be overridden by using the <bdo> tag or CSS unicode-bidi:bidi-override.
This is done when the order of characters must follow the base direction regardless of the inherent
character direction.

● The overall direction and how the blocks are put next to each other depends on the base direction of the
whole HTML content.

● The default base direction of HTML is left-to-right (LTR), but can be inverted by setting the attribute
"dir='rtl'", either on the <html> tag or on any sub-region which should have a different base direction.

● This base direction also determines the default text alignment, the order of columns in tables and the
presentation of some direction-neutral characters. For example, opening parentheses are still opening
parentheses when RTL mode is switched.

2218 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

● The algorithm for ordering blocks according to the base direction only covers one level of mixed
directionality. To achieve deeper nesting, spans with a dir attribute can be used to define a sub-context
with a different base direction.

General Algorithm

If SAPUI5 is configured for RTL mode, the SAPUI5 core performs the following steps:

1. dir="rtl" is set on the HTML tag.

 Note
The W3C officially recommends using the HTML attribute instead of the CSS properties as
directionality is determined by content and has nothing to do with the presentation. Another reason is
that CSS properties can be ignored. They also recommend using the <HTML> tag instead of the <BODY>
tag.

2. The respective library-RTL.css files are loaded.
3. The CSS generator includes an RTL flipping algorithm. This algorithm performs the following changes:

○ border-left: is converted to border-right:, padding-left: is converted to padding-
right:, float:left is converted to float:right and so on.

○ All images in the img folder are mirrored. If images don't need to be flipped, you need to manually
provide the correct RTL version of the image in the corresponding folder.

Right-to-Left Support Guidelines for Control Development

SAPUI5 developers have to consider the text directionality when implementing new controls. The following
guidelines explain how this can be done and highlight what you need to focus on.

General Guidelines

You should develop the control as usual, with only left-to-right (LTR) direction in mind.

● You don't need any RTL-specific CSS classes and you shouldn't write RTL-specific styles into a CSS file.
● You shouldn't use CSS properties related to RTL.
● You need to consider the semantics of the control properties. Controls that have directional properties like

left or right need to be changed to begin or end respectively.
● Think about the RTL behavior according to the items below when writing JavaScript code that relates to

positions.

You can find more detailed guidelines and specifics in the Related Information section.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2219

Turning on RTL Mode with the URL Parameter

You can test your control by setting the URL parameter sap-ui-rtl to true. This will display your control in
RTL mode. The automatically converted stylesheets and mirrored images are used, and dir=rtl is set on the
<html> tag.

RTL Mode in Text-Displaying Controls

Languages that have RTL text directionality keep the default directionality of numeric values and texts in LTR
mode. In order to handle these cases, SAPUI5 uses two additional API properties - textDirection and
textAlign. You can find detailed information on how to use these properties in the section Related
Information.

Related Information

API Properties for Right-to-Left Support in Text-Displaying Controls [page 1483]

Programmatic Access to RTL

Some controls need to provide specific coding for right-to-left mode (RTL), for example, because they position
or animate elements programmatically, and not via CSS. To read the SAPUI5 RTL configuration, use the
following function call:

 var bRtl = sap.ui.getCore().getConfiguration().getRTL();

2220 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Troubleshooting Common RTL Issues

The following table outlines some common issues that occur when implementing right-to-left (RTL) support for
SAPUI5 controls and their solutions.

Table 110: RTL Issues and Solutions

Issue Solution

For mirrored images, the mirroring does not show a correct
RTL image, or animations are removed from GIF images
when mirroring.

Create the correct RTL version of the image manually and
put it into the img-RTL folder, using the same name and
path. In most cases, this means just copying the original LTR
image. In rare cases, an image may have some content that
needs mirroring and other content that does not. In this
case, the graphic needs to be adapted manually.

Image mirroring is only supported for GIF, PNG and JPEG im
ages. Other types like .cur, .ico and .svg are not supported.

Create the correct RTL version of the image manually and
put it into the img-RTL folder, using the same name and
path.

The background position in CSS is correctly mirrored, but
the LTR version of the control works fine with the default
background position: left top. This is not explicitly writ
ten in the CSS and is therefore not mirrored.

Specify the background position explicitly to display the RTL
version correctly.

Text is incorrectly aligned because the CSS text-align
property is not converted.

Do not use text-align:left if you want the text to
change sides in RTL mode, but use text-align:start
instead. start and end are handled automatically by the
browser. Only use right and left if you want the text to
stay on the same side in RTL mode.

 Caution
start and end are not supported by Internet Explorer
9, 10 and 11. These browser versions use the default
alignment, which is the same as begin. You need to
add specific rules for the LTR and RTL case that specify
right and left respectively. For example, for align
ment to end:

 Sample Code

html[data-sap-ui-
browser^=ie] .sapUiTableEndAlig
n{text-align: right;} html[dir=rtl][data-sap-ui-
browser^=ie] .sapUiTableEndAlig
n{text-align: left;}

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2221

Issue Solution

If style is set using JavaScript (for example, in the renderer
or behavior of a control), the conversion does not take place
and the result looks incorrect.

Consider the RTL mode in your calculations, or when possi
ble, use the CSS file instead (which is automatically handled)
and write a CSS class.

The alignment of popups with the parent element is unaf
fected by RTL mode and is therefore often incorrect.

sap.ui.core.Popup.Dock has been extended by add
ing Begin* and"End*. Those will change sides in RTL
mode. Use these instead of Left* and Right* if the
popup alignment should change sides.

When JavaScript calculations are used to determine posi
tions or dimensions, existing implementations might imply
LTR mode and result in an incorrect layout.

Make these algorithms RTL-compliant by checking the SA
PUI5 RTL configuration.

Some text elements inside the control may look incorrect,
for instance parentheses may be shown in the wrong posi
tion, pointing to the wrong direction. For example (very)
short text might be rendered as very) short text) in RTL
mode.

This is a result of the browser's bidi algorithm considering
the directionality of the characters used. As soon as there is
LTR text in the control, the parentheses will be fine again. For
controls that have mixed contents, see API Properties for
Right-to-Left Support in Text-Displaying Controls [page
1483]

When images are added as CSS generated content
(with :before or :after selector), Internet Explorer 9
and 10 automatically mirror the image. Double-mirroring re
sults in an incorrectly mirrored image.

The LTR image needs to be provided without mirroring (use
html[dir=rtl] and the respective browser selector).

When a control has a textAlign property (or something
similar), you need to use additional API properties to ensure
the correct alignment of the text according to the direction
ality.

Use the API Properties for Right-to-Left Support in Text-Dis
playing Controls [page 1483] .

Additionally, the static helper method
sap.ui.core.Renderer.getTextAlign(oTextA
lign, oTextDirection) is available. This method cal
culates the effective value of the CSS text-align prop
erty considering the property setting and the current or
given RTL mode.

Defining Groups for Fast Navigation (F6)

Adjacent controls within the tab chain can be grouped. Within such a group, F6 skips all controls of the group
and moves the focus to the first control in the tab chain of the next group. Shift + F6 moves the focus to the
first control of the previous group. Adjacent tab chain elements between groups are automatically handled as
one group. For nested groups, the most concrete group is used.

Basically, an F6 group is defined via the attribute data-sap-ui-fastnavgroup="true" on a DOM element.
Several options exist to implement fast navigation support in controls.

2222 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Note
We recommend that you do not provide fast navigation support for small controls such as Button or
InputField. The fast navigation feature is intended for large, more complex controls containing multiple
"tab-able" elements to enable the user to quickly jump over controls if needed.

Defining an F6 Group on Control or Element Root Level

This is the preferred option and can be used for many use cases. If a control or an element with a DOM
representation wants to define an F6 group on its root element, use the CustomData mechanism in the init
function of the control or element to set the attribute.

init = function(){ //...
 this.data("sap-ui-fastnavgroup", "true", true/*Write into DOM*/);
 //...
};

The RenderManager writes the attribute automatically during rendering when the openStart method is
called (new rendering API) or when the writeControlData or writeElementData is called (legacy
rendering API). The application can also change the custom data if desired.

Defining the F6 Group Within a Control

During rendering of a control, the attribute can also be written to any arbitrary DOM element of the control.

 // assuming a renderer that uses the new rendering API
render = function(oRm, oControl){
 //...
 oRm.attr("data-sap-ui-fastnavgroup", "true");
 //...
};

 Note
In this case it is difficult for an application to adapt the behavior.

Custom F6 Handling

It may be necessary that a control has to provide a custom fast navigation handling, for example, if the DOM
structure of the control does not allow to define suitable navigation groups with one of the options described
above. The following picture shows how the central fast navigation handling (a) outside the control collaborates
with the custom handling inside the control.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2223

To implement custom fast navigation handling, start with flagging the control as a custom handling area:

render = function(oRm, oControl){ //...
 oRm.openStart("div", oControl);
 oRm.attr("data-sap-ui-customfastnavgroup", "true"); //Attribute must be on the
root element of the control.
 //...
};

To implement the custom F6 behavior within the control (d), use the event handlers onsapskipforward
(F6) and onsapskipback (Shift + F6). When preventDefault is called on the provided event, the
central fast navigation handling ignores the event.

2224 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

The interesting point is the collaboration (b, c) between the control and the central fast navigation handling.

onsapskipforward = function(oEvent){ //F6 var oTarget = findNextDomRefToFocus(oEvent.target); //Search for the next DOM
element within the control which should be focused.
 if(!oTarget){
 //target is in the last group -> focus should jump to the first group after
the control (done by the central handling, preventDefault not called)
 }else{
 oEvent.preventDefault();
 oTarget.focus();
 }
};
onsapskipback = function(oEvent){ //Shift+F6
 var oTarget = findPreviousDomRefToFocus(oEvent.target); //Search for the
previous DOM element within the control which should be focused.
 if (!oTarget) {
 //target is in the first group -> focus should jump to the first group
before the control (done by the central handling, preventDefault not called)
 } else {
 oEvent.preventDefault();
 oTarget.focus();
 }
};

If the focus resides within the control and jumps out of the control (b) when pressing F6 or Shift + F6 , the
onsapskipforward and onsapskipback events should not be handled (no preventDefault call).

If the focus resides outside the control and the central fast navigation handling calculates a target to focus
within the control, the central handling first calls the event handler onBeforeFastNavigationFocus (if
available) on the control (c1, c2) that is flagged as a custom handling area. The provided event has the following
attributes:

● target: Specifies the DOM element that the central handling tries to focus within the custom handling
area

● source: Specifies the DOM element which is the starting point for the calculation of the next/previous
element to focus; this is usually the element that is currently focused

● forward: Specifies whether forward (F6) or backward (Shift + F6) navigation is used

If preventDefault is called on BeforeFastNavigationFocus, setting the focus on the target by the central
handling is skipped.

onBeforeFastNavigationFocus = function(oEvent) { var oTarget;
 if (jQuery.contains(this.getDomRef(), oEvent.source)) {
 //The source is within the custom area (e.g. might happen when the focus is
on a popup which is attached to an element within the custom area)
 oTarget = oEvent.forward ? findNextDomRefToFocus(oEvent.source) :
findPreviousDomRefToFocus(oEvent.source);
 } else {
 //The source is outside of the custom area
 oTarget = oEvent.forward ? findFirstDomRefToFocus() :
findLastDomRefToFocus();
 }
 if (oTarget) {
 oEvent.preventDefault();
 oTarget.focus();
 }
};

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2225

Related Information

Fast Navigation [page 1491]

Composite Controls

Composite controls are implemented by reusing other controls.

Standard Composite Controls

Composite controls are a means to save time and effort by reusing existing controls for the implementation.

For application developers, the composite control is a black box, therefore, an application developer cannot
distinguish a composite control from native (non-composite) controls. As the application developer can not
distinguish the controls, the control developer can change the implementation later and avoid composition (or
the other way around). For existing uses of the respective control, this change is fully compatible.

 Note
If you do not intend to re-use a control in several places, a composite control may not be your best choice.
Composite controls are best suited for (massive) re-use and for a public API that shields the application
developer from its inner workings. If these are not your requirements, consider to use other techniques of
factoring out common parts within your application. You can, for example, simply write an XML fragment or
a function returning the root of some control tree.

Simple Example: Search Field

To create a composite control, you start with crafting its API including properties, events, aggregations, and so
on as you do it for any other control. Choose either element or control as base type. The following simple
example combines an input field with a button that we call "search field". To the outside world, it offers an
editable value and can fire a search event.

API
As any other control, you can describe composite controls via the JavaScript control definition API, see
Developing Controls [page 2158] and the following example.

// "Control" required from "sap/ui/core/Control" var SearchField = Control.extend("SearchField", {
 metadata : {
 properties : {
 "value" : "string"

2226 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 },
 aggregations: {
 "_input" : {type : "sap.m.Input", multiple : false, visibility: "hidden"},
 "_btn" : {type : "sap.m.Button", multiple : false, visibility: "hidden"}
 },
 events: {
 "search" : {}
 }
 } });

The two aggregations with visibility set to hidden are defined in the code snippets above. These aggregations
are used to hold the inner controls. Aggregations are used to define a parent-child relationship between a
parent control and its children (controls or elements). The knowledge about this relationship is, for example,
relevant for the SAPUI5 core to dispatch events properly, or to cleanup the children when the parent is
destroyed. Hidden aggregations are control internal and are used especially to register the inner controls within
the control hierarchy without making them publicly available. Because hidden aggregations are only used
internally within a composite control for hidden aggregations, no typed accessor functions are generated,
they are not cloned, and data binding is not enabled.

Behavior

The control implementation, that is, its behavior, contains the code for initialization and clean-up hooks as well
as glue code for properties and events.

Init

The init function contains the composite's parts and stores references to them. If you want to hide the
composite parts, you should not assign an ID to those parts, but rather let the framework compute the IDs
automatically. This reduces the possibility that a composite's parts are accessed from outside via the
sap.ui.getCore().byId(...) function.

If you have to assign IDs to the composite parts, then you should create those IDs by concatenating the main
control ID (ID of your composite instance) with a single dash (-) and an additional ID for the part like in the
following example:

mySearchField-input mySearchField-btn

To avoid conflicts with the internal IDs of parts, the part ID (input or btn in the example) must be prefix-free.
That means, it should not contain another dash (for example, don't use parts input-label and input at the
same time). If the control that is used as part input also is a composite control and accidentally uses part
label, then you'll have a conflict between mySearchField-input-label (label part of the input) and
your mySearchField-input-label artifact (input-label part of your composite).

 Note
SAPUI5 reserves the single dash (-) for composite controls and their parts, a double dash (--) is used to
combine the ID of views and their contained controls and a triple dash (---)is used to combine component
IDs and the IDs of their owned controls or views.

During the init function, the settings of the composite only have their default values. If the application
developer has provided some values to the constructor, these values will only be set later on. It is, therefore,

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2227

crucial for the correct behavior of your composite control that you implement one of the synchronization
mechanisms described below.

// "Button" required from "sap/m/Button" // "Input" required from "sap/m/Input"
/**
 * Initialization hook... creating composite parts
 */
SearchField.prototype.init = function(){
 var that = this;
 this.setAggregation("_input", new Input({
 change: function(oEvent){
 that.setProperty("value", oEvent.getParameter("Value"), true /*no re-
rendering needed, change originates in HTML*/); //see section Properties for
explanation
 }
 }));
 this.setAggregation("_btn", new Button({
 text: "Search",
 press: function(){
 that.fireSearch();
 }
 })); };

Exit
You can use the exit function to clean up your control when it is destroyed. You do not need to destroy the
inner controls. This is done automatically by the framework because the inner controls are kept in hidden
aggregations.

/** * Clean-up hook... destroying composite parts.
 */
SearchField.prototype.exit = function() {
 //nothing to do here };

Properties
Changes to settings in the API of a composite control are usually reflected in its parts. In the following example,
the value property is propagated to the input part. To do so, the generated setter for that property is
overwritten. Make sure that you include the proper implementation which generically sets a property inside the
element base class, else you would have to override the getter also.

Note how the input's change event is used to update the composite's value property. Because the change
originated in the HTML input field, no re-rendering is needed. This is expressed by the third parameter of the
setProperty call. This trick is applicable whenever a property change does not require a re-rendering on this
control level.

 Note
Changing the input part's value triggers a re-rendering of the input.

/** * Propagate value to input.
 */
SearchField.prototype.setValue = function(sValue){
 this.setProperty("value", sValue, true /*no re-rendering of whole search
field needed*/);

2228 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 this.getAggregation("_input").setValue(sValue); // Note: this triggers re-
rendering of input! };

Propagating the API settings to the parts is usually not as straightforward as shown in the example above. If
intercepting the changes by overriding the setters is not sufficient or too complicated, an alternative approach
might be to implement a single updateAllParts method and call it at the beginning of the renderer of the
composite control or in the onBeforeRendering hook of the control itself..

Renderer

You can use markup for layouting in the renderer implementation. But at the heart of it, you simply delegate
(via the render manager) to the composite parts' renderers. This is where you really benefit from re-using other
controls with non-trivial renderers. If you have chosen the updateAllParts approach to keep the composite
API settings and the settings of the parts in sync, make sure that you call updateAllParts before the real
rendering starts.

SearchFieldRenderer.render = function(oRm, oSearchField) { // oSearchField.updateAllParts(); // called depending on your 'sync' approach
 oRm.openStart("div", oSearchField);
 oRm.class("SearchField");
 oRm.openEnd();
 oRm.renderControl(oSearchField.getAggregation("_input"));
 oRm.renderControl(oSearchField.getAggregation("_btn"));
 oRm.close("div"); };

XML Composite Controls

An XML composite control allows you to define a composite control that clearly separates the behavior of the
control from the visual part.

Overview

An XML composite control consists of two parts, a JavaScript part, which contains the behavior and the
interface of the control, and an XML part, which contains the visual representation and the structure of the
control. The XML part can also define the binding to the properties and aggregations specified in the JavaScript
part, so you do not need to specify a model in the binding.

Related Information

Standard Composite Controls [page 2226]
API Reference: XMLcomposite
Samples for XMLcomposite

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2229

https://sapui5.hana.ondemand.com/#/api/sap.ui.core.XMLComposite
https://sapui5.hana.ondemand.com/#/entity/sap.ui.core.XMLComposite

Example of a Simple XML Composite Control

This section shows you an example of a simple XML composite control.

 Note
The code samples in this section reflect examples of possible use cases and might not always be suitable
for your purposes. Therefore, we recommend that you do not copy and use them directly.

Here is an example of a simple XML composite control, with the following JS part:

sap.ui.define(['sap/ui/core/XMLComposite'],
 function(XMLComposite) {
 "use strict";
 var SimpleText = XMLComposite.extend("fragments.SimpleText", {
 metadata: {
 properties: {
 text: { type: "string", defaultValue: "Default Text"}
 }
 }
 });
 return SimpleText; }, /* bExport= */true);

And here comes the visual part, the fragment definition XML file:

 <core:FragmentDefinition xmlns:m="sap.m" xmlns:core="sap.ui.core">
 <m:Text text="{$this>/text}" /> </core:FragmentDefinition>

There is no specific renderer method; the rendering is handled generically by the framework.

If you want to use this XML composite control, you can set up a page like this:

 <!DOCTYPE HTML>
<html>
<head>
 .
 .
 .
 <script>
 sap.ui.require([
 "fragments/SimpleText"
], function(SimpleText) {
 var oSimpleText = new SimpleText({text : "Hello World"});
 oSimpleText.placeAt("content");
 });
 </script>
</head>
<body id="content" class="sapUiBody">
</body> </html>

2230 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Properties and Property Bindings

You can use various types of binding for the properties in XML composite controls.

The fragment definition XML file defined in the previous section looks a lot like any other fragment that you
might already be using in XML views. In this particular case, it defines only one nested sap.m.Text element.
The text property is bound with the normal binding syntax to a special model, $this. $this refers to the
interface of the SimpleText XML composite control.

Similar to other controls, you have the following options to use binding for the XML definition of an XML
composite control:

Table 111: Property Binding

Binding Sample Use Comments

Simple property binding text="{$this>/
text}"

Maps a property of the inner
control interface to a prop
erty of your XML composite
control interface.

Expression binding text="{=${$this>/
text} +
'additionalText'}"

Adds 'additionalText' to the
value of the property of the
inner control.

One-way binding only

Composite binding text="{$this>/text}
- {$this>/text1}"

Concatenation of the two
properties text and text1

One-way binding only

Events

This sections shows an example of a pressevent.

You can enhance the XML composite control created in the first step by adding a button. It's as simple as doing
it in an XML view.

 <core:FragmentDefinition xmlns:m="sap.m" xmlns:core="sap.ui.core">
 <m:HBox> <m:Text text="{$this>/text}" /> <m:Button text="Press Me" />
 </m:HBox> </core:FragmentDefinition>

Now the sample should look like this:

Figure 338: Sample UI

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2231

To handle the press event of the new button in the interface, first define the handler in the XML file, and then
add a method in the JS file:

 <core:FragmentDefinition xmlns:m="sap.m" xmlns:core="sap.ui.core"> <m:HBox>
 <m:Text text="{$this>/text}" />
 <m:Button text="Press Me" press="_handlePress"/>
 </m:HBox> </core:FragmentDefinition>

 ...
 var SimpleText = XMLComposite.extend("fragments.SimpleText", {
 ...
 });
 SimpleText.prototype._handlePress = function () {
 this.setText("You pressed the button");
 } return SimpleText;

If you click the button now, the text should change:

Figure 339: Changed Sample UI

 Note
When accessing controls within the fragment definition XML file, for example, the text or the button, you
should use the byId method of XMLComposite and not sap.ui.getCore().byId. If the text has an
id=”myText”, you could get the text instance in the _handlePress method via this.byId(“myText”).

Aggregations

This sections shows you a use case for aggregations in the XML composite control.

If you would like to define an aggregation within a control used in the XML composite control, you proceed as
usual:

sap.ui.define(['sap/ui/core/XMLComposite'],
 function(XMLComposite) {
 "use strict";
 var TextList = XMLComposite.extend("fragments.TextList", {
 metadata: {
 aggregations: {
 texts: {
 type: "sap.ui.core.Item",
 multiple: true
 }
 }
 }
 })
 return TextList;

2232 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 }, /* bExport= */true);

For this use case, the fragment definition XML file might now look like this:

<core:FragmentDefinition xmlns:m="sap.m" xmlns:core="sap.ui.core"> <m:VBox items="{$this>/texts}">
 <m:Text text="{$this>text}" />
 </m:VBox> </core:FragmentDefinition>

In the items template of the VBox (in our case an sap.m.Text), we bind to the texts aggregation. As a
result, a list of text items is rendered within a VBox.

You can see an example of how you can use the XML composite control in the following HTML file:

//add the TextList and place it in the page var oTextList = new fragments.TextList();
oTextList.addText(new sap.ui.core.Item({text: "Text Item 1"}));
oTextList.addText(new sap.ui.core.Item({text: "Text Item 2"}));
oTextList.addText(new sap.ui.core.Item({text: "Text Item 3"}));
oTextList.addText(new sap.ui.core.Item({text: "Item 4"})); oTextList.placeAt("body");

You can also use advanced features of ListBinding to display your data. For example, you can sort or filter
your items, as the following examples show:

<core:FragmentDefinition xmlns:m="sap.m" xmlns:core="sap.ui.core"> <m:VBox items="{path:'$this>/texts', sorter:{path:'text', descending:true}}"> <m:Text text="{$this>text}" />
 </m:VBox> </core:FragmentDefinition>

<core:FragmentDefinition xmlns:m="sap.m" xmlns:core="sap.ui.core"> <m:VBox items="{path:'$this>/texts', filters:{path:'text',
operator:'Contains', value1:'Text'}, sorter:{path:'text', descending:true}}"> <m:Text text="{$this>text}" />
 </m:VBox> </core:FragmentDefinition>

The result will look like this:

Figure 340: Sorting and Filtering UI

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2233

Aggregation Forwarding

A mechanism used for aggregations of composite controls.

Overview

Aggregration forwarding is used when application developers want to add child controls to an aggregation of a
composite control, but the composite control does not keep these controls as direct children. Instead, it moves
or forwards them to an aggregation of one of its internal controls.

This technique is often used when a control with an aggregation is wrapped by a composite control to add
functionality, but the application still has control over the content of the wrapped control. In other cases, the
composite control uses layout controls internally to define the placement of aggregated children.

 Note
While aggregation forwarding as described here is mainly aimed at composite controls, it has also been
implemented for the ManagedObject base class. The forwarding can also be used for other entities which
are not controls, but inherit directly from ManagedObject or one of its subclasses.

For more information about this class, see the API Reference: ManagedObject.

 Note
Sometimes the controls that have been added to an aggregation of a composite control have to be
transformed into different controls, which are then added to an aggregation of an internal control. This is a
different use case and not covered by aggregation forwarding. With aggregation forwarding, aggregated
child controls are moved without transforming them.

Configuration

Aggregation forwarding requires a simple additional setting in the definition of a control aggregation. SAPUI5
needs to know to which internal control all aggregated children need to be forwarded and to which aggregation
of this internal control.

Aggregation forwarding is defined in the aggregation definition inside the control metadata.

The forwarding property can be set as an object defining the following:

● getter or idSuffix: A way how SAPUI5 determines the internal control instance to which the
aggregation is forwarded at runtime, which is what you could call the target control. This can either be
done by specifying the getter, the name of a function of the composite control which always returns the
target control instance, or the idSuffix, a string which is appended to the ID of the composite control to
construct the ID of the target control.

● aggregation: The name of the aggregation of the target control to which this aggregation is forwarded

2234 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.base.ManagedObject/methods/sap.ui.base.ManagedObject.extend

● forwardBinding (optional): Determines whether any binding is done at the target control or only at the
outer composite control. This can be crucial if the forwarding target control has functionality that requires
the aggregation to be bound.

When such a forwarding definition is done, SAPUI5 moves all aggregated child controls to the target control. All
calls to addAggregation, removeAggregation, indexOfAggregation and so on are forwarded. When
asked for the forwarded child control, both the composite control and the forwarding target act like the child
control belongs to their aggregation. However, the inner forwarding target control is the actual parent of all
forwarded children.

Examples

Here is an example that demonstrates aggregation forwarding: The new FilterableList control is supposed
to display a list of items with an input field above the list. The list items are filtered while the user is entering the
input. This FilterableList control can be implemented as a composite control, using the sap.m.List and
sap.m.Input controls as inner controls to take advantage of their existing implementation, design, and set of
features. Application developers using FilterableList cannot change all attributesof the inner List
control. However, they should be able to provide the actual list items. Hence, the new FilterableList
composite control has an items aggregation and forwards all items to the inner sap.m.List control, so, for
example, the layouting, events, and selection can be handled there.

 aggregations: {
 // The items forwarded from the FilterableList to the internal sap.m.List
 items : {type: "sap.m.ListItemBase", multiple: true, forwarding: {
 idSuffix: "-myInternalList",
 aggregation: "items"
 }},

Another example would be a new ButtonList control that is supposed to contain and display an arbitrary
number of sap.m.Button controls in a grid. Hence it has a buttons aggregation. For this control, control-
specific HTML could be written that provides screen-size-dependent CSS for a proper grid layout of the
buttons. However, this effort can be avoided, and a sap.ui.layout.Grid control used internally instead to
do the layouting. The buttons given to the ButtonList control then need to be forwarded to the content
aggregation of the Grid control.

 aggregations: {
 // The items forwarded from the ButtonList to the internal
sap.ui.layout.Grid
 buttons: {type: "sap.m.Button", multiple: true, forwarding: {
 getter: "_getInternalGrid",
 aggregation: "content" }},

Aggregation Forwarding in XML Composite Controls

If you use aggregation forwarding with idSuffix for an XML composite control, you define this as follows:

sap.ui.define(["sap/ui/core/XMLComposite"],

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2235

 function(XMLComposite) {
 "use strict";
 var TextList = XMLComposite.extend("fragments.TextList", {
 metadata: {
 aggregations: {
 texts: {
 type: "sap.ui.core.Item",
 multiple: true, forwarding: { idSuffix: "--myInternalVBox", aggregation: "items"
 }
 }
 }
 }
 })
 return TextList; }, /* bExport= */true);

In this case, the fragment definition XML file looks like this:

<core:FragmentDefinition xmlns:m="sap.m" xmlns:core="sap.ui.core"> <m:VBox id="myInternalVBox"/> </core:FragmentDefinition>

 Note
myInternalVBox is prefixed with --. Other than that, the coding looks exactly the same as the one for
aggregation forwarding for standard composite controls.

Dos and Don'ts

If you use aggregation forwarding, you have to keep the following in mind:

● Do not call any methods (such as add, insert, remove , or destroy) that modify the aggregation in the
forwarding target, but call them in the control that defines the forwarding.
For example, if you create something like a CustomList control that uses forwarding for its items
aggregation to an internal List control, do not call this._internalList.destroyItems(), but call
this.destroyItems().

● Aggregations can only be forwarded to non-hidden aggregations of the same or a greater multiplicity
(single-to-single, single-to-multi, multi-to-multi).

● The target aggregation and the source aggregation have to be compatible: Any child elements given to the
source aggregation must be valid in the target aggregation as well (otherwise the target element will throw
a validation error).

● The aggregation target control for a particular instance of a composite control must stay the same across
the entire lifecycle of the composite control.

● If the content in the target aggregation is modified by other entities or actions, such as the target control
itself or another forwarding from a different source aggregation, this will lead to an unexpected behavior of
the aggregation forwarding. Hence, these modifications are not allowed.

● Forwarded child controls always have the same models that were also available at their original location
before the forwarding. They will not use any models that are only set for the inner control to which they are
forwarded. This way, models set by an application will not be overridden.

2236 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Also, this is in accordance with what application developers would expect regarding the models set for the
child control: Any bindings they define should work regardless of how aggregation forwarding is used within
the controls.

● Never clone children in public aggregations even if the aggregation is forwarded to an inner control. They
are cloned automatically by the framework.
Also, do not clone inner controls created by your composite control, for example, inside the init()
method: If your control is cloned, the init() method of the clone is called, and the inner control is created
as well.

Accessibility Aspects

If you are developing SAPUI5 controls, you have to be aware of the accessibility aspects. A deeper
understanding is needed, so that all accessibility requirements are met.

In the following topics, we provide additional information for control developers on keyboard handling, high-
contrast theming and other important accessibility aspects.

For information on colors and theming, follow the guidelines listed under Related Information.

Related Information

Product Standards and Acceptance Criteria [page 2169]
Colors and Theming [page 1489]

Keyboard Handling for SAPUI5 Controls for Developers

As an application developer, you need to be aware of how the various accessibility aspects, like keyboard
handling, are implemented and used.

Keyboard Handling for Basic Navigation

The following keys and key combinations are used for navigation between controls within an application.

Standard Navigation

Navigation between controls is done using the TAB key. TAB moves the focus from one control to the next one
inside the application. The tab order is defined by the placement of the control within the DOM tree, therefore
apps have a large influence on it.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2237

 Note
Controls are in the tab order, if they are interactive, enabled and visible. This includes read-only controls.
Disabled or hidden controls are taken out of the tab order. Non-interactive controls (for example, layout
container) can never be reached with TAB .

Key combination Behavior

TAB Forward Navigation:

On enter, move focus to the control.

On leave, move focus to the next control in the application.

SHIFT + TAB Backward Navigation:

On enter, move focus to the control.

On leave, move focus to the previous control in the tab order.

Group Navigation

Controls which are adjacent within the application can be grouped. Within a group, F6 skips all controls of the
group and moves the focus to the first control in the application within the next group. SHIFT + F6 moves
the focus to the first control of the previous group.

Key combination Behavior

F6 Forward Navigation:

Move focus to the next control in the tab order after the
group

SHIFT + F6 Backward Navigation:

Move focus to the previous control in the tab order before
the group

Keyboard Handling for One-Dimensional Navigation

The following keys and key combinations are used for navigation in one-dimensional item containers (for
example, lists and drop-downs).

Key combination Behavior

UP , LEFT If focus is on an item, move focus to the previous item.

If focus is on the first item, do nothing.

2238 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Key combination Behavior

DOWN , RIGHT If focus is on an item, move focus to the next item.

If focus is on the last item, do nothing.

PAGE UP If focus is on an item, move focus up/ left by page size.

 Note
Page size can be set by the application; default page size
is 10 items

If focus is on the last item, do nothing.

PAGE DOWN If focus is on an item, move focus down/ right by page size.

 Note
Page size can be set by the application; default page size
is 10 items

If focus is on the first item, do nothing.

HOME If focus is on an item, move focus to the first item.

END If focus is on an item, move focus to the last item.

Keyboard Handling for Two-Dimensional Navigation

The following keys and key combinations are used for navigation in two-dimensional item containers (for
example, calendars and tables).

Key combination Behavior

LEFT If focus is on an item, move focus one item to the left.

If focus is on the first item of a row, move focus to the last
item of the previous row.

If focus is on the first item, do nothing.

RIGHT If focus is on an item, move focus one item to the right.

If focus is on the last item of a row, move focus to the first
item of the next row.

If focus is on the last item, do nothing.

UP If focus is on an item, move focus to the item above.

If focus is on the first item of a column, do nothing.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2239

Key combination Behavior

DOWN If focus is on an item, move focus to the item below.

If focus is on the last item of a column, do nothing.

PAGE UP If focus is on an item, move focus up by page size.

 Note
Page size can be set by apps; default page size is 5 rows.

If there are less items available than page size, move focus to
the first item.

If focus is on the first item, do nothing.

PAGE DOWN If focus is on an item, move focus down by page size.

 Note
Page size can be set by apps; default page size is 5 rows.

If there are less items available than page size, move focus to
the first item.

If focus is on the last item, do nothing.

ALT + PAGE UP If focus is on an item, move focus left by page size.

 Note
Page size can be set by apps; default page size is 5 col
umns.

If there are less items available than page size, move focus to
the first item.

If focus is on the first item, do nothing.

ALT + PAGE DOWN If focus is on an item, move focus right by page size.

 Note
Page size can be set by apps; default page size is 5 col
umns.

If there are less items available than page size, move focus to
the first item.

If focus is on the first item, do nothing.

2240 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Key combination Behavior

HOME If focus is on an item, move focus to the first item on the
same row.

If focus is on the first item of a row, move focus to the first
item.

END If focus is on an item, move focus to the last item of the
same row.

If focus is on the last item of a row, move focus to the last
item.

CTRL + HOME If focus is on an item, move focus to the first item of the
same column.

If focus is on the first item of a column, move focus to the
first item.

CTRL + END If focus is on an item, move focus to the last item of the
same column.

If focus is on the last item of a column, move focus to the last
item.

Keyboard Handling for Triggering Actions on Item Level

The following keys and key combinations are used for triggering events of clickable elements.

Key combination Behavior

SPACE If items are not selectable and focus is on an item, trigger
the item event.

 Tip
If you press and hold the key, you can cancel the trigger
action by pressing Shift .

If items are selectable, select/deselect the item.

ENTER If focus is on an item, trigger the item event immediately af
ter the key press.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2241

Use the following keys to trigger additional actions (if supported):

Key combination Behavior

DELETE If deletion of items supported:

If focus is on an item, delete the item. Move focus to the next
item.

If the deleted item is the last item, move focus to the previ
ous item.

If the deleted item is the last remaining item, move focus to
the next control in the tab order.

F2 If Detail of items is supported:

If focus is on an item, trigger the click event for the Detail
button.

Keyboard Handling for Item Selection

The following keys and key combinations are used for selecting one or multiple items from a list.

Single Selection

Key combination Behavior

SPACE If focus is on an item, select the item and deselect all others.

Multi Selection

Key combination Behavior

SPACE If focus is on an item, select the item and deselect all others.

CTRL + SPACE If focus is on an item, select the item in addition to an exist
ing selection..

SHIFT + SPACE If focus is on an item, select all items from the previous se
lected item to the now focused item (included).

Previous selection: all kinds of selection except
SHIFT SPACE selections

2242 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Key combination Behavior

SHIFT + UP If focus is on an item, change selection state (selected/ not
selected) to the item above.

SHIFT + DOWN If focus is on an item, change selection state (selected/ not
selected) to the item below.

CTRL + A Selects all items which the user can reach in the current view
by scrolling or paging.

If all items are selected, deselect all items.

Keyboard Handling for Value Help and Auto-Complete

The following keys and key combinations are used for triggering and using the value help and auto-complete
features.

Auto-complete

Auto-complete is available for one dimensional editing only.

Key combination Behavior

Any printable character Adds the corresponding character. If text is selected, it gets
overwritten.

Triggers autocomplete, if available.

RIGHT or DOWN Move caret on position to the right.

If text is selected, move caret to the end of the selection and
remove selection.

If caret is at the rightmost position, do nothing.

If autocomplete is currently available, take over changes.
Move caret to the right of the changed text.

ENTER If autocomplete is currently available, take over changes.
Move caret to the right of the changed text.

TAB Move focus to next element. Take over autocomplete, if avail
able.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2243

Value Help

Use the following keys and key combinations to trigger value help:

Key combination Behavior

ALT + DOWN or ALT + UP or F4 Open the value help dialog.

Screen Reader Support for SAPUI5 Controls

SAPUI5 offers screen reader support in order to aid people with visual impairments. The implementation is
based on the ARIA (Accessible Rich Internet Applications) standard.

General Information

Currently, the following libraries have screen reader support based on the ARIA standard:

● sap.f
● sap.m
● sap.suite.ui.commons
● sap.tnt
● sap.ui.commons
● sap.ui.comp
● sap.ui.core
● sap.ui.generic
● sap.ui.layout
● sap.ui.suite
● sap.ui.table
● sap.ui.unified
● sap.ui.ux3
● sap.uxap
● sap.viz

SAPUI5 controls provide the prerequisites for screen reader support based on the ARIA standard. All screen
readers that implement this standard should work fine. If there are deviations in the interpretation, these need
to be addressed to the screen reader vendor. If you need more information on our testing environment, see
SAP Note 2564165 .

 Note
● No screen reader activation settings are necessary since the accessibility mode in SAPUI5 is switched

on by default.

2244 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/2564165

ARIA Attribute Mapping

Navigation with the keyboard and screen reader have to both work properly at the same time. In order for this
to happen, you need to use the correct ARIA attributes and to map them to their HTML counterparts.

Attribute Mapping

The ARIA role=application is added to the body of each page by SAPUI5 Core to ensure that the page can
be properly navigated using the keyboard. If this is not the case, the SAPUI5 JavaScript key handler code may
get overridden by the screen reader and this will hinder keyboard handling.

The mapping of HTML attributes to ARIA attributes is described in the following table:

Table 112: Attribute Mapping

HTML Attribute ARIA Attribute

editable aria-readonly

enabled aria-disabled

visible aria-hidden

required aria-required

checked aria-checked

selected aria-selected

For custom controls, not part of the ARIA 1.0 role definitions, mapping to similar and existing ARIA base role
concepts is applied. In special cases, custom role names can be added by the SAPUI5 framework using aria-
describedby or aria-labelledby references.

Additional API Associations

In order to ease the setting of ARIA attributes, we have introduced two new associations to the SAPUI5 API:

1. • ariaLabelledBy - holds a reference to the control that has the aria-labelledby attribute set
2. • ariaDescribedBy - holds a reference to the control that has the aria-describedby attribute set

These associations have the following structure:

 Source Code

ariaLabelledBy : { type : "sap.ui.core.Control",
multiple : true,
singularName : "ariaLabelledBy"
}

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2245

 Source Code

ariaDescribedBy : { type : "sap.ui.core.Control",
multiple : true,
singularName : "ariaDescribedBy"
}

Keyboard Usage of ARIA Role Mapped Controls

Screen readers offer list features, that ease the app navigation, by grouping and extracting all elements with
similar behaviors. This leads to additional requirements when creating SAPUI5 controls. Control developers
need to make sure that their controls are marked with the correct ARIA role.

Keyboard Handling for Role Mapped Controls

The applied role names define implicitly the keyboard usage. For example an element with role=button can
be activated with SPACE and ENTER keys, navigation between controls with role=menuitem is expected
using Arrow keys and so on.

 Note
If you develop new SAPUI5 controls please note the following:

● Navigation with the cursor of the screen reader cannot be the only option. Keyboard navigation has to
be implemented as well.

● All information about roles, states, and properties must be present at the keyboard focus position and
be spoken when the focus moves to the control.

Additional Requirements for Some Control Types

Screen readers offer lists that group certain types of elements. These lists ease and speed up the navigation.
There are some requirements, that specific control types have to comply to, in order to be properly used by the
screen reader lists.

● Landmarks/Regions
○ Special regions must be indicated and labeled (Navigation, Page Header, Main etc.) in order to be part

of the landmark list.
● Headings

○ The headings in an SAPUI5 app must have either ARIA role=heading + aria-level or use <H1 –
H6> HTML tags.

2246 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

○ The panel heading hierarchy must be logical (for example, nested panels must have higher hierarchy
levels).

○ Headings must be referenced by the containers they belong to (using aria-labelledby =
“HEADING_ID”).

● Links
○ Links in an SAPUI5 app must either be true <a> HTML elements or have ARIA role=link.

● Form Controls
○ Form fields must be correctly labeled and their list indicators have to be distinctive.
○ Form fields will show up as Input, Radio Buttons and so on in the form list of the screen reader.

● Lists
○ Lists have to implement a navigation concept that allows using both arrow keys to go through list item

entities, and also be able to focus individual active sub-parts of a list item.
○ Lists and list items should always be identified using correctly nested and markup or

alternatively by ARIA role=list and role=listitem roles.
○ Sometimes list items may need special roles (for example menuitem).
○ For lists with a specific number of items, speech output should always be “Current item number of N

total items”. No matter how many items are visible, if the total number is not known, speech output
should always be “Current item number”.

● Tables
○ Data tables must be coded with valid HTML.
○ Tables must have titles.
○ Layout tables for presentational purposes must be coded as such (using ARIA

role=“presentation”). Then they are not displayed in the table list.
○ Editable and active cells may require special interaction models. During navigation, all screen reader

relevant information must be available at the focus location.
○ Tables have to properly associate and identify (even hierarchical) row/column headers. They have to

be announced for every cell.
○ In case there are no visible headers, but information is organized in a table-like layout with individual

columns/cells, a respective row/column identifier has to be provided.
○ For tables with a specific number of rows, speech output should always be “Current row of N total

rows”. No matter how many rows are visible, if the total number is not known, speech output should
always be “Current row”.

ARIA Mapping for Tooltips and Textual Alternatives

Tooltips and semantic colors are important aspects in apps. They have to be interpreted correctly by the
screen reader and require some special ARIA labeling.

Tooltips

Currently tooltips have to be disabled for all controls. An exception is made for images (stand-alone or as part
of controls, such as buttons with icons/images but without text on the button itself).

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2247

Graphics and Colors

All images and icons must have a textual explanation that the screen reader can read. This is done with the
attributes alt or aria-label. Text and content colored with semantic colors need to have a textual
alternative describing the semantics. Interactive graphics, like charts, need to follow these requirements:

● An editable color scheme and possibility of color modification
● Navigable using the keyboard
● The screen reader information must be available at the focus points (axis values, dialog info, legend)

You should hide image controls or controls with background CSS images used for pure decoration purposes by
using the aria-hidden=“true” property.

ARIA Event Handling

When the UI of an application is changing or loading information, these state transitions and updates need to
be passed on to the screen reader as well. You need to set the correct ARIA attributes (for example, aria-live or
aria-busy) for the corresponding areas in your application.

UI Updates

In some cases an app needs to stay non-responsive for longer periods of time. This may be caused by the app
fetching data or updating the UI. In these cases, busy indicators are shown to inform the user that the app is
processing data.

The affected regions of the UI should have the property aria-live set to true. This informs the screen
reader that the region's DOM structure is currently subject to change and therefore internal processing should
be applied.

Event Handling

Accessible events are designed as a signaling mechanism for screen readers. An example for this is when parts
of the UI update, either as a result of a direct user action (such as performing a selection) or by software (such
as “incoming mail” messages or popups). Events like a dialog showing up or content updates of parts of the
screen are handled by assigning specific roles and properties of the UI elements (for example, an HTML
<input type=checkbox> element, would need role=“dialog” or property aria-live set accordingly).
Screen readers then listen to accessible events raised by browsers for these UI parts and react accordingly.

When the app is loading or fetching information, the ARIA property aria-busy=“true” should be set for the
corresponding region.

2248 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

ARIA Labeling

Proper labeling of all UI elements is needed in order to ensure the screen reader announces everything
correctly. Here we describe the available options and how and when they should be used.

Labeling

There are several options for labeling:

1. Label element with labelFor attribute
○ Single ID reference to the labeled control
○ Reference is maintained on the label, not on the labeled control
○ Multiple references are not possible

 Example
<Label text="Product price" required="true" labelFor="productPriceInput"/>

2. The aria-label attribute
○ Text is directly provided in the attribute, no extra HTML control needed
○ Attribute is maintained on the labeled control
○ Only indirect support for multiple texts

3. The aria-labelledBy attribute
○ Whitespace separated list of ID references to controls
○ Attribute is maintained on the labeled control
○ Explicitly designed for multiple references

 Caution
The different options cannot be used in conjunction. There is a precedence rule, which determines how the
labeling attributes are prioritized and read by the screen reader. As an application developer, you need to be
aware of the order in which the labeling is read by your screen reader.

Related Information

Best Practices for ARIA Labeling [page 2250]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2249

Best Practices for ARIA Labeling

Sometimes the UI and the control usage may not allow standard ARIA labeling. Here we introduce some best
practices on handling the labels in these cases.

Adding additional labeling to existing controls

Use Case:

There are two fields in a form, but there is only one label for both of them. For example, street and street no.
share the same label - Street.

Solution:

Introduce the following association to controls:

 Source Code

ariaLabelledBy : { type : "sap.ui.core.Control",
multiple : true,
singularName : "ariaLabelledBy"
}

This association can be used to point to other controls that provide the needed labeling using the aria-
labelledby property.

No suitable labeling text available on the UI which can be used with aria-
labelledby

Use Case:

In some cases a suitable labeling text may not be available on the UI or it is hard for the application to reference
it (text is contained in an inner control of a control, so the application would need to know the internals of the
control).

Solution:

Use the new control sap.ui.core.InvisibleText which provides a hidden text and can be referenced in
the ariaLabelledBy association.

2250 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Using the labelFor attribute together with aria-labelledby

Use Case:

The labelFor attribute provides additional benefits besides the pure labeling (for example, focus handling).
When the label which is referenced with the labelFor attribute also has an aria-labelledby attribute of a
referenced control, it is not read by the screen reader.

Solution:

A mapping table is introduced. The table is ID-based and matches label and labeled control. The
writeAccessibilityState function of the RenderManager takes the mappings into account and adds the
label to the aria-labelledby attribute of the labeled control (only when an ariaLabelledBy association is
also present).

Internal labeling within a control

Use Case:

In some cases controls need to add additional label texts by themselves for a proper screen reader
announcement, for example value states, messages, table headers and further descriptions.

Solution:

1. If the control already provides an ariaLabelledBy association, the additional texts must be referenced in
other means (for example, with hidden texts within the control).

 Note
It’s not possible to combine aria-labelledby with aria-label.

2. If the control does not provide an ariaLabelledBy association, but it could, then the association should
be added to follow the option above.

Writing a Control: FAQ

Why does onmousemove not work in my control?

SAPUI5 does not by default register an event handler for this event because of performance reasons. For
example, how to register this event, see the Dialog control.

How can my control remember a state?

This can either be done in public properties, or in private member variables. The latter is usually defined in the
init() method of the control and start with an underscore.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2251

Why is my control renderer called while the control is already on the screen?

Whenever the control state changes because, for example, a property is changed, the default behavior is to
rerender the control. SAPUI5 calls the control renderer with the updated state and takes care of replacing the
HTML in the page. It is also possible to implement the control change explicitly in the control, which then
adapts the HTML to represent the new state. In this case, the default rerendering can be suppressed (see
below).

How can I avoid rerendering of my control when a property is changed?

If you call the property setter in your own code, like this.setText("xy"), you can instead use the generic
setter defined in Element.js which also has the optional parameter "bSuppressRerendering":
this.setProperty("text", "xy", true). If the property change is done from the application, but you
still want to avoid rerendering, for example, because you only need to toggle one CSS class or because the
control DOM elements may not be removed and replaced, you need to overwrite the generated setter method.
The generated method looks like this:

sap.m.Button.prototype.setText = function(sText) { this.setProperty("text", sText); };

You also need to add the flag in your overwriting implementation:

sap.m.Button.prototype.setText = function(sText) { this.setProperty("text", sText, true);
};

Usually you then need to handle the visualization of the change yourself; in this case you might want to find the
DOM element where your control text is located and exchange the text.

More About Controls

SAPUI5 contains controls that are provided with multiple libraries. This section contains detailed information
about some of the controls beyond the information provided in the API reference.

 Note
The following sections only provide additional information for some of the controls. For a complete list of all
controls and their documentation, see the API Reference and the Samples.

Related Information

Supported Library Combinations [page 26]

2252 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.html
https://sapui5.hana.ondemand.com/explored.html

Browser and Platform Support [page 20]

Busy Indicators

You use busy indicators to inform users that something is going on in the background, for example, some data
is being fetched from the back end and the user has to wait. As long as the busy indicator is shown, either all or
a specific part of the UI is blocked, and no user interaction is possible.

Whenever busy indication is triggered, the default delay until the busy indicator is displayed on the UI is 1000
ms (1 second). If this delay were not in place, the busy indicator would always be displayed, even if there is no
negotiable waiting time.

You can choose between the following busy indicators, depending on your use case:

● sap.ui.core.BusyIndicator
● sap.m.BusyDialog
● sap.m.BusyIndicator

Blocking the Whole UI

You can use the sap.ui.core.BusyIndicator busy indicator to block the whole UI. You can set the delay in
ms by specifying the number:

sap.ui.core.BusyIndicator.show(<number>);

To release the UI again, the busy indication must be hidden again. This function call hides the busy indication
immediately:

sap.ui.core.BusyIndicator.hide();

API Reference: sap.ui.core.BusyIndicator

Busy Indication with Dialog

With the sap.m.BusyDialog busy indicator, you can block the whole UI like you do with
sap.ui.core.BusyIndicator, but you can also show a dialog box. In this dialog box, you can also include a
Cancel button that users can choose to stop the activity that's running in the background.

API Reference: sap.m.BusyDialog

API Overview and Samples: sap.m.BusyDialog

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2253

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.BusyIndicator.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.BusyDialog.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.m.BusyDialog/samples

Busy Indication on Control Level

The sap.m.BusyIndicator busy indicator blocks specific UI areas that are defined by a control. For example,
if a table in a complex UI is loading, only the table is blocked - the user can still carry on working with the rest of
the UI.

If a control is set to busy, the complete control will be covered with a block layer, so no mouse events or
keyboard interaction with the control are possible. If keyboard navigation is being used to step through the
controls, controls that are set to busy are skipped and the focus jumps to the next control.

Here's how to do it:

 var oInput = new sap.m.Input({ value:'Hello World'
 });
... oInput.setBusy(true);

The following code shows how you define the default state of a control as busy so that it will be displayed as
busy when it has been rendered:

 var oInput = new sap.m.Input({ value:'Hello World', busy: true });

To release the control's busy state again, the same API can be used. This has to be done by the application after
some data has been loaded, for example with the following command:

oMyListBox.setBusy(false);

To change the default delay of the local busy indicator, use:

oMyListBox.setBusyIndicatorDelay(<number>);

API Reference: sap.m.BusyIndicator

API Overview and Samples: sap.m.BusyIndicator

API Overview and Samples: sap.ui.core.Control

Cards

A card is a design pattern that displays the most concise pieces of information in a limited-space container.
Similar to a tile, it helps users structure their work in an intuitive and dynamic way.

Overview

Cards are composite controls that follow a predefined structure and offer content in a specific context. Cards
contain the most important information for a given object (usually a task, or a list of business entities). You can

2254 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.BusyIndicator.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.m.BusyIndicator/samples
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.ui.core.Control/samples

use cards for presenting information, which can be displayed in flexible layouts that work well across a variety
of screens and window sizes.

With the use of cards, you can group information, link to details, or present a summary. As a result, your users
get direct insights without the need to leave the current screen and choose further navigation options.

 Note
Keep in mind, that the hereby described card controls are not related to the Overview Page Card, which is
intended to be used in the context of SAP Fiori Elements. For more information, see Developing Apps with
SAP Fiori Elements [page 1535] and Overview Page Card [page 1934].

The following table provides an overview of the two main types of card controls in the SAPUI5 framework:

Table 113: Overview of Cards and Supported Features

Feature Supported

(Integration Card)

sap.ui.integration.widgets.Card [page
2255]

(Freestyle Card)

sap.f.Card [page
2257]Analytical, List, Object, Ta

ble, and Timeline cards Component card

Fiori 3 card UX 1

Cross product integration

Cross HTML product inte
gration

FLP / cFLP integration 2

Independent of SAPUI5 run
time

Can implement application
logic

1) Depending on the implementation.
2) With CustomElement.

sap.ui.integration.widgets.Card (Integration Card)

The sap.ui.integration.widgets.Card is a self-contained user interface element, connected to a
manifest, and used as a widget. It consists of three elements: card container, card header area, and content
area.

● The container is the base and subdivides in a header and content area. It has a white background color and
a border with radius.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2255

● The header area indicates what the card is about and can function as a navigation area for opening the
underlying source. It also serves as a counter showing the number of items on the card in relation to the
total number of relevant items (in case multiple items are shown in the content area). It can have a title, a
subtitle, an icon, and a status indicator. If the header is of type Numeric, it may have different attributes,
describing a KPI.

● The content area represents data from the underlying source. It uses the interaction and visualization from
the embedded controls. It depends on the card type.

Usage
The integration card is defined in a declarative way, using a manifest.json so that it can be easy to integrate
and reuse it.

As a card developer, you describe it in its manifest.json file by defining its header, content, data source, and
possible actions. As an app developer, you integrate the card in your app and define its dimensions (height
and width properties) and behaviour for the declared actions (action event).

To use the sap.ui.integration.widgets.Card, you should pass the path to the manifest.json file of
the card:

<mvc:View xmlns:w="sap.ui.integration.widgets"> <w:Card manifest="./demo/manifest.json" />

For more information and examples on the usage, see the API Reference and the Samples.

Content Types
Cards can be transactional (list, table, object, unstructured content, timeline) and analytical (line, donut,
[stacked] column, stacked bar chart). Each card is designed in a different style and contains various content
formats.

2256 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.integration.widgets.Card
https://sapui5.hana.ondemand.com/#/entity/sap.ui.integration.widgets.Card

Card Type Description

Analytical card1 Used for data visualization. Typically, it is defined by a numeric header and analytical data
content. For example, chart types, such as line chart, donut chart, (stacked) column chart,
(stacked) bar chart. For more information on the analytical card, see the SAP Fiori Design
Guidelines .

Component card (Experi
mental)

Displays multiple controls and is used as a custom approach for use cases which do not fit
in other card types and structures. The content area of the unstructured content card can
be moved to the top.

 Note
In contrast to the other integration card types, the structure and behavior of the Com
ponent card are custom-definable and are following the established SAPUI5 Compo
nent model. For more information, see Components [page 720].

List card Displays multiple list items of all kind. Aggregated information can also be visualized with a
line item. The counter in the header area is required for this type of card.

Object card Displays the basic details for an object, for example, a person or a sales order.

Table card Displays a set of items in table format. For more information on the table card, see the SAP
Fiori Design Guidelines .

Timeline card2 Displays time-related content.

Limitations:
1) The analytical card is using sap.viz.ui5.controls.VizFrame charts which are part of SAPUI5 and are
not available in OpenUI5.
2) The timeline card is using the sap.suite.ui.commons.Timeline control which is part of SAPUI5 and is
not available in OpenUI5.

sap.f.Card (Freestyle Card)

The sap.f.Card control provides more freedom in choosing the structure and the controls which you can
include. The data is provided by the application with the use of data binding, thus the control can be used just
as a renderer.

In contrast to the self-contained and manifest-driven Integration Card
(sap.ui.integration.widgets.Card), where the design, data retrieval, and rendering are predefined and
encapsulated for better integration and reuse, with sap.f.Card you can decide and compose the card content
area according to your needs.

The sap.f.Card consists of three elements: a container with background color and rounded corners, a
header, and content.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2257

http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fanalytical-card%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Fanalytical-card%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Foverview-page-table-card%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Foverview-page-table-card%2F

The header is predefined and can be an instance of either sap.f.cards.Header or
sap.f.cards.NumericHeader. The content area can be built with a desired combination of the standard
SAPUI5 controls.

Usage

Considering the general purpose of the cards (to represent most important assets of a particular business
object in a limited size UI element), it is not recommended to have very complex designs and heavy
application-like interactions implemented in a sap.f.Card control.

Example:

<f:Card class="sapUiMediumMargin"
 width="300px">
 <f:header>
 <card:Header
 title="Project Cloud Transformation"
 subtitle="Revenue per Product | EUR"/>
 </f:header>
 <f:content>
 <List
 showSeparators="None"
 items="{path: '/productItems'}" >
 <CustomListItem>
 <HBox
 alignItems="Center"
 justifyContent="SpaceBetween">
 <VBox class="sapUiSmallMarginBegin sapUiSmallMarginTopBottom" >
 <Title level="H3" text="{title}" />
 <Text text="{subtitle}"/>
 </VBox>
 <tnt:InfoLabel
 class="sapUiTinyMargin"
 text="{revenue}"
 colorScheme= "{statusSchema}"/>
 </HBox>
 </CustomListItem>
 </List>
 </f:content>
</f:Card>

2258 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Related Information

Components [page 720]
Descriptor for Applications, Components, and Libraries [page 734]
Grid Controls [page 2261]
API Reference: sap.f.Card
API Reference: sap.ui.integration.widgets.Card

Date and Time Related Controls: Data Binding

Date and time related controls can be bound to an OData service.

Introduction

According to the OData Version 2.0 specification, the following date and time related primitive data types
exist:

1. Edm.Time - represents the time as, for example, PT17H15M, which corresponds to 17:15:00.
2. Edm.DateTime - represents the date and time as, for example, 2001-12-21T12:00, which corresponds to

12:00 PM on Dec 21, 2001.
3. Edm.DateTimeOffset - represents the date and time as an offset in minutes from GMT, with values from

12:00:00 midnight, January 1, 1753 A.D. through to 11:59:59 P.M, December 9999 A.D. For example,
1999-01-01T23:01:00Z corresponds to 11:01:00 PM on January 1, 1999.

OData Version 2.0 Binding Types

Binding of time values to TimePicker

1. With a dedicated Edm.Time:

<TimePicker displayFormat="short" value="{ path: 'EntryTime', type:
'sap.ui.model.odata.type.Time'}"/>

The sample shows how to bind time values at the backend (for example PT11H33M55S for 11:33:55). Note
that there is a dedicated data binding type that recognizes the Edm.Time format and can handle time
conversions in both directions - from and to the backend. When you are working with this data binding type
and you choose a value using the TimePicker control, the same value will be sent to the backend, that is,
no timezone conversions will be applied to the value.

2. As a string:

<TimePicker value="{EntryTimeString}" valueFormat="HH:mm:ss"/>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2259

https://sapui5.hana.ondemand.com/#/api/sap.f.Card
https://sapui5.hana.ondemand.com/#/api/sap.ui.integration.widgets.Card

In the above example, the apps give the TimePicker information about the exact format with which the
time values are stored in the backend. The whole coding is string-based (the data field is a string, and the
EDM type is an Edm.String) and no conversion is done.
With the introduction of the property support2400 in version 1.54, this option may be used also if the
apps need to differentiate between the beginning of a day (00:00:00) and the end of a day (24:00:00). For
more information, see the API Reference and the Samples.

Binding of date values to DatePicker

<DatePicker value="{ path: 'EntryDate',
 type: 'sap.ui.model.odata.type.DateTime',
 constraints: {
 displayFormat: 'Date'
 } }" />

If you have date values at the backend, you should bind them as shown in the sample above. When exposing its
database field (EntryDate) via OData, date values can be exposed both as Edm.DateTime and
Edm.DateTimeOffset. The syntax for binding the DatePicker value property is the same in both cases.

Above you can see an example of the displayFormat constraint. It specifies if the given value should be
interpreted as Date or DateTime (default). If Date is specified, the binding type performs the UTC conversion,
which is always on. In other words, any local date chosen by the end user will be considered as a UTC date and
sent as a UTC date to the backend.

Binding of date and time values to DateTimePicker

<DateTimePicker value="{ path: 'EntryDateTime', type:
'sap.ui.model.odata.type.DateTime' }"/>

In this example, the binding type specifies that the backend data will be interpreted as a date and time field.

 Note
JavaScript provides only one object for working with dates and times – Date, which contains both date and
time information. Currently, all dates that are API properties in the DatePicker, TimePicker,
DateTimePicker, PlanningCalendar and Calendar controls use local time. For example, if a user
chooses 19.02.2018 as a date from the DatePicker, the app developer calls the getDateValue()
method. In this case they will get 19.02.2018 00:00:00 local time. The disadvantage here is that by default
this value will be sent to the backend in UTC, which may change the date by +/- one day.

Binding of date ranges

1. With a dedicated EDM type (Edm.DateTime, Edm.DateTimeOffset):

<DateRangeSelection value="{parts: [{path: 'EntryDate'}, {path:
'EntryDateTimeOffset'}], type: 'sap.ui.model.type.DateInterval', formatOptions: { UTC: true, format: 'yMd' }}" />

If you have two dates in the backend represented as Emd.DateTime and/or Edm.DateTimeOffset, you
can bind them to the DateRangeSelection control as shown above.

2260 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.m.TimePicker
https://sapui5.hana.ondemand.com/#/sample/sap.m.sample.TimePicker/preview

2. As a string:
If you have the date range provided with a single date formatted string field in the backend (for example,
July 29, 2015 - July 31, 2015), use the value property in the following way:

<DateRangeSelection value="{path: 'EntryDateRange', valueFormat: 'MMM d, y’}"/>

Note that you need to tell the DateRangeSelection the format of the dates stored in the backend. The
format should denote the format of a single date. If the delimiter is different than "-", you need to additionally
specify it in the property delimiter.

Related Information

Primitive Data Types in the OData Documentation
Formatting, Parsing, and Validating Data [page 854]
Step 10: Property Formatting Using Data Types [page 239]

Grid Controls

SAPUI5 provides several different grid layouts that are suitable for different use cases.

sap.f.GridContainer

The sap.f.GridContainer is a layout control used to align tiles, cards, or other controls in configuration,
such as an overview page. It provides a regular grid system in which all rows have the same height and all
columns have the same width. Each item can be configured to take different number of rows and columns
inside that mesh. If rows span is unknown for an item, it is automatically calculated by the GridContainer,
based on the height of the item.

sap.f.GridList

The sap.f.GridList is a layout control that provides the flexibility to display list items in a two-dimensional
grid. It extends the sap.m.ListBase control and therefore receives all of its features. The layout used is based
on the CSS display grid and the control has a default configuration that displays the list items in a grid.

sap.ui.layout.cssgrid.CSSGrid

The sap.ui.layout.cssgrid.CSSGrid is a layout control, used to create full-page layouts or user interface
elements. It is based on the browser-native CSS display grid and works by the HTML standard specification of a

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2261

http://help.sap.com/disclaimer?site=http%3A%2F%2Fwww.odata.org%2Fdocumentation%2Fodata-version-2-0%2Foverview%2F

grid. This grid is two-dimensional, meaning that it is possible to specify both rows and columns. The
dimensions and position of a single item can be configured, for example, an item can take two rows and two
columns from the grid. The control can be used along with the sap.m.FlexBox control as a one-dimensional
alternative for layouting.

sap.ui.layout.Grid

The sap.ui.layout.Grid control defines how many columns are displayed depending on the available
screen size with a maximum of 12. The height of a single row is always based on the content of the highest item
in that row.

Overview of Grids and Supported Features

Feature Supported? sap.f.GridCo
ntainer

sap.f.GridLi
st

sap.ui.layou
t.cssgrid.CS
SGrid

sap.ui.layou
t.Grid

Complies with the grid specification
according to the HTML Standard

Supports Internet Explorer and ver
sion 15 or below of Microsoft Edge

1 1

Number of columns supported Unlimited Unlimited Unlimited Up to 12

Can configure row height, column
width, and gap dimensions

Supports auto calculation of rows per
item

Can fill empty spaces in the grid

Items flow direction
Horizontal only Horizontal and ver

tical
Horizontal and ver
tical

Horizontal only

Can configure item position

Can configure item dimensions

The ability to define how many rows
and columns an item should take.

Supports columns breathing

2262 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Feature Supported? sap.f.GridCo
ntainer

sap.f.GridLi
st

sap.ui.layou
t.cssgrid.CS
SGrid

sap.ui.layou
t.Grid

Supports templating

The possibility to use one of the prede
fined layout templates or to create a
custom template for specific layouts.

2

2

Supports screen-size breakpoints 2 2

Supports container-size breakpoints 2 2

Supports indentation

Can control items visibility based on
breakpoints

Supports keyboard handling

Supports growing

Supports sorting, filtering and group
ing

Supports headers and footers

Supports selection and highlighting

1) Microsoft Internet Explorer 11 has limited support for the underlying display:grid technology. Specific
layouts are enabled for Internet Explorer 11. Microsoft Edge supports display:grid for versions above 16.
2) By using the customLayout aggregation.

Related Information

API Reference: sap.ui.layout.cssgrid.CSSGrid
Samples: sap.ui.layout.cssgrid.CSSGrid
API Reference: sap.ui.layout.Grid
Samples: sap.ui.layout.Grid
API Reference: sap.f.GridContainer
Samples: sap.f.GridContainer
API Reference: sap.f.GridList
Samples: sap.f.GridList

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2263

https://sapui5.hana.ondemand.com/#/api/sap.ui.layout.cssgrid.CSSGrid
https://sapui5.hana.ondemand.com/#/entity/sap.ui.layout.cssgrid.CSSGrid
https://sapui5.hana.ondemand.com/#/api/sap.ui.layout.Grid
https://sapui5.hana.ondemand.com/#/entity/sap.ui.layout.Grid
https://sapui5.hana.ondemand.com/#/api/sap.f.GridContainer
https://sapui5.hana.ondemand.com/#/entity/sap.f.GridContainer
https://sapui5.hana.ondemand.com/#/api/sap.f.GridList
https://sapui5.hana.ondemand.com/#/entity/sap.f.GridList

sap.f.GridContainer

The GridContainer allows you to align tiles, cards or other controls in configuration, such as an overview
page.

Overview

The GridContainer allows the positioning of items (Tiles, Cards, or others) in a two-dimensional mesh. The
mesh consists of rows with the same height and columns with the same width. Those height and width sizes
along with the gap size are configurable.

The control provides responsiveness and automatically aligns the items depending on the available space.

● In contrast to the sap.ui.layout.cssgrid.CSSGrid, the GridContainer allows the rows per item to
be automatically increased, if the item does not fit and is cut off.

● The GridContainer provides control over the behavior of the items if they are smaller in height than the
given space. For example, if an item has a width of 4 rows, but its height is only 3.5 rows, then the item
could either remain 3.5 rows or stretch to 4 rows. This behavior can be controlled through the snapToRow
property.

2264 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Although the display: grid CSS property is not supported by Internet Explorer 11 and Microsoft Edge
version 15 and below, there is a polyfill implemented for GridContainer and it works in these browsers.

The GridContainer also supports layout breakpoints based on the screen size. As a result, on smaller
screens, the gaps, rows, and columns can be smaller. You can configure them through different
GridContainerSettings for the different layouts.

Related Information

API Reference: sap.f.GridContainer
Samples: sap.f.GridContainer

sap.f.GridList

The GridList allows you to use different types of layouts responsible for the positioning and responsiveness
of the content.

Overview

A grid is a two-dimensional structure composed of a series of intersecting vertical and horizontal guidelines
used to structure content. The grid serves as a framework in which you can organize controls in a consistent
way throughout the design. Dividing a design space into a grid can help position individual elements in a
visually appealing manner, facilitate the representation of a user flow, and make information more
comprehensible and accessible.

With the new sap.f.GridListcontrol, you can easily organize and align your content according to your
preferences.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2265

https://sapui5.hana.ondemand.com/#/api/symbols/sap.f.GridContainer
https://sapui5.hana.ondemand.com/#/entity/sap.f.GridContainer

Figure 341: An example of a uniform grid layout, where all the grid items in a grout take the same dimensions

Figure 342: GridList allows for high flexibility layouts, where the app developer can decide on the specific placement and
sizing of the grid items

Layouts

sap.f.GridList allows application developers to display list items in a two-dimensional grid where the visual
layout/display options can be configured flexibly using predefined and custom templates. The layout used is
based on the CSS display grid and has a default configuration that displays the list items in a grid.

sap.ui.layout.GridBoxLayout

sap.ui.layout.GridBoxLayout is a layout that allows you to position controls in a grid, relative to one
another, using constraints defined by its boxWidth, boxMinWidh or boxesPerRowConfig properties.

2266 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

● boxMinWidth allows the items inside sap.ui.layout.GridBoxLayout to accommodate the available
width without allowing them to be smaller than the specified boxMinWidth.

● boxWidth sets the exact width of the items inside sap.ui.layout.GridBoxLayout regardless of the
remaining space available in the row.

● boxesPerRowConfig allows the alignment and specification of the number of items in a row, depending
on the browser viewport size.

This particular layout works with Internet Explorer 11, due to an implemented regressive enhancement (polyfill)
in place of display:grid.

 Note
● The height of all items is set to the height of the highest item.
● If the boxWidth property is set, boxMinWidth and boxesPerRowConfig properties are ignored. If the

boxMinWidth property is set, boxesPerRowConfig property is ignored.

Related Information

API Reference: sap.f.GridList
Samples: sap.f.GridList

sap.ui.layout.cssgrid.CSSGrid

The CSSGrid is a flexible layout, based on the two-dimensional, browser-native grid system, using the
standard CSS property display with value grid. It allows for flexible positioning of user interface elements,
inside horizontal and vertical grid structures.

Overview

The CSSGrid is a powerful grid system that can be configured to display a variable number of columns and
rows, depending on the available space. You can achieve complex but flexible layouts for both full-page and in-
container page layouts. With the CSSGrid control, you can define a logical two-dimensional grid structure.

 Note
You can use the CSSGrid layout to divide a page into regions or define the size, position, and layer between
parts of a control, and easily align elements into columns and rows.

For more information, see https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout

The display: grid layout is not fully supported by all browser platforms. It does not work with Internet
Explorer 11.

For more information, go to www.caniuse.com and search for: CSS grid layout

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2267

https://sapui5.hana.ondemand.com/#/api/symbols/sap.f.GridList
https://sapui5.hana.ondemand.com/#/entity/sap.f.GridList
http://help.sap.com/disclaimer?site=https%3A%2F%2Fdeveloper.mozilla.org%2Fen-US%2Fdocs%2FWeb%2FCSS%2FCSS_Grid_Layout

You can achieve the desired layout, using a flexible set of configuration properties, including responsive
positioning of grid cells along different container break-point sizes.

The grid cells created by the grid layout are empty containers that can be filled with controls.

Usage

The grid layout allows for the placement of multiple elements on the user interface to display structured
content. This helps to maintain one coherent experience within pages as well as across all pages and/or
layouts.

Features and behaviors are configurable to enable the grid layout for a variety of use cases:

● You can define and control the elements flow, positioning the elements either horizontally in rows or
vertically in columns.

2268 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

● Nesting:
○ The grid layout can be used standalone or inside other layout containers, such as another page, a

header or a dialog.
○ The grid layout supports nesting, which allows for the placement of a grid layout inside another grid

layout.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2269

● Size/dimensions configuration: you can configure either every row and column specifically, or using a
template definition (gridTemplateRows, gridTemplateColumns), and you can configure the gaps too
by using the gridGap, gridRowGap, gridColumnGap properties.

● Responsiveness: The ability to adjust grid size and reorganize the grid content, depending on pre-defined
break points. (S, M, L, XL).

2270 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Related Information

API Reference: sap.ui.layout.cssgrid.CSSGrid
Samples: sap.ui.layout.cssgrid.CSSGrid

sap.ui.layout.Grid

A flexible layout that positions its items in a 12-column flow layout.

Overview

The sap.ui.layout.Grid is a powerful grid system that can be configured to display a variable number of
columns depending on the available screen size. You can achieve complex but flexible layouts and line breaks
for extra large, large, medium, and small-sized screens, such as desktop, tablet, and mobile.

With this control, you can define how many items are displayed per row depending on the available screen size,
with a maximum of 12. The height of a single row is always based on the content of the highest item in that row.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2271

https://sapui5.hana.ondemand.com/#/api/symbols/sap.ui.layout.cssgrid.CSSGrid
https://sapui5.hana.ondemand.com/#/entity/sap.ui.layout.cssgrid.CSSGrid

The flow direction of the items is horizontal only. For example, if the control is configured to display six items
per row, the seventh item is displayed on the next row.

Usage

You can use the sap.ui.layout.Grid on its own or in combination with the sap.ui.layout.GridData.
The APIs in the sap.ui.layout.Grid apply for all grid items while with the sap.ui.layout.GridData you
can manipulate individual grid items.

Using sap.ui.layout.Grid on its own
defaultSpan and defaultIndent are the main two properties that enable you to define a specific layout for
the grid. The number of grid columns is always 12 but the span and indentation of the items determine how
many are displayed in one row.

Property Example Values Description

defaultSpan "XL3 L4 M6 S12"
"XL6 M6"
"S2"

Determines the span of the items for
the different screen/container sizes
(XL, L, M, and S). Each item can be set
to span over several grid columns
(from 1 to 12).

defaultIndent "XL4 L3 M2 S1"
"XL2 L1"
"S6"

Defines the number of columns with
which each item is indented for the
different screen/container sizes (XL, L,
M, and S). Each item can be indented
with several grid columns (from 0 to
11).

More properties are available for defining the horizontal and vertical spacing between the grid items, setting a
specific width, defining the position for the grid as a whole, and so on. For more information, see the available
properties in the API Reference.

Using sap.ui.layout.GridData to manipulate individual grid items
To achieve a layout where the individual grid items have a different configuration, use
sap.ui.layout.GridData.

In addition to individual span and indentation, there is a large number of properties that allow for setting the
visibility of items and adding line breaks. For more information, see the available properties in the API
Reference.

Examples

<l:Grid defaultSpan="XL3 L4 M6 S12"> <Image src="/item1.png"
width="100%"></Image>
 <Image src="/item2.png"
width="100%"></Image>
 <Image src="/item3.png"
width="100%"></Image>

XL container/screen size (one item spans over 3 columns)

L container/screen size (one item spans over 4 columns)

2272 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ui.layout.Grid/controlProperties
https://sapui5.hana.ondemand.com/#/api/sap.ui.layout.GridData/controlProperties
https://sapui5.hana.ondemand.com/#/api/sap.ui.layout.GridData/controlProperties

 <Image src="/item4.png"
width="100%"></Image> </l:Grid>

M container/screen size (one item spans over 6 columns)

S container/screen size (one item spans over 12 columns)

<l:Grid defaultSpan="XL3 L4 M6 S12" defaultIndent="XL1 L1 M1 S1"> <Image src="/item1.png"
width="100%"></Image>
 <Image src="/item2.png"
width="100%"></Image>
 <Image src="/item3.png"
width="100%"></Image>
 <Image src="/item4.png"
width="100%"></Image> </l:Grid>

XL container/screen size (items are indented with 1 column)

<l:Grid defaultSpan="XL3 L4 M6 S6">
 <Image src="/item1.png"
width="100%"></Image>
 <Image src="/item2.png"
width="100%"> <layoutData>
 <l:GridData span="XL4"/>
 </layoutData> </Image>
 <Image src="/item3.png"
width="100%"></Image>
 <Image src="/item4.png"
width="100%"> <layoutData>
 <l:GridData span="XL2"/>
 </layoutData> </Image> </l:Grid>

Individual span for item2 and item4 using
sap.ui.layout.GridData

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2273

Related Information

API Reference: sap.ui.layout.Grid
API Reference: sap.ui.layout.GridData
Samples: sap.ui.layout.Grid

Hyphenation for Text Controls

SAPUI5 offers the possibility to hyphenate words in multiline texts when controls are in wrapping mode.

Overview

The hyphenation feature is an intelligent wrapping capability for optimal visual rendering of multiline text. It is
especially useful for longer text instances in any type of container.

It is enabled through the wrappingType property for the following controls:

● sap.m.Text
● sap.m.Title
● sap.m.Label

Use Cases

Using the integrated hyphenation through the wrappingType property directly in the text
controls

All three controls have a wrapping property that determines text wrapping. By default, it is set to true for the
sap.m.Text control and to false for sap.m.Label and sap.m.Title. Setting the wrapping property of
these controls to true allows you to use the wrappingType property which enables hyphenation. It's an enum
property with two possible values:

● WrappingType.Normal – The text wraps on several lines keeping the words in their entirety.
● WrappingType.Hyphenated – The text wraps on several lines separating words into syllables and

marking the syllabification with a hyphen.

Example:

new sap.m.Label({ text: "Liquiditätspositionshierarchie Datenänderungsbelege",
 wrapping: true,
 wrappingType: sap.m.WrappingType.Hyphenated
});

2274 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/symbols/sap.ui.layout.Grid
https://sapui5.hana.ondemand.com/#/api/symbols/sap.ui.layout.GridData
https://sapui5.hana.ondemand.com/#/entity/sap.ui.layout.Grid

Using the sap.ui.core.hyphenation.Hyphenation API
This class provides methods to evaluate the possibility of using browser-native hyphenation or to initialize and
use a third-party hyphenation module. Using this API you can check if browser-native hyphenation is supported
for a particular language.

If browser-native hyphenation is not supported, you can directly use this API to hyphenate texts. A third-party
library named Hyphenopoly is used in that case.

As the sap.ui.core.hyphenation.Hyphenation class is a singleton, an instance should be acquired from
the getInstance method.

Example:

var oHyphenationApi = sap.ui.core.hyphenation.Hyphenation.getInstance(); if (!oHyphenationApi.canUseNativeHyphenation("en")) {
 oHyphenationApi.initialize("en").then(function() {
 console.log(
 oHyphenationApi.hyphenate("An example text to hyphenate.", "en")
);
 }); }

Manual control of hyphenation when third-party resources are loaded.
By default, the text controls load any required third-party resources at a later state which can lead to flickering
of the first visible text control between its unhyphenated and hyphenated states. To prevent this, you can
prepare the third-party library before rendering your app.

Example:

sap.ui.core.hyphenation.Hyphenation.getInstance() .initialize()
 .then(function() {
 // continue with application initialization/rendering
 });

How It Works for Text Controls

We’ve taken the following dynamic approach to hyphenation:

● We use browser-native hyphenation when possible;
● If browser hyphenation is not possible – we use a third-party tool called Hyphenopoly through the

sap.ui.core.hyphenation.Hyphenation API.

Once you've set the control property to WrappingType.Hyphenated, the control instance checks dynamically
whether the browser you’re using supports hyphenation. If yes, it enables the CSS hyphenation and lets the
browser perform it. If it doesn’t, the process is redirected to a third-party tool and the hyphenation module is
asynchronously loaded together with the specific resources per language. This is done through the
sap.ui.core.hyphenation.Hyphenation API, which is responsible for loading all resources in an async
mode and for the dynamic initialization of the third-party library with the language resources and some
required configurations. It also caches the rules internally for future use.

When the framework makes the choice whether browser-native hyphenation or third-party hyphenation should
be used, it logs a message in the console for more information about what was decided.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2275

https://sapui5.hana.ondemand.com/#/api/sap.ui.core.hyphenation.Hyphenation/methods/getInstance

Figure 343: Hyphenation Workflow

Supported Languages

 Caution
Note that as the hyphenation feature uses third-party and browser-native tools, we are not responsible for
any grammatical incorrectness or inconsistencies of the hyphenation. Also, the variety of supported
languages is outside the scope of our control and may be subject to future changes.

SAPUI5 provides hyphenation through the hyphens CSS property or the third-party tool Hyphenopoly.

The following table provides a list of languages supported by the third-party tool Hyphenopoly (version 2.4.0).
Texts in all other languages are hyphenated only if the used browser supports the hyphens CSS property for
the specified language.

Language Code

Bulgarian bg

Catalan ca

Croatian hr

Danish da

2276 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Language Code

Dutch nl

English (US) en

Estonian et

Finnish fi

French (FR) fr

German de

Greek el

Hindi hi

Hungarian hu

Italian it

Lithuanian lt

Norwegian no

Portuguese (BR) pt

Russian ru

Slovenian sl

Spanish (ES) es

Swedish sv

Thai th

Turkish tr

Ukrainian uk

Related Information

API Reference: sap.m.Text
API Reference: sap.m.Title
API Reference: sap.m.Label
API Reference: sap.m.WrappingType
API Reference: sap.ui.core.hyphenation.Hyphenation
Hyphenopoly on GitHub

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2277

https://sapui5.hana.ondemand.com/#/api/sap.m.Text
https://sapui5.hana.ondemand.com/#/api/sap.m.Title
https://sapui5.hana.ondemand.com/#/api/sap.m.Label
https://sapui5.hana.ondemand.com/#/api/sap.m.WrappingType
https://sapui5.hana.ondemand.com/#/api/sap.ui.core.hyphenation.Hyphenation
http://help.sap.com/disclaimer?site=https%3A%2F%2Fgithub.com%2Fmnater%2FHyphenopoly

hyphens CSS property and browser compatibility on MDN Web Docs

Semantic Pages

The semantic page controls help the app designers and developers implement and comply with the SAP Fiori
design guidelines more easily.

The benefit of these controls is to separate the design requirements from the actual app implementations,
allowing these requirements to be adjusted centrally for the controls without the apps having to reimplement
them with each change.

The main functionality of the semantic pages is to predefine the placement, behavior and styles of the page
elements, such as titles and actions. Content specified in the aggregations is automatically positioned in
dedicated sections of the header or the footer of the pages.

There are two separate and non-dependent semantic namespaces in the main SAPUI5 libraries:

● sap.f.semantic (implements SAP Fiori 2.0)
● sap.m.semantic

Both of them extend and enhance the base pages of the library they are in - sap.m.Page and
sap.f.DynamicPage. They allow app developers to quickly add controls to the page that correspond to
common operations, such as add, delete and filter. They only have to specify the action type, and the required
styling and positioning is automatically added internally.

Semantic Page (sap.f)

The sap.f.semantic.SemanticPage is an enhanced sap.f.DynamicPage that implements the SAP Fiori
2.0 design guidelines.

For more information about this control, see the API Reference and the samples.

Features

The SemanticPage exposes all the DynamicPage's API, which means you can do everything that you are
currently able to do with the DynamicPage.

Title
The following aggregations are available to control the semantic in the title of the page:

● Semantic text actions:
○ titleMainAction
○ deleteAction
○ copyAction

2278 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/disclaimer?site=https%3A%2F%2Fdeveloper.mozilla.org%2Fen-US%2Fdocs%2FWeb%2FCSS%2Fhyphens%23Browser_compatibility
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.f.semantic.SemanticPage.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.f.semantic.SemanticPage/samples

○ addAction
● Semantic icon actions:

○ favoriteAction
○ flagAction

● Semantic navigation actions:
○ fullScreenAction
○ exitFullScreenAction
○ closeAction

● Custom actions:
○ titleCustomTextActions
○ titleCustomIconActions

The actions in the title are grouped to text actions or icon actions. When an aggregation is set, the action
appears in the following predefined order (from left to right) as follows:

titleMainAction, titleCustomTextActions, semantic text actions (deleteAction, copyAction,
addAction), customIconActions, semantic icon actions (favoriteAction, flagAction), share menu
action, navigation actions (fullScreenAction, exitFullScreenAction, closeAction).

Share Menu

The following aggregations are available to control the semantic in the share menu. They are positioned
vertically in this order:

● sendEmailAction
● discussInJamAction
● shareInJamAction
● sendMessageAction
● printAction
● customShareActions

The actions in the share menu icon appear in the title when a related aggregation is used.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2279

Footer
The following aggregations are available to control the semantic in the page footer:

● footerMainAction
● messagesIndicator
● draftIndicator
● positiveAction
● negativeAction
● footerCustomActions

The actions in the footer are positioned either on its left or right area and have the following predefined order
from left to right:

The left side contains the messagesIndicator, and the right side - draftIndicator, footerMainAction,
positiveAction, negativeAction and footerCustomActions:

Examples

Initialization
Definition in an XML view:

<core:View xmlns:semantic="sap.f.semantic"
 controllerName="mycompany.myController"
 height="100%">
 <semantic:SemanticPage id="mySemanticPage">
 <!—semantic page content specified here -->
 </semantic:SemanticPage > </core:View>

Definition in JavaScript:

var oSemanticPage = new sap.f.semantic.SemanticPage("mySemanticPage"); oView.addContent(oSemanticPage);

Adding content
Adding semantic content:

<mvc:View height="100%"
 xmlns:mvc="sap.ui.core.mvc"
 xmlns="sap.m"
 xmlns:semantic="sap.f.semantic">
 <semantic:SemanticPage>
 ...
 <!— will automatically create a button with “email” icon and style and
position it in accord with the underlying semantics -->
 <semantic:sendEmailAction press=”onSendEmailPress >

2280 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 <semantic:SendEmailAction />
 </semantic:sendEmailAction>
 <!— will automatically create a button with icon, styling and positioning
in accord with the underlying semantics -->
 <semantic:discussInJamAction press=”onDiscussInJamPress”>
 <semantic:DiscussInJamAction />
 </semantic:discussInJamAction>

 ...
 </semantic:SemanticPage> </mvc:View>

Adding custom (non-semantic) content

<mvc:View height="100%"
 xmlns:mvc="sap.ui.core.mvc"
 xmlns="sap.m"
 xmlns:semantic="sap.f.semantic">
 <semantic:SemanticPage>
 ...
<!-- Title Heading-->
<semantic:titleHeading>
 <Title text="{/title}" />
</semantic:titleHeading>
<!-- Header Content -->
<semantic:headerContent>
 <!—custom header Content goes here -->
<FlexBox
 alignItems="Start"
 justifyContent="SpaceBetween">
 <items>
 <Panel backgroundDesign="Transparent">
 <content>
 <ObjectAttribute title="Functional Area" text="{/objectDescription/
category}"/>
 <ObjectAttribute title="Cost Center" text="{/objectDescription/
center}"/>
 <ObjectAttribute title="Email" text="{/objectDescription/email}"/>
 </content>
 </Panel>
 <ObjectStatus text="In Stock" state="{/objectDescription/status}" />
 </items>
</FlexBox>
</semantic:headerContent>
<!—Content -->
<semantic:content>
 <!—Custom page-body content gies here -->
 <Table
 id="idProductsTable"
 inset="false"
 items="{path:'/ProductCollection'}">
 ...
 </Table>
</semantic:content>
 </semantic:SemanticPage> </mvc:View>

Related Information

API Reference: sap.f.DynamicPage

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2281

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.f.DynamicPage.html

Semantic Page (sap.m)

The sap.m.semantic.SemanticPage is an enhanced sap.m.Page that implements the SAP Fiori 1.0 design
guidelines.

For more information about this control, see the API Reference and the samples.

Features

The following categories give an overview of the internally defined semantic content that is supported:

● Visual properties - content is styled in a certain way, for example an AddAction is displayed as an icon
button.

● Position in the page - some buttons are displayed in the page header only, while others are in the footer or
in the share menu.

● Sequence order - there is a specific sequence order of semantic controls with respect to each other.
● Tooltip - there is a default localized tooltip for the icon-only buttons.
● Overflow behavior - some of the buttons are allowed to go to the overflow area of the toolbar when the

screen becomes narrower. For icon buttons, the text label of the button appears when the button is in the
overflow area.

● Screen reader support - there is invisible text for reading the semantic type.

The available semantic content is different buttons and selects. Each one can correspond to a common action,
such as Add, Edit, Save, and Sort.

Figure 344: Semantic content at its default positions on the page.

Several different selects are supported for displaying a list of selectable items - SortSelect, FilterSelect,
and GroupSelect.

2282 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.semantic.SemanticPage.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.m.semantic.SemanticPage/samples

The following aggregations are available and enable the apps to add their own custom content to the different
areas of the page:

● customHeaderContent
● customFooterContent
● customShareMenuContent
● content - for content in the body of the page

The ordering logic of custom and semantic content is as follows from left to right:

● Left area:
○ messagesIndicator
○ draftIndicator

● Right area:
○ mainAction
○ Semantic text-only buttons, such as deleteAction, positiveAction, and negativeAction
○ Custom content that the app fully controls with no automatic reordering
○ Semantic icon-only buttons, such as favoriteAction, and flagAction

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2283

Examples

Initialization
In the sap.m library, the semantic page controls
aresap.m.semantic.FullscreenPage,sap.m.semantic.MasterPage, and
sap.m.semantic.DetailPage. They have different purpose depending on the context:

For split-screen (Master-Detail) scenarios, apps should use sap.m.semantic.MasterPage together with
sap.m.semantic.DetailPage:

<mvc:View height="100%"
xmlns:mvc="sap.ui.core.mvc"
xmlns="sap.m"
controllerName="mycompany.myController"
xmlns:semantic="sap.m.semantic"
displayBlock="true">
<SplitContainer>
 <masterPages>
 <semantic:MasterPage>
 <!-- master page content goes here -->
 </semantic:MasterPage>
 </masterPages>
 <detailPages>
 <semantic:DetailPage>
 <!-- detail page content goes here -->
 </semantic:DetailPage>
 </detailPages>
</SplitContainer> </mvc:View>

For fullscreen scenarios (where the page should always take the entire screen), apps should use
sap.m.semantic.FullscreenPage:

<mvc:View height="100%"
xmlns:mvc="sap.ui.core.mvc"
xmlns="sap.m"
controllerName="mycompany.myController"
xmlns:semantic="sap.m.semantic"
displayBlock="true">
<App>
 <pages>
 <semantic:FullscreenPage>
 <!-- page content goes here -->
 </semantic: FullscreenPage >
 </pages>
</App> </mvc:View>

Adding semantic content:
The three semantic pages inherit from the abstract sap.m.semantic.SemanticPage control and each
supports content that semantically belongs to its master/detail/fullscreen context.

For example, as the master part usually contains a list of items to be selected, so
sap.m.semantic.MasterPage supports semantic controls for common operations on a list of items, such as
sort, filter, group and multiselect:

...

2284 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 <SplitContainer>
<masterPages>
 <semantic:MasterPage>
 <semantic:sort>
 <semantic:SortSelect change="onSortChange"
 items="{
 path: '/ProductCollectionStats/Filters',
 sorter: { path: 'Name' }
 }">
 <core:Item key="{type}" text="{type}" />
 </semantic:SortSelect>
 </semantic:sort>
 <semantic:filter>
 <semantic:FilterAction press="onFilterPress"/>
 </semantic:filter>
 <semantic:group>
 <semantic:GroupAction press="onGroupPress"/>
 </semantic:group>
 </semantic:MasterPage>
</masterPages>
<detailPages>
 ...
</detailPages> </SplitContainer>

The DetailPage usually displays extended information for the item that was selected in the master part,
therefore the sap.m.semantic.DetailPage also supports controls for operations like editing and sharing:

... <SplitContainer>
 <masterPages>
 ...
 </masterPages>
 <detailPages>
 <semantic:DetailPage">
 <semantic:forwardAction>
 <semantic:ForwardAction press="onForwardPress"/>
 </semantic:forwardAction>
 <semantic:shareInJamAction>
 <semantic:ShareInJamAction press="onShareInJamPress"/>
 </semantic:shareInJamAction>
 <semantic:messagesIndicator>
 <semantic:MessagesIndicator press="onMessagesIndicatorPress"/>
 </semantic:messagesIndicator>
</semantic:DetailPage>
</detailPages> </SplitContainer>

Adding custom (non-semantic) content:

... <semantic:FullscreenPage title="FullScreen Page Title"
 showNavButton="true"
 navButtonPress="onNavButtonPress">
 <semantic:customHeaderContent>
 <!—custom header controls go here -->
 <Button text="CustomHeaderBtn" press="onHeaderBtnPress"/>
 </semantic:customHeaderContent>
 <semantic:content>
 <!—custom page content goes here -->
 <semantic:AddAction press="onSemanticButtonPress"/>
 </semantic:content>
 <semantic:customFooterContent>
 <!—custom footer controls go here -->
 <Button text="CustomFooterBtn" press="onFooterBtnPress"/>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2285

 <OverflowToolbarButton icon="sap-icon://settings"
text="Settings" press="onSettingsPress"/>
 </semantic:customFooterContent>
 <semantic:customShareMenuContent>
 <!—custom share-menu controls go here -->
 <Button text="CustomShareMenuBtn" press="onShareMenuBtnPress"/>
 </semantic: customShareMenuContent > </semantic:FullscreenPage>

Related Information

API Reference: sap.m.Page

Tables: Which One Should I Choose?

The libraries provided by SAPUI5 contain various different table controls that are suitable for different use
cases. The table below outlines which table controls are available, and what features are supported by each
one.

Table 114: Overview of Tables and Supported Features

Feature Supported?
Responsive Table
(sap.m.Table)

Grid Table (sap.ui.ta
ble.Table)

Analytical Table
(sap.ui.table.Analyti
calTable)

Tree Table (sap.ui.ta
ble.TreeTable)

Desktop

Tablet

Phone

Responsive (hide col
umn, popin support)

Compact density

Condensed density

Cozy density

Summarized cell

Hierarchical data

2286 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.Page.html
https://sapui5.hana.ondemand.com/#/api/sap.m.Table
https://sapui5.hana.ondemand.com/#/api/sap.ui.table.Table
https://sapui5.hana.ondemand.com/#/api/sap.ui.table.Table
https://sapui5.hana.ondemand.com/#/api/sap.ui.table.AnalyticalTable
https://sapui5.hana.ondemand.com/#/api/sap.ui.table.AnalyticalTable
https://sapui5.hana.ondemand.com/#/api/sap.ui.table.TreeTable
https://sapui5.hana.ondemand.com/#/api/sap.ui.table.TreeTable

Feature Supported?
Responsive Table
(sap.m.Table)

Grid Table (sap.ui.ta
ble.Table)

Analytical Table
(sap.ui.table.Analyti
calTable)

Tree Table (sap.ui.ta
ble.TreeTable)

Large number of rows
(> 200)2

Grouping

Freeze columns

Horizontal scrolling

Merge duplicates

Supported controls Supports all kinds of
controls inside a line
item

Supports a limited set
of controls1

Supports a limited set
of controls1

Supports a limited set
of controls1

Row-based

Column-based

OData-based Requires manual modi
fications

Requires manual modi
fications

Requires manual modi
fications

Requires manual modi
fications

1) Text, Label, ObjectStatus, Icon, Button, Input, DatePicker, Select, ComboBox, MultiComboBox,
CheckBox, Link, Currency, RatingIndicator, ProgressIndicator as well as the
StackedBarMicroChart, ComparisonMicroChart , and BulletMicroChart controls (of responsive or
extra small size); To keep the control height always stable, the wrapping and renderWhitespace properties
in the sap.m.Text control, for example, must be set to false. For more information, search for cell level in the
SAP Fiori Design Guidelines .

2) To optimize perfomance, we recommend to show no more than 200 items at once in the responsive table.
For a larger number of items (up to 1000), use the growing feature to limit the number of displayed items and
make sure the user can filter the data. For more information, see the API Reference for the growing* properties.

 Caution
The limits mentioned are only recommendations. For a specific app context, the actual number of
manageable items might be higher or lower.

The actual limits depend on what your scenario looks like, for example:

● The number of rows in the table
● The number of columns that are visible
● The complexity of the cell content and/or the page (for example, multiple pages in a flexible column

layout, or depending on how much binding is done)
● The browser being used

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2287

https://sapui5.hana.ondemand.com/#/api/sap.m.Table
https://sapui5.hana.ondemand.com/#/api/sap.ui.table.Table
https://sapui5.hana.ondemand.com/#/api/sap.ui.table.Table
https://sapui5.hana.ondemand.com/#/api/sap.ui.table.AnalyticalTable
https://sapui5.hana.ondemand.com/#/api/sap.ui.table.AnalyticalTable
https://sapui5.hana.ondemand.com/#/api/sap.ui.table.TreeTable
https://sapui5.hana.ondemand.com/#/api/sap.ui.table.TreeTable
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2F
https://sapui5.hana.ondemand.com/#/api/sap.m.Table

For more information, search for loading items and performance in the responsive table section in the SAP Fiori
Design Guidelines .

Smart Table

(sap.ui.comp.smarttable.SmartTable)

The SmartTable control is an OData-based control that automatically generates the required table (based on
the tableType property) if the required annotations are maintained, and the suitable configuration is
provided. All attributes mentioned in the table above depend on which table type is used for SmartTable.
Refer to the respective table column for more information about the individual attributes.

sap.f

This library contains controls that were built based on the SAP Fiori 2.0 design guidelines.

 Note
The following sections only provide additional information for some of the controls. For a complete list of all
controls and their documentation, see the API Reference and the Samples.

Related Information

Supported Library Combinations [page 26]
API Reference: sap.f

Building an App with the Flexible Column Layout and Related
Classes

The following sections provide you with best practices and details that help you develop SAP Fiori 2.0 apps with
the sap.f.FlexibleColumnLayout control.

The simplest way to build an app with the sap.f.FlexibleColumnLayout is to create an instance of the
control as a top-level container in the root view of your component and then use the sap.f.routing.Router
to manipulate the control upon user interaction.

On each significant user action, query the sap.f.FlexibleColumnLayoutSemanticHelper class for the
recommended layout and action buttons to show.

2288 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2F
https://sapui5.hana.ondemand.com/#/api/sap.ui.comp.smarttable.SmartTable
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.html
https://sapui5.hana.ondemand.com/explored.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.f.html

Flexible Column Layout

The sap.f.FlexibleColumnLayout control implements the master-detail-detail paradigm by displaying up
to 3 pages in separate columns.

The control is suitable for apps that need to display several logical levels of related information side by side, for
example, a list of items, item, sub-item. It is flexible in a sense that the app can focus the user's attention on
one particular column by making it larger or even fullscreen.

Related Information

API Reference: sap.f.FlexibleColumnLayout

Control Structure

The sap.f.FlexibleColumnLayout contains 3 instances of sap.m.NavContainer – one for each column.

It is logically similar to sap.m.SplitContainer, however, there are two main differences:

● Displays up to 3 columns side by side (as opposed to 2 columns)
● The width of the columns is not fixed, but flexible (determined by the layout property)

The following table respresents how the FlexibleColumnLayout roughly relates to the NavContainer and
SplitContainer controls.

Control API Number of Pages Displayed

sap.m.NavContainer pages (aggregation) 1 page at a time

sap.m.SplitContainer masterPages (aggregation)

detailPages (aggregation)

Up to 2 pages at a time (2 instances of
NavContainer)

sap.f.FlexibleColumnLayout beginColumnPages (aggregation)

midColumnPages (aggregation)

endColumnPages (aggregation)

layout (property of type
sap.f.LayoutType, determining
the relative widths of the 3
NavContainers)

Up to 3 pages at a time (3 instances of
NavContainer)

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2289

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.f.FlexibleColumnLayout.html

Types of Layout

Overview of the possible layouts for an sap.f.FlexibleColumnLayout, as defined in the
sap.f.LayoutType enumeration.

Although the FlexibleColumnLayout can display 2 or 3 pages at one time, they can never have equal width
(50%/50% or 33%/33%/33%). One of the pages is always larger (expanded) or even takes up the full width of
the control (fullscreen). This is intentional because users should have a clear indication of what to focus their
attention on at any given moment, for example, a list of items, one particular item, one item’s details.

Transitioning from a one-column layout to any two-column layout, and then to any three-column layout is seen
by the user as new columns appearing/disappearing on desktop/tablet or the next column replacing the
previous one - on phone (small screen size). The app does not need to provide separate logic for the different
screen sizes, but only change the layout based on the user input and desired behavior. The
FlexibleColumnLayout will internally manage column visibility and resizing. If at any time, the browser size
changes, this will be reflected by the control automatically.

There are 9 allowed variations of width and visibility for the 3 columns. They are represented with the values of
the layout property, which is of type sap.f.LayoutType.

The table below shows how each of the 9 layout types affects the column visibility and width, based on the
control size:

Layout Types Desktop / Tablet / Phone

OneColumn

This is the default layout type for a FlexibleColumnLayout. Only
the Begin column is displayed, no matter the control size.

Use to show the first logical information level (master page) only.

TwoColumnsBeginExpanded

Use this layout type to display two logical levels of information (master
and detail pages, master being expanded) on desktop/tablet, or the sec
ond logical level of information only (detail page) on phone. On desktop/
tablet the transition from OneColumn to
TwoColumnsBeginExpanded is seen by the user as the Begin col
umn shrinking and Mid column opening, while on phone it's seen as the
Mid column replacing the Begin column.

TwoColumnsMidExpanded

Similar to TwoColumnsBeginExpanded, but this time the Mid col
umn is the wider one.

2290 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Layout Types Desktop / Tablet / Phone

MidColumnFullScreen

Use this layout to display the second logical level of information (detail
page) only. The Mid column takes up the whole available control width
for all control sizes.

 Note
On small screen sizes, the layouts TwoColumnsBeginExpanded,
TwoColumnsMidExpanded and MidColumnFullScreen all
lead to the same result for the user – the Mid column taking up the
whole control width. However, if the user resizes the browser and
makes space, the control will automatically apply the rules of the cur
rent layout for the new width.

ThreeColumnsMidExpanded

Use this layout to display up to three logical levels of information side by
side (master, detail, and detail-detail pages), when the user should focus
primarily on the content of the Mid column (as it is wider than the other
two). On desktop, all three columns will be displayed, on tablet – the Mid
and End columns only (with a layout arrow to access the Begin col
umn), and on phone – the End column only.

ThreeColumnsEndExpanded

Similar to ThreeColumnsMidExpanded, but this time the End col
umn is expanded, and this is where the user is supposed to focus their
attention.

ThreeColumnsMidExpandedEndHidden

Use this layout to show the Begin and Mid columns only (Mid being
expanded), while the End column is hidden but accessible with a layout
arrow. The difference between this layout and the
TwoColumnsMidExpanded layout is that for
TwoColumnsMidExpanded the user cannot access the End column
at all, as only two logical levels of information are offered (the third may
not be loaded yet), while for
ThreeColumnsMidExpandedEndHidden the End column is not
empty, but just not currently displayed. Its content is loaded and easily
accessible (most commonly already seen by the user, and now hidden so
more space can be freed for the other columns).

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2291

Layout Types Desktop / Tablet / Phone

ThreeColumnsBeginExpandedEndHidden

Similar to ThreeColumnsMidExpandedEndHidden, but this time
the Begin column is expanded. A layout arrow is provided to shrink the
Begin column, thus transitioning the layout to
ThreeColumnsMidExpandedEndHidden.

EndColumnFullScreen

Use this layout to display the third logical level of information (detail-de
tail page) only. The End column takes up the whole available control
width for all screen sizes.

 Note
On small screen sizes all three-column layouts and
EndColumnFullScreen lead to the same result for the user –
the End column taking up the whole control width. However, if the
user resizes the browser and makes space, the control will automati
cally apply the rules of the current layout for the new width.

For each value of the layout property, the FlexibleColumnLayout displays a different combination of
columns, based on the available control width (or screen width, if the control takes up the whole screen).

Control size Columns

Up to 960px (Phone) 1 column max

960px – 1280px (Tablet) 2 column max

1280px and above (Desktop) 3 column max

Related Information

API Reference: sap.f.LayoutType

Layout Arrows

Layout arrows are used to alter the current layout of the FlexibleColumnLayout.

The FlexibleColumnLayout provides layout arrows on screen sizes where more than one column may be
displayed at one time (desktop and tablet). They allow the user to alter the current layout.

Layout arrows are the only way for the layout to change on control level, without the app changing it explicitly.
Layout changes due to interaction with the layout arrows are only from one type of two-column layout to

2292 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.f.LayoutType.html

another type of two-column layout, or from one type of three-column layout to another type of three-column
layout. Changing the number of active columns (for example, from a two-column layout to a three-column
layout) can only happen on app level by directly manipulating the layout property from your controller.

Examples for layout changes due to layout arrows interaction:

● In a TwoColumsBeginExpanded layout there is one arrow that changes it to TwoColumnsMidExpanded.
● In a TwoColumnsMidExpanded layout there is one arrow that changes it to TwoColumnsBeginExpanded.
● In a ThreeColumnsMidExpanded layout there are two arrows that allow changing the layout either to a

ThreeColumnsEndExpanded or to ThreeColumnsMidExpandedEndHidden layout.

Reacting to Layout Changes

The FlexibleColumnLayout control provides the stateChange event.

The event is fired in the following cases:

● The layout changes because the user chose a layout arrow.
● The user resizes the browser beyond the 960px/1280px thresholds, which doesn’t change the layout, but

changes the number of columns that can be displayed at one time.

The app can subscribe to this event to be able to react to the layout change, for example to show/hide action
buttons, such as fullscreen button or close column button.

 Note
The event is NOT fired if the app changes the layout property explicitly. It is only fired if it was changed
internally, due to the user interacting with the layout arrows or columns appearing/disappearing.

Changing the Layout and Loading Views (Best Practices)

The app can load controls (usually views) in the three columns with the standard means (beginColumnPages,
midColumnPages, endColumnPages aggregations) and navigate between them with
the .to(), .backToPage() or any other public method, similar to the sap.m.NavContainer or
sap.m.SplitContainer controls.

At the same time, the app can change the layout of the control by modifying the layout property.

If both a layout change and the loading of a new view need to happen as a result of one user action, the best
practice is to change the layout first, and to load the views (or navigate to already loaded views) second. This
would ensure that the columns are resized first (as layout change is done synchronously), and only then views
are placed inside the already resized columns. This would eliminate the need for controls in the views to
readapt to the new size after they are placed and rendered initially.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2293

Flexible Column Layout Semantic Helper

A helper class, designed to facilitate the implementation of apps based on the
sap.f.FlexibleColumnLayout control and the SAP Fiori 2.0 design guidelines.

FlexibleColumnLayout gives you the freedom to implement any app logic that involves changing the layout
(showing/hiding columns) as a result of the user’s actions. However, there are certain UX patterns that are
considered as optimal and are recommended for SAP Fiori 2.0 apps. The
FlexibleColumnLayoutSemanticHelper class helps you implement them by giving you tips about what
layout to display when.

 Note
Using this class is NOT mandatory in order to build an app with the FlexibleColumnLayout, but makes it
easier to achieve the optimal UX recommended in the SAP Fiori 2.0 design guidelines.

The first 3 logical levels of information are displayed in the three columns side by side, and the forth (and
others) are displayed in the End column in fullscreen. If at any time the user opens a page in fullscreen, all
subsequent levels are also displayed in fullscreen.

Here is a short overview of some of the rules of the default rule set:

● The control starts with OneColumn layout (usually to display a list of items).
● When the user selects an item from the Begin column, the item's details are displayed in the Mid column

and the layout should change to TwoColumnsBeginExpanded. Two action buttons are displayed on the
page in the Mid column – Fullscreen and Close.
○ Choosing the Close button changes the layout back to OneColumn.
○ Choosing the Fullscreen button changes the layout to MidColumnFullScreen. The Fullscreen button

is then replaced with an ExitFullscreen button, which restores the layout to
TwoColumnsBeginExpanded.

● If the user selects an item from the Mid column:
○ If the current layout is TwoColumnsBeginExpanded/TwoColumnsMidExpanded, the layout changes

to ThreeColumnsMidExpanded. The Close and Fullscreen buttons should now be displayed only in
the End column.

○ If the current layout is MidColumnFullScreen, the layout changes to EndColumnFullScreen.
● If the user selects an item from the End column (which represents the third logical level of information), the

layout should change to EndColumnFullScreen and the forth (then fifth, etc.) logical level should again
be displayed in the End column.

Main Methods

Overview of the two main methods used in the sap.f.FlexibleColumnLayoutSemanticHelper class.

getCurrentUIState()

This method returns an object, providing the following detailed information about the current state of the
FlexibleColumnLayout:

2294 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

● The current layout of the control
● The relative sizes and visibility of the control's columns
● Whether the control currently displays a page in fullscreen (and is fullscreen explicitly set, or is this due to

device size constraints?)
● What action buttons the app should display, in which column, and what control layout appears when these

buttons are chosen

The example below shows a sample value of the actionButtonsInfo field of this object:

"actionButtonsInfo":{ "midColumn":{
 "fullScreen":null,
 "exitFullScreen":null,
 "closeColumn":null
 },
 "endColumn":{
 "fullScreen":"EndColumnFullScreen",
 "exitFullScreen":null,
 "closeColumn":"TwoColumnsBeginExpanded"
 }
 }

This means that currently the app should not display any action buttons in the Mid column. In the End column
however, there should be two action buttons – Fullscreen and Close. If the user chooses the Fullscreen button,
the layout should change to EndColumnFullScreen, and if the user chooses the Close button, the layout
should change to TwoColumnsBeginExpanded.

getNextUIState(iNextLevel)

This method tells you to what layout the control should transition, and what kinds of action buttons would be
displayed to represent a different logical level. The argument iNextLevel is a zero-based int. 0 stands for the
initial logical level, 1 - for master and detail, 2 - for master, detail, and detail-detail, 3 and above – for the
subsequent logical levels.

If the current layout is OneColumn (only the Begin column is displayed), and the user selects an item from it,
both master and detail should be displayed. To determine the recommended layout to display them, call
getNextUIState(1). It will return an object with a layout field with value TwoColumnsBeginExpanded.
Later, if the user selects an item from the Mid column, call getNextUIState(2) to determine the layout to
use for the detail-detail level. Alternatively, if the user choses an item in the Begin column, call again
getNextUIState(1) to determine the proper two-column layout to switch to.

Note that the getNextUIState method is not static – its return value depends on the current state of the
control. For example, calling getNextUIState(2) will return ThreeColumnsMidExpanded if currently a two-
column layout is displayed, but EndColumnFullScreen - if a fullscreen layout is displayed, etc.

Related Information

API Reference: sap.f.FlexibleColumnLayoutSemanticHelper

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2295

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.f.FlexibleColumnLayoutSemanticHelper.html

Router
The sap.f.routing.Router has built-in support for routing-capable controls in the sap.f library.

The sap.f.routing.Router currently supports the FlexibleColumnLayout control only, similarly to how
the sap.m.routing.Router has specific knowledge of the sap.m.NavContainer and
sap.m.SplitContainer. Therefore, the sap.f.routing.Router should be used for apps based on the
FlexibleColumnLayout.

The sap.f.routing.Router offers the beforeRouteMatched event. This event is fired before views are
loaded into the respective columns. Use this event to manually change the layout (if you didn’t specify a layout
on route level).

The sap.f.routing.Router has the following main differences to the sap.m.routing.Router:

● The sap.f.routing.Router can have up to 3 targets per route (one for each column).
● The sap.f.routing.Router supports the layout setting on route level. Effectively, this means that you

can specify a layout along with the targets of a route. This layout will be applied to the root control (which is
meant to be a sap.f.FlexibleColumnLayout) before views are loaded.

● The sap.f.routing.Router view loading is exclusively asynchronous.

 Sample Code
A sample route of a sap.f.routing.Router-based app:

{ "pattern": "itemInfo",
 "name": "itemInfo",
 "target": [
 "master",
 "detail",
 "detailDetail"
],
 "layout": "ThreeColumnsMidExpanded" }

 Sample Code
A sample of its targets definition:

"targets": { "master": {
 "viewName": "Master",
 "controlAggregation": "beginColumnPages"
 },
 "detail": {
 "viewName": "Detail",
 "controlAggregation": "midColumnPages"
 },
 "detailDetail": {
 "viewName": "DetailDetail",
 "controlAggregation": "endColumnPages"
 }
}

If the route is matched, the router will first apply the layout property to the sap.f.FlexibleColumnLayout
root control, and will then start loading the views asynchronously in its aggregations (and will navigate to each
of them in the respective column).

2296 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Another way to achieve this, when the layout cannot be known in advance, is to just specify the targets (as you
do when using sap.m.routing.Router), without supplying a layout setting:

{ "pattern": "itemInfo",
 "name": "itemInfo",
 "target": [
 "master",
 "detail",
 "detailDetail"
]
}

And then change the layout manually. The recommended lifecycle event to do this is a beforeRouteMatched
event handler in your controller. In theory, you could change the layout as response of routeMatched too, but
beforeRouteMatched is better for the purpose, as views aren’t loaded yet, which ensures that when they are,
columns will be already resized, and there will be no need for the controls in the views to readapt (which would
be the case if views were loaded first, and only then columns resized).

Related Information

API Reference: sap.f.routing.Router

sap.m

This library contains the most important controls for building a user interface that is responsive to any device.

 Note
The following sections only provide additional information for some of the controls. For a complete list of all
controls and their documentation, see the API Reference and the Samples.

Related Information

Supported Library Combinations [page 26]
Browser and Platform Support [page 20]
API Reference: sap.m

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2297

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.f.routing.Router.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.html
https://sapui5.hana.ondemand.com/explored.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.html

App and Nav Container

Apps are often composed of several pages and the user can drill-down to detail pages and go back up again.
This is often visualized by horizontal slide animations. SAPUI5 supports this pattern by providing the
sap.m.App and sap.m.NavContainer controls, which handle the navigation between the pages.

sap.m.App inherits the navigation capabilities from the sap.m.NavContainer control. Thus, both controls
are equal with regard to navigation and navigation events. The following sections refer to the
sap.m.NavContainer, but the same also applies to the sap.m.App control.

An app can control the navigation flow centrally and directly trigger the initialization of the pages. To support
modularization of the app, however, it may also be beneficial to control the navigation flow non-centrally. In this
case, code which constructs a page is also the code that handles, for example, the data load in this page.

To support this, SAPUI5 provides two types of events:

● Events fired by the App or by the NavContainer whenever it navigates.
● Events fired on the pages when they get shown or hidden by navigation.

API References

● sap.m.App
● sap.m.NavContainer

Events Fired Centrally by the App or the NavContainer

When NavContainer.to(…) or NavContainer.back(…) are called, the NavContainer triggers events and
the application can register for this events. The navigate event is fired before the transition animation starts,
and the afterNavigate event is fired when the animation has been completed.

The events contain a lot of information about the page that is left and the target page of the navigation, as well
as what kind of navigation is happening.

Example:

 app.attachNavigate(function(evt) {
 var isBack = !evt.getParameter("isTo"); // there are several types of back
animation, but we want the general direction only
 alert("Navigating " + (isBack ? "back " : "") + " to page " +
evt.getParameter("toId")); });

API References

● event:afterNavigate

2298 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.App.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.NavContainer.html
https://sapui5.hana.ondemand.com/#/api/sap.m.NavContainer/events/afterNavigate

● event:navigate

Events Fired on the Pages

Events fired on the pages allow a decentral reaction to navigation.

The NavContainer fires events to its child controls when they are displayed or when they are hidden.

 Note
Although this documentation calls them "pages" and a sap.m.Page control may be the typical child of a
NavContainer, any full screen control can be used, for example, a sap.m.Carousel control or a custom
control. The direct child controls often may be views. In this case, the events will be fired on the views, and
not on a page control that may be contained in the view. Thus, the event is not fired by the child control, but
by the NavContainer on the child control (whatever type it is). This causes the different registration
compared to normal control events.

Before the navigation animation starts, the NavContainer fires the following events:

● beforeHide on the page which is about to be left
● beforeFirstShow on the page which is about to be shown; this event is only fired if the respective page

has not been shown before
● beforeShow on the page which is about to be shown

These events can be used to create or update the user interface of the new page and to stop any activity, such
as animations or repeated data polling, on the page which is left.

After the navigation has been completed and the new page has covered the whole screen, the following events
are fired:

● afterShow on the page which is now shown
● afterHide on the page which has been left

You can destroy the hidden page, and the now active page can start its activity.

You can use the addEventDelegate function to register to these events. This function is available on every
control.

 page1.addEventDelegate({
 onBeforeShow: function(evt) {
 // page1 is about to be shown; act accordingly - if required you can read
event information from the evt object
 },
 onAfterHide: function(evt) {
 // ...
 } });

API Reference

sap.m.NavContainerChild

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2299

https://sapui5.hana.ondemand.com/#/api/sap.m.NavContainer/events/navigate
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.NavContainerChild.html

Passing Data when Navigating

When you use the to(…) and back(…) methods of the NavContainer to trigger navigation, you can also give
an optional payload data object.

This object is then available in the page events, for example beforeShow and afterShow. You can also use
this mechanism to decouple page implementations.

Example:

 app.to("detailPage", {id:"42"}); // trigger navigation and hand over a data
object
 // this data object could also be a binding
context when dealing with data binding
...
// and where the detail page is implemented:
myDetailPage.addEventDelegate({
 onBeforeShow: function(evt) {
 var idToRetrieve = evt.data.id;
 // ...now retrieve the data element with the given ID and update the page
UI
 } });

When you navigate back to a page, it receives the original data object which has been given when you first
navigated to the page, but you can also give an additional data object with the back navigation.

API References

● sap.m.NavContainer
● sap.m.NavContainerChild

Facet Filter

Facet filters (sap.m.FacetFilter) support users in finding the information they need from potentially very
large data sets.

With the facet filter, users can explore a data collection by applying multiple filters along certain discrete
attributes or facets of the overall data collection.

The following figure shows the structure of the facet filter.

2300 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.NavContainer.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.NavContainerChild.html

Example

Your application displays a large list of products that can be grouped by category and supplier. With the facet
filter, you allow users to dynamically filter the list so it only displays products from the categories and suppliers
they want to see. In the following figure, the FacetFilter control is outlined in red and will be referred to as
the 'toolbar' for the user. In the example, the user has set the following filters:

● Category: Printer
● Supplier: Red Point Stores

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2301

The facet filter supports the following two typeswhich can be configures using the control's type property:

● Simple type
The simple type is the default type and available for desktop and tablets.

● Light type
The light type is automatically enabled on smart phone sized devices, but is also available for desktop and
tablets.

Facet Filter: Simple Type

The simple type of the FacetFilter control is only available for desktop and tablets.

The active facets are displayed as individually selectable buttons on the toolbar as shown in the following
figure.

If the user selects a facet in the toolbar, a popover list of the available filters for the selected facet is displayed.

The simple type provides the following functions:

● With the showPopoverOkButton property of the FacetFilter control you can display an OK button in
the popover. The OK button enables the user to close the popover in addition to the standard behavior of
sap.m.Popover.

● With the showPersonalization property you enable the user to add facets to the toolbar by selecting
the Add Facet icon. Personalization is disabled by default.

● With the showSummaryBar property you can display the active facets as a non-selectable summary bar.
You use this property if you preset facet filters and the user is not allowed to change them.

2302 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Facet Filter: Light Type

The light type of the FacetFilter control is automatically enabled on smart phone devices and is also
available for desktop and tablets.

The active facets and selected filter items are displayed in the summary bar.

When the user selects the summary bar, a navigable dialog list of all facets is displayed. When the user selects
a facet, the dialog scrolls to show the list of filters that are available for the selected facet.

By selecting any of its associated filters in the dialog, the user can add a facet to the summary bar.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2303

Facet Filter List and Facet Filter Item

The sap.m.FacetFilter control uses the FacetFilterList and the FacetFilterItem controls to model
facets and their associated filters.

The facet filter list aggregation is a collection of facet filter list objects, where each element in the collection
represents a different facet. Likewise, the facet filter list items aggregation is a collection of facet filter item
objects where each element in the collection represents a different filter items available for the facet.

Facet Filter List

The FacetFilterList control extends and supports all the features of the sap.m.List control, for example
swipe for action, growing feature, remember selections and grouping.

The following properties of FacetFilterList affect the display of lists in the FacetFilter control.

Property Description

title Facet name

mode Controls the selection mode for the list

This property is overridden from ListBase and only
allows SingleSelectMaster or MultiSelect
settings. MultiSelect is the default: This setting
displays the All checkbox above the filter list to allow the

2304 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Property Description

user to select all filters. This does not actually select
individual filters to avoid performance overhead for lists
with a large number of items.

sequence Controls the order in which the facets are displayed in the
toolbar

Lists appear in the toolbar in ascending order according to
sequence (assuming left to right). Lists with a sequence
less than 0 are placed last, not before facets with sequence
of zero. Only active lists are displayed regardless of
sequence setting.

active Indicates if a facet filter list is active and should appear on
the toolbar; this is only applicable for the simple type as all
facet filter lists are active in the light type

allCount The allCount value can be set to the number of filter
matches in the target data set given the currently selected
filters for the facet filter list.

 Note
The list of properties is not complete. For a complete list, refer to the API documentation.

Facet Filter Item

The FacetFilterItem control extends and supports all features of sap.m.ListItemBase, for example item
selection and counter. FacetFilterItem provides the following properties:

Property Description

text Filter item name

key Unique identifier of the filter item; used to filter the target
data set

If key is not set, text is used as the key value.

 Note
You must either set the text or the key property. Otherwise, the facet filter list can not properly maintain
the selected state of the item and an error message is logged to the console.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2305

Example

The following example shows how you use the controls. To build the face filter in the figure, use the code below
the figure:

 var oFacetFilter = new sap.m.FacetFilter({ // define FacetFilter Control
 lists : [new sap.m.FacetFilterList({ // city facet
 title : "City",
 items : [new sap.m.FacetFilterItem({
 text : "Waldorf",
 key : "WDF"
 }), new sap.m.FacetFilterItem({
 selected : true, // filter is selected (from ListItemBase)
 text : "Atlanta",
 key : "ATL"
 })]
 }), new sap.m.FacetFilterList({ // restaurant facet
 title : "Restaurants",
 items : [new sap.m.FacetFilterItem({
 text : "Caribbean",
 key : "CRB"
 }), new sap.m.FacetFilterItem({
 selected : true, // filter is selected (from ListItemBase)
 text : "Italian",
 key : "ITL"
 })]
 })]
 });

 Note
The example does not have a model binding. A binding to the filter items is required for the search.

2306 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Events for Facet Filters

Facet filters support several events, such as reset and list open.

As the user interacts with the FacetFilter control, the following key events are fired for event handling in the
application:

● reset event (FacetFilter control)
The reset event is fired when the user presses the Reset icon on the toolbar or summary bar.
You can use the showReset property of the FacetFilter control to disable the Reset icon so that it is no
longer displayed. The application is responsible for implementing the reset logic.
To remove all selected filters from a facet filter list, call removeSelections(true).

● listOpen event (FacetFilterList control)
The listOpen event is fired when the user selects a facet from the toolbar or when a facet is selected in
the dialog.
You can use this event to load the list with data the first time the user accesses it as opposed to loading all
the lists with data when the application is initialized.

● listClose event (FacetFilterList control)
The listClose event is fired when the user closes a popover, navigates back from the filter items page in
the dialog, or closes the dialog. You use this event to handle any processing that needs to occur based on
facet filter item selections, such as filtering the target data set.

Data Binding for Facet Filters

FacetFilter fully supports the SAPUI5 data binding concept.

As the information for the facet filter usually resides in the application backend, data binding is commonly used
to populate the FacetFilter properties and aggregations.

Applications using OData do not bind the FacetFilterItem.selected property since this is not available
from the backend service. Fortunately, selections are maintained internally on the client by the
FacetFilterList until the list is destroyed.

Related Information

Facet Filter Selection [page 2308]

Filter Search

The popover and dialog displayed by FacetFilter contain an sap.m.SearchField control. This enables the
user to search for specific items in the list.

FacetFilterList internally handles the search and liveChange events by filtering the underlying data
model: The search only works when the FacetFilterList items aggregation is bound to a model.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2307

If you enable the liveSearch property of the FacetFilter control, keep the performance in mind as this will
result in a backend request for each search character typed by the user.

Facet Filter Selection

The FacetFilterList.getSelectedItems() method returns a copy of each selected facet filter item. You
use the method to get the selected filter items when filtering the target data set.

Therefore, you should not attempt to modify any of the item's properties.

Variants

An application can support the personalization of settings and allow the user to save the facet filter list
selections as well as other properties by means of a variant. For example, you can use getSelectedKeys to
retrieve an object containing all selected items and use JSON.stringify to marshall and JSON.parse to
unmarshall. After unmarshalling, you can use setSelectedKeys to apply the selections to the list. The
following figure and code snippet give an example.

 var oDataModel = new sap.ui.model.odata.v2.ODataModel("/uilib-sample/proxy/http/
services.odata.org/V3/Northwind/Northwind.svc");
// create the FacetFilterList and bind the filter items
var oFacetFilterList = new sap.m.FacetFilterList({
 title : "Products",
 growing : true,
 items : {
 path : "/Products",
 template : new sap.m.FacetFilterItem({

2308 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 text : "{ProductName}",
 key : "{ProductID}"
 })
 },
 listOpen : function(oEvent) {
 if(!this.hasModel()) {
 this.setModel(oDataModel);
 }
 },
});
// getSelectionsFromVariant() is an application method to retrieve
// selected keys from the backend. Selections were saved to the variant by
persisting
// the result of 'getSelectedKeys' for each list. This is an object
// containing Product keys as properties and Product text as property values,
for example:
/*
{
 '5' : "Chef Anton's Gumbo Mix",
 '17' : "Alice Mutton",
 '21' : "Sir Rodney's Scones"
}
*/
var oSelectedKeys = getSelectionsFromVariant();
// Now preselect these items
oFacetFilterList.setSelectedKeys(oSelectedKeys);
var oFacetFilter = new sap.m.FacetFilter({
 lists : [oFacetFilterList] });

Dependent Facets

Applications can have dependencies between facets where selection of filter items in one facet list limits the list
of valid filters in another facet list.

For example, an application displays a list of products and uses a facet filter with two facets: Categories and
Products. If users select a category filter, they should only be able to filter products from that selected
category. Facet filter does not explicitly handle dependencies between facets. Instead, use FacetFilterList
events in the application.

Example

In this example, only products from the selected category are displayed.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2309

 var oCategoriesModel = new sap.ui.model.odata.v2.ODataModel("/uilib-sample/proxy/
http/services.odata.org/V3/Northwind/Northwind.svc");
var oCategoriesFFL = new sap.m.FacetFilterList({ // create the categories facet
list
 title : "Categories",
 mode : sap.m.ListMode.SingleSelectMaster, // restrict to one selection for
simplicity
 key : "Categories",
 items : {
 path : "/Categories",
 template : new sap.m.FacetFilterItem({
 text : "{CategoryName}",
 key : "{CategoryID}"
 })
 }
});
oCategoriesFFL.setModel(oCategoriesModel); // set the data model
// create the data model for the products facet list
var oProductsModel = new sap.ui.model.odata.v2.ODataModel("/uilib-sample/proxy/
http/services.odata.org/V3/Northwind/Northwind.svc");
var oProductsFFL = new sap.m.FacetFilterList({
 title : "Products",
 key : "Products",
 items : {
 path : "/Products_by_Categories",
 template : new sap.m.FacetFilterItem({
 text : "{ProductName}",
 key : "{ProductID}"
 })
 },
 listOpen : function(oEvent) {
 // only display products from the selected category (if any)
 var aSelectedKeys =
Object.getOwnPropertyNames(oCategoriesFFL.getSelectedKeys());
 if(aSelectedKeys.length > 0) {

 var oBinding = this.getBinding("items");
 var oUserFilter = new sap.ui.model.Filter(
 "CategoryName",
 sap.ui.model.FilterOperator.Contains,
 oCategoriesFFL.getSelectedKeys()[aSelectedKeys[0]]);
 var oFinalFilter = new sap.ui.model.Filter([oUserFilter], true);

2310 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 oBinding.filter(oFinalFilter, sap.ui.model.FilterType.Control);
 }
 },
});
oProductsFFL.setModel(oProductsModel);
// create the facet filter control
var oFF = new sap.m.FacetFilter(genId(), {
 lists : [oCategoriesFFL, oProductsFFL],
});

Feed Input

With this control you can enter and post text for a new feed entry.

The sap.m.FeedInput control allows users to enter and send plain text. It complements the
sap.m.FeedListItem control to create a simple feed. You can use the FeedInput control if you need to input
small amounts of text without formatting.

Overview

● Responsiveness
The feed input control can be used in small and large containers due to its responsive behavior.

● Layout
The feeder (that is, feed input) is used to write plain text and (depending on the context) to then create a
note or feed entry by choosing the Send pushbutton. The FeedInput control provides the possibility to
display a picture of the current user.
If the user image has not yet been set, a generic placeholder is shown. If the app does not support user
images at all, the image can be omitted.
For more information about the layout options, see the Samples in the Demo Kit.

● Behavior
Initially, the feeder contains an input prompt, and the Send pushbutton is disabled. You can click into the
input field to focus on it.
When the user starts to type, the input prompt disappears and the Send pushbutton is enabled and
becomes more prominent.
If the available width is less than 25 rem (for example, portrait mode on a mobile phone), the picture is
removed. For more information, see the API Reference Documentation.

More Information

The sap.m.FeedInput control can be used in combination with the sap.m.FeedListItem control as a feed
or notes control. For more information, see the Feed List Item [page 2312] control documentation.

 Note
If you need only one single text box instance, use the sap.m.TextArea control for multi-line text. For more
information, see the Samples in the Demo Kit.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2311

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.sample.FeedInput/preview
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.FeedInput.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.m.TextArea/samples

Or you use the sap.m.Text control for single-line text. For more information, see the Samples in the Demo
Kit.

Feed List Item

This control provides a set of properties for a feed, such as text, sender information and timestamp.

The sap.m.FeedListItem control is capable of displaying text accompanied by an optional user image.

For more information about this control, see the API Reference and the Samples in the Demo Kit.

Overview

● Responsiveness
The sap.m.FeedListItem control can be used in both small and large containers.

● Layout
The FeedListItem control consists of the user’s name and an optional picture of the user who wrote the
note or the update (optional). The name can contain a link that triggers a quick overview of the user’s
profile data. The actual text written by the user follows the name. The FeedListItem control includes the
sap.m.FormattedText control that enables you to use HTML formatted text.
For more information about about the FormattedText control, see the API Reference and the Samples in
the Demo Kit.

● Behavior
When the text exceeds a certain number of characters (default value can be overwritten by the consuming
application), the rest of the text is truncated and a MORE link appears. Clicking the link shows the entire
text, and the link is renamed to LESS. Clicking LESS collapses the text back to its original truncated length.

● Actions
Each item in the feed may also include an optional More button that provides access to additional actions
that the user can perform on this feed item. The actions available for a feed item are specified in its
actions aggregation and are defined using FeedListItemAction elements.
For more information about about the FeedListItemAction element, see the API Reference in the Demo
Kit.

More Information

The sap.m.FeedListItem control can be used in combination with the sap.m.FeedInput control as a feed
or notes control. For more information, see Feed Input [page 2311].

2312 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/entity/sap.m.Text/samples
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.FeedListItem.html
https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.sample.FeedListItem/preview
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.FormattedText.html
https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.FormattedText/preview
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.FeedListItemAction.html

Flex Box

The sap.m.FlexBox control allows to develop layouts which adjust to the available space and avoid unused
space or overflow.

User interfaces often have to adapt to different screen sizes. Therefore, building user interfaces in a way that a
single layout reliably fits the available screen real estate is challenging. FlexBox controls can be nested to
create more complex layouts.

The two main uses of a FlexBox control are:

● Two-dimensional layouting
● Flexible layouts

Getting Started With FlexBox

For a flexible box layout, create a FlexBox control and add any kind of controls to it.

You can either use the addItem method (see option 1), or the items aggregation of a configuration object (see
option 2).

Option 1

 var oMyFlexbox = new sap.m.FlexBox();
oMyFlexbox.addItem(new sap.m.Button({text: "Button 1"})); oMyFlexbox.addItem(new sap.m.Button({text: "Button 2"}));

Option 2

 var oMyFlexbox = new sap.m.FlexBox({
 items: [
 new sap.m.Button({text: "Button 1"}),
 new sap.m.Button({text: "Button 2"})
] });

The following figure gives an example how the result looks like if used inside a mobile app page. The necessary
code is not shown here.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2313

Layout properties

Some properties that affect the layout need to be set in the FlexBox control. Other properties can be attached
to the controls which are placed inside the FlexBox by means of the layoutData aggregation. The layout
direction, for example is set in the FlexBox as follows:

 var oMyFlexbox = new sap.m.FlexBox({
 items: [
 new sap.m.Button({text: "Button 1"}),
 new sap.m.Button({text: "Button 2"})
],
 direction: "Column" });

The order is attached to the button inside a FlexItemData object as follows:

 var oMyFlexbox = new sap.m.FlexBox({
 items: [
 new sap.m.Button({
 text: "Button 1",
 layoutData: new FlexItemData({order: 2})
 }),
 new sap.m.Button({text: "Button 2"})
] });

 Note
The FlexBox control is a wrapper for the flexible box layout properties in CSS. The control renderer sets
the CSS properties (including prefixed versions where necessary) on the appropriate HTML elements. The
actual layouting is done by the browser.

The controls that you place in the FlexBox control are each wrapped in a DIV or LI element, depending on the
renderType property. All elements are placed inside another DIV or UL container, again depending on the
renderType. If you use Bare as renderType, elements will be rendered without a wrapping HTML tag. The

2314 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

outermost element represents the so-called flex container while its child elements are flex items. The HTML
structure resulting from all of the examples above looks as follows:

 <div class="sapMFlexBox">
 <div class="sapMFlexItem">
 <button id="__button1">Button 1</button>
 </div>
 <div class="sapMFlexItem">

 <button id="__button2">Button 2</button>
 </div> </div>

 Note
The layoutData properties that you can attach to a control are applied to its wrapper element with
sapMFlexItem class. This is because browsers currently only support these properties on some elements,
for example DIV.

The two additional controls HBox and VBox are FlexBoxes that are fixed to horizontally or vertically layout
their children.

Important FlexBox Layout Concepts

Introduction of important concepts for FlexBox layouts.

Main Axis and Cross Axis

A FlexBox layout has a direction in which child elements are laid out. The default direction is Row and rows are
laid out horizontally in reading direction. This defines the main axis. The cross axis in this case is vertical.

You can change the layout direction property to Column, which results in a vertical main axis and a horizontal
cross axis. This is important for the align properties.

 Note
If browsers support vertical text flows, the direction of a row can also be vertical. For now this is not an issue
and can be ignored.

In addition to Row and Column, the flex direction can be set to RowReverse and ColumnReverse which will
reverse the layout direction.

Two-Dimensional Alignment

You can determine where the flex items are aligned in a FlexBox layout. For the alignment you use the following
two properties: justifyContent and alignItems. The justifyContent property sets the alignment along the
main axis while alignItems acts on the cross axis.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2315

Both properties accept the values Start, Center and End. This results in nine possible combinations, for
example

● justifyContent = End and alignItems: Start places the items in the upper right corner of a horizonzal FlexBox
● If you set the direction property to Column, the main axis would be vertical. Combined with justifyContent =

End and alignItems: Start, the items are placed in the lower left corner.
● By reversing the main axis with direction = ColumnReverse the layout starts from the bottom. In this case,

justifyContent = End refers to the top of the FlexBox.
● justifyContent has the additional value SpaceBetween. This setting places the first and the last item at the

extremes of the main axis. Any other items will be distributed evenly between these two.

For alignItems two additional values exist: Baseline and Stretch. Baseline takes the first line of text of each flex
item and aligns their baselines. This can be useful if different font sizes are used. Stretch makes the flex items
take up the whole space along the cross axis of the FlexBox. This is useful if all items should have the same size
regardless of the amount of content.

Flexibility

You can let the browser handle the distribution of elements. This ensures that they always fill the available
space along the main axis. To do this, set a flexibility factor on the flex items.

The property to control the flexibility is called growFactor. It is set on a flex item object by means of
FlexItemData on the layoutData aggregation. The flex layout algorithm determines the "natural" width of
the flex items. If there is space left, this space is distributed among the flex items according to their relative
growFactor. If, for example, a horizonzal flex container is 300px wide and contains two elements of 100px
each, 100px would remain. If the growFactor for both flex items is set to 1, both get 50px extra, thus making
them 150px wide. If the growFactor is set to 3 for one item and to 1 for the other item, the first item gets
additional 75px (¾ of 100px) of the remaining space and the second item 25px (¼ of 100px). If the
growFactor is set to its default value of 0, the item is inflexible and both items would keep their width of
100px.

 Note
The flex algorithm distributes the remaining space, and not the whole space in the FlexBox. Therefore, the
resulting widths of the items are not necessarily proportional to the growFactor.

To achieve a proportional width according to the growFactor, set the width of all items to 0 via CSS. The sum
of the "natural" widths of all items is then also 0. The remaining space, however, now equals the full space of
the FlexBox. This space is then distributed based on the growFactor. For the example above with
growFactor set to 3 and 1, setting the width of the flex items to 0 via CSS results in a width of 225px (¾ of
300px) for the first item and 75px (¼ of 300px) for the second item.

 Caution
Once you set a growFactor for any item, the flex layout algorithm ignores the justifyContent property
of the FlexBox because the items take up all available space anyway. There would be no difference between
the different values.

2316 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Generic Tile

The GenericTile control is the basic concept that displays any kind of content within a tile comprising for
example news, feeds, images, micro charts, or numeric content.

Overview

GenericTile controls are responsive and adapt their size to the size of the devices they are used on: the
control is available in small and large size and depending on the media screen size, the appropriate size is
chosen automatically. Therefore, the size property is deprecated and should not be used anymore.

Layout

The GenericTile control provides a header area, a content area, and a status area. Within these areas,
different data can be displayed depending on the app the tile belongs to, for example, text in the header area,
charts or an icon in the content area, or text only in the footer area.

● Header area
The headline and a subtitle can be displayed. The header area is mandatory, but if the NewsContent
control is used in the content area, no header and subheader should be used.
If you use HeaderMode, up to five lines of header can be displayed and the content area is not displayed.

● Content area
The TileContent control that represents the content area is the universal container for different content
types. This means that the TileContent control can contain one of the following controls:
○ NumericContent (frameType 1x1): numeric value and icon
○ FeedContent (frameType 2x1): up to two lines of text
○ NewsContent (frameType 2x1): text and background image
○ MicroCharts (frameType 1x1): charts
○ ImageContent (frameType 1x1): images and icons

● Status area
A status can be displayed. The status area is not mandatory.

SlideTile

GenericTile controls of the 2x1 frameType can be implemented as SlideTile control. The GenericTile
control added to the SlideTile control appears alternately, showing one content at a time. The animated
content of the slide tile includes a navigation option to pause the slide show or to navigate forward or backward
to the slide. You can use SlideTile controls, for example, in day-to-day business to display news.

Tooltip Rendering

The GenericTile control generates a tooltip only if the header or subheader are truncated. In that case, the
tooltip contains the full text of the truncated header or subheader.

If the GenericTile control contains a MicroChart control in its content area, the generated tooltip contains
information about the embedded MicroChart content.

If an application provides an own tooltip, the generated tooltip of the GenericTile control is overwritten and
the tooltip of the application is displayed. You can suppress the tooltip for your application by providing a
tooltip consisting of whitespaces only. The ARIA label is not changed.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2317

Line Mode

With this mode, you can switch the visual representation of the GenericTile from the rectangular format to
an in-line format only by changing the value of the mode property and keeping all other settings as already set.
After the switch, the API for the tiles and links stays consistent, and the control's ID and the contents stay the
same. Only the header and subtitle are rendered.

API Reference/Sample

For more information about the GenericTile control, see the API Reference in the Demo Kit and the sample
in the Demo Kit.

Constraints

With SAPUI5 1.34, the following controls are moved from the sap.suite.ui.commons library to the sap.m
library:

● GenericTile
● TileContent
● FeedContent (formerly JamContent)
● NewsContent
● NumericContent
● SlideTile (formerly DynamicContainer)

The following controls have not been transferred to the sap.m library and are no longer used:

● GenericTile2X2
● TileContent2X2

If you have already included one of these controls before SAPUI5 1.34, a wrapper ensures that the embedding
still works for each control. To benefit from all enhancements and new features for one of these controls as of
SAPUI5 1.34, you need to switch to the controls in the sap.m library. With SAPUI5 1.34, all these controls in the
sap.suite.ui.commons library are marked as deprecated.

Image

Additional information on sap.m.Image

Supporting Different Pixel Densities

Some mobile devices, starting with iPhone4 and iPad3, have a display with a high density of pixels (four pixels
where older models would only have one pixel). They're called Retina Displays by Apple to suggest they're as

2318 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.GenericTile.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.m.GenericTile/samples

crisp and clear as the eye can see. They use four physical pixels to display one logical CSS pixel. This way
images can be displayed much sharper when given twice as large as required because internally the device can
use many more pixels to display all details of the image. Browsers on those displays do this automatically when
images are scaled down.

Some devices support higher resolution images while others don't. We therefore recommend that SAPUI5 app
developers provide image resources for all relevant densities to provide a crisp and clear display of images on
devices with Retina Display.

The sap.m.Image control automatically chooses the right density depending on the device on which it's
displayed. If an image of a certain density isn't available, the image control falls back to a default image, which
must be provided as well.

The image control is also used implicitly by other controls, for example:

● sap.m.Button
● sap.m.SegmentedButton
● sap.m.StandardListItem

 Caution
If you don't have higher resolution images, you must set the densityAware property to false to avoid
unnecessary roundtrips.

Example

Assume that the following controls are displayed on a device with high-density screen
(window.devicePixelRatio is 2):

 new sap.m.Image({
 densityAware: false, // tells the image control that there are no
different optimized image variants
 src : "first.png" // therefore Image control will directly load
first.png
})
new sap.m.Image({
 src : "second.png" // Image control will first look for second@2.png,
then fall back to second.png })

The first image control is told that there are no image files for the different densities, so it directly loads
first.png. This image looks as good as other images on Retina Displays.

The second image control first attempts to load second@2.png, which is twice as large as the normal image
and is scaled down for display to look crisp on Retina Displays. If this file doesn't exist, it falls back to
second.png, but this fallback causes an additional server request.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2319

Naming Conventions

Density-related images are loaded if you provide an image name with density awareness in the following
format:

[imageName]@[densityValue].[extension]

Supported densities are 1.5 and 2. The following example shows a set of images with different densities:

● detail.png (default)
● detail@1.5.png
● detail@2.png

 Note
detail@0.75.png isn't supported and uses the standard image for a such low density device.

Related Information

API Reference: sap.m.Image
Samples: sap.m.Image

List, List Item, and Table

sap.m.List and sap.m.Table both inherit from the abstract sap.m.ListBase and provide the features
used for lists and tables.

sap.m.List and sap.m.Table provide the following features:

● Selection modes, such as Single and Multi
● Navigation types such as Navigation, Active or Detail
● Swipe for Action
● Growing feature
● Grouping

Related Information

Samples: sap.m.List
Samples: sap.m.Table

2320 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.m.Image
https://sapui5.hana.ondemand.com/#/entity/sap.m.Image/sample/sap.m.sample.Image
https://sapui5.hana.ondemand.com/#/entity/sap.m.List
https://sapui5.hana.ondemand.com/#/entity/sap.m.Table

Lists

Lists have properties and events and they contain list items that inherit from sap.m.ListItemBase, which
provides navigation, selection and event features. The list item type determines the way the list item interacts
by providing additional features.

List Properties

Lists can have the following properties:

● The mode property defines the appearance of the left area of a list item. You can show a single selection,
multi selection, delete buttons, or none of these. The mode property can have the following values:
○ None (default)
○ SingleSelect (on the right side)
○ SingleSelectLeft (on the left side)
○ SingleSelectMaster (without select control for use cases like the split app, by default the !

includeItemInSelection = true)
○ MultiSelect
○ Delete

● The includeItemInSelection property (default: false defines the tap handling of a list item. By
default, you can select an item by tapping the radio button or check box. To use the whole list item tap for
selecting an item, change the property value to true. This property is only relevant in selection mode.

● The showUnread property (default: false decides whether an 'unread' indicator is added to each list item.
When active, it shows a blue bubble for unread list items.

● The showNoData property (default: true shows a text to the user if a list has no content. The default text
is 'No data'. You can use the noDataText property to change the default text.

● The noDataText property (default: 'No data') can be used to change the text that is displayed when the
list has no content and the showNoData property is set to true.

Swipe For Action

A user can swipe left on a list item to bring in a control, such as a button, and initiate an action for this item.
This control is defined through the swipeContent aggregation of the list and is displayed to the right or center
of the list item. For more information, see Swipe List for Action [page 2327].

List Events

Events are available for selecting, deleting and swiping in lists. The selection mode fires a select event and the
deletion mode a delete event. A swipe left fires a swipe event. These events contain information about the list
item that caused the event.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2321

● select (listItem)
● delete (listItem)
● swipe (listItem), see Events [page 2328]

Rerendering

A list is rerendered together with all of its list items when the data of a bound model is changed. Due to the
limited hardware resources of mobile devices, this may cause delays for lists that contain many list items. For
this reason, we do not recommend using a list for these use cases.

List Items

All list items inherit from ListItemBase, which contains the features for navigation, selection, and event.

Five different types of list items are available, which determine the way a list item interacts. A list item has a
content area (main area), which may fire a press event, and a navigation area on the right hand side, which
may fire a press or a detailPress event. The type property for each list item defines the events that are
fired. You need to define a type to decide which visual feedback if given by a list item after it has been touched.
The five available types are as follows:

● StandardListItem provides an image, title, and description
● ActionListItem provides a center-aligned text and is used to trigger actions
● DisplayListItem has a label and a value
● InputListItem provides a label and allows you to embed controls enabling user input, such as: input

button, radio button, checkbox, slider, select, search
● CustomListItem can be used for all list items that are not provided by SAPUI5. You can use it to build

your own content and aggregate it.

Except for ActionListItem, list items do not by default fire an event unless it is configured with a type that
defines how events are fired. The following table shows the different combinations of list item types and events:

Type Press Event detailPress Event Icon Active Feedback

Inactive (default) -- -- -- --

Active yes -- -- yes

Navigation yes -- > yes

Detail -- yes (>) --

DetailAndActive yes yes (>) yes (content only)

As mentioned above, ListItemBase has an unread indicator property, which shows a blue bubble. This has to
be enabled by the lists showUnread property. For selections on each list item a selected property (default:
false) exists. Another feature is the counter property (default: null), which shows integer numbers except
zero. If the number is zero, the counter is hidden. Properties for ListItemBase:

● unread (default: false)

2322 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

● selected (default: false)
● counter (default: undefined)

The following events are available for ListItemBase:

● press: This event is fired when the content of a list item is tapped.
● detailPress: This event is fired when the detail icon of a list item is tapped.

List Item Types

The following types are available for list items:

● ActionListItem
In addition to the features inherited from ListItemBase, this type provides the text feature, which
enables you to set a center aligned text. This is a simple list item for triggering actions. The following code
snippet shows an example:

 <List headerText="Actions">
 <ActionListItem text="Reject" />
 <ActionListItem text="Accept" />
 </List>

● DisplayListItem
In addition to the features inherited from ListItemBase, this type provides the label feature to set a
label and the value feature to set a value. The following code snippet shows an example:

 <DisplayListItem
 label="Name"
 value="{SupplierName}" />

● InputListItem
In addition to the features inherited from ListItemBase, this type provides the label feature to set a
label and the content feature that can be aggregated with controls, for example a radio button or a search
control. The following code snippet shows an example:

 <List>
 <InputListItem label="WLAN">
 <Switch state="true" />
 </InputListItem>
 <InputListItem label="Price (EUR)">
 <Input
 placeholder="Price"
 value="799">
 type="Number" />
 </InputListItem>
</List>

● StandardListItem
In addition to the features inherited from ListItemBase, this type provides the following additional
features:
○ title
○ description
○ icon: The icon is displayed on the left hand side of the list item and can be shown with or without an

inset.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2323

label feature to set a label and the content feature that can be aggregated with controls, for example a
radio button or a search control. The following code snippet shows an example:

 <List headerText="Products"
 items="{/ProductCollection}">
 <items>
 <StandardListItem
 title="{Name}" />
 </items> </List>

● CustomListItem
In addition to the features inherited from ListItemBase, this type provides the option to aggregate
content. You can use the CustomListItem for all list items that are not available in SAPUI5 standard, build
your own content, and aggregate it.

 <CustomListItem type="Inactive">
 <Label text="A first custom list item ..." class="content"/>
 <Button text="Press me!" class="content"/>
</CustomListItem>

API References

● sap.m.List
● sap.m.ListItemBase

Custom List Item

You can use the sap.m.CustomListItem control to create your own layout if the other list items available in
SAPUI5 do not fit your needs.

Available List Items in SAPUI5

SAPUI5 contains several list items that are used with the sap.m.List control to serve different standard
scenarios. These are outlined in the table below, along with sap.m.ColumnListItem, which is used together
with the sap.m.Table control:

List Item Used for...

sap.m.StandardListItem Displaying list content with a title description, icon and info

sap.m.DisplayListItem Displaying name/value pairs

sap.m.InputListItem Building a form-like user interface on phones

2324 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.List.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.ListItemBase.html

List Item Used for...

sap.m.ActionListItem Triggering an action directly from a list

sap.m.FeedListItem Displaying a standard UI for feeds. For more information, see
Feed List Item [page 2312]

sap.m.ObjectListItem Providing a quick overview for an object within a list

sap.m.ColumnListItem Providing responsive table design in combination with
sap.m.Table

sap.m.CustomListItem Creating custom list items if none of the list items above are
suitable

If none of the predefined list items (the first seven entries in the table above) fit your scenario, you can also
create your own layout by using sap.m.CustomListItem directly, or create a new control that inherits from
sap.m.CustomListItem.

For more information about the different list items, refer to the corresponding API documentation.

Structure of a List Item

A list item can be split into three parts, as shown in the following graphic:

The parts that are to the left and right of the dotted area are part of the ListItemBase and are used to display
the selection and deletion mode, as well as different list item type indicators such as navigation, details, and
counter. The Unread indicator also comes from the ListItemBase and when it is set, any unread text will be
displayed in bold format.

The dotted area is the area in which the content of a list item is placed. If you are using
sap.m.CustomListItem, all of the content will be placed there. The section below explains how to use
sap.m.CustomListItem in more detail.

Using the sap.m.CustomListItem Control

As mentioned above, you can either use sap.m.CustomListItem directly by adding any content via content
aggregation, or you can create your own control that inherits from sap.m.CustomListItem if you need a
more sophisticated list item featuring your own properties, styling, and complex layout. Below is an example
showing how you can use the sap.m.CustomListItem together with sap.m controls.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2325

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.List.html

<List headerText="Custom Content" mode="Delete" items="{path: '/
ProductCollection'}" >
 <CustomListItem>
 <HBox>
 <core:Icon size="2rem" src="sap-icon://attachment-photo"
class="sapUiSmallMarginBegin sapUiSmallMarginTopBottom" />
 <VBox class="sapUiSmallMarginBegin sapUiSmallMarginTopBottom" >
 <Link text="{Name}" target="{ProductPicUrl}"
press="handlePress"/>
 <Label text="{ProductId}"/>
 </VBox>
 </HBox>
 </CustomListItem> </List>

The example above creates an attachment list item that displays an attachment title as a link, as shown in the
graphic below. Clicking on the link will open the attachment. Below the attachment title, we want to display the
details of the attachment, so we have used sap.m.HBox and sap.m.VBox for basic layouting. Data binding is
also supported, and here it assumes that a model featuring ProductPicUrl and ProductId properties is
used.

The following example shows how to use a notepad control as a reusable control in an
sap.m.CustomListItem. It assumes you want to build a product list item that shows an image of the product
and displays its details:

sap.ui.define(["sap/ui/core/Control", "sap/m/Image"], function (Control, Image) { var MyListItemContent = Control.extend("my.control.ListItemContent", {
 metadata: {
 properties : {
 "name": {type: "string", defaultValue: ""},
 "description": {type: "string", defaultValue: ""},
 "price": {type: "string", defaultValue: ""},
 "currency": {type: "string", defaultValue: ""},
 "image": {type: "string", defaultValue: ""}
 },
 events: {
 "myTap": {},
 },
 },
 init: function(){
 this._image = new
Image({src:"<myImageSrc>"}).addStyleClass("myImageCSS").setParent(this);
 },
 renderer: {
 apiVersion: 2, // see 'Renderer Methods' for an explanation of this
flag
 render: function(oRm, oControl) {
 oRm.openStart("div", oControl);
 oRm.class("listItemCSS");
 oRm.openEnd();
 oRm.renderControl(oControl._image);
 oRm.openStart("div").class("descCSS").openEnd();
 oRm.text(oControl.getDescription());
 oRm.close("div");
 oRm.openStart("div").class("priceCSS").openEnd();
 oRm.text(oControl.getPrice());
 oRm.close("div");
 oRm.openStart("div").class("curCSS").openEnd();

2326 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 oRm.text(oControl.getCurrency());
 oRm.close("div");
 oRm.openStart("div").class("nameCSS").openEnd();
 oRm.text(oControl.getName());
 oRm.close("div");
 oRm.close("div");
 }
 }
 });
 //example how to react on browser events and convert them to control events
 ListItemContent.prototype.ontap = function(){
 //your own tap logic
 this.fireMyTap({});
 };
 return ListItemContent; });

After we've created this notepad control above, we consume it in the sap.m.CustomListItem as a content
aggregation, as shown here:

// "CustomListItem" required from "sap/m/CustomListItem" var oCustomListItem = new CustomListItem({content: [new MyListItemContent({
 //usual control setup })]});

Swipe for Action

If a user swipes left on a list item within a list or table, you can bring in a control, for example a button, to initiate
an action for this item. The button is displayed on the right-hand side of the list item. An example is shown in
the following graphic:

Aggregation

This control is defined by the swipeContent aggregation of the list or table. You can add any control as
swipeContent, but keep in mind that your content cannot be higher than a list item. See the following
examples:

● Button swipeContent
 <List

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2327

 headerText="Products"
 items="{/ProductCollection}" >
 <StandardListItem
 title="{Name}"
 description="{ProductId}"
 icon="{ProductPicUrl}"
 iconDensityAware="false"
 iconInset="false" /> <swipeContent>
 <Button
 text="Delete Item"
 type="Reject"
 press="handleReject" />
 </swipeContent> </List>

● Control combination as swipeContent
 new sap.m.List({
 swipeContent : new sap.m.HBox({
 items : [
 <List
 headerText="Products"
 items="{/ProductCollection}" >
 <StandardListItem
 title="{Name}"
 description="{ProductId}"
 icon="{ProductPicUrl}"
 iconDensityAware="false"
 iconInset="false" /> <swipeContent>
 <Button
 text="Delete Item"
 type="Reject"
 press="handleReject" />
 </swipeContent> </List>

Events

List and Table provide a swipe event when a user swipes left to bring in a control on the right-hand side of
the list item within a table or list. This event is fired before the swipeContent is shown and contains the
following three important parameters:

● listItem: List item that fired the swipe event
● swipeContent: Specifies the swipeContent control to be shown on the right-hand side of a list item
● srcControl: Specifies the control that fired the swipe event

This means that you can dynamically change the swipe content according to the respective list item. If a list
item has not yet been approved, for example, then the Approve button is shown. After approval or if it is already
approved, the Disapprove button is shown. See the following example:

 <List
 id=...
 swipe="handleSwipe" ... >
 ...
 <swipeContent>
 <Button

2328 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 text="Approve Item"
 type="Accept"
 press="handleApprove" />
 </swipeContent>
 </List>

And this is how it looks in the controller:

 handleSwipe: function(e) { // register swipe event
 var oSwipeListItem = e.getParameter("listItem"), // get swiped list
item from event
 oSwipeContent = e.getParameter("swipeContent"); // get swiped
content from event
 // Check swiped list item if it is already approved or not
 if (oSwipeListItem.data("approved")) {
 // List item is approved, change swipeContent(button) text to
Disapprove and type to Reject
 oSwipeContent.setText("Disapprove").setType("Reject");
 } else {
 // List item is not approved, change swipeContent(button) text to
Approve and type to Accept
 oSwipeContent.setText("Approve").setType("Accept");
 }
 },

Swipe events can be cancelled. The built-in controls that work with swipe left events like Switch or Slider
cancel a swipe event by default. If you also want to disable swipe events for your custom use case, you can call
the preventDefault method of the event object, as shown in the following example:

 handleSwipe : function(e) {
 // get which control inside the list item fired swipe event
 var oSrcControl = e.getParameter("srcControl");
 // check if the event is coming from Input
 if (oSrcControl instanceof sap.m.Input) {
 e.preventDefault(); // cancel swipe
 }
 },
 ...

Methods

List and Table provide the following two swipe methods:

● swipeOut([callback]): After swipeContent is shown, the user can interact with the control, for
example tap it. After this interaction, for example on tap event, you can use this method to hide
swipeContent from the screen. By default, swipe for action works in auto-hide mode. This means that if a
user tries to tap inside the list but outside the swipeContent, then the swipeContent hides
automatically. After you call this method, swipeContent hides with animation and if you need to run code
after the animation you can simply add a callback function to this method as a first parameter.

● getSwipedItem(): This method returns the currently swiped list item. When no item is swiped, null is
returned. The swipeContent events, for example tap, are a good place to use this method to get
information for which list item swipeContent is shown.

The following example shows a delete scenario:

 tap : function(e) {

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2329

 var oList = this.getView().byId("myList"); // get the list using its Id
 var oSwipedItem = oList.getSwipedItem(); // Get which list item is swiped to
delete
 oList.removeAggregation("items", oSwipedItem); // Remove this aggregation to
delete list item from list
 oList.swipeOut(); // we are done, hide the swipeContent from screen
}
....

Properties

The swipeDirection property for lists and tables is used to configure the direction of the swipe event. This
property accepts an enumeration from sap.m.SwipeDirection? with the following values:

● LeftToRight?: Swipe from left to right
● RightToLeft?: Swipe from right to left
● Both: Both directions (left to right, or right to left)

The default value is Both, but in some use cases we recommend that you change this property, for example to
prevent swipe conflicts.

Creating Tables

A Table basically consists of columns (sap.m.Column) and rows. The rows, defines as
sap.m.ColumnListItems consist of cells.

Procedure

1. To build a table, we first need to define columns. For this purpose you can define the Column control with
the following properties or aggregations:

Property or Aggregation Description

header Defines column header. Any control can be used but most
likely Label or Text control. If any column has header defi-
nition then header line gets visible for all columns.

footer Any control can be assigned to be displayed in the column
footer. If at least one column has a footer definition, then
the footer line is displayed for all columns.

width Defines the width of the column. If you leave it empty then
this column covers the remaining space.

hAlign Defines the horizontal alignment(Begin, Center, End, Left,
Right) of the column content. Controls with a textAlign
property inherit the horizontal alignment from Column
hAlign property.

2330 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Property or Aggregation Description

vAlign Defines the vertical alignment of column cells. Possible
values are Top, Middle, and Bottom. This property does
not affect the vertical alignment of header and footer.

visible Specifies whether the column is visible. Invisible columns
are not rendered.

2. Sure, we have more properties to make it responsive and to change the design of a column, but we will
explain this later. Now, let's see how we can define a right aligned column header:

 <Table>
 <columns>
 <Column
 width="12em">
 <Text text="Product" />
 </Column>
 <Column
 minScreenWidth="Tablet"
 demandPopin="true">
 <Text text="Supplier" />
 </Column>
 </columns> </Table>

3. To build a Table, you have to define table rows. For this purpose you use ColumnListItems.
ColumnListItems have a cell aggregation (one to many) which defines cells in one row according to the
column definition. Let's build a real table example to understand it better. Here is the implementation:

 <Table>
 <columns>
 <Column
 width="12em">
 <Text text="Product" />
 </Column>
 <Column
 minScreenWidth="Tablet"
 demandPopin="true">
 <Text text="Supplier" />
 </Column>
 </columns>
<items>
 <ColumnListItem>
 <cells>
 <ObjectIdentifier
 title="{Name}"
 text="{ProductId}"
 class="sapMTableContentMargin" />
 <Text
 text="{SupplierName}" />
 </cells>
 </ColumnListItem>
 </items>
 </Table>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2331

And that is what we have built:

The mergeFunctionName property holds the function that the column merge functionality uses to pull the
property value to compare for duplicates. The default of getText can be used for the most common use
cases, where an sap.m.Label or sap.m.Text control is used, but if you have another control with a
different function to pull the comparison property value from, you can specify it as the
mergeFunctionName. For example, the sap.m.Icon control has a getSrc getter function that returns
the src property value - the icon's URI, which is a good candidate for comparison.

Next Steps

API References

● sap.m.Column
● sap.m.ColumnListItem

Configuring Responsive Behavior of a Table

SAPUI5 supports column-based and row-based solutions to support flexible and clearly arranged tables.

One of the biggest challenges in responsive web design (RWD) is presenting tabular data. Large tables
containing lots of columns simply don't fit on smaller screens and there is no easy way to reformat the table
content with CSS and media queries for an acceptable visual display. To address this, our framework offers a
column-based solution (column hiding) and row-based solution (pop-ins) for displaying tables responsively and
both options are applicable at the same time. This may sound rather complicated, so let's look at an example.

2332 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.Column.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.ColumnListItem.html

Say we want to build this nice table to display on a desktop:

On mobile devices, we know that we won't have enough space to show all these columns, so we need to ask
ourselves which columns are most important. Let's say:

● Product and Price are most important. So they should never be hidden.
● Supplier, Dimensions and Weight are not particularly important, so we'll only show them as pop-ins.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2333

If we apply these decisions we just made, our mobile devices should now look like this:

Responsive Column Control

You can control the responsive table design using the API of sap.m.Column. This control provides two
properties to handle column hiding and pop-in.

1. minScreenWidth: This value defines the break point for the column visibility. For instance: An Apple
iPhone 5 device has 568px x 320px resolution (dip/device-width), so if we assign 400px (or 25em based on
16px), then this column will not be visible for portrait mode (width 320px) but will be visible for landscape
mode (width 568px). Instead of specifying in px or em, you can also assign one of the predefined
sap.m.ScreenSize types like Tablet (for 600px) or Desktop (for 1024px). The default value for this
property is an empty string, meaning this column will always be visible.

2. demandPopin: Depending on your minScreenWidth, the column can be hidden in different screen sizes.
Setting this property to true shows this column as a pop-in instead of hiding it. The default value is false.

And that's it! All you need to know are these two variables for responsive tables. So if we go back to our original
example for a minute:

● Name and Status columns should never be hidden. This is the default behavior of a column, so let's just let
the default values (minScreenWidth : "" and demandPopin: false) do their job.

● Model Number column should be hidden for small devices, so our break point is minScreenWidth :
"Small" and demandPopin : false (default value).

● Quantity, Unit Price and Final Price columns should go into our pop-in, so our break point is still
minScreenWidth : "Small" but now with demandPopin : true to show the column in a pop-in.

2334 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

● For example: On tablets and wider devices we'll have more space available, so we can show the Final Price
column, but we'll revert to a pop-in for smaller devices. So here our break point should be
minScreenWidth : "Tablet" and demandPopin : true.

 Note
Please note that in order to have a valid table design, at least one column should always be visible and
should not go to the pop-in.

Defining Column Width

The width property of sap.m.Column can have any valid CSS size, for example, 100px, 6em, or 25%. The
default value of the width is empty, which makes the column flexible by covering the available space.

There are a few things to keep in mind when defining the width of the column:

● You can use percentage values but you should be careful doing that: A value might be suitable for a desktop
screen, but not for a mobile device. In this case, using an absolute width (for example, 200px or 4rem) can
be a better option.

● Leave the most important column's width empty or set it to auto if your table contains columns that have
the demandPopin property enabled.

 Tip
Let's say you have a 100%-width table with four columns, each of which has a width of 200px and a
viewport that is 800px wide. If you resize the viewport to 500px, you can still show two columns while
the remaining two columns are rendered as pop-ins. The total width of the two main columns is 400px.
However, the viewport is then 500px, and the table is 100%. In that case the browser takes over
handling this. Google Chrome increases the width of the last column, and the Internet Explorer
increases the width of the first column. If you configure Selection or Navigation, these are also
rendered as columns. The width of these columns is then also changed by the browser, which can lead
to unexpected results. So the best solution is leaving the most important column's width empty (or set
to auto) so it can take up as much space as it needs. In our example, this will be 300px.

● Do not use percentage values for the width of all columns even if this adds up to 100% of the total column
width.

 Tip
What if there is a Selection (3rem width), Navigation (3rem width), or Deletion (3rem width)? In
this case, the total width would be 100% plus 6rem. If the total width is less than 100%, for example,
one column with 20% and the other column with 40%, the total width would be 60% plus 6rem. By
default, Table itself is in fixed layout mode and has a width of 100%. The browser needs to split up the
width as it does not fit a 100% width. In some cases, browsers might handle this correctly, but you
should avoid it. As mentioned, leaving the most important column width empty or set to auto fixes this
problem because then the column will be flexible and cover the available space.

For more information, see the Defining Column Width Sample.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2335

https://sapui5.hana.ondemand.com/#/sample/sap.m.sample.TableColumnWidth/preview

API Reference

● sap.m.Column
● sap.m.ScreenSize

Table Design

The table design in SAPUI5 can be changed by using various table and column features, such as the pop-in
design.

Pop-in Design

When displaying information in a pop-in, the information, typically a column header and the column (cell)
content, can be displayed in an Inline or in a Block display style. The difference between these two can be
seen in the following example.

 <columns>
 <Column
 width="12em">
 <Text text="Product" />
 </Column>
 <Column
 popinDisplay: "Block"
 minScreenWidth="Tablet"
 demandPopin="true">
 <Text text="Supplier" />
 </Column>
 <Column
 popinDisplay: "Inline"
 minScreenWidth="Tablet"
 hAlign="End">
 <Text text="Dimensions" />
 </Column>
 <Column
 popinDisplay: "Inline"
 minScreenWidth="Tablet"
 demandPopin="true"
 hAlign="Center">
 <Text text="Weight" />
 </Column>
 <Column
 hAlign="End">
 <Text text="Price" />
 </Column>
 </columns>

The Dimension column is hidden, the Weight column is displayed in a pop-in when the screen size is smaller
than a desktop. The Supplier is to be displayed in Block mode, with the header and content arranged vertically,
whereas the two prices are to be displayed in Inline mode, with the header and content arranged next to each
other.

2336 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.m.Column
https://sapui5.hana.ondemand.com/#/api/sap.m.ScreenSize

Merging Duplicate Values

When you have repeated values in your table, you can use the mergeDuplicate feature of the sap.m.Column
control. There are two properties that are related to merging duplicate values:

● mergeDuplicates: Set this to true if you want duplicate values for the given column to be merged
● mergeFunctionName: Use this to specify the name of the getter function of the control in the column

Duplicate values will only be merged if they are adjacent. This means that you should sort your data first before
binding it.

 Note
When using sap.m.Column in a table, the column merging feature is not supported when used in
combination with two-way binding.

Here's an example of how to use the mergeDuplicates feature. We'll set up a table of sales data and display
the data in a table, merging any duplicate regions. When the Mix Up button is pressed to lightly shuffle the

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2337

salesFigures array of objects, you will see that only adjacent duplicates are merged. Press the Sort button
again to see the ideal merging.

 <Table
 headerText="Products"
 items="{
 path:'/ProductCollection',
 sorter: {
 path: 'SupplierName',
 descending: false
 }
 }" >
 <columns>
 <Column mergeDuplicates="true">
 <header>
 <Text text="Supplier" />
 </header>
 </Column>
 <Column mergeDuplicates="true">
 <header>
 <Text text="Product" />
 </header>
 </Column>
 <Column
 minScreenWidth="Tablet"
 demandPopin="true"
 hAlign="End" >
 <header>
 <Text text="Dimensions" />
 </header>
 </Column>
 <Column
 minScreenWidth="Tablet"
 demandPopin="true"
 hAlign="Center" >
 <header>
 <Text text="Weight" />
 </header>
 </Column>
 <Column hAlign="End" >
 <header>
 <Text text="Price" />
 </header>
 </Column>
 </columns>
 <ColumnListItem>
 <Text text="{SupplierName}" />
 <ObjectIdentifier title="{Name}" text="{ProductId}"
class="sapMTableContentMargin" />
 <Text text="{Width} x {Depth} x {Height} {DimUnit}" />
 <ObjectNumber
 number="{WeightMeasure}" unit="{WeightUnit}"
 state="{
 path: 'WeightMeasure',
 formatter: 'sap.m.sample.TableMergeCells.Formatter.weightState'
 }" />
 <ObjectNumber
 number="{Price}"
 unit="{CurrencyCode}" />
 </ColumnListItem>
 </Table>

2338 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2339

Highlighting Rows and Columns

You can use CSS to achieve striping for table rows, as you might do in other web-based applications, for
example to highlight alternate rows in the table above so that it looks like this:

You just need to note the ID of the sap.m.List or sap.m.Table control (in this case it is "salesdata") and
then apply some appropriate CSS such as:

#ProductsView-ProductsTable tbody tr:nth-child(even) { background: rgb(245, 245, 245);
}

 Note
Use <even>, rather than <odd> for the sibling specification. This way, the pop-in highlighting will be
correct.

It's also possible to highlight table columns by using the styleClass property of the sap.m.Column control.
The value of this property is applied as a class to the whole column (header, cells and footer) and can be used

2340 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

in the following way: specify a class name for the styleClass property of your column, and set the style as
you wish:

 <style>
#products .MyPrice {
 background: @sapUiNeutralBG;
}
</style>
...
<Column
 hAlign="End"
 class="myPrice">
 <Text text="Price" />
</Column>

This highlights the Price column in our example table, as shown below:

List and Table Events

Both sap.m.List and sap.m.Table offer the same events, inheriting them from sap.m.ListBase.

The events are:

● delete
● itemPress
● selectionChange
● swipe

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2341

● updateFinished
● updateStarted

All of these events are handled in the same way: an event is fired, and the event object that is passed contains
listItem data that tells you which items were affected.

To use these events, you can simply define handlers for them, as shown below:

 <Table
 delete="deleteHandler"
 swipe="swipeHandler"
 selectionChange="selectionChangeHandler"
 itemPress="itemPressHandler"
 updateStart="updataeStartHandler"
 updateFinish="updateFinishHandler" ...

An example for delete would look like this:

<List id="list"
 mode="Delete"
 delete="handleDelete"
 enableBusyIndicator="true"
 headerText="Products"
 growing="true"
 items="{
 path: '/ProductCollection'
 }" > ...

An example for selectionChange would look like this:

<List id="idList"
 items="{/ProductCollection}"
 selectionChange="onSelectionChange"
 mode="MultiSelect"
 includeItemInSelection="true" > …

 Note
Item press events are not fired for items that have the type inactive. As this is the default property of
listItemType, change it to a different value if you want the event to be fired.

To test swipe gestures on desktop devices, open the Google Chrome developer tools, and within Settings →
Overrides, check the "Emulate touch events" checkbox and reload the page.

Growing Feature for Table and List

sap.m.ListBase provides growing-related properties, which can be used for tables and lists.

A growing list has a loading mechanism that requests data from the model in a lazy way. This enables the app
to only fetch data from the server as and when necessary.

2342 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Note
Before release 1.16, the sap.m.GrowingList control existed as an extension of the sap.m.List control.
As this is now deprecated, use the properties as described here instead.

The growing-related properties of sap.m.ListBase are:

● growing: Boolean to set the growing feature to on or off
● growingScrollToLoad: If you want to allow more data to be fetched when the user scrolls down to the

end of the current items, set this boolean property to true; otherwise a trigger button must be used
● growingThreshold: The number of items that are requested each time from the model
● growingTriggerText: The text on a trigger button used to cause a request for more data

 Note
For sap.m.listbase, the growing feature containing the growing property is not supported when used in
combination with two-way binding for a table or list.

Also, as the growing feature enables extended change detection for the binding, it only updates rows that
are changed. This means that if the position of a particular row has not been changed, this row will not be
updated.

To enable data for a table to be fetched on demand like this, you just need to set the values for these properties
appropriately on your table control. For example, adding the highlighted lines as shown in the following code
will cause five items to be displayed in the table initially along with a More button (this is the default text used if
you don't set a different text using the growingTriggerText property), as shown below the code:

 <List
 items="{/ProductCollection}"
 headerText="Products"
 growing="true"
 growingThreshold="4"
 growingScrollToLoad="false">
 <StandardListItem
 title="{Name}"
 description="{ProductId}"
 icon="{ProductPicUrl}"
 iconDensityAware="false"
 iconInset="false" />
 </List>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2343

If you want the user to have to scroll down to see more items (by setting the growingScrollToLoad property
to true), you must ensure that the control is within a container that has a scroll feature, such as an
sap.m.Page in an sap.m.App control, like this:

 <App>
 <Page title="Table Events">
 <Table>
 ...
 </Table>
 </Page>
<App>

Sample

For more information, see the sample in the Demo Kit.

Grouping in a Table

When you have repeated values in your table, you can use mergeDuplicate of the sap.m.Column control to
sort your data based on the column to be merged.

There are two properties related to merging duplicate values:

● mergeDuplicates: set this to true if you want duplicate values for the given column to be merged

2344 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.sample.ListGrowing/preview

● mergeFunctionName: use this to specify the name of the getter function of the control in the column

Duplicate values will only be merged if they are contiguous. That means that you probably want to sort your
data first before binding it.

Here's a simple example of using mergeDuplicates. We'll set up a table of sales data, and display the data in
a table, merging any duplicate regions. When the Mix Up button is pressed to lightly shuffle the salesFigures
array of objects, you will see that only adjacent duplicates are merged. Press the Sort button again to see the
ideal merging.

// Sales Areas var oAreas = {
 "North West": ["Manchester", "Liverpool", "Lancaster"],
 "South East": ["London", "Brighton"],
 "North East": ["Middlesbrough", "Newcastle", "Hull"]
};

// Generate some sales figures into a flat array of region/town/amount objects
var oSalesFigures = [];
oSalesFigures = oSalesFigures.concat.apply(oSalesFigures,
Object.keys(oAreas).map(function(region) {
 return oAreas[region].map(function(town) {
 return { "region": region, "town": town, "amount":
(Math.random()*1000000+1).toFixed(2) };
 });
}));
var oModel = new sap.ui.model.json.JSONModel({ "sales": oSalesFigures });
sap.ui.getCore().setModel(oModel);

var oTable = new sap.m.Table("salesdata", {
 inset: true,
 headerText: "Sales by Area",
 headerContent: [
 new sap.m.Button({
 text: "Sort",
 press: function() {
 var oData = oModel.getData();
 oData.sales.sort(function(a, b) {
 if (a.region === b.region) return 0;
 return a.region > b.region ? 1 : -1;
 });
 oModel.setData(oData);
 }
 }),
 new sap.m.Button({
 text: "Mix Up",
 press: function() {
 var oData = oModel.getData();
 oData.sales.sort(function() { return Math.random()-0.5; });
 oModel.setData(oData);
 }
 })
],
 columns: [
 new sap.m.Column({
 header: new sap.m.Label({ text: "Region" }),
 mergeDuplicates: true
 }),
 new sap.m.Column({ header: new sap.m.Label({ text: "Town/City" }) }),
 new sap.m.Column({
 header: new sap.m.Label({ text: "Sales (GBP)" }),
 hAlign: "End",
 minScreenWidth: sap.m.ScreenSize.Tablet,
 demandPopin: true,
 popinDisplay: "Block"
 }),

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2345

],
});
oTable.bindAggregation("items", {
 path: "/sales",
 template: new sap.m.ColumnListItem({
 cells: [
 new sap.m.Label({ text: "{region}" }),
 new sap.m.Label({ text: "{town}" }),
 new sap.m.Label({
 text: {
 path: "amount",
 type: new sap.ui.model.type.Float({ minFractionDigits:
2, maxFractionDigits: 2 })
 }
 })
]
 })
});

oTable.placeAt("content");

Table Personalization
The simple concept of table personalization allows the user to personalize a table and to persist these settings.

Personalization currently supports defining the order of columns and their visibility.

2346 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Components Defining Personalization

The table personalization concept is built upon three distinct artifacts:

● A table personalization dialog sap.m.TablePersoDialog
● A table personalization controller sap.m.TablePersoController
● A table personalization persistence service provider, based on abstract class

sap.m.TablePersoProvider

Table Personalization Dialog

The table personalization dialog sap.m.TablePersoDialog is a visual control that can be invoked within the
context of the table personalization controller. The dialog shows the list of columns in the table, the order in
which they appear, and whether their visibility is set to on or off. The user can then use this dialog to adjust
these details.

When a user closes the dialog, its table personalization controller automatically applies the column order and
visibility settings to its table and it calls the table personalization persistence service provider's setPersData
method and fires a personalizationsDone event.

You can also use the table personalization controller's getTablePersoDialog to directly access the table
personalization dialog, and use its retrievePersonalization method to access its column order and
visibility settings.

The personalization settings retrieved with this method take the form of an object that currently has one single
property, aColumns, the value of which is an array of column objects each having the following properties:

Property Type Description

id string The ID of the column

order integer The order of the column. Starts with 0

text string The text of the column header

visible boolean Specifies whether the column is visible
(true) or not (false)

Table Personalization Controller

The table personalization controller sap.m.TablePersoController can be seen as a wrapper around three
things:

● Your table (to be personalized)
● A table personalization dialog
● A table personalization persistence service provider

As an application developer, you most likely want to use a table personalization controller. The controller
manages the instantiation of the table personalization dialog and the connection to the table persistence

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2347

service provider (see later). It also applies the personalizations to the table once the dialog has been closed by
clicking OK.

Here is an example of how a table personalization controller can be used, assuming you are running in the
context of the unified shell, which provides backend services such as persistence.

 // Create a persistence key
var oPersId = {container: "mycontainer-1", item: "myitem-1"};
// Get a personalization service provider from the shell (or create your own)
var oProvider =
sap.ushell.Container.getService("Personalization").getPersonalizer(oPersId);
// Instantiate a controller connecting your table and the persistence service
var oTablePersoController = new sap.m.TablePersoController({
 table: oTable,
 persoService: oProvider
}).activate();
// Cause the dialog to open when the button is pressed
sap.ui.getCore().byId("idPersonalization").attachPress(function() {
 oTablePersoController.openDialog(); });

Once the user closes the table personalization dialog, the personalizations made are automatically applied to
the table and persisted. Conversely, when the controller is instantiated, any existing personalizations are
fetched and applied to the table. The link to the persistence service provider, the instantiation of a table
personalization dialog object, and the automatic appliance of any personalization settings to the table is
invoked with the activate method as shown above.

As well as the openDialog and activate methods shown, methods are also available to apply and save the
personalizations: applyPersonalizations and savePersonalizations respectively. In most cases, you
do not need to call the functions: the table personalization controller takes care of it all after it has been
activated.

The table personalization controller also offers a 'refresh' function. It re-loads the personalization information
from the table personalization provider, applies it to the controller's table, and updates the table
personalization dialog.

Note the reference to "create your own" personalization service provider in the code example above. The
unified shell provides a shell-based personalization persistence service provider (see below), but you are of
course free to build your own. One simple example might be the use of browser local storage to read and write
data.

Table Personalization Persistence Service Provider

The table personalization persistence service provider should be based on the abstract class
sap.m.TablePersoProvider. Do not instantiate and use this sap.m.TablePersoProvider class directly
as a provider; it merely describes the interface that a real persistence service provider should be built to.

The interface itself is simple: on instantiation, persistence identification can be supplied. This will then be used
as the key for retrieving, saving and removing the personalization data. The following methods are available:

● getPersData(): Retrieves the personalizations.
● setPersData(oPersonalizationData): Saves the given personalization data.
● delPersData(): Removes the personalization data.

2348 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

● getGroup(oColumn): Lets you specify to which group a column should belong. If you set the
hasGrouping flag in the table personalization controller, the table personalization dialog will call this
method to arrange the columns in groups.

● getCaption(oColumn): Implement this method if you would like the table personalization dialog to
display a different column name than the one displayed within the table, or if you would like to add any
information to the standard column name.
If present, the table personalization controller's getCaption method is asked for the column text when
the table personalization dialog is opened. If it does not deliver a result, the column header texts are taken
from the table.

After activation, the table personalization controller applies the personalization obtained through calling the
provider's getPersData() to its table: it re-arranges the order of columns in the table and makes them
invisible if required. To define a default visibility setting, you can either fill the persistence of your table
personalization provider with default settings, or you can implement your table personalization provider's
getPersData method so that it delivers a default visibility if no persisted personalization is available yet.

 Note
There are no keys specified in the calls to the get, set and del functions. These should be inherent from
the original instantiation of the service and used implicitly. There may be a requirement to supply a variant
style sub-key in future, but this is not yet implemented.

Shell Table Personalization Persistence Service Provider

A concrete implementation of the table personalization persistence service provider (sap.m.Table
PersoProvider) is available from the Unified Shell services. The previous code example shows this
persistence service provider being instantiated and utilized in the controller.

 Note
Please note that this is not part of the SAPUI5 framework. It is delivered separately, and you must check
that this service is available in your application context.

Sample

For a detailed example of how table personalization works, see the sample.

API Reference

● sap.m.TablePersoDialog
● sap.m.TablePersoController
● sap.m.TablePersoProvider

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2349

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.m.sample.TablePerso/preview
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.TablePersoDialog.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.TablePersoController.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.TablePersoProvider.html

Performance of Lists and Tables

Mobile devices usually have a limited memory and processing power. Complex web pages may therefore have a
negative impact on the application performance. This also depends on the mobile device and affects most
likely the sap.m.List and sap.m.Table controls.

These controls are often bound to data sources and often dynamically generate list items or table rows. The
data may contain a large number of elements. Apart from the performance, creating long lists or tables on
mobile devices also affects usability: navigating through large data sets on a mobile device is less convenient
than on the desktop. We recommend to restrict the number of elements in lists or tables to 100 on mobile
devices.

If a list contains too many items, the device needs more time for rendering and the user has to wait before he
can see the list or table on the device. The scrolling behavior may also be affected. To reduce the number of
items that must be rendered initially, you can use the growing feature for the list or table. With this feature,
subsequent loads will not trigger a rerendering of the complete list and are more performant. However, if a re-
rendering of the entire list is triggered for another reason, the rendering may have a reduced performance.

Message Handling

Recommended guidelines for message handling.

We recommend to invest care and energy in good message content:

● Provide short and crisp error messages to the user.
● A message should always contain a 'Call for Action'.
● To achieve the above, you need to map error messages from a back-end system.
● Focus on the most common error situations and improve the messages there.
● You need to detect all problems related to network connectivity and indicate them as such.

Messages Related to a Page

For showing messages to the user that are related to the currrent page, you have several possible controls.
Each of these offers a different type of interaction from the user. Choose the control that fits best in you
interaction pattern.

Message Dialog
● A message dialog interrupts the user's workflow by blocking the current page and needs to be closed by

the user.
● Use a message dialog if the message is important and must be acknowledged by the user.
● The easiest way of showing a message dialog is to use the sap.m.MessageBox.
● If you want full control of the content you can also use sap.m.Dialog control and set the type to

sap.m.DialogType.Message.
● As MessageBox is a static class, a jQuery.sap.require("sap.m.MessageBox"); statement must be

explicitly executed before the class can be used.

2350 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Example

 // load MessageBox asynchronously sap.ui.require(['sap/m/MessageBox'], function(MessageBox) {

 // and display message
 MessageBox.show(
 "This message should appear in the message box.", {
 icon: MessageBox.Icon.INFORMATION,
 title: "My message box title",
 actions: [MessageBox.Action.YES, MessageBox.Action.NO],
 onClose: function(oAction) { / * do something * / }
 }
); });

Message Toast
● A message toast is an overlay that disappears after some time or if the user taps somewhere else. It does

not block the user.
● The message will automatically fade out, unless it is selected by the user.
● Use this pattern if the message is less important and the user should not be blocked in his work.
● You can open a message toast easily with the sap.m.MessageToast API.

 Example

 // add MessageToast as import sap.ui.define([..., 'sap/m/MessageTost', ...], function(...,
MessageToast, ...) {
 ...
 // show toast when needed
 MessageToast.show("Item deleted");
 ... });

MessageStrip
MessageStrip enables the embedding of short application-related messages in the application. There are
four types of messages and each is color-coded and has an icon corresponding to its type: Information,
Success, Warning and Error.

 Example

 // add MessageStrip and MessageType as imports sap.ui.define([..., 'sap/m/MessageStrip', 'sap/ui/core/library', ...],
function(..., MessageToast, coreLibrary, ...) {

 ...
 var MessageType = coreLibrary.MessageType;

 var msg = new MessageStrip({
 id: "importantMessage",
 text: "This is a sample text",
 type: MessageType.Error,
 showIcon: true,
 showCloseButton: true
 });

 ...

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2351

 });

The MessageStrip is useful when you want to display short notices, for example of finished background
tasks, that do not require further user interaction.

MessagePopover
MessagePopover displays a summarized list of different types of messages (errors, warnings, success and
information). It provides a handy and systemized way to navigate and explore details for every message. You
can find more information on MessagePopover here [page 2353].

MessageView
MessageView displays the same type of summarized messages list as the MessagePopover. The main
difference between the controls is that the MessageView can be embedded in any suitable control (for
example a Dialog). This allows displaying of the message summary in any part of the application. As of
version 1.46, the MessagePopover has been refactored to automatically instantiate and use a MessageView
for its content. All other controls need to instantiate it themselves. Here is a sample for a MessageView in a
Dialog:

... sap.ui.require(['sap/m/Dialog', 'sap/m/MessageView', 'sap/m/Bar', 'sap/m/
Button', 'sap/m/Text'],
 function(Dialog, MessageView, Bar, Button, Text) {

 // create message view
 var oMessageView = new MessageView({
 showDetailsPageHeader: false,
 itemSelect: function () {
 that._oBackButton.setVisible(true);
 },
 items: {
 path: "/",
 template: oMessageTemplate
 }
 });
 ...
 var oDialog = new Dialog({
 title: "Messages",
 resizable: true,
 content: oMessageView,
 state: 'Error',
 beginButton: new Button({
 press: function () {
 oDialog.close();
 },
 text: "Close"
 }),
 customHeader: new Bar({
 contentMiddle: [
 new Text({ text: "Error"})
],
 contentLeft: [
 oBackButton
]
 }),
 contentHeight: "300px",
 contentWidth: "500px",
 verticalScrolling: false
 });

 oDialog.open();

2352 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 ...

 }
); ...

Messages Related to Elements of a Page

For showing messages to the user that are related to a specific element of a page there is no dedicated UI
control available in sap.m in this version. We recommend to use the sap.ui.core.HTML control to show
these error messages 'somewhere close to the input' or use some kind of overlay. Consider that the user will
have the on screen keyboard open which might hide messages. Putting the message above an input field could
help.

You can set the ValueState of the sap.m.Input control to Error to indicate that the content is not correct.

Multiple Messages

SAPUI5 Mobile does not support multiple messages at the same time. Mobile Designs recommend to be 'more
sparse' with messages, that is, only show one message at a time. This can also be achieved by combining and
reducing multiple messages.

Related Information

Message Popover [page 2353]

Message Popover

Message Popover is used to display a summarized list of different types of messages (errors, warnings, success
and information). It provides a handy and systemized way to navigate and explore details for every message.

Control overview

The MessagePopover control displays a list of messages which can be further drilled down to reveal more
details. Typically, it will be placed in the footer and can be expanded when clicking on its icon. As it inherits from
the Popover control, it can also be placed relative to any other SAPUI5 control using the placement propery
and its respective values:

● sap.m.VerticalPlacementType.Top - placed at the top of the reference control

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2353

● sap.m.VerticalPlacementType.Bottom - placed at the bottom of the reference control
● sap.m.VerticalPlacementType.Vertical (default) - placed at the top or bottom of the reference

control

Figure 345: Message Popover control

The MessagePopover also features the modes - collapsed (showing only the type and number of messages)
and expanded (showing the complete list). An example of the collapsed mode is shown in the screenshot
below.

Figure 346: Message Popover collapsed

Handling links in long-text messages

The MessagePopover control allows app developers to provide a long-text description for a message, which
can include markup and formatting of the content. When this is the case, the control will automatically, and by
default, invalidate links and will not allow clicking on them. This is due to security reasons and it is part of the
app developer's responsibility to check the links for possible vulnerabilities, exploits and access policies. App
developers are provided with an asynchronous function property that should be used for this matter -
asyncURLHandler.

2354 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Sometimes, you may need to validate all links by default. You can do this with the following function property:

 asyncURLHandler: function(config){
 config.promise.resolve({
 allowed: true,
 id: config.id
 }); }

How does it work?

The required flag - allowed - is always set to true and the promise is resolved immediately. Therefore all of the
links in the description will be automatically validated.

PDF Viewer

PDF viewer can be used to display PDF documents within your app, which enables your users to preview PDF
documents before printing or downloading them.

For more information about this control, see the API Reference and the samples in the Demo Kit.

Overview

The PDFViewer control displays PDF documents right inside your app. It can be embedded into your page
layout, or you can set it to open in a popup dialog. In addition, this control allows you to download the PDF
documents it displays.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2355

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.PDFViewer.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.m.PDFViewer/samples

Figure 347: PDF Viewer Example

Details

PDF File Source

● You can specify the source of the PDF document that you want to display using the source property that
points to a PDF file path. This property can be set to a relative or an absolute path.
Optionally, you can set the source property to a data URI or a blob URL in all major web browsers except
Internet Explorer and Microsoft Edge. If you want to use a data URI or a blob URL, you need to make sure
that this data URI or blob URL is whitelisted in advance. For more information, see URL Whitelist Filtering
[page 1477].

Content Caching

● PDF documents displayed in the PDF viewer may or may not be cached, depending on the app that uses
the PDF viewer control. It's up to you to decide how often the content should be refreshed and whether to
use caching or not.

2356 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Constraints

Supported Device Types

● The PDF Viewer control is fully displayed on desktop devices only.
● On mobile devices, the PDF document is not displayed. Only the toolbar with a download button is visible.

Click the download button to download and open the PDF document.

Browser Limitations

● Internet Explorer
○ When a PDF document is loaded, the Internet Explorer browser may not allow its content to be

validated. As the result, the sourceValidationFailed event may not be fired for loaded PDF
documents.

○ When the PDF viewer is open in the Internet Explorer browser, the displayed PDF document may
appear on top of all other page elements. To work around this issue, insert another iframe element
between the PDF viewer and the rest of the elements on the page.

○ Data URI paths and blob URLs used as the PDF source are not supported in Internet Explorer.
● Microsoft Edge

○ When the PDF viewer is open in the Microsoft Edge browser, the displayed PDF document may appear
on top of all other page elements. To work around this issue, insert another iframe element between
the PDF viewer and the rest of the elements on the page.

○ Data URI paths and blob URLs used as the PDF source are not supported in Microsoft Edge.
● Mozilla Firefox

○ The sourceValidationFailed event is not fired for PDF documents loaded in the Mozilla Firefox browser.

Embedding the PDF Viewer into a Tab

● When the PDF viewer is embedded into the sap.m.IconTabBar control, the PDF documents may fail to
reload when you switch tabs. To work around this issue, you can do either of the following:
○ Set the visibility of the PDF viewer to false when the user is switching between tabs.
○ Remove the PDF viewer iframe element from the DOM each time the user navigates to a different tab.

The PDF viewer element can be removed by calling the sap.m.PDFViewer#invalidate method.
For more information, see the API Reference: sap.ui.core.Control.html#invalidate.

Accessibility

● Accessibility features available to the user may vary, depending on the version of the Adobe Acrobat
Reader installed.

Fillable PDF Forms

● Support for fillable PDF forms depends on the browser and device limitations.

Related Information

URL Whitelist Filtering [page 1477]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2357

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.IconTabBar
https://sapui5.hana.ondemand.com/#/api/sap.m.PDFViewer/methods/invalidate

Personalization Dialog

The sap.m.P13nDialog control provides a dialog to personalize tables, such as adapting the order of
columns or filtering table content.

For more information about this control, see the API Reference and the samples.

Overview

The P13nDialog control offers you a personalization dialog and allows the consuming application to define
various settings for tables using panels. The panels represent the settings on the user interface. In order to
register them to the control, the sap.m.P13nPanel aggregation is used.

Details

The following panels are available in the P13nDialog control:

● sap.m.P13nSortPanel
Defines the sorting in a column in an ascending or descending order.

● sap.m.P13nFilterPanel
Defines filter conditions for a column.

● sap.m.P13nGroupPanel
Defines the grouping of columns.

● sap.m.P13nDimMeasurePanel
Defines the chart-specific settings.

The following buttons are available in the dialog:

● OK
Closes the personalization dialog.
In some cases, the consuming application must transfer the settings of the end user to the table, for
example, when sorting and filtering.

● Cancel
Closes the personalization dialog.
All changes made by the end user in the dialog that is currently open are rejected.

● Restore
Personalization dialog remains open.
All changes made by the end user are set back to the initial state.

 Note
The control only provides the visual representation of the table settings on the user interface. The
consuming application must ensure the settings are actually changed in the table.

2358 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.P13nDialog.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.m.P13nDialog/samples

Scrolling

Because of limited size of mobile devices, scrolling is an essential topic in mobile user experience. Smooth and
easy scrolling is important for user acceptance of mobile applications.

In general, application programmers do not need to take care of scrolling when using the sap.m control library.
Scrolling is provided automatically by the following controls:

● sap.m.Page
● sap.m.Dialog
● sap.m.Popover
● sap.m.ScrollContainer

Scrolling: Implementation Details

SAPUI5 embeds the open source library iScroll4 that takes care of scrolling in the application.

Scrolling support in mobile browsers is weak and inconsistent. Only the latest platforms and browsers start to
support partially usable scrolling functionality. To avoid this, SAPUI5 supports iScroll4. Though the library is
globally available in a SAPUI5 application, programmers should not call it directly. The
sap.ui.core.delegate.ScrollEnablement delegate provides all functionality and smooth integration of
iScroll4 into the SAPUI5 library.

For more information, see sap.ui.core.delegate.ScrollEnablement

Do not use nested scrolling

We do not recommend to use nested levels of scrolling, for example, when a page with enabled vertical scrolling
contains a scroll container that has vertical scrolling too. Such combinations may lead to behavior that is
unexpected both for programmers and users.

Implement a custom scroll container

A custom control that needs to provide a scrollable area for its content should implement the following steps:

1. Instantiate a sap.ui.core.delegate.ScrollEnablement delegate, at best in
the .onAfterRendering callback.

2. Implement a .getScrollDelegate method that returns the current instance of the delegate to other
controls.

3. Destroy the ScrollEnablement delegate on exit.

Example:

 myCustomScroller.prototype.onAfterRendering = function() {
 if(!this._oScroller){

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2359

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.delegate.ScrollEnablement.html

 jQuery.sap.require("sap.ui.core.delegate.ScrollEnablement");
 // attach a scroller to the scrollable container DOM element
 this._oScroller = new sap.ui.core.delegate.ScrollEnablement(this,
this._scrollContainerId, {
 horizontal: false,
 vertical: true
 });
 }
};
myCustomScroller.prototype.getScrollDelegate = function() {
 return this._oScroller;
};
myCustomScroller.prototype.exit = function() {
 if(this._oScroller){
 this._oScroller.destroy();
 this._oScroller = null;
 } };

 Note
The Zynga scroller that is included in the SAPUI5 library is deprecated. The configuration parameter
oConfig.zynga=true of the scrolling delegate should not be used.

Interaction with the scroll containers

There are cases, when an embedded control controls scrolling of the parent container, if required. These are

● a sap.m.ScrollContainer inside a sap.m.Page may block parent scrolling, if it scrolls in the same
direction itself;

● a sap.m.TextArea control in edit mode blocks parent scrolling, so that the user can scroll text contents
during input;

● a sap.m.GrowingList control scrolls parent container to update positions of visible items after the new
items have been loaded from the server.

When using a sap.m.FlexBox with fitContainer:true or sap.m.TileContainer inside a page, the
enableScrolling property of the page needs to be set to false for the FlexBox or TileContainer to fit the
viewport.

Scrolling: Pull to Refresh

The SAPUI5 mobile library supports the pull down to refresh functionality that allows users to refresh lists or
page content with fresh data from server.

To implement it, create a PullToRefresh control and put it as the first control into a page or a scroll container
that contains the list that needs to be refreshed.

Example:

 var pullToRefresh = new sap.m.PullToRefresh({ description: getLastUpdatedTime(),
refresh: function(){
 pullToRefresh.setDescription("loading from server...");

2360 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 //request new data from server
 getNewData({
 // when data comes from server
 onSuccess: {
 pullToRefresh.hide();
 pullToRefresh.setDescription(getLastUpdatedTime()); redrawList(); } }); };

The application should request new data on the refresh event and call the hide method when the data is
received and the list is refreshed. You can provide a URL to a custom logo image with customIcon or switch
display of logo of by setting showIcon to false. The first line of text "Pull to refresh" is standard and cannot be
changed. However, you may set an optional description text to display, for example, the last update time.

 Note
PullToRefresh control is part of the scroll area and therefore its height is reflected in the scroll bar
calculation and display. The user can see that the page can be scrolled down to reveal the pull-down area.

Carousel

Pull to Refresh does not work with a Carousel if both are contained in a page: in order to make Pull to Refresh
work, the page has to enable scrolling which leads to problems with the Carousel (Carousel not visible).
Suggested Workaround: Add a sap.m.PullToRefresh instance to each page that you add to your Carousel.

API References

sap.m.PullToRefresh

Sliders

Control Overview

A slider is a control that enables you to adjust values on a specified range. SAPUI5 has two controls of this type
- sap.m.Slider and sap.m.RangeSlider. The slider allows you to choose a single value, whereas with the
RangeSlider you can choose an interval with start and end within a given interval.

Figure 348: Slider

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2361

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.PullToRefresh.html

Figure 349: RangeSlider

Technically the RangeSlider extends sap.m.Slider and thus uses all its properties. It has two additional
properties for the second slider value and the selected range.

Both versions of the control support features for tickmarks, labels and advanced tooltips. If you only need a
simple native browser tooltip, you can enable handleTooltip and show it on mouse hover. For more
advanced cases, you can customize the labels and the tooltips for the slider handles.

Custom Scale

In the background, the sliders operate on floats, but some usecases may require that the range consists of
other values, for example dates. In order to properly match your values to floats, you need to add custom scale
and implement the Iscale interface.

 // "Element" required from "sap/ui/core/Element"
var CustomScale = Element.extend("sap.xx.custom.CustomScale", {
 interfaces: [
 "sap.m.IScale"
],
 library: "sap.xx.custom", });

You need to implement the following methods of the IScale interface.

● getTickmarksBetweenLabels - Determine which tickmarks should have a label
● calcNumberOfTickmarks - Determine the number of tickmarks on the scale
● handleResize - Resize handler
● getLabel - Getter for the label

This way you have full control over the labels, their placement, density, and text. As your custom labels may be
longer , you will also need to show less tickmarks in order to prevent cluttering of the scale values.

This custom scale is then passed to the control.

 // "Slider" required from "sap/m/Slider"
// "CustomScale" required from "sap/xx/custom/CustomScale"
// "CustomTooltip" required from "sap/xx/custom/CustomTooltip"
var oSlider = new Slider({
 min: 0,
 max: 30,
 value: 15,
 width: "80%",
 enableTickmarks: true,
 showAdvancedTooltip: true, scale: new CustomScale(), customTooltips: [new CustomTooltip()] })

2362 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.m.IScale

Custom Tooltips

In order to create a custom tooltip, you should extend the class sap.m.SliderTooltipBase and override
some methods. If you want to define your own content for the tooltip, you should override just the
renderTooltipContent method. If you want to be notified when the Slider's value has been changed, you
need to implement the sliderValueChanged which takes as an argument the new value of the Slider, so you
can adjust the value of the tooltip.

During rendering you can provide the content of the tooltips by writing directly to the DOM.

renderTooltipContent: function (oRm, oControl) { // you can write any DOM here - render controls or
anything you want
 // (inline elements are not recommended as you need
to style them on your own)
 oRm.openStart("div", oControl.getId() + "-inner");
 oRm.class("sapCustomSliderTooltip");
 oRm.openEnd(); oRm.close("div")

Accessibility for Sliders

Depending on the type of slider, you may need different values to be read out by the screen reader. In the case
of a simple numeric slider, the screen reader will read the current float value. If you have a slider with a custom
scale with tickmarks, the screen reader will read the value returned by getLabel() of the scale. If you have
custom tooltips, then the return value from the tooltip formatter will be read. The priority for these id the
following: Custom tooltips overrule custom scale and custom scale overrules the generic slider.

Split App

You can use the sap.m.SplitApp control to ensure that your UI automatically adapts to the size available on
the respective device.

As tablets such as iPad or Google Nexus7 provide more space compared to smartphones, porting existing
mobile apps to tablets leads to a lot of unused space.

A common pattern to address this is called master-detail, and is often used in native iOS and Android
development. Good examples are the native Settings and E-Mail applications of iOS and Android tablets. This
pattern can be used with the SplitApp control.

The figure shows the basic idea of the pattern. The app is divided into two views, the master and the detail view.
The master view presents a list of items and is used as the main navigation within the application. The detail
view shows detail information for the selected item.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2363

Whereas the selection of an item on a mobile devices navigates the user to the detail page, the user can see the
list of items and the detail view at the same time on a tablet device.

If the tablet device is used in portrait mode it has less available width space. For this, the SplitApp control
provides three different modes for displaying the master and detail view in portrait mode:

● ShowHideMode
This is the default mode. This mode hides the master view automatically when the user turns the device
into portrait mode. To display the master view, the user swipes right on the detail view or uses the button
which is placed on the header of the detail view.
The Master view slides in from the left hand side. The user can choose another list item which will update
the detail view and automatically hides the master view again.

● PopoverMode
This mode places the master view inside a popover which can be opened via the button in the header of the
detail view.

● StretchCompressMode
This mode displays the master view in both, the portrait and the landscape mode. In portrait mode, the
detail view has less space available.

In landscape mode, all three modes described above display the master view.

If you run a SplitApp on a mobile device, it automatically behaves like a standard mobile application. The
following figure shows the difference:

2364 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

As only one page per screen can be displayed, the master and detail view are automatically displayed on
separate pages and the standard page navigation is applied.

Text

The sap.m.Text control allows you to display longer texts in your app, with the possibility to manage the
number of lines, the text wrapping, and the visualization of line breaks and spacing.

Multi-line Paragraphs and Text Wrapping

You can influence the maximum number of visible lines by setting the maxLines property to a numerical value.
This option is only available when the wrapping property is set to true. For more information, see the
sap.m.Text - Max Lines Sample.

Whitespace Handling

The Text control supports the rendering of new lines and the preservation of whitespace and tabs. Depending
on whether you are using JavaScript or XML, or data binding, you need to consider specific aspects related to
the definition of new lines and tabs.

Table 115: sap.m.Text: New lines and tabs definition in the different use cases

To visualize
JavaScript/Data binding defined
string XML View defined string

New line \n

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2365

https://sapui5.hana.ondemand.com/#/sample/sap.m.sample.TextMaxLines/preview

To visualize
JavaScript/Data binding defined
string XML View defined string

\n

For example, if you want to visualize
C:\NewFolder

\\n \n

Tab \t 	

\t

For example, if you want to visualize
C:\TestFolder

\\t \t

For more information, see the API Reference and the sap.m.Text - Render Whitespace Sample.

Usage Guidelines and Limitations

● Use the Text control if you want to display text inside a form, table, or any other content area.
● Do not use the Text control if you need a Label. For more information, see the API Reference:

sap.m.Label.
● If you need special text formatting, use Formatted Text or HTML. For more information, see the API

Reference: sap.m.FormattedText and API Reference: sap.ui.core.HTML.

 Restriction
When you use wrapping, bear in mind that the multi-line overflow indicator depends on whether the
browser supports line clamping. If the browser supports it, it shows the overflow as an ellipsis; if not, the
overflow indicator is not displayed.

Upload Collection

Upload Collection is a list control for attachment management that provides the ability to upload, edit or
delete attachments.

The UploadCollection control allows users to upload single or multiple files from their devices (desktop PC,
tablet or phone) to an app. Due to its responsiveness, the upload collection can be used in containers of
different sizes.

Overview

You can use the UploadCollection control to show a list of files, for example, attachments or uploads, that
can be modified, or you can allow users to add or remove files to or from this list.

2366 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.m.Text
https://sapui5.hana.ondemand.com/#/sample/sap.m.sample.TextRenderWhitespace/preview
https://sapui5.hana.ondemand.com/#/api/sap.m.Label
https://sapui5.hana.ondemand.com/#/api/sap.m.Label
https://sapui5.hana.ondemand.com/#/api/sap.m.FormattedText
https://sapui5.hana.ondemand.com/#/api/sap.m.FormattedText
https://sapui5.hana.ondemand.com/#/api/sap.ui.core.HTML

The UploadCollection control can be used in the following scenarios:

● Instant Upload
Allows users to upload single or multiple files from their devices and attach them to the application
immediately. The selection and upload process is completed in one step and is automatically triggered by
the UploadCollection control.

● Upload Pending
In this scenario, the upload process is divided into two steps.
○ Users select attachments and add them to the upload list (multiple selection is possible). Thereby, a

user can delete a file of this selection again without canceling the whole upload of the other selected
files.

In a second step, the user uploads the selected files to the application. The upload is provided by the
application, for example, with an upload button or similar. To trigger the upload, the control offers an event.

Details

Interaction and Behaviour

● Upload files
The upload is triggered by the Add or Upload pushbutton (depending on the scenario). In the OS-native file
picker dialog you can select one or multiple files. However, the consuming application need to enable the
upload of multiple files by using the multiple property during the instantiation. During the upload
process, a progress indicator provides information about the status. For upload, also Drag & Drop can be
used.

● Open files
To open a listed file, you can choose the icon or thumbnail of the attachment as well as the filename itself.
Depending on the file extension, browser capabilities, and device type (Desktop or mobile), the file is
handled differently, for example, it is opened in a new tab or downloaded, if no display capability is available
in the browser.

● Rename files
Choosing the Rename pushbutton (pen icon) turns the file name into an input field and allows
modification. If the sameFilenameAllowed property is set to false, the new file name is validated and, if
the file name already exists in the current list, an error occurs, which indicates that you need to change the
file name.

● Delete files
The user can delete files by using the Delete button. After choosing the Delete button, a dialog appears,
asking the user to confirm the deletion of the respective file that removes the file from the upload list or
application (the delete behaviour depends on the scenario that is used).

● Sorting and filtering files
The application can provide the sorting and filtering feature for the Upload Collection list. After setting the
filtering criteria, the users get the filtering information displayed in the info toolbar.

● For the instant upload scenario only, the following features are available:
○ Download files

You can download a file item from the Upload Collection list and save it on your device. For example,
you can provide a Download button in the sap.m.OverflowToolbar in the header, and once you
marked one of the items the download feature can be used. To use this feature, API methods in the
UploadCollection control and the UploadCollectionItem control are used. Using the
askForLocation parameter, you can configure that the browser should ask for the location where to

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2367

store the file or not (depending on the browser). When this parameter is set to false, the download
method acts in the same way as when clicking on the file link. If the askForLocation parameter is set
to true, the browser opens a Save As dialog.

○ Upload a new version of a file
To upload a new version of a file to the Upload Collection list, the openFileDialog method is
available. You can provide a button in the sap.m.OverflowToolbar in the header and if one entry in
the Upload Collection list is selected, the API method shall be called. The uploading process of the new
version depends on the settings for the optional UploadCollectionItem parameter:
○ If the parameter is provided, the method removes the selected item from the Upload Collection list

automatically to upload the new version.
○ If the parameter is not provided, the select dialog of the operating system opens and the further

steps have to be proceeded manually by the user.
The detailed behavior of the feature depends on the app, in which the control is used.

○ Terminate uploading a file
During an upload process of a file, you can terminate the upload with the Delete pushbutton, for
example, if the data file is very big and the uploading process takes too long. With the
terminationEnabled property, you can decide for your application to make the button for
termination invisible to prevent the user from terminating an instant upload in the
sap.m.UploadCollection control.

○ uploadButtonInvisible property
With the uploadButtonInvisible property, you can decide for your application to make the Upload
button in the instant upload scenario invisible to prevent the user from uploading a file.

Layout

● The Rename and Delete pushbuttons are displayed for each item and are active and visible by default. Both
icons can be set to invisible or inactive.

● While most file types have generic icons (such as Word documents, Excel sheets and PDFs), graphic files
can be displayed with a small thumbnail preview of its graphic if the respective URL is provided.

● The toolbar of the UploadCollection control can be customized:
○ To customize the toolbar, the toolbar aggregation can be set to the sap.m.OverflowToolbar

control which can contain your preferred UI5 controls. To make the position of the upload (+)
pushbutton configurable, the sap.m.ToolbarSpacer type is used. To configure the position of the
button, you can set the placeholder element to the designated position.

○ If the toolbar is not customized it only provides the upload (+) button.
○ In case the customizable toolbar has been configured and the placeholder is missing, an exception will

be thrown.
● The mode property of the UploadCollection control can be set. Therefore the sap.m.ListMode type is

used.
○ The listmode Delete is not supported and will be set to listmode None if used.
○ In chase of an upload pending scenario, the listmode MultiSelect is not supported; in this case it will

be set to listmode None automatically.

2368 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

API Reference/Sample

For more information, see the API Reference and the sample in the Demo Kit.

Constraints and Dependencies

By using the UploadCollection control, you need to be aware of the following constraints:

● The UploadCollection control does not work with IE9 because of a missing header parameter handling
needed for the upload.

● The file name of an upload item can contain any text and special characters but not a URL.

The sap.m.UploadCollection control uses the sap.ui.unified.FileUploader control and contains
dependencies to this control. If you want to use the UploadCollection control, you need to be aware of these
dependencies. For more information about the FileUploader control, see the API Reference Documentation.

URL Helper

With sap.m.URLHelper you can easily trigger native mobile phone applications such as e-mail, telephone,
and text messages.

You can set predefined values for the application so that a user does not need to enter this information
themselves. When personal information is displayed, for example phone numbers and e-mail addresses, you
can initiate a phone call or e-mail with just one tap.

The URLHelper API contains the following triggers for telephone, texts, and e-mail applications:

● Trigger telephone application

 sap.m.URLHelper.triggerTel([Telephone Number]); //Telephone number is
optional

● Trigger text messaging application

 sap.m.URLHelper.triggerSms([Telephone Number]); //Telephone number is
optional

● Trigger e-mail application

 sap.m.URLHelper.triggerEmail([Destination Email], [Subject], [Default
Message Text], [CC], [BCC]); // All parameters are optional

● Redirect To custom URL

 sap.m.URLHelper.redirect(URL); //URL is required and can be used for custom protocols (e.g http, ftp, ...)

 Note
● iOS does not trigger a phone call if the phone number contains "*" or "#".

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2369

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.UploadCollection.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.m.UploadCollection/samples
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.unified.FileUploader.html

● You can add multiple recipients for a text message in Android phones by separating recipient numbers
with ";".

● According to RFC 2368 you can set multiple subscribers for the e-mail application by separating each
with ","; however, this still depends on the application. Outlook, for example, uses ";" as separator.

● You can use the sap.m.URLHelper.redirect method to use custom URL schemes:
○ For iOS: http://developer.apple.com/library/safari/#featuredarticles/

iPhoneURLScheme_Reference/Introduction/Introduction.html
○ For Android: http://developer.android.com/guide/appendix/g-app-intents.html
○ URI schemes: http://en.wikipedia.org/wiki/URI_scheme

● If you just want to get a URI back without a redirect, you can use normalize methods which have the
same parameter as trigger methods, for example:

 /*
 * These methods do not redirect but return URI scheme back as string.
 * All parameters are optional
 */
sap.m.URLHelper.normalizeTel([Telephone Number]);
sap.m.URLHelper.normalizeSms([Telephone Number]); sap.m.URLHelper.normalizeEmail([Destination Email], [Subject], [Default
Message Text], [CC], [BCC]);

API Reference

● sap.m.URLHelper

Examples for Triggering Telephone, Text and E-Mail
Applications

Code samples for triggering telephone, text and e-mail applications.

Sample data used in the examples:

 var person = {
 name : "John Smith",
 tel : "+49 62227
 747474",
 sms : "+49 173 123456",
 email : "john.smith@sap.com",
 website : "http://www.sap.com" };

You can trigger an external application at any time, but it is usually triggered as a reaction to a UI control
throwing an event. The next sections illustrate some of the most typical use cases.

2370 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/disclaimer?site=http%3A%2F%2Fdeveloper.apple.com%2Flibrary%2Fsafari%2F%23featuredarticles%2FiPhoneURLScheme_Reference%2FIntroduction%2FIntroduction.html
http://help.sap.com/disclaimer?site=http%3A%2F%2Fdeveloper.apple.com%2Flibrary%2Fsafari%2F%23featuredarticles%2FiPhoneURLScheme_Reference%2FIntroduction%2FIntroduction.html
http://help.sap.com/disclaimer?site=http%3A%2F%2Fdeveloper.android.com%2Fguide%2Fappendix%2Fg-app-intents.html
http://help.sap.com/disclaimer?site=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FURI_scheme
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.URLHelper.html

Click Button To Trigger Phone Call

The following button can be used to place a call.

 new sap.m.Button({
 text : person.tel,
 icon : "images/action.png", /* Depends where your images are located */
 tap : function() {
 sap.m.URLHelper.triggerTel(person.tel);
 } });

Click Image To Trigger E-mail

The following code snippet gives an example for triggering an e-mail application. You can also set the subject
and message of the e-mail application:

 new sap.m.Image({
 src : "images/website.png", /* Depends where your images are located */
 tap : function() {
 sap.m.URLHelper.triggerEmail(person.website, "Info", "Dear " +
person.name + ",");
 } });

Inside List

DisplayListItem with active feedback is the most popular use case for the following example.

 new sap.m.DisplayListItem({
 label : "Sms",
 value : "(" + person.sms + ")",
 type : "Active",
 tap : function() {
 sap.m.URLHelper.triggerSms(person.sms);
 } });

To use any other control inside the list, use InputListItem:

 new sap.m.InputListItem({
 label : "Website",
 content : new sap.m.Button({
 text : person.website,
 tap : function() {
 sap.m.URLHelper.redirect(person.website);
 }
 }) });

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2371

sap.suite.ui.commons

This library contains various controls.

 Note
The following sections only provide additional information for some of the controls. For a complete list of all
controls and their documentation, see the API Reference and the Samples.

Related Information

Supported Library Combinations [page 26]
Browser and Platform Support [page 20]
API Reference: sap.suite.ui.commons

Calculation Builder

The CalculationBuilder control enables you to perform arithmetic calculations on constants and variables,
using standard arithmetic operators and most common logical operators and functions.

For more information about this control, see the API Reference and the samples in the Demo Kit.

Overview

The calculation builder control enables you to perform arithmetic calculations on constants and variables,
using standard arithmetic operators and most common logical operators and functions. You can customize the
sets of variables and functions that are visible in the calculation builder and introduce your own custom
functions, as needed. Arithmetic expressions can be entered using a touch-friendly visual editor or a textual
editor that provides autocomplete suggestions for variables and checks the expression syntax as you type.

2372 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.html
https://sapui5.hana.ondemand.com/explored.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.commons.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.commons.CalculationBuilder.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.suite.ui.commons.CalculationBuilder/samples

Chart Container

The ChartContainer control contains a toolbar and the control of the content aggregation displayed under
the toolbar.

Overview

The ChartContainer supports the sap.viz.ui5.controls.VizFrame and sap.m.Table controls in its
content area. With the toolbar, you can change the view of the content in different ways.

For more information about the VizFrame control, see the API Reference in the Demo Kit.

Details

● Selection boxes in the toolbar
The control supports multiple selection boxes in the toolbar for changing dimensions, for example.

● Content
You can switch between chart types or between a chart and a table view. ChartContainer supports
different chart and table controls, for example, vizFrame and sap.m.Table. The
sap.suite.ui.commons.ChartContainerContent control is a wrapper control for the content to be

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2373

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.viz.ui5.controls.VizFrame.html

displayed in the ChartContainer control. You need to provide the title and icon properties in this control
when you define the content so that it is displayed in the ChartContainer control.

● Fullscreen mode
A fullscreen toggle button is provided in the toolbar. You can switch between fullscreen and normal mode.

● Personalization
The control provides a personalization icon. If you press the icon, a personalization event will be fired.

● Selection details
The Details button provides a popover that displays the details of the items selected in the chart. You can
include the button into the toolbar by setting the showSelectionDetails property to true. Please note
that SelectionDetails is only available when sap.viz.ui5.controls.VizFrame is displayed in
ChartContainer.

● Custom toolbar
As an app developer, you can create your own toolbar inside a ChartContainer control in your
application. To configure a custom toolbar, the toolbar aggregation can be set to the
sap.m.OverflowToolbar control that contains your preferred SAPUI5 controls. The new
sap.suite.ui.commons.ChartContainerToolbarPlaceholder type has been introduced to make
the position of the embedded buttons configurable. To configure the position of the embedded buttons,
you need to set the placeholder element to the required position in the aggregation.
The order of the embedded buttons is set automatically by the control as shown in the image below:

 Note
The displayed toolbars below are taken from an example of the ChartContainer toolbar with
VizFrame.

○ legend, zoom in, zoom out, personalization, full screen, custom icons and segmented button for
content selection.

○ If a dimension selector is displayed in the chart container, it will always be displayed in the first position
in the toolbar. When a dimension selector is not visible, the chart container’s title (title property of
ChartContainer) will be displayed in the first position in the toolbar as shown below.

If the custom toolbar has been configured and the placeholder is missing, an information log will be
displayed and the custom toolbar is ignored. The default toolbar is used instead. If a custom toolbar has
been configured, the embedded buttons are still present and integrated using a placeholder.

● Custom Icons
You can also use custom icons. In this case, custom icons are rendered as OverflowToolbar buttons. But
they offer less options as the custom toolbar, for example, there is no control option for the visibility.

API Reference/Samples

For more information about the ChartContainer control, see the API Reference Documentation and the
sample in the Demo Kit.

2374 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.commons.ChartContainer.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.suite.ui.commons.ChartContainer/samples

Micro Process Flow

MicroProcessFlow is a linear process flow with circular nodes that serve as progress indicators.

For more information about this control, see the API Reference and the samples in the Demo Kit.

Overview

The MicroProcessFlow control can be used to display the progress of linear workflows, such as order flows,
document flows, and approval flows. It can be embedded into tiles, tables, and other types of parent
containers.

It is best used for simple linear workflows that include up to seven progress steps. For more complex processes
and workflows, consider using the ProcessFlow [page 2381] control instead.

Details

Layout and Content

● The MicroProcessFlow control consists of progress indicator nodes that are laid out horizontally and
connected by connector lines.
○ The nodes can be defined using MicroProcessFlowItem controls that are added to the content

aggregation in the MicroProcessFlow control.
○ The connector line that appears right after each node can be hidden using the showSeparator

property of the MicroProcessFlowItem control that defines this node.
○ If you want to display additional objects between nodes, you can define them using the intermediary

aggregation in the MicroProcessFlowItem control and use the showIntermediary property to
make them visible.
If you enable the showIntermediary property without defining the objects, the nodes are separated
by red vertical bars.

● Default nodes use semantic colors that correspond to their status property values. Available statuses
include: Standard (neutral), Error (negative), Success (positive), and Warning (critical).

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2375

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.commons.MicroProcessFlow.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.suite.ui.commons.MicroProcessFlow/samples

● To display a custom control instead of a default node, you can use the customControl aggregation in the
MicroProcessFlowItem control defining this node.
For example, if you want to use a rectangular status indicator [page 2384] instead of a node, you can add
the following to your view [page 76]:

<mvc:View ... xmlns:si="sap.suite.ui.commons.statusindicator"> ...
<MicroProcessFlow>
 <content>
 ...
 <MicroProcessFlowItem> <customControl>
 <si:StatusIndicator id="indicator1" width="20px"
 height="40px" viewBox="-1 -1 52 102" value="50">
 <si:ShapeGroup>
 <si:Rectangle x="0" y="0" width="50" height="100"
 fullAnimationDuration="2000"
fillColor="blue"
 strokeWidth="1" animationOnStartup="true"
 fillingType="Linear"/>
 </si:ShapeGroup>
 </si:StatusIndicator>
 </customControl> </MicroProcessFlowItem>
 ...
 </content>
</MicroProcessFlow>
... </mvc:View>

For more ideas and examples, see the samples in the Demo Kit.

Click Events

● You can specify click events for each of the nodes in the micro process flow using the press event.
For example, to display a popover element when the user clicks the node, consider adding the following (or
similar) code to your view [page 76] and its controller [page 79].
View

<MicroProcessFlowItem state="Success" press="itemPress"> <customData>
 <core:CustomData key="title" value="Payment"/>
 <core:CustomData key="icon" value="sap-icon://accept"/>
 <core:CustomData key="subTitle" value="Payment successful"/>
 </customData> </MicroProcessFlowItem>

Controller

itemPress: function (oEvent) {
 var oItem = oEvent.getSource(),
 aCustomData = oItem.getCustomData(),
 sTitle = aCustomData[0].getValue(),
 sIcon = aCustomData[1].getValue(),
 sSubTitle = aCustomData[2].getValue();

 var oPopover = new sap.m.Popover({
 contentWidth: "300px",
 title: "Order status",
 content: [
 new sap.m.HBox({
 items: [

2376 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/entity/sap.suite.ui.commons.MicroProcessFlow/samples
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.Popover.html

 new sap.ui.core.Icon({
 src: sIcon,
 color: this._getColorByState(oItem)
 }).addStyleClass("sapUiSmallMarginBegin
sapUiSmallMarginEnd"),
 new sap.m.FlexBox({
 width: "100%",
 renderType: "Bare",
 direction: "Column",
 items: [new sap.m.Title({
 level: sap.ui.core.TitleLevel.H1,
 text: sTitle
 }), new sap.m.Text({
 text: sSubTitle
 }).addStyleClass("sapUiSmallMarginBottom
sapUiSmallMarginTop"),
 new sap.m.Text({
 text: sDescription
 })
]
 })
]
 }).addStyleClass("sapUiTinyMargin")
],
 footer: [
 new sap.m.Toolbar({
 content: [
 new sap.m.ToolbarSpacer(),
 new sap.m.Button({
 text: "Close",
 press: function() {
 oPopover.close();
 }
 })]
 })
]
 }); oPopover.openBy(oEvent.getParameter("item")); }

For more ideas and examples, see the samples in the Demo Kit.

Network Graph

The NetworkGraph control displays objects as a network of nodes connected to one another by lines.

For more information about this control, see the API Reference and the samples in the Demo Kit.

Overview

The NetworkGraph control can be used to illustrate how different objects are related. In a network graph, each
object is represented by a node, and the relations between objects are represented by lines connecting the
nodes. Nodes can be clustered into groups that can be expanded or collapsed to show or hide a portion of the
graph.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2377

https://sapui5.hana.ondemand.com/explored.html#/entity/sap.suite.ui.commons.MicroProcessFlow/samples
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.commons.networkgraph.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.suite.ui.commons.networkgraph.Graph/samples

This control supports both directed and undirected graphs, as well as graphs that contain cycles. It also
provides broad customization options, enabling you to separate the graph layout from its rendering and to
position individual graph elements freely, for example, when displaying geospatial data on top of a map.

Figure 350: Network Graph Example

Details

Layout

● There are three layout options available:
○ Layered layout – The LayeredLayout algorithm arranges the nodes into a layered graph.
○ Force-based layout – The ForceBasedLayout algorithm arranges the nodes into a force-based (or

force-directed) graph.
○ Free-form layout (NoopLayout) – No layout algorithm is applied, so the nodes can be placed

anywhere within the graph.
○ Custom layout – You can define your own algorithm that will be used to lay out your graph.

For details, see sap.suite.ui.commons.networkgraph.layout.
● The process of drawing the graph consists of two phases:

○ Computing the layout based on the specified layout algorithm
○ Visual rendering of the graph

The first phase is marked by the beforeLayouting event that is fired just before the layout computation
begins. The second phase starts with the afterLayouting event that is fired when the layout algorithm
has finished arranging the graph and the visual rendering begins.
Any change to nodes or other graph elements that happens after the layout has been computed may
cause invalidation of the whole graph, making it impossible to render. It may lead to an infinite loop with
graph invalidation triggering layout algorithms that trigger the event that caused the original invalidation of
the graph, and so on.

2378 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.commons.networkgraph.layout.html

To prevent unwanted invalidation, you can call the preventInvalidation method on the graph:

this._graph.attachEvent("beforeLayouting", function (oEvent) { this._graph.preventInvalidation(true);
 // Perform actions on the nodes that would normally trigger invalidation.

 // Check out the Org Chart sample for more inspiration.
 this._graph.preventInvalidation(false);
}.bind(this));

For more information, see sap.suite.ui.commons.networkgraph.Graph#preventInvalidation.

Appearance

● Grouping – You can join nodes into a group, so they are displayed closer to one another. A group can be
collapsed to hide the nodes that are included in it. Please note that grouping is available only for graphs
that use layered layout.
For details, see sap.suite.ui.commons.networkgraph.Group.

● Node Shape – You can choose between two node shapes: circular or rectangular. Depending on the node
shape, the width and height properties of the node are treated differently:
○ For rectangular nodes, only the width property is considered, while the height property is ignored.
○ For circular nodes, the height property determines the diameter of the circle, while the width

property is used as the width of the node's title and description.
For details, see sap.suite.ui.commons.networkgraph.Node.
Other Properties – In addition to shape, you can define some other properties:
○ icon – The icon to be displayed inside the node shape.
○ title – The node's title.
○ description – The node's description.
○ Element attributes – Additional attributes of the node.

● Line Customization – You can choose among several connector line styles: dashed, dotted, or solid, as
well as define where the arrow should be positioned and where it should point to.
For details, see sap.suite.ui.commons.networkgraph.LineType.

● Semantic Colors – Nodes, groups of nodes, and connector lines may use semantic colors, based on their
status. You can use any of the custom statuses defined by the statuses aggregation in the
sap.suite.ui.commons.networkgraph.Graph control or use the default statuses provided by
sap.suite.ui.commons.networkgraph.ElementStatus.
For details, see sap.suite.ui.commons.networkgraph.ElementStatus and
sap.suite.ui.commons.networkgraph.Status.

Customizing the Graph

● Arbitrary Node Positions – To be able to position the nodes freely, switch the layout algorithm to
NoopLayout.

<Graph> <layoutAlgorithm>
 <layout:NoopLayout/>
 </layoutAlgorithm>
...
</Graph>

For details, see sap.suite.ui.commons.networkgraph.layout.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2379

https://sapui5.hana.ondemand.com/#/api/sap.suite.ui.commons.networkgraph.Graph/methods/preventInvalidation
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.commons.networkgraph.Group.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.commons.networkgraph.Node.html
https://sapui5.hana.ondemand.com/#/api/sap.suite.ui.commons.networkgraph.Node/methods/setIcon
https://sapui5.hana.ondemand.com/#/api/sap.suite.ui.commons.networkgraph.ElementBase/methods/setTitle
https://sapui5.hana.ondemand.com/#/api/sap.suite.ui.commons.networkgraph.ElementBase/methods/setDescription
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.commons.networkgraph.ElementAttribute.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.commons.networkgraph.LineType.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.commons.networkgraph.Graph.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.commons.networkgraph.ElementStatus.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.commons.networkgraph.ElementStatus.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.commons.networkgraph.Status.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.commons.networkgraph.layout.html

After that you can define the positions for each of your nodes using their x and y attributes that define the
coordinates of the upper left corner of the node (or upper right corner in languages that have right-to-left
writings systems).
To redefine the positions of the lines connecting the nodes, you can use the aggregation Coordinates for
the Line control. Each coordinate contains x and y coordinates of one point. It is recommended that you
use the following methods to add coordinates to the Coordinates aggregation:
○ setSource – Sets the starting point of the line.
○ setTarget – Sets the end point of the line.
○ addBend – Adds a point between the start and the end points of the line.

These methods do not trigger invalidation.
For details, see sap.suite.ui.commons.networkgraph.Line.

● Using Events for Graph Customization – You can adjust the graph behavior through a variety of event
calls. Such event calls may suppress the default behavior of certain events. For example, if you define the
following function for a node, action buttons will no longer be displayed when the user clicks the node:

<Node press="nodePress"> ...
nodePress: function (oEvent) {
 // Prevents the rendering of default action buttons
 oEvent.preventDefault();
};

Similarly, you can suppress the following events:

Object Suppressed Event Result

Node press Action buttons will not be displayed when the user clicks
the node.

Node collapseExpand The node will not be expanded or collapsed when the user
clicks the Collapse/Expand button.

Node hover Moving the mouse over the node will have no effect on the
node appearance.

Line press Details popup will not be displayed when the user clicks
the line.

Line hover Moving the mouse over the line will have no effect on the
line appearance.

Group showDetail Details dialog will not be displayed when the user clicks
the Group Details icon.

Zooming

● The predefined zooming scale used by the NetworkGraph control supports zooming levels ranging from 5
to 500 percent of the original graph size. The zooming level is updated when the user clicks the Zoom In or
Zoom Out buttons or uses a mouse, a trackpad, or a touch screen to zoom in or out.
○ When the user clicks (Zoom In) or (Zoom Out), the graph is scaled up or down to the next zooming

level.

2380 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.commons.networkgraph.Line.html

○ When the user clicks (Zoom to Fit), the graph is scaled up or down, so all nodes and lines it includes
are visible on the screen. The optimal zooming level is selected from the predefined scale: 5%, 10%,
25%, 33%, and so on up to 500%.
If the original graph size is out of scale, taking up less than 5 percent or more than 500 percent of the
screen, clicking Zoom to Fit scales the graph up or down to the closest minimum or maximum zooming
level, 5% or 500%. For example, if the original graph takes 1 percent of the screen, when the user clicks
Zoom to Fit, the graph is scaled up to the 5% zooming level.

Process Flow

The ProcessFlow control allows you to show flows of multiple object types, for example, documents or
approvals.

Overview

Process Flow is a complex control that enables you to display documents or other items in their flow. The items
or documents are displayed as nodes in a lane containing a lane header with a donut chart. The donut chart
reflects the status of the nodes in its lane. The chevron arrows in the lane header separate the lanes from
one another. Connector lines show the process flow of the items between the nodes.

Figure 351: Process Flow Example

Details

Behavior and Interaction

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2381

● The control offers different scrolling and zooming behaviors:
○ You can move the whole flow by holding down the left mouse button as though you were navigating a

street map in a web browser.
○ To zoom in or out, you can either use the mouse wheel or choose the respective buttons if the

ProcessFlow control is used in combination with a toolbar. The zoom has a semantic effect: detailed
information is added or removed depending on the zoom level.

Both scrolling and zooming can be switched off by changing the values of the scrollable and
wheelZoomable properties.

 Note
Scrolling is only an option in containers smaller than the ProcessFlow control to be displayed. For more
information, see the sample.

● To improve user experience, clickable navigation arrows (and) are included in the header. They are
visible once there is an overflow, for example, when the complete ProcessFlow control can't be displayed
because the visible area is limited. A navigation arrow on either side of the process flow header indicates
that some part of the horizontal content is hidden, and you need to click the arrow to display it.
○ On desktop computers, use navigation arrows to move the complete process flow over one lane.
○ On mobile devices, the navigation arrows can be treated just as indicators. You can scroll through the

ProcessFlow control by swiping across your screen.

 Note
The number of lanes that are hidden is displayed next to the navigation arrows.

● You use the aggregated node type in sap.suite.ui.commons.ProcessFlowNode, to display a group of
nodes that are semantically equal or that have some properties in common. The possible values of the
type property are single (default) or aggregated.

● To provide detailed information about a connection between process flow nodes, you can use connection
labels. For example, if connections between nodes are not unique, the user can select a connection by
clicking the respective label. To use this feature, the application needs to implement the popup, the
content, and the actions required for the connection labels. You can hide or show these labels if you make
the appropriate settings for the showLabels property.For more information, see the sample in the Demo
Kit.

● The control provides various click events. You can use these events as follows:
○ Click event on the node:

○ To display a popover that has more information about a certain object type. From this quick
overview, you can navigate to the object type.

○ If no additional information needs to be displayed, you can trigger an action sheet instead of the
popover to allow the user to execute an action for the item.

○ Click event on the header:
The ProcessFlowLaneHeader provides a press event only if the ProcessFlow is in Header mode.
This happens if no nodes are defined. For more information, see the second sample on this sample
page.

● The process flow offers a complete overview of structured data in their one-to-many (1:n) relationships. To
focus on the important details in this flow, you can use the highlighted property to accentuate specific
node relationships. If the highlighted property is set to true, the aggregation in the header node is also
adapted (colors in donut charts and the lane header). For more information about highlighting , choose the
Toggle HighlightPath button in the sample in the Demo Kit.

2382 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.suite.ui.commons.sample.ProcessFlowScrollable/preview
https://sapui5.hana.ondemand.com/explored.html#/sample/sap.suite.ui.commons.sample.ProcessFlowConnectionLabels/preview
https://sapui5.hana.ondemand.com/explored.html#/sample/sap.suite.ui.commons.sample.ProcessFlow/preview
https://sapui5.hana.ondemand.com/explored.html#/sample/sap.suite.ui.commons.sample.ProcessFlow/preview
https://sapui5.hana.ondemand.com/explored.html#/sample/sap.suite.ui.commons.sample.ProcessFlowMultipleRootNodes/preview

● In the process flow, you can set the status for the following objects:
○ node: Check the available statuses in ProcessFlowNodeState. The color of the donut chart is

adjusted automatically based on the node status and cannot be overwritten.
○ connection label: Check the available statuses in ProcessFlowConnectionLabelState. You can

set the status only when using connection labels.
○ lane: Check the available statuses in ProcessFlowLaneState.

The control calculates all other states. For more information, see the API Reference.

Implementation Tips

● How to use connections and connection labels
Connections are defined using the children property of a node:

 id: "1", lane: "0", title: "Sales Order 1", titleAbbreviation: "SO 1",
children: [2, 3]

If you want to use connection labels, you define the child node as an object consisting of a nodeID and a
connectionLabel defined by the ProcessFlowConnectionLabel control:

 id: "1", lane: "0", title: "Sales Order 1", titleAbbreviation: "SO 1",
 children: [
 {
 nodeId: 2,
 connectionLabel: new sap.suite.ui.commons.ProcessFlowConnectionLabel({
 id: "myLabelId1To2",
 text: "my text",
 enabled: true,
 icon: "sap-icon://message-success",
 state:
sap.suite.ui.commons.ProcessFlowConnectionLabelState.Positive
 })
 }]

Make sure that you also set the showLabels property on the ProcessFlow control to true. Otherwise,
the labels are not visible.

● When to call the updateModel() method
When you change the model that is bound to the ProcessFlow control, you need to call the
updateModel() method, because changing the model affects the nodes and lanes in the process flow, so
it must be recalculated. If you change only the content of the nodes, calling the updateNodesOnly()
method is sufficient.

● Which binding mode to use
When using an OData model, make sure that you set the binding mode to One-Way Data Binding as the
default because the ProcessFlow control does not support Two-Way Data Binding. If you cannot set the
binding mode of your OData model to One-Way Data Binding, you can bind a JSON model to the
ProcessFlow filled with data from the OData model instead. For more information, see the API Reference
Documentation in the Demo Kit and Setting the Default Binding Mode [page 999].

Size and Responsiveness

● The ProcessFlow control provides four zoom levels. It is responsive to the size of the container you put it
in. Depending on the container size at the time of the initial load, the control chooses one of the four zoom
levels. After loading, you can change the zoom levels as needed.

● In some cases, the Process Flow includes too much white space. You can reduce the white space by using
the optimizeLayout() method. When the optimization mode is switched on (by calling the method),

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2383

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.commons.ProcessFlow.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.BindingMode.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.model.BindingMode.html

layout optimization is triggered with every rendering or rerendering of the ProcessFlow control, for
example, when zooming in or out.

 Note
The layout optimization process runs in parallel with other standard processes required for this control.
This may lead to performance issues that can be avoided by testing your app before you use it in
production.

API Reference and Samples

For more information about the ProcessFlow control, see the API Reference.

Status Indicator

The StatusIndicator control reflects a percentage value between 0 and 100.

For more information about this control, see the API Reference and the samples in the Demo Kit.

Overview

The status indicator control can be used to display a percentage value in the form of a fillable shape or a group
of shapes, translating plain numbers into meaningful visuals that convey the status of the items they represent.

Each status indicator may consist of a single group or multiple groups of shapes that display the value. The
filling of the shapes can be proportional to the percentage value of the status indicator, or it can be based on
thresholds that are specified using the discreteThresholds aggregation.

You can fully customize the control by setting fill direction and fill color and by picking a shape that matches the
value measured. In addition to standard shapes, you can define your own custom SVG shapes. This allows you
to create a powerful connection between your data and business by using symbols from a specific domain—for
example, a half-filled truck shape may represent a real delivery truck filled up to 50% of its capacity.

The status indicator is best used in tiles, tables, and object pages.

Figure 352: Status Indicator Example

Details

Element Structure

2384 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.commons.ProcessFlow.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.commons.statusindicator.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.suite.ui.commons.StatusIndicator/samples

● A status indicator must contain at least one group that includes at least one shape.
○ Groups can be defined using ShapeGroup elements joined in the groups aggregation.
○ Shapes are defined using Shape elements joined in the shapes aggregation.

Supported Shapes

● You can use any of the predefined shapes or create your own custom shapes:
○ Simple shapes that include circular shapes, rectangular shapes, and shapes defined as SVG paths.
○ Custom shapes that consist of an SVG definition, height, width, and other parameters defining the

shape. The filling of a custom shape is defined by the FillingOption control.
For more information about simple shapes, see
sap.suite.ui.commons.statusindicator.SimpleShape.
For more information about custom shapes, see
sap.suite.ui.commons.statusindicator.CustomShape.

Shape Filling

● You can choose among the following filling types:
○ Linear – The shape is filled with a linear gradient.
○ Radial – The shape is filled with a radial gradient.
○ None – No filling is applied.

For more information, see sap.suite.ui.commons.statusindicator.FillingType.
● The direction of the filling animation can be:

○ Up – The shape is filled from bottom upwards.
○ Down – The shape is filled from top to bottom.
○ Left – The shape is filled from right to left.
○ Right – The shape is filled from left to right.

For more information, see sap.suite.ui.commons.statusindicator.FillingDirectionType.
● To define how the filling color should change based on the status indicator value, you can use the

PropertyThresholds aggregation. For each threshold, you can define a filling color that will be applied
until the status indicator value reaches this threshold.
For more information, see sap.suite.ui.commons.statusindicator.PropertyThreshold.

Value Distribution

● By default, the filling of the status indicator shapes is proportional to the status indicator value. To adjust
the filling, you can specify discrete thresholds using the discreteThresholds aggregation. When
discrete thresholds are used, the displayed value may not exactly match the actual value of the status
indicator.
For more information, see sap.suite.ui.commons.statusindicator.DiscreteThreshold.

● When multiple groups of shapes are used, the percentage value is distributed in the following way: shapes
in the first group in the shapes aggregation are filled first, shapes in the second group second, and so on.

T Account

The T account control displays debit and credit entries on a general ledger account.

The TAccount control can be used to display debit and credit entries on a general ledger account, visualizing
the flow of transactions through the accounts where they are stored.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2385

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.commons.statusindicator.ShapeGroup.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.commons.statusindicator.StatusIndicator.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.commons.statusindicator.Shape.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.commons.statusindicator.ShapeGroup.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.commons.statusindicator.Circle.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.commons.statusindicator.Rectangle.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.commons.statusindicator.Path.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.commons.statusindicator.FillingOption.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.commons.statusindicator.SimpleShape.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.commons.statusindicator.CustomShape.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.commons.statusindicator.FillingType.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.commons.statusindicator.FillingDirectionType.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.commons.statusindicator.StatusIndicator.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.commons.statusindicator.PropertyThreshold.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.commons.statusindicator.StatusIndicator.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.commons.statusindicator.DiscreteThreshold.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.commons.statusindicator.ShapeGroup.html

You can group T accounts by type, such as balance sheet T accounts and income statement T accounts,
displaying multiple T accounts together. The T account group provides total balances for all T accounts
included in this group. It also highlights matching debit and credit entries within the same group when an entry
is clicked or tapped. In addition, you can display all T accounts and T account groups on a T account panel that
provides a toolbar with total balances for all T account and T account groups included in the panel.

For more information about this control, see the API Reference and the samples in the Demo Kit.

Overview

In double-entry bookkeeping, journal entries are transferred to the general ledger by posting their debit and
credit amounts on specific ledger accounts, which are often referred to as T accounts. A ledger account (or T
account) is usually displayed in a format that resembles the letter T: with the account name above the T, debit
entries to the left of the T, and credit entries to the right of the T.

T accounts are usually clustered together, so that accountants can analyze how individual line items from
different journal entries affect the ledger balances.

Details

Layout and Grouping

2386 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.commons.taccount.TAccount.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.suite.ui.commons.taccount.TAccount/samples

● The T account control provides three subcontrols that can be used to create different layout combinations:
○ TAccount – A basic T account control with debit and credit entries arranged on either side of the T

shape.
○ TAccountGroup – A group that includes multiple TAccount controls and displays them side by side.

A T account group can be expanded or collapsed. It also provides total balance for the accounts
included in the group.

○ TAccountPanel – A panel that combines multiple TAccountGroup and TAccount controls,
providing total balance for all accounts and groups included in this panel. It also enables you to switch
between T account view and table view and adjust display options.

Customizing

● You can add color indicators for debit and credit entries using the color property of the TAccountItem
control. This can be an arbitrary color, but for consistency with other SAP Fiori apps, it is recommended
that you use semantic colors defined by the sap.m.ColorPalette or sap.ui.unified.ColorPicker on the app
level.

● You can define additional properties for debit and credit entries using TAccountItemProperty elements
that can be added to the properties aggregation of the TAccountItem control. For details, see the API
Reference.

Limitations

● It is recommended that all entries displayed in a single T account use the same currency.
If debit and credit entries are in different currencies, the TAccount control does not convert the values to
the currency specified in its measureOfUnit property. In such cases, the overall account balance is not
displayed.

● Similarly, if T accounts in a T account group are in different currencies, the overall balance of the group
cannot be calculated and is not displayed.

Timeline

The Timeline control displays a list of events, changes, or posts in chronological order.

For more information about this control, see the API Reference and the samples in the Demo Kit.

Overview

The Timeline control shows information related to an object in chronological or reverse chronological order.
This information may include entries, changes, or events related to an object. Every change, event, or entry is
represented by a post on the timeline axis. The posts can be either generated by the system or added manually.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2387

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.commons.taccount.TAccount.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.commons.taccount.TAccountGroup.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.commons.taccount.TAccountPanel.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.ColorPalette.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.unified.ColorPicker.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.commons.taccount.TAccountItemProperty.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.commons.taccount.TAccountItemProperty.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.commons.Timeline.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.suite.ui.commons.Timeline/samples

Figure 353: Timeline Example

Even though manual data entry is supported, it is recommended that you use data binding to pull data into the
timeline.

The timeline does not have a fixed location on the UI. Where you place it depends on your use case. For
example:

● If the timeline is closely related to the content and needs to be seen in parallel, you can use the dynamic
side content floorplan. For more information, see the API Reference:
sap.ui.layout.DynamicSideContent.

● If the timeline contains only secondary information, or needs to be accessed occasionally, you can embed
it in a tab. For more information, see the API Reference: sap.m.IconTabBar.

● If you are using the object page floorplan, you can use the horizontal layout to integrate the timeline. For
more information, see the API Reference: sap.uxap.ObjectPageLayout. See also Details Layout
and Appearance below.

These are only some of the ways you can position the timeline on a page.

Details

Data Binding

● There are two types of data binding that you can use to pull data into timeline posts:
○ JSON binding

2388 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.layout.DynamicSideContent.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.layout.DynamicSideContent.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.IconTabBar.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.uxap.ObjectPageLayout.html

○ OData binding
● If JSON data binding is used, it is recommended that you add a function that converts all date strings into

dates. For example:

function convertData(oEvent) { var oModel = oEvent.getSource();
 if (!oEvent.getParameters().success) {
 return;
 }
 oModel.getData().Employees.forEach(function (oEmployee) {
 oEmployee.HireDate =
sap.suite.ui.commons.utilDateUtils.parseDate(oEmployee.HireDate);
 });
 oModel.updateBindings(true);
}

If strings are not converted into dates, sorting of the timeline posts may fail.
● If your timeline provides filtering, it is important that you enable filtering directly on the binding level by

setting the enableModelFilter property to true. This allows the filtering to be performed before any
data is pulled into the timeline. If the enableModelFilter property is set to false, the timeline loads all
data before performing the filtering, which may lead to performance issues.
If you use filtering over a large amount of data (more than 100 timeline posts), you may need to increase
the data model's size limit. The default limit is 100, which means that filtering is performed over the first
100 items in the data set. To increase the data model's size limit, set the model’s sizeLimit property to a
higher number. For details, see sap.ui.model.Model.html#setSizeLimit.

Initialization

The way you initialize a timeline depends on whether you want to use JSON model binding, OData model
binding, or no binding at all.

● JSON Data Binding

// File data.json {
 "Employees": [
 {
 "Name": "Laurent Dubois",
 "JobTitle": "Accounts Payable Manager",
 "JobResponsibilities": "Plans, organizes and manages the
operations and activities of an accounts payables.\nSupervises employees and
monitors activities.\nFinal check of accounts payable payments and sign off.
\nReporting to the head of finance.\n\n\"I am a diligent person. I put great
attention to detail.\"",
 "HireDate": "Date(1371020400000)"
 }
]
}

// controller.js // a function that converts date strings into dates
function convertData(oEvent) {
 var oModel = oEvent.getSource();
 if (!oEvent.getParameters().success) {
 return;
 }
 oModel.getData().Employees.forEach(function (oEmployee) {
 oEmployee.HireDate =
sap.suite.ui.commons.utilDateUtils.parseDate(oEmployee.HireDate);
 });
 oModel.updateBindings(true);

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2389

https://sapui5.hana.ondemand.com/#/api/sap.ui.model.Model/methods/setSizeLimit

}
// in onInit function
var oModel = new JSONModel("data.json");
oModel.attachRequestCompleted(convertData);
var oItem = new TimelineItem({
 dateTime: "{HireDate}",
 title: "{JobTitle}",
 text: "{JobResponsibilities}",
 userName: "{Name}"
});
var oTimeline = new Timeline({
 enableDoubleSided: true
});
oTimeline.bindAggregation("content", {
 path: "/Employees",
 template: oItem
}); oTimeline.setModel(oModel);

● OData Model Binding

var oModel = new ODataModel("http://services.odata.org/V3/Northwind/
Northwind.svc/", true); var oItem = new TimelineItem({
 dateTime: "{HireDate}",
 title: "{Title}",
 text: "{Notes}",
 userName: "{FirstName} {LastName}"
});
var oTimeline = new Timeline({
 enableDoubleSided: true
});
oTimeline.bindAggregation("content", {
 path: "/Employees",
 template: oItem
}); oTimeline.setModel(oModel);

● No Data Binding

var oTimeline = new Timeline("myNiceTimeline", { content: [
 new TimelineItem({
 dateTime: new Date(2016, 1, 1),
 icon: "sap-icon://accept",
 title: "Title 1",
 text: "Some comment"
 }),
 new TimelineItem({
 dateTime: new Date(2015, 2, 2),
 icon: "sap-icon://decline",
 title: "Title 2",
 text: "Some comment"
 })
] });

Layout and Appearance

● Basic layout – A timeline consists of a chronological axis, timeline posts, and an optional header. The
header may include a search field, as well as sorting, filtering, and grouping options.
You can set the timeline axis to be displayed vertically or horizontally, with the posts arranged on one or
both sides of the axis. The posts can be displayed in chronological or reverse chronological order.

2390 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.suite.ui.commons.Timeline/methods/setShowHeaderBar
https://sapui5.hana.ondemand.com/#/api/sap.suite.ui.commons.Timeline/methods/setShowSearch
https://sapui5.hana.ondemand.com/#/api/sap.suite.ui.commons.Timeline/methods/setSort
https://sapui5.hana.ondemand.com/#/api/sap.suite.ui.commons.Timeline/methods/setShowItemFilter
https://sapui5.hana.ondemand.com/#/api/sap.suite.ui.commons.Timeline/methods/setGroupByType
https://sapui5.hana.ondemand.com/#/api/sap.suite.ui.commons.Timeline/methods/setAxisOrientation
https://sapui5.hana.ondemand.com/#/api/sap.suite.ui.commons.Timeline/methods/setEnableDoubleSided
https://sapui5.hana.ondemand.com/#/api/sap.suite.ui.commons.Timeline/methods/setSortOldestFirst

● Scroll bar – It is not recommended that you use the timeline control inside a scroll container. Please use
the timeline’s enableScroll property instead. When the timeline’s enableScroll property is set to
true, the timeline has its own scroll bar.
If you still want to use your timeline inside a scroll container, make sure that your timeline meets the
following requirements:
○ The timeline’s growingThreshold property is set to 0.
○ The lazyLoading property is set to false.
○ The forceGrowing property is set to false.

● Node icons – Timeline posts can have optional node icons displayed on the timeline axis itself. To define
the icons used for posts, use the icon property of the TimelineItem object. If you want the icons to use
semantic colors that indicate the status conveyed by the post, use the status property of the
TimelineItem object.
If you don’t want to display any icons on the timeline axis itself, set the timeline’s showIcons property to
false.

Responsiveness

● The timeline control works with multiple screen sizes. If your timeline uses double-sided layout (the
enabledDoubleSided property is set to true), the posts are displayed on one side of the timeline axis on
smaller screens. The side depends on the alignment property settings.

Integration with Other Controls

● You can embed other SAPUI5 controls into timeline posts. However, please note that not all properties that
work for ordinary posts can be applied to posts with embedded controls. For example, the textHeight
property cannot be applied correctly to posts with embedded controls.

Related Information

Data Binding [page 815]
API Reference: sap.m.ScrollContainer

sap.suite.ui.microchart

This library contains controls to visualize charts and diagrams that are lightweight and easy to use.

 Note
The following sections only provide additional information for some of the controls. For a complete list of all
controls and their documentation, see the API Reference and the Samples.

MicroCharts give a quick overview of customer-defined key figures like KPIs as graphical items and display
the current status of defined key figures or thresholds.

The different values can be visualized in the charts by a semantically-colored representation and can be
defined by the customer to correspond to the significance of the figures. For example, you can display critical

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2391

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.ScrollContainer.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.ScrollContainer.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.m.ScrollContainer.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.html
https://sapui5.hana.ondemand.com/explored.html

statuses in red or you can display thresholds in specific colors to represent the significant values of your
business data.

MicroCharts have a responsive design and can adapt their appearance and functions to the screen size of the
devices. In the responsive mode, if MicroCharts are included in further controls (for example generic tiles or
flex boxes), the control adapts to the available space provided by the parent control.

 Note
You can include a MicroChart control into a GenericTile control in the responsive mode only. However,
if you define a width, a height, and size properties, this data is overwritten and the responsive mode is used.

Prerequisites

With the new sap.suite.ui.microchart library, the available MicroChart controls of the
sap.suite.ui.commons library have been moved to their own library with SAPUI5 version 1.34.

● If you have already included a MicroChart control before SAPUI5 version 1.34, a wrapper ensures that the
embedding still works for each control. To benefit from all enhancements or new features for the
MicroChart controls as of SAPUI5 1.34, you need to switch to the controls to the new library. With SAPUI5
1.34, all MicroChart controls in the sap.suite.ui.commons library are marked as deprecated. The
respective controls are as follows:
○ AreaMicroChart
○ BulletMicroChart
○ ColumnMicroChart
○ ComparisonMicroChart
○ DeltaMicroChart
○ HarveyBallMicroChart

2392 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Note
During the move, the following controls and their elements have been renamed:

○ MicroAreaChart to AreaMicroChart
○ ComparisonChart to ComparisonMicroChart
○ BulletChart to BulletMicroChart

Related Information

Browser and Platform Support [page 20]
Supported Library Combinations [page 26]
API Reference: sap.suite.ui.microchart

Radial Micro Chart

Displays a ring chart that represents a percentage value.

Overview

The RadialMicroChart control provides a ring chart that displays the percentage value in the center of the
chart. To indicate the significance of the displayed percentage value, you can define the status as Good,
Neutral, Critical, or Error.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2393

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.microchart.html

Details

The percentage value in the RadialMicroChart control can be defined by:

● Inserting the percentage property directly.
● Setting the total and the fraction property and calculating the percentage value automatically.

 Note
If the total property is set to 0, only a blank circle gets rendered because no valid value is returned. The
error is described in the error log.

Colors

The color of the circle is defined by setting the valueColor property to one of the following types:

● sap.m.ValueColor: The possible value color settings are listed and show the status Good, Neutral,
Critical, or Error.

● sap.ui.core.CSSColor: All CSS color values are allowed.

Sizes

The RadialMicroChart control is rendered in a responsive way. Thus, the size of the control adapts
automatically to the size of the surrounding container and does not have a defined width or height.
Alternatively, you can use the size property with the control, so that the Radial Micro Chart can also be
rendered in fixed sizes that are available in sap.m.Size. There, you can choose between the sizes S, M, L, Auto
and Responsive.

API Reference/Samples

For more information about the RadialMicroChart control, see the API Reference in the Demo Kit and the
sample in the Demo Kit.

Line Micro Chart

Displays a series of values as segmented lines along a threshold line.

Overview

The Line Micro Chart control displays a series of values as segmented lines along a threshold line.

2394 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.microchart.RadialMicroChart.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.suite.ui.microchart.RadialMicroChart/samples

Details

You use this control primarily for embedded analytics applications. It is designed to display a set of ordered
points. These points are connected by lines that show a data progression for a specific data range. If you want
to add further details, such as decisive values or dimensions to this chart, you can add up to four labels.

Usage

With the line micro chart, you can visualize the diagram curve and show trends. If you want to stress values that
are above or below a certain threshold, you can use data points.

By default, the line of the chart is blue. However, you can use different colors, such as semantic colors for the
line, to mark positive and negative values.

You can also choose to use focus points instead of data points. Data points are useful if you want to
concentrate on one or two special values, for example, the first and the last data point on the chart. For focus
points, you can use any CSS color, but we recommend using semantic colors.

Properties

Color

With the sap.m.ValueCSSColor type, the Line Micro Chart can use regular points or emphasized points, with or
without semantic colors. You can find more information in the API Reference in the Demo Kit.

Data Points

The showPoints property controls whether the points are displayed. The default value is false, which means
that the points are not displayed and only a continuous line is visible. You can use this configuration to show
trends and to visualize the data progression. If emphasized points are used, the chart's color and showPoints
properties do not have an effect. These properties can be used for regular points only. Do not use these two
data point types together in one chart.

These types of data points are available:

● LineMicroChartPoint for the x and y coordinates.

● LineMicroChartEmphasizedPoint consists of the color and show properties and x and y properties.

Scaling

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2395

https://sapui5.hana.ondemand.com/#/api/sap.m.ValueCSSColor

The chart has a built-in automatic scale that is applied based on existing values, so that all values are visible.
You can also set a manual scale, but only a part of the chart might be visible. You can set a manual scale by
providing values for the following properties:

● minXValue
● maxXValue
● minYValue
● maxYValue

API Reference/Sample

For more information about the LineMicroChart control, see the API Reference in the Demo Kit and the
sample in the Demo Kit.

Stacked Bar Micro Chart

The control shows a progress chart that displays the overall progress and a summary of the items.

Various bars can have different value colors, for example for different statuses such as accepted, rejected, and
open items. There is no limit to the number of bars that the StackedBarMicroChart control can contain.

The sap.suite.ui.microchart.StackedBarMicroChart control is designed to display key figures or
numbers inside a set of bars defined by different lengths and colors. It can be displayed standalone or in a
table.

Details

Bar values

2396 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.microchart.LineMicroChart.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.suite..ui.microchart.LineMicroChart/samples

The progress status of each item can be defined as an absolute value or as a percentage (value property).
Each stacked bar is part of the chart that is defined as 100% (if you are working with percentages) or as an
absolute value (if you are working with a maximum value). If you do not set a maximum value (maxValue
property), the sum of all bar values is considered as the maximum value and the displayed value is set as a
percentage for each item.

The number of decimal places for percentage values is, by default, 1. This can be changed by the application
using the precision property. If the percentage values are used as labels, the precision property affects
the length of the labels. Take this into account when the length of the bar is limited or there is not enough space
to display the whole label.

Bar colors

By default, the given value is displayed as a label inside the bar, but you can overwrite it in your application
using the displayValue property. You can also overwrite the default color of the bar (valueColor property)
using predefined less parameters for colors, predefined semantic parameters (for example, Error,
Critical, Good, Neutral) or even hex values, such as #fafafa. If there is no color, the micro chart
automatically chooses one of the chart colors (sapUiChart1-11).

Text and background colors

The text color adapts automatically depending on the corresponding bar background color. If there is a dark
background, a light text color is used and if there is a light background, a dark text color is used.

Chart size

You can define the chart with the size property. If you use a fixed size, you can select predefined sizes (XS, S,
M, L). If you use a responsive design, you can use the responsive property value. The chart size is then
adjusted based on the surrounding container size, for example in a sap.m.FlexBox control. The maximum
height of the chart is 1 rem. If there is not enough space to show the labels, they are not displayed. If there is
not enough space to show the micro chart, it is not displayed either.

Integration and use

The sap.suite.ui.microchart.StackedBarMicroChart control is a chart control and aggregates the
bars of type sap.suite.ui.microchart.StackedBarMicroChartBar. One chart can contain one or more
bars. You can call it up by clicking the mouse button or by using the Space or Enter key.

Tooltip support

The chart can have a tooltip with predefined displayValue property values or calculated percent values and
it can be set on bar level and on chart level. Each value of the chart is displayed in the tooltip in a separate line.
When the bar has a semantic color, the text (for example Good, Critical) will be added behind the displayed
value. In some cases the text in the tooltip has another name than the semantic color. The tooltip can be
suppressed by setting its value to an empty string.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2397

API Reference/Sample

For more information about the StackedBarMicroChart control, see the API Reference and the samples in
the Demo Kit.

sap.tnt

This library contains controls that provide the basic structure of a tool app.

The goal of these controls is to ensure consistency of the user interfaces in the tools area and the
implementation of a common design language of applications and tools on the basis of SAP Fiori.

Figure 354: Basic Page Structure of a Tool

 Note
This set of controls described in this article has been designed exclusively for the SAP tool landscape for
the SAP Cloud Platform.

Do not use these controls in regular SAP Fiori applications. This highly specialized set of controls targets
the specific needs of the tools user group (typically developers and administrators).

For more information, check out the concept guidelines at https://experience.sap.com/fiori-design-web/
overview/ .

2398 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.suite.ui.microchart.StackedBarMicroChart.html
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Foverview%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori-design-web%2Foverview%2F

Related Information

Supported Library Combinations [page 26]
API Reference: sap.tnt

sap.ui.codeeditor

This library contains the CodeEditor control.

 Note
The following sections only provide additional information for some of the controls. For a complete list of all
controls and their documentation, see the API Reference and the Samples.

Code Editor

The sap.ui.codeeditor.CodeEditor offers functionality to display and edit source code artifacts with
syntax highlighting and code completion capabilities for various programming languages.

Overview

The sap.ui.codeeditor.CodeEditor provides simple SAPUI5 wrapper control that exposes a subset of
API and functionality provided by the third-party ACE (Ajax.org Cloud9 Editor) implementation. You can find
more information about ACE on the website https://ace.c9.io/ .

 Restriction
● If you use API calls to the native API of ACE, we cannot guarantee backwards compatibility after an

upgrade to higher ACE library versions.
● Accessibility features like high-contrast themes and keyboard handling are not fully available as they

are for the rest of the SAPUI5 controls.
● CodeEditor doesn't work within IconTabBar on Internet Explorer. However, there is a way to achieve

the same functionality. For more information, see the Sample.

Details

Autocompletion
The sap.ui.codeeditor.CodeEditor control is enabled with two modes of autocompletion:

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2399

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.tnt.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.html
https://sapui5.hana.ondemand.com/explored.html
http://help.sap.com/disclaimer?site=https%3A%2F%2Face.c9.io%2F
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.ui.codeeditor.CodeEditor/samples

● Default autocompletion
The default autocompletion options of the underlying ACE editor enableBasicAutocompletion,
enableSnippets, enableLiveAutocompletion are always enabled.

● Custom autocompletion
The users of CodeEditor can specify their own autocompletion handling. To do this, the following API
method is provided: CodeEditor.prototype.addCustomCompleter(oCustomCompleter).
There are several characteristics you should bear in mind:
○ oCustomCompleter must contain implementation of a custom completer method called

getCompletions.
○ The method accepts two parameters: fnCallback and context object. Callback should be called,

as in the example, with the suggestions that you want to appear in the editor. The format is an array of
objects. Each object should contain the following properties: name, value, score and meta.

○ The context object contains oPos and sPrefix as provided by the ACE editor.

Here is an example of custom autocompletion:

 Sample Code

codeEditor.addCustomCompleter({ getCompletions: function(callback, context) {
 // callback is provided to us by ACE so we can execute it as shown
 // below in order to display suggestions to the user
 // ideally, the array argument, provided to the following method
call
 // will be dynamically generated based on the content of the context
 // object
 // let's assume the context contains an sPrefix equal to 'read',
which
 // means the cursor in ACE is at the end of a 'read' word
 // by executing the following call, we can show a list of
suggestions
 // such as: readFile, readStream, readResponse
 callback(null, [{
 name: "foo",
 value: "foo",
 // name is not displayed on the screen
 name: "readFile",
 // value is displayed on the screen
 value: "readFile()",
 // score determines which suggestion goes first
 score: "1",
 meta: "rhyme"
 // meta is short info displayed on the right of
value meta: "function"
 }, {
 name: "bar",
 value: "bar",
 score: "1",
 meta: "rhyme"
 // name is not displayed on the screen
 name: "readStream",
 // value is displayed on the screen
 value: "readStream(input)",
 // score determines which suggestion goes first
 score: "3",
 // meta is short info displayed on the right of value
 meta: "params: input"
 }, {
 name: "baz",
 value: "baz",
 score: "1",
 meta: "rhyme"

2400 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 // name is not displayed on the screen
 name: "readStream",
 // value is displayed on the screen
 value: "readStream(input, encoding)",
 // score determines which suggestion goes first
 score: "2",
 // meta is short info displayed on the right of value
 meta: "params: input, encoding"
 }])

sap.ui.comp

This library contains composite controls.

 Note
The following sections only provide additional information for some of the controls. For a complete list of all
controls and their documentation, see the API Reference and the Samples.

Related Information

Supported Library Combinations [page 26]
Browser and Platform Support [page 20]
API Reference: sap.ui.comp

Filter Bar

The sap.ui.comp.filterbar.FilterBar control is used to provide a user-friendly interface for queries.

The frequently asked questions section below aims at answering some basic questions that you might have
when using this control.

For more information about this control, see the API Reference and the samples.

Overview

The FilterBar control has been implemented as a toolbar with a collapsible filter area. Whereas the toolbar is
always visible, the filter area can be hidden to reduce the space required.

 Note
This applies to desktop use. On tablets, the filter area is always collapsed but can be expanded by the user.
On phones, the filter area is not displayed at all. You can access the filters through the Filters dialog.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2401

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.html
https://sapui5.hana.ondemand.com/explored.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.comp.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.comp.filterbar.FilterBar.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.ui.comp.filterbar.FilterBar/samples

The toolbar includes the VariantManagement control and contains the following buttons:

● Hide Filter Bar /Show Filter Bar
Hides or displays the filter area.

 Note
This function is available for desktop use only.

● Filters
Lists the filters available and, if selected, displays the filter dialog.

● Go
Executes the query.
A Search event is raised, and the consuming control must respond to it. The showGoButton property is
set to True by default and determines whether the button is visible.

 Note
You can also deactivate the toolbar using the useToolbar=false property setting. In this case the filter
bar buttons are rendered in the filter area right behind the filters; on phones, right before the filters. The
Filters dialog is then called Adapt Filters dialog.

 Note
The FilterBar control can be used on its own. However, we strongly recommend to use it in combination
with the SmartFilterBar control.

Details

FilterItem and FilterGroupItem
Filters are similar to query parameters. A filter is represented either by a FilterItem element or its
specialization, the FilterGroupItem element. They are populated via the FilterItems or
FilterGroupItems aggregations. The main difference is that the FilterGroupItem has the group
attribute. The FilterItem is internally processed as a FilterGroupItem that belongs to the Basic group.

The embedding component of the FilterBar control determines if a filter is mandatory and visible, defines its
label, and whether the filter is visible in the filter area.

Filters Dialog
The Filters dialog provides all the functions that are available with the FilterBar control. You can define which
filter is visible in the filter bar and whether a filter is shown in the current view at all. You can also clear and
restore values by selecting Clear and Restore and trigger the query execution.

 Note
Some of the buttons are hidden and must be enabled first.

The information in this dialog is row-based. The first element is the VariantManagement control, followed by
the filters. The filters are organized in groups, each starting with a group title. For each filter, you can select the
Add to Filter Bar checkbox to make the filter visible in the filter bar.

2402 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Note
This function is available for desktop use only.

The filters of the Basic group are always included in the current view. All other group filters are initially not
assigned to the current view. You can assign filters other than the ones from the basic filter group by selecting
the following for a specific group:

● More Filters
Shows all filters of the relevant group that have not been assigned yet.

● Change Filters
Displayed if all filters of the relevant group have already been assigned.

This takes you to the Select Filters dialog where you can define which filters are included in the current view.
This dialog displays all the filters of a group.

 Note
The Select Filters dialog is available on its own and can be used in other scenarios, for example, in the value
help dialog.

Once filters have been included in the current view, they can also be added to the filter bar. A filter can only be
removed from the current view if it is not visible in the filter bar.

Mandatory filters can only be removed from the filter bar if they have a value. As long as a mandatory filter
does not have a value, it will be treated as added to the filter bar.

The buttons in the dialog offer the following functions:

● Save
Represents the Save function for the VariantManagement control on the user interface.
It either saves the current view or provides the Save dialog for view management if a Save As function is
required.

● Clear
Clears all filters by raising the Clear event.
The showClearButton property is set to False by default and determines whether the button is visible.

● Restore
Reverts all changes of the current view by raising the Reset event and applies the current view again.
The showRestoreButton property is set to True by default and determines whether the button is visible.

● Go
Executes the query.
The function of the button is the same as for the one in the filter bar. However, here the button is always
visible.

● Cancel
Reverts all changes made by the user since the dialog was opened and closes the dialog.

Integration with Value Help Dialog

The filter bar is also used in the Value Help dialog scenarios. The filter bar property advancedMode must be set
to true to enable this function.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2403

The embedding component has to provide a search field using the FilterItems aggregation and an advanced
search using the FilterGroupItems aggregation. For the search, the Search event is raised.

Integration with Smart Variant Management

A view represents a set of filters. Views are handled and represented on the user interface by the
VariantManagement control that is included in the toolbar of the FilterBar control. Views are stored in a
backend system and also retrieved from there.

For views, the following is available:

● Shell service for personalization
● SAPUI5 flexibility

They can be accessed using the SmartVariantManagement or SmartVariantManagementUI2 control.

For more information about the shell services, see the API Reference in the Demo Kit. For more information
about SAPUI5 flexibility, see SAPUI5 Flexibility: Adapting UIs Made Easy [page 1152].

The consuming control that is using the SmartVariantManagement control has to provide the following
dedicated methods:

● applyVariant (oVariantContent)
● var oVariantContent = fetchVariant ()

The fetchVariant has to return a JSON object. This is the information that is stored along with some
administrative information, such as the name of the view and the ID. Once the view has been retrieved from the
backend system and transferred to the consuming control, the applyVariant is executed. During execution,
the consuming control must know the format of oVariantContent, since the control must also provide the
method and react on it.

The following table shows which controls are used by the filter bar controls to handle views:

Table 116: Controls for View Management Integration

Control Uses

FilterBar SmartVariantManagementUI2

SmartFilterBar SmartVariantManagement

Shell Service for Personalization
The shell service for personalization is handled internally by the FilterBar control. The basic view handling is
implemented by the SmartVariantManagementUI2 control. It extends the VariantManagement control.
The shell service for personalization only supports end user personalization.

The consuming control of the FilterBar has to provide two methods, one for fetching the data that must be
stored as the content of the view, and one for applying this data, if the view is set. Both methods have to be
registered using the corresponding methods of the FilterBar control:

● registerApplyData (fApplyData) – interface: fApplyData (oVariantContent)
● registerFetchData (fFetchData) – interface: oVariantContent = fFetchData ()

2404 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ushell.services.Personalization.html

A persistence key setPersistencyKey (sKey) must be provided as well. This key identifies the storage area
and saves and retrieves the views currently used.

To trigger the retrieval of the views, the consuming control must register to the Initialise event of the
FilterBar and call the fireInitialise() method in the FilterBar control.

 Note
The retrieval of the initial views is done asynchronously. If the retrieval has been completed, the
SmartVariantManagementUI2 control will be populated with the view information, and the event handler
for the Initialise event will be called.

SAPUI5 Flexibility
SAPUI5 flexibility is handled internally by the SmartFilterBar control. The basic view handling is
implemented by the SmartVariantManagement control. It extends the VariantManagement control.
SAPUI5 flexibility features support end user personalization and also allow you to create and store views in the
VENDOR layer of the layered repository.

 Note
We recommend that you always use SAPUI5 flexibility rather than the shell service.

 Note
You can also hide VariantManagement if no persistencyKey is provided. Also, you can separate the
VariantManagement control from the FilterBar control by using the page variant of the
SmartVariantManagement control.

FAQ

How can I use SAPUI5 flexibility in the FilterBar control?
In general, the FilterBar control supports the shell service for personalization. The following steps describe
how to enable the FilterBar control to use the SAPUI5 flexibility features provided the FilterBar is already
used and the consuming control supports the shell service via the FilterBar control. If this is not the case,
make sure the shell service is used as described above before you start.

After that, here is what you need to do:

1. Extend the FilterBar to create a new FilterBar control.

 sap.ui.comp.filterbar.FilterBar.extend(“my.ui5flex.FilterBar”) {..}

2. Overwrite the internal _initializeVariantManagement function of the FilterBar control.

 my.ui5flex.FilterBar.prototype._initializeVariantManagement = function() {
 if (this._oSmartVM && this.getPersistencyKey()) {
 var oPersInfo = new sap.ui.comp.smartvariants.PersonalizableInfo({
 type: "filterBar",
 keyName: "persistencyKey"
 });
 oPersInfo.addControl(this);

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2405

this._oSmartVM.addPersonalizableControl(oPersInfo);

sap.ui.comp.filterbar.FilterBar.prototype._initializeVariantManagement.apply(t
his, arguments);
 } else {
 this.fireInitialise();
 }
 };

 Note
Here, the _initializeVariantManagement function has to be called instead of the
fireInitialise() method, as mentioned before. The main purpose of this function is to register the
extended FilterBar control to the VariantManagement control. Once the VariantManagement
control has been initialized, the FilterBar control triggers the fireInitialise() method call
internally.

3. Overwrite the internal _createVariantManagement function of the FilterBar control.

 my.ui5flex.FilterBar.prototype._createVariantManagement = function() {
 this._oSmartVM = new
sap.ui.comp.smartvariants.SmartVariantManagement({
 showExecuteOnSelection: true,
 showShare: true
 });
 return this._oSmartVM;
};

Further Communication between FilterBar, SmartFilterBar, and Consuming
Control

The following is also valid for the SmartFilterBar control: Before a view is saved, the FilterBar control
triggers the beforeVariantSave event. This allows the consuming control to prepare for the fetchData call,
if required. Right after this event is raised, the FilterBar control calls the method provided by the
registerFetchData method. If you select a view from the VariantManagement control or the
SmartVariantManagement respectively after the FilterBar has called the method provided by the
registerApplyData method, the afterVariantLoad event is raised.

 Note
The afterVariantLoad event is also raised internally when you select Cancel or Restore in the Filters
dialog of the filter bar.

Related Information

Smart Filter Bar [page 2413]

Smart Variant Management [page 2457]

2406 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Smart Chart

The sap.ui.comp.smartchart.SmartChart control can be used to create complex diagrams.

The frequently asked questions section below aims at answering some basic questions that you might have
when using this control.

 Note
The code samples in this section reflect examples of possible use cases and might not always be suitable
for your purposes. Therefore, we recommend that you do not copy and use them directly.

For more information about this control, see the API Reference and the samples.

For more information about annotations for this control, see the API Reference.

Overview

You can select a chart type, such as a pie chart, column chart or a chart with an x and a y-axis or two y-axes,
and define the dimensions and measures for the chart and how you want to display them. A drilldown enables
you to display even more information about a dimension.

On the UI, the SmartChart control consists of a toolbar and a chart area. The control uses the
sap.chart.Chart control, which is shown in the chart area. The toolbar offers you various functions, such as
the selection of various types of charts, the drilldown/drillup and maximize/minimize functions as well as
zooming in and out of a chart, and a download. In addition, the control allows you to navigate to the related
semantic object for the chart by clicking Jump To after selecting the relevant part of the chart, such as a
column (or, alternatively, you can also use a similar feature by clicking the Details button if this feature is
enabled).

Details

The SmartChart control offers further functions by integrating other smart controls: You can save a chart as a
view using the SmartVariantManagement control or make chart-specific personalization settings using the
sap.m.P13nDialog control.

In the personalization dialog, you can select a number of chart-specific features in the Chart panel, such as
selecting various dimensions and measures. You can also sort the data in the chart or filter it based on the
conditions you define here. The Filter panel shows the filter criteria that have been defined here manually. For
more information about other, related smart controls, see sap.ui.comp [page 2401] and Personalization Dialog
[page 2358].

If a chart is changed several times, the final outcome of the changes can be persisted as a view once the chart
looks as required by the user. When the view is loaded the next time, the final outcome of the changes will be
shown, but not each single step of the changes.

If the showDownloadButton property is set to true, you can download the part of the chart that is currently
visible by clicking the Download Chart button. The chart will be downloaded in PNG format.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2407

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.comp.smartchart.SmartChart.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.ui.comp.smartchart.SmartChart/samples
https://sapui5.hana.ondemand.com/#/api/sap.ui.comp.smartchart.SmartChart/annotations/Summary

 Note
In Microsoft Internet Explorer, you can only download SVG formats. Here you will be notified in a notification
bar at the bottom of the page that allows you to display or download the chart.

Annotations

The following table shows a selection of the annotations used by the SmartChart control:

Table 117: Annotations

Element Annotation Value Mandatory Description

Entity type sap:semantics aggregate Yes Enables the aggrega
tion of dimensions and
measures.

Dimensions sap:aggregation
-role

dimension Yes Defines the dimen
sions.

Measures sap:aggregation
-role

measure Yes Defines the measures.

A property can be annotated with attribute sap:aggregation-role if it has an aggregation role. The
attribute can have the value "dimension" if the property represents the key of a dimension or "measure" if
the property represents a measure whose values are aggregated according to the aggregation behavior of the
entity type that contains the control. Both values are only valid for properties of an entity type that is annotated
with sap:semantics="aggregate".

 <EntityType Name="Product" sap:service-schema-version="1" sap:service-
version="1" sap:semantics="aggregate" sap:content-version="1">
 <Property Name="Category" Type="Edm.String" Nullable="false" MaxLength="40"
sap:aggregation-role="dimension" sap:label="Product Category"
sap:creatable="false" sap:updatable="false" sap:sortable="true"
sap:filterable="true" />
 <Property Name="Quantity" Type="Edm.Decimal" Nullable="false" MaxLength="3"
sap:aggregation-role="measure" sap:label="Quantity"
 sap:creatable="false" sap:updatable="false" sap:sortable="true"
sap:filterable="true" />
 ...
</EntityType>

The com.sap.vocabularies.UI.v1.Chart annotation is used to specify the chart type and the visible
measures and dimensions of the chart.

 <Annotations Target="EPM_DEVELOPER_SCENARIO_SRV.Product"
 xmlns="http://docs.oasis-open.org/odata/ns/edm">
 <Annotation Term="com.sap.vocabularies.UI.v1.Chart">
 <Record>
 <PropertyValue Property="ChartType"
 EnumMember="com.sap.vocabularies.UI.v1.ChartType/
Column" />
 <PropertyValue Property="Dimensions">
 <Collection>

2408 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 <PropertyPath>Name</PropertyPath>
 <PropertyPath>Category</PropertyPath>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="Measures">
 <Collection>
 <PropertyPath>Price</PropertyPath>
 <PropertyPath>Quantity</PropertyPath>
 </Collection>
 </PropertyValue>
 </Record>
 </Annotation>
</Annotations>

FAQ

Can I use annotations with qualifiers in the SmartChart control? And, in particular, how can I
use the annotations with a qualifier within the control?

As a general rule, the SmartChart control looks for annotations without a qualifier, the primary annotations.
However, you can also use the PresentationVariant and Chart annotations with qualifiers as mentioned
below.

We first look for PresentationVariant and try to get the Chart annotation from there. If no such annotation
exists, we look for the Chart annotation directly on the entity.

You can use chartQualifier for the SmartChart control:

 <SmartChart customData:chartQualifier=”Customer360” …>

Or use the following:

 <SmartChart customData:presentationVariantQualifier=”Customer360” …>

If no qualifier has been defined for the presentation variant, you can use the fallback option and check if there
is a Chart annotation with or without a qualifier, as specified by the application developer.

 Note
customData is the shortcut notation for specifying custom data for the control, provided you have added
the following to the XML view: customData="http://schemas.sap.com/sapui5/extension/
sap.ui.core.CustomData/1".

For more information on how to use custom data in XML views, see Custom Data - Attaching Data Objects
to Controls [page 1042].

Why does the initialise event of SmartTable not get fired in my scenario?

The SmartTable control fires the initialise event just once after it has completed analyzing the metadata
and has initialised its inner state for the first time. Therefore, using attachInitialise does not help.
However, the isInitialised method can be used in such scenarios.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2409

You can also use the following code sample to handle scenarios where you need to trigger some function after
this control has been initialized. It should work in scenarios where the event has already been fired:

 if (oSmartControl.isInitialised()){
 runSomeCodeAfterInit();
} else {
 oSmartControl.attachInitialise(runSomeCodeAfterInit);
}

Smart Field

The sap.ui.comp.smartfield.SmartField control offers a wrapper for other controls using OData
metadata to determine which control has to be instantiated and makes it possible to add input-enabled fields
to an application.

The frequently asked questions section below aims at answering some basic questions that you might have
when using this control.

For more information about this control, see the API Reference and the samples.

For more information about annotations for this control, see the API Reference.

Overview

The SmartField control provides an efficient way to add input-enabled fields to an SAP Fiori application. The
control automatically adjusts to the metadata of the underlying OData service, for example, by doing the
following:

● Hosting controls for editing and displaying values of OData properties
● Providing value help automatically
● Performing input checks

In addition, the SmartField control implements field control and supports message handling.

The SmartField control can be used in the following ways:

● As a standalone control, for example, in XML views
● In combination with a SmartForm control
● In combination with a SmartTable control

Used in particular as cell editor in editing scenarios.

The SmartField control selects a control for displaying and a control for editing the OData property to which
they are bound. The main criterion for selecting nested controls is the EDM type of the OData property to which
a SmartField control is bound.

2410 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.comp.smartfield.SmartField.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.ui.comp.smartfield.SmartField/samples
https://sapui5.hana.ondemand.com/#/api/sap.ui.comp.smartfield.SmartField/annotations/Summary

Details

Binding

The OData property that a SmartField control manages is determined by the binding of the value property of
the control. Properties of a complex type are not supported.

The SmartField control allows for binding of navigation properties.

The entity set to which the bindings are related is either specified in the entitySet attribute of the control or
derived from the binding context at runtime.

When binding the SmartField control against the OData service property of type Edm.Boolean, and if the
SmartField control is in read-only mode, static texts are used for visual representation. In addition, a
configuration parameter in the SmartField control can define the properties of the static texts of the
CheckBox, such as Yes/No or True/False. For the SmartForm control, the custom data can be used for this
purpose.

Configuration

The configuration aggregation of SmartField provides the option to overwrite the default behavior of the
SmartField control.

Using the controlType property, you can select the appropriate control for your use case.

The following control types are available:

● Check box
● Date picker
● Drop-down list (combo box)
● Input
● Select drop-down list (sap.m.Select)

It depends on the related data types which control types are supported, for example:

● If the relevant OData property is of type Edm.String, the SmartField control can be configured to
render a combo box or a select drop-down list.

● If the relevant OData property is of type Edm.Boolean, the SmartField control can be configured to
render a combo box.

● If the relevant OData property is of type Edm.DateTime, the SmartField control can be configured to
render a date picker.

The table below shows which controls are used if you don't overwrite the control type.

Table 118: Control Selection

Editing Use Cases Display Use Cases

EDM Type Control EDM Type Control

Edm.Boolean sap.m.CheckBox Edm.Boolean sap.m.CheckBox

Edm.Int16 sap.m.Input Edm.Int16 sap.m.Text

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2411

Editing Use Cases Display Use Cases

EDM Type Control EDM Type Control

Edm.Int32 Edm.Int32

Edm.Int64 Edm.Int64

Edm.SByte Edm.SByte

Edm.Byte Edm.Byte

Edm.Single Edm.Single

Edm.Float Edm.Float

Edm.Double Edm.Double

Edm.Decimal Edm.Decimal

Edm.String Edm.String

Edm.DateTime sap.m.DateTimePicke
r

Edm.DateTime

Edm.DateTimeOffset Edm.DateTimeOffset

Using the displayBehaviour property, you can define how an ID and a description or Boolean values are
represented in read-only mode.

You have the following options:

● sap.ui.comp.smartfield.DisplayBehaviour.descriptionAndId: Description and ID are
displayed for available values.

● sap.ui.comp.smartfield.DisplayBehaviour.descriptionOnly: Only the description of the
available values is displayed.

● sap.ui.comp.smartfield.DisplayBehaviour.idAndDescription: ID and description are
displayed for available values.

● sap.ui.comp.smartfield.DisplayBehaviour.idOnly: Shows the ID only.
● sap.ui.comp.smartfield.DisplayBehaviour.OnOff: Shows Boolean value as On/Off
● sap.ui.comp.smartfield.DisplayBehaviour.TrueFalse: Shows Boolean value as True/False
● sap.ui.comp.smartfield.DisplayBehaviour.YesNo: Shows Boolean value as Yes/No

Using the preventInitialDataFetchInValueHelpDialog property, you can prevent the query from being
fired immediately when the value help dialog is opened.

Field Control
The field control handles the visual representation of SmartField controls, such as:

● Whether input is mandatory
● Whether the controls are read-only
● Whether the controls are hidden as defined by the SAP Fiori user interface programming model

2412 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

The following attributes are available to implement field control:
○ Enabled

Toggles from display to edit mode.
○ Visible

Hides the SmartField control.
○ Mandatory

Determines whether input is required.

Consumers of the SmartField control can further adapt the runtime behavior by binding these attributes.

The behavior can only be made more restrictive on client side, for example, if an OData property is mandatory,
this cannot be overwritten on SmartField control level.

FAQ

How can I prevent OData requests from fetching value lists to display the description for a
given key in read-only mode?
If the property fetchValueListReadOnly is set to false, no request is sent to fetch the value list, thus
improving performance. However, if you would actually like to to see the description for a key, you have to use
the sap:text v2 annotation or the com.sap.vocabularies.Common.v1.Text v4 annotation to define the
path to a property containing the description. This target property has to be defined in the model, which means
that you as the application developer have to take care of fetching the data.

I have defined custom formatters for SmartField within my application. Why are they
ignored?
If you define custom formatters, they will not be taken into consideration. SmartField always uses its own
formatters for the external representation of values. In addition, custom data types, which you define for your
application, are supported.

If I use composite binding for the SmartField control, the field does not show all elements.
How can I use this type of binding?
SmartField does not support composite binding. You can only use the standard one-way or two-way binding
for the SmartField control.

Smart Filter Bar

The sap.ui.comp.smartfilterbar.SmartFilterBar control analyzes the $metadata document of an
OData service and renders a FilterBar control that can be used to filter, for example, a table or a chart.

The frequently asked questions section below aims at answering some basic questions that you might have
when using this control.

 Note
The code samples in this section reflect examples of possible use cases and might not always be suitable
for your purposes. Therefore, we recommend that you do not copy and use them directly.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2413

For more information about this control, see the API Reference and the samples.

For more information about annotations for this control, see the API Reference.

Overview

The SmartFilterBar control is a wrapper control that analyzes the metadata and annotations of an OData
service. It renders a FilterBar control and provides integration with the VariantManagement control that is
easy to configure.

OData annotations are used to:

● Determine the type of control (for example, whether a field is shown as MultiInput control or as
DatePicker)

● Enable the Suggest feature
● Enable value help for filters

Details

In addition to the $metadata document, you can also have an additional configuration for SmartFilterBar in
the XML view. This additional configuration can be either
sap.ui.comp.smartfilterbar.ControlConfiguration or
sap.ui.comp.smartfilterbar.GroupConfiguration. Using this additional configuration, you can
override certain settings from the OData metadata, such as labels, indexes, or the type of control. You can also
add custom fields or custom groups to the filter bar that are not part of the OData $metadata document at all.

The FieldGroup annotation is used by the SmartFilterBar control to create a grouping of the fields. The
grouping is shown in the filter dialog. Any label specified in this dialog is used to override the default label of the
property. Only sap:filterable fields are enabled in the SmartFilterBar control by default (default is true
when null).

The SmartFilterBar control creates filters lazily. This is done because applications often declare a large
number of filters, but then only use a subset of filters in the SmartFilterBar control. This way, only visible
filters are created initially (the properties relevant for FilterGroupItem in the FilterBar control are
visibleInFilterBar and partOfCurrentVariant). All other filters will be created at a later point in time,
once they have been made visible or requested via the APIs.

 Caution
Calling getFilterGroupItems of the FilterBar control always leads to an instantiation of all filters that
have been declared. If the application needs to react to specific filters only, it is recommended to use
determineFilterItemByName to obtain a specific filter item instead of calling getFilterGroupItems
and iterating through the filters.

Multi-value and unrestricted Date fields are supported if the annotation sap:filter-
restriction="multi-value" is set for date properties.

For MultiInput filter fields, the MultiLine mode is active.

2414 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.comp.smartfilterbar.SmartFilterBar.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.ui.comp.smartfilterbar.SmartFilterBar/samples
https://sapui5.hana.ondemand.com/#/api/sap.ui.comp.smartfilterbar.SmartFilterBar/annotations/Summary

The SmartFilterBar control supports the Edm.Time OData type. The fields bound to OData properties of
this type are represented by the sap.m.TimePicker control. The filter panel of the SmartFilterBar control
containing the conditions allows filtering for time types using the TimePicker control.

Integration with Other Controls

Support of Selection Variants with SmartVariantManagement

You can use the com.sap.vocabularies.UI.v1.SelectionVariant annotation with your
SmartFilterBar control in combination with the considerSelectionVariants property.
SelectionVariant is based on OData and metadata-driven.

 Note
You can only use this annotation if you use the SmartVariantManagement control without page variants.

considerSelectionVariants is set to false by default. It is only taken into account during the initialization
of the SmartFilterBar control.

If the function is active, the provided metadata and annotations are checked for SelectionVariant
annotations. Each one of these annotations is then added as a single variant item to the
SmartVariantManagement control. The qualifier property determines the internal variant key. The variant
items are added once the initialization of SmartVariantManagement has been completed.

Use of Standard Views

If a SelectionVariant annotation entry is provided without a qualifier, it will be treated as the new standard
view entry if there is no application-delivered standard view.

 Note
If an application-delivered standard view exists, the default SelectionVariant annotation will be
completely ignored.

The new standard view has filter values based on the information provided in SelectionVariant and is
enhanced by the _CUSTOM part of the existing standard view.

The filter visibility is also taken over from the existing standard view. However, all filters that are part of
SelectionVariant are also treated as if defined in the partOfCurrentVariant property of the FilterBar
control. So these filters will at least be visible in the Filters dialog.

 Tip
Replacing the standard view greatly influences all other views, since views always show a delta of visible
filters in comparison to the standard view.

All further new views that are based on SelectionVariant are treated the same way: The filters in
SelectionVariant are handled as if defined in partOfCurrentVariant.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2415

FAQ

TypeAhead is not working. When I start typing, no http requests are sent.

Take a look at the $metadata document and make sure there are ValueHelp annotations for this field. The
Target attribute must look like this: {Namespace}.{EntityName}/{FieldName}.

Make sure that the namespace in the Target attribute is correct.

Example of a ValueHelp annotation:

 <Annotations Target="FAP_VENDOR_LINE_ITEMS_SRV.Item/Creditor" xmlns="http://
docs.oasis-open.org/odata/ns/edm">
 <Annotation Term="com.sap.vocabularies.Common.v1.ValueList">
 <Record>
 <PropertyValue Property="CollectionPath" String="Vendors"/>
 <PropertyValue Property="SearchSupported" Bool="true"/>
 <PropertyValue Property="Parameters">
 <Collection>
 <Record
Type="com.sap.vocabularies.Common.v1.ValueListParameterInOut">
 <PropertyValue Property="LocalDataProperty"
PropertyPath="Creditor"/>
 <PropertyValue Property="ValueListProperty"
String="VendorID"/>
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
 </Annotation> </Annotations>

I have a field Entered on that’s an Input field. It should be a DatePicker.

Take a look at the $metadata document and make sure that the property is of type Edm.DateTime and the
property is annotated with sap:display-format="Date".

I tried to set default values for a filter field in the control configuration in JavaScript. These
default values don’t have any effect.
The ControlConfiguration and GroupConfiguration are intended to be used to add static configuration
in an XML view.

There are three properties that can be set dynamically:

● visible
● label
● visibleInAdvancedArea

All other properties and aggregations are not dynamic. This means they have to be set statically in the XML
view, and not dynamically by JavaScript. Any changes made in the ControlConfiguration or
GroupConfiguration after the initialise event has been fired do not have any effect.

If you have to set values of a filter field dynamically in JavaScript, you can use the setFilterData API.

The value help dialog for a filter field contains a table with multiple columns. How can I
change the order of these columns?
The order of the columns is specified in the OData $metadata document in the ValueHelp annotation.

2416 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

There is one column for each ValueListParameterInOut or ValueListParameterOut in the related
annotation.

The order of the columns is the same as the order of the InOut/Out parameters in the $metadata
document. You can’t use configuration in the XML view to change this order. If you want to change the order,
you can do it in the OData $metadata document.

I have added custom controls to the SmartFilterBar. If I save a view and load it again, the
custom fields are initial. What do I have to do to enable custom fields for view management?
In general, custom fields cannot be handled automatically by the SmartFilterBar control. You have to
implement this in the view’s controller. The SmartFilterBar offers the following events that can be used to
enable custom fields for view management:

● beforeVariantSave (deprecated)
● afterVariantLoad
● beforeVariantFetch

beforeVariantFetch replaces the beforeVariantSave event since it is triggered at the same points in
time. Contrary to beforeVariantSave, the beforeVariantFetch event is also called whenever the
Filters dialog is opened. It allows you to restore the state of the custom filters in the Filters dialog once the
Restore button has been pressed.

You can use the beforeVariantSave event to update the model of the SmartFilterBar with the values
from the custom fields. Every value within the model is stored as a view. The values of custom fields should be
stored under the property _CUSTOM, for example, oSmartFilter.setFilterData({_ CUSTOM :
{field1:"abc", field2:"123"}}); .

You can use the event afterVariantLoad to get the values from the model and use them to update the
custom filter fields, for example:

 oData = oSmartFilter.getFilterData();
var oCustomFieldData = oData["_CUSTOM"]; oCustomField1.setValue(oCustomFieldData.field1);

If both events are handled this way, custom fields are enabled for view management.

How can I set initial or default data in the SmartFilterBar control?
Static data can be set in the control using ControlConfiguration in the view.xml:

 <smartFilterBar:SmartFilterBar id="smartFilterBar" ...>
…
<smartFilterBar:controlConfiguration>
 <smartFilterBar:ControlConfiguration key="CompanyCode"
visible="true" index="3"…>
 <smartFilterBar:defaultFilterValues>
 <smartFilterBar:SelectOption low="0001">
 </smartFilterBar:SelectOption>
 </smartFilterBar:defaultFilterValues> </smartFilterBar:ControlConfiguration>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2417

How can I set dynamic data as initial or default data in the SmartFilterBar control, for
example, for navigation parameters?
Dynamic data can be set as initial or default data in the control by registering to the initialise event and
setting JSON/JSONstring using the setFilterData API in your controller.js.

 …
onInitSmartFilter: function(oEvent) { //Assuming that this is the eventhandler
registered for the "initialise" event of the SmartFilterBar control in your
view.xml
 var oSmartFilter = oView.byId("smartFilterBar");
 var oTodaysDate = new Date();
 //Sample Data
 var oJSONData = {
 Company: {
 items: [//MultiInput fields with filter-
restriction="multi-value" (Ex: shown as Tokens based on control type)
 {
 key:"0001",
 text:"SAP SE" //Display text on the
token --> not used for filtering!
 },
 {
 key:"0002",
 text:"SAP XYZ"
 }
]
 },
 SomeDate: { //DateRange field with filter-
restriction="interval"
 low: oTodaysDate, //Date fields require
JavaScript Date objects!
 high: oTodaysDate
 },
 YearInterval: {
 low: "2000-2014" //simple input field with
filter-restriction="interval" --> text separated by a single "-"
 },
 Ledger:"0L" //Single-value field --> Plain input
 };

 oSmartFilter.setFilterData(oJSONData); //Data will be updated with
existing data in the SmartFilter
 },
…

 Note
You can use the setFilterData API to set data in the SmartFilterBar control.

How does the SmartFilterBar determine if a filter has a value assigned to it?
The SmartFilterBar control handles the checks whether values are set for the OData-service-based filters,
but has only a limited capability to do the same for custom fields. For checks like this, the custom field provider
has to provide a Boolean value (true/false) as an indicator whether a value for the custom field exists via
the custom data extension hasValue. If the custom data does not exist, the SmartFilterBar control
analyzes if the custom control has either the method getValue or getSelectedKey and by using those tries
to determine whether the value exists.

 Note
The method-based check is not very reliable, since, for example, MultiComboBox provides both methods
mentioned, but the actual value is accessed via getSelectedKeys. It is strongly recommended to use the

2418 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

custom data extension for such scenarios. The SmartFilterBar control can only react to an onChange
event. Therefore, the application has to set the hasValue custom data while handling the onChange event.

I would like to use the SmartFilterBar control in an analytical scenario, for example, use it in
combination with SmartChart or an analytical table. What do I have to bear in mind?
Analytical binding does not support filtering using navigationProperties. However, SmartFilterBar
creates a group for each filterable property based on the navigation property of the bound entitySet and
assigns filters to it. If you would like to prevent these filters from being created, since they cannot be used in an
analytical scenario, set the property useProvidedNavigationProperties to true while leaving the
provided list of navigation properties empty (property navigationProperties is not defined or has an
empty value).

If you would like the SmartFilterBar control to create filters only for some of the navigation properties, set
useProvidedNavigationProperties to true and list the navigation properties for the filters you require in
navigationProperties, for example, navigationProperties=”to_CompanyCode” takes only this
specific navigation property into account.

Why does the initialise event of SmartTable not get fired in my scenario?
The SmartTable control fires the initialise event just once after it has completed analyzing the metadata
and has initialised its inner state for the first time. Therefore, using attachInitialise does not help.
However, the isInitialised method can be used in such scenarios.

You can also use the following code sample to handle scenarios where you need to trigger some function after
this control has been initialized. It should work in scenarios where the event has already been fired:

 if (oSmartControl.isInitialised()){
 runSomeCodeAfterInit();
} else {
 oSmartControl.attachInitialise(runSomeCodeAfterInit);
}

How does the SmartFilterBar control determine if a filter has a value?
The SmartFilterBar control handles the checks whether any values are set for the OData-service-based
filters, but has only a limited capability to do the same for custom fields. For checks like this, the custom field
provider has to provide a Boolean value (true/false) as an indicator whether a value for the custom field
exists using the custom data extension hasValue. If there is no custom data, the SmartFilterBar control
analyzes if the custom control has either the method getValue or getSelectedKey and, by using those, tries
to determine whether any value exists.

Once hasValue has been set, the custom extension calls the fireFilterChange method of the FilterBar
control (no parameters required for this method) to indicate that the count of assigned values has to be
recalculated.

Related Information

Filter Bar [page 2401]

Smart Variant Management [page 2457]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2419

Smart Form

The sap.ui.comp.smartform.SmartForm control makes it possible to render a form. Depending on user
authorizations, the form enables users, for example, to switch from display to edit mode, add and group fields,
rename field labels, and implement a user input check.

 Note
The code samples in this section reflect examples of possible use cases and might not always be suitable
for your purposes. Therefore, we recommend that you do not copy and use them directly.

For more information about this control, see the API Reference and the samples.

Overview

The SmartForm control displays form content. If used in combination with the SmartField control and OData
metadata annotations along with additional configuration, the control allows you to create a form with minimal
effort.

The SmartForm control supports the following features:

● Adaptation settings
A key user can adapt the form for all users in one client by doing the following:
○ Adding and hiding fields
○ Adding and hiding groups
○ Changing the order of fields and groups
○ Renaming field labels

● Display/Edit button
This optional button allows the user to toggle from display to edit mode.

 Note
Fields of type SmartField are automatically displayed with the appropriate control in the required
mode, for example, texts on the user interface in display mode and user input in edit mode. If controls
other than the SmartField control are used, the application in question has to handle the switch
between display and edit mode.

● Field labels
For fields of type SmartField, the SmartForm control automatically creates a label based on the OData
metadata annotations.

● Check button
This optional button allows the user to check the current user input.

 Note
For fields of type SmartField, values will be checked based on the OData metadata annotations.
Depending on which theme is defined, the fields with errors will be circled in red. When the user clicks
on one of these fields, the relevant error message is displayed.

2420 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.comp.smartform.SmartForm.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.ui.comp.smartform.SmartForm/samples

Details

Groups

A SmartForm control consists of groups (sap.ui.comp.smartform.Group) and group elements
(sap.ui.comp.smartform.GroupElement).

A group element is a collection of controls that are displayed along with a label. Typically, a group element
consists of exactly one control and the respective label. Multiple group elements can be grouped together. This
group then also has a label.

The SmartForm control aggregates groups, and a group aggregates group elements. The group elements
themselves aggregate elements of type sap.ui.core.Control.

The following example shows the SmartForm control and its entities:

 <smartForm:SmartForm id="MainForm" title="General Data"
 entityType="Header, Tax" editTogglable="true" expandable="true"
 expanded="true" ignoredFields="AccountingDocumentCategory"
 checkButton="true">
 <smartForm:customData>
 <core:CustomData key="suppressUnit" value="false" />
 <core:CustomData key="dateFormatSettings" value='\{"style":"short"\}' />
 <core:CustomData key="defaultDropDownDisplayBehaviour"
value='descriptionAndId' />
 </smartForm:customData>
 <smartForm:customToolbar>
 <Toolbar height="3rem">
 <Text text="Custom Toolbar with a header text" />
 <ToolbarSpacer />
 <Button icon="sap-icon://settings" />
 <Button icon="sap-icon://drop-down-list" />
 </Toolbar>
 </smartForm:customToolbar>
 <smartForm:Group id="GeneralLedgerDocument" label="General Ledger Document"
 expandable="true">
 <smartForm:layout>
 <layout:GridData span="L4 M4 S4" />
 </smartForm:layout>
 <smartForm:GroupElement id="GeneralLedgerDocument.CompanyCode">
 <smartField:SmartField value="{CompanyCode}"
 enabled="true" />
 </smartForm:GroupElement>
 <smartForm:GroupElement id="GeneralLedgerDocument.AccountingDocument">
 <smartField:SmartField value="{AccountingDocument}" />
 </smartForm:GroupElement>
 <smartForm:GroupElement id="GeneralLedgerDocument.FiscalYear">
 <smartField:SmartField value="{FiscalYear}" />
 </smartForm:GroupElement>
 <smartForm:GroupElement
 id="GeneralLedgerDocument.AccountingDocumentType">
 <smartField:SmartField value="{AccountingDocumentType}" />
 </smartForm:GroupElement>
 <smartForm:GroupElement
 id="GeneralLedgerDocument.AccountingDocumentHeaderText">
 <smartField:SmartField value="{AccountingDocumentHeaderText}" />
 </smartForm:GroupElement>
 <smartForm:GroupElement
 id="GeneralLedgerDocument.AccountingDocumentTypeName">
 <smartField:SmartField value="{AccountingDocumentTypeName}" />
 </smartForm:GroupElement>
 <smartForm:GroupElement id="GeneralLedgerDocument.AmountInCoCodeCrcy">
 <smartField:SmartField value="{AmountInCoCodeCrcy}" />
 </smartForm:GroupElement>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2421

 <smartForm:GroupElement id="GeneralLedgerDocument.CoCodeCurrency">
 <smartField:SmartField value="{CoCodeCurrency}" />
 </smartForm:GroupElement>
 <smartForm:GroupElement id="GeneralLedgerDocument.LedgerGroup">
 <smartField:SmartField value="{LedgerGroup}" />
 </smartForm:GroupElement>
 </smartForm:Group>
 <smartForm:Group label="Dates" id="Dates">
 <smartForm:layout>
 <layout:GridData span="L3 M3 S3" />
 </smartForm:layout>
 <smartForm:GroupElement id="Dates.DocumentDate">
 <smartField:SmartField value="{DocumentDate}" />
 </smartForm:GroupElement>
 <smartForm:GroupElement id="Dates.PostingDate">
 <smartField:SmartField value="{PostingDate}" />
 </smartForm:GroupElement>
 </smartForm:Group>
 <smartForm:Group label="Reversal" id="Reversal">
 <smartForm:layout>
 <layout:GridData span="L3 M3 S3" />
 </smartForm:layout>
 <smartForm:GroupElement id="Reversal.ReversalDocument">
 <smartField:SmartField value="{ReverseDocument}" />
 </smartForm:GroupElement>
 <smartForm:GroupElement id="Reversal.ReversalReasonName">
 <smartField:SmartField value="{ReversalReasonName}" />
 </smartForm:GroupElement>
 </smartForm:Group>
 <smartForm:Group label="Administrative Data" id="AdministrativeData">
 <smartForm:layout>
 <layout:GridData span="L3 M3 S3" linebreak="true" />
 </smartForm:layout>
 <smartForm:GroupElement id="AdministrativeData.CreatedByUser">
 <smartField:SmartField value="{CreatedByUser}" />
 </smartForm:GroupElement>
 <smartForm:GroupElement id="AdministrativeData.CreatedByUserName">
 <smartField:SmartField value="{CreatedByUserName}" />
 </smartForm:GroupElement>
 <smartForm:GroupElement id="AdministrativeData.CreationDate">
 <smartField:SmartField value="{CreationDate}" />
 </smartForm:GroupElement>
 </smartForm:Group> </smartForm:SmartForm>

Layout
The SmartForm control uses a ResponsiveGridLayout that can be adjusted. The following properties are
exposed in the aggregation layout:

● labelSpanXL, labelSpanL, labelSpanM, labelSpanS
● emptySpanXL, emptySpanL emptySpanM, emptySpanS
● columnsXL, columnsL, columnsM
● breakpointXL, breakpointL, breakpointM
● gridDataSpan

To display the fields next to each other with a label on top, you can use the gridDataSpan property of the
layout element in combination with the useHorizontalLayout property.

The form will be embedded in an sap.m.Panel if the expandable property is set. Using this property, the
form can also be collapsed and expanded.

2422 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Group Layout
The layoutData aggregation of a group can be used to define a GridData layout. With this layout, the default
span of a single group can be changed to allocate the number of columns available to each group. The number
of columns allocated to each group depends on how many groups there are. Moreover, a line break can be
inserted to display the group in a new line.

Toolbar
The SmartForm control uses a toolbar for displaying the title of the form and the following buttons (if
configured):

● Display/Edit (editTogglable property)
● Check (checkButton property)

Alternatively, the custom toolbar can be used (customToolbar aggregation). The SmartForm control will then
replace the standard toolbar with the custom toolbar and add the title and the buttons if requested.

Key-User-Specific Adaptation

To enable key user adaptation settings, the following prerequisites have to be fulfilled:

● Use of stable IDs for every Group, GroupElement, and field in the XML view
The adaptation settings use control IDs to identify the entities that can be modified.

● Use of the entityType property
The property determines the entity type of the OData service defining the fields that can be added to the
form.
Fields that must not be available on the adaptation dialog can be listed in the ignoredFields property:
Separate the property names by commas without using spaces.

Smart Link

The sap.ui.comp.navpopover.SmartLink control provides a popover with navigation links to related
applications, for example, more detailed information about customer data.

For more information about this control, see the API Reference and the samples.

For more information about annotations for this control, see the API Reference.

Overview

The SmartLink control provides further navigation information for a certain entity and offers the following
options for navigation:

● Main navigation target

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2423

https://sapui5.hana.ondemand.com/#/api/sap.ui.comp.navpopover.SmartLink.html
https://sapui5.hana.ondemand.com/#/entity/sap.ui.comp.navpopover.SmartLink/samples
https://sapui5.hana.ondemand.com/#/api/sap.ui.comp.navpopover.SmartLink/annotations/Summary

● Additional content, which can be customized
● Links to related apps, for example

Navigation links can be personalized by selecting Define Links on the popover where users can select from a list
which cross-application links they want to see. They can also restore the links they selected to the previous
state.

Details

Within a SmartTable or SmartForm control, the SmartLink control is created automatically if the
SemanticObject annotation has been defined in the metadata of the OData service used. Navigation targets
are determined by the SmartLink control and its classes using the CrossApplicationNavigation service
of the unified shell. For more information about this service, see CrossApplicationNavigation in the Demo Kit.

The events of the SmartLink control allow the consuming application to do the following in the popover:

● Add, edit, or remove
○ Texts
○ Parameters
○ Navigation targets

● Add an additional customized area

The SmartLink control can be created in an XML view or in the coding. However, it is recommended to use the
SemanticObject definition of the OData metadata via the related annotation. This ensures that the
SmartLink control is instantiated in a correct manner.

Semantic Object Controller
Within a SmartTable or SmartForm control, the SemanticObjectController class is used as a central
instance that is exposing the automatically generated events of the SmartLink control.

All events of the SmartLink control and the features of the navigation popover connected to it are registered
with the SemanticObjectController class and are thus available for use by the consuming application from
one single source.

In addition, the SemanticObjectController class enables further features that influence the behavior of
the registered SmartLink controls within the SmartTable or SmartForm controls.

The SemanticObjectController class can be set up in the XML view as well as in the coding of the
SmartTable and the SmartForm controls. All SmartLink controls in a SmartTable or SmartForm control
will automatically get registered with the SemanticObjectController class provided.

Smart Micro Chart

The sap.ui.comp.smartmicrochart.SmartMicroChart control is used to create different micro charts
based on OData metadata.

For more information about this control, see the API Reference and the sample in the Demo Kit.

2424 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/api/sap.ushell.services.CrossApplicationNavigation.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.comp.smartmicrochart.SmartMicroChart.html
https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.comp.sample.smartmicrochart.SmartMicroChart/preview

Overview

The SmartMicroChart control analyzes the metadata document of an OData service and renders a
MicroChart control for a specified entitySet. If no annotations or metadata are provided, the chart will not be
rendered.

According to the defined value in the chartType property of the UI.Chart annotation the corresponding
MicroChart control is rendered. Currently, the following chart types are supported:

● Area (sap.ui.comp.smartmicrochart.SmartAreaMicroChart will be created) based on the
UI.ChartType Area and Line.

● Bullet (sap.ui.comp.smartmicrochart.SmartBulletMicroChart will be created) based on
UI.ChartType Bullet.

● Radial (sap.ui.comp.smartmicrochart.SmartRadialMicroChart will be created) based on the
UI.ChartType Donut.

 Note
In case of a different UI.ChartType is provided than the mentioned above, the control does not render
anything. The developer gets informed with a log statement.

The metadata should be annotated with the UI.Chart and the UI.DataPoint terms. Both terms need to annotate
one and the same entityType (see also the entitySet property of the SmartMicroChart control in the API
Reference).

Details

Property handling
All supported chart types of SmartMicroCharts need to handle the properties as follows:

● DataPoint property of the Chart annotation should point to the DataPoint annotation. Example:

<Property="DataPoint" AnnotationPath="@UI.DataPoint#BulletChartDataPoint">

In this example, the BulletChartDataPoint is the qualifier of the DataPoint annotation.
● Measures and Measure properties

Measures property of the Chart annotation and Measure property of the MeasureAttributes property of the
Chart annotation should point at the same property in the entityType (Revenue in the sample below).
Example:

<EntityType Name="ProductType" sap:label="Product Sales Data" sap:content-
version="1"> <Key>
 <PropertyRef Name="Product" />
 </Key>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2425

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.comp.smartmicrochart.SmartMicroChart.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.comp.smartmicrochart.SmartMicroChart.html

 <Property Name="Product" Type="Edm.String" />
 <Property Name="Revenue" Type="Edm.Decimal"/>
 <Property Name="TargetRevenue" Type="Edm.Decimal"/>
 <Property Name="ForecastRevenue" Type="Edm.Decimal"/>
 <Property Name="Criticality" Type="Edm.String"/>
 <Property Name="Currency" Type="Edm.String"/>
 <Property Name="ChartTitle" Type="Edm.String"/>
 <Property Name="ChartDescription" Type="Edm.String"/> </EntityType>

<Annotations Target="BmcNamespace.ProductType" xmlns="http://docs.oasis-
open.org/odata/ns/edm"> <Annotation Term="UI.Chart">
 <Record>
 <PropertyValue EnumMember="UI.ChartType/Bullet"
 Property="ChartType" />
 <PropertyValue Property="Title" Path="ChartTitle" />
 <PropertyValue Property="Description"
Path="ChartDescription" />
 <PropertyValue Property="Measures">
 <Collection>
 <PropertyPath>Revenue</PropertyPath>
 </Collection>
 </PropertyValue>
 <PropertyValue Property="MeasureAttributes">
 <Collection>
 <Record Type="UI.ChartMeasureAttributeType">
 <PropertyValue Property="Measure"
PropertyPath="Revenue" />
 <PropertyValue Property="Role"
EnumMember="UI.ChartMeasureRoleType/Axis1" />
 <PropertyValue Property="DataPoint"
AnnotationPath="@UI.DataPoint#BulletChartDataPoint" />
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
 </Annotation>
 <Annotation Term="UI.DataPoint"
Qualifier="BulletChartDataPoint">
 <Record>
 <PropertyValue String="Product" Property="Title" />
 <PropertyValue Path="Revenue" Property="Value" />
 <PropertyValue Path="TargetRevenue"
Property="TargetValue" />
 <PropertyValue Path="ForecastRevenue"
Property="ForecastValue" />
 <PropertyValue Decimal="0" Property="MinimumValue" />
 <PropertyValue Decimal="200"
Property="MaximumValue" />
 <PropertyValue Path="Criticality"
Property="Criticality" />
 </Record>
 </Annotation>
 </Annotations>

 Note
The same entityType property should be used as a path for the Value property of the DataPoint
annotation.

2426 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Qualifiers
With the qualifier for the UI.Chart annotation term, the SmartMicroChart control can support multiple UI.Chart
annotations for an OData service. Depending on the qualifiers, you can separate these multiple annotations
and handle the different OData Annotations in this control.

You can provide the qualifier name through the CustomDataaggregation of the corresponding
SmartMicroChart control. A qualifier for UI.Chart annotation with Qualifier can look like this:

<Annotation Term="UI.Chart" Qualifier="BulletChartQualifier">

The "BulletChartQualifier" string is the qualifier and can be any kind of string. The SmartMicroChart control
needs this string to find the corresponding annotation. This is handled by providing the qualifier string as a
custom data on the control instance.

 <SmartMicroChart id="smartChartBullet" entitySet="Products"
enableAutoBinding="true" chartBindingPath="/Products('PC')" isResponsive="true">
 <customData>
 <core:CustomData key="chartQualifier" value="BulletChartQualifier" />
 </customData> </SmartMicroChart>

The custom data key is “chartQualifier”. There are three different options supported how custom data can be
provided:

● as XML declaration
● by calling data function
● by calling addCustomData function

Smart Bullet Micro Chart

The sap.ui.comp.smartmicrochart.SmartBulletMicroChart control creates an
sap.suite.ui.microchart.BulletMicroChart control based on OData metadata.

For more information about this control, see the API Reference and the sample in the Demo Kit.

By using the chartType property Bullet of the UI.Chart annotation the corresponding
SmartBulletMicroChart control is rendered. The entitySet property of the control must be specified.
This attribute is used to fetch metadata and annotation information from the given default OData model. Based
on this, the Bullet Micro Chart is created.

 Note
The control can also be used directly (without creating a SmartMicroChart).

Binding

The SmartBulletMicroChart control should be bound to one entity, and not a collection of entities
(entitySet). It supports both enableAutoBinding = false (no binding is done inside the control) and
enableAutoBinding = true :

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2427

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.comp.smartmicrochart.SmartBulletMicroChart.html
https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.comp.sample.smartmicrochart.SmartBulletMicroChart/preview

● If the chartBindingPath is provided, the control will be bound relatively to it. For example, the
chartBindingPath can be a navigation property.

● If chartBindingPath is not provided, the control will be bound absolutely to the entitySet.

For information on how the control provides Title, Description and UnitOfMeasure values retrieved from the
annotations, please see the Title, Description and UnitOfMeasures section in the Smart Area Micro Chart [page
2432] documentation.

 Note
If enableAutoBinding = true and chartBindingPath is set then the bindingContext for the Title,
Description and UnitOfMeasure is set to the value as well.

Color of the Chart bar (Criticality)

The color of the chart bars can be controlled by the Criticality property either directly or by calculation.

● Criticality can be set directly:

 <EntityType Name="ProductType" >
…
<Property Name="Criticality" Type="Edm.String" />
</EntityType>
<Annotation Term="UI.DataPoint" Qualifier="BulletChartDataPoint">
<PropertyValue Path="Criticality" Property="Criticality" />
… </Annotation>

● Criticality can be calculated by the SmartBulletMicroChart control based on the provided thresholds
and the ImprovementDirection property of the DataPoint annotation.

 Note
The target and forecast values are not taken into account for the color calculation.

ImprovementDirection Property
The following values for the ImprovementDirection property are supported:
○ Target

2428 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Code Example

 <EntityType Name="ProductType" >
 <Key>
 <PropertyRef Name="Product" />
 </Key>
 <Property Name="Product" Type="Edm.String"
Nullable="false"/>
 <Property Name="Revenue" Type="Edm.Decimal"/>
 <Property Name="TargetRevenue" Type="Edm.Decimal"/>
 <Property Name="ForecastRevenue"
Type="Edm.Decimal"/>
 <Property Name="ToleranceRangeLow"
Type="Edm.Decimal"/>
 <Property Name="ToleranceRangeHigh"
Type="Edm.Decimal"/>
 <Property Name="DeviationRangeLow"
Type="Edm.Decimal"/>
 <Property Name="DeviationRangeHigh"
Type="Edm.Decimal"/>
</EntityType>
.....
 <Annotations Target="BmcNamespace.ProductType" xmlns="http://docs.oasis-
open.org/odata/ns/edm">
 <Annotation Term="UI.Chart">
 <Record>
 <PropertyValue EnumMember="UI.ChartType/Bullet"
Property="ChartType" />
 <PropertyValue Property="Measures">
 <Collection>
 <PropertyPath>Revenue</PropertyPath>
 </Collection>
 </PropertyValue>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2429

 <PropertyValue Property="MeasureAttributes">
 <Collection>
 <Record Type="UI.ChartMeasureAttributeType">
 <PropertyValue Property="Measure"
PropertyPath="Revenue" />
 <PropertyValue Property="Role"
EnumMember="UI.ChartMeasureRoleType/Axis1" />
 <PropertyValue Property="DataPoint"
AnnotationPath="@UI.DataPoint#BulletChartDataPoint" />
 </Record>
 </Collection>
 </PropertyValue>
 </Record>
 </Annotation>
 <Annotation Term="UI.DataPoint"
Qualifier="BulletChartDataPoint">
 <Record>
 <PropertyValue String="Product" Property="Title" />
 <PropertyValue Path="Revenue" Property="Value" />
 <PropertyValue Path="TargetRevenue"
Property="TargetValue" />
 <PropertyValue Path="ForecastRevenue"
Property="ForecastValue" />
 <PropertyValue Decimal="100"
Property="MinimumValue" />
 <PropertyValue Decimal="300"
Property="MaximumValue" />
 <PropertyValue Property="CriticalityCalculation">
 <Record>
 <PropertyValue Property="ImprovementDirection"
EnumMember="UI.ImprovementDirectionType/Target"/>
 <PropertyValue Path="ToleranceRangeLow"
Property="ToleranceRangeLowValue" />
 <PropertyValue Path="ToleranceRangeHigh"
Property="ToleranceRangeHighValue" />
 <PropertyValue Path="DeviationRangeLow"
Property="DeviationRangeLowValue" />
 <PropertyValue Path="DeviationRangeHigh"
Property="DeviationRangeHighValue" />
 </Record>
 </PropertyValue>
 </Record>
 </Annotation>
 </Annotations>

○ Minimize

2430 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Related to the code example for target, the code line for the ImprovementDirection minimize would
be as follows:

Property="ImprovementDirection" EnumMember="UI.ImprovementDirectionType/
Minimize"

○ Maximize

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2431

Related to the code example for target, the code line for the ImprovementDirection maximize would
be as follows:

Property="ImprovementDirection" EnumMember="UI.ImprovementDirectionType/
Maximize"

Smart Area Micro Chart

The sap.ui.comp.smartmicrochart.SmartAreaMicroChart control creates an
sap.suite.ui.microchart.AreaMicroChart control based on OData metadata.

For more information about this control, see the API Reference and the sample in the Demo Kit.

By using the chartType property Area of the UI.Chart annotation the corresponding SmartAreaMicroChart
control is rendered. The entitySet attribute must be specified to use the control. This control property is
used to fetch the corresponding annotations. Based on this, the AreaMicroChart will be rendered; it can also
be used to fetch the actual chart data.

 Note
The control can also be used directly (without creating a SmartMicroChart control).

2432 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.comp.smartmicrochart.SmartAreaMicroChart.html
https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.comp.sample.smartmicrochart.SmartAreaMicroChart/preview

Details

Binding

The SmartAreaMicroChart control supports only enableAutoBinding = true. This means it should be
bound to only one entitySet, and should get a navigation property as a chartBindingPath to an entitySet (for
the relative binding) or else the entitySet property will be used for the absolute binding.

Colors of the Chart (Criticality)

The color of the chart is defined due to the thresholds by using the CriticalityCalculation property of
the UI.DataPoint annotation and the ImprovementDirection property.

 Note
Setting the color directly via the Criticality property of the UI.DataPoint annotation is not supported by
SmartAreaMicroChart.

The following directions are supported:

Target-oriented:

Minimize-oriented:

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2433

Maximize-oriented:

For more information about the colors in the chart, see the sample in the Demo Kit.

Labels, formatting and label colors of the chart

The control provides labels that are displayed at the top and bottom of the chart. You can control the labels
themselves, as well as the color of the labels, by using annotations:

● Labels of the Chart [page 2436]
● Formatting [page 2437]
● Label Colors of the Chart [page 2438] (criticality)

Title, Description and UnitOfMeasure

2434 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.comp.sample.smartmicrochart.SmartAreaMicroChart/preview

The control provides the Title, Description or UnitOfMeasure values retrieved from the annotations. If needed,
the application can create a corresponding chartTitle, chartDescription or unitOfMeasure (of type
sap.m.Label) association. Then, the information will be read from the annotation document and it will be set
as the text property of the sap.m.Label.

● Title and Description
For the Title and Description properties of the Chart annotation both String and Path are supported:
○ <PropertyValue Property="Title" Path="ChartTitle" />
○ <PropertyValue Property="Title" String="ChartTitle" />

 Note
Only the Title and Description properties of the Chart annotation are taken into account (not these of
the DataPoint annotation).

For the SmartAreaMicroChart control, the Title, Description and UnitOfMeasure have the same binding
context as the chart itself (either chartBindingPath or entitySet).

● UnitOfMeasure
For more information about the supported annotation terms ISOCurrency and Unit, see http://docs.oasis-
open.org/odata/odata/v4.0/os/vocabularies/Org.OData.Measures.V1.xml .
The control takes into account only the measure annotation for the entityType property that is
addressed by the Value property of the DataPoint annotation. In the following example, the Value
property of the DataPoint points to the Price property in the EntityType (Path="Price"). This means
that the control (Path="Currency") uses the measure annotation with
Target="AmcNamespace.StockPrice/Price":

 <EntityType Name="StockPrice">
....
<Property Name="Currency" Type="Edm.String" />
</EntityType>
<Annotation Term="UI.DataPoint" Qualifier="AreaChartDataPoint">
<PropertyValue Property="Value" Path="Price" />
</Annotation>
 <Annotations xmlns="http://docs.oasis-open.org/odata/ns/edm"
Target="AmcNamespace.StockPrice/Price" >
 <Annotation Term="MEASURES.ISOCurrency" Path="Currency">
 </Annotation>
</Annotations>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2435

http://help.sap.com/disclaimer?site=http%3A%2F%2Fdocs.oasis-open.org%2Fodata%2Fodata%2Fv4.0%2Fos%2Fvocabularies%2FOrg.OData.Measures.V1.xml
http://help.sap.com/disclaimer?site=http%3A%2F%2Fdocs.oasis-open.org%2Fodata%2Fodata%2Fv4.0%2Fos%2Fvocabularies%2FOrg.OData.Measures.V1.xml

Labels of the Chart

You can display a maximum of four labels.

The relationships between these four labels and their annotations are as follows:

Table 119: Relationship of labels and their annotations

Chart point
(sap.suite.ui.micro
chart.AreaMicroChar
tItem) Coordinate Label position Annotation Term Property

First point x Bottom left UI.Chart Dimensions

y Top left UI.Chart Measures

Last point x Bottom right UI.Chart Dimensions

y Top right UI.Chart Measures

The values of the x and y coordinates of the first chart point are retrieved from the first data entry in the bound
model. The formatted x-value is displayed at the bottom left of the chart. It corresponds with the dimensions
property of the UI.Chart annotation term. Depending on the data type of the property in the entity type, an
appropriate formatter is chosen so that you can format the value as needed.

The formatted y-coordinate value is displayed at the top left of the chart and is used to show the actual value. It
is bound to the measures property of the UI.Chart annotation term. It is always formatted as a numeric value,
that is, the value 20,000 is formatted to “20K”. The last data point is treated the same way: the top right label
corresponds to the last data entry’s measures property and the bottom right label corresponds to its
dimensions property.

2436 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Formatting

The top labels are always formatted by the sap.ui.core.format.NumberFormat.

The bottom labels are formatted by the number or date formatter depending on the dimensions property’s
type and its annotations:

Table 120: Formatted bottom labels in different annotation cases

Type of dimension
property Annotations Raw value X-coordinate value

Formatted value for
bottom label

Any type sap:text=”DateLa
bel” (or has annotation
Common.Text
whose Path=”DateLa
bel”)

“any text” (raw value of
DateLabel prop
erty)

Depends on property
type (use index value if
neither date nor num
ber type)

‘any text’

Edm.String sap:semantics=”y
ear” (or has annotation
IsCalendarYear)

2016 Timestamp 1/1/16

Edm.String sap:semantics=”y
earmonth” (or has an
notation
IsCalendarYearM
onth)

201612 Timestamp 12/1/16

Edm.String sap:semantics=”y
earmonthday” (or has
annotation
IsCalendarDate)

20161225 Timestamp 12/25/16

--- 'any text' Indices

Edm.DateTime /
Date(1472629368000)
/

Timestamp 8/31/16

Edm.Int32 or other
number types

20000 20000 20K

● If the dimensions property has a V2 annotation sap:text (or V4 annotation Common.Text) pointing to
another property, that property’s value will be used to display the bottom label, no matter what the primary
property’s data type is. The x-coordinate’s value depends on the primary property’s data type. If its type is
DateTime, the date is converted to a timestamp; if it has a numeric type, the value is used directly. In other
cases, each point’s index from within the data list is used, causing an evenly distribution of points on the x-
axis.

● If the type of the dimensions property is 'string' and it has a V2 annotation sap:semantics (or the V4
annotation IsCalendarYear, or similar), the raw value is formatted to a shortened date string based on
the pattern provided by sap:semantics (or a corresponding pattern of IsCalendarYear) and the value

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2437

of the x-coordinate is set to the formatted date’s timestamp. The bottom label displays the formatted short
date.

● If the type of the dimensions property is DateTime or another numeric type without any of the
annotations mentioned above, the raw value is formatted by the number formatter or date formatter
depending on the data type. Each point’s x-coordinate value is set to the date’s timestamp representation if
its type is DateTime, and to a numeric value if its type is numeric.

Label Colors of the Chart

You use the Criticality Calculation feature to control the color of the labels at the top.

You cannot set the label color directly. The color of the labels at the bottom is unchangeable and will always be
displayed with ValueColor.Neutral. The color of the labels at the top is calculated using the thresholds that
are common for every Criticality Calculation across the Smart Micro Charts. For example:

Table 121: Thresholds

Property Type Value

DeviationLowValue Negative 10

ToleranceLowValue Critical 45

ToleranceHighValue Critical 55

DeviationHighValue Negative 80

Table 122: Resulting colors of different sample values in different Improvement Directions

Value Maximize direction Minimize direction Target direction

5 Error Good Error

15 Critical Good Critical

50 Good Good Good

70 Good Critical Critical

90 Good Error Error

Smart Radial Micro Chart

The sap.ui.comp.smartmicrochart.SmartRadialMicroChart control creates an
sap.suite.ui.microchart.RadialMicroChart control based on OData metadata.

For more information about this control, see the API Reference and the sample in the Demo Kit.

By using the chartType property Donut of the UI.Chart annotation the corresponding
SmartRadialMicroChart control is rendered. The entitySet attribute needs to be specified to use the

2438 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.comp.smartmicrochart.SmartRadialMicroChart.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.ui.comp.smartmicrochart.SmartRadialMicroChart/samples

control. The attribute is used to fetch metadata and annotation information from the given default OData
model. Based on this, the RadialMicroChart UI is created. As the other SmartMicroCharts, the
sap.ui.comp.smartmicrochart.SmartRadialMicroChart control also uses the OData metadata
annotations to determine the binding paths and values inside the chart.

 Note
The control can also be used directly (without creating a SmartMicroChart).

Associated Labels

For information on how the control provides Title, Description and UnitOfMeasure values retrieved from the
annotations, see the Title, Description and UnitOfMeasure values in the Smart Area Micro Chart [page 2432]
documentation.

In addition, the Smart Radial Micro Chart supports a FreeText value. This can be annotated by the term Label
. For more information, see the API Reference.

Binding

The SmartRadialMicroChart control should be bound to one entity and not to a collection of entities
(entitySet). It supports both enableAutoBinding = false (no binding is done inside the control) and
enableAutoBinding = true :

● If the chartBindingPath is provided, the control will be bound relatively to it. For example, the
chartBindingPath can be a navigation property.

● If chartBindingPath is not provided, the control will be bound absolutely to the entitySet.

 Note
If enableAutoBinding = true and chartBindingPath is set then the bindingContext for the Title,
Description, UnitOfMeasure and FreeText is set to the value as well.

Criticality

The color of the chart can be controlled by the Criticality property either directly or by criticality calculation. For
the sap.ui.comp.smartmicrochart.SmartRadialMicroChart control, there are two options for setting
the color of the RadialMicroChart by using its valueColor property:

● by setting it directly via the Criticality property of the UI.DataPoint annotation
● with the criticality calculation using the CriticalityCalculation property of the UI.DataPoint annotation

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2439

http://help.sap.com/disclaimer?site=https%3A%2F%2Fwiki.scn.sap.com%2Fwiki%2Fdisplay%2FEmTech%2FOData%2B4.0%2BVocabularies%2B-%2BSAP%2BCommon
http://help.sap.com/disclaimer?site=https%3A%2F%2Fwiki.scn.sap.com%2Fwiki%2Fdisplay%2FEmTech%2FOData%2B4.0%2BVocabularies%2B-%2BSAP%2BCommon
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.comp.smartmicrochart.SmartRadialMicroChart.html

Using the first option, the user can bind the property to a path in the application's model. The criticality is then
mapped to a valueColor:

<PropertyValue Property="Criticality" Path="Criticality"/>

The mapping is done as follows:

Table 123: Criticality mapped to valueColor

Criticality ValueColor

Neutral Neutral

Positive Good

Critical Critical

Negative Error

In the second option, the criticality can be calculated using customer-defined thresholds.

 Note
The thresholds are not renderd in SmartRadialMicroChart.

Table 124: Thresholds

Property Type Sample Values

DeviationLowValue Negative 10

ToleranceLowValue Critical 45

ToleranceHighValue Critical 55

DeviationHighValue Negative 80

2440 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

With the ImprovementDirection property the thresholds can determine the valueColor. For
sap.ui.comp.smartmicrochart.SmartRadialMicroChart the Maximize and Minimize directions are
supported:

● ImprovementDirection: Maximize
With the Maximize direction, it is calculated the higher the value the more the circle color trends to green
or the more positive is its status. Depending on the relevant thresholds (DeviationLowValue and
ToleranceLowValue), there are appropriate certain points where the color changes. Reflecting the
sample data above, values lower than 10 will be shown in red color, values lower than 45 but higher than 10
are displayed in orange color and all values bigger than 45 are shown in green color.

● ImprovementDirection: Minimize
With theMinimize direction, it is calculated the lower the value the more the circle color trends to green or
the higher the value the more negative is its status. This direction uses the ToleranceHighValue and
DeviationHighValue thresholds. Reflecting the sample data above, values higher than 80 will be shown
in red color, values lower than 80 but higher than 55 are displayed in orange color and all values lower than
55 are shown in green color.

Smart Multi Edit

SmartMultiEdit enables you to perform mass editing operations on objects that have the same structure.

For more information about this control, see the API Reference and the samples in the Demo Kit.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2441

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.comp.smartmultiedit.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.ui.comp.smartmultiedit.Container/samples

Overview

With SmartMultiEdit, you can edit multiple homogeneous objects simultaneously. It allows you to select a
field value from a combo box for all objects being edited. SmartMultiEdit can also handle metadata for a
specific OData property when you need to enable mass editing for multiple contexts.

SmartMultiEdit consists of two controls:

● SmartMultiEdit.Field – A field that allows you to select a new value and apply it to the selected
objects that include this field in their structure.

● SmartMultiEdit.Container – A container that provides the layout and context bindings for the
SmartMultiEdit fields it includes.

2442 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.comp.smartmultiedit.Field.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.comp.smartmultiedit.Container.html

Details

Implementation and Layout

● You can implement SmartMultiEdit along with a smart table [page 2444], adding a button for it to the
smart table's toolbar. When you click the button, a dialog appears that contains a smart form [page 2420]
with editable SmartMultiEdit fields.

● To specify the layout of the smart form dialog that contains the SmartMultiEdit fields, use the layout
aggregation in the SmartMultiEdit.Container control.

Data Binding

● You can define the context binding [page 922] and the OData entity set for your multi edit fields using the
contexts and entitySet properties in the SmartMultiEdit.Container control.

● To specify the OData property related to a specific SmartMultiEdit field, use the propertyName
property of the SmartMultiEdit.Field control.

Smart Multi Input

The SmartMultiInput control can be used to create a multi-input field or a multi-input combobox.

For more information about this control, see the API Reference and the samples in the Demo Kit.

Overview

The SmartMultiInput control acts as a wrapper control for the sap.ui.comp.smartfield.SmartField
control and supports the same settings and annotations. It interprets OData metadata to create a multi-input
field or a multi-input combobox, similar to sap.m.MultiInput and sap.m.MultiComboBox but with added
annotation capabilities. Thanks to the annotations support, smart multi input fields and comboboxes can be
embedded into other smart controls, such as sap.ui.comp.smartform.SmartForm.

Details

Implementation

● You can create a SmartMultiInput control inside a smart field [page 2410] or a smart form [page 2420]
control. For an example of smart multi input fields inside a smart form, see the samples in the Demo Kit.

Data Binding

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2443

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.comp.smartmultiinput.SmartMultiInput.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.ui.comp.smartmultiinput.SmartMultiInput/samples
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.ui.comp.smartmultiinput.SmartMultiInput/samples

● Smart multi input fields and comboboxes support three modes of data binding: two-way binding, one-way
binding, and one-time binding. To learn more about binding modes, see Data Binding [page 815].

● The OData entity property that is displayed in the smart multi input field or combobox can be defined in the
parent control's value property. When any of the data binding modes is used, the value property should
be bound to a navigation property. When no data binding is used, the value property can be bound to an
arbitrary property of the entity set specified in the parent control's entitySet property.

Smart Table

The sap.ui.comp.smarttable.SmartTable control is used to create different types of tables based on
OData metadata. The control allows the user to define personalized table settings.

The frequently asked questions section below aims at answering some basic questions that you might have
when using this control.

 Note
The code samples in this section reflect examples of possible use cases and might not always be suitable
for your purposes. Therefore, we recommend that you do not copy and use them directly.

For more information about this control, see the API Reference and the samples.

For more information about annotations for this control, see the API Reference.

Overview

The SmartTable control is a wrapper control around any SAPUI5 table. The control analyzes the $metadata
document of an OData service and renders a table for a specific entitySet.

The control allows the consuming application to build list patterns based on OData services in an efficient and
consistent way and thus makes it easy for the user to create tables without much effort. For example, the
control enables the automatic creation of columns.

The consuming application can overwrite the OData default information. The SmartTable control offers you
additional built-in features, such as a row count and an export to a spreadsheet application.

 Note
Once the SmartTable control has been initialized, most of the property and aggregation changes (for
example, for entitySet or persistencyKey) won't have any effect. Also, any changes of the inner table
are not recognized, for example, by the personalization settings, and therefore must not be made.

2444 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.comp.smarttable.SmartTable.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.ui.comp.smarttable.SmartTable/samples
https://sapui5.hana.ondemand.com/#/api/sap.ui.comp.smarttable.SmartTable/annotations/Summary

Details

When using SmartTable with an internal responsive table, you can set the demandPopin property to true.
This property renders columns that exceed the space available on the screen by displaying popins.

SmartTable checks the custom data section for the columns and reads the columnIndex attribute to
determine when the columns that are defined in the XML view are rendered.

If you want to show and follow navigationProperty fields for EntityType, the SmartTable control
automatically performs a $expand operation for these fields.

 Note
If you perform $expand operations while doing an export to a spreadsheet, the $expand parameters will
automatically be removed (only relevant for the Gateway export type).

Integration with Other Controls

The SmartTable control is closely linked to the following other controls:

● VariantManagement
● SmartFilterBar
● P13nDialog

The control also supports the popover of the SmartLink control.

For more information about the various smart controls, see sap.ui.comp [page 2401].

FAQ

1- How can I enable personalization for custom columns, and how do they differ from the
regular ones, especially when used with personalization settings or the spreadsheet export?

You can specify custom data for the personalization of the columns in your table as shown in the examples.

Example 1 for a normal aggregation:

 <table:Column id="Ledger" minScreenWidth="Tablet" demandPopin="true">
 <table:customData>
 <core:CustomData key="p13nData"
 value='\{"columnKey": "Ledger", "leadingProperty":"Ledger",
 "additionalProperty":"LedgerName", "sortProperty": "Ledger",
 "filterProperty": "Ledger", "type":"numeric"}' />
 </table:customData>
 <Label text="Ledger" />
 <table:template>
 <Text text="{Ledger}" />
 </table:template> </table:Column>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2445

To use the SAPUI5 shortcut notation, add the following namespace part in the XML view:

xmlns:customData="http://schemas.sap.com/sapui5/extension/sap.ui.core.CustomData/1"

Example 2 for use of the shortcut notation:

 <table:Column id="CompanyCode" minScreenWidth="Tablet" demandPopin="true"
 customData:p13nData='\{"columnKey": "CompanyCode",
"leadingProperty":"CompanyCode",
"additionalProperty":"CompanyName","sortProperty": "CompanyCode",
"filterProperty": "CompanyCode", "type":"numeric", "maxLength":"4"}'>
 <Label text="Company Code" />
 <table:template>
 <Text text="{CompanyCode}" />
 </table:template> </table:Column>

In the p13nData object you can specify the following properties:

● columnKey
A unique key used to save, retrieve, or apply personalization for a column.

● leadingProperty
Retrieves data for the OData property specified here from the backend system when the column is made
visible.
OData model property name must be used.

● additionalProperty
Property has to be requested if a column is visible.
OData model property name must be used.
Multiple property names can be specified here as comma-separated values (CSV).

● sortProperty
Sorts the table based on the column specified.
OData model property name must be used.
This property is similar to sortProperty of sap.ui.table.Column of the grid table and should only be
used if the latter does not support this feature.

● filterProperty
Filters the table with the condition that has been defined.
OData model property name must be used.
This property is similar to filterProperty of sap.ui.table.Column of the grid table and should only
be used if the latter does not support this feature.

● isGroupable
Shows a field in the Group panel of the View Settings automatically; otherwise, a field might become visible
only once the table (rows) are bound.
This property is only required for the type AnalyticalTable. SmartTable automatically sets this
property to true if a field is sortable, filterable, and a dimension.

● type
Determines the type of a control; its value can be date, time, boolean, numeric, stringdate, string,
or undefined. The control will be adapted according to the type.
stringdate is used to export fields with the IsCalendarDate annotation.

● maxLength
Numeric value to restrict number of entries in input fields

● precision
Numeric value for precision

2446 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

● scale
Numeric value for scale

● nullable
Defines whether a field can have no value (and is then relevant for filtering with the Empty value).
Consumers of the control can use the string value false to indicate that the field is not nullable. The
default is nullable.

 Note
Some properties that also exist in a table, for example, in sortProperty, will take precedence if specified
in both places.

The following additional properties are required in P13ndata for proper formatting of custom columns for an
SAPUI5-client-side export to the spreadsheet:

Table 125: P13n Properties for Custom Columns

Property Explanation

unit Name of the unit property to be used for unit of measure and
currency formatting

isCurrency If the column is of type currency, the amount with the
currency is shown in the exported spreadsheet.

align Configures the alignment of the column, for which you can
use the same value as for the hAlignproperty of the col
umn.

edmType Actual Edm.Type of the OData property, which might be
needed for proper formatting of columns in the spreadsheet.

description Field that points to the description (UI.Text annotation)
of this column, or, if custom-formatted columns are used,
you can use the description that is used in the formatter
function.

displayBehaviour Various combinations of the description that are displayed
on the UI in the following way:

● descriptionOnly: Shows a description only

● descriptionAndId: Shows the description followed
by the ID

● idAndDescription: Shows the ID followed by the
description

● idOnly: Shows the ID only

width Width of the column, for which you should use the same
value as for the column itself

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2447

Property Explanation

isDigitSequence Can be used for Edm.String columns that represent a nu
meric field with leading zeros. If set to true, the leading ze
ros are removed from this string field as the number format
will be used in the spreadsheet.

2- Why do I not see data for my manually added column in the XML view? And why do I get
an error "Select at least one column to perform the search" even though I have added
several columns manually to the sap.m.Table inside the control?

You need to specify custom data with at least one leadingProperty for the table columns without a
leadingProperty available in the control itself so the SmartTable control can fetch the data correctly.

 <Column>
 <customData> <core:CustomData key="p13nData" value='\
{"columnKey":"Id","leadingProperty": "Id","sortProperty": "Id","filterProperty":
"Id"}'/> </customData>
 <Text text="Sales Order" />
</Column>

Without this, the SmartTable control cannot recognize the column.

3- How can I define columns with my own style, for example, using the formatting or the
controls I require, in a responsive SmartTable control (tableType="ResponsiveTable")?

For the sap.m.Table/ResponsiveTable, you need to provide a corresponding ColumnListItem in the
items aggregation in addition to the columns, as you would when using this SAPUI5 table on its own.

 <smartTable:SmartTable entitySet="Items"..>
 <Table>
 <!-- Columns must have unique IDs if table personalization service is
used -->
 <columns>
 <Column id="Name" width="auto" minScreenWidth="Tablet" visible="false"
 customData:p13nData='\{"leadingProperty":"Name",
"columnKey":"Name", "sortProperty":"Name", "type":"numeric"\}'>
 <header>
 <Label text="{/#Item/Name/@sap:label}"/>
 </header>
 </Column>
 </columns>
 <ColumnListItem id="columnListItem" vAlign="Middle" type="Navigation"
press="onItemPressed">
 <cells>
 <Text text="{path:'Name',
formatter:'my.own.formatter.functionName'}" maxLines="2"... />
 </cells>
 </ColumnListItem>
 </Table>
 </smartTable:SmartTable>

The sap.m.Table uses the columns aggregation for the header and the items aggregation containing
ColumnListItem with cells for the template control that is cloned for each row in the table.

2448 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 Note
For any supported SAPUI5 table, you can add custom columns in the XML view along with the required
customData for the column.

4- How do I use the SmartField control in combination with the SmartTable control? And how
can I make use of metadata and field controls to manage the state of editable fields in my
table?

For editing scenarios with backend metadata and field controls, it is recommended to use the SmartField
control along with the SmartTable control. You can have the SmartTable automatically create SmartField
controls using the following code:

 <smartTable:SmartTable id="ItemsST" entitySet="Items"
customData:useSmartField="true"...>

To make this work, the customData namespace has to be defined correctly in the XML view to enable SAPUI5
shortcut notation for custom data aggregations: xmlns:customData="http://schemas.sap.com/
sapui5/extension/sap.ui.core.CustomData/1".

5- How do I format the group headers shown in SmartTable of type ResponsiveTable
(sap.m.Table)? And why is a technical key shown instead of a description when grouping is
done in SmartTable of type ResponsiveTable?

Grouping in ResponsiveTable is done by sorting table entries. You can define your own formatting for the
group title in ResponsiveTable by specifying a group function for the first sorter.

For more information on how this can be done, see the code sample.

When using the SmartTable control, you can use the beforeRebindTable event and get available sorters
using the bindingParams (event parameter). Check if the first sorter there has a group.

 onBeforeRebindTable: function(oEvent) {
 var mBindingParams = oEvent.getParameter("bindingParams");
 var oSorter = mBindingParams.sorter[0];
 //Check if sorter is for Grouping
 if(oSorter.vGroup){

There are two options. The first option looks like this:

 //Replace the Group function
 oSorter.fnGroup = this.mGroupFunctions[oSorter.sPath];

You can also do the following:

 //Replace the Grouping sorter itself
 mBindingParams.sorter[0] = new Sorter(oSorter.sPath, bDescending,
this.mGroupFunctions[oSorter.sPath]);
 }

For more information on how this.mGroupFunction has to be implemented, see the code sample in the
Demo Kit.

You can replace group functions for the sorter or the sorter itself with the ones you have defined (with own
formatter for grouping based on the property) if the sorter is used for grouping.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2449

https://sapui5.hana.ondemand.com/#/sample/sap.m.sample.TableViewSettingsDialog/code/SettingsDialogController.controller.js
https://sapui5.hana.ondemand.com/#/sample/sap.m.sample.TableViewSettingsDialog/code/SettingsDialogController.controller.js

6- How do I create and pass a search query ($search="foo") when using the SmartTable
control?

Use the beforeRebindTable event and implement this manually.

 onBeforeRebindTable: function(oEvent) { var
 mBindingParams = oEvent.getParameter("bindingParams"); mBindingParams.parameters["custom"] = { "search-focus" :
 sBasicSearchFieldName, // the name of the search
 field "search" :
 sBasicSearchText // the search text itself! }; }

This will then be used internally when creating the table binding.

 Note
In the same way, you can also add any custom URL parameters or use this event to add OData $expand
parameters: Instead of "custom", use "expand" as shown in the example above.

7- How do I get data for custom columns (icons, formatters etc.) that are not present in the
columns/binding (select = 'ColA,ColB,foo,bar') of the SmartTable control?

Use the beforeRebindTable event and implement this manually.

 onBeforeRebindTable: function (oEvent) {
 var oBindingParams = oEvent.getParameter("bindingParams");
 if (oBindingParams.parameters.select.search("SomeIconCode1") < 0) {
 oBindingParams.parameters.select +=
",SomeIconCode1" ;
 }
 if (oBindingParams.parameters.select.search("SomeIconCode2") < 0) {
 oBindingParams.parameters.select +=
",SomeIconCode2" ;
 } . . .

This will then be used internally when creating the table binding.

 Note
If only one property is needed for a given column, you can also use additionalProperty in customData
as already mentioned instead of the event-based approach as described here.

 Note
For an AnalyticalTable control or AnalyticalBinding, you have to use a dummy column
(visible="false") with the leadingProperty you require and the set attribute inResult="true"
instead.

8- I would like to pass my own custom sorters, filters, and binding parameters when binding
the table data in the SmartTable control. How do I do this? And how can I have my own
binding implementation for the SmartTable control?

You can modify the array of filters before binding is triggered in the SmartTable control by listening to the
beforeRebindTable event.

2450 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

To enable this, your code in the XML view should look like this:

 <smartTable:SmartTable entitySet="LineItemsSet"
beforeRebindTable="onBeforeRebindTable"…

You can now get the list of filters and sorters to be used in table binding using the following:

 ...
onBeforeRebindTable: function(oEvent) {
 var mBindingParams = oEvent.getParameter("bindingParams");
 var aFilters = mBindingParams.filters

With this, you need to set back the value to mBindingParams.filters, and you can pass a new filter array as
well.

 Note
In some exceptional cases, you can set mBindingParams.preventTableBind="true" to prevent table
binding from taking place (optional) and do the binding at a later point in time. This is shown in the
following method:

 someMethod: function() {
 //get the smartTable and call the method rebindTable()
 oSmartTable.rebindTable();
 } ...

 Note
If you would like to trigger the binding manually, use the rebindTable method of the SmartTable control
and do not use bindRows in the underlying table.

 Note
For a custom multi-filter scenario: If you want to pass multi-filters (filters combined with AND/OR
explicitly) in your custom implementation, the SAPUI5 default logic in the core classes combines multiple
multi-filters with an OR by default. If you would like to use AND in combination with the multi-filters
returned in the beforeRebindTable event of the SmartTable control (if a filter is set in SmartFilter)
and your own MultiFilter, you have to replace the filters in the beforeRebindTable event with an
explicit AND MultiFilter. There is currently no way to combine multiple multi-filters in the SmartTable
control itself. You as the consumer of the control have to make sure you combine these multi-filters yourself
by checking first if any internal multi-filters exist. You also have to ensure that the internal multi-filter is
added first in the array of filters present in the beforeRebindTable event.

 onBeforeRebindTable: function(e) {
 var b = e.getParameter("bindingParams");
 var aDateFilters = [new
sap.ui.model.Filter("BindingPeriodValidityEndDate",sap.ui.model.FilterOperator.LE
,d), new
sap.ui.model.Filter("BindingPeriodValidityEndDate",sap.ui.model.FilterOperator.GT
, null).....];
 var oOwnMultiFilter = new sap.ui.model.Filter(aDateFilters,
true);
 //Special handling for multiple multi-filters
 if (b.filters[0] && b.filters[0].aFilters) {
 var oSmartTableMultiFilter = b.filters[0];

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2451

 // if an internal multi-filter exists then combine
custom multi-filters and internal multi-filters with an AND
 b.filters[0] = new
sap.ui.model.Filter([oSmartTableMultiFilter, oOwnMultiFilter], true);
 } else {
 b.filters.push(oOwnMultiFilter);
 }
}

9- How do I add custom toolbar buttons in the SmartTable control?

You can do this using the customToolbar aggregation, as shown below:

 <smartTable:SmartTable id="ItemsST" entitySet="Items" ...
 <smartTable:customToolbar>
 <OverflowToolbar design="Transparent">
 <ToolbarSpacer/>
 <Button text="Test"/>
 <Button text="Click me!"/>
 </OverflowToolbar>
 </smartTable:customToolbar>

 Note
We recommend to use OverflowToolbar instead of Toolbar, as shown above, to make the toolbar
responsive.

10- How do I fetch data from navigationProperty (or association entities) using the
SmartTable control?

SmartTable provides a tableBindingPath property in addition to entitySet, which can be used to specify
a navigation property path, for example, SalesOrder(123)/toItems.

 Note
For an AnalyticalTable control or AnalyticalBinding, you might have to pass entitySet in
bindingParameters using the beforeRebindTable event. This is necessary if the entitySet path
does not conform to the one that is checked internally by AnalyticalBinding, for example, in the
beforeRebindTable event, as shown here:

 var mBindingParams = oEvent.getParameter("bindingParams");
mBindingParams.parameters.entitySet = "NameOfEntitySet";

11- Why do I not see any columns in my SmartTable control?

SmartTable creates the initially visible column based on the LineItem or the PresentationVariant
annotations. You can either specify the initial fields there or create it manually in the XML view by adding
columns to the underlying table.

For more information, see the sample.

12- How can I use applyVariant() in combination with the SmartTable control?

The applyVariant() is an interface function for the SmartVariantManagement control that sets the
current view for the SmartTable control.

2452 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/sample/sap.ui.comp.sample.smarttable.mtableCustom/preview

Applications can also create their own application-specific views as the default, which are not standard views
defined by the SmartTable control. These application views are only called once during the initialization of the
SmartTable control.

If an application default view has been defined, then all other views are based on this application default view.
Any change made to the SmartTable control and saved as a view is merged with the application default view
by the SmartTable control. This data is then stored as a new view, a combination of the change made and the
application default view.

For example, an application default view contains two groups that have been defined for the SmartTable
control. When a new group is added and saved as a view, the new view will comprise the newly added group and
the application default view. Thus, the end result are three groups for the SmartTable control.

 Note
When the user selects Ungroup All in the Group Header Menu on the UI of AnalyticalTable in the
SmartTable control, and this is then stored as a view, the change is saved as a combination of the
ungrouping change and the application default view that contains the grouping information. Thus, the end
result will be the application default view.

13- Why do I see an incorrect count in the header of my SmartTable control?
If the backend does not support count, if the count support has been disabled in the model, or in case of a tree
scenario, you have to set showRowCount="false" in the SmartTable control.

14- Can I use annotations with qualifiers in the SmartTable control? And, in particular, how
can I use the LineItem and PresentationVariant annotations with a qualifier within the
SmartTable control?
As a general rule, the SmartTable control looks for annotations without a qualifier, the primary annotations.
However, you can also use the PresentationVariant and LineItem annotations with qualifiers as
mentioned below.

We first look for PresentationVariant and try to get the LineItem annotation from there. If no such
annotation exists, we look for the LineItem annotation directly on the entity.

You can set the qualifier that you want to use for the LineItem annotation in the SmartTable control using
lineItemQualifier customData:

 <SmartTable customData:lineItemQualifier=”Customer360” …>

Or, if you want us to use a specific PresentationVariant, presentationVariantQualifier is also
supported, which can be used as shown below:

 <SmartTable customData:presentationVariantQualifier =”Customer360” …>

If no qualifier has been defined for the presentation variant, you can use the fallback option and check if there
is a LineItem annotation with or without a qualifier, as specified by the application developer.

 Note
customData is the shortcut notation for specifying custom data for the control, provided you have added
the following to the XML view: customData="http://schemas.sap.com/sapui5/extension/
sap.ui.core.CustomData/1".

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2453

For more information on how to use custom data in XML views, see Custom Data - Attaching Data Objects
to Controls [page 1042].

15- How can I dynamically switch between read-only and editable controls in my table using
the editable property?

For the switch you have to enable the SmartToggle feature in the SmartTable controls as follows:

 <smartTable:SmartTable id="ItemsST" entitySet="Items"
customData:useSmartToggle="true"...>

In order for this to work, the customData namespace in the XML view must be declared correctly to enable
shortcut notation for custom data aggregations:customData="http://schemas.sap.com/sapui5/
extension/sap.ui.core.CustomData/1".

 Note
SmartToggle is a feature provided by the SmartTable control that allows you to toggle between display
and edit mode for all the relevant controls in the cells of the SmartTable control.

16- I did an export using the Export to Spreadsheet button in the SmartTable control. Why is
the data in the spreadsheet different from the data I see on the UI?

The formatting in an SAPUI5 client-side generated spreadsheet can differ slightly from the UI. However, if you
notice large differences, the issue might be due to custom columns that do not have sufficient P13ndata, as
required for a client-side export.

The following additional properties are required in P13ndata for proper formatting of custom columns for an
SAPUI5-client-side export to the spreadsheet:

Table 126: P13n Properties for Custom Columns

Property Explanation

unit Name of the unit property to be used for unit of measure and
currency formatting

isCurrency If the column is of type currency, the amount with the
currency is shown in the exported spreadsheet.

align Configures the alignment of the column, for which you can
use the same value as for the hAlignproperty of the col
umn.

edmType Actual Edm.Type of the OData property, which might be
needed for proper formatting of columns in the spreadsheet.

description Field that points to the description (UI.Text annotation)
of this column, or, if custom-formatted columns are used,
you can use the description that is used in the formatter
function.

2454 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Property Explanation

displayBehaviour Various combinations of the description that are displayed
on the UI in the following way:

● descriptionOnly: Shows a description only

● descriptionAndId: Shows the description followed
by the ID

● idAndDescription: Shows the ID followed by the
description

● idOnly: Shows the ID only

width Width of the column, for which you should use the same
value as for the column itself

isDigitSequence Can be used for Edm.String columns that represent a nu
meric field with leading zeros. If set to true, the leading ze
ros are removed from this string field as the number format
will be used in the spreadsheet.

Apart from the configuration, you can use the beforeExport event to change the formatting and
configuration of an SAPUI5 client-side export to a spreadsheet as shown in the samples.

For more information, see the sample for SmartTable and the samples for sap.ui.export.Spreadsheet .

17- Why is the SmartTable control (of type AnalyticalTable) showing the columns with the
Text annotation incorrectly in my app? Why is the SmartTable control not using
TextArrangement annotations as I expected?

The SmartTable control supports the Text and TextArrangement annotations which allow you to show
descriptions and ID fields together as annotated by the TextArrangement annotation (or configured using
displayBehaviour custom data). The use of this annotation has some limitations. For more information, see
the API Reference: Text annotation.

In addition, AnalyticalBinding ignores the entire $select if the dimensions and measures do not match
what has been calculated internally. Using Text or TextArrangement automatically only works if $select
contains the correct fields. If you add some dimensions to requestAtLeast, Criticality, or other fields,
$select is ignored, and fetching the descriptions and the criticality, for example, does not work.

During automatic dimension selection AnalyticalBinding ignores the specified $select if a text or
description column is added to the table content without the corresponding dimension. To work around this
binding limitation, the SmartTable control calculates and adds the dimension of the property of the Text
annotation to the additionalProperty custom data (used to calculate $select) in the SmartTable
control wherever possible.

There are a few other things to keep in mind when using this feature:

● Multiple dimensions must not point to the same property of the Text annotation (only one will be used).
● Text annotation itself is marked as a dimension, the actual dimension field is not automatically selected.
● The Text annotation for ignored or hidden dimension fields does not automatically contain the dimension

name in additionalProperty, as metadata analysis for such fields is ignored.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2455

https://sapui5.hana.ondemand.com/#/sample/sap.ui.comp.sample.smarttable.mtableCustom/preview
https://sapui5.hana.ondemand.com/#/entity/sap.ui.export.Spreadsheet/samples
https://sapui5.hana.ondemand.com/#/api/sap.ui.comp.smarttable.SmartTable/annotations/Text

18- How come the column headers in the SmartTable control of type ResponsiveTableIf the
property of the are clickable?
SmartTable internally activates actions for the column headers of a responsive table. Users can select a
column and sort and filter it using the buttons that are displayed.

Keep in mind that the following applies:

● The active column headers are only available if useTablePersonalisation="true".
● If a column has already been filtered, clicking the filter button will not show the selected column directly

(this is the same as in a grid table, since there is a restriction for p13nFilterPanel).
● Pressing the Ctrl key and clicking on a column to add multiple sorters is currently not supported.

For more information, see the sample.

19- How come the Export to Spreadsheet button of the SmartTable control has a menu?
If exportType="UI5Client" for SmartTable, the Export to Spreadsheet button will be rendered as
sap.m.MenuButton with the menu options Export and Export As. Export As provides a number of export
settings that can be configured by the user.

For more information about the spreadsheet export and the options on the export UI, see Spreadsheet Export
[page 1286].

20- Why does the initialise event of SmartTable not get fired in my scenario?
The SmartTable control fires the initialise event just once after it has completed analyzing the metadata
and has initialised its inner state for the first time. Therefore, using attachInitialise does not help.
However, the isInitialised method can be used in such scenarios.

You can also use the following code sample to handle scenarios where you need to trigger some function after
this control has been initialized. It should work in scenarios where the event has already been fired:

 if (oSmartControl.isInitialised()){
 runSomeCodeAfterInit();
} else {
 oSmartControl.attachInitialise(runSomeCodeAfterInit);
}

21- How is sorting done in amount fields with multiple currencies if
ApplyMultiUnitBehaviorForSortingAndFiltering is set?
The SmartTable control automatically adds the unit, in this case the currency code, as an additional sorter
before the amount unless the unit is added as a sorter explicitly. This happens if the
ApplyMultiUnitBehaviorForSortingAndFiltering annotation is applied. This behavior is applicable for
all columns in the SmartTable control.

For more information, see the API Reference.

For custom columns, the required p13nData information has to be provided by the consumers (isCurrency
and unit).

22- Which key combinations can be used for the SmartTable control?
The following key combinations are supported:

● CTRL + SHIFT + E or ⌘ / Command + SHIFT + E : Opens the Export As dialog for the spreadsheet
export

2456 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/sample/sap.ui.comp.sample.smarttable.mtable/preview
https://sapui5.hana.ondemand.com/#/api/sap.ui.comp.smarttable.SmartTable/annotations/ApplyMultiUnitBehaviorForSortingAndFiltering

● CTRL + , or ⌘ / Command + , : Opens the personalization settings

23- Why does the first column not appear in the personalization settings when using
treeTable as the table type?

The SmartTable control disables the personalization for the first column if tableType is set to
sap.ui.comp.smarttable.TableType.TreeTable. The TreeTable control provides a comprehensive set
of features for displaying hierarchical data where a table is displayed as a hierarchical tree. TreeTable is
designed to retain this structure also for the first column of the table, which is why SmartTable excludes it
from personalization.

24- Why is the unit of measure (UoM) or currency not right aligned with the column header?

The currency and UoM columns in the SmartTable control are built to be aligned at decimal point. Although
the overall content is right aligned, the header and cell might not be aligned as this is a generic control that is
not built to handle a single currency or UoM (for example, %, h).

The UoM part always uses ~3em to prevent the content from being cut off. That is why there might be a space
behind the unit in the cell in contrast to the header, depending on the UoM or currency used.

Also, if either the Product Depth or Product Width column is added to a SmartTable control, the UoM, such as
m or cm, might not be aligned, but the aim is to align the values at decimal point and not at header and content
level.

The application can use custom columns if an exact alignment of content and header is required.

For more information, see the Sample.

Smart Variant Management

The sap.ui.comp.smartvariants.SmartVariantManagement control provides an interface to enable a
simple integration of the sap.ui.comp.variants.VariantManagement control and access to the layered
repository of SAPUI5 flexibility for easy communication.

The frequently asked questions section below aims at answering some basic questions that you might have
when using this control.

 Note
The code samples in this section reflect examples of possible use cases and might not always be suitable
for your purposes. Therefore, we recommend that you do not copy and use them directly.

For more information about this control, see the API Reference and the sample.

Overview

The SmartVariantManagement control is a specialization of the VariantManagement control. This basic
control handles the visual representation of variants, or views, on the user interface.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2457

https://sapui5.hana.ondemand.com/#/entity/sap.ui.comp.smarttable.SmartTable/sample/sap.ui.comp.sample.smarttable.smartTableWithCriticality
https://sapui5.hana.ondemand.com/#/api/sap.ui.comp.smartvariants.SmartVariantManagement
https://sapui5.hana.ondemand.com/#/sample/sap.ui.comp.tutorial.smartControls.07/preview

 Note
You can define views for specific selections of data on the user interface, for example, based on filter
settings. Views are also called variants, usually in a more technical context, for example, in the API names
and texts of the control.

The SmartVariantManagement control communicates with the layered repository. The layered repository
provides a way to store and retrieve flexibility information, such as personalization data and views for other
controls.

End users can create, change, and save views that will then be stored in the USER or CUSTOMER layer of the
layered repository depending on the relevant use case.

For more information about SAPUI5 flexibility and the layering concept, see SAPUI5 Flexibility: Adapting UIs
Made Easy [page 1152].

 Note
We recommend to use the SmartVariantManagement control rather than the VariantManagement
control, because it enables the communication with the layered repository.

The SmartVariantManagement control can be used in combination with the following smart controls:

● SmartFilterBar
● SmartTable
● SmartChart

Prerequisites

To use the SmartVariantManagement control, consuming applications have to provide the following
information and comply with the interface standard:

● The control using the personalization data
● A type
● The name of the property describing the key
● Optional information about the data source

This information has to be transferred to the SmartVariantManagement control during creation using the
personalizableControls association. To transfer the data, the
sap.ui.comp.smartvariants.PersonalizableInfo class must be used.

The control using the personalization data must also be attached to the Initialise event of the control and
call the initialise method of the control, as shown in the following example:

 sap.ui.require(['sap/ui/comp/smartvariants/SmartVariantManagement',
 'sap/ui/comp/smartvariants/PersonalizableInfo'
], function (SmartVariantManagement, PersonalizableInfo) {
 var oSmartVariantManagement = new SmartVariantManagement();
 var oPersInfo = new PersonalizableInfo({
 type: "filterBar",
 keyName: "persistencyKey",
 dataSource: this.getEntityType()

2458 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 });
 oPersInfo.addControl(this);
 oSmartVariantManagement.addPersonalizableControl(oPersInfo);
 this.fnInitialiseVariants = jQuery.proxy(this._initialiseVariants, this);
 oSmartVariantManagement.attachInitialise(this.fnInitialiseVariants);
 oSmartVariantManagement.initialise();
})

Once the SmartVariantManagement control has initialized the layered repository and retrieved the relevant
changes, it informs the control using the personalization data about the end of the initialization phase with the
Initialise event.

Details

To exchange data with the layered repository, the control using the personalization data has to provide the
following methods that can return and retrieve variants:

● fetchVariant
● applyVariant (oVariant)

The fetchVariant method is called by the SmartVariantManagement control every time an interaction
takes place with the VariantManagement control and when executing a Save. In the latter case, the control
using the personalization data has to return a JSON-compliant object. The layered repository treats this
information as a black box. It does not manipulate this object in any way.

The applyVariant method is called by the SmartVariantManagement control every time the user selects a
new entry in the view list. The previously stored JSON-compliant object will be transferred to the
applyVariant method, and the control using the personalization data can now respond to the information
stored in this object, as shown in the example:

 sap.ui.comp.smartfilterbar.SmartFilterBar.prototype.fetchVariant = function() {
 var aFiltersInfo;
 var oVariant = {};
 aFiltersInfo = this._determineVariantFiltersInfo();
 oVariant.filterbar = (!aFiltersInfo) ? [] : aFiltersInfo;
 oVariant.filterBarVariant = this._fetchVariantFiltersData();
 return oVariant;
};
sap.ui.comp.smartfilterbar.SmartFilterBar.prototype.applyVariant =
function(oVariant) {
 this._applyVariant(oVariant);
};

 Note
The SmartVariantManagement control triggers the fetchVariant method without any user interaction
right after it fires the Initialise event. This enables the SmartVariantManagement control to handle
the standard view. This view represents the state of the user interface that is delivered by default. The
control can revert the data to this view every time the user selects the standard view at a later point in time.

Page Variants
A page variant is a single UI instance of the SmartVariantManagement control that can personalize multiple
smart controls instead of only one.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2459

To use this enhanced function of the SmartVariantManagement control, take the following into
consideration:

● The SmartVariantManagement control has a persistencyKey property of its own.
This is the key for storing the personalization data of the smart controls that you want to personalize.

● For each smart control, a persistency key has to be provided.
Within the personalization data, this key will identify the specific data for each individual smart control.

● The smart controls support the smartVariant association which has to be assigned along with the page
variant reference.

 Note
If the page variant is used by the SmartFilterBar control, the persistency key of the page variant has to
be assigned using the pageVariantPersistencyKey custom data of the SmartFilterBar control. The
SmartFilterBar control internally adapts the related SmartChart or SmartTable controls, and
therefore, the smartVariant association doesn't have to be assigned.

For more information about page variants, see the sample.

Favorites

If you want to use favorites to manage your views, you have to set the useFavorites property in the
VariantManagement control to true (default is false).

In the VariantManagement control, each VariantItem has a favorite property that determines if the
VariantItem in question is treated as a favorite.

The SmartVariantManagement control automatically starts in a mode where favorites are activated.

You can define favorites in the Manage Views dialog. Favorites selected in the dialog are stored as changes in
the layered repository that are applied each time the SmartVariantManagement control is initiated.

FAQ

How can I share my views?

The SmartVariantManagement control allows you as the end user to share your views with other users. This
can be done by making them public by selecting Public in the Save View dialog when saving a new view.

When you want to save the view, you have to select a transport request. The selection you get depends on the
setup of your system and how you use SAPUI5 flexibility. The transport function for the layered repository has
to be enabled.For more information about sharing views, see the API Reference and the sample.

How can I make sure that only key users can make views public?

You can use a setting in SAPUI5 flexibility that determines whether views can be shared or made public by all
users (default) or key users only. For more information on how to activate the related key user check, see
2658662 . For more information about making views public, see Step 7: View Management [page 589].

2460 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#/sample/sap.ui.comp.tutorial.smartControls.08/preview
https://sapui5.hana.ondemand.com/#/api/sap.ui.comp.variants.VariantManagement/methods/getShowShare
https://sapui5.hana.ondemand.com/#/sample/sap.ui.comp.tutorial.smartControls.07/preview
http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/2658662

sap.ui.core

This library contains the jQuery plugins (jQuery.sap.*), the core and all its components, base classes for
controls, components and the Model-View-Controller (MVC) classes.

 Note
The following sections only provide additional information for some of the controls. For a complete list of all
controls and their documentation, see the API Reference and the Samples.

Related Information

Supported Library Combinations [page 26]
API Reference: sap.ui.core

Icon and Icon Pool

The sap-icon:// protocol supports the use of icons in your application based on the icon font concept, which
uses an embedded font instead of a pixel image.

Compared to image-based icons, icon font is easily scalable and you can change the color and apply various
effects via CSS. SAPUI5 provides the Icon control in the sap/ui/core/Icon module and a set of predefined
icons available in IconPool in the sap/ui/core/IconPool module.

 Note
The icon font will not work if Web fonts are blocked for the user's operating system, for example, by the
Blocking Untrusted Fonts feature in Microsoft Windows (see Block untrusted fonts in an enterprise in the
Microsoft Windows IT Center).

 Restriction
In SAP Fiori app, you should not use icons with active state to trigger actions, use icon-only buttons
(sap.m.button) instead.

Using Custom Icons

To display your custom icons in all browsers that SAPUI5 supports, you need both, the woff and the woff2
version of your icon file. To use your own icon font files in the Icon control, the font file and the metadata for

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2461

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.html
https://sapui5.hana.ondemand.com/explored.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.core.html
http://help.sap.com/disclaimer?site=https%3A%2F%2Ftechnet.microsoft.com%2Fen-us%2Fitpro%2Fwindows%2Fkeep-secure%2Fblock-untrusted-fonts-in-enterprise

the icons in the font file need to be registered in the IconPool. You can register both of them by calling the
IconPool.registerFont with a config object which contains the following options:

● fontFamily: Name of the font file without the font extension
● fontURI: URI of the folder where the woff and woff2 files are included. You can use the

sap.ui.require.toUrl function to resolve a folder path based on the resource path setting.
● collectionName (optional): Collection name which can be used in the sap-icon URI to reference the

icons. If this is not provided, the fontFamily is used as collectionName.
● metadata (optional): Object that contains the mapping of the icon name to the icon's hex code, for

example { "code1": "e011", "code2": "e012", "spike-arrest": "e013", "verify-api":
"e014" }.

● metadataURI (optional): URI of a JSON file that contains the mapping of the icon name to the icon's hex
code for every icon in the icon file

● lazy (optional): Metadata for the icons is not loaded until the first icon from the icon set is used

 Note
If neither metadata nor metadataURI is provided, a request is sent to fontURI/fontFamily.json to load
the metadata.

 Example
The sap.tnt library provides an extra icon set. The sap/tnt/themes/base/fonts folder contains SAP-
icons-TNT.woff and SAP-icons-TNT.woff2 as well as the SAP-icons-TNT.json JSON file, which
contains the mapping of the icon name and the icon's hex code:

{ "technicalsystem": "e000",
 "systemjava": "e001",
 "systemabap": "e002",
 "systemrecommendations": "e003",
 "system": "e004",
 "systemtrex": "e005",
 "systemtracks": "e006",
 "technicalinstance": "e008",
 "technicalscenario": "e007",
 "throughput-backlog": "e009",
 ... }

The JSON file has the same name as the woff and woff2 files, so it is not necessary to set metadataURI. To
register the icon in the IconPool, use the following code. Note that in the example the metadata is not loaded
until one icon from this icon set is used because lazy is set to true.

// "IconPool" required from module "sap/ui/core/IconPool" IconPool.registerFont({
 collectionName: "tnt",
 fontFamily: "SAP-icons-TNT",
 fontURI: sap.ui.require.toUrl("sap/tnt/themes/base/fonts"),
 lazy: true });

2462 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Referencing Icons

To reference icons, you assign the icon URI to a control by setting sURI for the control's corresponding
property. To get the icon URI, the following two options exist:

● Call IconPool.getIconURI with the iconName property:

 // "IconPool" required from module "sap/ui/core/IconPool" var sURI = IconPool.getIconURI("accidental-leave"); //please change the
parameter to the name of your desired icon

● If you know the collection name and the icon name, write the icon URI directly in the following format:

sap-icon://[collection-name]/[icon-name]

 Note
You need the collection name only for custom icons. The URI for predefined icons does not need the
collection name.

Using Icons in Controls

The following code snippet shows how the sap.m.Dialog control that already supported image URI has been
adapted to also support icon URI. IconPool.createControlByURI returns an instance of Icon if sURI is an
icon URI. Otherwise, the second parameter is called as a constructor method to create an instance. The sURI
is set for the src property of the instance.

 // "IconPool" required from module "sap/ui/core/IconPool" // "Image" required from module "sap/m/Image"
 // "Device" required from module "sap/ui/Device"
 Dialog.prototype.setIcon = function(sURI){
 this.setProperty("icon", sURI, true);
 if (!Device.os.ios){
 //icon is only shown in non iOS platform
 if (this._iconImage) {
 this._iconImage.setSrc(sURI);
 } else {
 this._iconImage = IconPool.createControlByURI({
 src: sURI //src is mandatory
 /* other properties can be put here, such as id, ...*/
 }, Image);
 }
 }
 return this;
 };

If the img tag is rendered directly in the control, and not by creating an image control, use the writeIcon
method on sap/ui/core/RenderManager. The writeIcon method accepts a URI as the first parameter.
Depending on this parameter, it renders either an img or a span tag. The classes and attributes defined in the
second and third parameter are also added to the rendered tag.

Font face is inserted into the style sheet dynamically when Icon or writeIcon are used for the first time. If the
special character needs to be written into the CSS to show the icon in a control, call the

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2463

IconPool.insertFontFaceStyle function to insert the built in font face in your CSS. This is shown in the
following code snippet:

 // "IconPool" required from module "sap/ui/core/IconPool"
 IconPool.insertFontFaceStyle(); });

Styling the Icon Control

If you render the icon span directly in your control, or use icon font in your CSS, you have the maximal freedom
to style the Icon control.

If you use the icon by creating an instance of Icon within your control, however, use the CSS class sapUiIcon
to add a new style to the icon. To avoid influencing the style of icons used elsewhere, wrap the icon CSS class
with your control's root DOM class.

sap.ui.richtexteditor

The sap.ui.richtexteditor offers functionality for text editing - like, for example, bullets, indentation, fonts, and
coloring.

Overview

The RichTextEditor uses an open-source library called TinyMCE. Beside the native toolbar, it can also use a
toolbar built with sap.m controls.

Preamble
The RichTextEditor uses a third-party component and therefore some additional limitations apply for its
proper usage and support:

● If you use API calls to the native API of TinyMCE, we cannot guarantee backwards compatibility after an
upgrade of the TinyMCE library.

● As of version 1.60, the default editor type is TinyMCE4. Keep in mind that TinyMCE3 is no longer supported
and cannot be used.

● Accessibility features that the wrapper control provides, like high-contrast themes and keyboard handling,
are not fully available for the native toolbar.

● The third-party component TinyMCE does not fully support the High Contrast themes. The control, which
internally uses TinyMCE, is thus also not compliant to this product standard. Applications, which embed
the RichTextEditor control and use the high-contrast theme, will not have a full High Contrast support.
Certain buttons, menus etc. are available in the correct theme, but many elements are still showing up with
a normal, non-contrast style.

● The RichTextEditor uses a third-party component, which might in some cases not be completely
compatible with the way UI5's (re-)rendering mechanism works. If you keep hidden instances of the

2464 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

control (instances which are not visible in the DOM), you might run into problems with some browser
versions. In this case, please make sure that you destroy the RichTextEditor instance instead of hiding
it, and create a new one when you show it again.

● Known cases that might cause Content Security Policy relevant issues:
○ If you are using one of the following plugins: compat3x, linkchecker, preview.
○ If you are using the tinymce.ui.Iframe widget.
○ If you are using the Internet Explorer 11, or below versions, and modify the document.domain.

● If you want to use the custom toolbar, you need to instantiate the RichTextEditor in the application’s
controller. This way the controller can check and wait for the sap.m library to be loaded and then init the
controls. RichTextEditor can be embedded in an XML view, but as the XML view adds an additional layer,
this may lead to problems while loading the custom toolbar. The sap.m library cannot be required from
TinyMCE. This means that sap.m may not be available in time for the rendering of the custom toolbar.
See Supported Library Combinations [page 26].
Using the native toolbar in an XML view is still possible.

Guidelines
● Do not instantiate the RichTextEditor from a hidden container (for example a div with

visibility="hidden">).
● Make sure that you destroy the RichTextEditor instance instead of hiding it, and create a new one when

you show it again.
● The RichTextEditor has to be used only for desktop scenarios.

Custom sap.m. Toolbar
To replace the native toolbar, set the following properties:

● customToolbar=true
● editorType = tinyMCE4
● If you want to use the custom toolbar, you need to instantiate the RichTextEditor in the application’s

controller. It cannot be embedded in an XML view.

 Caution
In order to render the custom toolbar, make sure that your application has loaded the sap.m library.

Custom Buttons
With version 1.48 you can add your own buttons to the custom toolbar. The buttons are stored in the
customButtons aggregation. Make sure that you provide dedicated click events for your buttons.

Tables
As of version 1.50, the table functionality is available just by adding the table button group for both toolbars
(TinyMCE and custom).

 Note
This changes won't affect applications already using a sap.ui.richtexteditor.RichTextEditor with
an added table plugin.

When the table button group is added and the customToolbar property is set to true, a button with a
table icon will be visible in the custom toolbar. This button opens a sap.m.Dialog for inserting tables. You

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2465

can choose how many rows and columns your table will have and set the height and width properties. After
creating the table, the native TinyMCE context menu for modifying the table properties, triggered from
selecting the table in the edit area, will be available.

Headings

As of version 1.52, the heading functionality is available by adding the styleselect or formatselect button
group to both toolbars (TinyMCE and custom). The available formatting options are heading 1 to heading 6 and
paragraph.

 Note
These changes won't affect applications already using a sap.ui.richtexteditor.RichTextEditor
with an added styleselect or formatselect option.

For more information, see the sample.

Custom Button Order

As of version 1.54, you can customize the position of the button groups in the custom toolbar. This can be done
by supplying a value for the new customToolbarPriority property of the button group. The groups in the
toolbar are placed in ascending order respective to their customToolbarPriority values.

 Example

RichTextEditor.setButtonGroups([{ name: "font-style",
 visible: true,
 row: 0,
 priority: 10,
 customToolbarPriority: 30,
 buttons: [
 "bold", "italic", "underline", "strikethrough"
]
 }, {
 name: "text-align",
 visible: true,
 row: 0,
 priority: 20,
 customToolbarPriority: 20,
 buttons: [
 "justifyleft", "justifycenter", "justifyright",
"justifyfull"
]
 }, {
 name: "clipboard",
 visible: true,
 row: 1,
 priority: 10,
 customToolbarPriority: 10,
 buttons: [
 "cut", "copy", "paste"
] }]).

2466 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/entity/sap.ui.richtexteditor.RichTextEditor/samples

Related Information

Supported Library Combinations [page 26]

sap.ui.table

Table-like controls, mainly for desktop scenarios.

 Note
The following sections only provide additional information for some of the controls. For a complete list of all
controls and their documentation, see the API Reference and the Samples.

Row Virtualization

To improve rendering and memory performance, only the number of rows that are visible on the user interface
are created internally for sap.ui.table.Table (this is called "row virtualization"). For example, if the table
has enough space to render 20 rows, exactly 20 rows are created internally.

 Example
Imagine an OData service with 10 million entries. Keeping 10 million row controls, either inside or outside
the DOM, is simply not technically feasible for most client devices. Also, a single table row usually contains
additional controls inside each cell, such as sap.m.Labels or sap.ui.unified.Currency controls. The
number of used control instances would then be multiplied by the number of columns for every row.
Instead of creating all of these SAPUI5 controls for every data entry, the table virtualizes the rows, and in
this way only a limited set of control instances are created for each table control instance.

OData Model

OData as a RESTful protocol provides a specified and a generalized way to access back-end services via HTTP
requests. The SAPUI5 OData model provides a stable module for querying OData services via the network. All
sap.ui.table.* controls fully support data bindings over OData V2. Since OData services can hold millions
of entries, and these entries have to be loaded somehow to the client and rendered, the sap.ui.table.*
controls implement advanced paging mechanisms based on the underlying ODataListBinding and
ODataTreeBinding. The SAPUI5 OData bindings take care of all necessary back-end requests to retrieve the
currently-needed data entries. This is done as efficiently as possible with the minimum amount of back-end
requests.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2467

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.html
https://sapui5.hana.ondemand.com/explored.html

Related Information

OData V2 Model [page 883]
API Reference: sap.ui.table
Tables: Which One Should I Choose? [page 2286]
Supported Library Combinations [page 26]
Browser and Platform Support [page 20]

sap.ui.vk

The sap.ui.vk library provides controls for the visualization and manipulation of 2D and 3D models in your
application.

 Note
The following sections only provide additional information for some of the controls. For a complete list of all
controls and their documentation, see the API Reference and the Samples.

Native Viewport

The Native Viewport control (sap.ui.vk.NativeViewport) provides a rendering canvas for 2D images
loaded into the Viewer application.

API Reference / Sample

● sap.ui.vk.NativeViewport in the API Reference in the Demo Kit

Overview

The Native Viewport control (sap.ui.vk.NativeViewport) loads files supported natively by the browser
into a viewing area using standard HTML and CSS. Viewing of the loaded images is enhanced with standard VIT
pan and zoom gesture support.

The sap.ui.vk.NativeViewport control can occupy all or part of the user interface.

2468 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.table.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.html
https://sapui5.hana.ondemand.com/explored.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.vk.NativeViewport.html

Details

Loading Images into the Native Viewport
The NativeViewport control supports the loading of images that are natively supported by the browser.

Currently, the NativeViewport control supports the loading of the following file formats:

● JPG / JPEG
● PNG
● GIF
● TIFF
● BMP
● SVG

You must specify the extension of the file you want to load. Otherwise, the file will not load.

If it can be detected, a console message will be displayed when a problem occurs during file loading.

Gesture Handling in the Native Viewport
Gestures such as pan and zoom are captured and processed by the sap.ui.vk.Loco library. A new
NativeViewport instance is initialized with an instance of the sap.ui.vk.Loco library attached, so that gestures
can be captured and processed.

Keyboard Shortcuts in the Native Viewport
In addition to mouse and touch gestures, keyboard shortcuts are available for navigating around the
NativeViewport instance:

Table 127: Native Viewport keyboard shortcuts

Keyboard shortcut Function

DIRECTIONAL ARROW Pan the image.

+ Zoom into the image.

- Zoom out of the image.

Constraints

● The NativeViewport control only loads 2D images. For loading 3D models, use the
sap.ui.vk.Viewport control.

● Currently, the NativeViewport control does not support interactive SVG files; that is, any links in an SVG
file will not work in the Native Viewport.

Related Information

● Viewport [page 2480]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2469

Scene Tree

The sap.ui.vk.SceneTree control presents a hierarchical view of the nodes in a given scene.

API Reference / Sample

● sap.ui.vk.SceneTree in the API Reference in the Demo Kit
● Step 4 - Viewport with Scene Tree in the Demo Kit

Overview

The Scene Tree control (sap.ui.vk.SceneTree) presents a hierarchical view of all the nodes in a given scene.

Prerequisites

Before a scene's nodes can appear in the Scene Tree, the Scene Tree control needs to be connected to:

● a ViewStateManager object, which handles the visibility and selection states of a scene
● a Scene object, so that the Scene Tree knows the nodes to display in the hierarchy

Details

The Scene Tree displays the collection of nodes in a scene. You can add a Scene Tree to your application by
using the sap.ui.vk.SceneTree control. The Scene Tree is also avaliable in the composite
sap.ui.vk.Viewer control.

Before a scene's nodes can appear in the Scene Tree, you will need to set up two-way data binding between the
Scene Tree and the Viewport in your application. Note that you can only bind to one Viewport instance at a
time.

The following sections outline the Scene Tree's selection and visibility behavior in more detail.

Hiding or Viewing the Scene Tree

When using the sap.ui.vk.Viewer control, the Scene Tree is enabled by default, which means that a
SceneTree instance is created. You can toggle the visibility of the Scene Tree using the Scene Tree button in
the Toolbar.

2470 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.vk.SceneTree.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.ui.vk/samples

The following table outlines what the Scene Tree button looks like in these different states:

Table 128: Scene Tree button states

Scene Tree button state Description

Scene Tree is shown (this is the default state).

Scene Tree is hidden.

Scene Tree is disabled, or, if a 2D file is loaded into the
Viewer application.

Selecting Nodes in the Scene Tree
By default, the Scene Tree is collapsed so that only the top-level nodes in the Scene are displayed.

You can expand the Scene Tree by clicking on the > icon next to a node to display that node's child nodes.

Selecting a node in the Scene Tree will highlight that node in the Viewport, and vice versa. If you select a node in
the Viewport that is currently hidden in the Scene Tree, the Scene Tree will expand automatically to display the
selected node in the Scene Tree's hierarchy.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2471

Selecting a node in the Scene Tree that has child nodes will result in the node and its child nodes being selected
in the Viewport.

2472 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Toggling Node Visibility in the Scene Tree

You can toggle between displaying or hiding a node from view in the Viewport by clicking the 'eye' icon
next to a node in the Scene Tree. The following example shows a comparison of two similar nodes, but with one
node being hidden from view.

If you toggle the visibility for a node that has child nodes, the visibility change will apply to the child nodes as
well. The following example shows the root node being set to hidden, resulting in all of its child nodes being
hidden as well.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2473

Related Information

● Viewport [page 2480]

Step Navigation

The sap.ui.vk.StepNavigation control enables navigation and activation of procedures and steps
contained in a single 3D scene.

API Reference / Sample

● sap.ui.vk.StepNavigation in the API Reference in the Demo Kit
● Step 5 - Viewport with Scene Tree and Step Navigation in the Demo Kit

2474 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.vk.StepNavigation.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.ui.vk/samples

Overview

The VDS file format supports pre-authored animations, also known as steps. Steps are grouped into
procedures.

The Step Navigation (sap.ui.vk.StepNavigation) control allows you to see which animations are available
in a 3D scene. You can play an animation for an individual step, or play all the steps for a single procedure from
start to finish.

Details

Step Navigation User Interface
The Step Navigation control can be divided into two parts: the top part of the control contains buttons and drop
down menus that allow you to choose a procedure, set the play mode, and play, pause, or skip a step. Below
these buttons, thumbnails of each step are displayed. You can hover over a thumbnail to show the name of the
step, and click on a thumbnail to play the step.

The following table describes the functionality of each of the buttons or dropdown menus in the Step
Navigation control:

Table 129: Step Navigation buttons and dropdown menus

Button / Menu name Icon Description

Previous Plays the previous step in the proce
dure.

Play Plays the currently selected step in the
procedure.

Pause Pauses the animation at the current
step.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2475

Button / Menu name Icon Description

Step Descriptions Shows or hides descriptions associated
with the steps. By default, Step De
scriptions are hidden.

When step descriptions are shown, a di
alog appears for the step that is being
played. The dialog contains the step's
name, and below it, any description as
sociated with the step.

Next Plays the next step in the procedure.

Play Options By default, there are three options:

● Play Step - play the currently se
lected step only.

● Play All - play all the steps in the
procedure.

● Play Remaining - play the currently
selected step, and all the subse
quent steps.

Procedures (the dropdown menu located to the
right of the Play Options dropdown
menu)

Select which procedure in the scene to
play. Depending on the loaded model,
you may have one or more procedures
to select from.

 Note
Individual buttons and menus cannot be disabled.

In addition to using these buttons and drop down menus to select which step or steps to play, you can also click
on the thumbnail for a step, and then click the Play button to play the animation associated with that step.

While a step is playing, you can still rotate, pan, or zoom in the scene.

Hiding or Displaying the Step Navigation Control
You can hide or view the Step Navigation control using the Step Navigation button in the toolbar (if
sap.ui.vk.Toolbar is used in the application).

By default, Step Navigation is hidden from view. You can change this so that when a scene with animation is
loaded into your application, then the Step Navigation control is displayed.

Table 130: Step Navigation button states

Step Navigation button state Description

Step Navigation is shown

2476 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Step Navigation button state Description

Step Navigation is hidden

Viewer

This control is intended to help application developers include simple 3D visualisation capability in their
application by connecting, configuring and presenting the essential Visualisation Toolkit controls a single
composite control.

API Reference / Sample

● sap.ui.vk.Viewer in the API Reference in the Demo Kit
● Step 1 - 3D Viewer With Single File Loading in the Demo Kit
● Step 2 - 3D Viewer With Multiple File Loading in the Demo Kit

Overview

The Viewer (sap.ui.vk.Viewer) control is intended to help application developers include simple 3D
visualisation capability in their application by connecting, configuring and presenting the essential Visual
Interaction toolkit (sap.ui.vk) controls into a single, composite control.

Most applications require the simplest possible visualisation capability, which includes the loading of a single
file into the application, and the initialisation of a 3D Viewport. Consumers of such an application also expect to
be able to pan, zoom, or rotate (if applicable) the scene, as well as receive visual cues when they select an
object in the 3D Viewport. The Viewer control aims to make it as easy as possible for an application developer
to include 3D visualisation capability by connecting, configuring and presenting some of the core Visual
Interaction toolkit controls into a single, composite control.

Prerequisites

● You must be able to create or obtain files in the SAP VDS (.vds) format to be able to display them in the
Viewer.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2477

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.vk.Viewer.html
https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.vk.tutorial.VIT.01/preview
https://sapui5.hana.ondemand.com/explored.html#/sample/sap.ui.vk.tutorial.VIT.02/preview

Details / Features

Default Layout
The following figure shows the default Viewer layout after it is initialized:

The following figure shows the Viewer layout with a file loaded and all available controls enabled and visible:

2478 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Enabling or Disabling Features

By default, instances of the Toolbar, Scene Tree, and Step Navigation controls are created after a Viewer is
initialized. You can change the following Viewer properties so that instances of these features are not created/
dislayed:

● enableSceneTree
● enableStepNavigation
● enableToolbar

'Disabling' the Toolbar will result in no Toolbar being shown in the application.

If the Toolbar feature is enabled, 'disabling' the Scene Tree or Step Navigation feature will result in their
respective toolbar buttons being grayed out.

Constraints

● The Viewer control is only capable of loading the SAP VDS file (.vds) format.
● The Viewer control is designed for simple consumption scenarios. If an application demands more control

of the elements in the Viewer or extended functionality, then the developer may need to compose their own
'Viewer' from the various Visual Interaction toolkit controls.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2479

Related Information

● Step 1: 3D Viewer With Single File Loading [page 609]
● Step 2: 3D Viewer With Multiple File Loading [page 617]

Viewport

The sap.ui.vk.Viewport control provides a rendering canvas for the 3D elements of a loaded scene/loaded
scenes.

API Reference / Sample

● sap.ui.vk.Viewport in the API Reference in the Demo Kit
● Step 3 - Standalone Viewport in the Demo Kit

Overview

The Viewport control's primary function is to provide a rendering surface for all or part of a loaded scene. The
Viewport can occupy all or part of the user interface.

Prerequisites

When initializing a Viewport instance, you must:

● attach it to a GraphicsCore instance, which handles the rendering of loaded scenes
● attach it to a Scene object so that the Viewport knows what scene to render

Details

Loading Scenes Into the Viewport
The Viewport supports the loading of the VDS file format.

File formats that are natively supported by browsers are loaded by the Native Viewport control.

Node Visibility in the Viewport
The Viewport can be connected to a ViewStateManager object to handle the selection and visibility states of
nodes in the scene. This means is that when selecting a node in the scene, that node will be highlighted. In

2480 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.vk.Viewport.html
https://sapui5.hana.ondemand.com/explored.html#/entity/sap.ui.vk/samples

addition, if the Viewport is connected to a Scene Tree control, the selection of a node in the Viewport will
highlight the associated item in the Scene Tree.

The visibility state of a node can only be affected when the Viewport is connected to a Scene Tree. Nodes can
be hidden or displayed in the Viewport using the Scene Tree functionality.

Gesture Handling in the Viewport
Gestures such as pan, zoom, and rotate are captured and processed by the sap.ui.vk.Loco library. The
Viewport should be initialized with an instance of the sap.ui.vk.Loco library attached, in order for gestures
to be captured and processed.

Keyboard Shortcuts in the Viewport
In addition to using mouse and touch gestures to navigate the scene in a Viewport, keyboard shortcuts are
available.

Table 131: Viewport keyboard shortcuts

Keyboard Shortcut Function

DIRECTIONAL ARROW Rotate the scene.

SHIFT + DIRECTIONAL ARROW Pan the scene.

+ Zoom into the scene.

- Zoom out of the scene.

Constraints

● The Viewport control loads 3D models in the SAP VDS (.vds) format only. Some 2D image formats can be
loaded by the sap.ui.vk.NativeViewport control. See Native Viewport.

Related Information

● Scene Tree [page 2470]
● Native Viewport [page 2468]

sap.uxap

This library includes controls associated with the ObjectPage.

 Note
The following sections only provide additional information for some of the controls. For a complete list of all
controls and their documentation, see the API Reference and the Samples.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2481

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.ui.html
https://sapui5.hana.ondemand.com/explored.html

Related Information

Supported Library Combinations [page 26]
API Reference: sap.uxap

Object Page Layout

The ObjectPageLayout control provides a layout that allows apps to easily display information related to a
business object.

Overview

The ObjectPageLayout layout is composed of a header (title and content), an optional anchor bar and block
content wrapped in sections and subsections that structure the information.

Figure 355: ObjectPageLayout main structure

Header (Title and Content)

The ObjectPageLayout's header consists of two parts: header title and header content.

2482 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.uxap.html

The header title is the topmost part of the ObjectPageLayout that is always visible. Its main purpose is to
display the name of the represented business object along with actions that the user can perform.

The header content scrolls along with the content of the page until it disappears (collapsed header). When
scrolled back to the top it becomes visible again (expanded header). It contains all the additional information of
the object.

Here is how the header title and header content are defined in both views:

XML view:

<ObjectPageLayout id="ObjectPageLayout"> <headerTitle> <ObjectPageHeader objectTitle="John Smith">
 <actions>
 <ObjectPageHeaderActionButton icon="sap-icon://edit"
text="Edit" />
 <ObjectPageHeaderActionButton icon="sap-icon://save"
text="Save" />
 </actions>
 </ObjectPageHeader> </headerTitle> <headerContent> <m:Label text="Personal description"/
>
 <m:Text value="some KPI info"/> </headerContent> </ObjectPageLayout>

JavaScript view:

// Create a header title, set the objectTitle property and add some action
buttons var oHeaderTitle = new sap.uxap.ObjectPageHeader();
oHeaderTitle.setObjectTitle("John Smith");
oHeaderTitle.addAction(new sap.uxap.ObjectPageHeaderActionButton({icon: "sap-
icon://edit", text: "Edit"}));
oHeaderTitle.addAction(new sap.uxap.ObjectPageHeaderActionButton({icon: "sap-
icon://save", text: "Save"}));
oObjectPage.setHeaderTitle(oHeaderTitle);
// Add arbitrary header content
oObjectPage.addHeaderContent(new sap.m.Label({text:"Personal description"})); oObjectPage.addHeaderContent(new sap.m.Text({value:"some KPI info"}));

Sections, Subsections, Blocks

The content of the page that appears below the header is composed of blocks structured into sections and
subsections.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2483

Figure 356: Blocks structured into sections and subsections

The blocks hold the actual app content, while the purpose of the sections and subsections is to define
grouping.

A subsection groups together a set of blocks (under a common title), while a section groups together a set of
subsections (under a common title).

The grouping enables the control to automatically create an internal menu (anchor bar) that shows the titles of
the sections and subsections as separate anchors. The user can select them to scroll to the respective section
or subsection content.

Here are some examples of how sections are initialized in both views:

XML view:

<ObjectPageLayout id="ObjectPageLayout" > <sections> <ObjectPageSection title="Payroll" > <subSections> <ObjectPageSubSection title="sub payroll title"> <blocks> <myNameSpace:myBlock/>
 <myNameSpace:myBlock/>
 <myNameSpace:myBlock/> </blocks> </ObjectPageSubSection> </subSections> </ObjectPageSection> </sections> </ObjectPageLayout>

JavaScript view:

var oSubSection1 = new sap.uxap.ObjectPageSubSection({title:"sub payroll
title"}); var oSection1 = new sap.uxap.ObjectPageSection({title:"Payroll"});
 oSection1.addSubSection(oSubSection1); oObjectPage.addSection(oSection1);

2484 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Layout Options

The subSectionLayout property provides information on how all the underlying subsections arrange the
blocks within their internal grid. The default is set to titleOnTop, which arranges the blocks content in
columns where the first column is below the section and subsection titles.

Figure 357: Blocks Content Arranged in Columns with Section and Subsection Titles Displayed on Top

Additionally, a second layout named titleOnLeft arranges the blocks content from the second column,
leaving the first one for section and subsection titles only.

Figure 358: Blocks Content Arranged in Columns with Section and Subsection Titles Displayed on the Left

Here is how this property is set in the XML view:

<ObjectPageLayout id="ObjectPageLayout" subSectionLayout="titleOnTop"> <sections>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2485

 <ObjectPageSection title="Payroll" >
 <subSections>
 <ObjectPageSubSection title="sub payroll title">
 <blocks>
 <myNameSpace:myBlock/>
 <myNameSpace:myBlock/>
 <myNameSpace:myBlock/>
 </blocks>
 </ObjectPageSubSection>
 </subSections>
 </ObjectPageSection>
 </sections> </ObjectPageLayout>

The moreBlocks aggregation of sap.uxap.ObjectPageSubSection allows you to specify blocks to be
displayed only after the user clicks the internally created See more button:

The See more button is only displayed for subsections that contain one of the following:

● Visible blocks in the moreBlocks aggregation
● Visible BlockBase block that has the showSubSectionMore property set to true

Additional Rules for Displaying Sections and Subsections

The following additional rules are internally applied to display the contents of the ObjectPageLayout
correctly. Each rule is applied to the output of the preceding rule.

1. If the subsection content is empty (contains no blocks), it is not displayed (no anchor is displayed for that
subsection in the anchor bar and no title is displayed in the page body).

2486 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

2. If the section content is empty (contains no subsections), it is not displayed (no anchor is displayed for
that section in the anchor bar and no title is displayed in the page body).

3. If a section without a title contains only one subsection with a title, the section gets the title of the
subsection (SectionTitle=SubsectionTitle and SubsectionTitle=NULL).

4. If the ObjectPageLayout contains only one section, no anchor bar is displayed.
5. If there are more than one sections, the first one will not have a title.

Lazy Loading

The lazy loading mechanism allows you to load data only when the blocks are inside or near the visible area on
the screen. This way, you avoid sending too many requests from the start of the page loading.

If you want to use lazy loading, all your blocks must be based on BlockBase, otherwise they are loaded as
normal SAPUI5 components.

Lazy loading is disabled by default. To enable it, set the enableLazyLoading property to true:

<ObjectPageLayout id="ObjectPageLayout" enableLazyLoading="true">

The ObjectPageLayout control ensures that only the visible blocks and those adjacent to them have loaded
their data, but not the entire page. As the user scrolls or navigates within the page, new data is requested as
needed.

 Note
Setting enableLazyLoading to true after the ObjectPageLayout has been instantiated does not work,
as all bindings will have been resolved by then.

Related Information

Object Page Headers [page 2488]
Anchor Bar [page 2502]
Object Page Blocks [page 2504]
Creating Blocks [page 2507]
Object Page Scrolling [page 2509]
API Reference: sap.uxap.ObjectPageLayout
API Reference: sap.uxap.ObjectPageSection
API Reference: sap.uxap.ObjectPageSubSection
API Reference: sap.uxap.BlockBase

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2487

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.uxap.ObjectPageLayout.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.uxap.ObjectPageSection.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.uxap.ObjectPageSubSection.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.uxap.BlockBase.html

Object Page Headers

The sap.uxap.ObjectPageLayout control has two types of header - classic header and dynamic header.

Overview

The sap.uxap.ObjectPageLayout control implements the snapping header concept. This means that the
upper part of the header (Header Title) always stays visible, while the lower part (Header Content) can scroll
out of view.

The common pattern is that the most important information describing the object, such as title, subtitle, and
image is in the Header Content area when the header is expanded, and moves to the Header Title area when
the header is collapsed (snapped - its lower part scrolled out of view).

Figure 359: sap.uxap.ObjectPageLayout header in expanded state

The following image shows the collapsed (snapped) header is where the Header Content area is scrolled out
and not visible, and the main information is visible in the Header Title area.

2488 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Figure 360: sap.uxap.ObjectPageLayout Header in Collapsed (snapped) State

The Classic Header

Up to version 1.52, only sap.uxap.ObjectPageHeader could have been used to build up the
sap.uxap.ObjectPageLayout header.

Header area
sap.uxap.ObjectPageLayout
aggregation App must provide:

Header Title headerTitle (0..1) An instance of the
sap.uxap.ObjectPageHeader
control

Header Content headerContent (0..n) An array of arbitrary controls.

 Note
sap.uxap.ObjectPageHead
erContent control is used inter
nally to display the controls.

The app provides an instance of sap.uxap.ObjectPageHeader as the value of the headerTitle
aggregation, and arbitrary controls as the value of the headerContent aggregation (which are internally
added to an instance of the sap.uxap.ObjectPageHeaderContent control).

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2489

The Dynamic Header (Since Version 1.52)

As of version 1.52, a new sap.uxap.ObjectPageDynamicHeaderTitle control can be used to build a
dynamic header for sap.uxap.ObjectPageLayout.

Header Area
sap.uxap.ObjectPageLayout
aggregation App Must Provide:

Header Title headerTitle (0..1) An instance of the
sap.uxap.ObjectPageDynamic
HeaderTitle control

Header Content headerContent (0..n) An array of arbitrary controls.

 Note
sap.uxap.ObjectPageDyna
micHeaderContent control is
used internally to display the con
trols.

Again, the app provides an instance of sap.uxap.ObjectPageDynamicHeaderTitle as the value of the
headerTitle aggregation and a list of controls for the headerContent aggregation
(sap.uxap.ObjectPageLayout uses internally sap.uxap.ObjectPageDynamicHeaderContent to lay out
the controls).

Related Information

API Reference: sap.uxap.ObjectPageLayout
API Reference: sap.uxap.ObjectPageHeader
API Reference: sap.uxap.ObjectPageDynamicHeaderTitle

Object Page Classic Header

Overview of the structure and features for sap.uxap.ObjectPageLayout's classic header.

Main Structure

The ObjectPageHeader control consists of two main parts - Header Title and Header Content.

2490 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.uxap.ObjectPageLayout.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.uxap.sap.uxap.ObjectPageHeader.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.uxap.ObjectPageDynamicHeaderTitle.html

1. Header Title (headerTitle) - Displayed at the top of the header and always remains visible above the
scrollable content of the page. It contains the title and most prominent details of the object.

2. The Header Content (headerContent) - Scrolls along with the content of the page until it disappears
(collapsed header). When scrolled back to the top it becomes visible again (expanded header). It contains
all the additional information of the object.

Figure 361: Collapsing and Expanding the Header

Header Title

This part of the header contains the basic information of the object.

Figure 362: Navigation bar, Breadcrumbs and Actions in the Header Title

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2491

The top area in the Header Title is for the navigation bar (navigationBar). It contains the top-most element
(sap.m.Bar) and provides the option to have a Back button for returning to the previous selection and
navigation actions on the opposite side.

The area below the navigation bar is reserved for breadcrumbs navigation on one side (breadcrumbs) and
actions on the other (actions). The actions are declared as sap.uxap.ObjectPageHeaderActionButton
instances.

Figure 363: Title with Optional Indicators and Subtitle

You can set title (objectTitle) and subtitle (objectSubtitle). On larger screens the subtitle is displayed
next to the title. After a certain breakpoint, the subtitle moves below the title.

You can display several optional indicators right after the title. They are considered part of the title and when
there is not enough space they are wrapped and moved to more lines along with the title text.

Table 132: Optional indicators in the title

Optional Indicator API Properties

 Favorite
markFavorite

 Flagged
markFlagged

 Locked
markLocked

 Unsaved changes
markChanges

 Selector
showTitleSelector

 Note
Keep in mind that Locked and Unsaved changes are mutually exclusive. If both of them are set to be visible,
only the Locked state is displayed.

You can show and hide both the markers (Favorite and Flagged) simultaneously with the showMarkers boolean
property.

2492 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Figure 364: Object Image in Circle and Square Shapes

You can add an icon-sized image before the title by defining the image location in the objectImageURI
property. You can set the text used for the Alt and Tooltip attributes of the image with the objectImageAlt
property. To set the shape to Circle or Square, use the objectImageShape property.

You can control whether the image, title, subtitle, and actions are always visible or visible only when the header
is collapsed (snapped).

 Tip
To build a custom headerTitle, you can extend the ObjectPageHeader class and then use any control
in the headerTitle aggregation. The ObjectPageLayout, however, needs correct values for the
objectImageURI / objectImageShape and headerDesign, as those properties are important for the
headerContent in order to style it properly.

Header Content

The second part of the header is the Header Content. This is an aggregation of controls that are displayed in a
float layout underneath the Header Title. The controls that can be used in the headerContent aggregation are
the standard SAPUI5 controls and they are automatically styled to fit the current header style.

With the use of the sap.uxap.ObjectPageHeaderLayoutData class, you can specify for each control used
in the headerContent aggregation, whether it's visible on small, medium or large-sized layouts, what width it
takes and whether it has a visual separator displayed before and/or after itself.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2493

Figure 365: Header Content with sap.uxap.ObjectPageHeaderLayoutData - large, middle and small-sized layout

Related Information

API Reference: sap.uxap.ObjectPageHeader
API Reference: sap.uxap.ObjectPageHeaderLayoutData
API Reference: sap.uxap.ObjectPageLayout
Object Page Headers [page 2488]
Object Page Headers Comparison [page 2497]

Object Page Dynamic Header

Overview of the structure and features for sap.uxap.ObjectPageLayout's dynamic header.

The sap.uxap.ObjectPage's dynamic header is flexible and provides general-purpose aggregations that
allow you to build a custom header layout.

It consists of two parts - Header Title and Header Content.

2494 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.uxap.ObjectPageHeader.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.uxap.ObjectPageHeaderLayoutData.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.uxap.ObjectPageLayout.html

The upper part of the Header Title is reserved for breadcrumbs navigation. The opposite side of this upper
area is occupied by the navigationActions after a certain breakpoint.

Figure 366: Breadcrumbs and Navigation Actions in the Header Title

The Header Title area can be clicked/tapped to expand/collapse the dynamic header. Whenever the feature is
enabled (toggleHeaderOnTitleClick is set to true), an arrow button is positioned either below the Header
Content (when header is expanded) or below the Header Title (when header is collapsed). The expand/
collapsed state of the header can be toggled by either clicking on the Header Title area, or the arrow button.

When hovering over the arrow button or the Header Title area, both areas are highlighted indicating to the user
that an action can be taken.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2495

Figure 367: Expanding/Collapsing the Header Using Arrow Button and Title Click

The Header Content can be pinnable (headerContentPinnable is set to true). When the feature is enabled,
a pin toggle button is available allowing the header content to remain expanded when scrolling the page.

Figure 368: Pinning the Header to Remain Expanded when Scrolling the Page

Header Title

To implement the dynamic header, the app developer needs to provide an instance of the
sap.uxap.ObjectPageDynamicHeaderTitle control for the headerTitle aggregation of the
sap.uxap.ObjectPageLayout control.

2496 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

The sap.uxap.ObjectPageDynamicHeaderTitle extends sap.f.DynamicPageTitle. It can hold any
control and displays the most important information regarding the object that will always remain visible when
scrolling.

Header Content

To populate the header content area, provide an array of desired controls to the headerContent aggregation
of the sap.uxap.ObjectPageLayout control. sap.uxap.ObjectPageLayout uses internally
sap.uxap.ObjectPageDynamicHeaderContent to layout the controls.

Related Information

API Reference: sap.uxap.ObjectPageDynamicHeaderTitle
API Reference: sap.uxap.ObjectPageLayout
Object Page Headers [page 2488]
Object Page Headers Comparison [page 2497]

Object Page Headers Comparison

This section explains the differences and similarities between the two types of header of the
sap.uxap.ObjectPageLayout control.

Table 133: Summary of the controls used in the classic and the dynamic header

Header Area Classic Header Dynamic Header

Title sap.uxap.ObjectPageHeader sap.uxap.ObjectPageDynamic
HeaderTitle

Content (controls are used internally) sap.uxap.ObjectPageHeaderC
ontent

sap.uxap.ObjectPageDynamic
HeaderContent

Differences between the classic and the dynamic header

The classic header title is largely semantic, meaning that it has properties, such as objectTitle,
objectSubtitle and objectImageURI. It has a very specific layout based on these properties.

On the contrary, the dynamic header title is general-purpose. It doesn’t have any properties describing the
represented object, but rather several aggregations, such as heading and content, which the app can use to
display any information and build any layout. This requires more work by the app developer, but also more

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2497

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.uxap.ObjectPageDynamicHeaderTitle.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.uxap.ObjectPageLayout.html

flexibility. The new header uses internally sap.m.OverflowToolbar for the implementation of the actions
aggregation, which allows actions to have priority, grouping, and other sap.m.OverflowToolbar features.

The main difference between the classic and dynamic header content is that the dynamic header has the Pin
functionality, allowing the user to prevent it from scrolling out of view.

 Note
The controls, comprising the dynamic header title and header content, extend the sap.f.DynamicPage
title and header controls. They are adapted for the ObjectPageLayout use case, but essentially they
provide the same functionality.

Table 134: Relation between the sap.uxap.ObjectPageLayout dynamic header controls and the
sap.f.DynamicPage controls:

Layout Control Header Title Header Content

sap.uxap.ObjectPageLayout sap.uxap.ObjectPageDynamic
HeaderTitle

sap.uxap.ObjectPageDynamic
HeaderContent

sap.f.DynamicPage sap.f.DynamicPageTitle sap.f.DynamicPageHeader

Similarities between the classic and the dynamic header

Both header title controls have the actions aggregation, intended for buttons that perform actions on the
represented object.

Both header content controls have the content aggregation.

Features exclusive to the classic or the dynamic header

Some ObjectPageLayout features associated with the behavior of the classic header are considered legacy
(although technically not deprecated), and have more robust counterparts for the dynamic header.

Similarly, the dynamic header comes with a set of features (apart from its general structure) that are exclusive
to itself, and are not taken into account in the use case of the classic header.

Table 135: Overview of features exclusive to the classic header (all being ObjectPageLayout properties with the
exception of the sap.uxap.ObjectPageHeaderLayoutData class):

Features Exclusive to the Classic Header Description

showTitleInHeaderContent Determines whether the title, image, markers and
selectTitleArrow are displayed in the Header Content
area.

2498 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Features Exclusive to the Classic Header Description

isChildPage Determines whether the page is a child page and renders it
with a different design. Child pages have an additional
(darker/lighter) stripe on the left side of their header content
area.

alwaysShowContentHeader Determines whether Header Content will always be ex
panded on desktop.

showEditHeaderButton Determines whether an Edit button will be displayed in the
Header Content.

sap.uxap.ObjectPageHeaderLayoutData The sap.uxap.ObjectPageHeaderLayoutData can
only be set on headerContent items for the classic
header use case.

Table 136: Overview of features exclusive to the dynamic header (all being ObjectPageLayout properties):

Features Exclusive to the Dynamic Header Description

headerContentPinnable Determines whether the Header Content area can be pin
ned.

When set to true, a pin button is displayed within the Header
Content area. The pin button allows the user to make the
Header Content always visible at the top of the page above
any scrollable content.

toggleHeaderOnTitleClick Determines whether the user can switch between the ex
panded/collapsed states of the dynamic header by clicking/
tapping on the Header Title. If set to false, the Header Ti
tle is not clickable and the app must provide other means for
expanding/collapsing the dynamic header, if necessary.

preserveHeaderStateOnScroll Preserves the current header state when scrolling. For exam
ple, if the user expands the header by clicking on the title
and then scrolls down the page, the header will remain ex
panded.

toggleHeaderOnTitleClick When the feature is enabled, arrow buttons below the
Header Content appear, the Header Title and the arrow but
tons can be clicked/tapped for collapsing/expanding the
header and there is additional visual indication while hover
ing over the Header Title area or the arrow buttons.

If a legacy property, for example showTitleInHeaderContent is set, but an instance of
sap.uxap.ObjectPageDynamicHeaderTitle is used for the headerTitle aggregation (which will be
paired internally with an instance of sap.uxap.ObjectPageDynamicHeaderContent for the header
content), this property will be ignored.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2499

Similarly, if toggleHeaderOnTitleClick is set, but the classic title is used (sap.uxap.ObjectPageHeader
passed as the value of the headerTitle aggregation), the property will be ignored as this feature is not
supported by the classic header title/header content pair.

Which header should I use in my app?

The dynamic header is recommended as it supports advanced features, such as pinning and collapse/expand
visual indication.

Here is a sample usage of the dynamic header - the value of the headerTitle aggregation in an XML view:

<headerTitle> <ObjectPageDynamicHeaderTitle primaryArea="Left">
 <breadcrumbs>
 <m:Breadcrumbs currentLocationText="My Profile">
 <m:Link text='My Company' />
 <m:Link text='My Department' />
 <m:Link text='Employees' />
 </m:Breadcrumbs>
 </breadcrumbs>
 <expandedHeading>
 <m:FlexBox wrap="Wrap" fitContainer="true" alignItems="Center">
 <m:Title text="Denise Smith" wrapping="true"
class="sapUiTinyMarginEnd"/>
 <m:FlexBox wrap="NoWrap" fitContainer="true" alignItems="Center"
class="sapUiTinyMarginEnd">
 <m:ObjectMarker type="Favorite" class="sapUiTinyMarginEnd"/>
 <m:ObjectMarker type="Flagged"/>
 <m:Button icon="sap-icon://private" type="Transparent"/>
 <m:Button icon="sap-icon://arrow-down" type="Transparent"/>
 </m:FlexBox>
 </m:FlexBox>
 </expandedHeading>
 <snappedHeading>
 <m:FlexBox wrap="Wrap" fitContainer="true" alignItems="Center">
 <m:FlexBox wrap="NoWrap" fitContainer="true" alignItems="Center"
class="sapUiTinyMarginEnd">
 <f:Avatar src="../../sap/f/images/Woman_avatar_02.png"
displaySize="S" class="sapUiTinyMarginEnd"/>
 <m:Title text="Denise Smith" wrapping="true"
class="sapUiTinyMarginEnd"/>
 </m:FlexBox>
 <m:FlexBox wrap="NoWrap" fitContainer="true" alignItems="Center"
class="sapUiTinyMarginEnd">
 <m:ObjectMarker type="Favorite" class="sapUiTinyMarginEnd"/>
 <m:ObjectMarker type="Flagged"/>
 <m:Button icon="sap-icon://private" type="Transparent"/>
 <m:Button icon="sap-icon://arrow-down" type="Transparent"/>
 </m:FlexBox>
 </m:FlexBox>
 </snappedHeading>
 <expandedContent>
 <m:Text text="Senior Developer" />
 </expandedContent>
 <snappedContent>
 <m:Text text="Senior Developer" />
 </snappedContent>
 <content>
 <m:OverflowToolbar>
 <m:Button text="KPI 1" class="sapUiTinyMargin"/>
 <m:Button text="KPI 2" class="sapUiTinyMargin"/>
 <m:Button text="KPI 3" class="sapUiTinyMargin"/>

2500 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

 <m:Button text="KPI 4" class="sapUiTinyMargin"/>
 <m:Button text="KPI 5" class="sapUiTinyMargin"/>
 <m:Button text="KPI 6" class="sapUiTinyMargin"/>
 </m:OverflowToolbar>
 </content>
 <actions>
 <m:OverflowToolbarButton type="Transparent" icon="sap-icon://copy"/>
 <m:OverflowToolbarButton type="Transparent" icon="sap-icon://
delete"/>
 <m:OverflowToolbarButton type="Transparent" icon="sap-icon://add"/>
 <m:OverflowToolbarButton type="Transparent" icon="sap-icon://paste"/>
 </actions>
 <navigationActions>
 <m:OverflowToolbarButton type="Transparent" icon="sap-icon://full-
screen" tooltip="Enter Full Screen Mode"/>
 <m:OverflowToolbarButton type="Transparent" icon="sap-icon://
decline" tooltip="Close column"/>
 </navigationActions>
 </ObjectPageDynamicHeaderTitle>
</headerTitle>

 Tip
When sap.uxap.ObjectPageLayout is given the sap.uxap.ObjectPageDynamicHeaderTitle, it
loads the sap.f library on demand as a lazy dependency. To speed up your app, you should preload the
sap.f library directly in the SAPUI5 bootstrap along with the other libraries needed for your app.

Example:

data-sap-ui-libs="sap.m,sap.uxap,sap.ui.layout,sap.f"

This way, the ObjectPageLayout will already have sap.f loaded and it will not need to fetch it.

Related Information

API Reference: sap.uxap.ObjectPageHeader
API Reference: sap.uxap.ObjectPageDynamicHeaderTitle
API Reference: sap.f.DynamicPageTitle
API Reference: sap.f.DynamicPageHeader

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2501

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.uxap.sap.uxap.ObjectPageHeader.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.uxap.ObjectPageDynamicHeaderTitle.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.f.DynamicPageTitle.html
https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.f.DynamicPageHeader.html

Anchor Bar

Displays the titles of the sections and subsections in the ObjectPageLayout and allows the user to scroll to
the respective content.

Overview

The anchor bar is an automatically generated internal menu that shows the titles of the sections and
subsections and allows the user to scroll to the respective section and subsection content.

Figure 369: Anchor Bar with Sections and Subsections

When the user scrolls the page content, the anchor bar remains at the top of the screen.

Usage

The anchor bar is displayed by default. You can hide it by using the showAnchorBar property:

<ObjectPageLayout id="ObjectPageLayout" showAnchorBar="false"> </ObjectPageLayout>

2502 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

In some apps or in some rendering modes of apps, it may not be desirable or necessary to display the anchor
bar. In these cases, you can hide it using the setShowAnchorBar function.

oObjectPage.setShowAnchorBar(false);

The toggleAnchorBar event is fired by the ObjectPageLayout control when the anchor bar is switched
from moving to fixed.

An additional option for displaying the anchor bar is to use a sap.m.IconTabBar control instead of the default
sap.uxap.AnchorBar. This is done with the useIconTabBar boolean property. If set to true, it will also set
showAnchorBar to false in order to avoid showing two navigation bars. This is how it looks in the two views:

XML view:

<ObjectPageLayout id="ObjectPageLayout" useIconTabBar="true"> </ObjectPageLayout>

JavaScript:

oObjectPage.setUseIconTabBar(true);

Custom Anchor Bar Buttons

By default, you don’t need to specify anything for a sap.uxap.ObjectPageSectionBase to have its button
included in the anchor bar. At runtime, the ObjectPageLayout control creates a button that has the same
text as the corresponding section title. However, you may want to use your own control for rendering the
anchor bar button instead of the default sap.m.Button. You can specify the custom control at
sap.uxap.ObjectPageSectionBase level, as shown here:

<ObjectPageSection> <customAnchorBarButton>
 <m:Button text="Employee Info"/>
 </customAnchorBarButton> </ObjectPageSection>

Scrolling is handled automatically, so you don't need to add anything to enable this feature. However, if you
want to handle the press event differently, then you can add an event handler to the button and can also
optionally customize the button.

<ObjectPageSection> <customAnchorBarButton>
 <m:Button text="Employee Info" press="handleAnchorBarPress"
type="Transparent"/>
 </customAnchorBarButton> </ObjectPageSection>

Here is an example showing the usage of custom controls for the anchor bar buttons:

<ObjectPageLayout id="ObjectPageLayout"> <headerTitle>
 <ObjectPageHeader id="headerExpandedGrid" />
 </headerTitle>
 <sections>
 <ObjectPageSection id="section1" title="Employee Info" >

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2503

 <customAnchorBarButton>
 <!-- this sap.m.ToggleButton will be used in the anchor bar for
navigating to that section -->
 <m:ToggleButton text="Employee Info" />
 </customAnchorBarButton>
 </ObjectPageSection>
 <ObjectPageSection id="section2" title="Personal Info">
 <customAnchorBarButton>
 <!-- this sap.m.Button will be used in the anchor bar for
navigating to that section -->
 <m:Button type="Accept" text="Personal Info" />
 </customAnchorBarButton>
 </ObjectPageSection>
 </sections> </ObjectPageLayout>

Related Information

API Reference: sap.uxap.AnchorBar

Object Page Blocks

The contents of the subsections in the ObjectPageLayout control are organized into blocks.

The blocks are used to group the app content that is displayed in the sections and subsections of the
ObjectPageLayout.

Figure 370: Object Page content grouped in Blocks

To add blocks, use the blocks aggregation of sap.uxap.ObjectPageSubSection:

 <ObjectPageLayout id="ObjectPageLayout" subSectionLayout="titleOnTop"> <sections>
 <ObjectPageSection title="Payroll" >

2504 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.uxap.AnchorBar.html

 <subSections>
 <ObjectPageSubSection title="sub payroll title">
 <blocks>
 <myNameSpace:myBlock/>
 <myNameSpace:myBlock/>
 <myNameSpace:myBlock/>
 </blocks>
 </ObjectPageSubSection>
 </subSections>
 </ObjectPageSection>
 </sections> </ObjectPageLayout>

Any control can be a block. However, the blocks that extend sap.uxap.BlockBase provide additional
features:

● Lazy loading: Only the blocks that are currently displayed and those in their direct proximity are
instantiated

● Column layout: Blocks provide information to the subsection only on the width they should be using for an
optimal experience

Blocks API & Guidelines

Blocks that are used in an ObjectPageLayout have to comply with the following rules regarding their API.
They must:

● Extend sap.uxap.BlockBase

sap.uxap.BlockBase.extend("<BlockName>", { metadata: {
 } });

● Support the modes described in sap.uxap.ObjectPageSubSectionMode.type - Collapsed and
Expanded. For each mode, declare its associated view. It is recommended you use the XML view if no
templating is needed:

sap.uxap.BlockBase.extend("<BlockName>", { metadata: {
 views: { Collapsed: {
 viewName: "<collapsedViewName>",
 type: "XML"
 },
 Expanded: {
 viewName: "<expendedViewName>",
 type: "XML" }
 }
 } });

● Come with their own controller (if needed). This controller should just react to the internal events of the
block, as the ObjectPageLayout's own controller should only manage the page and its sections and
subsections.

● Follow the SAPUI5 naming guidelines: see Related Information
● Use the modelMapping mechanism to declare distinct model per logical entity.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2505

 Example
Let’s consider an Employee Goals block that displays an employee together with his or her goals.

One Employee model for the employee entity:

<Text text="{Employee>FirstName}"></Text>

One Goals model for the goal collections:

<List items="{Goals>}">

In one backend service, goals may be a navigation property of employees, but in another this may not be the
case. For this reason, when implementing the Employee Goals block, you should use two distinct models in the
block views.

 Example
An app wants to use the Employee Goals blocks described above. These are therefore embedded into a
page that has a model named ApplicationModel, in which Goals are a navigation property of
employees:

<EmployeeGoals> <mappings>
 <uxap:ModelMapping externalModelName="ApplicationModel"
externalPath="/Employee('121')" internalModelName="Employee" /> <uxap:ModelMapping externalModelName="ApplicationModel"
externalPath="/Employee('121')/Goals" internalModelName="Goals" /> </mappings> </EmployeeGoals>

A second app uses the same blocks, but in its service, Goals and Employees are unrelated entities:

<EmployeeGoals> <mappings>
 <uxap:ModelMapping externalModelName="ApplicationModel2"
externalPath="/Employee('121')" internalModelName="Employee" />
 <uxap:ModelMapping externalModelName="ApplicationModel2"
externalPath="/Goals" internalModelName="Goals" />
 </mappings> </EmployeeGoals>

BlockBase interprets this in the following order:

1. Looks for a model with the name specified in the externalModelName.
2. Sets this model on itself with the name specified in the internalModelName.
3. Creates a context corresponding to the path.

 Note
This model mapping is not mandatory as models used in a view can also be provided by standard SAPUI5
techniques (model inheritance, setModel).

2506 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Standard Block Implementation

The standard block implementation is to extend the sap.uxap.BlockBase control and inherit the default
implementation of setMode and rendering. setMode in BlockBase supports two different ways of building
blocks:

● Single view blocks: A single XML view is used for all layout modes. This XML view should be named
<name>.view.xml.

● Multiple view blocks: Different views are provided for the different layout modes.
○ These views should be added in the views section of the block metadata (this section is added by the

BlockBase class).
○ For each mode, the BlockBase class must declare a view name and type:

sap.uxap.BlockBase.extend("<BlockName>", { metadata: {
 views: {
 Collapsed: {
 viewName: "<collapsedViewName>",
 type: "XML"
 },
 Expanded: {
 viewName: "<expendedViewName>",
 type: "XML"
 }
 }
 } });

Related Information

Creating Blocks [page 2507]
API Reference: sap.uxap.BlockBase

Creating Blocks

Important points when creating blocks for the sap.uxap.ObjectPageLayout

Decide which kind of block to use:

● Single view block if Collapsed, Expanded, and Compact modes are similar and easy to develop with a
single view.

● Multiple view blocks if it’s easier to provide different views for the different modes.
● Free form if none of the above suit your needs.

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2507

https://sapui5.hana.ondemand.com/#docs/api/symbols/sap.uxap.BlockBase.html

Single View Block Creation

● Create the block folder in the sources of the app.
● Add a BlockName.js file, which extends sap.uxap.BlockBase.

 Note
Naming guideline: The block name should end with the word Block.

● Add a BlockName.view.xml XML view.
● If needed, add the associated controller: BlockNameController.controller.js.

 Note
It's not mandatory to put the BlockName.js file and the related XML view in the same folder since you are
able to provide the view file path by using the sap.uxap.BlockBase's API. However, if no path is
provided, the sap.uxap.BlockBase will look for an XML view file with a matching name in the same folder
where the BlockName.js is located.

For example, sap.uxap.BlockBase would match AddressesBlock.js with
AddressesBlock.view.xml.

Multiple View Block Creation

● Create the block folder in the sources of the app.
● Add a BlockName.js file, which extends sap.uxap.BlockBase.
● Declare the views to be used for the different modes in the views section of the metadata.
● Add the Expanded and Collapsed XML views.

 Note
Naming guideline: Name these files as BlockNameCollapsed.view.xml and
BlockNameExpanded.view.xml

● If needed, add the associated controllers. Whether you use the same controller for all views or one
controller per view is your decision.

Free Form Block Creation

● Create the block folder in the sources of the app.
● Add a BlockName.js file, which extends sap.uxap.BlockBase.
● Override the setMode method. From here on, all changes are up to you.

2508 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Related Information

API Reference: sap.uxap.BlockBase

Object Page Scrolling

The object page offers different ways to handle specific scrolling scenarios.

General Scrolling Behavior

By default, the headerContent of the ObjectPage snaps to the headerTitle when scrolling a longer
section. Some of the contents of the headerContent move to the headerTitle and thus always remain
visible. You can see an example of this behavior in the screenshot below.

Figure 371: Object Page Header: Expanded (left) / Snapped (right)

This behavior can be altered. Setting the property alwaysShowContentHeader to true will prevent the
headerContent from snapping.

 Note
This property only affects desktop environments.

Selected Section

As the user scrolls through the sections, the currently scrolled section is internally set to the
selectedSection association of ObjectPageLayout. The app can also modify its value:

● The app can set which section the page should scroll to upon initial display:

 <ObjectPageLayout id="ObjectPageLayout" selectedSection="mySectionId"> <sections> <ObjectPageSection title="Payroll" id="mySectionId"> <subSections>

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2509

https://sapui5.hana.ondemand.com/#/api/sap.uxap.BlockBase

 <ObjectPageSubSection title="sub payroll title">
 <blocks>
 <myNameSpace:myBlock/>
 <myNameSpace:myBlock/>
 <myNameSpace:myBlock/>
 </blocks>
 </ObjectPageSubSection>
 </subSections>
 </ObjectPageSection>
 </sections> </ObjectPageLayout>

● The app can also change the currently scrolled section at runtime:

//navigate to a specific section on open this.oObjectPageLayout = this.getView().byId("ObjectPageLayout");
this.oTargetSection = this.getView().byId("empl"); this.oObjectPageLayout.setSelectedSection(this.oTargetSection)

Related Information

Sample: sap.uxap.sample.ObjectPageState

Glossary

List of terms used in SAPUI5.

Term Meaning
Source/
Comments Link

SAPUI5 ABAP re
pository

Used to store SAPUI5 apps, components, and li
braries; based on the Business Server Page
(BSP) repository of the ABAP server.

A SAPUI5 application stored in the ABAP reposi
tory can be deployed and executed in a browser
directly. It is connected to the ABAP transport
system.

SAPUI5 only The SAPUI5 ABAP Repository and the
ABAP Back-End Infrastructure [page
1507]

2510 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

https://sapui5.hana.ondemand.com/explored.html#/sample/sap.uxap.sample.ObjectPageState/preview

Term Meaning
Source/
Comments Link

aggregation An aggregation is a special relation between two
UI element types. It is used to define the parent-
child relationship within the tree structure. The
parent end of the aggregation has cardinality
0..1, while the child end may have 0..1 or 0..*. The
element's API offers convenient and consistent
methods to deal with aggregations (e.g. to get,
set, or remove target elements). Examples are
table rows and cells, or the content of a table
cell.

SAPUI5/
OpenUI5

Essentials [page 691]

association An association is a type of relation between two
UI element types which is independent of the pa
rent-child relationship within the tree structure.
Directed outgoing associations to a target of car
dinality 0..1 are supported. They represent a
loose coupling only and are thus implemented by
storing the target element instance's ID. The
most prominent example is the association be
tween a label and its field.

SAPUI5/
OpenUI5

Essentials [page 691]

ARIA WAI-ARIA, the Accessible Rich Internet Applica
tions Suite, defines a way to make Web content
and Web applications more accessible to people
with disabilities. It especially helps with dynamic
content and advanced user interface controls de
veloped with Ajax, HTML, JavaScript, and related
technologies. (Quote from w3c.org)

w3c.org W3C ARIA

asynchronous
(async) process
ing

In contrast to synchronous processing this proc
essing mode does not keep the browser thread
busy but does the processing in the background
and continues with the next task. Code can be
executed asynchronously and a callback func
tion is triggered when a certain condition is met.
Similarly, a file can be loaded asynchronously.
Asynchronous processing is highly recom
mended for performance reasons and to not
freeze the UI.

SAPUI5/
OpenUI5

asynchronous
module defini-
tion (AMD)

A mechanism for defining a module in a way that
modules and their dependencies can be loaded
asynchronously.

requirejs
.org

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2511

http://help.sap.com/disclaimer?site=https%3A%2F%2Fwww.w3.org%2FWAI%2Fintro%2Faria

Term Meaning
Source/
Comments Link

bootstrap To use the SAPUI5 features in your web page,
you have to load and initialize – or "bootstrap" –
the SAPUI5 runtime in your HTML page.

SAPUI5/
OpenUI5

Bootstrapping: Loading and Initializ
ing [page 692]

BPMN A standard Business Process Model and Notation
(BPMN) will provide businesses with the capabil
ity of understanding their internal business pro
cedures in a graphical notation and will give or
ganizations the ability to communicate these pro
cedures in a standard manner. Furthermore, the
graphical notation will facilitate the understand
ing of the performance collaborations and busi
ness transactions between the organizations.

bpmn.org BPMN.org

(application)
cache buster

A cache buster allows the application to notify
the browser to refresh the resources only when
the application resources have been changed.
Otherwise the resources can always be fetched
from the browser's cache. The application cache
buster is a special mechanism to extend this
function to application resources

SAPUI5/
OpenUI5

Cache Buster for SAPUI5 [page 1132]

Application Cache Buster [page 1134]

cache busting:
single applica
tion resources

Cache busting on the level of a single app, com
ponent, or library in the SAPUI5 ABAP repository

SAPUI5 only The SAPUI5 ABAP Repository and the
ABAP Back-End Infrastructure [page
1507]

cache busting;
multiple applica
tion resources

Cache busting on the level of multiple apps,
components, or libraries in the SAPUI5 ABAP re
pository

SAPUI5 only The SAPUI5 ABAP Repository and the
ABAP Back-End Infrastructure [page
1507]

clickjacking Clickjacking, or UI redressing, tricks the user into
triggering actions within an application by redi
recting clicks. This is done, for example, by using
an invisible iFrame which is positioned above a
fake UI. When the user clicks on something on
the fake UI, the content of the invisible iFrame
handles the click.

SAPUI5/
OpenUI5

Browser Security [page 1470]

composite con
trol

Composite controls are intended for reuse within
control development and allow you to include ex
isting controls in a complex control.

SAPUI5/
OpenUI5

Standard Composite Controls [page
2226]

2512 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/disclaimer?site=http%3A%2F%2Fwww.bpmn.org

Term Meaning
Source/
Comments Link

content density The devices used to run apps that are developed
with SAPUI5 run on various different operating
systems and have very different screen sizes.
SAPUI5 contains different content densities for
certain controls that allow your app to adapt to
the device in question, allowing you to display
larger controls for touch-enabled devices and a
smaller, more compact design for devices that
are operated by mouse.

SAPUI5/
OpenUI5

Content Densities [page 1142]

control UI elements that can be used independently.

From a developer's point of view, a control (e.g.
Button, Label, TextField, or Table) is
the most important artifact. It is an object which
controls the appearance and user interaction of
a rectangular screen region. It is a special kind of
user interface element which can be used as the
root of such a tree structure. In this way, it
serves as an entry point, especially for render
ing. Besides controls, there are also other non-
control elements, which cannot be used as the
root of such a tree structure, but only as a de
pendent part within it (e.g. TableRow,
TableCell).

SAPUI5/
OpenUI5

More About Controls [page 2252]

Samples

API Reference

Essentials [page 691]

controller An application unit containing the active part of
the application. It is the logical interface between
a model and a view, and corresponds to the
model view controller (MVC) concept.

SAPUI5/
OpenUI5

Controller [page 807]

Cross-Site
Scripting (XSS)

Cross-site scripting is about injecting script code
into a web page, which is then executed in the
context of the page. Therefore it can access any
information which is currently displayed on the
screen. Additionally, XSS attacks can access
session information contained in cookies, or
send new requests to the server within the cur
rent session, or even try to exploit browser vul
nerabilities to get full access to the machine that
the browser is running on.

SAPUI5/
OpenUI5

Cross-Site Scripting [page 1475]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2513

https://sapui5.hana.ondemand.com/explored.html
https://sapui5.hana.ondemand.com/#docs/api/index.html

Term Meaning
Source/
Comments Link

data binding A technique that binds two data sources to
gether in order to keep them in sync. All changes
in one data source are automatically reflected in
the other; the involved layers are the view and
the model.

SAPUI5/
OpenUI5

Data Binding [page 815]

data type Data types are first-class entities in the meta
model. This allows reuse of types across libraries
and extensibility of the type system. The core li
brary (technically, this is the sap.ui.core li
brary) already defines a core set of types that
can be used in other libraries.

SAPUI5/
OpenUI5

Essentials [page 691]

Demo Kit The Demo Kit is the SAPUI5 software develop
ment kit (SDK). The Demo Kit is your one-stop
shop for all information about SAPUI5: docu
mentation, API reference, samples, demo apps.

SAPUI5/
OpenUI5

diagnostics A diagnostics window is available in SAPUI5 ap
plications.

To open it, use the following shortcut: CTRL +
SHIFT + ALT + S .

SAPUI5/
OpenUI5

Diagnostics [page 1326]

distribution layer Contains the control libraries and theme libra
ries; the SAPUI5 distribution layer is delivered to
customers via the MIME repository.

SAPUI5 only

Document Ob
ject Model
(DOM)

The Document Object Model is a platform- and
language-neutral interface that will allow pro
grams and scripts to dynamically access and up
date the content, structure and style of docu
ments. The document can be further processed
and the results of that processing can be incorpo
rated back into the presented page. (Quote from
w3c.org)

w3c.org W3C DOM

element A (UI) element is the basic building block of our
user interfaces; it is a reusable entity with prop
erties, events, methods, and relations. The most
important relations are aggregations to other UI
elements, and in this way a tree structure of ele
ments can be created.

SAPUI5/
OpenUI5

Essentials [page 691]

2514 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/disclaimer?site=http%3A%2F%2Fwww.w3.org%2FDOM%2F

Term Meaning
Source/
Comments Link

SAP Fiori SAP Fiori is the user experience (UX) for SAP
software that applies modern design principles.
SAP solutions are using the SAP Fiori UX to pro
vide a personalized, responsive, and simple user
experience.

SAP Fiori http://www.sap.com/fiori

http://help.sap.com/fiori

https://experience.sap.com/fiori/

SAP Fiori
launchpad

SAP Fiori launchpad is a shell that hosts SAP
Fiori apps, and provides the apps with services
such as navigation, personalization, embedded
support, and application configuration.

SAP Fiori http://help.sap.com/fiori

event An event has a name as well as any number of
parameters. The element's API offers support to
manage event subscriptions.

SAPUI5/
OpenUI5

Essentials [page 691]

JAWS Screen
Reader

JAWS, Job Access With Speech, is the world's
most popular screen reader, developed for com
puter users whose vision loss prevents them from
seeing screen content or navigating with a
mouse. JAWS provides speech and Braille output
for the most popular computer applications on
your PC.

Freedom Sci
entific

Freedom Scientific JAWS

jQuery JavaScript library that is packaged with SAPUI5.

jQuery is a fast, small, and feature-rich JavaScript
library. It makes things like HTML document tra
versal and manipulation, event handling, anima
tion, and Ajax much simpler with an easy-to-use
API that works across a multitude of browsers.
(Quote from jquery.com)

jquery.co
m

jQuery Home Page

library The top-level structural unit is called a library.
Libraries are the master artifacts in the extensi
bility concept. They bundle a set of controls and
related types and make them consumable by
Web applications. There are predefined and
standard libraries, like sap.m, with many com
monly used controls. At the same time, it treats
custom UI libraries as first-class citizens, making
it easy for you to write and use your own controls
alongside the predefined ones.

SAPUI5/
OpenUI5

Essentials [page 691]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2515

http://help.sap.com/disclaimer?site=http%3A%2F%2Fwww.sap.com%2Ffiori
http://help.sap.com/fiori
http://help.sap.com/disclaimer?site=https%3A%2F%2Fexperience.sap.com%2Ffiori%2F
http://help.sap.com/fiori
http://help.sap.com/disclaimer?site=http%3A%2F%2Fwww.freedomscientific.com%2FProducts%2FBlindness%2FJAWS
http://help.sap.com/disclaimer?site=https%3A%2F%2Fjquery.com%2F

Term Meaning
Source/
Comments Link

mock server The mock server is a mocking framework for
HTTP and HTTPS that is used to simplify inte
gration testing and to decouple development
teams by allowing them to develop against a
service that is incomplete or unstable.

SAPUI5/
OpenUI5

Mock Server [page 1222]

model Data provider for the application where the
model instance is assigned to the UI and the
controls are bound to the model. Various model
types are available; the model type used de
pends on the data format available on the server
side.

SAPUI5/
OpenUI5

Models [page 882]

MVC concept A UI programming model that separates the lay
out (view) from the content (model) and the be
havior (controller). The MVC concept is used by
the framework to model the architecture of the
applications.

SAPUI5/
OpenUI5

Model View Controller (MVC) [page
784]

notepad control A control that is defined on the fly without a li
brary definition or running generation steps.

SAPUI5/
OpenUI5

Developing Controls [page 2158]

OData model A model implementation for the Open Data
(OData) Web Protocol format.

SAPUI5/
OpenUI5

OData V2 Model [page 883]

OData V4 Model [page 918]

property A property has a name and an associated data
type. It has a well-defined default value ex
pressed as a literal of that data type. Properties
are accessible to application code via the ele
ment's API as getters and setters, but are also
used by a control's renderer in a read-only way.

SAPUI5/
OpenUI5

Essentials [page 691]

SAPUI5 reposi
tory upload and
download re
ports

Alternative for the team repository provider, with
similar functionality.

SAPUI5 only The SAPUI5 ABAP Repository and the
ABAP Back-End Infrastructure [page
1507]

right-to-left
(RTL) text direc
tionality

The dir attribute is used to set the base direc
tion of text for display. It is essential for enabling
HTML in right-to-left scripts such as Arabic, He
brew, Syriac, and Thaana. Numerous different
languages are written with these scripts, includ
ing Arabic, Hebrew, Pashto, Persian, Sindhi, Sy
riac, Dhivehi, Urdu, Yiddish, etc. (Quote from
w3c.org)

w3c.org HTML Text Directionality

2516 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

http://help.sap.com/disclaimer?site=http%3A%2F%2Fwww.w3.org%2FTR%2Fhtml4%2Fstruct%2Fdirlang.html

Term Meaning
Source/
Comments Link

resource model Used to bind texts of a control to language-de
pendent resource bundle properties.

SAPUI5/
OpenUI5

Resource Model [page 995]

single SAPUI5
repository

The SAPUI5 ABAP repository consists of n single
SAPUI5 repositories, each represented by an in
dividual BSP application (with specific charac
teristics) in the BSP repository.

SAPUI5 only The SAPUI5 ABAP Repository and the
ABAP Back-End Infrastructure [page
1507]

SAP Fiori ele
ments

App developers can use SAP Fiori elements to
create SAP Fiori applications based on OData
services and annotations requiring no JavaScript
UI coding. An app based on SAP Fiori elements
uses predefined template views and controllers
that are provided centrally, so no application-
specific view instances are required. The SAPUI5
runtime interprets metadata and annotations of
the underlying OData service and creates the
corresponding views for the SAP Fiori app at
startup.

The predefined view templates and controllers
ensure UI design consistency across similar
apps. Additionally, the metadata-driven develop
ment model significantly reduces the amount of
frontend code per app, so the developer can fo
cus on the business logic.

SAP Fiori elements comprise templates for "List
Report", "Object Page", and "Overview Page".

SAPUI5 only Developing Apps with SAP Fiori Ele
ments [page 1535]

scalable vector
graphics (SVG)

SVG is a markup language for describing two-di
mensional graphics applications and images, and
a set of related graphics script interfaces (Quote
from w3c.org)

w3c.org W3C SVG

synchronous
(sync) process
ing

Synchronous processing will keep the current
browser thread until the task is finished. The UI
is not updated and no other tasks can be done in
parallel. Consider using asynchronous process
ing for loading files and executing long-running
code.

SAPUI5/
OpenUI5

SAPUI5 text re
pository

Part of the SAPUI5 ABAP repository; only to be
used as a fallback mechanism if translation us
ing properties files is not possible

SAPUI5 only The SAPUI5 ABAP Repository and the
ABAP Back-End Infrastructure [page
1507]

SAPUI5: UI Development Toolkit for HTML5
SAPUI5: UI Development Toolkit for HTML5 P U B L I C 2517

http://help.sap.com/disclaimer?site=https%3A%2F%2Fwww.w3.org%2FGraphics%2FSVG%2F

Term Meaning
Source/
Comments Link

view An application unit containing the control defini-
tions for the user interface layer in the applica
tion, or in other words: defines how the user in
terface looks like.

SAPUI5/
OpenUI5

Views [page 787]

2518 P U B L I C
SAPUI5: UI Development Toolkit for HTML5

SAPUI5: UI Development Toolkit for HTML5

Important Disclaimers and Legal Information

Hyperlinks
Some links are classified by an icon and/or a mouseover text. These links provide additional information.
About the icons:

● Links with the icon : You are entering a Web site that is not hosted by SAP. By using such links, you agree (unless expressly stated otherwise in your
agreements with SAP) to this:

● The content of the linked-to site is not SAP documentation. You may not infer any product claims against SAP based on this information.
● SAP does not agree or disagree with the content on the linked-to site, nor does SAP warrant the availability and correctness. SAP shall not be liable for any

damages caused by the use of such content unless damages have been caused by SAP's gross negligence or willful misconduct.

● Links with the icon : You are leaving the documentation for that particular SAP product or service and are entering a SAP-hosted Web site. By using such
links, you agree that (unless expressly stated otherwise in your agreements with SAP) you may not infer any product claims against SAP based on this
information.

Beta and Other Experimental Features
Experimental features are not part of the officially delivered scope that SAP guarantees for future releases. This means that experimental features may be changed by
SAP at any time for any reason without notice. Experimental features are not for productive use. You may not demonstrate, test, examine, evaluate or otherwise use
the experimental features in a live operating environment or with data that has not been sufficiently backed up.
The purpose of experimental features is to get feedback early on, allowing customers and partners to influence the future product accordingly. By providing your
feedback (e.g. in the SAP Community), you accept that intellectual property rights of the contributions or derivative works shall remain the exclusive property of SAP.

Example Code
Any software coding and/or code snippets are examples. They are not for productive use. The example code is only intended to better explain and visualize the syntax
and phrasing rules. SAP does not warrant the correctness and completeness of the example code. SAP shall not be liable for errors or damages caused by the use of
example code unless damages have been caused by SAP's gross negligence or willful misconduct.

Gender-Related Language
We try not to use gender-specific word forms and formulations. As appropriate for context and readability, SAP may use masculine word forms to refer to all genders.

Videos Hosted on External Platforms
Some videos may point to third-party video hosting platforms. SAP cannot guarantee the future availability of videos stored on these platforms. Furthermore, any
advertisements or other content hosted on these platforms (for example, suggested videos or by navigating to other videos hosted on the same site), are not within
the control or responsibility of SAP.

SAPUI5: UI Development Toolkit for HTML5
Important Disclaimers and Legal Information P U B L I C 2519

www.sap.com/contactsap

© 2020 SAP SE or an SAP affiliate company. All rights reserved.

No part of this publication may be reproduced or transmitted in any form
or for any purpose without the express permission of SAP SE or an SAP
affiliate company. The information contained herein may be changed
without prior notice.

Some software products marketed by SAP SE and its distributors
contain proprietary software components of other software vendors.
National product specifications may vary.

These materials are provided by SAP SE or an SAP affiliate company for
informational purposes only, without representation or warranty of any
kind, and SAP or its affiliated companies shall not be liable for errors or
omissions with respect to the materials. The only warranties for SAP or
SAP affiliate company products and services are those that are set forth
in the express warranty statements accompanying such products and
services, if any. Nothing herein should be construed as constituting an
additional warranty.

SAP and other SAP products and services mentioned herein as well as
their respective logos are trademarks or registered trademarks of SAP
SE (or an SAP affiliate company) in Germany and other countries. All
other product and service names mentioned are the trademarks of their
respective companies.

Please see https://www.sap.com/about/legal/trademark.html for
additional trademark information and notices.

THE BEST RUN

https://www.sap.com/about/legal/trademark.html

	SAPUI5: UI Development Toolkit for HTML5
	Content
	SAPUI5: UI Development Toolkit for HTML5
	What's New in SAPUI5
	What's New in SAPUI5 1.75
	What's New in SAPUI5 1.74

	Read Me First
	Compatibility Rules
	Browser and Platform Support
	Visual Degradations

	Supported Library Combinations
	Supported Combinations of Themes and Libraries
	Versioning of SAPUI5
	Upgrading
	Upgrading from a Version Below 1.40
	Upgrading from a Version Below 1.38

	Deprecated Themes and Libraries
	SAPUI5 vs. OpenUI5

	Get Started: Setup, Tutorials, and Demo Apps
	Development Environment
	App Development Using OpenUI5
	App Development Using SAP Web IDE
	Get a Trial Account and Access SAP Web IDE
	Start SAP Web IDE
	Create a neo-app.json Project Configuration File
	Create an index.html File
	Run the App
	Create a Northwind Destination

	Developing OpenUI5
	Development for Hybrid Web Containers

	Quick Start
	Step 1: Ready...
	Step 2: Steady...
	Step 3: Go!

	Walkthrough
	Step 1: Hello World!
	Step 2: Bootstrap
	Step 3: Controls
	Step 4: XML Views
	Step 5: Controllers
	Step 6: Modules
	Step 7: JSON Model
	Step 8: Translatable Texts
	Step 9: Component Configuration
	Step 10: Descriptor for Applications
	Step 11: Pages and Panels
	Step 12: Shell Control as Container
	Step 13: Margins and Paddings
	Step 14: Custom CSS and Theme Colors
	Step 15: Nested Views
	Step 16: Dialogs and Fragments
	Step 17: Fragment Callbacks
	Step 18: Icons
	Step 19: Reuse Dialogs
	Step 20: Aggregation Binding
	Step 21: Data Types
	Step 22: Expression Binding
	Step 23: Custom Formatters
	Step 24: Filtering
	Step 25: Sorting and Grouping
	Step 26: Remote OData Service
	Step 27: Mock Server Configuration
	Step 28: Unit Test with QUnit
	Step 29: Integration Test with OPA
	Step 30: Debugging Tools
	Step 31: Routing and Navigation
	Step 32: Routing with Parameters
	Step 33: Routing Back and History
	Step 34: Custom Controls
	Step 35: Responsiveness
	Step 36: Device Adaptation
	Step 37: Content Density
	Step 38: Accessibility

	Troubleshooting
	Step 1: Browser Developer Tools
	Step 2: Technical Information Dialog
	Step 3: Support Assistant
	Step 4: Diagnostics Window
	Step 5: UI5 Inspector
	First-Aid Kit
	An Empty Page Comes Up
	Content or Control Is Not Visible
	Request Fails Due to Same-Origin Policy (Cross-Origin Resource Sharing - CORS)
	App or Control Looks Odd

	Data Binding
	Step 1: No Data Binding
	Step 2: Creating a Model
	Step 3: Create Property Binding
	Step 4: Two-Way Data Binding
	Step 5: One-Way Data Binding
	Step 6: Resource Models
	Step 7: (Optional) Resource Bundles and Multiple Languages
	Step 8: Binding Paths: Accessing Properties in Hierarchically Structured Models
	Step 9: Formatting Values
	Step 10: Property Formatting Using Data Types
	Step 11: Validation Using the Message Manager
	Step 12: Aggregation Binding Using Templates
	Step 13: Element Binding
	Step 14: Expression Binding
	Step 15: Aggregation Binding Using a Factory Function

	OData V4
	Step 1: The Initial App
	Step 2: Data Access and Client-Server Communication
	Step 3: Automatic Data Type Detection
	Step 4: Filtering, Sorting, and Counting
	Step 5: Batch Groups
	Step 6: Create and Edit
	Step 7: Delete
	Step 8: OData Operations

	Navigation and Routing
	Step 1: Set Up the Initial App
	Step 2: Enable Routing
	Step 3: Catch Invalid Hashes
	Step 4: Add a Back Button to Not Found Page
	Step 5: Display a Target Without Changing the Hash
	Step 6: Navigate to Routes with Hard-Coded Patterns
	Step 7: Navigate to Routes with Mandatory Parameters
	Step 8: Navigate with Flip Transition
	Step 9: Allow Bookmarkable Tabs with Optional Query Parameters
	Step 10: Implement “Lazy Loading”
	Step 11: Assign Multiple Targets
	Step 12: Make a Search Bookmarkable
	Step 13: Make Table Sorting Bookmarkable
	Step 14: Make Dialogs Bookmarkable
	Step 15: Reuse an Existing Route
	Step 16: Handle Invalid Hashes by Listening to Bypassed Events
	Step 17: Listen to Matched Events of Any Route

	Testing
	Step 1: Overview and Testing Strategy
	Step 2: A First Unit Test
	Step 3: Adding the Price Formatter
	Step 4: Testing a New Module
	Step 5: Adding a Flag Button
	Step 6: A First OPA Test
	Step 7: Changing the Table to a Growing Table
	Step 8: Testing Navigation
	Step 9: Adding the Post Page
	Step 10: Test Suite and Automated Testing
	Step 11: Testing User Input
	Step 12: Adding a Search
	Step 13: Testing User Interaction
	Step 14: Adding Tabs
	Step 15: Writing a Short Date Formatter Using TDD
	Step 16: Adding the Date Formatter

	Mock Server
	Step 1: Initial App Without Data
	Step 2: Creating a Mock Server to Simulate Data
	Step 3: Handling Custom URL Parameters
	Step 4: Calling a Function Import

	Worklist App
	Step 1 (Option 1): Creating the Initial App with an App Template in SAP Web IDE
	Step 1 (Option 2): Downloading the Code
	Step 1 (Result): The Initial App
	Step 2: Custom Mock Data
	Step 3: Extending the Worklist Table
	Step 4: Quick Filter for the Worklist
	Step 5: Adding Actions to the Worklist
	Step 6: Extending the Detail Page
	Step 7: Adding a Comments Section

	SAP Fiori 2.0 App
	Step 1: Setting Up the Initial App
	Step 2: Creating an Empty Flexible Column Layout
	Step 3: Using Dynamic Page for the Master View
	Step 4: Adding a Detail Page
	Step 5: Using Object Page Layout as a Detail Page
	Step 6: Adding a Floating Footer
	Step 7: Routing
	Step 8: Enhancing the Detail Page
	Step 9: Adding a Detail-Detail Page
	Step 10: Adding More Pages
	Step 11: Using the Flexible Column Layout Semantic Helper
	Step 12: Starting with Two Columns
	Step 13: Setting the Master-Detail Pattern

	Rule Builder Control
	Decision Table
	Features
	Step 1: Creating an Initial Rule Control
	Step 2: Associating the Expression Language
	Step 3: Changing the Decision Table Configuration

	Text Rule
	Features
	Step 1: Creating a Rule Control
	Step 2: Associating the Expression Language
	Step 3: Changing the Text Rule Configuration

	Summary

	Smart Controls
	Prerequisites
	Step 1: Smart Field
	Step 2: Smart Field with Value Help
	Step 3: Smart Field with Smart Link
	Step 4: Smart Form
	Step 5: Smart Filter Bar and Smart Table
	Step 6: Table Personalization
	Step 7: View Management
	Step 8: Page Variant Management
	Step 9: Smart Chart with Chart Personalization and View Management
	Summary

	3D Viewer
	Prerequisites
	Step 1: 3D Viewer With Single File Loading
	Step 2: 3D Viewer With Multiple File Loading
	Step 3: 3D Viewer Using the Viewport Control
	Step 4: Adding a Scene Tree
	Step 5: Adding Step Navigation

	Ice Cream Machine
	Step 1: Initial Application
	Step 2: KPI Tile and Chart Tile on the Start Page
	Step 3: Launch Tile and Slide Tile
	Step 4: Generic Tiles in Line Mode
	Step 5: Navigating from the Start Page to Other Pages
	Step 6: Chart Container
	Step 7: Header Container and Radial Micro Chart
	Step 8: Comparison Micro Chart
	Step 9: Delta Micro Chart
	Step 10: Line Micro Chart
	Step 11: Process Flow
	Step 12: Timeline
	Step 13: Optimizing the Process Flow Layout

	Demo Apps
	Best Practices for App Developers
	Load Only What You Really Need
	Use the MVC Concept
	Keep Your Views Short and Simple
	Use Stable IDs
	Make Your App CSP Compliant
	Use Asynchronous Loading
	Is Your Application Ready for Asynchronous Loading?
	Performance Checklist

	Essentials
	Bootstrapping: Loading and Initializing
	Standard Variant for Bootstrapping
	Variant for Bootstrapping from Content Delivery Network
	noJQuery Variant for Bootstrapping
	Initialization Process
	Configuration of the SAPUI5 Runtime
	Configuration Options and URL Parameters

	Structuring: Components and Descriptor
	Components
	Component.js File
	Component Metadata
	Methods Controlling the Initial Instantiation

	Using and Nesting Components
	Declarative API for Initial Components
	Handling IDs in UI Components
	Advanced Concepts for SAPUI5 Components

	Descriptor for Applications, Components, and Libraries
	Migrating from Component Metadata to Descriptor
	Descriptor for Libraries
	Descriptor for Components (Inside Libraries)
	Resources.json File
	Creating a Descriptor File for Existing Apps
	Migration Information for Upgrading the Descriptor File

	Descriptor Dependencies to Libraries and Components
	Manifest Model Preload
	Enabling the Automatic SAP Fiori 2.0 Header Adaptation in the Descriptor

	Model View Controller (MVC)
	Models
	Views
	XML View
	Namespaces in XML Views
	Aggregation Handling in XML Views
	Control Properties and Associations in XML Views
	Using Native HTML in XML Views
	Using CSS Style Sheets in XML Views
	Handling Events in XML Views
	Preprocessing XML Views
	XML View Cache
	Require Modules in XML View and Fragment

	JSON View
	JS View
	HTML View
	Instantiating Views
	View Cloning

	Controller
	Using Controller Extension

	File Names and Locations (View and Controller)
	Typed Views and Controllers
	Support for Unique IDs

	Data Binding
	Binding Types
	Property Binding
	Context Binding (Element Binding)
	List Binding (Aggregation Binding)
	Using Factory Functions
	Sorting, Grouping, and Filtering for List Binding
	Lifecycle of Binding Templates
	Extended Change Detection

	Binding Syntax
	Binding Path
	Composite Binding
	Expression Binding
	Property Metadata Binding
	Examples for Data Binding in Different View Types

	Formatting, Parsing, and Validating Data
	Simple Data Types
	sap.ui.model.type.Boolean
	sap.ui.model.type.Date
	sap.ui.model.type.DateTime
	sap.ui.model.type.Float
	sap.ui.model.type.Integer
	sap.ui.model.type.String
	sap.ui.model.type.Time
	sap.ui.model.type.DateTimeInterval

	Formatter Classes
	Date Format
	Number Format
	File Size Format
	Unit Formatting
	Currency Formatting

	Models
	OData V2 Model
	Creating the Model Instance
	Service Metadata
	Adding Additional URL Parameters
	Custom HTTP Headers
	Addressing Entities: Binding Path Syntax
	Accessing Data from an OData Model
	Creating Entities
	CRUD Operations
	Concurrency Control and ETags
	XSRF Token
	Refreshing the Model
	Batch Processing
	Two-Way Binding
	Binding-specific Parameters
	Optimizing Dependent Bindings
	Function Import
	Language
	Meta Model for OData V2

	OData V4 Model
	Model Instantiation and Data Access
	Bindings
	Creating Bindings
	Path Syntax
	Initialization and Read Requests
	Parameters
	Binding Collection Inline Count
	Type Determination
	Binding Modes
	Suspend and Resume
	Context API
	Accessing Data in Controller Code
	Automatic determination of $expand and $select

	Binding Events
	Filtering
	Sorting
	Value Lists
	OData Operations
	Batch Control
	Meta Model for OData V4
	OData V4 Metadata JSON Format

	Performance Aspects
	Unsupported Superclass Methods and Events
	Changes Compared to OData V2 Model
	Additional Annotation Files
	Creating an Entity
	Deleting an Entity
	Consuming OData V2 Services with the OData V4 Model
	Extension for Data Aggregation
	Server Messages in OData V4 Model
	Currencies and Units

	JSON Model
	Sorting and Filtering in JSON Models
	Binding Path Syntax for JSON Models

	XML Model
	Sorting and Filtering in XML Models
	XML Namespace Support
	Binding Path Syntax for XML Models

	Resource Model
	Binding Path Syntax for Resource Models
	Binding Texts to a Resource Bundle

	Custom Model
	Assigning the Model to the UI
	Setting the Default Binding Mode

	Using Data Binding for Data Export

	Reusing UI Parts: Fragments
	HTML Fragments
	XML Fragments
	JS Fragments
	Instantiation of Fragments
	Programmatically Instantiating JS Fragments
	Programmatically Instantiating XML Fragments
	Programmatically Instantiating HTML Fragments
	Instantiating Fragments in Declarative Views
	Using Other Objects Instead of Controllers
	Inline Definition and Instantiation of Fragments

	Unique IDs
	IDs in Declarative XML or HTML Fragments
	IDs in JS Fragments
	IDs of Fragments in Views
	Retrieving Control Instances by Their ID
	Example: JS Fragments Used in XML Views

	Dialogs and other Popups as Fragments
	Defining Dialogs as Fragments
	Using Dialogs Defined as Fragments

	Fragments with Multiple Root Nodes

	XML Templating
	Preprocessing Instructions
	with
	repeat
	if
	alias
	require
	Replacement of Bindings
	XML Fragments
	Extension Points

	Annotation Helper
	Debugging

	Working with Controls
	Custom Data - Attaching Data Objects to Controls
	Writing Data to the HTML DOM as DATA-* Attribute

	Using Predefined CSS Margin Classes
	Using Container Content Padding CSS Classes
	Enabling Responsive Paddings

	Field Groups

	Declarative Support
	Enabling Declarative Support
	Defining Controls
	Declarative Support: Properties
	Declarative Support: Associations
	Declarative Support: Events
	Declarative Support: Aggregations
	Declarative Support: Data Binding
	Compiling Declarative HTML

	Error, Warning, and Info Messages
	Validation Messages
	OData V2 Messages
	Message Model
	Implementing Your Own OData V2 Message Parser

	Routing and Navigation
	Routing Configuration
	Methods and Events for Navigation
	Initializing and Accessing a Routing Instance
	Working with Multiple Targets
	Using the title Property in Targets
	Enabling Routing in Nested Components
	Navigate with Nested Components

	Modules and Dependencies
	Loading a Module
	Multiple Module Locations
	Best Practices for Loading Modules
	Troubleshooting for Loading Modules

	Adapting to the Modularization of the Core
	Legacy jQuery.sap Replacement
	Legacy Factories Replacement
	Troubleshooting

	Optimizing Applications
	Resource Handling: Modularization and Localization
	SAPUI5 Library Location Used for Testing

	Cache Buster for SAPUI5
	Application Cache Buster
	Application Cache Buster: Index File
	Application Cache Buster: Configuration
	Application Cache Buster: Request Flow
	Application Cache Buster: Enhanced Concept

	Adapting to Operating Systems And Devices
	The Device API
	Controls with Built-In Device Adaptation
	Checking the Operating System your Application is Running on
	Content Densities
	How to Use Densities for Controls

	Options for Further Adaptation

	SAPUI5 Flexibility: Adapting UIs Made Easy
	Layering Concept
	Example: Layering of UI Changes
	Bootstrapping SAPUI5 Flexibility

	Testing
	Unit Testing with QUnit
	Creating a QUnit Test Page
	Executing a QUnit Test
	Code Coverage Measurement
	Sinon.JS: Spies, Stubs, Mocks, Faked Timers, and XHR
	How to Test SAPUI5 Controls with QUnit
	Cookbook for Testing Controls with QUnit

	Integration Testing with One Page Acceptance Tests (OPA5)
	Getting Started with OPA5
	Cookbook for OPA5
	Retrieving Controls
	Structuring OPA Tests With Page Objects
	Using the autoWait Parameter
	Extensions for OPA5
	Test Libraries for OPA5
	Simulating User Interactions on Controls
	Using OpaBuilder
	Pitfalls and Troubleshooting

	Mock Server
	OData Features Supported by Mock Server
	Mock Server: Frequently Asked Questions
	Using Mock Data

	Test Automation
	Installing Karma for Automated Testing
	Continuous Integration With Headless Chrome
	Code Coverage with Istanbul and OPA5

	Behavior-driven Development with Gherkin
	Feature Files
	Additional Options for Feature Files

	Basic Example How to Use Gherkin
	Gherkin and OPA Page Objects
	Code Coverage
	Logging
	Frequently Asked Questions

	Test Recorder

	Theming
	Setting Themes
	Enhanced Theming Concepts
	Creating Themable User Interfaces
	CSS Classes for Theme Parameters
	List of Supported CSS Classes

	Theming FAQ

	Localization
	Identifying the Language Code / Locale
	Resource Bundles
	Use of Localized Texts in Applications

	Accessibility
	Keyboard Handling for SAPUI5 UI Elements
	Screen Reader Support for SAPUI5 Controls
	High Contrast Themes for SAPUI5 Controls

	Drag and Drop
	Drag-and-Drop Configuration
	Drag-and-Drop Metadata
	Drag-and-Drop Limitations

	Spreadsheet Export
	Spreadsheet Export Configuration
	Data Types for Spreadsheet Export
	SAP Gateway Export versus Client Export
	Spreadsheet Export Limitations

	Troubleshooting
	Debugging
	Loading Debug Sources
	Switching the SAPUI5 Version
	Setting Breakpoints

	Logging and Tracing
	Technical Information Dialog
	Loading Debug Sources
	Technical Information Dialog on Mobile Devices

	Diagnostics
	Technical Information
	Control Tree
	Debugging
	XML View and Templating Support Tools
	Visualizing User Interaction
	SAP Fiori Launchpad Configuration
	Back-End Infrastructure
	Flexibility
	SAP Fiori Elements

	Support Assistant
	Using the Support Assistant
	Rules Management
	Results and Analysis
	Execution Scope
	Analysis Report
	Integrating the Rules in OPA Tests
	Support Assistant API
	Running the Support Assistant on an Older SAPUI5 Version
	Troubleshooting the Support Assistant

	Rule Development Guide
	Create a Ruleset for a Library
	Create a Rule
	Test a Rule
	Common Rule Patterns
	Guidelines and Best Practices

	Test Recorder
	UI5 Inspector
	Performance Measurement Using sap/ui/performance/Measurement Module
	Interaction Tracking for Performance Measurement
	First-Aid Kit
	An Empty Page Comes Up
	Content or Control Is Not Visible
	Request Fails Due to Same-Origin Policy (Cross-Origin Resource Sharing - CORS)
	App or Control Looks Odd

	Developing Apps
	Continuous Integration: Ensure Code Quality
	App Templates: Kick Start Your App Development
	Worklist Template
	Navigation
	Busy Indication
	Model Instantiation
	Send Email
	Testing
	Device Adaptation
	Stable IDs

	Master-Detail Template
	Navigation
	Busy Indication
	Model Instantiation
	Master List Filtering
	Send Email
	Testing
	Device Adaptation
	Stable IDs

	Basic Template

	App Overview: The Basic Files of Your App
	App Initialization: What Happens When an App Is Started?
	Folder Structure: Where to Put Your Files
	Device Adaptation: Using Device Models for Your App
	Performance: Speed Up Your App
	Stable IDs: All You Need to Know
	Reacting on User Input Events
	SAPUI5 Flexibility: Enable Your App for UI Adaptation
	Enabling UI Adaptation: Other Things to Consider
	Troubleshooting

	Coding Issues to Avoid
	JavaScript Code Issues
	CSS Styling Issues
	Performance Issues

	Securing Apps
	Browser Security
	Transport Security
	Server Security
	Third-Party Libraries
	Secure Programming Aspects
	Cross-Site Scripting
	URL Whitelist Filtering
	Whitelist Service
	Frame Options
	Content Security Policy

	Right-to-Left Support
	API Properties for Right-to-Left Support in Text-Displaying Controls

	Accessibility
	General Recommendations
	Text Size and Fonts
	Colors and Theming
	Keyboard Handling
	Fast Navigation
	Screen Reader Support
	Control-Specific Behavior
	Dialog Controls
	User Action Controls
	User Input Controls
	Container Controls
	Display Controls
	List Controls
	Composite Controls

	Labeling and Tooltips

	The SAPUI5 ABAP Repository and the ABAP Back-End Infrastructure
	Big Picture: How Does it All Work?
	Technical Remarks
	Design Time Aspects
	View and Change Content of the SAPUI5 ABAP Repository
	Virus Scan During Uploads to the SAPUI5 ABAP Repository
	Perform Static Checks on SAPUI5 Apps

	Using an OData Service to Load Data to the SAPUI5 ABAP Repository
	Using the SAPUI5 ABAP Repository Upload and Download Reports to Synchronize
	Runtime Aspects
	Cache Behavior for Application Resources
	Cache Buster for SAPUI5 Application Resources

	Fallback: Translating Apps Using the SAPUI5 Text Repository
	Text Classification
	How Translated Texts Are Accessed at Runtime
	Information for Translators
	Placeholder Handling in Transaction SE63

	Securing the SAPUI5 ABAP Repository
	SAPUI5 Application Index
	How is the Index Calculated?
	Calculation Report - Automatic Run vs. Manual Scheduling
	Component IDs - Are They Unique and Valid?
	Calculation Issues
	Monitoring

	Creating a Login Screen
	Browser Debugging for ABAP Developers

	Developing Apps with SAP Fiori Elements
	SAP Fiori Elements Feature Map
	How To Use SAP Fiori Elements
	Preparing OData Services
	Working With UI Annotations
	Building an App Using SAP Web IDE
	Creating a Project
	Checking Folder Structure and Project Artifacts
	Replacing Standard UI Texts
	Maintaining Section Texts for the Object Page
	Maintaining Standard Text for Smart Tables on the Object Page

	Adding Cards to an Overview Page
	Further Post-Generation Steps
	Using the Extension Wizard

	Configuring Navigation
	Configuring External Navigation
	Enabling Quick Views for Smart Link Navigation
	Configuring Quick Views for Smart Link Navigation
	Quick Views for Smart Link Navigation: Further Configuration Examples

	Passing Variant IDs as URL Parameters

	Configuring Internal Navigation
	Changing Navigation to Object Page

	Extending SAP Fiori Elements-Based Apps
	Extending Generated Apps Using App Extensions
	Read Before Extending a Generated App
	Using the ExtensionAPI
	Using the SecuredExecution Method
	Adding Custom Messages

	Adapting Transient Messages that Come from the Backend
	Extending the Bookmark Function to Save Static Tiles to the SAP Fiori Launchpad
	Modifying Startup Parameters Using an Extension

	Extending Delivered Apps Using Adaptation Extensions
	Extending Apps Using a Canvas Page

	Adapting the UI
	General Concepts and Configuration
	Actions
	Using Messages
	Enabling the Flexible Column Layout
	Adapting the Application Header
	Managing Variants
	Responsiveness Options: Example
	Value Help as a Dropdown List
	Using Images, Initials, and Icons
	Keyboard Shortcuts
	Initial Expansion Level for Tables in List Reports & Analytical List Pages

	List Report and Object Page
	List Report Elements
	Object Page Elements
	How-To Videos
	General Concepts
	Smart Tables
	Editing Status
	Draft Handling
	Non-Draft Apps
	Handling Inconsistent Input
	Using Analytical Parameters from the Back End

	Configuring List Report Features
	Enabling Variant Management
	Creating a List Report Without Variant Management
	Actions in the List Report
	Enabling Actions in the List Report

	Multiple Views on List Report Tables
	Defining Multiple Views on a List Report Table - Single Table Mode
	Defining Multiple Views on a List Report Table - Multiple Table Mode
	Defining Multiple Views on a List Report with Different Entity Sets and Table Settings

	Disabling the Editing Status Filter
	Adapting the Smart Filter Bar
	Enabling the Search Function

	Configuring the Delete Dialog Box

	Configuring Object Page Features
	Defining the SmartForm Column Layout
	Displaying Actions on the Object Page
	Setting up the Object Page Header
	Adapting the Object Page Title and Subtitle
	Header Facets
	Enabling Simple Header Facets
	Plain Text Facet
	Contact Facet
	Smart Micro Chart Facet
	Header Field Group
	Data Points
	Rating Indicator Facet
	Progress Indicator Facet
	Key Value Facet

	Form Facet
	Address Facet in the Object Page Header

	Enabling Actions in Object Page Header
	Smart Controls in Object Page Header
	Enabling Editable Header Fields
	Adding Subpages
	Enabling the Related Apps Button

	Defining and Adapting Sections
	Adding a Contact Facet
	Address Facet in Sections
	Smart Chart Facet
	Defining Actions in Smart Chart Toolbar

	Hiding and Showing Reference Facets Using See More and See Less Links
	Adding Action Buttons to Forms in Sections

	Hiding Features Using the UI.Hidden Annotation
	Configuring a Confirmation Popup for Messages
	Save and Navigation Options on the Object Page
	Using the Smart MultiInput Control on the Object Page
	Including Reuse Components on an Object Page
	Placing Reuse Component Instances on the Object Page
	Developing Reuse Components

	Configuring Tables
	Setting the Table Type
	Setting the Smart Table Header
	Defining the Default Sort Order
	Table Groupings
	Enabling Multiple Selection in Tables
	Adding Line Item Actions in Tables
	Highlighting Line Items Based on Criticality
	Adding a Rating Indicator to a Table
	Adding a Progress Indicator to a Table
	Adding a Smart Micro Chart to a Table
	Adding a Contact Quick View to a Table
	Adding Multiple Fields to One Column in Responsive Tables
	Settings for List Report Tables
	Defining Line Items
	Displaying Images in Tables
	Displaying the Editing Status
	Adapting the Table Content to the Space in the List Report

	Settings for Object Page Tables
	Adding Titles to Object Page Tables
	Adding Segmented Buttons to a Table Toolbar
	Enabling Inline Creation of Table Entries on Object Page
	Enabling Action Buttons in Tables on the Object Page
	Using the Condensed Table Layout
	Copying and Pasting from Microsoft Excel to Editable Tables
	Adapting Text for Confirmation Dialog Box When Deleting Lines in a Table

	Configuring Further Common Features
	Using Action Control for Context-Dependent Actions
	Adding Determining Actions
	Adding Action-Specific Messages to Confirmation Dialog Boxes
	Adding Confirmation Popovers for Actions
	Prefilling Fields When Creating a New Entity
	Status Colors and Icons
	Side Effects
	Side Effect Annotations: Examples
	Using the Global Side Effect

	Changing Default Titles for Unnamed Objects
	Enabling Buttons to Display Draft / Saved Values
	Providing Editable Key Fields
	Configuring the Delete Confirmation Dialog Box

	Extending List Reports and Object Pages Using App Extensions
	Extension Points for Object Page Header Facets
	Extension Points for Sections on the Object Page
	Adding a Section to an Object Page
	Adding Dynamic Side Content to Object Page Sections

	Extension Points for Subsections on the Object Page
	Extension Points for Forms on the Object Page
	Extension Points for Tables
	Example: Applying Custom Logic When a Table is Loaded or Refreshed
	Example: Adding Columns to a Responsive Table in the List Report
	Example: Replacing Standard Navigation in a Responsive Table in the List Report
	Example: Replacing Standard Navigation in a Responsive Table on the Object Page
	Example: Enable Internal Navigation for a List Report to Object Pages of Different Entity Sets
	Example: Adding Columns to a Responsive Table on the Object Page
	Example: Adding Columns to a Grid Table in the List Report
	Example: Adding Columns to a Grid Table in the Object Page
	Example: Adding Columns to an Analytical Table on the Object Page
	Example: Adding Columns to a Tree Table in the List Report

	Adding Custom Actions Using Extension Points
	Display of Actions Added Using Extension Points

	Adding Custom Fields to the Smart Filter Bar
	Adding Filterable Field to the Smart Filter Bar

	Adapting Texts in the Delete Dialog Box (List Report)
	Adapting Texts in the Delete Dialog Box (Object Page Header)
	Adapting Texts in the Delete Dialog Box (Object Page with Nested Smart Table)
	Prefilling Fields When Creating a New Entity Using an Extension Point
	Custom State Handling for Extended Apps
	Example: Custom State Handling

	Adaptation Extension Example: Adding a Button to the Table Toolbar in the List Report
	Adapting the UI: List Report and Object Page
	Creating a Binding Change

	Worklist
	Analytical List Page
	Descriptor Configuration
	Configuring the Title Area
	Creating Key Performance Indicator Tags
	Choosing Filter Modes

	Configuring the Filter Area
	Compact Filter Setup
	Visual Filter Setup
	Defining ValueList Annotation

	Configuring the Content Area
	Table-Only View
	Chart-Only View
	Hybrid View

	Configuring Analytical List Page App Extensions
	Refresh API
	Smart Table Extensions
	Chart Extensions
	Creating Custom Filter
	Defining Custom Actions

	Adapting the UI: Analytical List Page

	Overview Pages
	Descriptor Configuration
	Configuring Dependencies to SAPUI5 Libraries
	Configuring the Global Filter

	Overview Page Card
	Types of Cards
	Table Cards
	Configuring the Table Area
	Configuring the Table Card Header Area (Optional)
	Customizing Table Card

	List Cards
	Configuring the List Area
	Configuring the List Card Header Area
	Customizing List Card

	Link List Cards
	Configuring Static Link List Card
	Configuring Dynamic Link List Card

	Stack Cards
	Quick View Cards

	Analytical Cards
	Chart Cards Used in Overview Pages
	Configuring Charts

	Configuring Card Properties
	Configuring an EntitySet with Input Parameters
	Configuring Card Navigation
	Configuring Card Filters
	Configuring Sort Properties
	Adding the OData Select Parameter
	Configuring View Switch
	Setting Units of Measure
	Formatting Numeric Values
	Highlighting Numeric Values
	Coloring Cards Based on Threshold Values
	Setting Authorizations for Cards

	Annotations Used in Overview Pages
	Configuring Overview Page App Extensions
	Custom Actions
	Custom Cards
	Custom Filters
	Custom Navigation Parameters
	Custom Messages
	Custom View Switch

	Sharing Overview Pages
	Customizing Overview Pages Using Runtime Capabilities
	Key User Capabilities

	Developing Apps with Analysis Path Framework (APF)
	Analytical Applications Based on APF
	Setting Up APF and the APF Configuration Modeler
	Data Sources
	Implementation Information for SAP Business Suite powered by SAP HANA and SAP BW on SAP HANA
	Implementation Information for SAP S/4HANA
	Administration Information for SAP S/4HANA Cloud

	Authorization Concept
	Authorization Information for SAP Business Suite powered by SAP HANA
	Authorization Information for SAP S/4HANA

	Enhancing an APF-Based Application
	Creating Your Own Application
	Using the Generic Runtime Application
	Using Your Own Runtime Application

	APF Configuration Modeler
	Adding an Application
	Creating a Configuration
	Creating Categories
	Creating Steps
	Creating Hierarchical Steps
	Tree Table

	Creating Representations
	Configuring Filters
	Individually Configured Filters
	Filter Dependencies
	Use Cases for Configuring Filters
	Use Case 1: Filter Independent of Smart Business
	Use Case 2: Filter Determined by Smart Business Context Only
	Use Case 3: Filter with Default Values Determined by Smart Business Context
	Use Case 4: No Filter
	Erroneous Filter Configuration

	Smart Filter Bar

	Creating Navigation Targets
	Executing a Configuration
	Deleting Objects
	Text Pool Cleanup
	Import
	Export
	Transporting Configurations in SAP S/4HANA Cloud
	Translation

	Launching APF-Based Applications
	Configuring the SAP Smart Business KPI Tile
	Configuring the Fiori App Launcher Tile

	Data Protection and Privacy
	Deletion of Personal Data in SAP Business Suite powered by SAP HANA
	Deletion of Personal Data in SAP S/4HANA

	APF Modules
	The Core Module (sap.apf.core)
	The UI Module
	The Analysis Step Container
	The Step Toolbar
	The Analysis Path Display
	The Analysis Step Gallery
	The Analysis Path Gallery
	Predefined Representation Types
	Rendering of Charts

	Concepts
	Analysis Path Processing
	Consuming APF
	Consuming APF in SAPUI5 1.28 and Prior Releases

	Outbound Navigation and Inbound Navigation
	Working with Multiple Back-End Systems

	Configuration Files and Their Structure
	Application Configuration in SAPUI5 1.28 and Prior Releases
	Descriptor (manifest.json)
	Analytical Configuration
	The Configuration Root Object
	The Step Object
	The Hierarchical Step Object

	The Request Object
	The Binding Object
	The Representation Object
	The Representation Type Object
	The Facet Filter Object
	The Smart Filter Bar Object
	The Navigation Target Object
	The Configuration Header Object
	The Category Object
	The Label Object
	The Thumbnail Object

	API Reference

	Extending Apps
	Using SAPUI5 Flexibility
	Using Component Configuration
	Example: Component Configuration
	Providing Hooks in the Standard Controller
	View Extension
	View Modification
	View Replacement
	Controller Replacement

	Localized Texts for Extended Apps
	Limitations
	Caveats Regarding Stability Across Application Upgrades
	Supportability

	Developing Controls
	Development Conventions and Guidelines
	JavaScript Coding Guidelines
	JavaScript Namespaces
	Example for Defining a Class

	SAPUI5 Control Development Guidelines
	Control Development Guidelines: Theming/CSS

	Product Standards and Acceptance Criteria
	File Names and Encoding
	JSDoc Guidelines
	Common Pitfalls in JSDoc

	Tools
	ESLint Code Checks
	ESLint Configuration File

	The library.js File
	Creating Control and Class Modules
	Defining the Control Metadata
	Object Metadata and Implementation
	Defining Control Properties

	Adding Method Implementations
	Normal Methods
	init() Method
	exit() Method
	Event Handler Methods
	Browser Events
	Mobile Events
	Windows 8 Support
	Windows 8 Support - Known Issues
	Adapting Event Handling to Support Windows 8 Devices

	Renderer Methods

	Device-specific Behavior of Controls
	Examples for Creating and Extending Controls
	Creating a Simple Control
	Creating a Simple Square Control
	Creating a Simple Container Control
	Extending Buttons with Additional Events
	Extending Input Rendering

	Writing a Control Renderer
	Prevention of Cross-site Scripting

	Implementing Animation Modes
	Implementing Focus Handling
	Convenience Functionality

	Item Navigation - Supporting Keyboard Handling in List-like Controls
	Integrating Item Navigation

	Right-to-Left Support in Controls
	Right-to-Left Support Guidelines for Control Development
	Programmatic Access to RTL
	Troubleshooting Common RTL Issues

	Defining Groups for Fast Navigation (F6)
	Composite Controls
	Standard Composite Controls
	XML Composite Controls
	Example of a Simple XML Composite Control
	Properties and Property Bindings
	Events
	Aggregations

	Aggregation Forwarding

	Accessibility Aspects
	Keyboard Handling for SAPUI5 Controls for Developers
	Keyboard Handling for Basic Navigation
	Keyboard Handling for One-Dimensional Navigation
	Keyboard Handling for Two-Dimensional Navigation
	Keyboard Handling for Triggering Actions on Item Level
	Keyboard Handling for Item Selection
	Keyboard Handling for Value Help and Auto-Complete

	Screen Reader Support for SAPUI5 Controls
	ARIA Attribute Mapping
	Keyboard Usage of ARIA Role Mapped Controls
	ARIA Mapping for Tooltips and Textual Alternatives
	ARIA Event Handling
	ARIA Labeling
	Best Practices for ARIA Labeling

	Writing a Control: FAQ

	More About Controls
	Busy Indicators
	Cards
	Date and Time Related Controls: Data Binding
	Grid Controls
	sap.f.GridContainer
	sap.f.GridList
	sap.ui.layout.cssgrid.CSSGrid
	sap.ui.layout.Grid

	Hyphenation for Text Controls
	Semantic Pages
	Semantic Page (sap.f)
	Semantic Page (sap.m)

	Tables: Which One Should I Choose?
	sap.f
	Building an App with the Flexible Column Layout and Related Classes
	Flexible Column Layout
	Control Structure
	Types of Layout
	Layout Arrows
	Reacting to Layout Changes
	Changing the Layout and Loading Views (Best Practices)

	Flexible Column Layout Semantic Helper
	Main Methods

	Router

	sap.m
	App and Nav Container
	Events Fired Centrally by the App or the NavContainer
	Events Fired on the Pages
	Passing Data when Navigating

	Facet Filter
	Facet Filter: Simple Type
	Facet Filter: Light Type
	Facet Filter List and Facet Filter Item
	Events for Facet Filters
	Data Binding for Facet Filters
	Filter Search
	Facet Filter Selection
	Dependent Facets

	Feed Input
	Feed List Item
	Flex Box
	Getting Started With FlexBox
	Important FlexBox Layout Concepts

	Generic Tile
	Image
	List, List Item, and Table
	Lists
	Custom List Item

	Swipe for Action
	Aggregation
	Events
	Methods
	Properties

	Creating Tables
	Configuring Responsive Behavior of a Table
	Defining Column Width
	Table Design
	List and Table Events
	Growing Feature for Table and List
	Grouping in a Table
	Table Personalization
	Performance of Lists and Tables

	Message Handling
	Message Popover
	PDF Viewer
	Personalization Dialog
	Scrolling
	Scrolling: Implementation Details
	Scrolling: Pull to Refresh

	Sliders
	Split App
	Text
	Upload Collection
	URL Helper
	Examples for Triggering Telephone, Text and E-Mail Applications

	sap.suite.ui.commons
	Calculation Builder
	Chart Container
	Micro Process Flow
	Network Graph
	Process Flow
	Status Indicator
	T Account
	Timeline

	sap.suite.ui.microchart
	Radial Micro Chart
	Line Micro Chart
	Stacked Bar Micro Chart

	sap.tnt
	sap.ui.codeeditor
	Code Editor

	sap.ui.comp
	Filter Bar
	Smart Chart
	Smart Field
	Smart Filter Bar
	Smart Form
	Smart Link
	Smart Micro Chart
	Smart Bullet Micro Chart
	Smart Area Micro Chart
	Labels of the Chart
	Formatting
	Label Colors of the Chart

	Smart Radial Micro Chart

	Smart Multi Edit
	Smart Multi Input
	Smart Table
	Smart Variant Management

	sap.ui.core
	Icon and Icon Pool

	sap.ui.richtexteditor
	sap.ui.table
	sap.ui.vk
	Native Viewport
	Scene Tree
	Step Navigation
	Viewer
	Viewport

	sap.uxap
	Object Page Layout
	Object Page Headers
	Object Page Classic Header
	Object Page Dynamic Header
	Object Page Headers Comparison

	Anchor Bar
	Object Page Blocks
	Creating Blocks
	Object Page Scrolling

	Glossary

	Important Disclaimers and Legal Information
	Copyright / Legal Notice

